WO2019088067A1 - オルガノポリシロキサン硬化物を製造する方法、オルガノポリシロキサン硬化物、積層体、および光学部品 - Google Patents

オルガノポリシロキサン硬化物を製造する方法、オルガノポリシロキサン硬化物、積層体、および光学部品 Download PDF

Info

Publication number
WO2019088067A1
WO2019088067A1 PCT/JP2018/040248 JP2018040248W WO2019088067A1 WO 2019088067 A1 WO2019088067 A1 WO 2019088067A1 JP 2018040248 W JP2018040248 W JP 2018040248W WO 2019088067 A1 WO2019088067 A1 WO 2019088067A1
Authority
WO
WIPO (PCT)
Prior art keywords
high energy
irradiation
group
sio
thermoplastic
Prior art date
Application number
PCT/JP2018/040248
Other languages
English (en)
French (fr)
Inventor
吉武 誠
Original Assignee
ダウ・東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダウ・東レ株式会社 filed Critical ダウ・東レ株式会社
Priority to CN201880067333.2A priority Critical patent/CN111212876B/zh
Priority to JP2019550396A priority patent/JPWO2019088067A1/ja
Priority to EP18873250.7A priority patent/EP3705536A4/en
Priority to US16/760,538 priority patent/US11591440B2/en
Priority to KR1020207013767A priority patent/KR20200070327A/ko
Publication of WO2019088067A1 publication Critical patent/WO2019088067A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups

Definitions

  • the present invention relates to a cured product of organopolysiloxane produced by a two-step hydrosilylation reaction, a method for producing the same, a laminate in which the cured product is disposed between layers, a method for producing the same, and an optical device using the cured product.
  • a cured product of organopolysiloxane produced by a two-step hydrosilylation reaction a method for producing the same, a laminate in which the cured product is disposed between layers, a method for producing the same, and an optical device using the cured product.
  • Silicone materials obtained from organopolysiloxanes are used in various applications because they have excellent properties such as heat resistance, chemical resistance, and electrical insulation.
  • the silicone material can be formed on various substrates such as plastic, metal, glass, ceramic, paper, wood, etc., and its applications are diverse as daily necessities, medical supplies, electronic products and the like.
  • a silicone material is widely used as a transparent member for which heat resistance and light resistance of an optical device such as a laminate or an illumination device such as an image display device are required.
  • the silicone material is usually obtained by crosslinking the organopolysiloxane by a hydrosilylation reaction. In the hydrosilylation reaction, a transition metal complex catalyst which is usually activated by heat is used from the viewpoint of workability and the like.
  • Patent Document 1 In order to achieve curing of the organopolysiloxane in a short time, it is necessary to heat to a high temperature.
  • a catalyst activated by high energy radiation such as ultraviolet light is used.
  • organopolysiloxane compositions using high energy radiation activated catalysts do not cure immediately upon exposure to high energy radiation, and often require heating to cure in a short time.
  • the amount of catalyst is increased to cure with time, there is a problem that the cured product becomes colored.
  • the curing reaction is not completed and a cured product having low mechanical strength is provided.
  • an object of the present invention is to provide a cured product using a composition capable of rapid curing at low temperature while having a sufficient pot life at normal temperature, a method for producing the same, and a laminate in which these cured products are disposed between layers And it is providing the optical apparatus in which these hardened
  • the composition comprising the components (A) to (D) to be described later is subjected to a hydrosilylation reaction without irradiation of high energy radiation and flowed at room temperature.
  • the high energy ray is preferably any one selected from ultraviolet rays, X rays, and electron rays.
  • the said (B) component is the following average unit formula (3): (HR 4 2 SiO 1/2 ) e (R 4 3 SiO 1/2 ) f (HR 4 SiO 2/2 ) g (R 4 2 SiO 2/2 ) h (HSiO 3/2 ) i (R 4 SiO) 3/2 ) j (SiO 4/2 ) k (R 5 O 1/2 ) l (3)
  • R 4 is each independently a group selected from monovalent hydrocarbon groups of 1 to 12 carbon atoms having no aliphatic unsaturated bond, a hydroxyl group and an alkoxy group
  • R 5 is a hydrogen atom Or an alkyl group having 1 to 6 carbon atoms
  • e, f, g, h, i, j, k and l have the following conditions: e + f + g + h + i + j +
  • the invention according to another aspect of the present invention relates to a cured product of organopolysiloxane produced by the above method.
  • the invention of another aspect of the present invention is a laminate produced by the above method, in which a cured product of organopolysiloxane is disposed between layers, and the laminate is preferably an image display device.
  • the invention according to another aspect of the present invention relates to an optical device having a cured product of organopolysiloxane produced by the above method.
  • the invention according to another aspect of the present invention is a method for producing a laminate in which a cured product of organopolysiloxane is disposed between layers, and includes the following three methods.
  • the step (iii) the composition containing the components (A) to (D) is coated on a substrate, subjected to a hydrosilylation reaction without irradiation of high energy rays, and flowable at room temperature Forming a layer of a thickened body having thermoplasticity or a thermoplastic layer which is non-flowable at room temperature but shows fluidity at 100 ° C.
  • the second method of the method for producing a laminate in which the cured product of organopolysiloxane is disposed between layers comprises the step (vi): applying the composition containing the components (A) to (D) onto a substrate and Performing a hydrosilylation reaction without irradiation with energy rays to form a layer having a flowable viscosity at room temperature or a non-flowable thermoplastic at room temperature but a flowable thermoplastic layer at 100 ° C., the above step (vii): Irradiating the layer of the thickened body or the thermoplastic layer obtained in the step (vi) with a high energy ray, the step (viii): the upper layer member on the thickened body or the layer of the thermoplastic layer irradiated with the high energy ray And forming step (ix): curing the thickened or thermoplastic layer by heating or leaving at room temperature.
  • the third method of the method for producing a laminate in which the cured product of organopolysiloxane is disposed between the layers comprises the step (x): applying the composition containing the components (A) to (D) onto a substrate and Performing a hydrosilylation reaction without irradiation with energy rays to form a layer having a flowable viscosity at room temperature or a non-flowable thermoplastic at room temperature but a flowable thermoplastic layer at 100 ° C., the above (xi): Irradiating the layer of the thickened body or the thermoplastic layer obtained in the step (x) with high energy radiation, step (xii): the upper layer member on the thickened body or the layer of the thermoplastic material irradiated with the high energy radiation Forming the layer, and step (xiii): irradiating the layer of the thickening body or the thermoplastic layer with high energy rays from at least one of the lower side of the substrate, on the upper layer member, or the side surface of the
  • the invention according to another aspect of the present invention relates to a laminate obtained by any of the above methods.
  • the invention of another aspect of the present invention is a method of forming an optical device having an organopolysiloxane cured product formed on its surface, which comprises the step (ixv): a composition containing the components (A) to (D). Applying onto a release film, performing a hydrosilylation reaction without irradiation of high energy radiation, forming a thermoplastic film that is non-flowable at room temperature but is flowable at 100 ° C., step (xv) above Installing a thermoplastic film on an optical device and heating it, step (xvi): irradiating the thermoplastic film obtained in the above step (XV) or a melt thereof with high energy rays.
  • Another aspect of the present invention relates to an optical device obtained by the above method.
  • an organopolysiloxane composition containing two kinds of hydrosilylation catalyst showing generation without irradiation of high energy radiation and high energy radiation activated hydrosilylation catalyst is used. Therefore, low temperature curing is easy.
  • the laminate and the optical device of the present invention can be efficiently manufactured in a short time, and the obtained laminate and the optical device have high reliability.
  • composition The cured organopolysiloxane used in the present invention is prepared from a composition containing the following components (A) to (D). The following will be described in order.
  • Component (A) is a compound containing an aliphatic unsaturated group to which a hydrosilyl group (-SiH) is added in the hydrosilylation reaction, and an organopolysiloxane having the following average composition formula (1) It is.
  • R 1 is an alkenyl group having 2 to 12 carbon atoms. Specific examples thereof include vinyl, allyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl and dodecenyl groups, and among these, vinyl and allyl groups. Or a hexenyl group is preferred.
  • R 2 is a group selected from C 1 to C 12 monovalent hydrocarbon groups having no aliphatic unsaturated bond, a hydroxyl group and an alkoxy group.
  • the hydrogen atoms may be substituted with a halogen atom or a hydroxyl group.
  • monovalent hydrocarbon groups having 1 to 12 carbon atoms include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl Alkyl groups such as phenyl group, tolyl group, xylyl group, naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group and the like; benzyl group, phenethyl group, naphthylethyl group, naphthylpropyl group, anthracenylethyl group And aralkyl groups such as phenanthrylethyl group and pyrenylethyl group; and hydrogen atoms of
  • a and b are numbers satisfying the following condition: 1 ⁇ a + b ⁇ 3 and 0.001 ⁇ a / (a + b) ⁇ 0.33, preferably, the following condition: 1.5 ⁇ a + b ⁇ 2.5 and It is a number that satisfies 0.005 ⁇ a / (a + b) ⁇ 0.2. This is because the flexibility of the cured product is high when a + b is at least the lower limit of the above range, and the mechanical strength of the cured product is high when the upper limit is at or below the upper limit of the above range.
  • organopolysiloxane As a molecular structure of such organopolysiloxane, linear, branched or cyclic is exemplified.
  • the organopolysiloxane may be a mixture of one or more compounds having such a molecular structure.
  • a component (A) As such a component (A), a general formula: R 6 3 SiO (R 6 2 SiO) t SiR 6 3 A linear organopolysiloxane represented by and / or an average unit formula: (R 6 SiO 3/2 ) o (R 6 2 SiO 2/2 ) p (R 6 SiO 1/2 ) q (SiO 4/2 ) r (XO 1/2 ) s
  • the branched organopolysiloxane represented by is preferred.
  • each R 6 is an unsubstituted or halogen-substituted monovalent hydrocarbon group, and the same groups as described above are exemplified.
  • X is a hydrogen atom or an alkyl group.
  • At least two of R 6 are an alkenyl group.
  • this alkenyl group a vinyl group is preferable.
  • at least 30 mol% of all R 6 in one molecule is an aryl group, and preferably at least 40 mol% is an aryl group, since light attenuation by light refraction, reflection, scattering and the like of the obtained cured product is small. It is.
  • this aryl group a phenyl group is preferable.
  • t is an integer in the range of 5 to 1,000.
  • o is a positive number
  • p is 0 or a positive number
  • q is 0 or a positive number
  • r is 0 or a positive number
  • s is 0 or a positive number
  • p / o is a number in the range of 0-10
  • q / o is a number in the range of 0-5
  • r / (o + p + q + r) is a number in the range of 0-0.3
  • s / (O + p + q + r) is a number in the range of 0 to 0.4.
  • Component (B) is a compound containing a hydrosilyl group (-SiH) to be added to the alkenyl group in component (A) during the hydrosilylation reaction, and the following average composition formula (2) It is organopolysiloxane which it has.
  • R 3 is a group selected from a monovalent hydrocarbon group having 1 to 12 carbon atoms which has no aliphatic unsaturated bond, a hydroxyl group and an alkoxy group.
  • the monovalent hydrocarbon group having 1 to 12 carbon atoms part of the hydrogen atoms may be substituted with a halogen atom or a hydroxyl group.
  • Examples of monovalent hydrocarbon groups having 1 to 12 carbon atoms include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl Alkyl groups such as phenyl group, tolyl group, xylyl group, naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group and the like; benzyl group, phenethyl group, naphthylethyl group, naphthylpropyl group, anthracenylethyl group And aralkyl groups such as phenanthrylethyl group and pyrenylethyl group; and hydrogen atoms of these aryl groups or aralkyl groups as alkyl groups such as methyl group and ethyl group; alkoxy groups such as methoxy group and
  • c and d are numbers satisfying the following condition: 1 ⁇ c + d ⁇ 3 and 0.01 ⁇ c / (c + d) ⁇ 0.33, preferably, the following condition: 1.5 ⁇ c + d ⁇ 2.5 and It is a number which satisfy
  • the viscosity of the organopolysiloxane having the above average composition formula (2) is not limited, the viscosity at 25 ° C. is preferably in the range of 0.5 to 10,000 mPa ⁇ s, and in particular, 1 to 1,000 mPa ⁇ s. It is preferable to be in the range of s.
  • organopolysiloxanes having such an average composition formula (2) 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris (dimethylhydrogen) Siloxy) methylsilane, tris (dimethylhydrogensiloxy) phenylsilane, methylhydrogenpolysiloxane blocked with trimethylsiloxy group at both ends of molecular chain, dimethyl siloxane / methylhydrogensiloxane copolymer blocked with trimethylsiloxy group at both ends of molecular chain, both branched Terminal dimethylhydrogensiloxy group-capped dimethylpolysiloxane, Molecular chain both terminal dimethylhydrogensiloxy group-capped dimethylsiloxane / methylhydrogensiloxane copolymer, Molecular chain both-terminal trimethylsiloxy group methylated hydrogen Loxane diphenyl siloxane copolymer, both
  • organopolysiloxane which has the said average composition formula (2)
  • the following organopolysiloxane is also illustrated further.
  • Me and Ph each represent a methyl group and a phenyl group
  • m1 is an integer of 1 to 100
  • n1 is an integer of 1 to 50
  • b1, c1, d1 and e1 are each positive.
  • the sum of b1, c1, d1 and e1 in one molecule is 1.
  • the component (B) is preferably an organohydrogenpolysiloxane represented by the following average unit formula (3).
  • R 4 is each independently a group selected from a monovalent hydrocarbon group having 1 to 12 carbon atoms which does not have an aliphatic unsaturated bond, a hydroxyl group and an alkoxy group.
  • the monovalent hydrocarbon group having 1 to 12 carbon atoms, the hydroxyl group and the alkoxy group are as defined above.
  • R 5 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group and a hexyl group.
  • each constituent unit of R 4 SiO 3/2 ”and“ SiO 4/2 ” is an organohydrogenpolymorph referred to as M H unit, M unit, D H unit, D unit, T H unit, T unit, Q unit, respectively.
  • R 5 O 1/2 is a group which bonds to an oxygen atom in D unit, D H unit, T unit, T H unit, or Q unit, and organopolysiloxane Silicon-bonded hydroxyl (Si-OH) or silicon-bonded alkoxy remaining unreacted in the preparation of organopolysiloxane.
  • the M H units are mainly present at the molecular chain end of the organohydrogenpolysiloxane, and the D H units are present in the organohydrogenpolysiloxane molecular chain.
  • the content of the component (B) is such that the content of silicon-bonded hydrogen atoms in the component is in the range of 0.1 to 5 mol with respect to 1 mol in total of the alkenyl groups in the component (A).
  • the amount is in the range of 0.5 to 2 moles. This is because the mechanical strength of the cured product is high when the content of the component (B) is at least the lower limit of the above range, while the flexibility of the cured product is high when it is at the upper limit of the above range It is because it becomes.
  • the mixture of the component (A) and the component (B) is preferably a thermoplastic having heat melting properties.
  • a component By using such a component, heating and melting properties can be imparted to the entire composition.
  • the component (A) is a mixture containing the components (a1) and (a2).
  • the composition used in the production method of the present invention may be a thermoplastic having heat melting property, is non-flowable at 25 ° C., not more than 1,000 Pa ⁇ s at 100 ° C., preferably 500 Pa ⁇ It can have a viscosity of s or less.
  • non-flowability means that it does not flow in a non-loaded state, and for example, the ring and ball method of a hot melt adhesive as defined in JIS K 6863-1994 "Method of testing softening point of hot melt adhesive". It shows the state below the softening point measured by the softening point test method by. That is, in order to be non-flowable at 25 ° C., the softening point needs to be higher than 25 ° C.
  • the property is mainly determined by the whole composition, in particular, the selection and content of the components of the composition, and in particular, the content of the organopolysiloxane resin which is the component (a2) in the component (A) B) It is a property realized by selection of components, but is not limited thereto.
  • Component (C) is the first hydrosilylation catalyst that is active in the present composition without high energy radiation.
  • the component (C) is a catalyst for hydrosilylation reaction for semi-curing the composition, and is a platinum catalyst, a rhodium catalyst, a palladium catalyst, a nickel catalyst, an iridium catalyst, a ruthenium catalyst, and an iron catalyst Is preferably exemplified by a platinum-based catalyst.
  • platinum-based catalyst platinum-based compounds such as platinum fine powder, platinum black, fine platinum-supported silica, platinum-supported activated carbon, chloroplatinic acid, chloroplatinic acid alcohol solution, platinum olefin complex, platinum alkenylsiloxane complex, etc.
  • alkenyl siloxane complexes of platinum are preferred.
  • this alkenyl siloxane 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane,
  • the alkenyl siloxane which substituted a part of methyl group of these alkenyl siloxanes by the ethyl group, the phenyl group, etc., and the alkenyl siloxane which substituted the vinyl group of these alkenyl siloxanes with the allyl group, the hexenyl group etc. is illustrated.
  • 1,3-divinyl-1,1,3,3-tetramethyldisiloxane is preferable because the stability of this platinum-alkenylsiloxane complex is good.
  • 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3-diallyl-1,1 may be used as this complex.
  • 1,3,3-Tetramethyldisiloxane 1,3-Divinyl-1,3-dimethyl-1,3-diphenyldisiloxane, 1,3-Divinyl-1,1,3,3-tetraphenyldisiloxane, 1
  • an alkenyl siloxane such as 3,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane or an organosiloxane oligomer such as a dimethylsiloxane oligomer, and particularly to add an alkenyl siloxane. Is preferred.
  • the catalyst of the component (C) is a catalyst showing activity without irradiation of high energy rays, and among them, those showing activity even at a relatively low temperature are preferable. Specifically, it exhibits activity in the composition in a temperature range of 0 to 200 ° C. to promote the hydrosilylation reaction.
  • the content of the component (C) varies depending on the type of catalyst and the type of composition, it is usually such an amount that the metal atom in this catalyst is in the range of 0.01 to 50 ppm by mass relative to the composition. Preferably in an amount of 0.1 to 30 ppm.
  • Component (D) is a second hydrosilylation catalyst which exhibits no activity without high energy radiation but exhibits activity in the present composition upon high energy radiation.
  • the component (D) is a so-called high energy ray activated catalyst or a photoactivated catalyst and is known in the art.
  • the high energy ray refers to ultraviolet rays, gamma rays, X rays, ⁇ rays, electron beams and the like, and ultraviolet rays, X rays, and electron beams emitted from a commercially available electron beam irradiation apparatus are preferable.
  • ultraviolet light in the wavelength range of 280 to 380 nm is conveniently used.
  • the irradiation dose varies depending on the type of high energy radiation active catalyst, but in the case of ultraviolet light, the integrated irradiation dose at a wavelength of 365 nm is preferably in the range of 100 mJ / cm 2 to 10 J / cm 2.
  • component (D) include (methylcyclopentadienyl) trimethylplatinum (IV), (cyclopentadienyl) trimethylplatinum (IV), (1,2,3,4,5-pentamethylcyclopentan). Dienyl) trimethylplatinum (IV), (cyclopentadienyl) dimethylethylplatinum (IV), (cyclopentadienyl) dimethylacetylplatinum (IV), (trimethylsilylcyclopentadienyl) trimethylplatinum (IV), (methoxy) Carbonylcyclopentadienyl) trimethylplatinum (IV), (dimethylphenylsilylcyclopentadienyl) trimethylcyclopentadienylplatinum (IV), trimethyl (acetylacetonato) platinum (IV), trimethyl (3,5-heptanedio) (Platinate) platinum (IV), trimethyl (methylacetoacete) G) platinum (IV),
  • the content of the component (D) is an amount necessary to further cure the composition semi-cured by the component (C), and preferably, the mass of metal atoms in the catalyst relative to the composition is The amount is in the range of 1 to 50 ppm in terms of unit, and preferably in the range of 5 to 30 ppm.
  • the molar ratio of component (C) to component (D) is usually 0.001 to 1000, preferably 0.01 to 100.
  • the curing reaction can be accelerated by high energy radiation, and when the molar ratio is more than the lower limit, the curing reaction can be performed at a low temperature in a short time.
  • the organopolysiloxane composition used in the present invention does not contain a hydrosilylation reaction inhibitor.
  • a hydrosilylation reaction inhibitor is added to the composition in order to improve the pot life of the composition and obtain a stable composition.
  • a stable composition can be obtained without the addition of a hydrosilylation reaction inhibitor, and it is preferable that the addition of the hydrosilylation reaction inhibitor does not delay the curing reaction.
  • (E) Component As needed, other organopolysiloxanes, adhesion imparting agents, inorganic fillers such as silica, glass, alumina, zinc oxide, etc .; fine particles of organic resin such as polymethacrylate resin; phosphors, heat resistant agents, Dyes, pigments, flame retardants, solvents and the like are added to the organopolysiloxane composition used in the present invention. The amounts added and the methods are known to those skilled in the art.
  • the composition used in the present invention can be prepared by uniformly mixing the components (A) to (D) and, if necessary, other optional components.
  • this composition can mix at normal temperature using various stirrers or kneaders, and may mix under heating as needed.
  • there is no limitation also about the combination order of each component It can mix in arbitrary order.
