WO2016195435A1 - 비닐계 중합체 및 그 제조방법 - Google Patents

비닐계 중합체 및 그 제조방법 Download PDF

Info

Publication number
WO2016195435A1
WO2016195435A1 PCT/KR2016/005945 KR2016005945W WO2016195435A1 WO 2016195435 A1 WO2016195435 A1 WO 2016195435A1 KR 2016005945 W KR2016005945 W KR 2016005945W WO 2016195435 A1 WO2016195435 A1 WO 2016195435A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl chloride
fatty acid
unsaturated fatty
polymerization
acid ester
Prior art date
Application number
PCT/KR2016/005945
Other languages
English (en)
French (fr)
Inventor
안성용
김건지
이세웅
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP16803788.5A priority Critical patent/EP3181601B1/en
Priority to CN201680003134.6A priority patent/CN106795243B/zh
Priority to US15/512,778 priority patent/US10138311B2/en
Publication of WO2016195435A1 publication Critical patent/WO2016195435A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/02Monomers containing chlorine
    • C08F214/04Monomers containing two carbon atoms
    • C08F214/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F18/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F18/14Esters of polycarboxylic acids
    • C08F18/16Esters of polycarboxylic acids with alcohols containing three or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/20Aqueous medium with the aid of macromolecular dispersing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters

Definitions

  • the present invention relates to a vinyl polymer and a method for producing the same, and more particularly, to a vinyl chloride copolymer and a method for producing the same having excellent plasticity and mechanical properties and transparency.
  • Vinyl chloride-based polymers are homopolymers of vinyl chloride or hybrid polymers containing 50% or more of vinyl chloride, and are widely used in the field of piping materials and building materials due to their excellent mechanical strength, weather resistance and chemical resistance. However, since the vinyl chloride polymer has low moldability in itself, various additives such as plasticizers are appropriately added to impart processability.
  • the molding processability of the vinyl chloride polymer is greatly dependent on the particle characteristics of the vinyl chloride polymer.
  • the bulk density, internal porosity, particle size, or particle distribution of the vinyl chloride polymer particles are controlled to improve gelation properties, plasticizer absorbency, or powder fluidity. It is necessary to let.
  • a method of using a plasticizer together with the vinyl chloride-based polymer in the production of a molded article is mainly used.
  • the plasticizer moves to the surface of the product, thereby causing the stickiness of the surface, and the plasticity gradually decreases over time.
  • phthalate plasticizer There is a disadvantage that a large amount of smoke is generated, and it is flexible at a considerably high temperature and requires high energy in processing.
  • the first technical problem to be solved by the present invention is to provide a vinyl chloride-based copolymer having excellent plasticity, mechanical properties and transparency.
  • the second technical problem to be solved by the present invention is to provide a method for producing a vinyl chloride-based copolymer capable of producing the above-described vinyl chloride-based copolymer with an excellent polymerization production rate.
  • the third technical problem to be solved by the present invention is to provide a thermoplastic resin composition comprising the above-mentioned vinyl chloride copolymer and a molded article prepared therefrom.
  • the secondary particles formed by assembling the primary particles the average pore diameter is 100nm or less, the porosity is 40% by volume or less, repetition derived from vinyl chloride monomer 65 to 97 weight percent of the unit; And 3 to 35 weight percent of the cis and trans isomer derived repeat units of the unsaturated fatty acid ester, wherein each repeat unit derived from the cis and trans isomers of the unsaturated fatty acid ester is 60 to 99 It provides a vinyl chloride copolymer comprising in a weight ratio of: 40 to 1.
  • a step of polymerizing the vinyl chloride monomer and the cis and trans isomers of the unsaturated fatty acid ester in the presence of a polymerization initiator, the cis and trans of the vinyl chloride monomer and the unsaturated fatty acid ester The isomer is 65 to 97% by weight of the vinyl chloride monomer-derived repeating units in the vinyl chloride copolymer prepared, and 3 to 35% by weight of the cis and trans isomer-derived repeating units of the unsaturated fatty acid ester It is used in an amount such that the cis isomer and the trans isomer of the unsaturated fatty acid ester provides a method for producing a vinyl chloride copolymer is used in a weight ratio of 60 to 99: 40 to 1.
  • thermoplastic resin composition comprising the vinyl chloride-based copolymer and a molded article prepared therefrom.
  • the vinyl chloride-based copolymer according to the present invention can exhibit excellent plasticity, mechanical properties and transparency by using a mixture of cis and trans isomers of unsaturated fatty acid esters in preparation.
  • there is no fear of problems due to the migration during the manufacturing process it is possible to reduce the use of external plasticizers in the manufacture of the molded article afterwards, in particular to reduce or replace the use of conventional phthalate-based external plasticizers to reduce the production of environmental hormones Can be reduced or prevented.
  • a) is an infrared spectroscopy (Infrared Spectroscopy, IR) analysis of the vinyl chloride homopolymer prepared in Comparative Example 1
  • b) is an IR analysis of the vinyl chloride copolymer prepared in Example 1
  • c) is the IR analysis of the unsaturated dicarboxylic acid ester.
  • FIG. 2A is a transmission electron microscope (TEM) observation photograph of the vinyl chloride-based copolymer prepared in Example 2, and FIG. 2B is a partially enlarged view of FIG. 2A.
  • TEM transmission electron microscope
  • FIG. 3A is a transmission electron microscope (TEM) observation photograph of the vinyl chloride polymer prepared in Comparative Example 1, and FIG. 3B is a partially enlarged view of FIG. 3A.
  • TEM transmission electron microscope
  • FIG. 4 is an observation photograph using a nuclear magnetic resonance spectrometer (NMR) for the vinyl chloride polymer prepared in Example 9.
  • NMR nuclear magnetic resonance spectrometer
  • Vinyl chloride-based copolymer according to an embodiment of the present invention is a secondary particle formed by assembling the primary particles, the average pore diameter is 100nm or less, porosity (porosity) 40vol% or less, vinyl chloride-based 65% to 97% by weight of the monomer-derived repeating unit; And 3 wt% to 35 wt% of cis and trans isomer derived repeat units of the unsaturated fatty acid ester, wherein each repeat unit derived from the cis isomer and trans isomer of the unsaturated fatty acid ester is 60 to 99 It includes by weight ratio of 40-1.
  • the cis and trans isomers of the unsaturated fatty acid ester form a polymer chain together with the vinyl chloride-based monomer in the preparation of the vinyl chloride-based copolymer.
  • the vinyl chloride-based copolymer according to an embodiment of the present invention includes finer pores with a lower porosity than the conventional vinyl chloride-based polymer as described above, and furthermore, cis and trans of the unsaturated fatty acid ester.
  • the pores included in the secondary particles of the vinyl chloride copolymer have an average pore diameter of 100 nm or less, more specifically 10 nm to 100 nm, even more specifically 10 nm to 60 nm, even more specifically 10 nm to 20 nm or 10 nm. To 15 nm.
  • the vinyl chloride-based copolymer is 40 vol% or less, more specifically 35 vol% or less, even more specifically 20 vol% or less, even more specifically, the pores having the above average pore diameter in the total volume of the secondary particles May include a porosity of 10% to 18% by volume, or 10% to 15% by volume. If the size of the pores contained in the secondary particles exceeds 100nm or the porosity exceeds 40% by volume, the internal filling rate of the comonomer is reduced, the workability may be reduced.
  • the average pore diameter (4V / A) and porosity of the vinyl chloride copolymer are invaded into the copolymer particles using a mercury porosity analyzer, specifically, Auto Pore IV 9520 (manufactured by Micromeritics).
  • Surface porosity (P inter ), accessible intravoid (P acc ) and inaccessible intravoid (P inacc ) are respectively measured from the amount of mercury, and the average pore diameter and porosity can be determined from the results, respectively.
  • the vinyl chloride-based copolymer according to an embodiment of the present invention that satisfies the above-described pore characteristics and constituent requirements is 10% by weight or less, more specifically, due to the internal plasticizing effect of the cis and trans isomers.
  • Low plasticizer absorption (CPA) of up to 7% by weight, even more specifically from 1% to 3% by weight. If the plasticizer absorption rate is higher than 10% by weight, there is a fear of lowering the mechanical properties, but in the present invention, by having a low plasticizer absorption rate as described above, the plasticizer may exhibit more improved plasticization performance and mechanical properties.
  • the plasticizer absorption rate is expressed by weight% of the plasticizer absorbed into the vinyl chloride copolymer sample, specifically dioctylphthalate, based on ASTM D2396 and ISO4574, based on the vinyl chloride copolymer sample before absorption. More specifically, in the present invention, the plasticizer absorption rate was measured at 3900 rpm and 20 ° C. using Hanil's Continent 512-R instrument.
  • the K value (K value) is 55 or more, specifically 60 to 73, more specifically 65 To 73. Due to the internal plasticizing effect of the cis and trans isomers described above during polymerization, it is possible to exhibit soft properties having the above K values.
  • the K value of the vinyl chloride polymer is described in H. Fikentscher, Cellulose Chemie, Vol. 13, 58-64 and 71-74 (1932)] can be measured at a temperature of 25 ° C., a polymer concentration of 0.5% by weight and pH 7.0 in a 5% by weight sodium chloride solution.
  • the K value may vary depending on the polymerization temperature of the polymer, the vinyl chloride copolymer in the present invention is 30 °C to 80 °C, more specifically 30 °C to 70 °C, even more specifically 30 °C to It was polymerized at the polymerization temperature of 62 degreeC.
  • the vinyl chloride-based copolymer according to an embodiment of the present invention that satisfies the above-described pore characteristics and constituent requirements may exhibit excellent plasticization performance by having low hardness characteristics.
  • the vinyl chloride copolymer has a hardness of 50HS to 110HS, more specifically 50HS to 75HS as measured according to ASTM D785-65.
  • the vinyl chloride-based copolymer according to an embodiment of the present invention that satisfies the above-described pore characteristics and constituent requirements has excellent mechanical properties with excellent plasticization performance or processability as described above.
  • the vinyl chloride copolymer may exhibit a tensile strength of 5 MPa to 50 MPa, a strain of 40% to 750%, and an E-modulus of 400 N / cm 2 to 5200 N / cm 2 as measured according to ASTM D638. More specifically, the vinyl chloride-based copolymer can be an indication of the E- Modulus of 7MPa to strain and 400N / cm of the tensile strength of 15MPa, 400% to 720% from 2 to 3000N / cm 2.
  • the vinyl chloride-based copolymer according to an embodiment of the present invention may have a glass transition temperature (Tg) of -35 ° C to 64 ° C, more specifically- 35 degreeC or more and less than -10 degreeC, More specifically, it may be -35 degreeC --20 degreeC. As such, it has a lower glass transition temperature than the conventional vinyl chloride-based polymer prepared by not using a conventional plasticizer or using an external plasticizer, thereby exhibiting better processability.
  • Tg can be measured using a differential scanning calorimeter (DSC: Differential Scanning Calorimeter 2920) manufactured by TA, wherein the measured value is 10 ° C. per minute to eliminate the thermal history of the polymer. Obtained through a second melt at elevated temperature. In the measured DSC curve, Tg is the temperature at the inflection point at which the heat flow changes during the endothermic reaction.
  • DSC Differential Scanning Calorimeter 2920
  • the vinyl chloride-based copolymer according to an embodiment of the present invention for implementing the above-described physical properties may specifically include cis and trans isomer-derived repeating units of unsaturated fatty acid esters in the range of 60 to 99: 40 to 1, specifically 80 to 80 99 to 20 to 1, more specifically 85 to 99: 15 to 1, even more specifically 95 to 99: 5 to 1 can be included in the weight ratio.
  • the vinyl chloride copolymer according to an embodiment of the present invention may realize the pore characteristics when the cis and trans isomer-derived repeating units of the unsaturated fatty acid ester are included in the above mixing ratio range, and also have high polymerization conversion. Plasticity and mechanical properties can be well balanced.
  • the content of the cis isomer-derived repeating unit is less than 60% by weight, more than 99% by weight, or 100% by weight relative to the total weight of the cis and trans isomeric repeating unit content, It is difficult to produce a vinyl chloride-based copolymer that satisfies the pore characteristics of, and as a result, it is difficult to obtain an effect of improving plasticity and transparency with excellent mechanical properties.
  • the content of the trans isomer-derived repeating unit exceeds 40% by weight based on the total weight of the cis and trans isomer-derived repeating unit, there is a concern that aggregation of the trans isomers may occur rather than forming a vinyl chloride-based copolymer.
  • the vinyl chloride-based copolymer according to an embodiment of the present invention for implementing the above-described physical properties is more specifically 65% to 97% by weight of a vinyl chloride monomer-derived repeating unit; And 3 wt% to 35 wt% of cis and trans isomer-derived repeat units derived from cis and trans isomers of unsaturated fatty acid esters, wherein the cis isomer-derived repeat units and trans isomer-derived repeat units of the unsaturated fatty acid ester are 60 to 99:40 to 40 wt%. 1, specifically, 80 to 99: 20 to 1, more specifically, 85 to 99: 15 to 1, even more specifically 95 to 99: 5 to 1 may be included in the weight ratio.
  • Reverse plasticization occurs when the content of vinyl chloride monomer-derived repeating units in the vinyl chloride copolymer exceeds 97% by weight and the total content of comonomer-derived repeating units of cis and trans isomers of unsaturated fatty acid esters is less than 3% by weight. As a result, the physical properties of the vinyl chloride copolymer may be degraded, specifically the mechanical properties.
  • the content of the vinyl chloride monomer-derived repeating units in the vinyl chloride copolymer is less than 65% by weight, and the total content of the comonomer-derived repeating units of the cis and trans isomers of the unsaturated fatty acid ester exceeds 35% by weight,
  • the comonomer-derived repeating unit By including the comonomer-derived repeating unit, polymerization is not easy and may be formed into large particles, or the mechanical properties may be greatly reduced.
  • the vinyl chloride-based copolymer according to an embodiment of the present invention may be made of vinyl chloride in consideration of the remarkable effect of good polymerization conversion, plasticity, and mechanical properties, and the improvement of porosity. 65% to 80% by weight of the repeating unit derived from a monomer; And 20 wt% to 35 wt% of the cis and trans isomer derived repeat units of the cis and trans isomers of the unsaturated fatty acid ester, and 60 to 99: 40 to 1, specifically 80 To 99: 20 to 1, more specifically, 85 to 99: 15 to 1, even more specifically may be included in a weight ratio of 95 to 99: 5 to 1.
  • the unsaturated fatty acid ester may specifically be an unsaturated dicarboxylic acid ester. More specifically, the cis isomer of the unsaturated fatty acid ester may specifically be a dialkyl maleate compound of Formula 1, and the trans isomer of the unsaturated fatty acid ester may be a dialkyl fumalate compound of Formula 2:
  • R 1 to R 4 may each independently be selected from the group consisting of a straight or branched alkyl group having 2 to 16 carbon atoms, a cycloalkyl group having 3 to 16 carbon atoms, and a combination thereof, and more specifically, having 4 to 14 carbon atoms. It may be a linear or branched alkyl group.
  • Specific examples include cis and trans isomers of the unsaturated fatty acid esters, dibutyl maleate and fumalate; Dihexyl malate and fumalate; Di (2-ethylhexyl) maleate and fumalate; Di (ethyldodecyl) maleate and fumalate; Didecyl maleate and fumalate; Diundecyl malate and fumalate; Dididodecyl malate and fumalate; Or ditridecyl maleate and fumarate.
  • R 1 to R 4 in Formula 1 are each independently 6 to 10 carbon atoms Improved balance of mechanical properties, plasticity and transparency when the linear or branched alkyl group of is more specifically, an alkyl group having 6 to 8 carbon atoms, or an alkyl group having 8 to 10 carbon atoms, and more specifically an alkyl group having 6, 8 and 10 carbon atoms. Can exhibit the effect.
  • R 1 to R 4 in Chemical Formula 1 may each independently be a linear alkyl group having 14 carbon atoms.
  • the vinyl chloride copolymer according to an embodiment of the present invention may include 65 wt% to 97 wt% of a repeat unit derived from a vinyl chloride monomer; And 3 to 35 weight percent of the cis and trans isomer derived repeating units of the unsaturated fatty acid ester, wherein each repeat unit derived from the cis and trans isomers of the unsaturated fatty acid ester is 80 to 99 20 to 1, wherein the cis isomer of the unsaturated fatty acid ester is a compound of Formula 1, and the trans isomer of the unsaturated fatty acid ester is a compound of Formula 2, wherein R in Formulas 1 and 2 1 to R 4 may be each independently a linear or branched alkyl group having 4 to 14 carbon atoms.
  • the vinyl chloride copolymer according to an embodiment of the present invention may include 65 wt% to 80 wt% of a repeat unit derived from a vinyl chloride monomer; And 20 to 35% by weight of cis and trans isomer derived repeat units of the unsaturated fatty acid ester, wherein each repeat unit derived from the cis and trans isomers of the unsaturated fatty acid ester is 60 to 99 : 40 to 1, specifically 80 to 99: 20 to 1, more specifically 85 to 99: 15 to 1, even more specifically 95 to 99: 5 to 1 by weight ratio, the unsaturated fatty acid ester
  • the cis isomer is a compound of Formula 1
  • the trans isomer of the unsaturated fatty acid ester is a compound of Formula 2, wherein in Formulas 1 and 2, R 1 to R 4 are each independently A chain or branched alkyl group, specifically, a straight or branched alkyl group having 6 to
  • Polyvinyl chloride copolymer according to an embodiment of the present invention having the above configuration has a polydispersity (PDI) which is the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) May have a narrow molecular weight distribution of 1.5 to 2.5.
  • PDI polydispersity
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the polydispersity of the vinyl chloride-based copolymer may be specifically 1.8 to 2.1.
  • the vinyl chloride copolymer according to an embodiment of the present invention may have a weight average molecular weight (Mw) of 70,000 g / mol to 300,000 g / mol, and more specifically 90,000 g / mol to 280,000 g / mol. have.
  • the conjugated diene-based polymer according to an embodiment of the present invention the number average molecular weight (Mn) may be 50,000g / mol to 150,000g / mol, more specifically 50,000g / mol to 70,000g / mol. .
  • the weight average molecular weight or the number average molecular weight of the vinyl chloride copolymer is outside the above-mentioned range or outside the polydispersity range described above, good improvement of workability and mechanical properties are not easily improved.
  • the weight average molecular weight and the number average molecular weight are polystyrene reduced molecular weights analyzed by gel permeation chromatography (GPC), respectively.
  • the vinyl chloride-based copolymer according to an embodiment of the present invention may determine the degree of polymerization according to the polymerization temperature during polymerization, its use may vary depending on the degree of polymerization.
  • the degree of polymerization of the vinyl chloride-based copolymer according to an embodiment of the present invention may be 700 to 3000, more specifically 700 to 1500, and the degree of workability and transparency by controlling the degree of polymerization together with the above pore characteristics.
  • Considering the remarkable improvement in the degree of polymerization of the vinyl chloride copolymer may be 1000 to 1300.
  • Vinyl chloride-based copolymers having the structural and constituent features as described above, can be prepared by polymerizing the vinyl chloride monomer with cis and trans isomers of unsaturated fatty acid esters.
  • the cis and trans isomers of the vinyl chloride monomer and the unsaturated fatty acid ester are 65% to 97% by weight of the vinyl chloride monomer-derived repeating unit in the produced vinyl chloride copolymer, and the cis of the unsaturated fatty acid ester And trans isomer-derived repeating units in an amount of 3% to 35% by weight, wherein the cis isomer and the trans isomer of the unsaturated fatty acid ester are 60 to 99: 40 to 1, specifically 80 to 99: 20 to 1 More specifically, it may be used in a weight ratio of 85 to 99: 15 to 1, even more specifically 95 to 99: 5 to 1. Accordingly, according to another embodiment of the present invention, a method for preparing the vinyl chloride copolymer is
  • the vinyl chloride copolymer according to one embodiment of the present invention may be prepared by suspension polymerization, emulsion polymerization, solution polymerization or bulk polymerization of an isomeric mixture of a vinyl chloride monomer and an unsaturated fatty acid ester in the presence of a polymerization initiator. .
  • cis isomers of the unsaturated dicarboxylic acid esters of the general formula (1) and trans isomer compounds of the general formula (2) may be used as the isomeric mixture of the unsaturated fatty acid esters.
  • the isomeric mixture of the unsaturated fatty acid esters may be obtained commercially and used, or may be prepared and used according to a conventional production method such as reacting an aliphatic alcohol with maleic anhydride or fumaric acid.
  • the isomeric mixture of the vinyl chloride monomer and the unsaturated fatty acid ester has a vinyl chloride monomer-derived repeating unit of 65% by weight to 97 in the final vinyl chloride copolymer. Weight percent, and may be used in an amount such that an isomeric derived repeating unit of the unsaturated fatty acid ester is from 3% to 35% by weight, and the isomeric mixture of the unsaturated fatty acid ester is derived from each of the cis and trans isomers of the unsaturated fatty acid ester.
  • the repeating unit may be used in an amount such that the weight ratio is 80 to 99: 20 to 1.
  • the isomeric mixture of the vinyl chloride monomer and the unsaturated fatty acid ester has 65% to 80% by weight of the vinyl chloride monomer-derived repeating unit in the finally produced vinyl chloride copolymer. It may be used in an amount such that 20 to 35% by weight of the repeating unit derived from the isomers, and the isomeric mixture of the unsaturated fatty acid esters may include 60 to 99: 40 to 40 repeating units derived from the cis and trans isomers of the unsaturated fatty acid ester. 1, specifically 80 to 99: 20 to 1, more specifically 85 to 99: 15 to 1, even more specifically may be used in an amount such that the weight ratio of 95 to 99: 5 to 1.
  • the polymerization initiator may be used without particular limitation as long as it is usually used as a polymerization initiator in the production of the vinyl chloride monomer.
  • the polymerization initiator may be a peroxide compound such as dicumyl peroxide, dipentyl peroxide, di-3,5,5-trimethyl hexanoyl peroxide or dilauryl peroxide; Peroxydicarbonate-based compounds such as diisopropylperoxydicarbonate, di-sec-butylperoxydicarbonate or di-2-ethylhexylperoxydicarbonate; peroxy ester compounds such as t-butylperoxy pivalate, 1,1,3,3-tetramethylbutylperoxy neodecanoate or t-butylperoxy neodecanoate; Azo compounds such as azobis-2,4-dimethylvaleronitrile; hydroperoxide compounds
  • the polymerization initiator may be used in an amount of 0.02 part by weight to 0.2 part by weight based on 100 parts by weight of the total monomer including the isomeric mixture comonomer of the vinyl chloride monomer and the unsaturated fatty acid ester used in the vinyl chloride-based polymerization. If the content of the polymerization initiator is less than 0.02 parts by weight, the polymerization reaction time is long, the polymerization conversion efficiency is low, there is a fear that the productivity is lowered. If the content is more than 0.2 parts by weight, the polymerization initiator is not completely consumed during the polymerization process, the final copolymer There is a risk of remaining in the resin and reducing the physical properties of the copolymer, in particular the thermal stability.
  • the polymerization initiator may be used in an amount of 0.04 parts by weight to 0.12 parts by weight based on 100 parts by weight of the total monomers in consideration of the polymerization conversion efficiency according to the use of the polymerization initiator and the improvement of physical properties of the final copolymer.
  • the vinyl chloride-based air described above is reacted by reacting a vinyl chloride monomer with cis and trans isomers of an unsaturated fatty acid ester in a solvent, specifically water or deionized water, in the presence of a polymerization initiator and a protective colloid preparation.
  • the coalescing can be made. Specifically, it may be prepared by adding and mixing the protective colloid preparation, the cis and trans isomers of the vinyl chloride monomer and the unsaturated fatty acid ester in a solvent, and then adding a polymerization initiator to polymerize.
  • the vinyl chloride monomer cis and trans isomers of the unsaturated fatty acid ester, and the polymerization initiator are the same as described above.
  • water or deionized water may be used as the solvent, and the amount of the solvent may be appropriately determined according to the amount of the monomer for preparing the copolymer according to the present invention.
  • the solvent may be used in an amount of 70 parts by weight or more, more specifically 90 parts by weight or more, based on 100 parts by weight of the total copolymer preparation monomer.
  • the polymerization initiator may be soluble in the vinyl chloride monomer among the above-described polymerization initiators.
  • peroxide compounds such as dicumyl peroxide; Peroxydicarbonate-based compounds such as di-2-ethylhexylperoxy dicarbonate; peroxy ester compounds such as t-butylperoxy neodecanoate or 1,1,3,3-tetramethylbutylperoxy neodecanoate; Or an azo compound etc. can be mentioned, Any one or a mixture of two or more of these can be used.
  • the protective colloid preparation includes vinyl alcohol resin, cellulose, unsaturated organic acid polymer, and the like, and any one or a mixture of two or more thereof may be used.
  • the vinyl alcohol resin may have a hydration degree of 30 wt% to 90 wt%, and more specifically, a first polyvinyl having a hydration degree of more than 50 wt% and 90 wt% or less. Mixtures of alcohols and second polyvinyl alcohols having a degree of hydration of 30% to 50% by weight can be used. At this time, the mixing ratio of the first and second polyvinyl alcohol may be 2 to 1: 1 to 2, more specifically 5 to 2: 4 to 3.
  • the cellulose includes methyl cellulose, hydroxyethyl cellulose, or hydroxypropyl methyl cellulose, and any one or a mixture of two or more thereof may be used.
  • hydroxypropylmethylcellulose may be used. More specifically, the content of intramolecular hydroxypropyl group is 3% by weight to 20% by weight, and the viscosity of 2% aqueous solution at 23 ⁇ 5 ° C. is 10cps to 20,000cps. Can be.
  • the unsaturated organic acid polymer may specifically include an acrylic acid polymer, a methacrylic acid polymer, an itaconic acid polymer, a fumaric acid polymer, a maleic acid polymer, or a succinic acid polymer, and any one or a mixture of two or more thereof may be used.
  • an acrylic acid polymer a methacrylic acid polymer, an itaconic acid polymer, a fumaric acid polymer, a maleic acid polymer, or a succinic acid polymer, and any one or a mixture of two or more thereof may be used.
  • a methacrylic acid polymer e.g., an itaconic acid polymer, e.g., a fumaric acid polymer, a maleic acid polymer, or a succinic acid polymer, and any one or a mixture of two or more thereof may be used.
  • the protective colloid preparation usable in the suspension polymerization may include a mixture of vinyl alcohol resin and cellulose resin, and more specifically 5-7: 1 of vinyl alcohol resin and cellulose resin. It may be to include a mixture of 7 to (weight ratio).
  • the protective colloid preparation may be used in an amount of 0.03 parts by weight to 5 parts by weight based on 100 parts by weight of the total monomers including the comonomer of the vinyl chloride monomer and isomer mixture used in the preparation of the vinyl chloride copolymer. If the content of the protective colloid preparation is less than 0.03 parts by weight, the size of the secondary particles may be excessively increased, causing fish-eye. If the content of the protective colloid is more than 5 parts by weight, the initial colorability may be reduced due to the increase of the fine particles. There is concern.
  • the protective colloid preparation may be used in 0.05 parts by weight to 2.5 parts by weight based on 100 parts by weight of the total monomers.
  • suspension polymerization may be carried out by a two-step polymerization reaction.
  • the suspension polymerization may be carried out by subjecting the vinyl chloride monomer to the primary suspension polymerization reaction of cis and trans isomers of unsaturated fatty acid esters in a solvent, specifically water or deionized water, in the presence of a polymerization initiator and a protective colloid preparation; And a secondary suspension polymerization reaction with cis and trans isomers of unsaturated fatty acid esters in a solvent, specifically water or deionized water, in the presence of a polymerization initiator and a protective colloid preparation in the presence of the polymer and unreacted monomers obtained as a result of the primary suspension polymerization.
  • the first suspension polymerization is performed until the polymerization conversion rate is 10% or more, more specifically, 15% or more, and the second suspension polymerization is 80% or more, more specifically 85% or more. Or up to the point where the polymerization reactor pressure reached 6.0 kg / cm 2 .
  • the materials and contents used are as described above.
  • a vinyl chloride copolymer is prepared by reacting a vinyl chloride monomer with a cis and trans isomer of an unsaturated fatty acid ester in a solvent, specifically water or deionized water, in the presence of an emulsifier together with a polymerization initiator.
  • a solvent specifically water or deionized water
  • an emulsifier together with a polymerization initiator.
  • it can be carried out by adding the cis and trans isomers of the emulsifier, the vinyl chloride monomer and the unsaturated fatty acid ester in the solvent sequentially, and then adding the polymerization initiator to polymerize.
  • the type and content of the cis and trans isomers of the vinyl chloride monomer and the unsaturated fatty acid ester are the same as described above.
  • the polymerization initiator may be used without particular limitation as long as it is soluble in a solvent, specifically water or deionized water, among the polymerization initiators described above.
  • a solvent specifically water or deionized water
  • sulfate type compounds such as potassium persulfate or ammonium persulfate, are mentioned.
  • any emulsifier can be used without particular limitation as long as it is usually used in the production of vinyl chloride monomers by suspension polymerization.
  • Specific examples thereof include sodium lauryl sulfate, potassium stearate, alkylbenzene sulfate or ammonium dialkylsulfosuccinate, and any one or a mixture of two or more thereof may be used.
  • the emulsifier may be used in an amount of 0.0001 part by weight to 1 part by weight based on 100 parts by weight of the total monomers including the comonomer of the vinyl chloride monomer and isomer mixture used in the preparation of the vinyl chloride copolymer. If the content of the emulsifier is less than 0.0001 parts by weight, the polymerization efficiency may be lowered. If the content of the emulsifier is more than 1 part by weight, the increase of fine particles and the processability due to the unreacted emulsifier may be reduced.
  • the emulsifier may be used in 0.0005 parts by weight to 0.1 parts by weight based on 100 parts by weight of the total monomers.
  • a vinyl chloride copolymer may be prepared by reacting a vinyl chloride monomer with cis and trans isomers of an unsaturated fatty acid ester in a polymerization solvent in the presence of a polymerization initiator.
  • a polymerization solvent in the case of the solution polymerization method, the type and content of the vinyl chloride monomer, the cis and trans isomers of the unsaturated fatty acid ester, and the polymerization initiator are the same as described above.
  • the polymerization initiator in the solution polymerization may be one that can be dissolved in the polymerization solvent among the polymerization initiator described above.
  • a peroxide compound, a hydroperoxide compound, an azo compound, etc. can be mentioned, Any one or two or more of these compounds can be used.
  • water or an inert organic solvent may be used as the polymerization solvent.
  • the inert organic solvent may include aliphatic hydrocarbon compounds such as butane, pentane and octane; Cycloalkanes; Aromatic hydrocarbon compounds such as benzene and toluene; Alicyclic hydrocarbon compounds such as cyclohexane; Ketone compounds such as cyclohexanone, acetone equivalents; Alcohol compounds such as isopropanol; Or a cyclic ether compound such as tetrahydrofuran, and the like, and any one or a mixture of two or more thereof may be used.
  • the vinyl chloride copolymer produced as a result of the solution polymerization may be obtained in a dissolved state in the inert organic solvent described above, or may be obtained in a precipitated phase.
  • the bulk polymerization process it can be carried out by reacting the vinyl chloride monomer with cis and trans isomers of unsaturated fatty acid esters in the presence of a polymerization initiator without solvent. Specifically, after preparing a particle nucleus having a polymerization conversion rate of 5% to 10% by adding a polymerization initiator to the vinyl chloride monomer, the prepared particle nucleus is mixed with the vinyl chloride monomer, cis and trans isomers of an unsaturated fatty acid ester, and a polymerization initiator. It can be carried out by mixing and polymerizing. At this time, the type and content of the vinyl chloride monomer, the cis and trans isomers of the unsaturated fatty acid ester, and the polymerization initiator are the same as described above.
  • the polymerization initiator may be soluble in the vinyl chloride monomer among the polymerization initiators described above.
  • a peroxide compound, a hydroperoxide compound, an azo compound, etc. can be mentioned, Any one or two or more of these compounds can be used.
  • the vinyl chloride monomer may be added in one batch, or may be divided in two or more times.
  • the vinyl chloride monomer When the vinyl chloride monomer is added in two or more times, it may be added while the polymerization conversion rate is 10% to 70%. In case of the addition when the polymerization conversion rate is less than 10%, the effect of increasing the polymerization productivity per batch according to the split injection is insignificant.In the case of the addition when the polymerization conversion exceeds 70%, there is a possibility that the increase of the fine particles may adversely affect the bulk density increase. In addition, there exists a possibility that a polymerization reaction time may become long too much and a fall of polymerization productivity may be caused. More specifically, it may be added in a 10% to 30% period of polymerization conversion rate.
  • the vinyl chloride monomer further added by adding vinyl chloride monomer in this period is stable. It can be expected to increase the polymerization productivity, and at the same time control the internal morphology of the polymer particles.
  • the vinyl chloride monomer may be added in this period to fill the polymer particles by monomer diffusion, thereby obtaining a vinyl chloride copolymer having a high specific gravity.
  • the amount of the vinyl chloride monomer added in the step of further adding a vinyl chloride monomer in the period of 10% to 70%, more specifically 10% to 30% of the polymerization conversion rate is vinyl chloride It is preferably 30% to 70% by weight, particularly preferably 50% to 70% by weight relative to the total monomer input. If it is less than 30% by weight, the effect of increasing the polymerization productivity is insignificant, and if it exceeds 70% by weight, problems may occur in terms of polymerization stability due to exceeding the reactor effective volume.
  • the polymerization conversion can be measured using a butane tracer equipped with gas chromatography.
  • the polymerization conversion curve according to the ratio of vinyl chloride monomer and butane over time under constant polymerization conditions is prepared for each polymerization condition, and the polymerization conversion rate according to the polymerization conditions can be measured.
  • the polymerization conversion rate includes an error range of ⁇ 2% at the time of measurement, and the polymerization conversion rate of 0% is meant to include the point of polymerization start or before start.
  • a vinyl monomer copolymerizable with these may be further added.
  • the vinyl monomer may be an olefin compound, vinyl esters, unsaturated nitriles, vinyl alkyl ethers, unsaturated fatty acids, or anhydrides of unsaturated fatty acids, and any one or a mixture of two or more thereof may be used.
  • the vinyl monomer is used in an amount capable of exhibiting an improvement effect according to the use of the vinyl monomer within the range that does not inhibit the physical and structural characteristics of the vinyl chloride copolymer according to an embodiment of the present invention. Can be.
  • the vinyl monomer may be used in an amount of 50 parts by weight or less based on 100 parts by weight of the total amount of the monomers used for preparing the vinyl chloride copolymer.
  • additives such as a reaction terminator, a chain transfer agent, a pH adjuster, an antioxidant, a crosslinking agent, an antistatic agent, a scale control agent, and a surfactant may be added before or after polymerization. It may be added to the polymerization system after the polymerization, or a part thereof may be added separately or continuously during the polymerization reaction.
  • the polymerization conversion rate during the polymerization reaction may be added at a time corresponding to 80% or more, specifically 80% to 95%, wherein the polymerization conversion rate is confirmed through the pressure in the polymerization reactor Can be.
  • the reaction terminator include 4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl, triethylene glycol-bis-3- (3-t-butyl-4-hydroxy -5-methylphenyl) propionate, or butylated hydroxy toluene, and the like, and any one or a mixture of two or more thereof can be used.
  • the reaction terminator may be used in an amount of 0.0001 parts by weight to 1 part by weight based on 100 parts by weight of the total amount of the monomers used for preparing the vinyl chloride-based copolymer.
  • the polymerization degree of the vinyl chloride copolymer is determined by the polymerization reaction temperature, and the polymerization degree of the vinyl chloride copolymer is a factor affecting the processing conditions and the physical properties of the product, it is preferable to appropriately control the temperature during the polymerization reaction.
  • the polymerization temperature in the preparation of the vinyl chloride-based copolymer according to an embodiment of the present invention may be 30 °C to 80 °C, more specifically may be 30 °C to 70 °C.
  • polymerization degree 2000 or more, more specifically 3000 or more vinyl chloride-based copolymer is prepared, 40 °C or more 50 If it is less than °C, the vinyl chloride copolymer having a degree of polymerization of 1700 to 1800 is 50 °C to 62 °C, if the vinyl chloride copolymer having a degree of polymerization of 1000 to 1300 is 63 °C or more, the degree of polymerization is less than 1000, specifically 700 to 1000 chloride Vinyl-based copolymers can be prepared.
  • the temperature may be 50 ° C to 62 ° C, more specifically 52 ° C to 58 ° C.
  • the polymerization may be performed for 2 to 18 hours within the temperature range until the average degree of polymerization is achieved.
  • the manufacturing method of the vinyl chloride-based copolymer according to an embodiment of the present invention as described above is excellent in the polymerization productivity, there is no fear of problems caused by migration in the manufacturing process.
  • the primary particles are granulated secondary particles, and exhibit high porosity due to the voids formed between the primary particles in the secondary particles.
  • vinyl chloride copolymers prepared by the process according to the present invention are cis and trans of unsaturated fatty acid esters used as comonomers for copolymer formation.
  • the isomer acts as an internal plasticizer to reduce or decrease the voids between the primary particles so that copolymers with improved plasticity and transparency can be produced without fear of deterioration of mechanical properties.
  • the use of the copolymer can reduce the use of external plasticizers in the manufacture of molded articles, in particular can reduce or replace the use of conventional phthalate-based external plasticizers can reduce or prevent the generation of environmental hormones.
  • the vinyl chloride-based copolymer prepared by the above method has mechanical properties with excellent plasticity, and can be applied to various fields such as piping materials such as pipes, household goods such as toys, and building materials such as wallpaper and window frames. have.
  • thermoplastic resin composition comprising the vinyl chloride-based copolymer and a molded article manufactured using the same.
  • the polymerization conversion rate was measured using a butane tracer equipped with gas chromatography.
  • the polymerization conversion curve according to the ratio of vinyl chloride monomer and butane over time under constant polymerization conditions is prepared for each polymerization condition, and the polymerization conversion rate according to the polymerization conditions can be measured.
  • the polymerization conversion rate of 0% is meant to include the point of polymerization start or before start.
  • the polymerization was carried out while maintaining the reaction temperature at 52 DEG C throughout the polymerization process, and at the time when the pressure in the polymerization reactor reached 5.7 kg / cm 2 (the point at which the polymerization conversion rate was about 85%), 13.5 g of 4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl and triethylene glycol-bis-3- (3-t-butyl-4-hydroxy-5-methylphenyl) 108 g propionate was added. After the reaction was completed, the unreacted monomer and the resin slurry were respectively recovered from the polymerization reactor, and the recovered resin slurry was dried in a fluidized bed dryer to obtain a vinyl chloride copolymer.
  • a vinyl chloride copolymer was obtained in the same manner as in Example 2 except that the polymerization temperature was maintained at 47 ° C. during the polymerization reaction.
  • a vinyl chloride copolymer was obtained in the same manner as in Example 2 except that the polymerization temperature was maintained at 40 ° C. during the polymerization reaction.
  • a vinyl chloride copolymer was obtained in the same manner as in Example 3 except that the polymerization temperature was maintained at 35 ° C. during the polymerization reaction.
  • the reaction proceeds while maintaining the temperature at 50 ° C. during the entire polymerization process, and 4-hydroxy-2,2,6,6-tetramethyl-pi as the reaction terminator when the polymerization reactor pressure reaches 6.0 kg / cm 2 .
  • ferridine-1-oxyl and 35 g of triethylene glycol-bis-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate were added, unreacted monomers were separated and recovered, The prepared copolymer was recovered from the polymerization reactor and then dried in a fluidized bed dryer to obtain a copolymer.
  • 390 kg of deionized water was added to a reactor having a reflux condenser of 1 m 3 , 150 g of polyvinyl alcohol having a degree of hydration of 78.5%, 100 g of polyvinyl alcohol having a degree of hydration of 40.7%, and 30 g of hydroxypropylmethyl cellulose.
  • 300 kg of a vinyl chloride monomer was added to the reactor, 30 g of di-2-ethylhexyl peroxy dicarbonate and 120 g of t-butylperoxy neodecanoate were added, followed by polymerization while maintaining the polymerization temperature at 57 ° C. It was.
  • a vinyl chloride homopolymer was obtained by the same method as in Comparative Example 1 except that the polymerization temperature was changed to 64 ° C. in Comparative Example 1.
  • a vinyl chloride homopolymer was obtained in the same manner as in Comparative Example 1 except that the polymerization temperature was changed to 67 ° C. in Comparative Example 1.
  • Comparative Example 4-4 except that di (2-ethylhexyl maleate) (DEHM) was used as the external plasticizer instead of DOP in 40 parts by weight based on 100 parts by weight of the vinyl chloride polymer. In the same manner as in the vinyl chloride polymer was obtained.
  • DEHM di (2-ethylhexyl maleate)
  • a vinyl chloride polymer was obtained in the same manner as in Example 1 except that dibutyl fumarate alone was used instead of a mixture of dibutyl maleate and dibutyl fumarate.
  • IR Infrared spectroscopy
  • the IR analysis of the vinyl chloride copolymer prepared in Example 1 showed the C ⁇ O stretching peak and the C ⁇ C stretching peak observed in the IR analysis of the unsaturated dicarboxylic acid ester. . In contrast, this peak was not observed in Comparative Example 1. From this, it can be confirmed that the comonomer used in preparing the copolymer of Example 1 was copolymerized.
  • Example 2 The vinyl chloride copolymer prepared in Example 2 and the vinyl chloride homopolymer prepared in Comparative Example 1 were observed using a transmission electron microscope (Jeol, JEM-1400). The observation sample was then treated under the following conditions: Each polymer prepared in Example 2 and Comparative Example 1 was epoxy imbedded at room temperature (23 ⁇ 5 ° C.) for 1 day, followed by trimming and trimming at room temperature. section), vapor staining of RuO 4 over 1 hour and impregnating in a para film to prepare.
  • Example 9 The copolymer prepared in Example 9 was subjected to 1 H NMR analysis using an Agilent 500 MHz / ONE probe, and the results are shown in FIG. 4. At this time, tetrahydrofuran (THF) was used as the analysis solvent.
  • THF tetrahydrofuran
  • 1, 2, a and b denote peaks for functional groups of 1, 2, a and b indicated in DOM and DOF of the following structure, respectively.
  • copolymers prepared in Examples 1 to 9 were subjected to ALS / GC-MSD / FID analysis.
  • the copolymers prepared in Examples 1 to 9 contained cis and trans fatty acid ester-derived repeating units in a mixed weight ratio of 80 to 99:20 to 1.
  • the transunsaturated fatty acid ester has more excellent copolymer formability with the vinyl chloride monomer than the cis unsaturated fatty acid ester.
  • the weight average molecular weight (Mw), the number average molecular weight (Mn), and the polydispersity were measured for the copolymers prepared in Examples 1 to 9 and Comparative Examples 1, 6, and 7, respectively.
  • Mw and Mn were determined using Waters 2414 Refractive Index Detector, Waters 1525 Binary HPLC Pump, and Waters 717 Autosampler, respectively, and polydispersity was determined from the ratio of Mw / Mn. The results are shown in Table 3 below.
  • Example 1 134,384 68,946 1.9491
  • Example 2 123,265 64,667 1.9061
  • Example 3 94,118 50,326 1.8702
  • Example 4 109,302 58,107 1.8810
  • Example 5 181,337 91,793 1.9755
  • Example 6 235,081 71,755 1.9955
  • Example 7 273,875 112,868 1.9514
  • Example 9 163,038 84,386 1.9321 Comparative Example 1 143,190 71,395 2.0056
  • Comparative Example 6 127,411 64,220 1.9840 Comparative Example 7 125,657 63,401 1.9819
  • the weight average molecular weight, the number average molecular weight, and the polydispersity vary depending on the polymerization method, the polymerization temperature, the use of the comonomer, and the amount of use of the vinyl chloride copolymer.
  • the copolymers of Examples 1 to 3 and Comparative Example 1 prepared by suspension polymerization at similar polymerization temperature conditions were compared without using the comonomer. It showed lower Mn, Mw and polydispersity compared to the copolymer of Example 1.
  • the vinyl chloride copolymer of Example 1 which uses a mixture of cis and trans isomers of unsaturated fatty acid esters under the same polymerization conditions and satisfies the mixing ratio conditions of cis and trans isomers in the present invention, does not satisfy the mixing ratio conditions.
  • the vinyl chloride-based copolymer according to Examples 1 to 5 is in the form of secondary particles in which primary particles as small as a bunch of grapes, the copolymer of the comonomer in the preparation of the copolymer The higher the content, the greater the degree of aggregation. In addition, as can be seen from the cross-sectional photograph, almost no micropores were observed inside the secondary particles.
  • the vinyl chloride polymer of Comparative Example 1 is a large number of sub-grains (aggregate) to form a large particle, a plurality of pores between the sub-grains It can be confirmed that it is formed.
  • ND means not measured.
  • P inacc is the sum of the amount of mercury adsorbed to the pores inside the primary particles and the amount of intruded mercury not adsorbed to the vinyl chloride copolymer.
  • the vinyl chloride copolymers of Examples 1 to 9 using a mixture of cis and trans isomers of unsaturated fatty acid esters as comonomers have an average pore diameter of 100 nm or less and a porosity of 40 volume% or less.
  • Comparative Examples 1 without comonomers, Comparative Examples 2 and 3 using external plasticizers, and mixtures of cis and trans isomers of unsaturated fatty acid esters are used, but the mixing ratio does not meet the mixing ratio conditions in the present invention.
  • the plasticizer absorption (CPA) of the copolymers prepared in Examples 1 to 5 and Comparative Examples 1 to 3, 6 and 7 was measured.
  • plasticizer absorption rate was measured at 3900 rpm and 20 ° C. using a plasticizer absorbent measuring device (continent 512-R, manufactured by hanil) according to ASTM D2396 and ISO 4574. The results are shown in Table 5 below.
  • the low CPA produced by raising the polymerization temperature is low.
  • the copolymers of Comparative Examples 1 to 3 are compared with the copolymers of Examples 1 to 5 even though the polymerization temperature is equal to or higher than that of Examples 1 to 5 (57 to 67 ° C). It showed a much higher plasticizer uptake.
  • the copolymers of Comparative Examples 1 to 3 had a plasticizer absorption rate of at least 14.0% or more, whereas the copolymers of Examples 1 to 5 according to the present invention showed a plasticizer absorption rate reduced by more than half to a maximum value of 6.89%. .
  • Example 1 which satisfies the mixing ratio conditions of the cis and trans isomers of the unsaturated fatty acid ester, even when polymerized under the same polymerization conditions, showed a significantly reduced plasticizer absorption rate compared to Comparative Examples 6 and 7 which did not satisfy the mixing ratio conditions.
  • K values were measured at a temperature of 25 ° C., a polymer concentration of 0.5% by weight and pH 7.0 in a 5% by weight sodium chloride solution. The results are shown in Table 6 below.
  • Example 1 Example 4
  • Example 9 Comparative Example 7 K value 65 60 71 75
  • glass transition temperature (Tg) was measured for the copolymers prepared in Examples 3 and 4 and Comparative Examples 1 and 7.
  • Tg was measured using a differential scanning calorimeter (DSC: Differential Scanning Calorimeter 2920) manufactured by TA, and the results are shown in Table 7 below.
  • Example 3 Example 4 Comparative Example 1 Comparative Example 4-5 Tg (°C) -35 -24 83 -10
  • the vinyl chloride copolymers of Examples 3 and 4 using a mixture of cis and trans isomers of unsaturated fatty acid esters as comonomers showed significantly lower Tg compared to Comparative Example 1 without using comonomers.
  • the low Tg was also shown in comparison with Comparative Example 4-5 using a plasticizer. From this, it can be seen that the vinyl chloride copolymers of Examples 3 and 4 using the comonomer have better plasticization performance.
  • the vinyl chloride copolymers prepared in Comparative Examples 1 to 7 were also subjected to the same method as described above to prepare a compressed sheet.
  • Hardness characteristics were evaluated according to ASTM D785-65 for the compression sheets including copolymers of Examples 1 to 5 and Comparative Examples 1, 4-1 to 4-7, and 5 to 7 prepared above. The results are shown in Table 8 below.
  • the content of the external plasticizer is a relative weight ratio of DOP or DEHM, based on the content of the vinyl chloride polymer of Comparative Example 1 based on 100 parts by weight
  • the DOP conversion content is the vinyl chloride-based compounds prepared in Examples 1 to 5 Content of the cis and trans isomer-derived repeating units of the unsaturated fatty acid ester contained in the copolymer is converted into DOP.
  • the vinyl chloride copolymers prepared in Examples 1 to 5 exhibited low hardness characteristics compared to the comparative examples even when the external plasticizer was not separately added.
  • DOP10 and Example 5 of Comparative Example 4-1 in which the DOP conversion weight of the isomer-derived repeating units in the copolymers of Examples 1 to 5 and the amount of the external plasticizer added to the polymer of Comparative Example 1 were equivalent.
  • Example 1 31.73 194.9 4339.96
  • Example 2 13.79 357.83 3439.82
  • Example 3 7.43 706.63 418.19
  • Example 4 11.12 549.73 823.38
  • Example 5 41.94 40.25 5163.94 Comparative Example 4-4 11.95 490.88 869.01
  • Comparative Example 4-6 9.17 681.4 316.03
  • Comparative Example 4-8 7.85 834.3 152.12 Comparative Example 5 11.42 597.15 777.35
  • the compressed sheet including the vinyl chloride copolymer of Example 1 prepared by mixing dibutyl maleate and dibutyl fumarate at the optimum mixing ratio as a comonomer was mixed with dibutyl maleate and dibutyl fumarate as a comonomer.
  • the compression sheet containing the vinyl chloride copolymer of Comparative Example 6 which does not meet the optimum mixing ratio conditions, and the dibutyl fumarate alone, and the compression sheet containing the vinyl chloride copolymer of Comparative Example 7 used alone showed a markedly improved transparency .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명에서는 1차 입자가 조립되어 이루어진 2차 입자로서, 평균 기공직경이 100nm 이하이고, 기공도가 40부피% 이하이며, 염화비닐계 단량체 유래 반복단위 65중량% 내지 97중량%; 및 불포화 지방산 에스테르의 시스(cis) 및 트랜스(trans) 이성질체 유래 반복단위 3중량% 내지 35중량%를 포함하되, 상기 불포화 지방산 에스테르의 시스 이성질체 및 트랜스 이성질체 유래 반복단위를 60 내지 99 : 40 내지 1의 중량비로 포함하여, 우수한 가소성과 함께 기계적 특성 및 투명성을 나타낼 수 있는 염화비닐계 공중합체 및 그 제조방법이 제공된다.

