WO2019065254A1 - 正極活物質、及び、その製造方法、並びに、正極、及びリチウムイオン電池 - Google Patents

正極活物質、及び、その製造方法、並びに、正極、及びリチウムイオン電池 Download PDF

Info

Publication number
WO2019065254A1
WO2019065254A1 PCT/JP2018/033869 JP2018033869W WO2019065254A1 WO 2019065254 A1 WO2019065254 A1 WO 2019065254A1 JP 2018033869 W JP2018033869 W JP 2018033869W WO 2019065254 A1 WO2019065254 A1 WO 2019065254A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
surface area
particles
Prior art date
Application number
PCT/JP2018/033869
Other languages
English (en)
French (fr)
Inventor
友哉 田村
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to JP2019507879A priority Critical patent/JP6568333B1/ja
Priority to KR1020197026270A priority patent/KR20190116999A/ko
Priority to EP18863035.4A priority patent/EP3584862A4/en
Priority to CN201880008201.2A priority patent/CN110235290B/zh
Publication of WO2019065254A1 publication Critical patent/WO2019065254A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic

Definitions

  • the present invention relates to a positive electrode active material, a method for producing the same, a positive electrode, and a lithium ion battery. More specifically, the present invention relates to a positive electrode active material having a high nickel content, a method for producing the same, a positive electrode, and a lithium ion battery.
  • all-solid-state lithium ion secondary battery (hereinafter, abbreviated as all-solid LIB) using a solid electrolyte.
  • This all-solid-state LIB reduces the risk of the above-mentioned ignition as compared to a conventional lithium ion secondary battery using an electrolytic solution.
  • concern about stable operation has been pointed out from the beginning of development because lithium ion conduction takes place within and between particles.
  • Patent Document 1 discloses providing a LiNbO 3 coating layer on the surface of LiCoO 2 powder particles. Furthermore, the document discloses a wet method (a method using an alkoxide solution containing Nb or the like) as the means. Patent Documents 2 to 3 disclose a dry method (barrel sputtering method) as a coating method.
  • Patent No. 4982866 JP 2007-5073 A Patent No. 6102859
  • Patent Document 1 discloses a material in which the surface of LICoO 2 is coated with LiNbO 3 . Thereby, the interfacial resistance between LiCoO 2 and the solid electrolyte material can be reduced, and the output of the battery can be increased. However, even then, a capacity comparable to that of a lithium ion secondary battery using a conventional electrolyte has not been obtained.
  • a substance having a large capacity as a positive electrode active material, in place of known LiCoO 2 or LiNi 1/3 Co 1/3 Mn 1/3 O 2 . More specifically, it is considered that a substance having a Ni / (Ni + Co + Mn) molar ratio of 0.8 or more (hereinafter abbreviated as high nickel) such as LiNi 0.8 Co 0.1 Mn 0.1 O 2 is adopted as a positive electrode active material There is.
  • the high nickel positive electrode active material has been regarded as difficult to use in the conventional lithium ion secondary battery using an electrolytic solution.
  • the reasons for this include the occurrence of gelation during the preparation of the slurry, and the poor compatibility with the above-mentioned electrolytic solution and lithium salt.
  • the conventionally used positive electrode active material LiCoO 2 is a primary particle type (that is, the tendency of primary particles to further aggregate to form secondary particles) and is a very dense unit particle . Therefore, treatments such as tumbling flow coating using a solution of Li and a transition metal are effective for uniform coating.
  • the positive electrode active material particles containing nickel primary particles generally aggregate to form secondary particles. Therefore, since the surface has many irregularities, the thickness of the coating layer is difficult to be uniform. In addition, since the secondary particles are not completely compact particles, the coating solution penetrates into the active material particles. As a result, the residual solution inside the particles is generated as a gas at the time of calcination, and the covering layer tends to be porous.
  • One of the causes is considered to be that only about 60% to 70% of the capacity of the conventional lithium ion can be obtained.
  • LiNbO 3 particles to be a coating material can be reduced to only a submicron size. Due to this, when the amount of coating is small, LiNbO 3 only coats in an island shape. In addition, when the coating amount is increased, although almost the entire surface is coated, the coating layer becomes too thick. When a thick material of such a covering layer is used as a positive electrode active material, the total solid LIB has only about half the capacity of a conventional lithium ion secondary battery.
  • LiNbO 3 coated high nickel can be provided as a positive electrode active material, which can not be achieved by applying the conventional coating method (eg, sol-gel method) as it is to the prior art. It is an object to achieve improvement of cell characteristics in all solid LIB.
  • the present inventors have found that by performing a specific heat treatment, secondary particles can be made dense and the specific surface area of the particles can be reduced. Moreover, it also discovered that it can suppress that a coating component impregnates the secondary particle inside by forming a secondary particle minutely. Therefore, it was shown that it can avoid that a coating layer becomes porous. Based on the above findings, the present invention is specified as follows.
  • the covering layer is represented by LiNbO 3
  • a positive electrode active material wherein the specific surface area of the positive electrode active material and the particle diameter satisfy the following relationship.
  • invention 5 The positive electrode active material according to any one of the inventions 1 to 4, wherein the specific surface area of the positive electrode active material is smaller than the specific surface area of the particles.
  • invention 6 A method for producing the positive electrode active material according to any one of the inventions 1 to 5, comprising: Mixing the raw materials of the compounds having the following compositions, and calcinating at a temperature of 700 ° C. to 800 ° C.
  • the present invention uses, in one aspect, particles having a controlled specific surface area. This can prevent the covering layer from becoming porous. And, the capacity of the lithium ion secondary battery can be further improved.
  • this invention can manufacture the particle
  • the present invention relates, in one embodiment, to a high nickel positive electrode active material.
  • the high nickel positive electrode active material can include particles and a covering layer covering the particles.
  • the abundance ratio of Co and Mn in the above composition formula may be as follows. 0.05 ⁇ c ⁇ 0.19, 0.01 ⁇ d ⁇ 0.1, In a further embodiment, the abundance ratio e of oxygen in the composition formula may be two.
  • the covering layer may comprise a compound represented by LiNbO 3.
  • the specific surface area of the positive electrode active material provided with the covering layer is 1 m 2 / g or less, more preferably 0.9 m 2 / g or less.
  • the lower limit value of the specific surface area is not particularly limited, but is typically 0.1 m 2 / g or more.
  • the specific surface area refers to a value measured by the following procedure: Degassing the target substance for 2 hours at 150 ° C. Measured by BET method (one-point method) using a mixed gas of He 70 at% —N 230 at% as an adsorption gas with Monosorb manufactured by Cantachrome Co.
  • the particle diameter of the positive electrode active material provided with the covering layer may have a D50 of 2 to 12 ⁇ m, more preferably 2.5 to 10.5 ⁇ m. By setting the above range, the capacity can be improved.
  • D50 refers to a value measured according to the following procedure: 50% diameter (median diameter: cumulative frequency of particle size distribution measured by a laser diffraction method using Microtrac MT 3000EX II manufactured by Nikkiso Co., Ltd. 50% particle size).
  • the particle diameter of the positive electrode active material provided with the covering layer and the specific surface area of the positive electrode active material provided with the covering layer can satisfy the following relationship.
  • the particle size of the active material in the above formula indicates a value measured by the same procedure as D50 described above.