  • the composition used in the present invention may be prepared, for example, by adding and mixing the component (D) while heating and kneading the components (A) to (C) in a temperature range of 80 ° C. to 120 ° C. In the above temperature range, the entire composition is softened and the component (D) can be uniformly dispersed throughout, so that the curing failure and partial cohesive failure at the time of bonding can be avoided particularly when molding sheets and the like. is there. On the other hand, if the temperature is less than the lower limit, the softening may be insufficient, and it may be difficult to uniformly disperse the component (D) as a whole even if mechanical force is used.
  • the component (D) may react during mixing, which may result in significant thickening or curing of the whole, which is not preferable.
  • the mixer used in this production method is not limited, and is exemplified by a single- or twin-screw continuous mixer, two-roll, loss mixer, Hobart mixer, dental mixer, planetary mixer, kneader mixer, lab miller, small grinder, Henschel mixer Preferably, lab mills, small grinders, Henschel mixers.
  • the mixture of the component (A) and the component (B) is a thermoplastic having heat melting property
  • the above component (A), preferably, Component (A) and component (A2), and a thermoplastic resin consisting of component (B), component (D) in an overall temperature range of 60 ° C. to 140 ° C. It may be added to the melt, preferably in the range of 80 to 120 ° C., and may be cooled after being uniformly dispersed.
  • the mixer used for the dispersion operation is the same mixer as described above.
  • the method for producing a cured organopolysiloxane of the present invention comprises the following steps. (I) a step of obtaining a thickened body or a thermoplastic by subjecting the composition containing the components (A) to (D) to a first hydrosilylation reaction without irradiation of high energy rays, and (ii) obtaining Irradiating the semi-cured product with high energy radiation and performing a second hydrosilylation reaction to obtain an organopolysiloxane cured product.
  • step (i) the composition is subjected to a first hydrosilylation reaction without irradiation of high energy radiation, and is a thickener having fluidity at room temperature or non-flowable at room temperature but thermoplastic at 100 ° C. It is a process of getting a body.
  • the composition is optionally heated at less than 100 ° C., preferably less than 60 ° C. to accelerate the first hydrosilylation reaction, although heating is not particularly required.
  • the heating time is usually 5 minutes to 2 hours, preferably 10 minutes to 1 hour, though it depends on the types and blending amounts of the respective components in the composition.
  • Step (i) results in a flowable thickener at room temperature or a non-flowable thermoplastic at room temperature but flowable at 100 ° C.
  • a thickener means that the viscosity at 25 ° C. is between 1.5 times and 100 times the initial viscosity of the composition.
  • the viscosity in 100 degreeC is 1,000,000 mPa * s or less with a thermoplastic body.
  • Step (ii) is a step of irradiating the thickened body or the thermoplastic body with high energy rays.
  • the irradiation of high energy radiation activates the catalyst, and the activated catalyst initiates the hydrosilylation reaction.
  • catalyst activation when catalyst activation and hydrosilylation reaction occur simultaneously, and during high energy radiation irradiation, catalyst activation mainly takes place, and most of the hydrosilylation reactions are high energy radiation After irradiation, it may progress under heating or at normal temperature. Types of high energy rays are as described above.
  • the amount of irradiation varies depending on the type of high energy radiation active catalyst, but in the case of ultraviolet light, it is preferable that the integrated irradiation amount at 365 nm be in the range of 100 mJ / cm 2 to 10 J / cm 2 .
  • the thickened body or the thermoplastic becomes a cured product by the hydrosilylation reaction, and as described later, it is uncured at this time, but the thickened body or the thermoplastic is cured by the subsequent steps (such as heating) It includes cases that become things.
  • the composition which is a thickener or a thermoplastic becomes a cured product, and can be used as various materials.
  • the cured product means that it does not flow even when heated to 200 ° C. or higher.
  • the hardness of the cured product is not particularly limited, but it is usually from a gel having a penetration of 70 or less to a hard resin having a Shore D hardness of 80.
  • a heating process is mentioned. When having a heating step after step (ii), heating can be performed at 0 to 200 ° C., preferably 20 to 100 ° C., for 5 to 360 minutes, preferably 10 to 120 minutes.
  • the cured product formed by the method of the present invention is excellent in light transmittance. Specifically, the transmittance at 450 mm is 90% or more, and the haze value, which is a measure of the degree of turbidity, is 1 or less.
  • cured material of this invention is suitable as a transparent member arrange
  • cured material of this invention is suitable as a transparent member arrange
  • an image display device a liquid crystal image display device, a liquid crystal image display device with a touch panel, an organic EL image display device, an organic EL image display device with a touch panel, a micro LED image display device, a micro LED image display device with a touch panel, reflection Type image display device.
  • Each of these has a laminated structure in which various layers are stacked, but the cured product of the present invention is disposed between the layers and has a function of suppressing light reflection at the interface.
  • the cured product of the present invention is suitable as a material for forming an intermediate layer between the image display portion and the protective portion of the image display device because it is less colored under high temperature or high temperature and high humidity and is less likely to cause turbidity. It is.
  • the base of the image display unit or the protective unit include inorganic optical materials such as glass and ITO, and organic optical materials such as polycarbonate resin, acrylic resin, epoxy resin, and polystyrene resin.
  • a transparent electrode may be formed on the surface of the optical member.
  • the present cured product for example, after the present composition is applied to a film-like substrate, a tape-like substrate, or a sheet-like substrate, hydrosilylation reaction is carried out by high energy radiation, room temperature standing or low temperature heating. And cure can proceed.
  • the present composition is placed between two substrates and cured to firmly bond the two substrates, and the present composition is smoothly applied to at least one surface of the substrates, After curing and non-fluidization, both substrates may be bonded to each other, and curing may be further advanced to firmly bond.
  • the thickness of the cured product is not limited, but is preferably 1 to 100,000 ⁇ m, more preferably 50 to 30,000 ⁇ m.
  • the present composition can be applied to the coating of a substrate having poor heat resistance because curing proceeds at a relatively low temperature.
  • this base material it is common that it is transparent substrates, such as glass, a synthetic resin film, a sheet, a transparent electrode coating film.
  • a dispense, a gravure coat, a microgravure coat, a slit coat, a slot die coat, a screen print, a stencil print and a comma coat are exemplified.
  • the first method of the method for forming a laminate of the present invention has the following steps. (Iii) applying a composition containing the components (A) to (D) onto a substrate and forming the composition into a layer of the thickener or thermoplastic without irradiation of high energy radiation; (Iv) forming an upper layer member on the layer of the thickened body or the thermoplastic, and (v) irradiating high energy rays from the upper layer member formed in the step (iV).
  • Step iii) In the step (iii), the same step as the step (i) of the method for producing a cured product is performed on the laminate base, and the conditions are the same as above, but the subsequent step of forming the upper layer member In order to be able to carry out the bonding step) at a low temperature, it is preferable that the obtained product is a thickener.
  • Step iv is a step of laminating the layers disposed on the upper side, and there are various methods, but in order to avoid the bubble entrapment, lamination under vacuum or pressure after bonding in autoclave It is preferable to add an operation of removing fine bubbles.
  • a process (v) is a process of irradiating a high energy ray from the upper layer member formed at the said process (iV), and obtaining hardened
  • the conditions are the same as above, but in order to irradiate high energy rays through the layers, it is preferable to use a higher dose.
  • the second method of the method for forming a laminate of the present invention has the following steps. (Vi) applying a composition containing the components (A) to (D) onto a substrate and forming the composition into a thickener or a thermoplastic without irradiation of high energy radiation, (Vii) irradiating a high energy ray, (Viii) forming an upper layer member on the thickened body or the thermoplastic, and (ix) heating or curing the thickened body or the thermoplastic at room temperature.
  • Step vi The step (vi) is the same as the step (iii) of the method for producing the cured product.
  • Step vii) The step (vii) is the same as the step (v) of the method for producing a cured product, but in order to efficiently perform the subsequent bonding step, the cured product is not cured in this step, It is preferred to maintain the form as a thickener or a thermoplastic, particularly preferably a thickener. Therefore, it is preferable to adjust the irradiation amount of high energy rays appropriately.
  • Step viii) is the same as step (iv) of the method for producing a cured product.
  • step (ix) since the high energy radiation active catalyst is already activated in step (vii), the reaction proceeds even at room temperature to obtain a cured product, but heating is required to further accelerate the reaction. Is preferred.
  • the third method of the method for forming a laminate layer of the present invention has the following steps.
  • (X) applying a composition containing the components (A) to (D) onto a substrate and forming the composition into a layer of a thickener or a thermoplastic without irradiation of high energy rays (Xi) a step of irradiating the layer of the thickened body or the thermoplastic obtained in the step (X) with a high energy ray, (Xii) forming an upper layer member on the layer of the thickened body or the thermoplastic, and (ii) irradiating high energy rays from the upper layer member formed by the (xiii step (Xii).
  • Step x) is the same as step (vi) of the method for producing the cured product.
  • Step xi The step (xi) is the same as the step (vii) of the method for producing a cured product, but adjusting the dose of the high energy ray to enhance the curing of the high energy ray irradiation in the step (xii) Is preferred.
  • Step xii) is the same as step (viii) of the method for producing the cured product.
  • Step xiii) is a step of activating the high energy radiation active catalyst which has not been activated in the step (x) to advance the hydrosilylation reaction to obtain a cured product.
  • the cured product of the present invention is suitable as a transparent member of an optical device, and as such an optical device, a light receiving type display device such as LCD (liquid crystal display) or ECD (electrochromic display); LED light emitting device and ELD There are light emitting display devices such as (electroluminescent display) and various other lighting devices, and the cured product of the present invention is used as an optical member such as a sealing agent of a light emitting element or a lens material.
  • a light receiving type display device such as LCD (liquid crystal display) or ECD (electrochromic display); LED light emitting device and ELD
  • LED light emitting device and ELD
  • the cured product of the present invention is used as an optical member such as a sealing agent of a light emitting element or a lens material.
  • the cured product of the present invention adheres between a display portion such as liquid crystal and organic EL, and a display forming member such as a touch panel or a cover lens, or between display forming members by the cured product of the curable silicone composition of the present invention Alternatively, the visibility of the optical display can be improved by sticking.
  • the method of forming an optical device of the present invention includes the following steps.
  • Process (ixv) The step (ixv) is a step of forming a thermoplastic transparent film always using a condition for obtaining a thermoplastic material in the step (i), specifically, on the release film, The step is to apply the composition smoothly and partially advance hydrosilylation to obtain a stable thermoplastic transparent film, and there is no limitation on the film thickness, but it is practically 0.1 mm- It is in the range of 5 mm.
  • thermoplastic transparent film obtained is cut out to a suitable size, peeled from the release film, covered on an optical device such as a light emitting element, and heated to melt the thermoplastic transparent film, It is a process of sealing a light emitting element.
  • a process (xvi) is a process of performing a hydrosilylation reaction on the basis of high energy ray irradiation similarly to the said process (ii), and obtaining hardened
  • a cured product was obtained from a composition containing the following components.
  • Me, Ph and Vi respectively represent a methyl group, a phenyl group and a vinyl group.
  • Example 1 Average unit formula: (Me 2 ViSiO 1/2 ) 0.044 (Me 3 SiO 1/2 ) 0.411 (SiO 4/2 ) 0.545 vinyl-terminated branched polysiloxane (A-1) 3.5 parts by weight, average formula: ViMe 2 SiO (SiMe 2 O) 322 SiMe 2 Vi 89.7 parts by weight of vinyl-terminated linear polysiloxane (A-2), average formula: HMe 2 SiO (SiMe 2 Vi) 2 O) 6.8 parts by weight of linear polysiloxane (B-1) represented by 10 SiMe 2 H, and 5 ppm of platinum-1,3-divinyl-1,1,3,3-tetramethyldi as platinum atom A composition was prepared containing the siloxane complex (C-1) and 20 ppm of (methylcyclopentadienyl) trimethylplatinum (IV) (D-1) as platinum atom.
  • the viscosity of the composition was 1,800 mPa ⁇ s. After the composition is prepared and left to stand for 10 minutes, a composition having a viscosity of 3,200 mPa ⁇ s is subjected to an ozone cut filter, a 2 W high-pressure mercury lamp, and an ultraviolet ray irradiation amount at 5000 nm of 5000 mJ / cm 2 When the viscosity was measured immediately after irradiation, it was thickened to 30,000 mPa ⁇ s or more, but the fluidity was maintained, but after 5 minutes of ultraviolet irradiation, it was gelled and non-fluidized Was confirmed. When the hardness penetration of the cured product was measured every 10 minutes, it was confirmed that the penetration was stabilized at a constant penetration 32 in 1 hour after the irradiation with ultraviolet light, and the curing reaction was completed.
  • Example 2 3.5 parts by weight of the A-1, 6.5 parts by weight of the A-2, average composition formula: average formula: ViMe 2 SiO (SiMe 2 O) 535 vinyl-terminated linear polysiloxane represented by SiMe 2 Vi
  • a composition is prepared which contains 82.4 parts by weight of (A-3), 4.6 parts by weight of B-1, 10 ppm of C-1 as a platinum atom, and 20 ppm of D-1 as a platinum amount.
  • the viscosity of the composition was 8,200 mPa ⁇ s.
  • the composition After the composition is prepared, it is left to stand for 10 minutes, and the composition having a viscosity of 14,000 mPa ⁇ s is subjected to an ozone cut filter, a 2 W high-pressure mercury lamp, and an ultraviolet ray irradiation amount at 2,500 nm of 2,500 mJ / cm 2
  • an ozone cut filter a 2 W high-pressure mercury lamp
  • an ultraviolet ray irradiation amount at 2,500 nm of 2,500 mJ / cm 2
  • the viscosity of the composition was 3,500 mPa ⁇ s.
  • the composition was heated at 90 ° C. for 30 minutes to obtain a thermoplastic which was not flowable at 25 ° C. but flowable at 100 ° C.
  • the obtained thermoplastic resin did not lose its fluidity at 100 ° C. even when stored at 25 ° C. for 2 months.
  • This thermoplastic was irradiated with an ozone-cut filter with a 2 W high-pressure mercury lamp at 365 nm and an ultraviolet irradiation dose of 2500 mJ / cm 2 and subsequently heated at 120 ° C. for 30 minutes to obtain a cured product of Shore A hardness 80. .
  • Example 4 32.2 parts by weight of the A-4, 28.5 parts by weight of the E-1, 20.7 parts by weight of the A-3, 15.7 parts by weight of the B-2, and 2 of the B-3 A composition was prepared containing 9 parts by weight, 0.1 ppm of said C-1 as platinum atom and 5 ppm of said D-1 as platinum atom.
  • the viscosity of the composition was 2,800 mPa ⁇ s.
  • the composition was heated at 90 ° C. for 30 minutes to obtain a thermoplastic which was not flowable at 25 ° C. but flowable at 100 ° C.
  • the obtained thermoplastic resin did not lose its fluidity at 100 ° C. even when stored at 25 ° C. for 2 months.
  • thermoplastic resin here is irradiated with an ozone-cut filter with a 2 W high-pressure mercury lamp at 365 nm and an ultraviolet irradiation amount of 2500 mJ / cm 2 , followed by heating at 120 ° C. for 30 minutes to obtain a cured product with a Shore A hardness of 35.
  • Example 5 The composition of Example 1 was applied using a bar coater so that the thickness on a member in which the liquid crystal panel and the polarizing plate were integrated became 200 ⁇ m.
  • a UV light having an irradiation amount of 5000 mJ / cm 2 at 365 nm was irradiated using a conveyor type UV irradiation apparatus.
  • a cover glass was covered and left at normal temperature. The cover glass was initially moved by applying force from the lateral direction, but after 5 minutes of UV irradiation it became difficult to move and after 30 minutes it did not move at all.
  • the viscosity of the composition was 6,000 mPa ⁇ s.
  • the composition was allowed to stand at 25 ° C. for 10 minutes to obtain a thickener having a viscosity of about 12,000 mPa ⁇ s.
  • This thermoplastic was irradiated with a 2 W high-pressure mercury lamp at 365 nm through a ozone-cut filter at a UV irradiation dose of 2500 mJ / cm 2 . After irradiation with ultraviolet light, the composition became fluid and turned into gel after 15 minutes at 25 ° C., and after 40 minutes at 25 ° C., a cured product with a penetration of 35 was obtained.
  • Comparative Example 1 A composition containing 3.5 parts by weight of A-1, 89.7 parts by weight of A-2, 6.8 parts by weight of B-1, 60 ppm of C-1 as a platinum atom is prepared. The The viscosity of the composition was 1,800 mPa ⁇ s. Immediately after preparation of the composition, the composition exothermed and after 1 minute gelled and became non-flowable. The curing was too fast to prepare a test sample for measurement of penetration, and the cured product was also colored brown.
  • Comparative Example 2 A composition containing 3.5 parts by weight of A-1, 89.7 parts by weight of A-2, 6.8 parts by weight of B-1, and 20 ppm of D-1 as a platinum atom is prepared. The The viscosity of the composition was 1,800 mPa ⁇ s.
  • a composition having a viscosity of 1,800 mPa ⁇ s and a constant viscosity is treated with an ozone cut filter, a 2 W high pressure mercury lamp, and an ultraviolet ray irradiation amount at 5000 nm of 5000 mJ / cm 2
  • the viscosity was measured immediately after irradiation, and it was thickened to 3,200 mPa ⁇ s. It did not gel even after 1 hour of UV irradiation, so when the composition was heated to 100 ° C., it continued after 30 minutes. It was confirmed that it was demobilized.
  • Comparative Example 3 55.7 parts by weight of A-4, 13.3 parts by weight of E-1, 1.7 parts by weight of A-3, 24.6 parts by weight of B-2, and B- 4.
  • a composition containing 7 parts by weight and 2 ppm of said C-1 as platinum atom was prepared.
  • the viscosity of the composition was 3,500 mPa ⁇ s.
  • the composition was heated at 90 ° C. for 30 minutes to obtain a cured product having a Shore A hardness of 80.
  • the above composition was heated at 50 ° C. for 30 minutes to obtain a cured product with a Shore A hardness of 40.
  • the resulting cured product did not exhibit high temperature fluidity, and the cured product gradually increased in hardness with time, reaching a Shore A hardness of 75 after 2 weeks at 25 ° C.
  • Comparative Example 4 32.2 parts by weight of the A-4, 28.5 parts by weight of the E-1, 20.7 parts by weight of the A-3, 15.7 parts by weight of the B-2, and 2 of the B-3 A composition was prepared containing 9 parts by weight, 0.1 ppm of said C-1 as platinum atom and 5 ppm of said D-1 as platinum atom.
  • the viscosity of the composition was 2,800 mPa ⁇ s.
  • the composition was heated at 90 ° C. for 30 minutes, but no change was observed in the composition.
  • Comparative Example 5 A composition comprising 94.0 parts by weight of A-2, 4.1 parts by weight of B-2, 1.4 parts by weight of B-3, and 5 ppm of C-1 as a platinum atom is prepared. The The viscosity of the composition was 2,100 mPa ⁇ s. The composition gelled after 30 minutes at 25 ° C.
  • Comparative Example 6 The composition of Comparative Example 2 was applied using a bar coater so that the thickness on a member in which the liquid crystal panel and the polarizing plate were integrated became 200 ⁇ m. Within 5 minutes after application, a UV light having an irradiation amount of 5000 mJ / cm 2 at 365 nm was irradiated using a conveyor type UV irradiation apparatus. After irradiation, within 3 minutes, a cover glass was covered and left at normal temperature. The liquid gradually leaked from the end of the cover glass and did not cure even 30 minutes after the ultraviolet irradiation.
  • Comparative Example 7 93.6% by weight of A-5, 1.0% by weight of A-6, 3.9% by weight of B-3, 1.3% by weight of B-4, glycidoxypropyltrimethoxy
  • the viscosity of the composition was 6,000 mPa ⁇ s.
  • the composition was allowed to stand at 25 ° C. for 10 minutes to obtain a thickener having a viscosity of about 12,000 mPa ⁇ s.
  • thermoplastic was irradiated with a 2 W high-pressure mercury lamp at 365 nm through a ozone-cut filter at a UV irradiation dose of 2500 mJ / cm 2 .
  • UV irradiation dose 2500 mJ / cm 2 .
  • the method for producing a cured organopolysiloxane of the present invention is suitable as a method for forming a laminate of layers of an image display device because it can be cured at a high temperature at a low temperature while having a sufficient pot life at a normal temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Silicon Polymers (AREA)