Description

비닐계 중합체 및 그 제조방법
관련출원과의 상호인용
본 출원은 2015년 6월 5일자 한국특허출원 제2015-0080158호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 비닐계 중합체 및 그 제조방법에 관한 것으로, 보다 상세하게는 우수한 가소성과 함께 기계적 특성 및 투명도를 갖는 염화비닐계 공중합체 및 그 제조방법에 관한 것이다.
염화비닐계 중합체는 염화비닐의 단독 중합체 또는 50% 이상의 염화비닐을 포함하는 혼성 중합체로서, 우수한 기계적 강도, 내후성 및 내약품성으로 인해 배관재료, 건축재료 등의 분야에서 널리 이용되고 있다. 그러나, 염화비닐계 중합체는 그 자체로서 성형 가공성이 낮기 때문에 가소제 등의 여러가지 첨가제를 적절하게 첨가하여 가공물성을 부여하고 있다.
일반적으로 염화비닐계 중합체의 성형 가공성은 염화비닐계 중합체의 입자 특성에 크게 의존한다. 또, 염화비닐계 중합체를 이용한 성형품 제조시 생산성을 향상시키기 위해서는, 염화비닐계 중합체 입자의 벌크밀도나 내부 공극률, 입경 또는 입자 분포 등을 제어하여, 겔화 특성이나 가소제 흡수성, 또는 분체 유동성 등을 향상시키는 것이 필요하다.
종래 염화비닐계 중합체의 성형 가공성을 향상시키기 위한 방법으로서, 염화비닐계 중합체 중합시 폴리비닐 알코올 등과 같은 분산 안정제를 사용하여 염화비닐 중합체 자체의 가공성을 향상시키는 방법이 제안되었다. 그러나, 상기 방법에 따르면 염화비닐계 중합체의 부피 비중은 증가되지만, 중합체의 용융 특성은 저하되는 문제가 있었다.
이에 대해 염화비닐계 중합체의 가공성과 함께 용융 특성을 향상시키기 위한 방법으로서, 염화비닐계 중합체의 중합반응시 온도를 변화시킴으로써 중합도 분포 특성을 조절하는 방법이 제안되었다. 그러나, 상기의 방법들에 따르면 높은 벌크밀도를 가지며 가공성이 향상된 염화비닐계 중합체가 제조될 수는 있으나, 중합반응 시간이 길어져 생산성이 저하되고, 또 중합온도의 변화에 따른 염화비닐계 단량체 등의 반응물과 첨가제 간의 부반응으로 인해 착색성 증가, 기계적 특성 저하 등의 중합체 자체의 물성적 특성이 저하되는 문제가 있었다.
염화비닐계 중합체의 성형 가공성을 향상시키기 위한 또 다른 방법으로서, 성형품의 제조시 염화비닐계 중합체와 함께 가소제를 이용하는 방법이 주로 사용되고 있다. 그러나 이와 같이 가소제를 사용할 경우, 가소제가 제품 표면으로 이동하여 표면의 끈적거림이 발생하고, 또 시간의 경과에 따라 가소성이 점차적으로 감소하는 문제가 있으며, 특히 주로 사용되는 프탈레이트계 가소제의 경우 연소시 다량의 연기가 발생하고, 또 상당히 고온에서 가요성을 나타내며, 가공시 높은 에너지를 필요로 하는 단점이 있다.
이에 따라 우수한 가공성과 함께 기계적 특성을 갖는 염화비닐계 중합체를 우수한 중합생산성으로 제조할 수 있는 염화비닐계 중합체의 제조 방법의 개발이 요구된다.
본 발명이 해결하고자 하는 제1 기술적 과제는 우수한 가소성, 기계적 특성 및 투명성을 갖는 염화비닐계 공중합체를 제공하는 것이다.
본 발명이 해결하고자 하는 제2 기술적 과제는 상기한 염화비닐계 공중합체를 우수한 중합생성율로 제조할 수 있는 염화비닐계 공중합체의 제조방법을 제공하는 것이다.
본 발명이 해결하고자 하는 제3 기술적 과제는 상기한 염화비닐계 공중합체를 포함하는 열가소성 수지 조성물 및 이로부터 제조된 성형품을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 실시예에 따르면 1차 입자가 조립되어 이루어진 2차 입자로서, 평균 기공직경이 100nm 이하이고, 기공도가 40부피% 이하이며, 염화비닐계 단량체 유래 반복단위 65중량% 내지 97중량%; 및 불포화 지방산 에스테르의 시스(cis) 및 트랜스(trans) 이성질체 유래 반복단위 3중량% 내지 35중량%를 포함하되, 상기 불포화 지방산 에스테르의 시스 이성질체 및 트랜스 이성질체로부터 유래된 각각의 반복단위를 60 내지 99 : 40 내지 1의 중량비로 포함하는 것인 염화비닐계 공중합체를 제공한다.
본 발명의 또 다른 일 실시예에 따르면, 염화비닐 단량체와, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체를 중합개시제의 존재하에 중합시키는 단계를 포함하고, 상기 염화비닐 단량체와, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체는, 제조되는 염화비닐계 공중합체에서의 염화비닐계 단량체 유래 반복단위가 65중량% 내지 97중량%이고, 및 불포화 지방산 에스테르의 시스 및 트랜스 이성질체 유래 반복단위가 3중량% 내지 35중량%가 되도록 하는 양으로 사용되고, 상기 불포화 지방산 에스테르의 시스 이성질체와 트랜스 이성질체는 60 내지 99 : 40 내지 1의 중량비로 사용되는 것인 염화비닐계 공중합체의 제조방법을 제공한다.
본 발명의 또 다른 일 실시예에 따르면, 상기한 염화비닐계 공중합체를 포함하는 열가소성 수지 조성물 및 이로부터 제조된 성형품을 제공한다.
본 발명에 따른 염화비닐계 공중합체는, 제조시 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 혼합물을 사용함으로써 우수한 가소성, 기계적 특성 및 투명도를 나타낼 수 있다. 또, 그 제조 과정에서 마이그레이션에 따른 문제 발생의 우려가 없고, 이후 성형품 제조시 외부 가소제의 사용을 감소시킬 수 있으며, 특히 종래 프탈레이트계 외부 가소제의 사용을 감소시키거나 대체할 수 있어 환경 호르몬 발생을 감소 또는 방지할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1에서 a)는 비교예 1에서 제조한 염화비닐 단독 중합체에 대한 적외선 분광분석(Infrared Spectroscopy, IR) 분석결과이고, b)는 실시예 1에서 제조한 염화비닐계 공중합체에 대한 IR 분석결과이고, c)는 불포화 디카르복실산 에스테르에 대한 IR 분석결과이다.
도 2a는 실시예 2에서 제조한 염화비닐계 공중합체에 대한 투과전자 현미경(Transmission electron microscope, TEM) 관찰 사진이고, 도 2b는 상기 도 2a의 부분 확대도이다.
도 3a는 비교예 1에서 제조한 염화비닐계 중합체에 대한 투과전자 현미경(TEM) 관찰 사진이고, 도 3b는 상기 도 3a의 부분 확대도이다.
도 4는 실시예 9에서 제조한 염화비닐계 중합체에 대한 핵자기 공명 분광기(nuclear magnetic resonance, NMR)를 이용한 관찰 사진이다.
도 5a 및 5b는 실시예 1에서 제조한 염화비닐계 공중합체의 표면 및 단면을 관찰한 주사전자 현미경(scanning electron microscope, SEM) 사진이다(도 5a의 관찰배율=X400, 도 5b의 관찰배율=X700).
도 6a 및 6b는 실시예 2에서 제조한 염화비닐계 공중합체의 표면 및 단면을 관찰한 SEM 사진이다(도 6a의 관찰배율=X400, 도 6b의 관찰배율=X700).
도 7a 및 7b는 실시예 3에서 제조한 염화비닐계 공중합체의 표면 및 단면을 관찰한 SEM 사진이다(도 7a의 관찰배율=X400, 도 7b의 관찰배율=X700).
도 8는 실시예 4에서 제조한 염화비닐계 공중합체의 표면을 관찰한 SEM 사진이다(도 8의 관찰배율=X2500).
도 9a 및 9b는 실시예 5에서 제조한 염화비닐계 공중합체의 표면 및 단면을 관찰한 SEM 사진이다(도 9a의 관찰배율=X400, 도 9b의 관찰배율=X700).
도 10a 및 10b는 비교예 1에서 제조한 염화비닐 단독 중합체의 표면 및 단면을 관찰한 SEM 사진이다(도 10a의 관찰배율=X400, 도 10b의 관찰배율=X1000).
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예에 따른 염화비닐계 공중합체는, 1차 입자가 조립되어 이루어진 2차 입자로서, 평균 기공직경이 100nm 이하이고, 기공도(porosity)가 40부피% 이하이며, 염화비닐계 단량체 유래 반복단위(repeating unit) 65중량% 내지 97중량%; 및 불포화 지방산 에스테르의 시스(cis) 및 트랜스(trans) 이성질체 유래 반복단위 3중량% 내지 35중량%를 포함하고, 상기 불포화 지방산 에스테르의 시스 이성질체 및 트랜스 이성질체로부터 유래된 각각의 반복단위를 60 내지 99 : 40 내지 1의 중량비로 포함한다.
구체적으로, 본 발명의 일 실시예에 따른 상기 염화비닐계 공중합체에 있어서, 상기 불포화 지방산 에스테르의 시스 및 트랜스 이성질체는 염화비닐계 공중합체의 제조시 염화비닐계 단량체와 함께 중합체 사슬을 형성하는 공단량체일 뿐만 아니라, 내부 가소제로서 작용하여 염화비닐계 공중합체의 입자내 기공의 크기 및 기공도를 감소시킨다. 이에 따라, 본 발명의 일 실시예에 따른 염화비닐계 공중합체는 상기한 바와 같이 종래의 염화비닐계 중합체에 비해 보다 미세한 기공을 보다 낮은 기공도로 포함하며, 더 나아가 상기 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 혼합비를 제어함으로써, 기계적 물성의 저하없이 현저히 개선된 가공성 및 투명성을 나타내도록 최적화된 기공 크기와 기공도를 갖는다. 구체적으로 상기 염화비닐계 공중합체의 2차 입자내 포함되는 기공은 평균 기공직경이 100nm 이하, 보다 구체적으로는 10nm 내지 100nm, 보다 더 구체적으로는 10nm 내지 60nm, 더욱더 구체적으로는 10nm 내지 20nm 혹은 10nm 내지 15nm일 수 있다. 또 상기 염화비닐계 공중합체는 2차 입자 전체 부피 중 상기한 평균 기공직경을 갖는 기공들을 40부피% 이하, 보다 구체적으로는 35부피% 이하, 보다 더 구체적으로는 20부피% 이하, 더욱더 구체적으로는 10부피% 내지 18부피%, 혹은 10부피% 내지 15부피%의 기공도로 포함할 수 있다. 2차 입자내 포함되는 기공의 크기가 100nm를 초과하거나 기공도가 40부피%를 초과할 경우, 공단량체의 내부 충진율이 감소되기 때문에 가공성이 저하될 수 있다. 본 발명에 있어서, 염화비닐계 공중합체의 평균 기공직경(4V/A) 및 기공도(porosity)는 수은 기공율 분석기, 구체적으로는 Auto Pore IV 9520(Micromeritics 사제)를 사용하여 공중합체 입자 내로 침입한 수은의 양으로부터 표면기공(Pinter), 개기공(accessible intravoid, Pacc) 및 폐기공(inaccessible intravoid, Pinacc)을 각각 측정하고, 그 결과로부터 평균 기공직경 및 기공도를 각각 결정할 수 있다.
또, 상기한 기공 특성 및 구성 요건을 충족하는 본 발명의 일 실시예에 따른 상기 염화비닐계 공중합체는, 상기한 시스 및 트랜스 이성질체의 내부 가소화 효과로 인하여 10중량% 이하, 보다 구체적으로는 7중량% 이하, 보다 더 구체적으로는 1중량% 내지 3중량%의 낮은 가소제 흡수율(cold plasticizer absorption, CPA)을 나타낼 수 있다. 가소제 흡수율이 10중량% 초과로 높을 경우 기계적 물성 저하의 우려가 있으나, 본 발명에서는 상기한 바와 같은 낮은 가소제 흡수율을 가짐으로써 보다 개선된 가소화 성능 및 기계적 특성을 나타낼 수 있다. 본 발명에 있어서, 가소제 흡수율은 ASTM D2396 및 ISO4574에 의거하여 염화비닐계 공중합체 시료에 흡수되는 가소제, 구체적으로 디옥틸프탈레이트 양을 흡수 전의 염화비닐계 공중합체 시료에 대한 중량%로 하여 나타낸 것이다. 보다 구체적으로, 본 발명에서는 상기 가소제 흡수율의 측정시 Hanil사의 Continent 512-R 기기를 이용하여 3900rpm 및 20℃의 조건에서 측정하였다.
또, 상기한 기공 특성 및 구성 요건을 충족하는 본 발명의 일 실시예에 따른 상기 염화비닐계 공중합체는, K값(K value)이 55 이상, 구체적으로는 60 내지 73, 보다 구체적으로는 65 내지 73일 수 있다. 중합시 상기한 시스 및 트랜스 이성질체의 내부 가소화 효과로 인하여 상기한 범위의 K값을 갖는 연질 특성을 나타낼 수 있다. 본 발명에 있어서, 염화비닐 중합체의 K값은 문헌[H. Fikentscher, Cellulose Chemie, Vol. 13, 58-64 and 71-74 (1932)]에 따라 5 중량% 농도의 염화나트륨 용액 중에서 온도 25℃, 중합체 농도 0.5중량% 및 pH 7.0에서 측정할 수 있다. 또, 상기 K값은 중합체의 중합 온도에 따라 달라질 수 있으며, 본 발명에서의 염화비닐계 공중합체는 30℃ 내지 80℃, 보다 구체적으로는 30℃ 내지 70℃, 보다 더 구체적으로는 30℃ 내지 62℃의 중합 온도에서 중합된 것이다.
또, 상기한 기공 특성 및 구성 요건을 충족하는 본 발명의 일 실시예에 따른 상기 염화비닐계 공중합체는 낮은 경도 특성을 가짐으로써 우수한 가소화 성능을 나타낼 수 있다. 구체적으로, 상기 염화비닐계 공중합체는 ASTM D785-65에 따라 측정시 50HS 내지 110 HS의 경도를 나타내며, 보다 구체적으로 50HS 내지 75HS를 나타낸다.
또, 상기한 기공 특성 및 구성 요건을 충족하는 본 발명의 일 실시예에 따른 상기 염화비닐계 공중합체는 상기한 바와 같은 우수한 가소화 성능 또는 가공성과 함께 우수한 기계적 특성을 갖는다. 구체적으로, 상기 염화비닐계 공중합체는 ASTM D638에 따라 측정시 5MPa 내지 50MPa의 인장강도, 40% 내지 750%의 변형율 및 400N/cm2 내지 5200N/cm2의 E-모듈러스를 나타내는 것일 수 있다. 보다 구체적으로, 상기 염화비닐계 공중합체는 7MPa 내지 15MPa의 인장강도, 400% 내지 720%의 변형율 및 400N/cm2 내지 3000N/cm2의 E-모듈러스를 나타내는 것일 수 있다.
또, 상기한 기공 특성 및 구성 요건을 충족하는 본 발명의 일 실시예에 따른 상기 염화비닐계 공중합체는 유리전이온도(Tg)가 -35℃ 내지 64℃인 것일 수 있으며, 보다 구체적으로는 -35℃ 이상 -10℃ 미만, 보다 더 구체적으로는 -35℃ 내지 -20℃인 것일 수 있다. 이와 같이 종래 가소제를 사용하지 않거나 또는 외부가소화제를 사용하여 제조한 종래 염화비닐계 중합체에 비해 낮은 유리전이온도를 가짐으로써 보다 우수한 가공성을 나타낼 수 있다. 본 발명에 있어서, Tg는 TA사에서 제조한 시차주사열량계(DSC: Differential Scanning Calorimeter 2920)를 이용하여 측정할 수 있으며, 이때 측정값은 중합체의 열적 이력(thermal history)을 없애기 위해 분당 10℃로 승온시킨 두번째 용융을 통해 얻는다. 측정된 DSC 곡선에서 Tg는 흡열반응시 heat flow가 변화하는 변곡점에서의 온도이다.
상기한 물성적 특성을 구현하는 본 발명의 일 실시예에 따른 상기 염화비닐계 공중합체는 구체적으로 불포화 지방산 에스테르의 시스 및 트랜스 이성질체 유래 반복단위를 60 내지 99 : 40 내지 1, 구체적으로는 80 내지 99 : 20 내지 1, 보다 구체적으로는 85 내지 99 : 15 내지 1, 보다 더 구체적으로는 95 내지 99 : 5 내지 1의 중량비로 포함할 수 있다. 본 발명의 일 실시예에 따른 염화비닐계 공중합체는 불포화 지방산 에스테르의 시스 및 트랜스 이성질체 유래 반복단위를 상기한 혼합비 범위 내로 포함할 때 상기한 기공 특성을 구현할 수 있으며, 또 높은 중합 전환율과 함께 우수한 가소성 및 기계적 물성을 발란스 좋게 나타낼 수 있다. 만약 상기 범위를 벗어날 경우, 특히 시스 이성질체 유래 반복단위의 함량이, 시스 및 트랜스 이성질체 유래 반복단위 함량 총 중량에 대해 60중량% 미만이거나, 99중량% 초과, 혹은 100중량%일 경우, 본 발명에서의 기공 특성을 충족하는 염화비닐계 공중합체의 제조가 어렵고, 그 결과 우수한 기계적 특성과 함께 가소성 및 투명도 개선 효과를 얻기 어렵다. 또, 트랜스 이성질체 유래 반복단위의 함량이 시스 및 트랜스 이성질체 유래 반복단위 함량 총 중량에 대해 40중량%를 초과할 경우 염화비닐계 공중합체를 형성하기 보다는 트랜스 이성질체끼리의 뭉침 현상이 발생할 우려가 있다.
상기한 물성적 특성을 구현하는 본 발명의 일 실시예에 따른 상기 염화비닐계 공중합체는 보다 구체적으로 염화비닐계 단량체 유래 반복단위 65중량% 내지 97중량%; 및 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 공단량체 유래 반복단위 3중량% 내지 35중량%를 포함하며, 이때 상기 불포화 지방산 에스테르의 시스 이성질체 유래 반복단위와 트랜스 이성질체 유래 반복단위를 60 내지 99 : 40 내지 1, 구체적으로는 80 내지 99 : 20 내지 1, 보다 구체적으로는 85 내지 99 : 15 내지 1, 보다 더 구체적으로는 95 내지 99 : 5 내지 1의 중량비로 포함하는 것일 수 있다. 염화비닐계 공중합체 내 염화비닐 단량체 유래 반복단위의 함량이 97중량%를 초과하고, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 공단량체 유래 반복단위의 총 함량이 3중량% 미만일 경우 역가소화 현상이 발생하여 염화비닐계 공중합체의 물리적 성질, 구체적으로는 기계적 특성이 저하될 우려가 있다. 또, 염화비닐계 공중합체 내 염화비닐 단량체 유래 반복단위의 함량이 65중량% 미만이고, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 공단량체 유래 반복단위의 총 함량이 35중량%를 초과할 경우 과량의 공단량체 유래 반복단위의 포함으로, 중합이 용이하지 않을뿐더러 거대 입자로 형성되거나, 기계적 특성이 크게 저하될 우려가 있다.
보다 더 구체적으로는 상기한 기공 특성의 구현과 함께 우수한 중합 전환율, 가소성 및 기계적 물성의 발란스 좋은 개선 효과의 현저함을 고려할 때, 본 발명의 일 실시예에 따른 상기 염화비닐계 공중합체는 염화비닐계 단량체 유래 반복단위 65중량% 내지 80중량%; 및 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 공단량체 유래 반복단위 20중량% 내지 35중량%를 포함하며, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체 유래 반복단위를 60 내지 99 : 40 내지 1, 구체적으로는 80 내지 99 : 20 내지 1, 보다 구체적으로는 85 내지 99 : 15 내지 1, 보다 더 구체적으로는 95 내지 99 : 5 내지 1의 중량비로 포함하는 것일 수 있다.
또, 상기 염화비닐계 공중합체에 있어서, 불포화 지방산 에스테르는 구체적으로 불포화 디카르복실산 에스테르일 수 있다. 보다 구체적으로, 상기 불포화 지방산 에스테르의 시스 이성질체는 구체적으로는 하기 화학식 1의 디알킬말레이트계 화합물이고, 상기 불포화 지방산 에스테르의 트랜스 이성질체는 하기 화학식 2의 디알킬푸말레이트계 화합물일 수 있다:
[화학식 1]
Figure PCTKR2016005945-appb-I000001
[화학식 2]
Figure PCTKR2016005945-appb-I000002
상기 화학식 1 및 2에서,
R1 내지 R4는 각각 독립적으로 탄소수 2 내지 16의 직쇄상 또는 분지상 알킬기, 탄소수 3 내지 16의 사이클로알킬기 및 이들의 조합으로 이루어진 군에서 선택될 수 있으며, 보다 구체적으로는 탄소수 4 내지 14의 직쇄상 또는 분지상 알킬기일 수 있다.
본 발명에 있어서, '이들의 조합'이란 특별한 언급이 없는 한, 둘 이상의 작용기가 단일결합, 이중결합(에틸렌기), 삼중결합(아세틸렌기) 또는 탄소수 1 내지 20의 알킬렌기(예를 들면, 메틸렌기(-CH2-) 또는 에틸렌기(-CH2CH2-), 등)와 같은 연결기에 의해 결합되어 있거나, 또는 둘 이상의 작용기가 축합, 연결되어 있는 것을 의미한다.
구체적인 예로, 상기 불포화 지방산 에스테르의 시스 및 트랜스 이성질체로, 디부틸 말레이트 및 푸말레이트; 디헥실 말레이트 및 푸말레이트; 디(2-에틸헥실) 말레이트 및 푸말레이트; 디(에틸도데실) 말레이트 및 푸말레이트; 디데실 말레이트 및 푸말레이트; 디운데실 말레이트 및 푸말레이트; 디도데실 말레이트 및 푸말레이트; 또는 디트리데실 말레이트 및 푸말레이트 등을 들 수 있다.