  • the specific surface area in the above formula indicates a value measured by the above-mentioned BET method.
  • the density of the active material having the above-mentioned composition is considered to be about 4.7 g / cm 3 , although there is room for the ratio of each element to fluctuate somewhat.
  • the particle size and specific surface area of the particles before being covered by the covering layer preferably satisfy the following relationship.
  • the particle size of the core particles in the above formula indicates a value measured by the same procedure as D50 described above.
  • the specific surface area of the core particle in the above formula indicates the value measured by the above-mentioned BET method. That is, it is preferable that the above-described relationship be satisfied also for uncoated secondary particles. If the above-mentioned relationship is satisfied, the specific surface area after coating can be further reduced (particularly when coated by the wet coating method described later).
  • Method of manufacturing positive electrode active material 2-1 Method of Manufacturing Li Composite Compound Particles
  • a method of manufacturing a positive electrode active material for a lithium ion battery first, a three-component system of Ni ⁇ Co ⁇ Mn having a Ni composition of 0.8 or more in molar ratio A composite hydroxide or a precursor of a ternary composite hydroxide with Ni ⁇ Co ⁇ Mn is prepared.
  • a lithium source Li carbonate, Li hydroxide, etc.
  • a fired body positive electrode active material
  • the fired body is crushed using, for example, a pulperizer or the like to obtain a powder of the positive electrode active material.
  • the baking temperature (700 ° C. to 800 ° C.) is preferably adjusted appropriately according to the composition. More specifically, it is preferable to adjust the firing temperature according to the ratio of Ni.
  • the ratio b of Ni is specified in the range of 0.8 to 0.9.
  • the firing temperature when the ratio of Ni is relatively low in the range, it is preferable to set the firing temperature higher, and when the ratio of Ni is relatively high, it is preferable to set the firing temperature lower.
  • the firing temperature in accordance with the ratio of Ni, it is possible to obtain core particles satisfying the above-described relational expression of Y ′ ⁇ 3.5 ⁇ X ′ ⁇ 1 .
  • the powder in the coating method one embodiment, can be further coated with LiNbO 3.
  • Coating methods include wet and dry methods.
  • the coating solution in the present invention can contain a precursor of a lithium niobate-based compound.
  • the precursor of the lithium niobate compound is not particularly limited as long as it can obtain the lithium niobate compound by the heat treatment step described later.
  • the material which mixed Li source and Nb source can be mentioned.
  • a Li source Li alkoxide etc. can be mentioned, for example.
  • the Li alkoxide for example, a LiOC 2 H 5 and the like.
  • Nb source Nb alkoxide etc.
  • the Nb alkoxide for example, a Nb (OC 2 H 5) 5 and the like.
  • the solution thus produced is deposited on the surface of the oxide positive electrode active material.
  • the method for depositing the solution is not particularly limited as long as the solution can be deposited on the surface of the oxide positive electrode active material, but, for example, a method using a coating apparatus having a tumbling fluidized bed, stirring, -The method of heat drying may be used.
  • the oxide positive electrode active material having the precursor-coated portion can be heat-treated in an atmosphere having a predetermined oxygen concentration.
  • the heat treatment is preferably performed at 450 ° C. or less, more preferably 400 ° C. or less. This makes it possible to reduce the specific surface area after coating as compared to before coating.
  • the lower limit is not particularly defined, but may typically be 350 ° C. or higher.
  • the oxygen concentration in the heat treatment is not particularly limited, but may typically be 25% by volume to 40% by volume.
  • the heat treatment time may be 0.5 h or more, more preferably 1 h or more.
  • the upper limit value is not particularly limited, but may typically be 2 h or less.
  • the thickness of the covering layer is not particularly limited, but may be 4 nm to 15 nm, and more typically 5 nm to 10 nm.
  • the positive electrode active material of the present invention in one embodiment can be characterized in that the secondary particles are dense and have a small specific surface area. These characteristics can be indicated by the change in specific surface area before and after coating secondary particles. That is, it can be characterized in that the specific surface area after coating is smaller than the specific surface area before coating. And the positive electrode active material which has such a characteristic can show that a coating layer is not porous. Thus, the capacity can be improved.
  • the method of coating by dry method includes, but is not limited to, barrel sputtering.
  • a LiNbO 3 target material can be used and barrel sputtering can be performed under the conditions of 300 to 700 W of power.
  • a lithium ion battery positive electrode and a lithium ion battery The positive electrode active material for a lithium ion battery thus obtained can be used to manufacture a lithium ion battery positive electrode according to a known method. Furthermore, a lithium ion battery can be produced according to a known method using the positive electrode.
  • the average particle size D50 and the specific surface area were evaluated by the above-mentioned method. Further, the characteristics of the battery were evaluated as follows.
  • a positive electrode active material and a conductive material are mixed with a mixture of a positive electrode active material, a conductive material, and a binder measured at a ratio of 90: 5: 5 and a binder dissolved in an organic solvent (N-methylpyrrolidone) to obtain a slurry.
  • Coated on an Al foil dried and pressed to form a positive electrode.
  • a 2032-type coin cell for evaluation with Li as a counter electrode was prepared, and one obtained by dissolving 1M-LiPF6 in EC-DMC (1: 1) in an electrolytic solution was obtained at a discharge rate of 0.05 C.
  • the initial capacity 25 ° C., charge upper limit voltage: 4.3 V, discharge lower limit voltage: 3.0 V was measured.
  • the cell was used to measure the initial capacity (25 ° C., charge upper limit voltage: 3.7 V, discharge lower limit voltage: 2.5 V) obtained at a discharge rate of 0.05 C.
  • the cell is KP-SolidCell, which is commercially available (manufactured by Takasen).
  • Core particles A commercially available nickel sulfate, cobalt sulfate, and manganese sulfate as an aqueous solution are mixed so that the molar ratio of Ni, Co, and Mn is as shown in Table 1, and the alkali (sodium hydroxide) solution is sufficiently stirred. Coprecipitation reaction, filtration and washing were performed. The reaction method was implemented according to a conventional method.
  • the above coprecipitated reaction product is mixed with lithium hydroxide monohydrate such that the molar ratio of Li to the total of Ni, Co and Mn (Li / (Ni + Co + Mn)) is 1.02, And calcining using a roll mill and a pulserizer so that the particle size (D50) becomes as shown in Table 1, and powder of core particles (lithium nickel cobalt manganese) Oxide).
  • the specific surface area was measured by the above-mentioned BET method before performing the coating treatment described below.
  • Comparative Example 7 had a high Ni ratio and a low firing temperature (700 ° C. to 740 ° C., Examples 10 to 12). However, since the sintering was performed at a high temperature of 760 ° C., the relational expression of Y ′ ⁇ 3.5 ⁇ X ′ ⁇ 1 was not satisfied. The comparative examples 3 and 5 also did not satisfy the relational expression of Y ′ ⁇ 3.5 ⁇ X ′ ⁇ 1 due to the same reason.
  • Comparative Examples 2, 4, 6, 8 are examples in which wet coating was performed at a temperature higher than that of the examples. Because the temperature was too high, the specific surface area after coating increased. As a result, the battery characteristics as an all-solid-state battery become inferior.
  • the description “or” or “or” includes the case where only one of the options is satisfied or the case where all the options are satisfied.
  • the description “A or B” and “A or B” it includes both cases where A is satisfied, B is not satisfied, B is satisfied, A is not satisfied, and A is satisfied and B is satisfied. Intended.