Abstract

[課題]常温で十分な可使時間を有しながらも低温で高速硬化できる組成物を用いた硬化物とその製造方法、これらの硬化物が層間に配置されている積層体およびこれらの硬化物が光学部材として用いられている光学装置を提供する。[解決手段]オルガノポリシロキサン硬化物を製造する方法であって、工程(i):高エネルギー線の照射なしで、本組成物中で活性を示す第一のヒドロシリル化反応用触媒、及び高エネルギー線の照射がないと活性を示さないが、高エネルギー線の照射により本組成物中で活性を示す第二のヒドロシリル化反応用触媒、を含有する組成物を、高エネルギー線の照射なしでヒドロシリル化反応を行い室温で流動性を有する増粘体または室温では非流動性だが100℃では流動性を示す熱可塑体を得る工程、および工程(ii):上記工程(i)で得られた増粘体または熱可塑体に高エネルギー線を照射し硬化物を得る工程、を含有する、方法。

Description

オルガノポリシロキサン硬化物を製造する方法、オルガノポリシロキサン硬化物、積層体、および光学部品
 本発明は、二段階のヒドロシリル化反応によって製造されるオルガノポリシロキサン硬化物およびその製造方法、この硬化物が層間に配置されている積層体およびその製造方法、並びにこの硬化物を用いた光学装置に関する。
 オルガノポリシロキサンから得られるシリコーン材料は耐熱性、耐薬品性、電気絶縁性などの優れた性能を有することから、種々の用途に用いられている。シリコーン材料はプラスチック、金属、ガラス、セラミック、紙、木材などの様々な基材上に形成することができ、用途も日用品、医療用品、電子製品など多岐に渡る。近年、画像表示装置のような積層体や照明装置のような光学装置の耐熱、耐光性が要求される透明部材として、シリコーン材料が広く利用されている。シリコーン材料は通常、オルガノポリシロキサンをヒドロシリル化反応によって架橋させることによって得られる。ヒドロシリル化反応の際には、作業性などの観点から、通常は熱により活性化される遷移金属錯体触媒が用いられている。オルガノポリシロキサンの硬化を短時間で達成するためには、高温に加熱する必要がある。しかし、熱可塑性樹脂フィルムなどの基材上にシリコーン材料を形成する場合には、基材を高温にすることができないため、紫外線などの高エネルギー線照射により活性化される触媒が用いられている(特許文献1)。
 しかし、高エネルギー線活性化触媒を用いたオルガノポリシロキサン組成物は、高エネルギー線を照射しても直ぐには硬化せず、短時間で硬化させるには、加熱を必要とすることが多く、短時間で硬化するように触媒量を増加させると、硬化物が着色する問題があった。また低触媒量で低温で硬化させると、硬化反応が完結せず、機械強度の低い硬化物を与えるという問題があった。
 一方、熱により活性化される触媒を用いて、低温での硬化を短時間で完結させるためには、触媒量を増加させる必要があり、硬化物が着色する問題のほか、増粘が非常に早く、常温での可使時間が短くなるという問題があった。さらに、低触媒量で低温で硬化させると、硬化反応が完結せず、機械強度の低い硬化物を与えるという問題があった。
特開平5―239216号公報
 よって、本発明の目的は、常温で十分な可使時間を有しながらも低温で高速硬化できる組成物を用いた硬化物とその製造方法、これらの硬化物が層間に配置されている積層体およびこれらの硬化物が光学部材として用いられている光学装置を提供することにある。
 本発明のオルガノポリシロキサン硬化物の製造方法は、工程(i):後に述べる成分(A)~(D)を含有する組成物を、高エネルギー線の照射なしでヒドロシリル化反応を行い室温で流動性を有する増粘体または室温では非流動性だが100℃では流動性を示す熱可塑体を得る工程、および工程(ii):上記工程(i)で得られた増粘体または熱可塑体に高エネルギー線を照射する工程、を含有する方法であって、上記成分(A)~(D)とは、以下の通りである。
(A)下記平均組成式(1):
SiO(4-a―b)/2 (1)
(式中、R1は炭素数2~12のアルケニル基であり、R2は脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、水酸基およびアルコキシ基から選択される基であり、aおよびbは次の条件:1≦a+b≦3及び0.001≦a/(a+b)≦0.33を満たす数である)で表されるオルガノポリシロキサン、
(B)下記平均組成式(2):
SiO(4-c-d)/2   (2)
(式中、Rは脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基から選択される基であり、cおよびdは次の条件:1≦c+d≦3及び0.01≦c/(c+d)≦0.33を満たす数である)で表されるオルガノポリシロキサン、
(C)高エネルギー線の照射なしで、本組成物中で活性を示す第一のヒドロシリル化反応用触媒、
(D)高エネルギー線の照射がないと活性を示さないが、高エネルギー線の照射により本組成物中で活性を示す第二のヒドロシリル化反応用触媒。
上記高エネルギー線は、紫外線、X線、または電子線から選択されるいずれかであることが好ましい。また、前記(B)成分は、下記平均単位式(3):
(HR4 2SiO1/2)e(R4 3SiO1/2)f(HR4SiO2/2)g(R4 2SiO2/2)h(HSiO3/2)i(R4SiO3/2)j(SiO4/2)k(R5O1/2)l   (3)
(式中、Rはそれぞれ独立に、脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基から選択される基であり、Rは水素原子または炭素数1~6のアルキル基であり、e,f、g、h、i、j、kおよびlは次の条件:e+f+g+h+i+j+k=1、0≦l≦0.1、0.01≦e+g+i≦0.2、0≦e≦0.6、0≦g≦0.6、0≦i≦0.4、0.01≦e+f≦0.8、0.01≦g+h≦0.8、0≦i+j≦0.6を満たす数である)
で表されるオルガノハイドロジェンポリシロキサンであることが好ましい。さらに、前記(C)成分と前記(D)成分のモル比((C)/(D))は0.001~1000であることが好ましい。
また、本発明の別の形態の発明は、上記方法によって製造された、オルガノポリシロキサン硬化物に関する。
さらに、本発明の別の形態の発明は、上記方法によって製造された、オルガノポリシロキサン硬化物を層間に配置した積層体であり、積層体は画像表示装置であることが好ましい。
また、本発明の別の形態の発明は、上記方法によって製造された、オルガノポリシロキサン硬化物を有する光学装置に関する。
さらに、本発明の別の形態の発明は、オルガノポリシロキサン硬化物を層間に配置した積層体の製造方法であって、以下の3つの方法を含む。第一の方法は、工程(iii):前記成分(A)~(D)を含有する組成物を、基板上に塗布し、高エネルギー線の照射なしでヒドロシリル化反応を行い、室温で流動性を有する増粘体または室温では非流動性だが100℃では流動性を示す熱可塑体の層を形成する工程、工程(iv):上記工程(iii)で得られた増粘体または熱可塑体の層上に上層部材を形成する工程、および工程(v):基板の下、上層部材の上、または増粘体または熱可塑体の層の側面の少なくとも一つから増粘体または熱可塑体の層に高エネルギー線を照射する工程、を含有する。
オルガノポリシロキサン硬化物を層間に配置した積層体の製造方法の第二の方法は、工程(vi):前記成分(A)~(D)を含有する組成物を、基板上に塗布し、高エネルギー線の照射なしでヒドロシリル化反応を行い、室温で流動性を有する増粘体または室温では非流動性だが100℃では流動性を示す熱可塑体の層を形成する工程、工程(vii):上記工程(vi)で得られた増粘体または熱可塑体の層に高エネルギー線を照射する工程、工程(viii):上記高エネルギー線が照射された増粘体または熱可塑体の層上に上層部材を形成する工程、および工程(ix):加熱または室温にて放置することによって上記増粘体または熱可塑体の層を硬化させる工程、を含有する。
オルガノポリシロキサン硬化物を層間に配置した積層体の製造方法の第三の方法は、工程(x):前記成分(A)~(D)を含有する組成物を、基板上に塗布し、高エネルギー線の照射なしでヒドロシリル化反応を行い、室温で流動性を有する増粘体または室温では非流動性だが100℃では流動性を示す熱可塑体の層を形成する工程、工程(xi):上記工程(x)で得られた増粘体または熱可塑体の層に高エネルギー線を照射する工程、工程(xii):上記高エネルギー線が照射された増粘体または熱可塑体の層上に上層部材を形成する工程、および工程(xiii):基板の下、上層部材上、または増粘体または熱可塑体の層の側面の少なくともひとつから増粘体または熱可塑体の層に高エネルギー線を照射する工程、を含有する。
また本発明の別の形態の発明は、前記いずれかの方法によって得られた、積層体に関する。
さらに本発明の別の形態の発明は、オルガノポリシロキサン硬化物を表面に形成した光学装置を形成する方法であって、工程(ixv):前記成分(A)~(D)を含有する組成物を、離型フィルム上に塗布し、高エネルギー線の照射なしでヒドロシリル化反応を行い、室温では非流動性だが100℃では流動性を示す熱可塑性フィルムを形成する工程、工程(xv):上記熱可塑性フィルムを光学装置上に設置し、加熱する工程、工程(xvi):上記工程(XV)で得られた熱可塑性フィルムまたはその溶融物に高エネルギー線を照射する工程、を有する。
さらに本発明の別の形態の発明は、前記方法によって得られた、光学装置に関する。
 本発明のオルガノポリシロキサン硬化物の製造方法によれば、高エネルギー線の照射なしに発生を示すヒドロシリル化触媒と高エネルギー線活性化ヒロドシリル化触媒の2種類を含有するオルガノポリシロキサン組成物を用いるため低温硬化が容易である。また、本発明の積層体および光学装置は、短時間で効率製造ができ、得られた積層体や光学装置が、高い信頼性を有する。
(組成物)
 本発明で用いられるのオルガノポリシロキサン硬化物は、下記(A)~(D)成分を含有する組成物から作成される。以下順に述べる。
(A)成分
(A)成分は、ヒドロシリル化反応の際に、ヒドロシリル基(―SiH)が付加する脂肪族不飽和基を含有する化合物であり、下記平均組成式(1)を有するオルガノポリシロキサンである。
SiO(4-a―b)/2 (1)
一般式(1)中、R1は炭素数2~12のアルケニル基である。具体的には、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基が挙げられ、これらのうちでもビニル基、アリル基またはヘキセニル基が好ましい。R2は脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、水酸基およびアルコキシ基から選択される基である。炭素数1~12の一価炭化水素基は、その水素原子の一部がハロゲン原子または水酸基で置換されていてもよい。炭素数1~12の一価炭化水素基の例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基などのアルキル基;フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基などのアリール基;ベンジル基、フェネチル基、ナフチルエチル基、ナフチルプロピル基、アントラセニルエチル基、フェナントリルエチル基、ピレニルエチル基などのアラルキル基;およびこれらのアリール基またはアラルキル基の水素原子をメチル基、エチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;塩素原子、臭素原子等のハロゲン原子で置換した基が挙げられる。
aおよびbは次の条件:1≦a+b≦3及び0.001≦a/(a+b)≦0.33を満たす数であり、好ましくは、次の条件:1.5≦a+b≦2.5及び0.005≦a/(a+b)≦0.2を満たす数である。これは、a+bが上記範囲の下限以上であると、硬化物の柔軟性が高くなるからであり、一方上記範囲の上限以下であると、硬化物の機械強度が高くなるからであり、a/(a+b)が上記範囲の下限以上であると、硬化物の機械強度が高くなるからであり、一方上記範囲の上限以下であると、硬化物の柔軟性が高くなるからである。
このようなオルガノポリシロキサンの分子構造としては、直鎖状、分岐鎖状または環状が例示される。オルガノポリシロキサンは、このような分子構造を有する一種または二種以上の化合物の混合物であってもよい。
このような(A)成分としては、一般式:R SiO(R SiO)SiR
で表される直鎖状のオルガノポリシロキサンおよび/または平均単位式:
(RSiO3/2)(R SiO2/2)(RSiO1/2)(SiO4/2)(XO1/2)
で表される分岐鎖状のオルガノポリシロキサンが好ましい。式中、各Rは非置換又はハロゲン置換の一価炭化水素基であり、前記と同様の基が例示される。Xは水素原子またはアルキル基である。ただし、一分子中、少なくとも2個のRはアルケニル基である。このアルケニル基としては、ビニル基が好ましい。また、得られる硬化物の光の屈折、反射、散乱等による減衰が小さいことから、一分子中、全Rの少なくとも30モル%がアリール基であり、好ましくは、少なくとも40モル%がアリール基である。このアリール基としては、フェニル基が好ましい。また、式中、tは5~1,000の範囲内の整数である。また、式中、oは正数であり、pは0又は正数であり、qは0又は正数であり、rは0又は正数であり、sは0又は正数であり、かつ、p/oは0~10の範囲内の数であり、q/oは0~5の範囲内の数であり、r/(o+p+q+r)は0~0.3の範囲内の数であり、s/(o+p+q+r)は0~0.4の範囲内の数である。
一方、上記(A)成分は、
(a1)分子鎖末端に炭素数2~12のアルケニル基を有する直鎖状または分岐鎖状のオルガノポリシロキサンであってもよく、
(a2)平均単位式:(R SiO1/2(R SiO2/2(RSiO3/2(SiO4/2(式中、Rは炭素数1~12の一価炭化水素基であり、m,n,oおよびpは次の条件:m+n+o+p=1、0.2≦m≦0.5、0≦n≦0.3、0≦o≦0.8、0≦p≦0.6、0.2≦o+p≦0.8を満たす数である)
で表されるオルガノポリシロキサンレジンであってもよく、
上記の(a1)成分と(a2)成分の混合物であってもよい。特に、かかる混合物を(B)成分と共に使用することで、加熱溶融性を備える熱可塑体を得ることができる。
(B)成分
(B)成分は、ヒドロシリル化反応の際に、前記(A)成分中のアルケニル基に付加するヒドロシリル基(―SiH)を含有する化合物であり、下記平均組成式(2)を有するオルガノポリシロキサンである。
SiO(4-c-d)/2   (2)
一般式(2)中、Rは脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基から選択される基である。炭素数1~12の一価炭化水素基は、その水素原子の一部がハロゲン原子または水酸基で置換されていてもよい。炭素数1~12の一価炭化水素基の例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基などのアルキル基;フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基などのアリール基;ベンジル基、フェネチル基、ナフチルエチル基、ナフチルプロピル基、アントラセニルエチル基、フェナントリルエチル基、ピレニルエチル基などのアラルキル基;およびこれらのアリール基またはアラルキル基の水素原子をメチル基、エチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;塩素原子、臭素原子等のハロゲン原子で置換した基が挙げられる。アルコキシ基の例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンタノキシ基、ヘキサノキシ基、オクタノキシ基などが挙げられる。
cおよびdは次の条件:1≦c+d≦3及び0.01≦c/(c+d)≦0.33を満たす数であり、好ましくは、次の条件:1.5≦c+d≦2.5及び0.05≦c/(c+d)≦0.2を満たす数である。これは、c+dが上記範囲の下限以上であると、硬化物の柔軟性が高くなるからであり、一方上記範囲の上限以下であると、硬化物の機械強度が高くなるからであり、c/(c+d)が上記範囲の下限以上であると、硬化物の機械強度が高くなるからであり、一方上記範囲の上限以下であると、硬化物の柔軟性が高くなるからである。
前記平均組成式(2)を有するオルガノポリシロキサンの粘度は限定されないが、25℃における粘度が0.5~10,000mPa・sの範囲内であることが好ましく、特に、1~1,000mPa・sの範囲内であることが好ましい。