상기 화학식 1 및 2에서 R1 내지 R4의 탄소 사슬의 길이가 길면 이행성(migration)은 우수하나 가소화 특성이 저하될 수 있고, 탄소 사슬의 길이가 짧으면 가소화 특성은 우수하나 이행성이 저하될 수 있다. 이 같은 탄소 사슬의 길이에 따른 이행성과 가소화 특성의 발란스 및 그 결과로서 공중합체의 기계적 특성과 가소성 개선 효과를 고려할 때, 상기 화학식 1에서의 R1 내지 R4는 각각 독립적으로 탄소수 6 내지 10의 직쇄 또는 분지상 알킬기, 보다 구체적으로는 탄소수 6 내지 8, 또는 탄소수 8 내지 10의 알킬기, 보다 더 구체적으로는 탄소수 6, 8, 및 10의 알킬기일 때 기계적 특성과 가소성 그리고 투명성이 발란스 좋게 개선된 효과를 나타낼 수 있다.
또, 기계적 특성과 가소성 면에서의 개선된 효과를 고려할 때, 상기 화학식 1에서의 R1 내지 R4는 각각 독립적으로 탄소수 14의 직쇄상 알킬기일 수 있다.
보다 더 구체적으로, 상기한 구조 및 물성적 특성을 구현하는 본 발명의 일 실시예에 따른 염화비닐계 공중합체는, 염화비닐계 단량체 유래 반복단위 65중량% 내지 97중량%; 및 불포화 지방산 에스테르의 시스 및 트랜스 이성질체 유래 반복단위 3중량% 내지 35중량%를 포함하고, 상기 불포화 지방산 에스테르의 시스(cis) 이성질체 및 트랜스(trans) 이성질체로부터 유래된 각각의 반복단위를 80 내지 99 : 20 내지 1의 중량비로 포함하며, 상기 불포화 지방산 에스테르의 시스 이성질체가 상기 화학식 1의 화합물이고, 상기 불포화 지방산 에스테르의 트랜스 이성질체가 상기 화학식 2의 화합물이며, 이때, 상기 화학식 1 및 2에서 상기 R1 내지 R4는 각각 독립적으로 탄소수 4 내지 14의 직쇄상 또는 분지상 알킬기인 것일 수 있다.
더욱 더 구체적으로, 상기한 구조 및 물성적 특성을 보다 더 우수한 효과로 구현하는 본 발명의 일 실시예에 따른 염화비닐계 공중합체는, 염화비닐계 단량체 유래 반복단위 65중량% 내지 80중량%; 및 불포화 지방산 에스테르의 시스 및 트랜스 이성질체 유래 반복단위 20중량% 내지 35중량%를 포함하고, 상기 불포화 지방산 에스테르의 시스(cis) 이성질체 및 트랜스(trans) 이성질체로부터 유래된 각각의 반복단위를 60 내지 99 : 40 내지 1, 구체적으로는 80 내지 99 : 20 내지 1, 보다 구체적으로는 85 내지 99 : 15 내지 1, 보다 더 구체적으로는 95 내지 99 : 5 내지 1의 중량비로 포함하며, 상기 불포화 지방산 에스테르의 시스 이성질체가 상기 화학식 1의 화합물이고, 상기 불포화 지방산 에스테르의 트랜스 이성질체가 상기 화학식 2의 화합물이며, 이때, 상기 화학식 1 및 2에서 상기 R1 내지 R4는 각각 독립적으로 탄소수 4 내지 14의 직쇄상 또는 분지상 알킬기, 구체적으로는 탄소수 6 내지 10의 직쇄 또는 분지상 알킬기, 보다 구체적으로는 탄소수 6 내지 8, 또는 탄소수 8 내지 10의 알킬기, 보다 더 구체적으로는 탄소수 6, 8, 및 10의 알킬기인 것일 수 있다.
상기와 같은 구성을 갖는 본 발명의 일 실시예에 따른 염화비닐계 공중합체는 중량 평균 분자량(Mw)과 수평균 분자량(Mn)과의 비(Mw/Mn)인 다분산도(PDI; Polydispersity)가 1.5 내지 2.5의 좁은 분자량 분포를 갖는 것일 수 있다. 염화비닐계 공중합체의 PDI가 2.5를 초과할 경우 내마모성 및 내충격성 등의 기계적 물성이 저하될 우려가 있다. 또 다분산도 제어에 따른 중합체의 기계적 물성 개선 효과의 현저함을 고려할 때, 상기 염화비닐계 공중합체의 다분산도는 구체적으로는 1.8 내지 2.1일 수 있다.
또, 본 발명의 일 실시예에 따른 상기 염화비닐계 공중합체는, 중량 평균 분자량(Mw)이 70,000g/mol 내지 300,000g/mol, 보다 구체적으로는 90,000g/mol 내지 280,000g/mol일 수 있다. 또, 본 발명의 일 실시예에 따른 상기 공액 디엔계 중합체는, 수 평균 분자량(Mn)이 50,000g/mol 내지 150,000g/mol, 보다 구체적으로는 50,000g/mol 내지 70,000g/mol일 수 있다.
상기 염화비닐계 공중합체의 중량평균 분자량 또는 수평균 분자량이 상기한 범위를 벗어나거나, 또는 앞서 설명한 다분산도 범위를 벗어날 경우, 가공성 및 기계적 특성의 발란스 좋은 개선이 용이하지 않다. 본 발명에 있어서, 상기 중량평균 분자량 및 수평균 분자량은 각각 겔 투과형 크로마토그래피(GPC)로 분석되는 폴리스티렌 환산 분자량이다.
또, 본 발명의 일 실시예에 따른 상기 염화비닐계 공중합체는 중합시 중합 온도에 따라 중합도가 결정될 수 있으며, 중합도에 따라 그 용도가 달라질 수 있다. 구체적으로는 본 발명의 일 실시예에 따른 상기 염화비닐계 공중합체의 중합도는 700 내지 3000, 보다 구체적으로는 700 내지 1500일 수 있으며, 상기한 기공 특성과 함께 중합도가 함께 제어됨으로써 가공성 및 투명도 면에서의 현저한 개선효과를 고려할 때 상기 염화비닐계 공중합체의 중합도는 1000 내지 1300인 것일 수 있다.
상기한 바와 같은 구조적, 구성적 특징을 갖는, 본 발명의 일 실시예에 따른 염화비닐계 공중합체는, 염화비닐 단량체를 불포화 지방산 에스테르의 시스 및 트랜스 이성질체와 중합시킴으로써 제조될 수 있다. 이때, 상기 염화비닐 단량체와, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체는, 제조되는 염화비닐계 공중합체에서의 염화비닐계 단량체 유래 반복단위가 65중량% 내지 97중량%이고, 및 불포화 지방산 에스테르의 시스 및 트랜스 이성질체 유래 반복단위가 3중량% 내지 35중량%가 되도록 하는 양으로 사용되고, 상기 불포화 지방산 에스테르의 시스 이성질체와 트랜스 이성질체는 60 내지 99 : 40 내지 1, 구체적으로는 80 내지 99 : 20 내지 1, 보다 구체적으로는 85 내지 99 : 15 내지 1, 보다 더 구체적으로는 95 내지 99 : 5 내지 1의 중량비로 사용될 수 있다. 이에 따라 본 발명의 또 다른 일 실시예에 따르면, 상기 염화비닐계 공중합체의 제조방법이 제공된다.
구체적으로, 본 발명의 일 실시예에 따른 상기 염화비닐계 공중합체는 염화비닐 단량체와 불포화 지방산 에스테르의 이성질체 혼합물을 중합개시제의 존재 하에 현탁중합, 유화중합, 용액중합 또는 괴상중합시킴으로써 제조될 수 있다.
상기 염화비닐계 공중합체의 제조에 있어서, 상기 불포화 지방산 에스테르의 이성질체 혼합물로는 앞서 설명한 바와 같은 화학식 1의 불포화 디카르복실산 에스테르의 시스 이성질체 및 상기 화학식 2의 트랜스 이성질체 화합물이 사용될 수 있다. 상기 불포화 지방산 에스테르의 이성질체 혼합물은 상업적으로 입수하여 사용할 수도 있고, 지방족 알코올을 말레산 무수물 또는 푸마르산과 반응시키는 등 통상의 제조 방법에 따라 제조하여 사용할 수도 있다.
또, 상기 염화비닐계 공중합체의 제조에 있어서, 상기 염화비닐계 단량체와 불포화 지방산 에스테르의 이성질체 혼합물은, 최종 제조되는 염화비닐계 공중합체에서의 염화비닐계 단량체 유래 반복단위가 65중량% 내지 97중량%이고, 그리고 불포화 지방산 에스테르의 이성질체 유래 반복단위 3중량% 내지 35중량%가 되도록 하는 양으로 사용될 수 있으며, 또 상기 불포화 지방산 에스테르의 이성질체 혼합물은 불포화 지방산 에스테르의 시스 이성질체와 트랜스 이성질체 유래 각각의 반복단위가 80 내지 99 : 20 내지 1의 중량비가 되도록 하는 양으로 혼합 사용될 수 있다. 보다 구체적으로는 상기 염화비닐계 단량체와 불포화 지방산 에스테르의 이성질체 혼합물은, 최종 제조되는 염화비닐계 공중합체에서의 염화비닐계 단량체 유래 반복단위가 65중량% 내지 80중량%이고, 그리고 불포화 지방산 에스테르의 이성질체 유래 반복단위 20중량% 내지 35중량%가 되도록 하는 양으로 사용될 수 있으며, 또 상기 불포화 지방산 에스테르의 이성질체 혼합물은 불포화 지방산 에스테르의 시스 이성질체와 트랜스 이성질체 유래 각각의 반복단위가 60 내지 99 : 40 내지 1, 구체적으로는 80 내지 99 : 20 내지 1, 보다 구체적으로는 85 내지 99 : 15 내지 1, 보다 더 구체적으로는 95 내지 99 : 5 내지 1의 중량비가 되도록 하는 양으로 혼합 사용될 수 있다.
또, 상기 염화비닐계 공중합체의 제조에 있어서, 상기 중합개시제로는 통상 염화비닐계 단량체의 제조시 중합개시제로서 사용되는 것이라면 특별한 제한없이 사용가능하다. 구체적으로 상기 중합개시제로는 디큐밀퍼옥사이드, 디펜틸퍼옥사이드, 디-3,5,5-트리메틸 헥사노일퍼옥사이드 또는 디라우릴퍼옥사이드와 같은 퍼옥사이드계 화합물; 디이소프로필퍼옥시디카보네이트, 디-sec-부틸퍼옥시디카보네이트 또는 디-2-에틸헥실퍼옥시디카보네이트와 같은 퍼옥시디카보네이트계 화합물; t-부틸퍼옥시 피발레이트, 1,1,3,3-테트라메틸부틸퍼옥시 네오데카노에이트 또는 t-부틸퍼옥시 네오데카노에이트와 같은 퍼옥시에스테르계 화합물; 아조비스-2,4-디메틸발레로니트릴과 같은 같은 아조계 화합물; t-부틸 하이드로퍼옥사이드와 같은 하이드로퍼옥사이드계 화합물; 또는 포타슘 퍼설페이트 또는 암모늄퍼설페이트와 같은 설페이트계 화합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 중합개시제는 염화비닐계 중합에 사용되는 염화비닐계 단량체 및 불포화 지방산 에스테르의 이성질체 혼합물 공단량체를 포함하는 총 단량체 100중량부에 대하여 0.02중량부 내지 0.2중량부로 사용될 수 있다. 중합개시제의 함량이 0.02중량부 미만이면 중합 반응시간이 길어지고, 중합전환효율이 낮아져 생산성이 저하될 우려가 있고, 0.2중량부를 초과하면 중합 과정 중에서 중합개시제가 완전히 소모되지 못하고 최종 제조되는 공중합체에 잔류하여 공중합체의 물성, 특히 열안정성 등을 저하시킬 우려가 있다. 이에 따라 중합개시제 사용에 따른 중합전환효율 및 최종 제조되는 공중합체의 물성 개선 효과를 고려할 때 상기 중합개시제는 총 단량체 100중량부에 대하여 0.04중량부 내지 0.12중량부로 사용될 수 있다.
이하에서는 본 발명의 일 실시예에 따른 상기 염화비닐계 공중합체의 제조를 중합방법 별로 보다 상세히 설명한다.
먼저, 현탁중합 방법의 경우, 중합개시제 및 보호 콜로이드 조제의 존재 하에, 염화비닐계 단량체를 용매, 구체적으로는 물 또는 탈이온수 중에서 불포화 지방산 에스테르의 시스 및 트랜스 이성질체와 반응시킴으로써 상기한 염화비닐계 공중합체가 제조될 수 있다. 구체적으로는 용매 중에 보호 콜로이드 조제, 염화비닐 단량체 및 불포화 지방산 에스테르의 시스 및 트랜스 이성질체를 첨가, 혼합한 후, 중합개시제를 첨가하여 중합반응 시킴으로써 제조될 수 있다. 이때, 상기 염화비닐계 단량체, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체, 그리고 중합개시제의 구체적인 종류와 사용량은 앞서 설명한 바와 동일하다. 또, 상기 용매로는 물 또는 탈이온수 등이 사용될 수 있으며, 본 발명에 따른 공중합체 제조용 단량체의 사용량에 따라 그 사용량이 적절히 결정될 수 있다. 구체적으로는 공중합체 제조용 단량체의 총 합 100중량부에 대하여 상기 용매가 70중량부 이상, 보다 구체적으로는 90중량부 이상 사용될 수 있다.
보다 구체적으로, 상기 현탁중합에 있어서 상기 중합개시제는 앞서 설명한 중합개시제 중에서도 염화비닐계 단량체에 용해 가능한 것일 수 있다. 구체적으로는 디큐밀퍼옥사이드와 같은 퍼옥사이드계 화합물; 디-2-에틸헥실퍼옥시 디카보네이트 와 같은 퍼옥시디카보네이트계 화합물; t-부틸퍼옥시 네오데카노에이트 또는 1,1,3,3-테트라메틸부틸퍼옥시 네오데카노에이트와 같은 퍼옥시에스테르계 화합물; 또는 아조계 화합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 현탁중합에 있어서 보호 콜로이드 조제로는 통상 현탁중합에 의한 염화비닐계 단량체의 제조시 사용되는 것이라면 특별한 제한없이 사용가능하다. 구체적으로 보호 콜로이드 조제로는 비닐 알코올계 수지, 셀룰로오스, 또는 불포화 유기산 중합체 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 보호 콜로이드 조제로서 상기 비닐 알코올계 수지로는 구체적으로 수화도가 30중량% 내지 90중량%인 것이 사용될 수 있으며, 보다 구체적으로는 수화도가 50중량% 초과 90중량% 이하인 제1폴리비닐알코올과, 수화도가 30중량% 내지 50중량%인 제2폴리비닐알코올의 혼합물이 사용될 수 있다. 이때, 제1 및 제2 폴리비닐알코올의 혼합비는 2 내지 1 : 1 내지 2, 보다 구체적으로는 5 내지 2 :4 내지 3일 수 있다.
또, 보호 콜로이드 조제로서 상기 셀룰로오스로는 구체적으로 메틸셀룰로오스, 히드록시에틸셀룰로오스, 또는 히드록시프로필메틸셀룰로오스 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 히드록시프로필메틸셀룰로오스일 수 있으며, 보다 구체적으로는 분자내 히드록시프로필기의 함량이 3중량% 내지 20중량%이고, 23±5℃에서의 2% 수용액 점도가 10cps 내지 20,000cps인 것일 수 있다.
또, 보호 콜로이드 조제로서 상기 불포화 유기산 중합체로는 구체적으로 아크릴산 중합체, 메타아크릴산 중합체, 이타콘산 중합체, 푸마르산 중합체, 말레인산 중합체, 또는 숙신산 중합체 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
보다 구체적으로, 상기 현탁중합에 사용가능한 보호 콜로이드 조제는 비닐 알코올계 수지와 셀룰로오스계 수지의 혼합물을 포함하는 것일 수 있으며, 보다 더 구체적으로는 비닐알코올계 수지와 셀룰로오스계 수지의 5 내지 7 : 1 내지 7(중량비)의 혼합물을 포함하는 것일 수 있다.
상기 보호 콜로이드 조제는 염화비닐계 공중합체의 제조에 사용되는 염화비닐계 단량체 및 이성질체 혼합물의 공단량체를 포함하는 총 단량체 100중량부에 대하여 0.03중량부 내지 5중량부로 사용될 수 있다. 보호 콜로이드 조제의 함량이 0.03중량부 미만이면 2차 입자의 크기가 지나치게 증가하게 되어 휘시아이(fish-eye)가 발생할 우려가 있고, 또 5중량부를 초과하면 미세입자들의 증가로 인해 초기 착색성 저하의 우려가 있다. 보호 콜로이드 조제의 사용에 따른 중합효율 및 염화비닐 공중합체의 물성 개선 효과의 현저함을 고려할 때, 상기 보호 콜로이드 조제는 총 단량체 100중량부에 대하여 0.05중량부 내지 2.5중량부로 사용될 수 있다.
또, 상기 현탁중합은 2단계 중합 반응에 의해 수행될 수도 있다.
구체적으로 상기 현탁중합은 중합개시제 및 보호 콜로이드 조제의 존재 하에, 염화비닐계 단량체를 용매, 구체적으로는 물 또는 탈이온수 중에서 불포화 지방산 에스테르의 시스 및 트랜스 이성질체와 1차 현탁중합 반응시키는 단계; 및 1차 현탁중합의 결과로 수득된 중합체 및 미반응 단량체를 중합개시제 및 보호 콜로이드 조제의 존재 하에, 용매, 구체적으로는 물 또는 탈이온수 중에서 불포화 지방산 에스테르의 시스 및 트랜스 이성질체와 2차 현탁중합 반응시키는 단계를 포함하며, 이때 상기 1차 현탁중합은 중합전환율 10% 이상, 보다 구체적으로는 15% 이상일 때까지 수행되고, 상기 2차 현탁중합은 중합전환율 80% 이상, 보다 구체적으로는 85% 이상까지, 또는 중합 반응기 압력이 6.0kg/cm2에 도달한 시점에 까지 수행될 수 있다. 이때 사용되는 물질 및 함량은 앞서 설명한 바와 같다.
이와 같이 2 단계로 현탁중합이 수행될 경우, 공중합체의 전환율을 높여 가소화 성능을 더욱 향상시킬 수 있다.
한편, 유화중합 방법의 경우, 중합개시제와 함께 유화제의 존재 하에, 염화비닐계 단량체를 용매, 구체적으로는 물 또는 탈이온수 중에서 불포화 지방산 에스테르의 시스 및 트랜스 이성질체와 반응시킴으로써 염화비닐계 공중합체가 제조될 수 있다. 구체적으로는, 용매 중에 유화제, 염화비닐 단량체 및 불포화 지방산 에스테르의 시스 및 트랜스 이성질체를 순차대로 첨가한 후, 중합개시제를 첨가하여 중합반응시킴으로써 수행될 수 있다. 이때, 상기 염화비닐계 단량체, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 종류 및 함량은 앞서 설명한 바와 동일하다.
보다 구체적으로, 상기 유화중합에 있어서 중합개시제는 앞서 설명한 중합개시제 중에서도 용매, 구체적으로는 물 또는 탈이온수에 용해 가능한 것이라면 특별한 제한없이 사용가능하다. 구체적으로는 포타슘 퍼설페이트 또는 암모늄퍼설페이트와 같은 설페이트계 화합물을 들 수 있다.
또, 상기 유화중합에 있어서 유화제로는 통상 현탁중합에 의한 염화비닐계 단량체의 제조시 사용되는 것이라면 특별한 제한없이 사용가능하다. 구체적으로는 소듐 라우릴 설페이트, 포타슘 스테아레이트, 알킬벤젠 설페이트 또는 암모늄 디알킬설포숙시네이트 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 유화제는 염화비닐계 공중합체의 제조에 사용되는 염화비닐계 단량체 및 이성질체 혼합물의 공단량체를 포함하는 총 단량체 100 중량부에 대하여 0.0001중량부 내지 1중량부로 사용될 수 있다. 유화제의 함량이 0.0001중량부 미만이면 중합효율이 저하될 우려가 있고, 또 1중량부를 초과하면 미세입자들의 증가, 미반응 유화제에 의한 공정성 저하의 우려가 있다. 유화제 사용에 따른 중합효율 및 최종 제조되는 염화비닐 공중합체의 물성 개선 효과의 현저함을 고려할 때, 상기 유화제는 총 단량체 100중량부에 대하여 0.0005중량부 내지 0.1중량부로 사용될 수 있다.
또 다른 한편으로 용액중합 방법의 경우, 중합개시제의 존재 하에 염화비닐계 단량체를 중합 용매 중에서 불포화 지방산 에스테르의 시스 및 트랜스 이성질체와 반응시킴으로써 염화비닐계 공중합체가 제조될 수 있다. 이때, 상기 염화비닐계 단량체, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체 그리고 중합개시제의 종류 및 함량은 앞서 설명한 바와 동일하다.
보다 구체적으로, 상기 용액중합에 있어서 중합개시제는 앞서 설명한 중합개시제 중에서도 상기 중합용매에 용해 가능한 것일 수 것일 수 있다. 구체적으로는 퍼옥사이드계 화합물, 하이드로퍼옥사이드계 화합물 또는 아조계 화합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 사용될 수 있다.
또, 상기 용액중합에 있어서, 상기 중합용매로는 물 또는 비활성 유기용매가 사용될 수 있다. 또 상기 비활성 유기용매로는 부탄, 펜탄, 옥탄 등과 같은 지방족 탄화수소계 화합물; 사이클로알칸; 벤젠, 톨루엔 등과 같은 방향족 탄화수소계 화합물; 사이클로헥산과 같은 지환족 탄화수소계 화합물; 사이클로헥사온, 아세톤 등가 같은 케톤계 화합물; 이소프로판올과 같은 알코올계 화합물; 또는 테트라히드로퓨란과 같은 환형 에테르계 화합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상기 용액중합의 결과로 생성되는 염화비닐계 공중합체는 상기한 비활성 유기 용매 중에 용해된 상태로 수득될 수도 있고, 또는 침전상으로 수득될 수도 있다.
또 다른 한편으로 괴상중합 방법의 경우, 용매 없이 중합개시제의 존재 하에 염화비닐계 단량체를 불포화 지방산 에스테르의 시스 및 트랜스 이성질체와 반응시킴으로써 수행될 수 있다. 구체적으로는, 염화비닐 단량체에 중합개시제를 투입하여 5% 내지 10% 중합전환율의 입자핵을 제조한 후, 제조한 입자핵을 염화비닐 단량체, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체, 그리고 중합개시제와 혼합하고, 중합반응시킴으로써 수행될 수 있다. 이때, 상기 염화비닐계 단량체, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체, 그리고 중합개시제의 종류 및 함량은 앞서 설명한 바와 동일하다.