Abstract

全固体LIBにおける電池特性を改善すること。正極活物質であって、前記正極活物質は、粒子と被覆層とを含み、前記粒子は以下の組成で表され、LiaNibCocMnde(ここで、1.0≦a≦1.05、0.8≦b≦0.9、1.8≦e≦2.2、b+c+d=1)前記被覆層は、LiNbO3で表され、前記正極活物質の比表面積と粒径が以下の関係を満たす、正極活物質。Y≦3.5×X-1(X=活物質粒径(μm)、Y=比表面積(m2/g))

Description

正極活物質、及び、その製造方法、並びに、正極、及びリチウムイオン電池
 本発明には、正極活物質、及び、その製造方法、並びに、正極、及びリチウムイオン電池に関する。より具体的には、ニッケル含有量が高い正極活物質、及び、その製造方法、並びに、正極、及びリチウムイオン電池に関する。
 現在のリチウムイオン二次電池は、電解液を用いる物が多い。この電解液は可燃性であるため発火のリスクが比較的高い。このため、代替品として、固体電解質を用いた全固体リチウムイオン二次電池(以下、全固体LIBと略す)の開発が各社にて進められている。
 この全固体LIBは、電解液を用いる従来のリチウムイオン二次電池に比べて、上記の発火の危険性が少なくなる。その反面、リチウムイオンの伝導が粒子内および粒子間を通して行われるため、開発当初より安定動作に関する懸念が指摘されていた。
 上記問題に対するアプローチとして、以下の手段が挙げられる:
(1)電極中に固体電解質を3割程度混合する
(2)正極活物質粒子または正極活物質薄膜の界面にLi化合物を被覆する、
(3)より高いリチウムイオン伝導率を有する固体電解質を採用する。
 こうしたアプローチにより、従来のリチウムイオン二次電池と同様な安定動作の実現に近づきつつある。
 上記アプローチ(2)に関連して、特許文献1では、LiCoO2粉末粒子表面上へLiNbO3被覆層を設けることを開示している。更に、該文献では、その手段として、湿式法(Nb等を含むアルコキシド溶液を用いる方法)を開示している。また、特許文献2~3では、被覆する手段として乾式法(バレルスパッタリング法)を開示している。
特許第4982866号公報 特開2007-5073号公報 特許第6102859号公報
 活物質の観点から、上記(2)のアプローチは、全固体LIBでの出力特性を向上させるのに非常に重要な技術となる可能性がある。例えば、特許文献1においてLICoO2の表面をLiNbO3で被覆した材料が開示されている。これにより、LiCoO2および固体電解質材料の間の界面抵抗を低減させ、電池の高出力化が図れる。しかし、それでも従来の電解液を使用したリチウムイオン二次電池の容量に匹敵する容量は得られていない。
 更に容量を上げる目的で、公知のLiCoO2やLiNi1/3Co1/3Mn1/32に代えて、容量の大きい物質を正極活物質として採用することが考えられている。より具体的には、LiNi0.8Co0.1Mn0.12などのNi/(Ni+Co+Mn)モル比が0.8以上の物質(以下、ハイニッケルと略す)を正極活物質として採用することが考えられている。
 ハイニッケル正極活物質は、電解液を用いる従来のリチウムイオン二次電池では、使用しづらいとみなされてきた。この理由として、スラリー作製時のゲル化が発生することや、上記の電解液やリチウム塩との相性が悪い点が挙げられる。しかし、全固体LIBでは、上述した問題点は回避できると予想される。そこで、これらのハイニッケル正極活物質を全固体LIBへ採用することにより、従来のリチウムイオン二次電池に匹敵する電池特性を確保できる期待が高まっていた。
 そこで、発明者らは、ハイニッケル正極活物質に、上記アプローチ(2)の方法を試してみた。しかし、結果として電池の容量自体は向上するものの、それでも、従来のリチウムイオン二次電池に匹敵する電池特性を確保することができなかった。
 この原因について、発明者は、以下(a)~(c)のように考察した。
 (a)従来用いられている正極活物質LiCoO2は、一次粒子タイプ(即ち、一次粒子が更に凝集して二次粒子を形成する傾向が低い)で、且つ、非常に緻密な単位粒子である。従って、Liと遷移金属との溶液を用いた転動流動コーティングなどの処理は、均一に被覆するには有効である。
 しかし、ニッケルを含む正極活物質粒子は一般的に一次粒子が凝集して二次粒子を形成している。従って、表面に凹凸が多いため、被覆層の厚みが均一になり難い。また、二次粒子は完全に緻密な粒子ではないため、被覆溶液が活物質粒子内部に浸透してしまう。そのことにより、仮焼時に粒子内部の残存溶液がガスとして発生し、被覆層がポーラスになり易い。これらが原因の1つとなって、従来のリチウムイオンの6割~7割程度の容量しか得ることができないと考えられる。
 しかし、このことは、上記二次粒子を緻密にし、且つ、比表面積が小さくなるよう制御することに成功すれば、解決できる可能性があることを意味する。
 (b)一部の乾式被覆法では、被覆材となるLiNbO3粒子がサブミクロンサイズまでしか小さくできない。このことが原因となって、被覆量が少ない場合はLiNbO3がアイランド状にしか被覆しない。また、被覆量を多くした場合、ほぼ全面コーティングがされるが、被覆層が厚くなり過ぎてしまう。このような被覆層の厚い材料を正極活物質として用いた場合、全固体LIBは、従来のリチウムイオン二次電池に比べて半分程度の容量しかない。
 (c)従来のゾル-ゲル法では、被覆時に水を用いて加水分解するため、この水によってハイニッケルが分解されてしまう。結果として、容量は従来のリチウムイオン二次電池に比べ半分程度となり、またサイクル特性が悪くなってしまう。
 従って、本発明では、従来の被覆方法(例:ゾル-ゲル法)を、従来技術のまま適用した場合にはできなかった、LiNbO3被覆ハイニッケルを正極活物質として提供すること、以って全固体LIBにおける電池特性の改善を達成することを課題とする。
 本発明者が、更に鋭意研究した結果、特定の熱処理を行うことで、二次粒子を緻密にし、且つ該粒子の比表面積を小さくすることができることを見出した。また、二次粒子を緻密に形成することで、二次粒子内部に被覆成分が含浸することを抑制することができることも見出した。従って、被覆層がポーラスになることを回避できることが示された。以上の知見に基づき、本発明は以下のように特定される。
(発明1)
 正極活物質であって、
 前記正極活物質は、粒子と被覆層とを含み、
 前記粒子は以下の組成で表され、
  LiaNibCocMnde
(ここで、
   1.0≦a≦1.05、
   0.8≦b≦0.9、
   1.8≦e≦2.2、
  b+c+d=1)
 前記被覆層は、LiNbO3で表され、
 前記正極活物質の比表面積と粒径が以下の関係を満たす、正極活物質。
  Y≦3.5×X-1(X=活物質粒径(μm)、Y=比表面積(m2/g))
(発明2)
 発明1に記載の正極活物質であって、前記粒子のD50が2~12μmである、正極活物質。
(発明3)
 発明1又は2に記載の正極活物質であって、以下の組成条件を満たす、正極活物質。
   0.05≦c≦0.19、
   0.01≦d≦0.1
(発明4)
 発明1~3いずれか1つに記載の正極活物質であって、前記正極活物質の比表面積が1m2/g以下である、正極活物質。
(発明5)
 発明1~4いずれか1つに記載の正極活物質であって、前記正極活物質の比表面積が、前記粒子の比表面積よりも小さい、正極活物質。
(発明6)
 発明1~5いずれか1つに記載の正極活物質を製造するための方法であって、
 以下の組成の化合物の原料を混合して、700℃~800℃の温度で12~24時間焼成し、焼成体を得る工程と、
  LiaNibCocMnde
(前記式において、
   1.0≦a≦1.05、
   0.8≦b≦0.9、
   1.8≦e≦2.2、
  b+c+d=1)
 前記焼成体を粉砕して粒子を得る工程と、
 前記粒子をLiNbO3で被覆する工程と、
を含み、
 前記被覆前の粒子の比表面積よりも、被覆後の正極活物質の比表面積が小さい、該方法。
(発明7)
 発明6に記載の方法であって、前記被覆する工程が、
 LiNbO3前駆体を含む溶液で被覆すること、及び
 前記被覆した粒子に対して、450℃以下で熱処理を行うこと
を含む、該方法。
(発明8)
 発明1~5いずれか1つに記載の正極活物質を含むリチウムイオン電池用正極。
(発明9)
 発明8のリチウムイオン電池用正極を含むリチウムイオン電池。
 本発明は、一側面において、比表面積を制御した粒子を用いる。これにより、被覆層がポーラスになることを回避することができる。そして、リチウムイオン二次電池の容量を更に向上させることができる。
 また、本発明は、一側面において、Li複合化合物粒子を特定の温度で熱処理することで、比表面積を小さく制御した粒子を製造することができる。更には、Li複合化合物粒子を特定の条件下で被覆処理する。これにより、被覆後の比表面積を減少させることができる。そして、リチウムイオン二次電池の容量を更に向上させることができる。
 以下、本発明を実施するための具体的な実施形態について説明する。以下の説明は、本発明の理解を促進するためのものである。即ち、本発明の範囲を限定することを意図するものではない。
1.正極活物質の特性
 本発明は、一実施形態において、ハイニッケル正極活物質に関する。前記ハイニッケル正極活物質は、粒子と、該粒子を被覆する被覆層とを含むことができる。前記粒子は、以下の組成で表されるLi複合化合物であってもよい。
  LiaNibCocMnde
(ここで、
   1.0≦a≦1.05、
   0.8≦b≦0.9、
   1.8≦e≦2.2、
  b+c+d=1)
 更なる一実施形態において、上記組成式中のCo及びMnの存在比は、下記の通りであってもよい。
   0.05≦c≦0.19、
   0.01≦d≦0.1、
 更なる一実施形態において、上記組成式中の酸素の存在比eは2であってもよい。
 また、前記被覆層は、LiNbO3で表される化合物を含んでもよい。これにより、上述したように、固体電解質と活物質との間の界面抵抗を減少させることができる。
 一実施形態において、被覆層を備えた正極活物質の比表面積は、1m2/g以下、より好ましくは、0.9m2/g以下である。1m2/g以下であることにより、二次粒子の表面の凹凸が抑制され、緻密な粒子が形成されたものとみなすことができる。結果として、容量を向上させたリチウムイオン電池の形成が可能となる。比表面積の下限値については特に限定されないが、典型的には、0.1m2/g以上である。
 なお、本明細書における、比表面積は、以下の手順で測定した値を指す:
・対象物質を150℃で2時間脱気
・カンタクローム社製のMonosorbにて、吸着ガスとしてHe70at%-N230at%混合ガスを使用し、BET法(1点法)にて測定する。
 一実施形態において、被覆層を備えた正極活物質の粒径は、D50が2~12μm、より好ましくは、2.5~10.5μmであってもよい。上記範囲とすることで、容量を向上させることができる。
 なお、本明細書における、D50は、以下の手順で測定した値を指す:日機装株式会社製のマイクロトラックMT3000EX IIによるレーザー回折法で測定した粒度分布における50%径(メジアン径:頻度の累積が50%となる粒子径)。
 一実施形態において、被覆層を備えた正極活物質の粒径及び被覆層を備えた正極活物質の比表面積は、以下の関係を充足することができる。
 Y≦3.5×X-1(X=被覆処理後の活物質粒径(μm)、Y=被覆処理後の比表面積(m2/g))
 これにより、容量を向上させることができる。上記式中の活物質粒径は、上述したD50と同様の手順で測定した値を指す。上記式中の比表面積は、上述したBET法により測定した値を指す。
 上記関係式の技術的意義を以下説明する。まず、各元素の比率が多少変動する余地があるものの、上述した組成の活物質の密度は約4.7g/cm3と考えられる。そして、活物質が真球の場合、この密度から算出される粒径と比表面積の関係は、Y=1.28/Xという関係になる。そして、1.28の約3倍程度の範囲内に収まっていれば、所望の効果(例えば、放電容量の向上など)が得ることができる。
 更なる一実施形態において、被覆層に覆われる前の粒子の粒径及び比表面積は、以下の関係を充足することが好ましい。
 Y’≦3.5×X’-1(X’=コア粒子の粒径(μm)、Y’=コア粒子の比表面積(m2/g))
 上記式中のコア粒子の粒径は、上述したD50と同様の手順で測定した値を指す。上記式中のコア粒子の比表面積は、上述したBET法により測定した値を指す。
 即ち、被覆されていない二次粒子についても、上述した関係を充足することが好ましい。上述した関係を充足すると、被覆後の比表面積を更に減少させることができる(特に後述する湿式被覆方法で被覆した場合)。
 更なる一実施形態において、以下の関係を充足することが好ましい。
被覆前のコア粒子の比表面積Y’>被覆後の活物質の比表面積Y
 即ち、被覆処理によって、更に比表面積が小さくなるような関係になることが好ましい。これにより、さらに、放電容量が向上する。
2.正極活物質の製造方法
2-1.Li複合化合物粒子の製造方法
 本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法としては、まず、Ni組成がモル比で0.8以上であるNi・Co・Mnの三元系複合水酸化物、又は、Ni・Co・Mnとの三元系複合水酸化物の前駆体を準備する。次に、当該複合水酸化物に、Li源(炭酸Li、水酸化Li等)を、各原料の混合割合を調整してヘンシェルミキサー等で乾式混合した後、700℃~800℃の温度で12~24時間焼成することで、焼成体(正極活物質)を得る。その後、必要であれば、焼成体を、例えば、パルベライザー等を用いて解砕することにより正極活物質の粉体を得る。
 本発明の更なる一実施形態において、上記焼成温度(700℃~800℃)は、組成に応じて適宜調整することが好ましい。より具体的には、Niの比率に応じて、焼成温度を調整することが好ましい。本発明では、上述のようにNiの比率bを0.8~0.9の範囲で規定している。例えば、当該範囲でNiの比率が比較的低い場合には、焼成温度を高めに設定し、Niの比率が比較的高い場合には、焼成温度を低めに設定することが好ましい。このように、Niの比率に応じて焼成温度を適切に設定することで、上述したY’≦3.5×X’-1の関係式を充足するコア粒子を得ることができる。
2-2.被覆方法
 一実施形態において、上記粉体は、更にLiNbO3で被覆することができる。被覆方法には、湿式法と乾式法が含まれる。
2-2-1.湿式方法
 一実施形態において、本発明における被覆溶液は、ニオブ酸リチウム系化合物の前駆体を含有することができる。ニオブ酸リチウム系化合物の前駆体は、特に限定されるものではないが、後述する熱処理工程によりニオブ酸リチウム系化合物を得ることができるものであればよい。例えば、Li源およびNb源を混合した材料を挙げることができる。Li源としては、例えば、Liアルコキシド等を挙げることができる。Liアルコキシドとしては、例えば、LiOC25等を挙げることができる。また、Nb源としては、例えばNbアルコキシド等を挙げることができる。Nbアルコキシドとしては、例えば、Nb(OC255等を挙げることができる。このようにして作製した溶液を、酸化物正極活物質の表面上に付着させる。溶液の付着方法としては、酸化物正極活物質の表面上に溶液を付着可能な方法であれば特に限定されるものではないが、例えば、転動流動層を有するコート装置を用いる方法や、攪拌・加熱乾燥による方法をとっても良い。
 次に、上記前駆体被覆部を有する酸化物正極活物質を、所定の酸素濃度の雰囲気で熱処理することができる。熱処理の際は、450℃以下、より好ましくは、400℃以下で熱処理を行うのが好ましい。これにより、被覆前と比べて、被覆後の比表面積を減少させることができる。下限値については、特に規定されないが、典型的には350℃以上であってもよい。また、熱処理の際の酸素濃度については、特に限定されないが、典型的には25体積%~40体積%であってもよい。熱処理の時間については、0.5h以上、より好ましくは1h以上であってもよい。上限値については特に限定されないが、典型的には2h以下であってもよい。
 被覆層の厚みについては、特に限定されないが、4nm~15nmであってもよく、より典型的には、5nm~10nmであってもよい。
 一実施形態における本発明の正極活物質は、二次粒子が、緻密且つ比表面積が小さいという特徴を有することができる。これらの特徴は、二次粒子を被覆する前後の比表面積の変化で示すことができる。即ち、被覆前の比表面積と比べて、被覆後の比表面積が小さくなっているという特徴を有することができる。そして、こうした特徴を有する正極活物質は、被覆層がポーラスになっていないことを示すことができる。よって、容量を向上させることができる。
2-2-2.乾式方法
 乾式方法による被覆方法として、限定されるものではないが、バレルスパッタ法が挙げられる。一実施形態において、本発明の方法では、LiNbO3ターゲット材を使用し、出力を300~700Wの条件下でバレルスパッタを行うことができる。
3.リチウムイオン電池用正極及びリチウムイオン電池
 このようにして得られたリチウムイオン電池用正極活物質を利用し、公知の手段に従い、リチウムイオン電池用正極を製造することができる。更には、前記正極を用いて、公知の手段に従い、リチウムイオン電池を作製することができる。
 平均粒子径D50、比表面積については、上述手法で評価した。また、電池の特性については以下のように評価した。
 -電池特性の評価(電解液系電池)-
 正極活物質と、導電材と、バインダーを90:5:5の割合で秤量し、バインダーを有機溶媒(N-メチルピロリドン)に溶解したものに、正極活物質と導電材とを混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。続いて、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M-LiPF6をEC-DMC(1:1)に溶解したものを用いて、放電レート0.05Cで得られた初期容量(25℃、充電上限電圧:4.3V、放電下限電圧:3.0V)を測定した。
 -電池特性の評価(全固体電池)-
 固体電解質としてLi2S-P25(75:25mol%)ガラスセラミックスを使用し、以下の要領でセルを作製した。
(1)正極活物質、電解質、アセチレンブラックを60:35:5の重量比となるように秤量、
(2)上記(1)の合材粉末を乳鉢で混合(全量で約50mg)、
(3)適量の電解質を冶具に入れプレス、
(4)上記(2)で作製した適量の合材を冶具に入れ、プレス、
(5)上部を固定して反転させ下パンチを外す、
(6)負極のLi-In箔を冶具に入れて下部を固定、
(7)加圧ネジで最終固定してシール用袋ナットを締める。
 このセルを用いて放電レート0.05Cで得られた初期容量(25℃、充電上限電圧:3.7V、放電下限電圧:2.5V)にて測定した。セルは市販(宝泉製)で販売されているKP-SolidCellとなる。
 ・コア粒子
  市販の硫酸ニッケル、硫酸コバルト、硫酸マンガンを水溶液として、Ni、Co、Mnのモル比率が、表1の通りになるように混合し、十分撹拌しながらアルカリ(水酸化ナトリウム)溶液と共沈反応させ、ろ過、洗浄を実施した。反応方法は常法に従って実施した。その後、NiとCoとMnの合計に対するLiのモル比(Li/(Ni+Co+Mn))が1.02となるように、上記共沈反応物を水酸化リチウム1水和物と混合し、ローラーハースキルンで表1の条件で焼成し(焼成時間24時間)、ロールミルとパルべライザーを用いて粒子径(D50)が表1の通りになるように解砕し、コア粒子の粉末(リチウムニッケルコバルトマンガン酸化物)を得た。以降で述べる被覆処理を行う前に、上記BET法により比表面積を測定した。
 ・湿式被覆
 上記コア粒子の粉末の表面を、LiOC25とNb(OC255を含む溶液で、転動流動層コーティング装置を用いて、コーティングした。その後、表1に記載の条件で、熱処理を行った。なお、被覆層の厚さは最大でも10nmだった。従って、被覆処理によって、μmスケールの粒径サイズに実質的な変化はなかった。従って、被覆前に測定した粒径=被覆後の粒径とみなして、後述する数式「Y≦3.5×X-1」に適用した。
 その後、被覆後の比表面積、放電容量等を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~12の被覆後の活物質は、いずれもY≦3.5×X-1(X=被覆処理後の活物質粒径(μm)、Y=被覆処理後の比表面積(m2/g))の関係を満たしていた。そして、全固体電池としての電池特性の評価結果において、いずれの比較例よりも優れていた。
 比較例1~8は、湿式被覆法で行った例である。比較例1、3、5、7は、実施例と同様の条件で湿式被覆を行った例である。しかし、被覆前の時点で、Y’≦3.5×X’-1(X’=コア粒子粒径(μm)、Y’=比表面積(m2/g))の関係を充足していなかった。そのため、被覆後、比表面積が増大してしまった。そのため、全固体電池としての電池特性が劣る結果となってしまった。また、比較例1は、Ni比率が低く、焼成温度は高くすべき(780℃~800℃、実施例1~3)であった。しかし、低い温度760℃で焼成したため、Y’≦3.5×X’-1の関係式を充足しなかった。更に、比較例7は、Ni比率が高く、焼成温度は低くすべき(700℃~740℃、実施例10~12)であった。しかし、高い温度760℃で焼成したため、Y’≦3.5×X’-1の関係式を充足しなかった。比較例3及び5も同様の原因で、Y’≦3.5×X’-1の関係式を充足しなかった。
 比較例2、4、6、8は、実施例よりも高い温度で湿式被覆を行った例である。温度が高すぎるため、被覆後の比表面積が増大してしまった。そのため、全固体電池としての電池特性が劣る結果となってしまった。
 最後に、重要な点として、実施例では、全固体電池としての電池特性と、電解液系電池としての電池特性との間に大きな差は見られなかった。一方で、比較例では、電解液系電池としての電池特性と比べると、全固体電池としての電池特性が、著しく劣っていた。
 本明細書において、「又は」や「若しくは」という記載は、選択肢のいずれか1つのみを満たす場合や、全ての選択肢を満たす場合を含む。例えば、「A又はB」「A若しくはB」という記載の場合、Aを満たしBを満たさない場合と、Bを満たしAを満たさない場合と、Aを満たし且つBを満たす場合のいずれも包含することを意図する。
 以上、本発明の具体的な実施形態について説明してきた。上記実施形態は、本発明の具体例に過ぎず、本発明は上記実施形態に限定されない。例えば、上述の実施形態の1つに開示された技術的特徴は、他の実施形態に提供することができる。また、特定の方法については、一部の工程を他の工程の順序と入れ替えることも可能であり、特定の2つの工程の間に更なる工程を追加してもよい。本発明の範囲は、特許請求の範囲によって規定される。

Claims (9)

  1.  正極活物質であって、
     前記正極活物質は、粒子と被覆層とを含み、
     前記粒子は以下の組成で表され、
      LiaNibCocMnde
    (ここで、
       1.0≦a≦1.05、
       0.8≦b≦0.9、
       1.8≦e≦2.2、
      b+c+d=1)
     前記被覆層は、LiNbO3で表され、
     前記正極活物質の比表面積と粒径が以下の関係を満たす、正極活物質。
      Y≦3.5×X-1(X=活物質粒径(μm)、Y=比表面積(m2/g))
  2.  請求項1に記載の正極活物質であって、前記粒子のD50が2~12μmである、正極活物質。
  3.  請求項1又は2に記載の正極活物質であって、以下の組成条件を満たす、正極活物質。
       0.05≦c≦0.19、
       0.01≦d≦0.1
  4.  請求項1~3いずれか1項に記載の正極活物質であって、前記正極活物質の比表面積が1m2/g以下である、正極活物質。
  5.  請求項1~4いずれか1項に記載の正極活物質であって、前記正極活物質の比表面積が、前記粒子の比表面積よりも小さい、正極活物質。
  6.  請求項1~5いずれか1項に記載の正極活物質を製造するための方法であって、
     以下の組成の化合物の原料を混合して、700℃~800℃の温度で12~24時間焼成し、焼成体を得る工程と、
      LiaNibCocMnde
    (前記式において、
       1.0≦a≦1.05、
       0.8≦b≦0.9、
       1.8≦e≦2.2、
      b+c+d=1)
     前記焼成体を粉砕して粒子を得る工程と、
     前記粒子をLiNbO3で被覆する工程と、
    を含み、
     前記被覆前の粒子の比表面積よりも、被覆後の正極活物質の比表面積が小さい、該方法。
  7.  請求項6に記載の方法であって、前記被覆する工程が、
     LiNbO3前駆体を含む溶液で被覆すること、及び
     前記被覆した粒子に対して、450℃以下で熱処理を行うこと
    を含む、該方法。
  8.  請求項1~5いずれか1項に記載の正極活物質を含むリチウムイオン電池用正極。
  9.  請求項8のリチウムイオン電池用正極を含むリチウムイオン電池。
PCT/JP2018/033869 2017-09-28 2018-09-12 正極活物質、及び、その製造方法、並びに、正極、及びリチウムイオン電池 WO2019065254A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019507879A JP6568333B1 (ja) 2017-09-28 2018-09-12 正極活物質、及び、その製造方法、並びに、正極、及びリチウムイオン電池
KR1020197026270A KR20190116999A (ko) 2017-09-28 2018-09-12 정극 활물질 및, 그 제조 방법, 그리고 정극 및 리튬 이온 전지
EP18863035.4A EP3584862A4 (en) 2017-09-28 2018-09-12 POSITIVE ELECTRODE ACTIVE MATERIAL, ITS PRODUCTION PROCESS, POSITIVE ELECTRODE, AND LITHIUM-ION BATTERY
CN201880008201.2A CN110235290B (zh) 2017-09-28 2018-09-12 正极活性物质及其制造方法、正极以及锂离子电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-188547 2017-09-28
JP2017188547 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019065254A1 true WO2019065254A1 (ja) 2019-04-04

Family

ID=65903166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033869 WO2019065254A1 (ja) 2017-09-28 2018-09-12 正極活物質、及び、その製造方法、並びに、正極、及びリチウムイオン電池

Country Status (5)

Country Link
EP (1) EP3584862A4 (ja)
JP (1) JP6568333B1 (ja)
KR (1) KR20190116999A (ja)
CN (1) CN110235290B (ja)
WO (1) WO2019065254A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047383A (ja) * 2018-09-14 2020-03-26 Jx金属株式会社 正極活物質、及び、その製造方法、並びに、正極、及びリチウムイオン電池
JP2020062632A (ja) * 2018-10-19 2020-04-23 Jx金属株式会社 粉末粒子の被覆方法、全固体リチウムイオン電池用正極活物質の製造方法、全固体リチウムイオン電池の製造方法
WO2020241384A1 (ja) * 2019-05-31 2020-12-03 日本ゼオン株式会社 二次電池正極用スラリー組成物の製造方法、二次電池用正極の製造方法、及び、二次電池の製造方法
CN113875045A (zh) * 2019-05-21 2021-12-31 加拿大商纳诺万麦帝瑞尔公司 用于提高电池性能的稳定的高镍nmc阴极材料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612859B2 (ja) 1981-09-28 1986-01-28 Ishikawajima Harima Heavy Ind
JP2007005073A (ja) 2005-06-22 2007-01-11 Sony Corp 正極材料および電池、ならびに正極材料の製造方法
JP2010245038A (ja) * 2009-03-18 2010-10-28 Idemitsu Kosan Co Ltd 正極合材及びリチウム電池
JP2011065887A (ja) * 2009-09-17 2011-03-31 Idemitsu Kosan Co Ltd 正極材料、その製造方法及びリチウムイオン電池
JP4982866B2 (ja) 2005-07-01 2012-07-25 独立行政法人物質・材料研究機構 全固体リチウム電池
JP2015056307A (ja) * 2013-09-12 2015-03-23 トヨタ自動車株式会社 活物質複合粉体及びリチウム電池並びにその製造方法
JP2017084674A (ja) * 2015-10-29 2017-05-18 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238194B2 (ja) 1972-12-14 1977-09-27
JPS612859A (ja) 1984-06-15 1986-01-08 松下電器産業株式会社 サウナ
JP5040073B2 (ja) * 2005-07-05 2012-10-03 ソニー株式会社 リチウムイオン二次電池用正極活物質およびその製造方法、並びにリチウムイオン二次電池
CN102769130A (zh) * 2007-09-04 2012-11-07 三菱化学株式会社 锂过渡金属类化合物粉末
WO2011125722A1 (ja) * 2010-04-01 2011-10-13 三菱化学株式会社 リチウム二次電池用正極材料及びその製造方法、並びにリチウム二次電池用正極及びリチウム二次電池
JP2012238581A (ja) * 2011-04-28 2012-12-06 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP6189649B2 (ja) * 2013-06-07 2017-08-30 Dowaホールディングス株式会社 正極活物質粉末およびその製造法
CN110739451B (zh) * 2014-01-27 2021-05-25 住友化学株式会社 锂二次电池用正极活性物质、锂二次电池用正极和锂二次电池
JP6090249B2 (ja) * 2014-07-10 2017-03-08 トヨタ自動車株式会社 複合活物質及びその製造方法
KR101796344B1 (ko) * 2014-09-25 2017-11-09 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
EP3293802B1 (en) * 2015-09-14 2020-10-21 Toyota Jidosha Kabushiki Kaisha Method of manufacturing an all-solid-state battery system
JP6281545B2 (ja) * 2015-09-14 2018-02-21 トヨタ自動車株式会社 活物質複合粉体の製造方法
JP7013871B2 (ja) * 2015-10-28 2022-02-01 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池
JP6323475B2 (ja) * 2016-02-26 2018-05-16 トヨタ自動車株式会社 複合活物質、固体電池および複合活物質の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612859B2 (ja) 1981-09-28 1986-01-28 Ishikawajima Harima Heavy Ind
JP2007005073A (ja) 2005-06-22 2007-01-11 Sony Corp 正極材料および電池、ならびに正極材料の製造方法
JP4982866B2 (ja) 2005-07-01 2012-07-25 独立行政法人物質・材料研究機構 全固体リチウム電池
JP2010245038A (ja) * 2009-03-18 2010-10-28 Idemitsu Kosan Co Ltd 正極合材及びリチウム電池
JP2011065887A (ja) * 2009-09-17 2011-03-31 Idemitsu Kosan Co Ltd 正極材料、その製造方法及びリチウムイオン電池
JP2015056307A (ja) * 2013-09-12 2015-03-23 トヨタ自動車株式会社 活物質複合粉体及びリチウム電池並びにその製造方法
JP2017084674A (ja) * 2015-10-29 2017-05-18 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3584862A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047383A (ja) * 2018-09-14 2020-03-26 Jx金属株式会社 正極活物質、及び、その製造方法、並びに、正極、及びリチウムイオン電池
JP2020062632A (ja) * 2018-10-19 2020-04-23 Jx金属株式会社 粉末粒子の被覆方法、全固体リチウムイオン電池用正極活物質の製造方法、全固体リチウムイオン電池の製造方法
JP7266988B2 (ja) 2018-10-19 2023-05-01 Jx金属株式会社 粉末粒子の被覆方法、全固体リチウムイオン電池用正極活物質の製造方法、全固体リチウムイオン電池の製造方法
CN113875045A (zh) * 2019-05-21 2021-12-31 加拿大商纳诺万麦帝瑞尔公司 用于提高电池性能的稳定的高镍nmc阴极材料
EP3959762A4 (en) * 2019-05-21 2023-06-07 Nano One Materials Corp. STABILIZED HIGH NICKEL NMC CATHODE MATERIALS FOR ENHANCED BATTERY PERFORMANCE
WO2020241384A1 (ja) * 2019-05-31 2020-12-03 日本ゼオン株式会社 二次電池正極用スラリー組成物の製造方法、二次電池用正極の製造方法、及び、二次電池の製造方法
CN113785421A (zh) * 2019-05-31 2021-12-10 日本瑞翁株式会社 二次电池正极用浆料组合物的制造方法、二次电池用正极的制造方法、以及二次电池的制造方法
US11811065B2 (en) 2019-05-31 2023-11-07 Zeon Corporation Method of producing slurry composition for secondary battery positive electrode, method of producing positive electrode for secondary battery, and method of producing secondary battery

Also Published As

Publication number Publication date
CN110235290A (zh) 2019-09-13
EP3584862A4 (en) 2021-01-13
JPWO2019065254A1 (ja) 2019-11-14
EP3584862A1 (en) 2019-12-25
CN110235290B (zh) 2022-07-29
KR20190116999A (ko) 2019-10-15
JP6568333B1 (ja) 2019-08-28

Similar Documents

Publication Publication Date Title
WO2021023313A1 (zh) 一种双包覆层改性锂离子电池正极材料及其制备方法
JP6888297B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法
JP5742935B2 (ja) 正極活物質粒子、並びにそれを用いた正極及び全固体電池
JP2019108264A (ja) Li−Ni複合酸化物粒子粉末、並びに非水電解質二次電池
TWI423504B (zh) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, a lithium ion battery, and a method for producing a positive electrode active material for a lithium ion battery
TWI584520B (zh) Li-Ni composite oxide particles and nonaqueous electrolyte batteries
WO2014181891A1 (ja) 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池
JP6533734B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池
EP2911223A1 (en) Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same
WO2012029697A1 (ja) チタン酸リチウム粒子粉末及びその製造方法、Mg含有チタン酸リチウム粒子粉末及びその製造法、非水電解質二次電池用負極活物質粒子粉末並びに非水電解質二次電池
JP6568333B1 (ja) 正極活物質、及び、その製造方法、並びに、正極、及びリチウムイオン電池
WO2018052038A1 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP7292574B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法、およびリチウムイオン二次電池
JP2009252421A (ja) 負極活物質およびその製造方法ならびに該負極活物質を備えた電池
JP2022115903A (ja) 遷移金属含有複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
US20130105730A1 (en) Lithium-titanium complex oxide, and battery electrode and lithium ion secondary battery using same
JP2020177860A (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムニッケルマンガンコバルト含有複合酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP2019139862A (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池用正極及びリチウムイオン電池
WO2016017360A1 (ja) 非水系電解質二次電池用の正極活物質及びその製造方法、並びに非水系電解質二次電池
CN114521300A (zh) 锂离子二次电池用正极活性物质以及锂离子二次电池
JP7172301B2 (ja) 遷移金属複合水酸化物、遷移金属複合水酸化物の製造方法、リチウム遷移金属複合酸化物活物質及びリチウムイオン二次電池
KR102086100B1 (ko) 금속이 코팅된 리튬 이차 전지용 양극활물질의 제조방법 및 이의 의하여 제조된 리튬 이차 전지용 양극활물질
JP2023539302A (ja) 正極及び電気化学装置
JP2022179554A (ja) リチウム化合物
JP7271945B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法、およびリチウムイオン二次電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019507879

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197026270

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018863035

Country of ref document: EP

Effective date: 20190920

NENP Non-entry into the national phase

Ref country code: DE