このような前記平均組成式(2)を有するオルガノポリシロキサンとしては、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、トリメトキシシランの加水分解縮合物、(CH)HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH)HSiO1/2単位とSiO4/2単位と(C)SiO3/2単位とからなる共重合体、およびこれらの2種以上の混合物が例示される。
 前記平均組成式(2)を有するオルガノポリシロキサンとして、さらに次のようなオルガノポリシロキサンも例示される。なお、式中、Me、Phは、それぞれ、メチル基、フェニル基を示し、m1は1~100の整数であり、n1は1~50の整数であり、b1、c1、d1、e1はそれぞれ正の数であり、ただし、一分子中のb1、c1、d1、e1の合計は1である。
HMeSiO(PhSiO)m1SiMe
HMePhSiO(PhSiO)m1SiMePhH
HMePhSiO(PhSiO)m1(MePhSiO)n1SiMePhH
HMePhSiO(PhSiO)m1(MeSiO)n1SiMePhH
(HMeSiO1/2)b1(PhSiO3/2)c1
(HMePhSiO1/2)b1(PhSiO3/2)c1
(HMePhSiO1/2)b1(HMeSiO1/2)c1(PhSiO3/2)d1
(HMeSiO1/2)b1(PhSiO2/2)c1(PhSiO3/2)d1
(HMePhSiO1/2)b1(PhSiO2/2)c1(PhSiO3/2)d1
(HMePhSiO1/2)b1(HMeSiO1/2)c1(PhSiO2/2)d1(PhSiO3/2)e1
前記(B)成分は、さらに下記平均単位式(3)で表されるオルガノハイドロジェンポリシロキサンであることが好ましい。
(HR4 2SiO1/2)e(R4 3SiO1/2)f(HR4SiO2/2)g(R4 2SiO2/2)h(HSiO3/2)i(R4SiO3/2)j(SiO4/2)k(R5O1/2)l   (3)
一般式(3)中、Rはそれぞれ独立して、脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基から選択される基である。炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基については、前記と同様である。Rは水素原子または炭素数1~6のアルキル基であり、炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基などが例示される。e,f、g、h、i、j、kおよびlは次の条件:e+f+g+h+i+j+k=1、0≦l≦0.1、0.01≦e+g+i≦0.2、0≦e≦0.6、0≦g≦0.6、0≦i≦0.4、0.01≦e+f≦0.8、0.01≦g+h≦0.8、0≦i+j≦0.6を満たす数である。
なお、前記の「HR4 2SiO1/2」、「R4 3SiO1/2」、「HR4SiO2/2」、「R42SiO2/2」、「HSiO3/2」、「R4SiO3/2」および「SiO4/2」の各構成単位は、それぞれM単位,M単位、D単位、D単位、T単位、T単位、Q単位と呼ばれるオルガノハイドロジェンポリシロキサンの部分構造の単位であり、「R5O1/2」は、D単位、D単位、T単位、T単位、またはQ単位中の酸素原子と結合する基であり、オルガノポリシロキサン中のケイ素原子結合水酸基(Si―OH)あるいはオルガノポリシロキサン製造中に未反応で残ったケイ素原子結合アルコキシ基を意味する。M単位は主にオルガノハイドロジェンポリシロキサンの分子鎖末端に存在し、D単位はオルガノハイドロジェンポリシロキサンの分子鎖中に存在する。
 (B)成分の含有量は、(A)成分中のアルケニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.1~5モルの範囲内となる量であり、好ましくは、0.5~2モルの範囲内となる量である。これは、(B)成分の含有量が上記範囲の下限以上であると、硬化物の機械強度が高くなるからであり、一方、上記範囲の上限以下であると、硬化物の柔軟性が高くなるからからである。
特に、本発明において、(A)成分および(B)成分の混合物は、加熱溶融性を備える熱可塑体であることが好ましい。かかる成分を使用することで、本組成物全体に加熱溶融性を付与することができる。特に、(A)成分が前記の(a1)成分および(a2)成分を含む混合物であることが、加熱溶融性の見地から特に好ましい。
すなわち、本発明の製造方法において使用する組成物は加熱溶融性を備える熱可塑体であってよく、25℃において非流動性であり、100℃において1,000Pa・s以下、好ましくは、500Pa・s以下の粘度を有することができる。ここで、非流動性とは、無負荷の状態で流動しないことを意味し、例えば、JIS K 6863-1994「ホットメルト接着剤の軟化点試験方法」で規定されるホットメルト接着剤の環球法による軟化点試験方法で測定される軟化点未満での状態を示す。つまり、25℃において非流動性であるためには、軟化点が25℃よりも高い必要がある。25℃において非流動性であると、該温度での形状保持性が良好であるからである。また、100℃の溶融粘度が上記の範囲内であると、種々の形状への加工が容易となり、かつ、溶融状態で部材上の凹凸に良好に追従して段差を充填することができ、ギャップフィル性に優れる。なお、当該性質は、主として組成全体、特に、本組成物の構成成分の選択および含有量により決定され、特に、(A)成分中の(a2)成分であるオルガノポリシロキサンレジンの含有量および(B)成分の選択により実現される性質であるがこれに限定されるものではない。
(C)成分
(C)成分は、高エネルギー線の照射なしで、本組成物中で活性を示す第一のヒドロシリル化触媒である。(C)成分は本組成物を半硬化するためのヒドロシリル化反応用触媒であり、白金系触媒、ロジウム系触媒、パラジウム系触媒、ニッケル系触媒、イリジウム系触媒、ルテニウム系触媒、および鉄系触媒が例示され、好ましくは、白金系触媒である。この白金系触媒としては、白金微粉末、白金黒、白金担持シリカ微粉末、白金担持活性炭、塩化白金酸、塩化白金酸のアルコール溶液、白金のオレフィン錯体、白金のアルケニルシロキサン錯体等の白金系化合物が例示され、特に白金のアルケニルシロキサン錯体が好ましい。このアルケニルシロキサンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をエチル基、フェニル基等で置換したアルケニルシロキサン、これらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンが例示される。特に、この白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンが好ましい。また、この白金-アルケニルシロキサン錯体の安定性を向上させることができることから、この錯体に1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジアリル-1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,3-ジメチル-1,3-ジフェニルジシロキサン、1,3-ジビニル-1,1,3,3-テトラフェニルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン等のアルケニルシロキサンやジメチルシロキサンオリゴマー等のオルガノシロキサンオリゴマーを添加することが好ましく、特に、アルケニルシロキサンを添加することが好ましい。
(C)成分の触媒は、高エネルギー線の照射なしで活性を示す触媒であるが、その中でも比較的低温でも活性を示すものが好ましい。具体的には、0~200℃の温度範囲において組成物中で活性を示し、ヒドロシリル化反応を促進する。(C)成分の含有量は、触媒の種類及び組成物の種類によって異なるが、通常は組成物に対して、この触媒中の金属原子が質量単位で0.01~50ppmの範囲内となる量であり、好ましくは0.1~30ppmの範囲内となる量である。
(D)成分
(D)成分は、高エネルギー線の照射がないと活性を示さないが、高エネルギー線の照射により本組成物中で活性を示す第二のヒドロシリル化触媒である。(D)成分は、いわゆる高エネルギー線活性化触媒または光活性化触媒と呼ばれるものであり、本件技術分野では公知である。
ここで、高エネルギー線とは、紫外線、ガンマ線、X線、α線、電子線などを言い、紫外線、X線、及び市販の電子線照射装置から照射される電子線が好ましい。工業的には、波長280~380nmの範囲の紫外線が簡便に用いられる。また、照射量は、高エネルギー線活性型触媒の種類により異なるが、紫外線の場合は、波長365nmでの積算照射量が100mJ/cm2~10J/cm2の範囲内であることが好ましい。
(D)成分の具体例としては、(メチルシクロペンタジエニル)トリメチル白金(IV)、(シクロペンタジエニル)トリメチル白金(IV)、(1,2,3,4,5-ペンタメチルシクロペンタジエニル)トリメチル白金(IV)、(シクロペンタジエニル)ジメチルエチル白金(IV)、(シクロペンタジエニル)ジメチルアセチル白金(IV)、(トリメチルシリルシクロペンタジエニル)トリメチル白金(IV)、(メトキシカルボニルシクロペンタジエニル)トリメチル白金(IV)、(ジメチルフェニルシリルシクロペンタジエニル)トリメチルシクロペンタジエニル白金(IV)、トリメチル(アセチルアセトナト)白金(IV)、トリメチル(3,5-ヘプタンジオネート)白金(IV)、トリメチル(メチルアセトアセテート)白金(IV)、ビス(2,4-ペンタンジオナト)白金(II)、ビス(2,4-へキサンジオナト)白金(II)、ビス(2,4-へプタンジオナト)白金(II)、ビス(3,5-ヘプタンジオナト)白金(II)、ビス(1-フェニル-1,3-ブタンジオナト)白金(II)、ビス(1,3-ジフェニル-1,3-プロパンジオナト)白金(II)、ビス(ヘキサフルオロアセチルアセトナト)白金(II)が挙げられ、これらのうちでも(メチルシクロペンタジエニル)トリメチル白金(IV)とビス(2,4-ペンタンジオナト)白金(II)が汎用性と入手の容易さの点から好ましい。
 (D)成分の含有量は、(C)成分によって半硬化された組成物をさらに硬化するのに必要な量であり、好ましくは、本組成物に対して、この触媒中の金属原子が質量単位で1~50ppmの範囲内となる量であり、好ましくは、5~30ppmの範囲内となる量である。
 (C)成分と(D)成分のモル比((C)/(D))は、通常0.001~1000、好ましくは0.01~100である。モル比が前記上限以下であると、高エネルギー線照射による硬化反応の加速ができるからであり、モル比が前記下限以上であると、短時間での低温での硬化反応を行えるからである。
 本発明で用いるオルガノポリシロキサン組成物は、ヒドロシリル化反応抑制剤を含まないことが好ましい。通常、組成物のポットライフを向上し安定した組成物を得るために、ヒドロシリル化反応抑制剤が組成物中に添加される。しかし、本発明ではヒドロシリル化反応抑制剤を添加しなくても、安定した組成物を得ることができ、ヒドロシリル化反応抑制剤の添加によって、硬化反応が遅くならないことが好ましいからである。
(E)成分
 必要に応じて、他のオルガノポリシロキサン、接着性付与剤、シリカ、ガラス、アルミナ、酸化亜鉛等の無機質充填剤;ポリメタクリレート樹脂等の有機樹脂微粉末;蛍光体、耐熱剤、染料、顔料、難燃性付与剤、溶剤等が本発明で用いるオルガノポリシロキサン組成物に添加される。添加量及びその方法は、当業者に公知である。
本発明において使用する組成物は、(A)成分~(D)成分、必要に応じて、その他任意の成分を、均一に混合することにより調製することができる。本組成物を調製する際に、各種攪拌機あるいは混練機を用いて、常温で混合することができ、必要に応じて、加熱下で混合してもよい。また、各成分の配合順序についても限定はなく、任意の順序で混合することができる。
本発明において使用する組成物は、例えば、(A)~(C)成分を80℃~120℃の温度範囲で加熱混練しながら、(D)成分を添加混合することによって調製してもよい。前記温度範囲では、組成物全体が軟化し、(D)成分を全体に均一分散することができるので、特に、シート等の成型時に硬化不良及び接着時の部分的な凝集破壊を回避できる実益がある。一方、温度が前記下限未満では、軟化が不十分となって、機械力を用いても(D)成分を全体に均一分散することが困難となる場合がある。逆に、温度が前記上限を超えると、(D)成分が混合時に反応して、全体が著しい増粘又は硬化する場合があるため、好ましくない。本製造方法で用いる混合機は限定されず、一軸または二軸の連続混合機、二本ロール、ロスミキサー、ホバートミキサー、デンタルミキサー、プラネタリミキサー、ニーダーミキサー、ラボミルサー、小型粉砕機、ヘンシェルミキサーが例示され、好ましくは、ラボミルサー、小型粉砕機、ヘンシェルミキサーである。
本発明において使用する組成物の製造において、(A)成分および(B)成分の混合物が、加熱溶融性を備える熱可塑体である場合には、前記の(A)成分、好適には、前記の(a1)成分および(a2)成分を含む(A)成分、および(B)成分からなる熱可塑体の溶融物に、(D)成分を、全体温度が60℃~140℃の範囲内、好ましくは80~120℃の範囲内で前記溶融物に加えて、均一に分散させた後、冷却してもよい。当該分散操作に用いる混合機は前記同様の混合機である。
(硬化物の製造方法)
 本発明のオルガノポリシロキサン硬化物の製造方法は、以下の工程を有する。
(i)前記成分(A)~(D)を含有する組成物を、高エネルギー線を照射しない状態で第一のヒドロシリル化反応を行い増粘体または熱可塑体を得る工程、および
(ii)得られた半硬化物に高エネルギー線を照射し、第二のヒドロシリル化反応を行ってオルガノポリシロキサン硬化物を得る工程。
(工程(i))
工程(i)は、前記組成物を高エネルギー線の照射なしで第一のヒドロシリル化反応を行い、室温で流動性を有する増粘体または室温では非流動性だが100℃では流動性を示す熱可塑体を得る工程である。この工程では、特に加熱を必要としないが、場合によっては、100℃未満、好ましくは60℃未満で前記組成物を加熱し、第一のヒドロシリル化反応を促進してもよい。加熱時間は組成物中の各成分の種類及び配合量にもよるが、通常5分~2時間、好ましくは10分~1時間である。
工程(i)により、室温で流動性を有する増粘体または室温では非流動性だが100℃では流動性を示す熱可塑体となる。ここで、増粘体とは、25℃での粘度が組成物の初期粘度1.5倍から100倍の間であることを意味する。また、熱可塑体とは、100℃での粘度が1000000mPa・s以下である。
(工程(ii))
工程(ii)は、前記の増粘体または熱可塑体に高エネルギー線を照射する工程である。高エネルギー線の照射により触媒が活性化され、活性化された触媒によってヒドロシリル化反応が始まる。高エネルギー線の照射中に、触媒の活性化とヒドロシリル化反応が同時に起きる場合と、高エネルギー線の照射中には、触媒の活性化が主として起こり、ヒドロシリル化反応の大部分が高エネルギー線の照射後に、加熱下または常温で進行する場合がある。高エネルギー線の種類は前記の通りである。照射量は、高エネルギー線活性型触媒の種類により異なるが、紫外線の場合は、365nmでの積算照射量が100mJ/cm2から10J/cmの範囲内であることが好ましい。
上記ヒドロシリル化反応により前記増粘体または熱可塑体が硬化物となる場合と、後述するようにこの時点では未硬化であるが、その後の工程(加熱など)によって前記増粘体または熱可塑体が硬化物となる場合とが含まれる。
工程(ii)またはその後の工程により、増粘体または熱可塑体であった組成物は硬化物となり、種々の材料として用いることができる。ここで、硬化物とは200℃以上に加熱しても、流動しないことを意味している。この硬化物の硬さは、特に限定されないが、通常、針入度が70以下のゲル状から、ショアD硬さが80の硬質レジンまでである。その後の工程の例としては加熱工程が挙げられる。工程(ii)の後に加熱工程を有する場合には、0~200℃、好ましくは20~100℃で、5~360分、好ましくは10~120分加熱することができる。
本発明の方法によって形成された硬化物は光透過性に優れる。具体的には、450mmでの透過率が90%以上であり、濁り度合いの尺度であるヘーズ値が1以下である。本発明の硬化物は画像表示装置などの積層体の層間に配置された透明部材や光学装置の透明部材として好適である。
(積層体)
本発明の硬化物は画像表示装置などの積層体の層間に配置された透明部材として好適である。このような画像表示装置としては、液晶画像表示装置、タッチパネル付液晶画像表示素子、有機EL画像表示素子、タッチパネル付有機EL画像表示素子、マイクロLED画像表示装置、タッチパネル付マイクロLED画像表示装置、反射型画像表示装置などがある。これらはいずれも様々な層が積み重ねられた積層構造をとるが、本発明の硬化物をその層間に配置され、界面での光の反射を抑制する機能を有する。