보다 구체적으로, 상기 괴상중합에 있어서 중합개시제는 앞서 설명한 중합개시제 중에서도 염화비닐계 단량체에 가용가능한 것일 수 있다. 구체적으로는 퍼옥사이드계 화합물, 하이드로퍼옥사이드계 화합물 또는 아조계 화합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 사용될 수 있다.
상기한 바와 같은 다양한 중합 방법에 따른 중합반응시, 염화비닐계 단량체는 1회로 일괄 투입될 수도 있고, 또는 2회 이상 분할 투입될 수도 있다.
상기 염화비닐 단량체가 2회 이상 분할 투입될 경우, 중합 전환율이 10% 내지 70%인 동안에 추가 투입될 수 있다. 중합 전환율이 10% 미만일 때 투입하는 경우에는 분할 투입에 따른 배치당 중합 생산성 증대 효과가 미미하고, 70%를 초과하는 때 투입하는 경우에는 미세 입자의 증가로 벌크밀도 증가에 악영향을 미칠 우려가 있고, 중합 반응 시간이 지나치게 길어져 중합 생산성 저하를 초래할 우려가 있다. 보다 구체적으로는 중합 전환율 10% 내지 30% 기간에 추가로 투입될 수 있다. 상세하게는, 중합 전환율이 10% 내지 30%인 기간에서 합일/재분산이 가장 활발히 일어나기 때문에 이 기간에 염화비닐계 단량체를 추가 투입함으로써 추가 투입된 염화비닐계 단량체가 안정한 형태의 염화비닐계 공중합체로 전환되어 중합 생산성 증대를 기대할 수 있으며, 동시에 중합체 입자의 내부 모폴로지(morphology) 조절이 가능해진다. 또, 이 기간에 염화비닐계 단량체를 추가 투입 함으로써 단량체 확산에 의한 중합체 입자 내부에 충진이 되어 높은 부피 비중을 가지는 염화비닐계 공중합체를 얻을 수 있다.
또한, 상기 제조 방법에 있어서, 중합 전환율 10% 내지 70%인 기간, 보다 구체적으로는 10% 내지 30%인 기간에 염화비닐 단량체를 추가로 투입하는 단계에서 상기 추가되는 염화비닐 단량체의 양은 염화비닐 단량체 총 투입량에 대하여 30중량% 내지 70중량%인 것이 바람직하며, 특히 바람직하게는 50중량% 내지 70중량%일 수 있다. 30중량% 미만이면 중합 생산성 증대의 효과가 미비하고, 70중량%를 초과하면 반응기 유효 용적 초과로 인한 중합 안정성 측면에서 문제가 발생할 수 있다.
본 발명에 있어서, 상기 중합전환율은 가스 크로마토그래피를 장착한 부탄 트레이서(butane tracer)를 이용하여 측정할 수 있다. 구체적으로, 일정 중합 조건에서 시간에 따른 염화비닐 단량체와 부탄과의 비율에 따른 중합전환율 곡선을 중합조건 때마다 작성해 두고, 중합조건에 따른 중합전환율을 측정할 수 있다. 상기 중합전환율은 측정시의 오차범위 ±2%를 포함하며, 또 중합전환율 0%는 중합 개시 시점 또는 개시 전까지를 포함하는 의미이다.
한편, 상기 중합반응시 염화비닐계 공중합체의 제조를 위해 사용되는 염화비닐 단량체 및 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 공단량체 외에, 이들과 공중합 가능한 비닐계 단량체가 더 첨가될 수도 있다.
상기 비닐계 단량체는 구체적으로 올레핀계 화합물, 비닐 에스테르류, 불포화 니트릴류, 비닐 알킬 에테르류, 불포화 지방산 또는 불포화 지방산의 무수물 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또, 상기 비닐계 단량체는 본 발명의 일 실시예에 따른 염화비닐계 공중합체의 물성적, 구조적 특징을 저해하지 않는 범위 내에서 해당 비닐계 단량체의 사용에 따른 개선 효과를 나타낼 수 있는 함량으로 사용될 수 있다. 구체적으로, 상기 비닐계 단량체는 상기 염화비닐계 공중합체 제조를 위해 사용되는 단량체 총 투입량 100 중량부에 대하여 50 중량부 이하로 사용될 수 있다.
또, 상기 염화비닐계 공중합체의 제조를 위한 중합 반응시, 필요에 따라 반응 종결제, 연쇄 이동제, pH 조절제, 산화 방지제, 가교제, 대전 방지제, 스케일 방제제, 계면활성제 등의 첨가제가 중합 개시전 또는 중합 후에 중합계에 첨가되거나, 또는 중합 반응 중에 그 일부를 분할 또는 연속적으로 첨가될 수도 있다.
일례로, 상기 반응 종결제가 사용되는 경우, 중합반응 중 중합전환율이 80% 이상, 구체적으로는 80% 내지 95%에 해당하는 시점에 투입될 수 있으며, 이때 중합전환율은 중합반응기내 압력을 통해 확인할 수 있다. 상기 반응 종결제로는 구체적으로 4-하이드록시-2,2,6,6-테트라메틸-피페리딘-1-옥실, 트리에틸렌 글리콜-비스-3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로피오네이트, 또는 부틸레이티드 하이드록시 톨루엔 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또, 상기 반응 종결제는 상기 염화비닐계 공중합체 제조를 위해 사용되는 단량체 총 투입량 100중량부에 대하여 0.0001중량부 내지 1중량부로 사용될 수 있다.
또, 염화비닐계 공중합체의 중합도는 중합 반응 온도에 의하여 결정되고, 염화비닐계 공중합체의 중합도는 가공 조건 및 제품의 물성에 영향을 미치는 요인이므로 중합 반응시 온도를 적절히 제어하는 것이 바람직하다. 구체적으로, 본 발명의 일 실시예에 따른 염화비닐계 공중합체의 제조시 중합 온도는 30℃ 내지 80℃일 수 있으며, 보다 구체적으로는 30℃ 내지 70℃일 수 있다. 구체적으로, 상기한 중합용 공단량체의 함량을 충족하는 조건하에서 중합온도가 30℃이상, 45℃ 미만일 경우 중합도 2000 이상, 보다 구체적으로는 3000 이상의 염화비닐계 공중합체가 제조되고, 40℃ 이상 50℃ 미만인 경우 중합도 1700 내지 1800의 염화비닐계 공중합체가, 50℃ 내지 62℃인 경우 중합도 1000 내지 1300의 염화비닐계 공중합체가, 63℃ 이상인 경우 중합도 1000 미만, 구체적으로는 700 내지 1000의 염화비닐계 공중합체가 제조될 수 있다.
이중에서도 상기한 기공특성을 충족하면서 평균중합도가 1000 내지 1500, 보다 구체적으로는 1000 내지 1300이 되도록 하기 위해서 50℃ 내지 62℃, 보다 구체적으로는 52℃ 내지 58℃일 수 있다. 또, 상기 중합반응은 상기한 평균중합도를 달성할 때까지 상기 온도 범위 내에서 2 내지 18시간 동안 수행될 수 있다.
상기 중합 반응의 결과로, 앞서 설명한 바와 같은 구조적, 물성적 특성을 갖는 염화비닐계 공중합체가 제조된다.
상기한 바와 같은 본 발명의 일 실시예에 따른 상기 염화비닐계 공중합체의 제조방법은, 중합생산성이 우수하며, 제조 과정에서 마이그레이션에 따른 문제 발생의 우려가 없다. 또, 종래의 제조방법에 따라 제조되는 염화비닐계 공중합체의 경우 1차 입자들이 조립된 2차 입자상이되, 2차 입자내 1차 입자 사이에 형성된 공극들로 인해 높은 기공율을 나타내고, 그 결과 낮은 가공성과 열화된 기계적 물성, 특히 현저히 열화된 투명도를 나타내는 반면, 본 발명에 따른 제조방법에 의해 제조된 염화비닐계 공중합체는 공중합체 형성을 위한 공단량체로서 사용된 불포화 지방산 에스테르의 시스 및 트랜스 이성질체가 내부가소화제로서 작용하여 1차 입자 사이의 공극이 감소하거나 또는 작아짐으로써 기계적 물성의 저하에 대한 우려없이 가소성 및 투명성이 향상된 공중합체가 제조될 수 있다.
그 결과, 상기 공중합체를 이용하여 성형품 제조시 외부 가소제의 사용을 감소시킬 수 있으며, 특히 종래 프탈레이트계 외부 가소제의 사용을 감소시키거나 대체할 수 있어 환경 호르몬 발생을 감소 또는 방지할 수 있다. 또, 상기 제조방법에 의해 제조된 염화비닐계 공중합체는 우수한 가소성과 함께 기계적 물성을 가져, 파이프 등의 배관재료나, 장남감 등의 생활용품, 벽지, 창틀 등의 건축재료 등 다양한 분야에 적용될 수 있다.
이에 따라 본 발명의 또 다른 일 실시예에 따르면, 상기한 염화비닐계 공중합체를 포함하는 열가소성 수지 조성물 및 이를 이용하여 제조된 성형품이 제공된다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
환류 응축기가 구비된 내부용적 1m3의 반응기에 탈이온수 390kg을 투입한 후, 수화도가 80.5%인 폴리비닐알코올 160g, 수화도가 42.3%인 폴리비닐알코올 120g, 및 하이드록시프로필메틸 셀룰로오스 50g을 상기 반응기에 투입하고, 또 염화비닐 단량체 300kg을 투입하여 30분 동안 교반하였다. 결과의 혼합물에 디부틸 말레이트와 디부틸 푸말레이트의 혼합물(중량비=90:10) 30kg을 투입하고, 디-2-에틸헥실퍼옥시 디카보네이트 60g 및 t-부틸퍼옥시 네오데카노에이트 150g을 투입하여 반응을 개시하였다. 중합 반응 전과정 동안 반응 온도를 57℃로 유지하면서 중합 반응을 진행하였으며, 또 중합 반응기내 압력이 6.3kg/cm2에 도달한 시점(중합전환율이 약 85%에 상당하는 시점)에 반응 종결제로서 4-하이드록시-2,2,6,6-테트라메틸-피페리딘-1-옥실 15g 및 트리에틸렌 글리콜-비스-3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로피오네이트 90g을 첨가하였다. 반응 완료 후, 미반응 단량체 및 수지 슬러리를 중합반응기로부터 각각 회수하고, 회수된 수지 슬러리를 유동층 건조기에서 건조하여 염화비닐계 공중합체를 수득하였다.
상기 중합전환율은 가스 크로마토그래피를 장착한 부탄 트레이서(butane tracer)를 이용하여 측정하였다. 일정 중합 조건에서 시간에 따른 염화비닐 단량체와 부탄과의 비율에 따른 중합전환율 곡선을 중합조건 때마다 작성해 두고, 중합조건에 따른 중합전환율을 측정할 수 있다. 또 중합전환율 0%는 중합 개시 시점 또는 개시 전까지를 포함하는 의미이다.
실시예 2
디부틸 말레이트와 디부틸 푸말레이트의 혼합물 대신에, 디(2-에틸헥실) 말레이트(DOM)와 디(2-에틸헥실) 푸말레이트(DOF)의 혼합물(중량비=95:5) 60kg을 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 염화비닐계 공중합체를 수득하였다.
실시예 3
환류 응축기가 구비된 내부용적 1m3의 반응기에 탈이온수 350kg을 투입한 후, 수화도가 80.5%인 폴리비닐알코올 160g, 수화도가 42.3%인 폴리비닐알코올 162g, 및 하이드록시프로필메틸 셀룰로오스 45g을 상기 반응기에 투입하고, 또 염화비닐 단량체 270kg을 투입하여 30분 동안 교반하였다. 결과의 혼합물에 디(에틸도데실) 말레이트와 디(에틸도데실) 푸말레이트의 혼합물(중량비=98:2) 135kg을 투입하고, 디큐밀퍼옥사이드 81g, t-부틸퍼옥시 네오데카노에이트 108g을 투입하여 반응을 개시하였다. 중합 반응 전과정 동안 반응 온도를 52℃로 유지하면서 중합 반응을 진행하였으며, 또 중합 반응기내 압력이 5.7kg/cm2에 도달한 시점(중합전환율이 약 85%에 상당하는 시점)에 반응 종결제로서 4-하이드록시-2,2,6,6-테트라메틸-피페리딘-1-옥실 13.5g 및 트리에틸렌 글리콜-비스-3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로피오네이트 108g을 첨가하였다. 반응 완료 후, 미반응 단량체 및 수지 슬러리를 중합반응기로부터 각각 회수하고, 회수된 수지 슬러리를 유동층 건조기에서 건조하여 염화비닐계 공중합체를 수득하였다.
실시예 4
환류 응축기가 구비된 내부용적 0.5m3의 반응기에 탈이온수 200kg을 투입하고, NaOH 20g 및 소듐라우릴설페이트 200g을 투입한 후, 염화비닐 단량체 150kg을 투입하고 30분 동안 교반하였다. 결과의 혼합물에 디헥실 말레이트와 디헥실 푸말레이트의 혼합물(중량비=85:15) 45kg을 투입한 후, 포타슘 퍼설페이트 90g을 투입하여 중합을 실시하였다. 중합 온도를 57℃로 유지하면서 반응을 진행하였으며, 또 중합반응기내 압력이 4.0kg/cm2에 도달했을 때 반응을 종결하였다. 반응 완료 후, 미반응 단량체를 회수하여 제거하여 라텍스를 얻고, 결과의 라텍스를 분무 건조하여 분체상의 염화비닐계 공중합체를 수득하였다.
실시예 5
고진공으로 탈기한 부피 0.2m3의 예비 중합반응기에 염화비닐 단량체 140kg을 투입한 후, 중합개시제 t-부틸퍼옥시 네오데카노네이트 85g을 투입하고, 교반하면서 57℃, 12K/G까지 승압하여 10% 전환율의 입자핵을 제조하였다.
부피 0.5m3의 본 중합반응기에 염화비닐 단량체 80kg을 투입하고, 디데실말레이트와 디데실푸말레이트의 혼합물(중량비=97:3) 11kg을 투입한 후, 상기 예비 중합 반응기에서 제조한 입자핵을 이송하고, 중합개시제 1,1,3,3-테트라메틸부틸퍼옥시 네오데카노에이트 200g을 투입하였다. 결과의 혼합물에 대해 교반하면서 52℃, 7.5K/G의 압력으로 200분간 중합반응을 수행하였다. 중합 말기에 부틸레이티드 하이드록시톨루엔 200g을 투입하고, 교반이 유지된 상태에서 30분간 진공으로 잔류 미반응 단량체를 회수하였으며, 그 결과로서 염화비닐계 공중합체를 수득하였다.
실시예 6
중합반응시 중합 온도를 47℃로 유지하는 것을 제외하고는 상기 실시예 2에서와 동일한 방법으로 실시하여 염화비닐계 공중합체를 수득하였다.
실시예 7
중합반응시 중합 온도를 40℃로 유지하는 것을 제외하고는 상기 실시예 2에서와 동일한 방법으로 실시하여 염화비닐계 공중합체를 수득하였다.
실시예 8
중합반응시 중합 온도를 35℃로 유지하는 것을 제외하고는 상기 실시예 3에서와 동일한 방법으로 실시하여 염화비닐계 공중합체를 수득하였다.
실시예 9
환류 응축기가 구비된 내부용적 0.2m3의 반응기에 탈이온수 80kg을 투입하고, 수화도가 80%인 폴리비닐알코올 25g, 수화도가 42%인 폴리비닐알코올 20g, 및 하이드록시프로필메틸 셀룰로오스 5g을 상기 반응기에 투입하고, 염화비닐 단량체 50kg과 함께 디(2-에틸헥실) 말레이트와 디(2-에틸헥실) 푸말레이트의 혼합물(중량비=95:5) 34kg을 투입한 후, 디-2-에틸헥실퍼옥시 디카보네이트 30g을 투입하여 반응을 개시하였다. 중합 반응 전 과정 동안 57℃로 반응을 유지하며 반응을 진행시키고, 중합전환율 15%(15±2%)에서 중합을 종료하였다. 결과의 반응생성물과 미반응 단량체를 모두 2차 중합 반응기로 이송하였다.
환류 응축기를 가지는 내부 용적 0.8m3의 반응기에 탈이온수 300kg을 투입하고 수화도가 80%인 폴리비닐알코올 60g, 수화도가 42%인 폴리비닐알코올 48g, 및 하이드록시프로필메틸 셀룰로오스 12g을 상기 반응기에 투입하고, 염화비닐 단량체 120kg을 투입한 후, 디큐밀 퍼옥사이드 23g, t-부틸 퍼옥시 네오데카노에이트 47g을 투입하여 반응을 개시하였다.
중합 반응 전 과정 동안 50℃로 유지하면서 반응을 진행시키고, 중합 반응기 압력이 6.0kg/cm2에 도달한 시점에 반응 종결제로서 4-하이드록시-2,2,6,6-테트라메틸-피페리딘-1-옥실 5g, 트리에틸렌 글리콜-비스-3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로피오네이트를 35g 첨가한 후, 미반응 단량체를 분리, 회수하고, 제조된 공중합체를 중합반응기로부터 회수한 후, 유동층 건조기에서 건조하여 공중합체를 수득하였다.
비교예 1
환류 응축기가 구비된 내부용적 1m3의 반응기에 탈이온수 390kg을 투입하고, 수화도가 78.5%인 폴리비닐알코올 150g, 수화도가 40.7%인 폴리비닐알코올 100g, 및 하이드록시프로필메틸 셀룰로오스 30g을 반응기에 일괄 투입하였다. 상기 반응기에 염화비닐 단량체 300kg을 투입하고, 디-2-에틸헥실퍼옥시 디카보네이트 30g 및 t-부틸퍼옥시 네오데카노네이트 120g을 투입한 후, 중합온도를 57℃로 유지하면서 중합 반응을 진행하였다. 중합 반응기 내 압력이 6.3kg/cm2에 도달한 시점에 반응 종결제로서 4-하이드록시-2,2,6,6-테트라메틸-피페리딘-1-옥실 15g 및 트리에틸렌 글리콜-비스-3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로필오네이트 60g을 첨가하고, 중합 반응기로부터 미반응 단량체 및 수지 슬러리를 각각 회수하였다. 이후 회수한 슬러리를 유동층 건조기에서 건조하여 염화비닐 단독 중합체를 수득하였다.
비교예 2
상기 비교예 1에서 중합온도를 64℃로 변경한 것을 제외하고는 상기 비교예 1에서와 동일한 방법으로 수행하여 염화비닐 단독 중합체를 수득하였다.
비교예 3
상기 비교예 1에서 중합온도를 67℃로 변경한 것을 제외하고는 상기 비교예 1에서와 동일한 방법으로 수행하여 염화비닐 단독 중합체를 수득하였다.
비교예 4-1 내지 4-8
상기 비교예 1에서 중합한 염화비닐계 중합체 100중량부에 대해 외부가소제로서 디옥틸프탈레이트(DOP)를 하기 표 1에 기재된 바와 같이 다양하게 함량을 변화시키며 첨가하여 반응시키는 것을 제외하고는, 상기 비교예 1에서와 동일한 방법으로 수행하여 염화비닐계 중합체를 수득하였다.
DOP 함량(중량부)
비교예4-1 10
비교예4-2 20
비교예4-3 30
비교예4-4 40
비교예4-5 50
비교예4-6 60
비교예4-7 70
비교예4-8 80
비교예 5
상기 비교예 4-4에서 DOP 대신에 외부가소제로서 디(2-에틸헥실말레이트)(DEHM)을 염화비닐계 중합체 100중량부에 대하여 40중량부로 사용한 것을 제외하고는 상기 비교예 4-4에서와 동일한 방법으로 수행하여 염화비닐계 중합체를 수득하였다.
비교예 6
디부틸 말레이트와 디부틸 푸말레이트의 혼합물(중량비=50:50)을 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 염화비닐계 중합체를 수득하였다.
비교예 7
디부틸 말레이트와 디부틸 푸말레이트의 혼합물 대신에 디부틸 푸말레이트 단독으로 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 염화비닐계 중합체를 수득하였다.
비교예 8
디부틸 말레이트와 디부틸 푸말레이트의 혼합물(중량비=90:10) 6kg을 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 염화비닐계 중합체를 수득하였다.
비교예 9
디부틸 말레이트와 디부틸 푸말레이트의 혼합물(중량비=90:10) 200kg을 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 염화비닐계 중합체를 수득하였다.
실험예 1
상기 실시예 1에서 제조한 염화비닐계 공중합체 및 비교예 1에서 제조한 염화비닐 단독 중합체에 대해 적외선 분광분석(IR)을 실시하였다. 또, 실시예 1에서 제조한 염화비닐계 공중합체내 공단량체의 결합 여부를 확인할 수 있도록, 실시예 1에서 사용된 디부틸 말레이트와 디부틸 푸말레이트를 포함하는 불포화 디카르복실산 에스테르에 대해서도 IR 분석을 실시하였다. 그 결과를 도 1에 나타내었다.
도 1에 나타난 바와 같이, 실시예 1에서 제조한 염화비닐계 공중합체의 IR 분석결과, 불포화 디카르복실산 에스테르에 대한 IR 분석에서 관찰된 C=O 스트레칭 피크 및 C=C 스트레칭 피크가 관찰되었다. 이에 반해 비교예 1에서는 이 같은 피크가 관찰되지 않았다. 이로부터, 실시예 1의 공중합체 제조시 사용된 공단량체가 공중합되었음을 확인할 수 있다.
실험예 2
상기 실시예 2에서 제조한 염화비닐계 공중합체 및 비교예 1에서 제조한 염화비닐 단독 중합체에 대해 투과전자 현미경(Jeol, JEM-1400)을 이용하여 관찰 하였다. 이때 관찰 시료는 하기와 같은 조건으로 처리하였다: 상기 실시예 2 및 비교예 1에서 제조한 각각의 중합체를 실온(23±5℃)에서 1일 동안 에폭시 임배딩 후, 실온에서 트리밍 및 구획화(trimming &sectioning)하고, 1시간 동안에 걸쳐 RuO4의 증기 염색(vapor staining)을 실시하고, 파라 필름(para film)에 함침시켜 준비하였다.
그 결과를 도 2a 내지 도 3b에 나타내었다.
도 2a 및 2b에 나타난 바와 같이, 실시예 2에서 제조한 염화비닐계 공중합체의 경우 비닐계 매트릭스 내에 디(2-에틸헥실) 말레이트와 디(2-에틸헥실) 푸말레이트가 분산되어 포함되어 있음(검은 점)을 확인할 수 있으며, 이로부터 염화비닐계 공중합체가 잘 제조되었음을 알 수 있다.
한편, 도 3a 및 3b에 나타난 바와 같이 비교예 1에서 제조한 염화비닐계 중합체의 경우, 비닐계 매트릭스만이 확인되었다.
실험예 3
상기 실시예 9에서 제조한 제조한 공중합체에 대해 Agilent 500MHz/ONE probe를 이용하여 1H NMR 분석을 실시하고, 그 결과를 하기 도 4에 나타내었다. 이때 분석 용매로는 테트라히드로퓨란(THF)을 사용하였다.
도 4에서 1, 2, a 및 b는 각각 하기 구조의 DOM 및 DOF에서 표시된 1, 2, a 및 b의 작용기에 대한 피크를 의미한다.
Figure PCTKR2016005945-appb-I000003
측정 결과, DOM 및 DOF의 피크가 명확하게 관찰되었다. 이 같은 결과로부터 중합체의 제조시 사용된 DOM 및 DOP가 공단량체로서 제조된 부타디엔 공중합체에 결합되어 있음을 확인할 수 있으며, 그 DOM:DOF의 함량비(중량 기준)가 96:4임을 확인할 수 있다.
실험예 4
상기 실시예 1 내지 9에서 제조한 공중합체에 대해 ALS/GC-MSD/FID 분석을 실시하였다.
상세하게는, 실시예 1 내지 9에서 제조한 공중합체 각각을 0.2g씩 칭량하여 THF 10ml에 용해시킨 후, 메탄올 30ml로 침전시켰다. 이후 초음파 처리하여 첨가제를 추출한 후, 상등액을 취하여 여과하였다(사용 필터: 0.2㎛ disc syringe filter). 결과로 수득된 각 실시예의 시료에 대해 ALS(Auto liquid Sampler)/GC-MSD(gas chromatography-mass spectrometry) (Agilent 6890N GC-MSD)/FID(Flame Ionization Detector, Agilent사제)를 이용하여 분석하였다. 그 결과를 하기 표 2에 나타내었다.
(중량비) 불포화 지방산 에스테르의 시스 이성질체 유래 반복단위 함량 불포화 지방산 에스테르의 트랜스 이성질체 유래 반복단위 함량
실시예1 91.43 6.75
실시예2 96.57 1.92
실시예3 98.15 1.09
실시예4 89.44 8.92
실시예5 97.21 1.65
실시예6 96.49 1.95
실시예7 96.36 2.06
실시예8 96.85 1.77
실시예9 96.45 1.99
비교예6 57.28 42.72
비교예7 - 100
실험결과, 실시예 1 내지 9에서 제조한 공중합체 내에 시스 및 트랜스 지방산 에스테르 유래 반복단위가 80 내지 99 : 20 내지 1의 혼합 중량비로 포함되어 있음을 확인할 수 있다. 또, 높은 전환율로부터 트랜스 불포화 지방산 에스테르가 시스 불포화 지방산 에스테르에 비해 염화비닐 단량체와의 공중합체 형성성이 보다 우수함을 확인할 수 있다.
실험예 5
상기 실시예 1 내지 9, 및 비교예 1, 6, 7에서 제조한 공중합체에 대해 중량평균 분자량(Mw), 수평균 분자량(Mn) 및 다분산도(polydispersity)를 각각 측정하였다.
상세하게는 Waters 2414 Refractive Index Detector, Waters 1525 Binary HPLC Pump 및 Waters 717 Autosampler를 이용하여 Mw 및 Mn을 각각 결정하고, Mw/Mn의 비로부터 다분산도를 결정하였다. 그 결과를 하기 표 3에 나타내었다.
Mw (g/mol) Mn (g/mol) 다분산도(Mw/Mn)
실시예1 134,384 68,946 1.9491
실시예2 123,265 64,667 1.9061
실시예3 94,118 50,326 1.8702
실시예4 109,302 58,107 1.8810
실시예5 181,337 91,793 1.9755
실시예6 235,081 71,755 1.9955
실시예7 273,875 112,868 1.9514
실시예8 243,583 135,893 2.0154
실시예9 163,038 84,386 1.9321
비교예1 143,190 71,395 2.0056
비교예6 127,411 64,220 1.9840
비교예7 125,657 63,401 1.9819
상기 표 3에 나타난 바와 같이, 염화비닐계 공중합체의 제조시 중합방법, 중합온도 그리고 공단량체의 사용여부 및 사용량에 따라 중량평균 분자량, 수평균 분자량 및 다분산도가 달라졌다. 일 예로 유사한 중합온도 조건에서 현탁중합에 의해 제조된 실시예 1 내지 3 및 비교예 1의 공중합체를 비교했을 때, 공단량체를 사용한 실시예 1 내지 3의 공중합체는 공단량체를 사용하지 않은 비교예 1의 공중합체에 비해 낮은 Mn, Mw 및 다분산도를 나타내었다. 이는 중합시 공단량체끼리 결합하는 것 보다 염화비닐 단량체와 결합되는 경향성이 더 높기 때문으로, 이같은 결과로부터 공단량체의 사용에 의해 제조되는 염화비닐계 공단량체의 가소화 성능이 더욱 향상될 수 있음을 알 수 있다.
또, 동일 중합 조건에서 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 혼합물을 사용하되, 본 발명에서의 시스 및 트랜스 이성질체의 혼합비 조건을 충족하는 실시예 1의 염화비닐계 공중합체는, 혼합비 조건을 충족하지 않는 비교예 6 및 7에 비해 유사한 수준의 Mw 및 Mn을 나타내었지만, 다분산도는 감소하여 보다 우수한 가소화 성능을 가짐을 알 수 있다.
또, 실시예 1 및 2에서와 같이, 동일 중합 조건에서 공단량체의 투입량이 증가함에 따라 다분산도가 감소하였고, 실시예 2, 6, 및 7; 또는 실시예 3 및 8에서와 같이 중합온도가 증가함에 따라 Mw, Mn 및 다분산도가 함께 감소하였다.
실험예 6
상기 실시예 1 내지 5 및 비교예 1, 6, 7에서 제조한 염화비닐계 중합체에 대해 주사전자 현미경(SEM)을 이용하여 관찰하였다. 그 결과를 도 5a 내지 도 10b에 나타내었다.
도 5a 내지 도 9b에 나타난 바와 같이, 실시예 1 내지 5에 따른 염화비닐계 공중합체는 포도송이처럼 작은 1차 입자들이 뭉쳐있는 2차 입자의 형태를 띄고 있으며, 공중합체의 제조시 공단량체의 함량이 높을수록 뭉침 정도가 증가하였다. 또한, 단면 사진으로부터 확인할 수 있듯이, 2차 입자의 내부에서는 미세 기공이 거의 관찰되지 않았다.
반면, 도 10a 및 도 10b에 나타난 바와 같이, 비교예 1의 염화비닐계 중합체는 커다란 서브 그레인(sub-grain)이 여러 개 뭉쳐서 하나의 큰 입자를 형성하고 있으며, 서브 그레인 사이에 복수 개의 공극이 형성되어 있음을 확인할 수 있다.
실험예 7
상기 실시예 1 내지 9 및 비교예 1~3, 6~9에서 제조한 공중합체에 대해 수은 기공율 분석기(Auto Pore IV 9520, Micromeritics 사제)을 사용하여 공중합체 입자 내로 침입한 수은의 양으로부터 표면기공(Pinter), 개기공(accessible intravoid, Pacc) 및 폐기공(inaccessible intravoid, Pinacc)을 각각 측정하고, 그 결과로부터 총 기공면적, 평균 기공직경(4V/A) 및 기공도(porosity)를 각각 계산하였다. 그 결과를 하기 표 4에 나타내었다.
실시예1 실시예2 실시예3 실시예4 실시예5 실시예6 실시예7 실시예8 실시예9 비교예1 비교예2 비교예3 비교예6 비교예7 비교예8 비교예9
표면기공(ml/g) 0.1801 0.0916 0.0514 0.0701 0.3287 0.0965 0.0872 0.0533 0.0940 0.7915 0.7355 0.6863 0.4845 0.5063 0.7018 ND
개기공(ml/g) 0.0823 0.0578 0.0161 0.0323 0.1006 0.0659 0.0583 0.0158 0.0438 0.2540 0.1736 0.1262 0.1217 0.2824 0.2674 ND
폐기공(ml/g) 0.0125 0.0115 0.0094 0.0103 0.0142 0.0122 0.0108 0.0101 0.0110 0.0307 0.0693 0.0326 0.0224 0.0247 0.0253 ND
수은의 총 침입 부피(ml/g) 0.2749 0.1609 0.0769 0.1127 0.4435 0.1746 0.1563 0.0792 0.1488 10.762 0.9784 0.8451 0.6286 0.8134 0.9945 ND
총 기공 면적(m2/g) 20.125 21.379 23.853 22.798 18.481 20.973 20.980 24.369 21.565 17.858 17.506 19.179 22.446 24.012 21.655 ND
평균 기공직경(nm) 54.6 30.1 12.9 19.8 96.0 33.3 29.8 13.0 27.6 241.1 223.6 176.3 112 135.5 183.7 ND
기공도(%) 25.040 19.244 13.226 16.185 34.877 20.173 19.088 13.532 17.425 60.172 55.36 51.634 47.962 51.563 48.947 ND
상기 표 4에서 ND는 측정하지 않았음을 의미한다.
또, 상기 표 4에서 수은의 총 침입 부피(Ptotal)는 하기 수학식 1에 따라 계산되었다.
[수학식 1]
Ptotal=Pinter+Pacc+Pinacc
상기 수학식 1에서, Pinacc은 1차 입자 내부의 기공에 흡착된 수은의 흡착량과, 염화비닐 공중합체에 흡착되지 않은 intruded 수은의 양과의 합이다.
상기 표 4에 나타나 바와 같이, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 혼합물을 공단량체로 사용한 실시예 1 내지 9의 염화비닐계 공중합체는 평균 기공직경이 100nm 이하이고, 기공도가 40부피% 이하로, 공단량체를 사용하지 않은 비교예 1, 외부가소화제를 사용한 비교예 2 및 3, 그리고 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 혼합물을 사용하되 그 혼합비가 본 발명에서의 혼합비 조건을 충족하지 않는 비교예 6 및 7, 그리고, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 혼합물의 혼합비 조건은 충족하지만, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 혼합물 함량 조건을 충족하지 않는 비교예 8의 염화비닐계 공중합체와 비교하여 훨씬 더 미세한 기공을 현저히 낮은 기공율로 포함하고 있음을 확인할 수 있다. 또, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 혼합물의 혼합비 조건은 충족하지만, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 혼합물 함량이 지나치게 높은 비교예 9의 경우 정상적인 중합이 이루어지지 않고 거대 입자를 형성하였다.
실험예 8
상기 실시예 1 내지 5, 비교예 1~3, 6, 7에서 제조한 공중합체에 대해 가소제 흡수율(cold plasticizer absorption, CPA)를 측정하였다.
상세하게는, ASTM D2396 및 ISO 4574에 따라 가소제 흡수제 측정기기(continent 512-R, hanil 사제)를 이용하여 3900rpm 및 20℃에서 가소제 흡수율을 측정하였다. 그 결과를 하기 표 5에 나타내었다.
실시예1 실시예2 실시예3 실시예4 실시예5 비교예1 비교예2 비교예3 비교예6 비교예7
CPA(%) 4.70 3.88 1.87 2.32 6.89 24.3 19.0 14.2 14.0 14.3
통상 중합온도를 올려 제조된 저중합도의 경우 CPA가 낮다. 상기 표 5에 나타난 바와 같이, 비교예 1 내지 3의 공중합체는 중합 온도가 실시예 1 내지 5와 비교하여 동등 수준 이상(57~67℃)임에도 불구하고 실시예 1 내지 5의 공중합체에 비해 훨씬 더 높은 가소제 흡수율을 나타내었다. 구체적으로, 비교예 1 내지 3의 공중합체는 가소제 흡수율이 최소 14.0% 이상인 반면, 본 발명에 따른 실시예 1 내지 5의 공중합체는 최대값이 6.89%로 절반 이상으로 감소된 가소제 흡수율을 나타내었다. 또, 동일 중합 조건에서 중합되더라도 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 혼합비 조건을 충족하는 실시예 1은 혼합비 조건을 충족하지 않는 비교예 6 및 7에 비해 현저히 감소된 가소제 흡수율을 나타내었다.
또, 상기 실시예 1, 4, 9 및 비교예 7에서 제조한 공중합체에 대해 K값을 특정하였다.
상세하게는, 문헌[H. Fikentscher, Cellulose Chemie, Vol. 13, 58-64 and 71-74 (1932)]에 따라 5 중량% 농도의 염화나트륨 용액 중에서 온도 25℃, 중합체 농도 0.5중량% 및 pH 7.0에서 K값을 측정하였다. 그 결과를 하기 표 6에 나타내었다.
실시예 1 실시예 4 실시예 9 비교예 7
K값 65 60 71 75
실험결과, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 혼합물을 공단량체로서 사용하되, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 혼합비 조건을 충족하는 실시예 1, 4 및 9의 염화비닐계 공중합체는, 혼합비 조건을 충족하지 않는 비교예 7에 비해 낮은 K값을 나타내어 보다 우수한 연질특성 및 가소화 성능을 가짐을 확인할 수 있다.
또, 상기 실시예 3, 4 및 비교예 1, 7에서 제조한 공중합체에 대해 유리전이온도(Tg)를 측정하였다.
상세하게는, Tg는 TA사에서 제조한 시차주사열량계(DSC: Differential Scanning Calorimeter 2920)를 이용하여 측정하고, 그 결과를 하기 표 7에 나타내었다.
실시예 3 실시예 4 비교예 1 비교예 4-5
Tg(℃) -35 -24 83 -10
실험결과, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 혼합물을 공단량체로서 사용한 실시예 3 및 4의 염화비닐계 공중합체는, 공단량체를 사용하지 않은 비교예 1에 비해 현저히 낮은 Tg를 나타내었으며, 외부가소화제를 사용한 비교예 4-5에 비해서도 낮은 Tg를 나타내었다. 이로부터 공단량체를 사용한 실시예 3 및 4의 염화비닐계 공중합체가 보다 우수한 가소화 성능을 가짐을 확인할 수 있다.
제조예
상기 실시예 1 내지 9에서 제조한 염화비닐 공중합체를 각 100 중량부에 주석계 열안정제(MT800, 송원산업) 4중량부, 가공조력제(PA-910, LG화학) 1중량부, 충격보강제(MB872, LG화학) 5중량부, 활제(SL63, LG화학) 0.5중량부를 첨가하고, 롤 밀(roll-mill)을 이용하여 185℃에서 3분간 혼련한 후, 0.5mm 두께의 시트를 각각 제조하였다. 제조한 각 시트를 일정 크기로 잘라 3cm 두께의 틀에 넣고, 프레스를 이용하여 185℃에서 2분 예열, 3분 저압 가열, 2분 고압 냉각하여 각각의 압축시트를 제조하였다.
비교예 1 내지 7에서 제조한 염화비닐계 공중합체에 대해서도 상기와 동일한 방법으로 실시하여 압축시트를 제조하였다.
실험예 9
상기에서 제조한 실시예 1 내지 5 및 비교예 1, 4-1 내지 4-7, 5 내지 7의 공중합체 포함 압축시트들에 대해 ASTM D785-65에 따라 경도 특성(Rockwell)을 평가하였다. 그 결과를 하기 표 8에 나타내었다.
외부가소제 함량(중량부) DOP 환산 함량(%) 경도(HS)
실시예1 - 21.08 90.23
실시예2 - 42.87 78.93
실시예3 - 98.29 52.17
실시예4 - 60.46 70.30
실시예5 - 12.88 102.87
비교예1 - - 110.20
비교예4-1 10 - 107.25
비교예4-2 20 - 90.81
비교예4-3 30 - 85.83
비교예4-4 40 - 79.67
비교예4-5 50 - 75.17
비교예4-6 60 - 71.17
비교예4-7 70 - 65.21
비교예5 40 79.43
비교예6 - 14.67 93.68
비교예7 - 11.61 95.35
상기 표 8에서, 외부가소제의 함량은 비교예 1의 염화비닐 중합체의 함량을 100중량부로 기준하여 나타낸 DOP 또는 DEHM의 상대적인 중량비이고, DOP환산 함량은, 실시예 1 내지 5에서 제조한 염화비닐계 공중합체내에 포함된 불포화 지방산 에스테르의 시스 및 트랜스 이성질체 유래 반복단위의 함량을 DOP로 환산한 함량값이다.
실험결과, 실시예 1 내지 5에서 제조한 염화비닐계 공중합체는 외부가소제를 별도로 투입하지 않아도, 비교예들에 비해 낮은 경도 특성을 나타내었다. 특히 실시예 1 내지 5의 공중합체내 이성질체 유래 반복단위의 DOP환산 중량과 비교예 1의 중합체에 대해 투입된 외부가소제의 함량이 동등 수준인 비교예 4-1의 DOP10과 실시예 5; 비교예 4-2의 DOP20과 실시예 1; 비교예 4-4의 DOP40과 실시예 2; 그리고 비교예 4-6의 DOP60과 실시예 4를 비교했을 때 실시예에 따른 공중합체가 더 낮은 경도 특성을 나타내어, 보다 우수한 가소화 성능을 가짐을 확인할 수 있다.
실험예 10
상기에서 제조한 실시예 1 내지 5 및 비교예 4-4, 4-6, 4-8 5~7의 염화비닐 공중합체를 포함하는 압축시트들에 대해 인장응력(tensile stress), 변형율(strain) 및 E-모듈러스(E-modulus)의 기계적 특성을 ASTM D638에 따라 평가하였다. 그 결과를 하기 표 9에 나타내었다.
인장강도(MPa) 변형율(%) E-모듈러스(N/cm2)
실시예1 31.73 194.9 4339.96
실시예2 13.79 357.83 3439.82
실시예3 7.43 706.63 418.19
실시예4 11.12 549.73 823.38
실시예5 41.94 40.25 5163.94
비교예4-4 11.95 490.88 869.01
비교예4-6 9.17 681.4 316.03
비교예4-8 7.85 834.3 152.12
비교예5 11.42 597.15 777.35
통상 염화비닐계 중합체의 제조시 가소제가 투입되면 인장강도, 탄성계수, 즉 변형율 등의 기계적 특성은 감소하고 E-모듈러스와 같은 가소성은 증가하게 된다. 실험결과, 공단량체로 사용된 불포화 지방산 에스테르의 시스 및 트랜스 이성질체의 혼합물의 내부가소화 효과로 인해 실시예 1 내지 5의 공중합체는, 동등 함량 수준으로 외부가소화제를 사용한 비교예들의 공중합체에 비해 보다 우수한 가소화 성능을 나타내면서도, 높은 인장강도를 나타내었다. 이로부터 실시예 1 내지 5의 공중합체는 외부가소화제를 사용한 비교예들에 비해 보다 개선된 가소화 성능 및 기계적 특성을 가짐을 확인할 수 있다. 특히 공단량체로서 디데실 말레이트와 디데실 푸말레이트의 97:3의 혼합 중량비로 사용하여 괴상중합한 실시예 5의 공중합체의 경우 우수한 가소화 성능과 함께 공단량체의 낮은 투입량(공단량체의 함량=5중량%)으로 인해 가장 우수한 기계적 특성을 나타내었다. 반면, 디(에틸도데실) 말레이트와 디(에틸도데실) 푸말레이트를 98:2의 혼합중량비로 혼합 사용하여 현탁중합한 실시예 3의 공중합체의 경우, 염화비닐계 단량체에 대한 공단량체 함량의 증가(공단량체 함량=33.3중량%)로, 유사한 중합 조건에서 제조된 실시예 1 및 2에 비해 인장강도와 E-모듈러스는 다소 감소하였으나, 변형율은 700% 이상 증가하였다.
실험예 11
상기에서 제조한 실시예 1 및 비교예 6 및 7의 염화비닐 공중합체를 각각 포함하는 압축시트들에 대해 Haze-gard plus 기기(BYK-Gardener)를 이용하여 투명도를 측정하였다. 그 결과를 하기 표 10에 나타내었다. 수치가 높을수록 투명도가 우수함을 나타낸다.
투명도
실시예1 82.4
비교예6 65.2
비교예7 31.8
실험결과, 공단량체로서 디부틸 말레이트와 디부틸 푸말레이트를 최적 혼합비로 혼합 사용하여 제조한 실시예 1의 염화비닐 공중합체 포함 압축시트는, 공단량체로서 디부틸 말레이트와 디부틸 푸말레이트 혼합하여 사용하되 최적 혼합비 조건을 충족하지 않는 비교예 6의 염화비닐 공중합체 포함 압축시트, 그리고 디부틸 푸말레이트 단독으로 사용한 비교예 7의 염화비닐 공중합체 포함 압축시트에 비해 현저히 개선된 투명도를 나타내었다.