 例えば、本発明の硬化物は、高温または高温・高湿下で着色が少なく、濁りを生じにくいことから、画像表示装置の画像表示部と保護部との間の中間層を形成する材料として好適である。かかる画像表示部あるいは保護部の基材としては、ガラス、ITO等の無機光学材料、あるいは、ポリカーボネート樹脂、アクリル樹脂、エポキシ樹脂、ポリスチレン樹脂等の有機光学材料が例示される。この光学部材の表面に透明電極が形成されていてもよい。
 本硬化物の形成方法としては、例えば、フィルム状基材、テープ状基材、又はシート状基材に本組成物を塗工した後、高エネルギー線照射、室温放置もしくは低温加熱によりヒドロシリル化反応を起こさせ、硬化を進行させることができる。また、本組成物を二つの基材の間に配置し、硬化して、両基材を強固に接着する場合と、前記基材の少なくとも一つの表面に本組成物を平滑に塗布し、半硬化させて、非流動化させた後、両基材を貼り合わせ、更に硬化を進めて強固に接着する場合とがある。この硬化物の膜厚は限定されないが、好ましくは、1~100,000μmであり、より好ましくは50~30,000μmである。
 本組成物は、比較的低温で硬化が進行するため、耐熱性の乏しい基材のコーティングにも適用することができる。かかる基材の種類としては、ガラス、合成樹脂フィルム・シート・透明電極塗膜等透明基材であることが一般的である。また、本組成物の塗工方法としては、ディスペンス、グラビアコート、マイクログラビアコート、スリットコート、スロットダイコート、スクリーンプリント、ステンシルプリント、コンマコートが例示される。
(積層体の形成方法)
本発明の積層体の形成方法の第1の方法は、以下の工程を有する。
(iii)前記(A)~(D)成分を含有する組成物を基板上に塗布し、高エネルギー線の照射なしで該組成物を前記増粘体または熱可塑体の層にする工程、
(iv)上記増粘体または熱可塑体の層上に上層部材を形成する工程、および
(v)上記工程(iV)で形成した上層部材上から高エネルギー線を照射する工程。
(工程iii)
工程(iii)は、前記硬化物の製造方法の工程(i)と同一の工程を積層体基材上で行うものであり、条件は前記と同じであるが、続く上層部材を形成する工程(貼り合せ工程)を低温で行えるようにするためには、得られるものが増粘体であるのが好ましい。
(工程iv)
工程(iv)は、上部に配置する層を貼り合わす工程であり、様々な方法があるが、泡の巻き込みを避けるために、真空下での貼合また、貼合後にオートクレーブ中で加圧にして微細な泡を消す操作を加えるのが好ましい。
(工程v)
工程(v)は、上記工程(iV)で形成した上層部材上から高エネルギー線を照射し、硬化物を得る工程である。すなわち、基板上に形成された透明部分を通して、高エネルギー線を照射し、照射を起点として硬化反応を行い硬化物を得る工程であり、前記硬化物の製造方法の工程(ii)と同一の工程を上下2層に挟まれた状態で行うものであり、条件は前記と同じであるが、層を介して高エネルギー線を照射するため、より高い照射量であることが好ましい。
本発明の積層体の形成方法の第2の方法は、以下の工程を有する。
(vi)前記(A)~(D)成分を含有する組成物を基板上に塗布し、高エネルギー線の照射なしで該組成物を増粘体または熱可塑体にする工程、
(vii)高エネルギー線を照射する工程、
(viii)上記増粘体または熱可塑体上に上層部材を形成する工程、および
(ix)加熱、または室温にて上記増粘体または熱可塑体を硬化させる工程。
(工程vi)
工程(vi)は、前記硬化物の製造方法の工程(iii)と同一である。
(工程vii)
工程(vii)は、前記硬化物の製造方法の工程(v)と同様であるが、続く貼り合せ工程を効率よく行えるようにするために、本工程内においては、硬化物にならずに、増粘体または熱可塑体、特に好ましくは増粘体としての形態を維持していることが好ましい。そのため、高エネルギー線の照射量を適宜調整することが好ましい。
(工程viii)
工程(viii)は、前記硬化物の製造方法の工程(iv)と同じである。
(工程ix)
工程(ix)は、工程(vii)で高エネルギー線活性型の触媒がすでに活性化されているので、常温でも反応が進行し、硬化物が得られるが、さらに加速するためには、加熱するのが好ましい。
本発明の積層体層の形成方法の第3の方法は、以下の工程を有する。
(x)前記(A)~(D)成分を含有する組成物を基板上に塗布し、高エネルギー線の照射なしで該組成物を増粘体または熱可塑体の層にする工程、
(xi)上記工程(X)で得られた増粘体または熱可塑体の層に高エネルギー線を照射する工程、
(xii)上記増粘体または熱可塑体の層上に上層部材を形成する工程、および
(xiii工程(Xii)によって形成された上層部材上から高エネルギー線を照射する工程。
(工程x)
工程(x)は、前記硬化物の製造方法の工程(vi)と同一である。
(工程xi)
工程(xi)は、前記硬化物の製造方法の工程(vii)と同一であるが、工程(xii)での高エネルギー線照射の硬化を高めるために、高エネルギー線の照射量を調整することが好ましい。
(工程xii)
工程(xii)は、前記硬化物の製造方法の工程(viii)と同じである。
(工程xiii)
工程(xii)は、工程(x)で未活性の高エネルギー線活性型の触媒を活性化して、ヒロドシリル化反応を進行させ硬化物を得る工程である。
(光学装置)
また、本発明の硬化物は光学装置の透明部材として好適あり、このような光学装置としては、LCD(液晶ディスプレイ)、ECD(エレクトロクロミックディスプレイ)等の受光型表示装置;LED発光装置、およびELD(電界発光ディスプレイ)等の発光型表示装置、その他、様々な照明機器があり、本発明の硬化物は発光素子の封止剤あるいはレンズ材料などの光学部材として用いられる。本発明の硬化物は、液晶・有機EL等の表示部と、タッチパネル、カバーレンズ等のディスプレイ形成部材との間、あるいはディスプレイ形成部材間を、本発明の硬化性シリコーン組成物の硬化物により接着もしくは粘着することにより、光学ディスプレイの視認性向上させることができる。
(光学装置の製造方法)
本発明の光学装置の形成方法は、以下の工程を有する。
工程(ixv)
工程(ixv)は、前記工程(i)のうち、熱可塑体を得る条件を用いて熱可塑性透明フィルムを離型フィルム常に形成する工程であって、具体的には、離型フィルム上に、組成物を平滑に塗布し、ヒドロシリル化を部分的に進行させることにより、安定な熱可塑体透明フィルムを得る工程であり、その膜厚には制限がないが、実用的には0.1mm~5mmの範囲内である。
工程(xv)
工程(xv)は得られた熱可塑性透明フィルムを適切な大きさに切り出し、離型フィルムから剥がして、発光素子などの光学装置上にかぶせ、加熱することで、熱可塑性透明フィルムを溶融させ、発光素子を封止する工程である。
工程(xvi)
工程(xvi)は前記工程(ii)と同様に、高エネルギー線照射を起点としてヒドロシリル化反応を行い、硬化物を得る工程である。
下記成分を含有する組成物より硬化物を得た。なお、各平均組成式中、Me、PhおよびViはそれぞれ、メチル基、フェニル基およびビニル基を表す。
[実施例1]
平均単位式:(MeViSiO1/20.044(MeSiO1/20.411(SiO4/20.545で示されるビニル末端分岐鎖ポリシロキサン(A-1)を3.5重量部、平均式:ViMeSiO(SiMeO)322SiMeViで示されるビニル末端直鎖ポリシロキサン(A-2)を89.7重量部、平均式:HMeSiO(SiMeO)10SiMeHで示される直鎖ポリシロキサン(B-1)を6.8重量部、白金原子として5ppmの白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(C-1)、および白金原子として20ppmの、(メチルシクロペンタジエニル)トリメチル白金(IV)(D-1)を含有する組成物が調製された。組成物の粘度は、1,800mPa・sであった。組成物を調製後、10分間放置した後、粘度3,200mPa・sに増粘した組成物に、オゾンカットフィルターを2W高圧水銀灯を365nmでの紫外線照射量が5000mJ/cmとなるように、照射した直後に粘度を測定したところ、30,000mPa・s以上に増粘していたが、流動性は保っていたが、紫外線照射後、5分後にはゲル化して、非流動化していることが確認された。硬化物の硬さ針入度で10分おきに測ったところ、紫外線照射後1時間で一定の針入度32に安定化し、硬化反応が完結していることが確認された。
[実施例2]
前記A-1を3.5重量部、前記A-2を6.5重量部、平均組成式:平均式:ViMeSiO(SiMeO)535SiMeViで示されるビニル末端直鎖ポリシロキサン(A-3)を82.4重量部、前記B-1を4.6重量部、前記C-1を白金原子として10ppm、前記D-1を白金量として20ppmを含有する組成物が調製された。組成物の粘度は、8,200mPa・sであった。組成物を調製後、10分間放置した後、粘度14,000mPa・sに増粘した組成物に、オゾンカットフィルターを2W高圧水銀灯を365nmでの紫外線照射量が2500mJ/cmとなるように、照射した直後に粘度を測定したところ、50,000mPa・s以上に増粘していたが、流動性は保っていたが、紫外線照射後、10分後にはゲル化して、非流動化していることが確認された。硬化物の硬さ針入度で10分おきに測ったところ、紫外線照射後1時間で一定の針入度35に安定化し、硬化反応が完結していることが確認された。
[実施例3]
平均単位式:(MeViSiO1/20.1(MeSiO1/20.4(SiO4/20.5で示されるビニル末端分岐鎖ポリシロキサン(A-4)を55.7重量部、平均単位式:(MeSiO1/20.44(SiO4/20.56で示される分岐鎖ポリシロキサン(E-1)を13.3重量部、平均式:ViMeSiO(SiMeO)160SiMeViで示されるビニル末端直鎖ポリシロキサン(A-3)を1.7重量部、平均式:HMeSiO(SiMeO)400SiMeHで示される直鎖ポリシロキサン(B-2)を24.6重量部、平均式:MeSiO(SiMeO)30(SiMeHO)30SiMeの直鎖ポリシロキサン(B-3)を4.7重量部、白金原子として0.2ppmの前記C-1、および白金原子として5ppmの前記D-1を含有する組成物が調製された。組成物の粘度は、3,500mPa・sであった。組成物を、90℃で30分加熱し、25℃では流動性がないが100℃では流動性のある熱可塑体を得た。得られた熱可塑体は25℃で2ヶ月間保管されても、100℃での流動性を失わないものであった。この熱可塑体はオゾンカットフィルターを2W高圧水銀灯を365nmで紫外線照射量が2500mJ/cm照射され、続いて120℃で30分間加熱されることによって、ショアA硬さ80の硬化物を得た。
[実施例4]
前記A-4を32.2重量部、前記E-1を28.5重量部、前記A-3を20.7重量部、前記B-2を15.7重量部、前記B-3を2.9重量部、白金原子として0.1ppmの前記C-1および白金原子として5ppmの前記D-1を含有する組成物が調製された。組成物の粘度は、2,800mPa・sであった。組成物を、90℃で30分加熱し、25℃では流動性がないが100℃では流動性のある熱可塑体を得た。得られた熱可塑体は25℃で2ヶ月間保管されても、100℃での流動性を失わないものであった。ここの熱可塑体はオゾンカットフィルターを2W高圧水銀灯を365nmで紫外線照射量が2500mJ/cm照射され、続いて120℃で30分間加熱されることによって、ショアA硬さ35の硬化物を得た。
[実施例5]
実施例1の組成物を液晶パネルと偏光板が一体となった部材上厚みが200μmとなるように、バーコーターを用いて塗布した。塗布後、5分以内にコンベヤー式UV照射装置を用いて、365nmで照射量が5000mJ/cm2となる紫外線を照射した。照射後、3分以内に、カバーガラスを被せ、常温で放置した。カバーガラスははじめ横方向から力を加えると動いていたが、紫外線照射後5分後には、動きにくくなり、30分後には全く動かなくなった。
[実施例6]
平均組成式:ViMeSiO(SiMePhO)36SiMeViで示される
ビニル末端直鎖ポリシロキサン(A-5)を93.6重量%、平均組成式:(ViMeSiO1/2)0.22(MeXSiO2/2)0.12(PhSiO3/2)0.66(式中、Xはグリシドキシプロピル基を表す)で示されるビニル基含有ポリシロキサン(A-6)を1.0重量%、分子式:PhSi(OSiMeH)で示される直鎖状ポリシロキサン(B-3)を3.9重量%、平均組成式:(HMeSiO1/20.6(PhSiO3/20.4で示される分岐状ポリシロキサン(B-4)を1.3重量%、グリシドキシプロピルトリメトキシシランを0.2重量%、白金原子として5ppmの前記C-1および白金原子として20ppmの前記D-1を含有する組成物が調整された。組成物の粘度は、6,000mPa・sであった。組成物を、25℃で10分間放置したところ、粘度が約12,000mPa・sの増粘体が得られた。この熱可塑体はオゾンカットフィルターを通して2W高圧水銀灯を365nmで紫外線照射量が2500mJ/cm照射された。紫外線が照射された後、25℃で15分後には組成物は流動性のなりゲルへと変化し、25℃40分後には、針入度が35の硬化物が得られた。
[比較例1]
前記A-1を3.5重量部、前記A-2を89.7重量部、前記B-1を6.8重量部、白金原子として60ppmの前記C-1を含有する組成物が調製された。組成物の粘度は、1,800mPa・sであった。組成物を調製後、直ちに組成物が発熱し、1分後にはゲル化し、非流動性となった。硬化が速すぎて、針入度測定用の試験体が調製できず、硬化物も茶褐色に着色していた。
[比較例2]
前記A-1を3.5重量部、前記A-2を89.7重量部、前記B-1を6.8重量部、白金原子として20ppmの前記D-1を含有する組成物が調製された。組成物の粘度は、1,800mPa・sであった。組成物を調製後、10分間放置した後、粘度1,800mPa・sと一定粘度の組成物に、オゾンカットフィルターを2W高圧水銀灯を365nmでの紫外線照射量が5000mJ/cmとなるように、照射した直後に粘度を測定したところ、3,200mPa・sに増粘していた、紫外線照射後、1時間後もゲル化しなかったので、組成物を100℃に加熱したところ、30分後に漸く非流動化していることが確認された。
[比較例3]
前記A-4を55.7重量部、前記E-1を13.3重量部、前記A-3を1.7重量部、前記B-2を24.6重量部、前記B-を4.7重量部および白金原子として2ppmの前記C-1を含有する組成物が調製された。組成物の粘度は、3,500mPa・sであった。組成物を、90℃で30分加熱し、ショアA硬さ80の硬化物を得た。また、より軟らかい硬化物を得るために、上記組成物を50℃で30分加熱したところ、ショアA硬さ40の硬化物を得た。しかし得られた硬化物は高温流動性を示さず、硬化物は時間とともに徐々に硬さを増し、25℃で2週間後にはショアA硬さ75となった。
[比較例4]
前記A-4を32.2重量部、前記E-1を28.5重量部、前記A-3を20.7重量部、前記B-2を15.7重量部、前記B-3を2.9重量部、白金原子として0.1ppmの前記C-1および白金原子として5ppmの前記D-1を含有する組成物が調製された。組成物の粘度は、2,800mPa・sであった。組成物を、90℃で30分加熱したが、組成物に何も変化が見られなかった。
[比較例5]
前記A-2を94.0重量部、前記B-2を4.1重量部、前記B-3を1.4重量部、白金原子として5ppmの前記C-1を含有する組成物が調製された。組成物の粘度は、2,100mPa・sであった。組成物は、25℃で30分後にゲル化した。
[比較例6]
比較例2の組成物を液晶パネルと偏光板が一体となった部材上厚みが200μmとなるように、バーコーターを用いて塗布した。塗布後、5分以内にコンベヤー式UV照射装置を用いて、365nmで照射量が5000mJ/cm2となる紫外線を照射した。照射後、3分以内に、カバーガラスを被せ、常温で放置した。カバーガラス端部から徐々に液が漏れ出し、紫外線照射後30分後になっても硬化しなかった。
[比較例7]
前記A-5を93.6重量%、前記A-6を1.0重量%、前記B-3を3.9重量%、前記B-4を1.3重量%、グリシドキシプロピルトリメトキシシランを0.2重量%および白金原子として5ppmの前記C-1を含有する組成物が調整された。組成物の粘度は、6,000mPa・sであった。組成物を、25℃で10分間放置したところ、粘度が約12,000mPa・sの増粘体が得られた。この熱可塑体はオゾンカットフィルターを通して2W高圧水銀灯を365nmで紫外線照射量が2500mJ/cm照射された。紫外線が照射された後、25℃で60分後には組成物は漸く流動性のなりゲルへと変化したが、25℃2時間経過しても、針入度が低下し続け、硬化反応が完結していないことが分かった。
本発明のオルガノポリシロキサン硬化物の製造方法は、常温で十分な可使時間を有しながらも低温で高速硬化できるので、画像表示装置の層間の積層体の形成方法として好適である。

Claims (14)

  1. オルガノポリシロキサン硬化物を製造する方法であって、
    工程(i):下記成分(A)~(D)
    (A)下記平均組成式(1):
    SiO(4-a―b)/2 (1)
    (式中、R1は炭素数2~12のアルケニル基であり、R2は脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、水酸基およびアルコキシ基から選択される基であり、aおよびbは次の条件:1≦a+b≦3及び0.001≦a/(a+b)≦0.33を満たす数である)で表されるオルガノポリシロキサン、
    (B)下記平均組成式(2):
    SiO(4-c-d)/2   (2)
    (式中、Rは脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基から選択される基であり、cおよびdは次の条件:1≦c+d≦3及び0.01≦c/(c+d)≦0.33を満たす数である)で表されるオルガノポリシロキサン、
    (C)高エネルギー線の照射なしで、本組成物中で活性を示す第一のヒドロシリル化反応用触媒、及び
    (D)高エネルギー線の照射がないと活性を示さないが、高エネルギー線の照射により本組成物中で活性を示す第二のヒドロシリル化反応用触媒、
    を含有する組成物を、高エネルギー線の照射なしでヒドロシリル化反応を行い室温で流動性を有する増粘体または室温では非流動性だが100℃では流動性を示す熱可塑体を得る工程、および
    工程(ii):上記工程(i)で得られた増粘体または熱可塑体に高エネルギー線を照射する工程、
    を含有する、方法。
  2. 高エネルギー線が、紫外線、ガンマ線、X線、α線、又は電子線から選択されるいずれかである、請求項1に記載のオルガノポリシロキサン硬化物の製造方法。
  3. 前記(B)成分が、下記平均単位式(3):
    (HR4 2SiO1/2)e(R4 3SiO1/2)f(HR4SiO2/2)g(R4 2SiO2/2)h(HSiO3/2)i(R4SiO3/2)j(SiO4/2)k(R5O1/2)l   (3)
    (式中、Rはそれぞれ独立に、脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基から選択される基であり、Rは水素原子または炭素数1~6のアルキル基であり、e,f、g、h、i、j、kおよびlは次の条件:e+f+g+h+i+j+k=1、0≦l≦0.1、0.01≦e+g+i≦0.2、0≦e≦0.6、0≦g≦0.6、0≦i≦0.4、0.01≦e+f≦0.8、0.01≦g+h≦0.8、0≦i+j≦0.6を満たす数である)
    で表されるオルガノハイドロジェンポリシロキサンである、請求項1に記載のオルガノポリシロキサン硬化物の製造方法。
  4. 前記(C)成分と前記(D)成分のモル比((C)/(D))が0.001~1000である、請求項1ないし3のいずれか1項に記載のオルガノポリシロキサン硬化物の製造方法。
  5. 請求項1ないし4のいずれか1項に記載の方法によって製造された、オルガノポリシロキサン硬化物。
  6. 請求項1ないし4のいずれか1項に記載の方法によって製造された、オルガノポリシロキサン硬化物を層間に配置した積層体。
  7. 画像表示装置である請求項6記載の積層体。
  8. 請求項1ないし4のいずれか1項に記載の方法によって製造された、オルガノポリシロキサン硬化物を有する光学装置。
  9. オルガノポリシロキサン硬化物を層間に配置した積層体の製造方法であって、
    工程(iii):下記成分(A)~(D)
    (A)下記平均組成式(1):
    SiO(4-a―b)/2 (1)
    (式中、R1は炭素数2~12のアルケニル基であり、R2は脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、水酸基およびアルコキシ基から選択される基であり、aおよびbは次の条件:1≦a+b≦3及び0.001≦a/(a+b)≦0.33を満たす数である)で表されるオルガノポリシロキサン、
    (B)下記平均組成式(2):
    SiO(4-c-d)/2   (2)
    (式中、Rは脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基から選択される基であり、cおよびdは次の条件:1≦c+d≦3及び0.01≦c/(c+d)≦0.33を満たす数である)で表されるオルガノポリシロキサン、
    (C)高エネルギー線の照射なしで、本組成物中で活性を示す第一のヒドロシリル化反応用触媒、及び
    (D)高エネルギー線の照射がないと活性を示さないが、高エネルギー線の照射により本組成物中で活性を示す第二のヒドロシリル化反応用触媒、
    を含有する組成物を、基板上に塗布し、高エネルギー線の照射なしでヒドロシリル化反応を行い、室温で流動性を有する増粘体または室温では非流動性だが100℃では流動性を示す熱可塑体の層を形成する工程、
    工程(iV):上記工程(iii)で得られた増粘体または熱可塑体の層上に上層部材を形成する工程、および
    工程(V):基板の下、上層部材の上、または増粘体または熱可塑体の層の側面の少なくとも一つから増粘体または熱可塑体の層に高エネルギー線を照射する工程、
    を含有する、方法。
  10. オルガノポリシロキサン硬化物を層間に配置した積層体の製造方法であって、
    工程(Vi):下記成分(A)~(D)
    (A)下記平均組成式(1):
    SiO(4-a―b)/2 (1)
    (式中、R1は炭素数2~12のアルケニル基であり、R2は脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、水酸基およびアルコキシ基から選択される基であり、aおよびbは次の条件:1≦a+b≦3及び0.001≦a/(a+b)≦0.33を満たす数である)で表されるオルガノポリシロキサン、
    (B)下記平均組成式(2):
    SiO(4-c-d)/2   (2)
    (式中、Rは脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基から選択される基であり、cおよびdは次の条件:1≦c+d≦3及び0.01≦c/(c+d)≦0.33を満たす数である)で表されるオルガノポリシロキサン、
    (C)高エネルギー線の照射なしで、本組成物中で活性を示す第一のヒドロシリル化反応用触媒、及び
    (D)高エネルギー線の照射がないと活性を示さないが、高エネルギー線の照射により本組成物中で活性を示す第二のヒドロシリル化反応用触媒、
    を含有する組成物を、基板上に塗布し、高エネルギー線の照射なしでヒドロシリル化反応を行い、室温で流動性を有する増粘体または室温では非流動性だが100℃では流動性を示す熱可塑体の層を形成する工程、
    工程(Vii):上記工程(Vi)で得られた増粘体または熱可塑体の層に高エネルギー線を照射する工程、
    工程(Viii):上記高エネルギー線が照射された増粘体または熱可塑体の層上に上層部材を形成する工程、および
    工程(iX):加熱または室温にて放置することによって上記増粘体または熱可塑体の層を硬化させる工程、
    を含有する、方法。
  11. オルガノポリシロキサン硬化物を層間に配置した積層体の製造方法であって、
    工程(X):下記成分(A)~(D)
    (A)下記平均組成式(1):
    SiO(4-a―b)/2 (1)
    (式中、R1は炭素数2~12のアルケニル基であり、R2は脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、水酸基およびアルコキシ基から選択される基であり、aおよびbは次の条件:1≦a+b≦3及び0.001≦a/(a+b)≦0.33を満たす数である)で表されるオルガノポリシロキサン、
    (B)下記平均組成式(2):
    SiO(4-c-d)/2   (2)
    (式中、Rは脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基から選択される基であり、cおよびdは次の条件:1≦c+d≦3及び0.01≦c/(c+d)≦0.33を満たす数である)で表されるオルガノポリシロキサン、
    (C)高エネルギー線の照射なしで、本組成物中で活性を示す第一のヒドロシリル化反応用触媒、及び
    (D)高エネルギー線の照射がないと活性を示さないが、高エネルギー線の照射により本組成物中で活性を示す第二のヒドロシリル化反応用触媒、
    を含有する組成物を、基板上に塗布し、高エネルギー線の照射なしでヒドロシリル化反応を行い、室温で流動性を有する増粘体または室温では非流動性だが100℃では流動性を示す熱可塑体の層を形成する工程、
    工程(Xi):上記工程(X)で得られた増粘体または熱可塑体の層に高エネルギー線を照射する工程、
    工程(Xii):上記高エネルギー線が照射された増粘体または熱可塑体の層上に上層部材を形成する工程、および
    工程(Xiii):基板の下、上層部材上、または増粘体または熱可塑体の層の側面の少なくともひとつから増粘体または熱可塑体の層に高エネルギー線を照射する工程、
    を含有する方法。
  12. 請求項9ないし11のいずれかの方法によって得られた、積層体。
  13. オルガノポリシロキサン硬化物を表面に形成した光学装置を形成する方法であって、
    工程(ixv):下記成分(A)~(D)
    (A)下記平均組成式(1):
    SiO(4-a―b)/2 (1)
    (式中、R1は炭素数2~12のアルケニル基であり、R2は脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、水酸基およびアルコキシ基から選択される基であり、aおよびbは次の条件:1≦a+b≦3及び0.001≦a/(a+b)≦0.33を満たす数である)で表されるオルガノポリシロキサン、
    (B)下記平均組成式(2):
    SiO(4-c-d)/2   (2)
    (式中、Rは脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基から選択される基であり、cおよびdは次の条件:1≦c+d≦3及び0.01≦c/(c+d)≦0.33を満たす数である)で表されるオルガノポリシロキサン、
    (C)高エネルギー線の照射なしで、本組成物中で活性を示す第一のヒドロシリル化反応用触媒、及び
    (D)高エネルギー線の照射がないと活性を示さないが、高エネルギー線の照射により本組成物中で活性を示す第二のヒドロシリル化反応用触媒、
    を含有する組成物を、離型フィルム上に塗布し、高エネルギー線の照射なしでヒドロシリル化反応を行い、室温では非流動性だが100℃では流動性を示す熱可塑性フィルムを形成する工程、
    工程(xv):上記熱可塑性フィルムを光学装置上に設置し、加熱する工程、
    工程(xvi):上記工程(xv)で得られた熱可塑性フィルムまたはその溶融物に高エネルギー線を照射する工程、
    を有する、方法。
  14. 請求項13の方法によって得られた、光学装置。
PCT/JP2018/040248 2017-10-31 2018-10-30 オルガノポリシロキサン硬化物を製造する方法、オルガノポリシロキサン硬化物、積層体、および光学部品 WO2019088067A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880067333.2A CN111212876B (zh) 2017-10-31 2018-10-30 制造有机聚硅氧烷硬化物的方法、有机聚硅氧烷硬化物、叠层体、及光学零件
JP2019550396A JPWO2019088067A1 (ja) 2017-10-31 2018-10-30 オルガノポリシロキサン硬化物を製造する方法、オルガノポリシロキサン硬化物、積層体、および光学部品
EP18873250.7A EP3705536A4 (en) 2017-10-31 2018-10-30 METHOD FOR MANUFACTURING AN ORGANOPOLYSILOXANE CURED PRODUCT, ORGANOPOLYSILOXANE CURED PRODUCT, LAYERED PRODUCT AND OPTICAL PART
US16/760,538 US11591440B2 (en) 2017-10-31 2018-10-30 Method for producing organopolysiloxane cured product, organopolysiloxane cured product, layered product, and optical part
KR1020207013767A KR20200070327A (ko) 2017-10-31 2018-10-30 오르가노폴리실록산 경화물을 제조하는 방법, 오르가노폴리실록산 경화물, 적층체, 및 광학 부품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-211400 2017-10-31
JP2017211400 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019088067A1 true WO2019088067A1 (ja) 2019-05-09

Family

ID=66331870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040248 WO2019088067A1 (ja) 2017-10-31 2018-10-30 オルガノポリシロキサン硬化物を製造する方法、オルガノポリシロキサン硬化物、積層体、および光学部品

Country Status (7)

Country Link
US (1) US11591440B2 (ja)
EP (1) EP3705536A4 (ja)
JP (1) JPWO2019088067A1 (ja)
KR (1) KR20200070327A (ja)
CN (1) CN111212876B (ja)
TW (1) TW201922856A (ja)
WO (1) WO2019088067A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230168A1 (ja) * 2018-06-01 2019-12-05 信越化学工業株式会社 画像表示装置用紫外線硬化型液状オルガノポリシロキサン組成物、その硬化方法、画像表示装置部材の貼合方法、及び画像表示装置
JPWO2019088066A1 (ja) * 2017-10-31 2020-12-17 ダウ・東レ株式会社 オルガノポリシロキサン組成物、並びにこれから作製される半硬化物および硬化物
WO2021200643A1 (ja) * 2020-03-30 2021-10-07 ダウ・東レ株式会社 硬化性ホットメルトシリコーン組成物、その硬化物、及び前記組成物又は硬化物を含む積層体
WO2022004463A1 (ja) * 2020-06-30 2022-01-06 ダウ・東レ株式会社 硬化性オルガノポリシロキサン組成物およびその使用
WO2022138336A1 (ja) * 2020-12-25 2022-06-30 ダウ・東レ株式会社 硬化性シリコーン組成物、その硬化物および積層体
WO2022138335A1 (ja) * 2020-12-25 2022-06-30 ダウ・東レ株式会社 積層体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220340756A1 (en) * 2018-10-30 2022-10-27 Dow Toray Co., Ltd. Curable reactive silicone composition, cured product thereof and uses of composition and cured product

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177029A (ja) * 1984-02-21 1985-09-11 Toray Silicone Co Ltd オルガノポリシロキサン組成物の硬化方法
JPS6195069A (ja) * 1984-09-28 1986-05-13 ゼネラル・エレクトリツク・カンパニイ 新規な二元硬化型シリコーン組成物
JPS61162561A (ja) * 1985-01-11 1986-07-23 Toray Silicone Co Ltd 剥離性皮膜形成用オルガノポリシロキサン組成物
JPH05239216A (ja) 1983-12-06 1993-09-17 Minnesota Mining & Mfg Co <3M> 白金錯体とその製法
JP2003213132A (ja) * 2002-01-23 2003-07-30 Shin Etsu Chem Co Ltd オルガノポリシロキサンゲル組成物
JP2009220084A (ja) * 2008-03-19 2009-10-01 Nitto Denko Corp セパレータの製造方法、セパレータ及びセパレータ付き粘着テープ
JP2009270067A (ja) * 2008-05-09 2009-11-19 Tohoku Univ 光硬化型組成物、硬化物および光硬化型樹脂フィルム
JP2010047646A (ja) * 2008-08-19 2010-03-04 Momentive Performance Materials Inc 光硬化性オルガノポリシロキサン組成物
JP2010202801A (ja) * 2009-03-04 2010-09-16 Nitto Denko Corp 熱硬化性シリコーン樹脂用組成物
JP2011012264A (ja) * 2009-07-06 2011-01-20 Wacker Chemie Ag 光により架橋可能なシリコーン混合物からシリコーン被覆及びシリコーン成形品を製造する方法
JP2012121960A (ja) * 2010-12-07 2012-06-28 Shin-Etsu Chemical Co Ltd シリコーン樹脂組成物の硬化方法
JP2013063391A (ja) * 2011-09-16 2013-04-11 Shin-Etsu Chemical Co Ltd 光硬化型シリコーン樹脂組成物を用いる硬化薄膜の製造方法
JP2014082399A (ja) * 2012-10-18 2014-05-08 Shin Etsu Chem Co Ltd 太陽電池モジュールの製造方法及び太陽電池モジュール
JP2015214637A (ja) * 2014-05-09 2015-12-03 信越化学工業株式会社 熱可塑性樹脂基板とオルガノポリシロキサン樹脂とを接着する方法
WO2017079502A1 (en) * 2015-11-05 2017-05-11 Carbon, Inc. Silicone dual cure resins for additive manufacturing

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852832A (en) * 1972-10-24 1974-12-10 Heyer Schulte Corp Prosthesis with fixation means
US4587137A (en) 1984-09-28 1986-05-06 General Electric Company Novel dual cure silicone compositions
JP4715990B2 (ja) 2004-01-09 2011-07-06 信越化学工業株式会社 光記録媒体用硬化性樹脂組成物及び光記録媒体
US7192795B2 (en) * 2004-11-18 2007-03-20 3M Innovative Properties Company Method of making light emitting device with silicon-containing encapsulant
JP4648099B2 (ja) * 2005-06-07 2011-03-09 信越化学工業株式会社 ダイボンディング用シリコーン樹脂組成物
US20100183814A1 (en) 2005-08-02 2010-07-22 Victor Rios Silicone compositions, methods of manufacture, and articles formed therefrom
WO2007047289A1 (en) * 2005-10-17 2007-04-26 3M Innovative Properties Company Method of making light emitting device with silicon-containing encapsulant
US8017246B2 (en) 2007-11-08 2011-09-13 Philips Lumileds Lighting Company, Llc Silicone resin for protecting a light transmitting surface of an optoelectronic device
JP6300218B2 (ja) * 2010-12-31 2018-03-28 サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. 封止材用透光性樹脂組成物、該透光性樹脂を含む封止材および電子素子
JP2017161779A (ja) * 2016-03-10 2017-09-14 富士ゼロックス株式会社 定着部材、定着装置、及び画像形成装置
EP3705537A4 (en) * 2017-10-31 2021-08-18 Dow Toray Co., Ltd. ORGANOPOLYSILOXANE COMPOSITION, SEMI-HARDENED PRODUCT AND HARDENED PRODUCT MADE FROM IT

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239216A (ja) 1983-12-06 1993-09-17 Minnesota Mining & Mfg Co <3M> 白金錯体とその製法
JPS60177029A (ja) * 1984-02-21 1985-09-11 Toray Silicone Co Ltd オルガノポリシロキサン組成物の硬化方法
JPS6195069A (ja) * 1984-09-28 1986-05-13 ゼネラル・エレクトリツク・カンパニイ 新規な二元硬化型シリコーン組成物
JPS61162561A (ja) * 1985-01-11 1986-07-23 Toray Silicone Co Ltd 剥離性皮膜形成用オルガノポリシロキサン組成物
JP2003213132A (ja) * 2002-01-23 2003-07-30 Shin Etsu Chem Co Ltd オルガノポリシロキサンゲル組成物
JP2009220084A (ja) * 2008-03-19 2009-10-01 Nitto Denko Corp セパレータの製造方法、セパレータ及びセパレータ付き粘着テープ
JP2009270067A (ja) * 2008-05-09 2009-11-19 Tohoku Univ 光硬化型組成物、硬化物および光硬化型樹脂フィルム
JP2010047646A (ja) * 2008-08-19 2010-03-04 Momentive Performance Materials Inc 光硬化性オルガノポリシロキサン組成物
JP2010202801A (ja) * 2009-03-04 2010-09-16 Nitto Denko Corp 熱硬化性シリコーン樹脂用組成物
JP2011012264A (ja) * 2009-07-06 2011-01-20 Wacker Chemie Ag 光により架橋可能なシリコーン混合物からシリコーン被覆及びシリコーン成形品を製造する方法
JP2012121960A (ja) * 2010-12-07 2012-06-28 Shin-Etsu Chemical Co Ltd シリコーン樹脂組成物の硬化方法
JP2013063391A (ja) * 2011-09-16 2013-04-11 Shin-Etsu Chemical Co Ltd 光硬化型シリコーン樹脂組成物を用いる硬化薄膜の製造方法
JP2014082399A (ja) * 2012-10-18 2014-05-08 Shin Etsu Chem Co Ltd 太陽電池モジュールの製造方法及び太陽電池モジュール
JP2015214637A (ja) * 2014-05-09 2015-12-03 信越化学工業株式会社 熱可塑性樹脂基板とオルガノポリシロキサン樹脂とを接着する方法
WO2017079502A1 (en) * 2015-11-05 2017-05-11 Carbon, Inc. Silicone dual cure resins for additive manufacturing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3705536A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019088066A1 (ja) * 2017-10-31 2020-12-17 ダウ・東レ株式会社 オルガノポリシロキサン組成物、並びにこれから作製される半硬化物および硬化物
WO2019230168A1 (ja) * 2018-06-01 2019-12-05 信越化学工業株式会社 画像表示装置用紫外線硬化型液状オルガノポリシロキサン組成物、その硬化方法、画像表示装置部材の貼合方法、及び画像表示装置
JP2019210351A (ja) * 2018-06-01 2019-12-12 信越化学工業株式会社 画像表示装置用紫外線硬化型液状オルガノポリシロキサン組成物、その硬化方法、画像表示装置部材の貼合方法、及び画像表示装置
WO2021200643A1 (ja) * 2020-03-30 2021-10-07 ダウ・東レ株式会社 硬化性ホットメルトシリコーン組成物、その硬化物、及び前記組成物又は硬化物を含む積層体
CN115335459A (zh) * 2020-03-30 2022-11-11 陶氏东丽株式会社 固化性热熔有机硅组合物、其固化物、以及包含所述组合物或固化物的层叠体
CN115335459B (zh) * 2020-03-30 2024-01-02 陶氏东丽株式会社 固化性热熔有机硅组合物、其固化物、以及包含所述组合物或固化物的层叠体
WO2022004463A1 (ja) * 2020-06-30 2022-01-06 ダウ・東レ株式会社 硬化性オルガノポリシロキサン組成物およびその使用
WO2022138336A1 (ja) * 2020-12-25 2022-06-30 ダウ・東レ株式会社 硬化性シリコーン組成物、その硬化物および積層体
WO2022138335A1 (ja) * 2020-12-25 2022-06-30 ダウ・東レ株式会社 積層体の製造方法

Also Published As

Publication number Publication date
TW201922856A (zh) 2019-06-16
KR20200070327A (ko) 2020-06-17
US11591440B2 (en) 2023-02-28
JPWO2019088067A1 (ja) 2020-11-26
US20210179783A1 (en) 2021-06-17
CN111212876A (zh) 2020-05-29
EP3705536A4 (en) 2021-08-04
EP3705536A1 (en) 2020-09-09
CN111212876B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2019088067A1 (ja) オルガノポリシロキサン硬化物を製造する方法、オルガノポリシロキサン硬化物、積層体、および光学部品
WO2019088066A1 (ja) オルガノポリシロキサン組成物、並びにこれから作製される半硬化物および硬化物
JP5811117B2 (ja) 硬化性シリコーン組成物の硬化方法
JP6156251B2 (ja) 熱可塑性樹脂基板とオルガノポリシロキサン樹脂とを接着する方法
US20220340756A1 (en) Curable reactive silicone composition, cured product thereof and uses of composition and cured product
JP7053124B2 (ja) 硬化性シリコーン組成物、その硬化物、および光学ディスプレイ
WO2021200643A1 (ja) 硬化性ホットメルトシリコーン組成物、その硬化物、及び前記組成物又は硬化物を含む積層体
WO2019093295A1 (ja) オルガノポリシロキサン組成物
JP2019210351A (ja) 画像表示装置用紫外線硬化型液状オルガノポリシロキサン組成物、その硬化方法、画像表示装置部材の貼合方法、及び画像表示装置
TW201945508A (zh) 顯示裝置用間隙密封劑組成物、使用其之顯示裝置之製造方法及顯示裝置
CN113330072A (zh) 紫外线固化型有机硅粘接剂组合物和层叠体的制造方法
TWI816893B (zh) 紫外線硬化型聚矽氧黏著劑組成物及層合體之製造方法
JP7176828B2 (ja) オルガノポリシロキサン組成物
EP4174137A1 (en) Curable silicone composition and cured product therefrom
TW201821543A (zh) 組成物、光漫散器和由其所形成之裝置、及相關方法
WO2024135805A1 (ja) 硬化性シリコーン組成物、その硬化生成物、及び前記組成物の使用
TW202239869A (zh) 硬化性熱熔聚矽氧組成物、其硬化物、及含有該組成物或硬化物之積層體
WO2024057924A1 (ja) 硬化性シリコーン組成物及びその硬化物、積層体、並びに光学装置又は光学ディスプレイ
WO2024000245A1 (en) Uv curable organopolysiloxane composition and application thereof
CN118401613A (zh) 紫外线固化性有机硅组合物
JP2024033609A (ja) 画像表示装置用紫外線硬化型液状シリコーン組成物、画像表示装置部材の貼合方法、及び画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550396

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207013767

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018873250

Country of ref document: EP

Effective date: 20200602