Claims (18)

1차 입자가 조립되어 이루어진 2차 입자로서, 평균 기공직경이 100nm 이하이고, 기공도가 40부피% 이하이며,
염화비닐계 단량체 유래 반복단위 65중량% 내지 97중량%; 및 불포화 지방산 에스테르의 시스(cis) 및 트랜스(trans) 이성질체 유래 반복단위 3중량% 내지 35중량%를 포함하고, 상기 불포화 지방산 에스테르의 시스 및 트랜스 이성질체로부터 유래된 각각의 반복단위를 60 내지 99 : 40 내지 1의 중량비로 포함하는 것인 염화비닐계 공중합체.
제1항에 있어서,
상기 불포화 지방산 에스테르는 불포화 디카르복실산 에스테르인 것인 염화비닐계 공중합체.
제1항에 있어서,
상기 불포화 지방산 에스테르의 시스 이성질체는 하기 화학식 1의 화합물이고, 상기 불포화 지방산 에스테르의 트랜스 이성질체는 하기 화학식 2의 화합물인 것인 염화비닐계 공중합체.
[화학식 1]
Figure PCTKR2016005945-appb-I000004
[화학식 2]
Figure PCTKR2016005945-appb-I000005
(상기 화학식 1 및 2에서,
R1 내지 R4는 각각 독립적으로 탄소수 2 내지 16의 직쇄상 또는 분지상 알킬기, 탄소수 3 내지 16의 사이클로알킬기 및 이들의 조합으로 이루어진 군에서 선택된다)
제3항에 있어서,
상기 R1 내지 R4는 각각 독립적으로 탄소수 6 내지 10의 직쇄상 또는 분지상 알킬기인 염화비닐계 공중합체.
제1항에 있어서,
상기 염화비닐계 공중합체는 염화비닐계 단량체 유래 반복단위 65중량% 내지 80중량%; 및 불포화 지방산 에스테르의 시스 및 트랜스 이성질체 유래 반복단위 20중량% 내지 35중량%를 포함하는 것인 염화비닐계 공중합체.
제1항에 있어서,
다분산도가 1.5 내지 2.5인 것인 염화비닐계 공중합체.
제1항에 있어서,
중량평균 분자량이 70,000g/mol 내지 300,000g/mol이고, 수평균 분자량이 50,000g/mol 내지 150,000g/mol인 것인 염화비닐계 공중합체.
제1항에 있어서,
염화비닐계 단량체 유래 반복단위 65중량% 내지 80중량%; 및 상기 불포화 지방산 에스테르의 시스 및 트랜스 이성질체 유래 반복단위 20중량% 내지 35중량%를 포함하고,
불포화 지방산 에스테르의 시스(cis) 이성질체 및 트랜스(trans) 이성질체로부터 유래된 각각의 반복단위를 85 내지 99 : 15 내지 1의 중량비로 포함하며,
불포화 지방산 에스테르의 시스 이성질체가 하기 화학식 1의 화합물이고, 상기 불포화 지방산 에스테르의 트랜스 이성질체가 하기 화학식 2의 화합물인 것인 염화비닐계 공중합체.
[화학식 1]
Figure PCTKR2016005945-appb-I000006
[화학식 2]
Figure PCTKR2016005945-appb-I000007
(상기 화학식 1 및 2에서, 상기 R1 내지 R4는 각각 독립적으로 탄소수 6 내지 10의 직쇄상 또는 분지상 알킬기임)
염화비닐 단량체와, 불포화 지방산 에스테르의 시스 이성질체 및 트랜스 이성질체를 중합개시제의 존재 하에 중합반응시키는 단계를 포함하며,
상기 염화비닐 단량체와, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체는, 제조되는 염화비닐계 공중합체에서의 염화비닐계 단량체 유래 반복단위가 65중량% 내지 97중량%이고, 및 불포화 지방산 에스테르의 시스 및 트랜스 이성질체 유래 반복단위가 3중량% 내지 35중량%가 되도록 하는 양으로 사용되고,
상기 불포화 지방산 에스테르의 시스 이성질체와 트랜스 이성질체는 60 내지 99 : 40 내지 1의 중량비로 사용되는 것인, 제1항의 염화비닐계 공중합체의 제조방법.
제9항에 있어서,
상기 염화비닐 단량체와, 불포화 지방산 에스테르의 시스 및 트랜스 이성질체는, 제조되는 염화비닐계 공중합체에서의 염화비닐계 단량체 유래 반복단위가 65중량% 내지 80중량%이고, 및 불포화 지방산 에스테르의 시스 및 트랜스 이성질체 유래 반복단위가 20중량% 내지 35중량%가 되도록 하는 양으로 사용되는 것인 염화비닐계 공중합체의 제조방법.
제9항에 있어서,
상기 불포화 지방산 에스테르의 시스 이성질체는 하기 화학식 1의 화합물이고, 상기 불포화 지방산 에스테르의 트랜스 이성질체는 하기 화학식 2의 화합물인 것인 염화비닐계 공중합체의 제조방법.
[화학식 1]
Figure PCTKR2016005945-appb-I000008
[화학식 2]
Figure PCTKR2016005945-appb-I000009
(상기 화학식 1 및 2에서,
R1 내지 R4는 각각 독립적으로 탄소수 2 내지 16의 직쇄상 또는 분지상 알킬기, 탄소수 3 내지 16의 사이클로알킬기 및 이들의 조합으로 이루어진 군에서 선택된다)
제9항에 있어서,
상기 중합반응은 52℃ 내지 58℃에서 수행되는 것인 염화비닐계 공중합체의 제조방법.
제9항에 있어서,
상기 중합반응은 염화비닐 단량체와, 불포화 지방산 에스테르의 시스 이성질체 및 트랜스 이성질체를 중합개시제 및 보호 콜로이드 조제의 존재 하에 용매 중에서 현탁 중합 반응시킴으로써 수행되는 것인 염화비닐계 공중합체의 제조방법.
제13항에 있어서,
상기 보호 콜로이드 조제는 비닐 알코올계 수지, 셀룰로오스, 및 불포화 유기산 중합체로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 염화비닐계 공중합체의 제조방법.
제13항에 있어서,
상기 보호 콜로이드 조제는 비닐 알코올계 수지 및 셀룰로오스가 5 내지 7 : 1 내지 7의 혼합비로 혼합된 혼합물을 포함하고,
상기 비닐 알코올계 수지는 수화도가 50중량% 초과 90중량% 이하인 제1폴리비닐알코올과, 수화도가 30중량% 내지 50중량%인 제2폴리비닐알코올이 2 내지 1 : 1 내지 2의 중량비로 혼합된 혼합물을 포함하는 것인 염화비닐계 공중합체의 제조방법.
제9항에 있어서,
상기 중합반응은 염화비닐 단량체와, 불포화 지방산 에스테르의 시스 이성질체 및 트랜스 이성질체를 중합개시제 및 유화제의 존재 하에 용매 중에서 유화 중합반응시킴으로서 수행되는 것인 염화비닐계 공중합체의 제조방법.
제9항에 있어서,
상기 중합반응은 염화비닐 단량체와, 불포화 지방산 에스테르의 시스 이성질체 및 트랜스 이성질체를 중합개시제의 존재 하에 비활성 유기용매 중에서 용액 중합 반응시킴으로써 수행되는 것인 염화비닐계 공중합체의 제조방법.
제9항에 있어서,
상기 중합반응은 중합개시제의 존재 하에 염화비닐계 단량체를 불포화 지방산 에스테르의 시스 및 트랜스 이성질체와 괴상 중합반응 시킴으로써 수행되는 것인 염화비닐계 공중합체의 제조방법.
PCT/KR2016/005945 2015-06-05 2016-06-03 비닐계 중합체 및 그 제조방법 WO2016195435A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16803788.5A EP3181601B1 (en) 2015-06-05 2016-06-03 Vinyl-based polymer and preparation method therefor
CN201680003134.6A CN106795243B (zh) 2015-06-05 2016-06-03 氯乙烯基聚合物及其制备方法
US15/512,778 US10138311B2 (en) 2015-06-05 2016-06-03 Vinyl-based polymer and method of preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150080158 2015-06-05
KR10-2015-0080158 2015-06-05

Publications (1)

Publication Number Publication Date
WO2016195435A1 true WO2016195435A1 (ko) 2016-12-08

Family

ID=57440942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005945 WO2016195435A1 (ko) 2015-06-05 2016-06-03 비닐계 중합체 및 그 제조방법

Country Status (5)

Country Link
US (1) US10138311B2 (ko)
EP (1) EP3181601B1 (ko)
KR (1) KR101755159B1 (ko)
CN (1) CN106795243B (ko)
WO (1) WO2016195435A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11505629B2 (en) * 2018-04-30 2022-11-22 Lg Chem, Ltd. Vinyl chloride polymer and production method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168244B1 (en) * 2015-06-05 2018-08-08 LG Chem, Ltd. Method of preparing vinyl chloride-based copolymer and vinyl chloride-based copolymer prepared thereby
KR101868212B1 (ko) * 2015-12-07 2018-07-19 주식회사 엘지화학 염화비닐계 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
KR101956136B1 (ko) 2018-07-30 2019-03-08 한화케미칼 주식회사 염화비닐계 공중합체 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2897169A (en) * 1956-07-09 1959-07-28 Monsanto Chemicals Plasticized polyvinyl halide polymers
US3544661A (en) * 1966-08-16 1970-12-01 Solvay Cross-linkable internally plasticized vinyl chloride compositions
US4210739A (en) * 1975-09-05 1980-07-01 Stauffer Chemical Company Internally plasticized vinyl chloride copolymer composition
JPH06287237A (ja) * 1993-04-05 1994-10-11 Shin Etsu Chem Co Ltd 塩化ビニル系重合体の製造方法
KR101133962B1 (ko) * 2008-04-30 2012-04-09 주식회사 엘지화학 현탁 중합에 의한 염화 비닐 중합체의 제조 방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE24206E (en) * 1954-05-03 1956-08-28 Solvent solutions
GB765488A (en) * 1954-05-03 1957-01-09 Firestone Tire & Rubber Co Improvements in or relating to vinyl chloride resins for application as solvent solutions
US4797443A (en) 1985-04-29 1989-01-10 The B. F. Goodrich Company Stabilized vinyl halide resins and compositions and articles made therefrom
US4748218A (en) 1985-04-29 1988-05-31 The B. F. Goodrich Company Shortstopping free radical polymerization of olefinic monomers
EG18108A (en) * 1985-04-29 1992-08-30 Goodrich Co B F Stabilized vinyl halide resin and composition and articles made therefrom
CN1045303C (zh) * 1994-08-13 1999-09-29 广州市化学工业研究所 一种氯乙烯四元共聚树脂及其制备方法
KR0160332B1 (ko) 1994-11-14 1999-01-15 박원배 다공성 염화비닐 수지의 제조방법
JP2001323033A (ja) * 2000-05-12 2001-11-20 Kanegafuchi Chem Ind Co Ltd 粒子中に水を含むゴムラテックス及びその製造方法
PT103239A (pt) * 2004-03-02 2005-09-30 Shinetsu Chemical Co Processo para a producao de polimeros a base de cloreto de vinilo
RU2433144C2 (ru) 2005-12-29 2011-11-10 ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи Сополимеры этилена с низкой молекулярной массой, способы получения и их применение
KR100983702B1 (ko) 2006-08-22 2010-09-24 주식회사 엘지화학 가공성이 우수한 염화비닐계 중합체의 제조방법
CN101402701B (zh) * 2008-10-22 2010-07-21 无锡市洪汇树脂有限公司 一种制备氯乙烯-醋酸乙烯-马来酸共聚树脂的方法
EP3168244B1 (en) * 2015-06-05 2018-08-08 LG Chem, Ltd. Method of preparing vinyl chloride-based copolymer and vinyl chloride-based copolymer prepared thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2897169A (en) * 1956-07-09 1959-07-28 Monsanto Chemicals Plasticized polyvinyl halide polymers
US3544661A (en) * 1966-08-16 1970-12-01 Solvay Cross-linkable internally plasticized vinyl chloride compositions
US4210739A (en) * 1975-09-05 1980-07-01 Stauffer Chemical Company Internally plasticized vinyl chloride copolymer composition
JPH06287237A (ja) * 1993-04-05 1994-10-11 Shin Etsu Chem Co Ltd 塩化ビニル系重合体の製造方法
KR101133962B1 (ko) * 2008-04-30 2012-04-09 주식회사 엘지화학 현탁 중합에 의한 염화 비닐 중합체의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3181601A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11505629B2 (en) * 2018-04-30 2022-11-22 Lg Chem, Ltd. Vinyl chloride polymer and production method thereof

Also Published As

Publication number Publication date
KR101755159B1 (ko) 2017-07-06
EP3181601A4 (en) 2017-07-12
KR20160143562A (ko) 2016-12-14
EP3181601B1 (en) 2019-03-27
CN106795243A (zh) 2017-05-31
EP3181601A1 (en) 2017-06-21
US20170291975A1 (en) 2017-10-12
US10138311B2 (en) 2018-11-27
CN106795243B (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
WO2016195434A1 (ko) 염화비닐계 공중합체의 제조방법 및 이로부터 제조된 염화비닐계 공중합체
WO2016195435A1 (ko) 비닐계 중합체 및 그 제조방법
WO2016195436A1 (ko) 염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2018084486A2 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 asa계 수지 조성물의 제조방법 및 asa계 성형품의 제조방법
WO2015026153A1 (ko) 아크릴레이트-스티렌-아크릴로니트릴 중합체 및 열가소성 수지 조성물
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022010053A1 (ko) 열가소성 수지 및 이의 제조방법
WO2018174395A1 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 성형품의 제조방법
WO2021060743A1 (ko) 그라프트 중합체의 제조방법
WO2016182338A1 (ko) 아크릴계 가공조제 및 이를 포함하는 염화비닐계 수지 조성물
WO2013077614A1 (ko) 내후성 및 성형성이 우수한 아크릴계 라미네이트 필름 및 그 제조 방법
WO2020027490A1 (ko) 염화비닐계 공중합체 및 이의 제조 방법
WO2020101182A1 (ko) 코어-쉘 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2018044017A1 (ko) 염화비닐계 중합체의 제조방법 및 염화비닐계 중합체의 제조장치
WO2017188594A1 (ko) 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체
WO2017191899A1 (ko) 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체
WO2021060833A1 (ko) 공액 디엔계 중합체의 제조방법
WO2020060028A1 (ko) 염화비닐계 중합체 및 이의 제조방법
WO2021225394A1 (ko) 염화비닐계 중합체 복합체의 제조방법, 염화비닐계 중합체 복합체 및 이를 포함하는 염화비닐계 중합체 복합체 조성물
WO2023277530A1 (ko) 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체
WO2017099373A1 (ko) 염화비닐계 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2020076023A1 (ko) 염화비닐계 중합체 중합용 조성물 및 이를 이용한 염화비닐계 중합체의 제조방법
WO2021060909A1 (ko) 염화비닐계 중합체 중합용 조성물 및 이를 이용한 염화비닐계 중합체의 제조방법
US4051200A (en) Thermoplastic vinyl chloride polymer compositions with improved processing properties
WO2016047953A1 (ko) 염화비닐계 중합체 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803788

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016803788

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016803788

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15512778

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE