WO2021023313A1 - 一种双包覆层改性锂离子电池正极材料及其制备方法 - Google Patents

一种双包覆层改性锂离子电池正极材料及其制备方法 Download PDF

Info

Publication number
WO2021023313A1
WO2021023313A1 PCT/CN2020/116864 CN2020116864W WO2021023313A1 WO 2021023313 A1 WO2021023313 A1 WO 2021023313A1 CN 2020116864 W CN2020116864 W CN 2020116864W WO 2021023313 A1 WO2021023313 A1 WO 2021023313A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
layer
coating
cathode material
coating layer
Prior art date
Application number
PCT/CN2020/116864
Other languages
English (en)
French (fr)
Inventor
刘瑞福
郑斌
唐波
韩圭奭
石慧
Original Assignee
湖南杉杉新能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南杉杉新能源有限公司 filed Critical 湖南杉杉新能源有限公司
Publication of WO2021023313A1 publication Critical patent/WO2021023313A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and in particular relates to a lithium ion battery positive electrode material whose surface is modified by a double coating layer and a preparation method thereof.
  • the surface of high-nickel materials becomes more and more fragile. It is easy to absorb moisture and carbon dioxide in the air and exist on the surface of the material in the form of Li 2 CO 3 and LiOH residual lithium. The higher residual lithium will make the battery pole pieces The processing performance of the lithium-ion battery deteriorates, and there is also gas production behavior during the recycling process of lithium-ion batteries. At the same time, as the long cycle progresses, the stability of the surface structure of the high-nickel material also deteriorates, and the surface of the material will undergo a structural transformation from a layered structure to a spinel and then to NiO rock salt phase.
  • Nickel coating of high nickel layered cathode materials is a common modification method, such as coating lithium transition metal oxides (Li 2 ZrO 3 , LiAlO 2 and Li 2 WO 4, etc.) and non-electrochemically active inorganic metal oxidation Or fluoride (Al 2 O 3 , MgO and AlF 3, etc.).
  • Al 2 O 3 coating is an effective method to improve the stability of the surface structure of the layered lithium transition metal oxide cathode material and reduce the side reactions between the material and the electrolyte.
  • non-patent literature Boshong Han, Baris Key, Saul H. Lapidus, Juan C. Garcia, Hakim Iddir, John T. Vaughey, and Fulya Dogan, Applied Materilas & Interfaces (47) 2017: 41291-41302
  • the composition of the transition metal components of the positive electrode material will affect the coating reaction of Al 2 O 3 on the surface of the material.
  • the decrease in the content of transition metal Mn in the material will promote the diffusion of Al element into the structure of the material.
  • tungsten coating can only achieve low resistance of the material and improve the capacity and rate performance of the material, and it cannot form a uniform and dense coating film on the surface of the material.
  • Non-patent literature XinheYang, Zicheng Zuo, Haiyan Wang, Quanbin Chen, Hui Zhang, Zhenlei Huang, Borong Wu, Henghui Zhuo, Electrochimica Acta (180) 2015: 604-609
  • the technical problem to be solved by the present invention is to overcome the shortcomings and deficiencies mentioned in the above background art, and provide a double-coated modified lithium ion battery positive electrode material that simultaneously exhibits high capacity, long cycle and high rate characteristics, and Preparation.
  • the technical solution proposed by the present invention is:
  • a double-coating layer modified lithium ion battery positive electrode material comprising a positive electrode material matrix, a first coating layer coated on the surface of the substrate, and a second coating layer coated on the surface of the first coating layer; wherein, The first coating layer is a nano-flaky fast ion conductor layer; the second coating layer is an Al compound layer.
  • the fast ion conductor is at least one of lithium tungstate, lithium molybdate, and lithium vanadate; and the Al compound is at least one of LiAlO 2 and Al 2 O 3 .
  • the mass of tungsten, molybdenum or vanadium in the fast ion conductor layer accounts for 0.02%-0.5% of the mass of the cathode material matrix, and the aluminum atoms in the Al compound layer account for the mass of the cathode material matrix. 0.02%-0.2%.
  • the molecular formula of the cathode material matrix is Li u Ni (1-xyz) Co x Mn y M z O 2 , where 0.9 ⁇ u ⁇ 1.20, 0 ⁇ x ⁇ 0.20, 0 ⁇ y ⁇ 0.20, 0 ⁇ z ⁇ 0.05, M is doping element, M is Al, Mg, Ti, Zr, V, B, La, Y, Cr, Mo, Ca, Fe, Hf, Zn, Si, W, Nb , At least one element in Sm.
  • the present invention also provides a method for preparing the above-mentioned cathode material, which includes the following steps:
  • step (2) Mix the anode material coated with the nano-flaky fast ion conductor prepared in step (1) with aluminum compound, sinter it at a constant temperature of 500-700°C for 3-10h, crush and sieving to obtain a double-coated layer modification Lithium-ion battery cathode material.
  • alumina coating at low temperature (450°C) is not ideal, which will cause the increase of material internal resistance and electrochemical polarization, while single alumina coating at high temperature (500-700°C) will cause Al diffusion Into the material crystal lattice, the coating effect is not good.
  • the coating can weaken the diffusion kinetics of the Al element in the second coating to the bulk phase of the material, and finally form a second coating mainly composed of LiAlO 2 and Al 2 O 3 on the surface of the first coating, thereby stabilizing
  • the surface structure of the material can improve the performance of the material.
  • the cathode material matrix in the step (1) is obtained by the following preparation method:
  • the mass ratio of water to the positive electrode material matrix in the slurry A is (0.4-1.0):1. If the amount of water is large, it will affect the surface state of the material and deteriorate the electrochemical performance of the material. The subsequent evaporation of water will take too long, which is not conducive to production efficiency; if the water content is small, the material and water cannot form a uniform slurry, which is insufficient Stirring makes the gel layer uniformly dispersed on the surface of the core matrix material, and the wet coating process is difficult to carry out; therefore, controlling the amount of water within the scope of the present invention can optimally ensure the performance of the material.
  • the ratio of the molar amount of the citric acid to the molar amount of the fast ion conductor is (1.0-4.0):1. If the amount of citric acid is too large, the resulting coating will be too fine and loosely dispersed and cannot form a uniform and dense coating layer on the surface of the material; if the amount of citric acid is too small, it will not have sufficient dispersion effect, and it is difficult to form a stable surface on the surface of the core matrix material.
  • the coating material formed is easy to agglomerate, instead of being in the form of dispersed nano flakes; therefore, controlling the amount of citric acid in the invention can not only ensure the uniformity and compactness of the coating layer, but also ensure the coating The layer is nano-flaky.
  • the aluminum compound is at least one of Al 2 O 3 , AlOOH, Al(OH) 3 and LiAlO 2 ; the average particle size D50 is 0.1-20 microns.
  • the heating temperature is 70-100°C; the drying temperature is 80-280°C, and the drying time is 2-10 hours.
  • a double-layer surface-coated positive electrode material is prepared by first coating a nano-flaky fast ion conductor layer and then coating an aluminum-containing compound outer layer. Due to the blocking effect of the nano-flaky fast ion conductor layer, The aluminum compound of the layer cannot diffuse into the transition metal layer in the material lattice, forming an aluminum oxide coating layer on the surface of the material that is beneficial to the stability of the material interface; at the same time, it also reduces the transition metal elements of the material and the tungsten in the coating The dissolution of elements such as, molybdenum and vanadium in the electrolyte effectively stabilizes the surface structure of the material and reduces the side reactions between the material and the electrolyte.
  • the present invention consumes surface residual lithium (compounds such as Li 2 CO 3 and LiOH) while coating.
  • the residual lithium and pH value on the surface of the material are reduced, thereby improving the production and processing performance of the pole piece and reducing the gas generation behavior of the lithium ion battery.
  • the chelating agent citric acid is added in the preparation stage of the fast ion conductor coating layer to uniformly disperse the coating particles and reduce the agglomeration during heating, so that the surface of the primary particles and the primary particles of the positive electrode material matrix A uniform nano-flaky coating is formed between.
  • the first coating has the function of reducing the Al element in the second coating in addition to its own capacity and rate-increasing effects.
  • the effect of diffusion kinetic behavior; therefore, the present invention combines fast ion conductor coating and aluminum coating together, which not only makes up for the shortcomings of a single fast ion conductor, but also has a synergistic effect between the two, making the positive electrode material The performance of high capacity, long cycle and high rate characteristics has been further improved.
  • the present invention modifies the positive electrode material of the lithium ion battery through the surface of the double coating layer, and finally ensures the excellent electrochemical performance of the positive electrode material such as specific capacity, cycle and rate.
  • Figure 1 is an FEI-SEM image of the material prepared in Comparative Example 1 of the present invention.
  • Figure 2 is an FEI-SEM image of the material prepared in Comparative Example 2 of the present invention.
  • Figure 3 is an FEI-SEM image of the material prepared in Example 1 of the present invention.
  • a double-coated modified lithium ion battery cathode material comprising a cathode material matrix Li 1.02 Ni 0.87 Co 0.10 Mn 0.02 Al 0.01 O 2 , a first coating layer (nano-flaky lithium tungstate) coated on the surface of the substrate ) And the second coating layer (aluminum compound layer, mainly LiAlO 2 containing part of Al 2 O 3 ) covering the surface of the first coating layer; among them, tungsten element accounts for 0.12% of the mass of the cathode material matrix, and aluminum Elements accounted for 0.12% of the mass of the cathode material matrix.
  • the preparation method of the double-coated layer modified lithium ion battery cathode material of this embodiment includes the following steps:
  • step (1) Take 400g of the cathode material matrix prepared in step (1), add 200g of deionized water, and stir to disperse the matrix material in the water to form a uniform slurry A;
  • ammonium metatungstate (NH 4 ) 6 H 2 W 12 O 40 ⁇ xH 2 O) (the mass ratio of tungsten element to the cathode material matrix is 0.12%), add 50mL deionized water, and stir at 50°C Fully dissolve ammonium metatungstate to form solution B;
  • the prepared double-coated modified lithium ion battery cathode material, conductive carbon black, and binder PVDF are mixed with NMP as a solvent in a mass ratio of 92:5:3, and then coated on the Al foil. Dry for 12 hours at 120°C, rolled and die-cut into 12mm discs.
  • NMP as a solvent
  • lithium metal sheets are used as the negative electrode to assemble CR2032 button batteries.
  • the electrochemical performance test is carried out at 25°C under a voltage window of 3.0-4.3V.
  • the specific test system is: the first week 0.1C (corresponding to current density 20.8mA/g) charge, 0.1C discharge; the second week 0.2C charge, 0.2C discharge; the third week 0.2C charge, 0.5C discharge; the fourth week Charge at 0.2C and discharge at 1C; charge at 0.2C and discharge at 0.2C in week 5; charge at 1C and discharge at 1C in week 6 to 55.
  • step (2) Weigh 4.42 g of ammonium molybdate tetrahydrate (H 24 Mo 7 N 6 O 24 ⁇ 4H 2 O) (the mass ratio of molybdenum element to the cathode material matrix is 0.12 %) was dissolved in 50mL deionized water to prepare solution B; the citric acid solution was prepared by weighing 2.6g of citric acid monohydrate (C 6 H 8 O 7 ⁇ H 2 O) and adding 20 mL of deionized water.
  • solution B the citric acid solution was prepared by weighing 2.6g of citric acid monohydrate (C 6 H 8 O 7 ⁇ H 2 O) and adding 20 mL of deionized water.
  • Other process parameters and implementation Example 1 is the same.
  • step (2) Weigh 2.75 g of ammonium metavanadate (NH 4 VO 3 ) (the mass ratio of vanadium element to the cathode material matrix is 0.06%) and dissolve it in 50 ml of deionized water.
  • Solution B was prepared; the citric acid solution was prepared by weighing 2.47 g of citric acid monohydrate (C 6 H 8 O 7 ⁇ H 2 O) and adding 20 ml of deionized water.
  • the other process parameters were the same as in Example 1.
  • This comparative example is the cathode material matrix lithium transition metal oxide Li 1.02 Ni 0.87 Co 0.10 Mn 0.02 Al 0.01 O 2 prepared in step (1) of Example 1.
  • Steps (1) and (2) of this comparative example are completely the same as Example 1, the difference is that step (3) is to sinter the base material coated with lithium tungstate at 600°C for 8 hours after drying, and then sinter After the material is processed through a 300-mesh sieve, the final material product is obtained.
  • Step (1) of this comparative example is completely consistent with Example 1.
  • Step (2) is to uniformly mix 300g of the base material prepared in step (1) with 1.3g of nano-sized Al(OH) 3 (the mass ratio of aluminum element to the cathode material base is 0.12%), at an oxygen flow rate of 40L/min, Sintering at a constant temperature of 650°C for 8 hours, the sintered material is processed through a 300-mesh screen to obtain the final product material.
  • Steps (1) and (3) of this comparative example are completely the same as those in Example 1; the difference lies in that the preparation method of step (2) is:
  • Steps (1) and (2) of this comparative example are exactly the same as those in Example 1, except that the difference lies in step (3):
  • the lithium ion battery composed of this material as the active material has high capacity and high rate And long cycle characteristics.
  • FIG 1 is the SEM of the uncoated matrix material.
  • Figure 2 is the SEM image of the wet lithium tungstate coating and drying, the surface of the material is uniform
  • a slender coating layer is formed on the ground, and the inserted picture has a lower definition compared to the original SEM image
  • Figure 3 shows the finished material with double coating layer after dry aluminum coating.
  • the coating is in the material particles
  • the surface distribution is relatively uniform, most of which are distributed in small islands.
  • the technical solution of the present invention can ensure that the transition layer and the shell coating are uniformly coated on the material surface, can well protect the material surface and reduce interface side reactions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种双包覆层改性锂离子电池正极材料,包括正极材料基体、包覆于基体表面的第一包覆层和包覆于第一层包覆层表面的第二包覆层;其中,所述第一包覆层为纳米薄片状的快离子导体层;所述第二包覆层为Al化合物层。本发明通过先包覆纳米薄片状的快离子导体层,后包覆含铝化合物外层来制备双层表面包覆正极材料,由于纳米薄片状的快离子导体层的阻隔作用,外层的铝化合物无法扩散进入材料晶格内的过渡金属层,在材料表面形成有利于材料界面稳定性的铝氧化物包覆层;同时还降低了材料的过渡金属元素以及包覆物中的钨、钼、钒等元素在电解液的溶出,有效稳定了材料的表面结构以及减少了材料与电解液的界面副反应。

Description

一种双包覆层改性锂离子电池正极材料及其制备方法 技术领域
本发明属于锂离子电池技术领域,尤其涉及一种表面采用双包覆层改性的锂离子电池正极材料及其制备方法。
背景技术
随着镍含量的提升,高镍材料表面却越来越脆弱,容易吸收空气中的水分和二氧化碳而以Li 2CO 3和LiOH残锂形式存在材料表面,较高的残锂会使电池极片的加工性能变差,锂离子电池循环使用过程中也存在产气行为。同时,随着长循环地进行,高镍材料表面结构稳定性也变差,材料表面会发生由层状结构向尖晶石再到NiO岩盐相的结构转变。在锂离子多次往复脱嵌时,由于晶体的各向异性,材料的内部会产生晶间和晶内裂纹,电解液容易进入材料的二次颗粒内部并侵蚀一次颗粒的表面发生各种副反应。这些因素都恶化锂离子电池的容量、循环和倍率等各项性能。所以,降低材料表面残锂和提高表面的结构稳定性成为高镍层状正极材料的重要研究课题。对高镍层状正极材料进行表面包覆是常见的改性手段,如包覆锂过渡金属氧化物(Li 2ZrO 3,LiAlO 2和Li 2WO 4等)和非电化学活性的无机金属氧化物或氟化物(Al 2O 3,MgO和AlF 3等)。
通常,Al 2O 3包覆是改善层状锂过渡金属氧化物正极材料表面结构稳定性,减少材料与电解液间界面副反应的有效方法。在非专利文献(Binghong Han,Baris Key,Saul H.Lapidus,Juan C.Garcia,Hakim Iddir,John T.Vaughey,and Fulya Dogan,Applied Materilas & Interfaces(47)2017:41291-41302)中证实了层状正极材料的过渡金属成分组成会影响Al 2O 3在材料表面的包覆反应。材料中过渡金属Mn含量的降低会促进Al元素扩散进入材料的结构内部,对于Al 2O 3包覆的NMC532材料,没有发现任何Al元素进入晶格内的过渡金属层,但对于Al 2O 3包覆Mn含量更低的NMC622和NMC811材料,高温烧结后,在晶格的过渡金属层发现了Al元素,且在NMC811材料内Al含量更高。对于高镍层状正极材料,Al 2O 3包覆会严重减弱其包覆作用甚至导致更差的容量和循环性能。可见,对于高镍层状锂离子电池正极材料,直接进行Al 2O 3包覆是行不通的。
对于锂过渡金属氧化物包覆的层状正极材料,钨包覆仅能实现材料的低电阻化而提升材料的容量和倍率性能,而且不能在材料表面形成均匀致密的包覆膜。非专利文献(XinheYang,Zicheng Zuo,Haiyan Wang,Quanbin Chen,Hui Zhang,Zhenlei Huang,Borong Wu,Henghui Zhuo,Electrochimica Acta(180)2015:604-609)证实了经钨包覆后的层状材料,包覆层的钨元素会在 电解液中溶出,富集于石墨负极从而使得循环性能不佳。
发明内容
本发明所要解决的技术问题是,克服以上背景技术中提到的不足和缺陷,提供一种同时表现出高容量、长循环和高倍率特性的双包覆层改性锂离子电池正极材料及其制备方法。
为解决上述技术问题,本发明提出的技术方案为:
一种双包覆层改性锂离子电池正极材料,包括正极材料基体、包覆于基体表面的第一包覆层和包覆于第一层包覆层表面的第二包覆层;其中,所述第一包覆层为纳米薄片状的快离子导体层;所述第二包覆层为Al化合物层。
上述的正极材料,优选的,所述快离子导体为钨酸锂、钼酸锂和钒酸锂中的至少一种;所述Al化合物为LiAlO 2和Al 2O 3中的至少一种。
上述的正极材料,优选的,所述快离子导体层中的钨、钼或钒元素的质量占正极材料基体质量的0.02%-0.5%,所述Al化合物层中铝原子占正极材料基体质量的0.02%-0.2%。
上述的正极材料,优选的,所述正极材料基体的分子式为Li uNi (1-x-y-z)Co xMn yM zO 2,其中,0.9≤u≤1.20,0<x≤0.20,0<y≤0.20,0<z≤0.05,M为掺杂元素,M为Al、Mg、Ti、Zr、V、B、La、Y、Cr、Mo、Ca、Fe、Hf、Zn、Si、W、Nb、Sm中的至少一种元素。
作为一个总的发明构思,本发明还提供一种上述的正极材料的制备方法,包括以下步骤:
(1)将正极材料基体加入到水中搅拌,形成均匀浆料A;
将钨铵盐、钼铵盐或钒铵盐加入水中(20~60℃)并搅拌,形成均一的溶液B;
将溶液B、柠檬酸溶液加入浆料A中搅拌均匀,加热该混合物,使水分蒸发,直至出现粘稠状的凝胶;再将该凝胶浆料烘干脱水,获得纳米薄片状快离子导体包覆的正极材料;
(2)将步骤(1)制备的纳米薄片状快离子导体包覆的正极材料与铝化合物混合,在500~700℃下恒温烧结3~10h,破碎、筛分,即获得双包覆层改性锂离子电池正极材料。
氧化铝在低温(450℃)包覆的效果是不理想的,会引起材料内阻和电化学极化的增加,而单一的氧化铝在高温(500-700℃)包覆则会使Al扩散进入材料晶格内,包覆效果也不佳,申请人通过研究发现,先在通过液相湿法包覆并引入分散剂柠檬酸在材料表面形成了一层纳米薄片状包覆物,该包覆层能够减弱第二包覆物中的Al元素向材料体相的扩散动力学,最终在第一包覆层表面形成以LiAlO 2、Al 2O 3为主的第二包覆层,从而稳定材料表面结构,进而改善材料各项性能。
上述的制备方法,优选的,所述步骤(1)中的正极材料基体是通过以下制备方法获得的:
将Ni (1-x-y-z)Co xMn y(OH) 2前驱体与锂源、含M的化合物均匀混合,在氧气气氛中、600~900℃下恒温烧结5~20h,经破碎、筛分,得到正极材料基体;其中,所述锂源为氢氧化 锂、碳酸锂、硝酸锂中的至少一种;所述含M的化合物是指M的氧化物、铵盐、硫酸盐、碳酸盐、硝酸盐、有机金属化合物中的至少一种;M/(Ni+Co+Mn+M)=0.1%~2.0%。
上述的制备方法,优选的,所述浆料A中,水与正极材料基体的质量比为(0.4~1.0):1。若水量较多,则会影响材料的表面状态进而恶化材料电化学性能,后续水分蒸发时间也过长,不利于生产效率;若水含量较少,则材料与水不能形成均一的浆料,不能充分搅拌使凝胶层均匀分散于核心基体材料表面,湿法包覆过程难以进行;因此,控制水量在本发明的范围内可以最优的保证材料的性能。
上述的制备方法,优选的,所述柠檬酸的摩尔量与快离子导体的摩尔量的比值为(1.0~4.0):1。柠檬酸用量过大会使得生成的包覆物过于细小疏松分散,不能在材料表面形成均匀致密的包覆层;柠檬酸用量过小则不具有足够的分散作用,不易在核心基体材料表面形成稳定的凝胶,形成的包覆层物质易团聚,而不呈分散的纳米薄片状;因此,控制柠檬酸的用量在本发明的发明内既可以保证包覆层的均匀致密性,又能保证包覆层呈纳米薄片状。
上述的制备方法,优选的,所述铝化合物为Al 2O 3、AlOOH、Al(OH) 3和LiAlO 2中的至少一种;其平均粒径D50为0.1~20微米。
上述的制备方法,优选的,所述步骤(1)中,加热的温度为70~100℃;烘干的温度为80~280℃,烘干时间为2~10h。
与现有技术相比,本发明的优点在于:
(1)本发明通过先包覆纳米薄片状的快离子导体层,后包覆含铝化合物外层来制备双层表面包覆正极材料,由于纳米薄片状的快离子导体层的阻隔作用,外层的铝化合物无法扩散进入材料晶格内的过渡金属层,在材料表面形成有利于材料界面稳定性的铝氧化物包覆层;同时还降低了材料的过渡金属元素以及包覆物中的钨、钼、钒等元素在电解液的溶出,有效稳定了材料的表面结构以及减少了材料与电解液的界面副反应。
(2)本发明的制备方法,无论在湿法包覆阶段,还是在干法铝包覆阶段,都未添加额外的锂源(氢氧化锂、碳酸锂或其他物质),而且,最终的双层包覆层物质主要为钨酸锂(钼酸锂或钒酸锂)、偏铝酸锂,所以本发明在包覆的同时消耗了表面残锂(Li 2CO 3和LiOH等化合物),从而降低了材料表面残锂和pH值,从而提升极片的制作加工性能和减少锂离子电池产气行为。
(3)本发明在快离子导体包覆层的制备阶段加入螯合剂柠檬酸,使包覆物粒子被均匀分散,减少在加热过程中的团聚,从而在正极材料基体的一次颗粒表面及一次颗粒间形成均匀的纳米薄片状包覆物。
(4)本发明的双包覆层改性锂离子电池正极材料,其第一层包覆物除具有其本身提容量、 提倍率作用外,还具有减弱第二层包覆物中Al元素的扩散动力学行为的作用;因此,本发明将快离子导体包覆和铝包覆结合在一起,不仅弥补了单一快离子导体的不足,而且二者之间还具有相互协同效果,使得正极材料的高容量、长循环和高倍率特性性能得到进一步提升。
综上所述,本发明通过双包覆层表面改性锂离子电池正极材料,最终保证了正极材料的比容量、循环和倍率等优异的电化学性能。
附图说明
图1为本发明对比例1制备所得材料的FEI-SEM图。
图2为本发明对比例2制备所得材料的FEI-SEM图。
图3为本发明实施例1制备所得材料的FEI-SEM图。
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本文发明做更全面、细致地描述,但本发明的保护范围并不限于以下具体实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1:
一种双层包覆改性的锂离子电池正极材料,包括正极材料基体Li 1.02Ni 0.87Co 0.10Mn 0.02Al 0.01O 2、包覆于基体表面的第一包覆层(纳米薄片状钨酸锂)和包覆于第一包覆层表面的第二包覆层(铝化合物层,以LiAlO 2为主,含部分Al 2O 3);其中,钨元素占正极材料基体质量的0.12%,铝元素占正极材料基体质量的0.12%。本实施例的双包覆层改性锂离子电池正极材料的制备方法,包括以下步骤:
(1)基体材料的制备:
称取500g的Ni 0.88Co 0.10Mn 0.02(OH) 2前驱体、230.8g LiOH与4.2g纳米氢氧化铝均匀混合,然后将混合好的物料在氧气气氛中(氧气流量为40L/min)、750℃下恒温烧结13h,冷却,过300目筛,即得正极材料基体锂过渡金属氧化物,经ICP测试得其分子式为Li 1.02Ni 0.87Co 0.10Mn 0.02Al 0.01O 2
(2)纳米薄片状快离子导体包覆基体材料
取步骤(1)制备的400g正极材料基体,加入200g去离子水中,并搅拌使基体材料分散于水中,形成均匀浆料A;
称取3.35g偏钨酸铵((NH 4) 6H 2W 12O 40·xH 2O)(钨元素与正极材料基体的质量比为0.12%) 加入50mL去离子水中,在50℃下搅拌使偏钨酸铵充分溶解,形成溶液B;
将10mL溶液B和20mL柠檬酸溶液(1.4g一水柠檬酸(C 6H 8O 7·H 2O)加入20mL去离子水中形成的溶液)加入浆料A中,持续搅拌10min;加热所得浆料,并保持浆料温度为80℃,使水分慢慢蒸发,直至浆料变为粘稠状,再将粘稠状浆料置于烘箱中脱水,烘干过程保持真空状态,烘干温度为130℃,烘干时间4h,获得纳米薄片状钨酸锂包覆基体材料。
(3)双包覆层改性锂离子电池正极材料
将1.3g平均粒径是2.0μm的纳米级氢氧化铝(Al(OH) 3)试剂(铝元素与正极材料基体的质量比为0.12%)与经步骤(2)包覆的300g材料均匀混合,在氧气气氛中(氧气流量为40L/min),650℃恒温烧结8h,将烧结后物料过300目筛网处理,即得最终的双包覆层改性锂离子电池正极材料。
将制备所得的双包覆层改性锂离子电池正极材料与导电炭黑、粘结剂PVDF按质量比为92:5:3的比例,以NMP作溶剂混合均匀后涂布于Al箔上,120℃下干燥12h,碾压并冲切成12mm圆片,在氩气保护的手套箱(氧气含量小于1ppm、水分低于1ppm)中,以金属锂片作负极组装成CR2032型纽扣电池,在25℃,3.0-4.3V电压窗口下进行电化学性能测试。具体测试制度为:第1周0.1C(对应电流密度20.8mA/g)充电,0.1C放电;第2周0.2C充电,0.2C放电;第3周0.2C充电,0.5C放电;第4周0.2C充电,1C放电;第5周0.2C充电,0.2C放电;第6-55周1C充电,1C放电。
实施例2:
本实施例与实施例1的区别在于步骤(2):称取4.42g四水钼酸铵(H 24Mo 7N 6O 24·4H 2O)(钼元素与正极材料基体的质量比为0.12%)溶解于50mL去离子水,配制溶液B;柠檬酸溶液是称取2.6g一水柠檬酸(C 6H 8O 7·H 2O)加入20mL去离子水配制的,其他工艺参数与实施例1相同。
实施例3
本实施例与实施例1的区别在于步骤(2):称取2.75g偏钒酸铵(NH 4VO 3)(钒元素与正极材料基体的质量比为0.06%)溶解于50ml去离子水,配制溶液B;柠檬酸溶液是称取2.47g一水柠檬酸(C 6H 8O 7·H 2O)加入20ml去离子水配制的,其他工艺参数与实施例1相同。
对比例1:
本对比例为实施例1的步骤(1)制备的正极材料基体锂过渡金属氧化物Li 1.02Ni 0.87Co 0.10Mn 0.02Al 0.01O 2
对比例2:
本对比例的步骤(1)与步骤(2)与实施例1完全一致,区别在于,步骤(3)是将烘干 后经钨酸锂包覆基体材料在600℃恒温烧结8h,再将烧结后物料过300目筛处理,即得最终的材料成品。
对比例3:
本对比例的步骤(1)与实施例1完全一致。步骤(2)是将步骤(1)制备的300g基体材料与1.3g纳米级Al(OH) 3(铝元素与正极材料基体的质量比为0.12%)均匀混合,在40L/min的氧气流量,650℃温度下恒温烧结8h,将烧结后物料过300目筛网处理即得最终的成品材料。
对比例4:
本对比例的步骤(1)、(3)与实施例1完全一致;区别在于步骤(2)的制备方法为:
将步骤(1)制备的400g基体材料加入200g去离子水中,并搅拌使基体材料分散于水中,制成浆料A;称取3.35g偏钨酸铵((NH 4) 6H 2W 12O 40·xH 2O)(钨元素与正极材料基体的质量比为0.12%)加入50mL去离子水中,在50℃下搅拌使偏钨酸铵充分溶解,制成溶液B;
量取10mL溶液B加入到分散完全的浆料A中,加热并保持浆料温度为80℃,使水分慢慢蒸发,直至浆料变为粘稠状;再将所得浆料置于烘箱中脱水,烘干过程保持真空状态,烘干温度为130℃,烘干时间4h,则获得经钨酸锂包覆的高镍层状正极材料。
对比例5:
本对比例的步骤(1)、(2)与实施例1完全一致,区别在于步骤(3):
将1.3g纳米级氢氧化铝(Al(OH) 3)试剂(铝元素与正极材料基体的质量比为0.12%)与经步骤(2)包覆的300g材料均匀混合,在40L/min的氧气流量,450℃恒温烧结8h,将烧结后物料过300目筛网处理即得最终的成品正极材料,同时对材料进行残锂测试和电化学性能评价。
由以上实施例及对比例获得的材料所组装成扣式电池的0.1C放电比容量、0.2C放电比容量、0.5C放电比容量、1C放电比容量、50周循环容量保持率(第55周放电比容量与第6周放电比容量比值)等电化学数据以及材料的表面残锂数据见表1。
表1 各实施例和对比例的电化学数据以及材料的表面残锂数据
Figure PCTCN2020116864-appb-000001
Figure PCTCN2020116864-appb-000002
由表1数据可知,比较实施例1和对比例4,过渡层包覆加入柠檬酸后,双层包覆效果更佳,材料具有更优的电化学性能;比较实施例1和对比例5,说明钨和铝包覆在高温下才具有理想效果,而高温会促进Al进入材料的晶格内,进一步说明该双层包覆改性方法的优势。相比于对比例1的一次烧结材料,包覆后的材料表面Li 2CO 3和LiOH含量明显降低,能提升极片的制作加工性能和减少锂离子电池产气行为。高镍层状正极材料经双层包覆改性后,同时兼具单一包覆物的优点,并弥补单一包覆的不足,由该材料为活性物质组成的锂离子电池具有高容量、高倍率和长循环特性。
本发明对比例1制备所得材料的FEI-SEM图见图1所示,对比例2制备所得材料的FEI-SEM图见图2所示,实施例1制备所得材料的FEI-SEM图见图3所示,图1是未经包覆的基体材料SEM,相对于图2和图3,材料一次颗粒表面光滑平整;图2是经湿法钨酸锂包覆干燥后的SEM图,材料表面均匀地形成了纤细状包覆层,插入的图片相对于原始SEM图清晰度有所降低;图3则是经干法铝包覆后的具有双包覆层的成品材料,包覆物在材料颗粒表面分布较均匀,大部分呈小颗粒岛状分布。
由以上实施例和对比例的FEI-SEM图可知,本发明的技术方案可以保证过渡层和壳层包覆物均匀地包覆于材料表面,能很好地保护材料表面以及减少界面副反应。

Claims (10)

  1. 一种双包覆层改性锂离子电池正极材料,其特征在于,包括正极材料基体、包覆于基体表面的第一包覆层和包覆于第一层包覆层表面的第二包覆层;其中,所述第一包覆层为纳米薄片状的快离子导体层;所述第二包覆层为Al化合物层。
  2. 如权利要求1所述的正极材料,其特征在于,所述快离子导体为钨酸锂、钼酸锂和钒酸锂中的至少一种;所述Al化合物为LiAlO 2和Al 2O 3
  3. 如权利要求1所述的正极材料,其特征在于,所述快离子导体层中的钨、钼或钒元素的质量占正极材料基体质量的0.02%-0.5%,所述Al化合物层中铝原子占正极材料基体质量的0.02%-0.2%。
  4. 如权利要求1-3任一项所述的正极材料,其特征在于,所述正极材料基体的分子式为Li uNi (1-x-y-z)Co xMn yM zO 2,其中,0.9≤u≤1.20,0<x≤0.20,0<y≤0.20,0<z≤0.05,M为Al、Mg、Ti、Zr、V、B、La、Y、Cr、Mo、Ca、Fe、Hf、Zn、Si、W、Nb、Sm中的至少一种元素。
  5. 一种如权利要求1-4任一项所述的正极材料的制备方法,包括以下步骤:
    (1)将正极材料基体加入到水中搅拌,形成均匀浆料A;
    将钨铵盐、钼铵盐或钒铵盐加入水中并搅拌,形成均一的溶液B;
    将溶液B、柠檬酸溶液加入浆料A中搅拌均匀,加热该混合物,使水分蒸发,直至出现粘稠状的凝胶;再将该凝胶浆料烘干脱水,获得纳米薄片状快离子导体包覆的正极材料;
    (2)将步骤(1)制备的纳米薄片状快离子导体包覆的正极材料与铝化合物混合,在500~700℃下恒温烧结3~10h,破碎、筛分,即获得双包覆层改性锂离子电池正极材料。
  6. 如权利要求5所述的制备方法,其特征在于,所述步骤(1)中的正极材料基体是通过以下制备方法获得的:
    将Ni (1-x-y-z)Co xMn y(OH) 2前驱体与锂源、含M的化合物均匀混合,在氧气气氛中、600~900℃下恒温烧结5~20h,经破碎、筛分,得到正极材料基体;其中,所述锂源为氢氧化锂、碳酸锂、硝酸锂中的至少一种;所述含M的化合物是指M的氧化物、铵盐、硫酸盐、碳酸盐、硝酸盐、有机金属化合物中的至少一种;M/(Ni+Co+Mn+M)=0.1%~2.0%。
  7. 如权利要求5所述的制备方法,其特征在于,所述浆料A中,水与正极材料基体的质量比为(0.4~1.0):1。
  8. 如权利要求5所述的制备方法,其特征在于,所述柠檬酸的摩尔量与快离子导体的摩尔量的比值为(1.0~4.0):1。
  9. 如权利要求5所述的制备方法,其特征在于,所述铝化合物为Al 2O 3、AlOOH、Al(OH) 3和LiAlO 2中的至少一种;其平均粒径D50为0.1~20微米。
  10. 如权利要求5所述的制备方法,其特征在于,所述步骤(1)中,加热的温度为70~100℃;烘干的温度为80~280℃,烘干时间为2~10h。
PCT/CN2020/116864 2019-08-06 2020-09-22 一种双包覆层改性锂离子电池正极材料及其制备方法 WO2021023313A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910720803.7 2019-08-06
CN201910720803.7A CN112349905B (zh) 2019-08-06 2019-08-06 一种双包覆层改性锂离子电池正极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2021023313A1 true WO2021023313A1 (zh) 2021-02-11

Family

ID=74366400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116864 WO2021023313A1 (zh) 2019-08-06 2020-09-22 一种双包覆层改性锂离子电池正极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN112349905B (zh)
WO (1) WO2021023313A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968148A (zh) * 2021-03-29 2021-06-15 欣旺达电动汽车电池有限公司 一种锂离子电池负极片和锂离子电池
CN113839040A (zh) * 2021-08-31 2021-12-24 蜂巢能源科技有限公司 高镍三元正极材料及其制备方法、锂离子电池
CN114031124A (zh) * 2021-11-02 2022-02-11 远景动力技术(江苏)有限公司 钨双包覆正极材料及其制备方法与应用
CN114784283A (zh) * 2022-05-30 2022-07-22 深圳市德方纳米科技股份有限公司 一种包覆型正极材料及其制备方法和应用
CN115312783A (zh) * 2022-10-11 2022-11-08 湖南美特新材料科技有限公司 一种锂离子电池正极材料的包覆方法
CN115321614A (zh) * 2022-09-21 2022-11-11 合肥国轩高科动力能源有限公司 一种改善锂离子电池dcr的正极材料及其制备方法
CN116759583A (zh) * 2023-08-23 2023-09-15 浙江帕瓦新能源股份有限公司 包覆改性的前体及其制备方法、正极材料和锂离子电池
CN117117158A (zh) * 2023-10-23 2023-11-24 浙江帕瓦新能源股份有限公司 一种改性钠离子电池正极材料及其制备方法、钠离子电池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937291B (zh) * 2021-09-02 2022-11-29 高能时代(珠海)新能源科技有限公司 一种用于硫化物全固态电池的电极材料及其制备方法
CN116636047A (zh) * 2021-09-14 2023-08-22 宁德时代新能源科技股份有限公司 高镍正极活性材料、其制备方法、包括其的锂离子电池、电池模块、电池包和用电装置
CN114094059B (zh) * 2021-09-28 2023-04-28 格林美(湖北)新能源材料有限公司 一种复合纳米层包覆的无钴单晶正极材料及其制备方法
CN114335481A (zh) * 2021-12-31 2022-04-12 欣旺达电动汽车电池有限公司 导电和导离子双层原位包覆的磷酸铁锂、制备方法及应用
CN114335488B (zh) * 2022-01-06 2023-03-10 中国科学技术大学 一种包覆改性的富锂锰基正极材料及其制备方法
WO2023157525A1 (ja) * 2022-02-15 2023-08-24 Basf戸田バッテリーマテリアルズ合同会社 正極活物質粒子の処理方法、並びに正極活物質及びそれを用いた非水電解質二次電池
CN117913215A (zh) * 2024-03-19 2024-04-19 宁德时代新能源科技股份有限公司 二次电池和用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090155694A1 (en) * 2007-12-18 2009-06-18 Samsung Sdi Co., Ltd. Cathode and lithium battery using the same
CN107104226A (zh) * 2017-05-18 2017-08-29 格林美(无锡)能源材料有限公司 复合锂离子电池三元正极材料及其制备方法
CN107636866A (zh) * 2015-11-30 2018-01-26 株式会社Lg化学 二次电池用正极活性材料和包含其的二次电池
CN108172821A (zh) * 2017-12-28 2018-06-15 复旦大学 一种消除残锂并制备锂离子导体包覆高镍三元的正极材料的方法
CN108807886A (zh) * 2018-05-31 2018-11-13 电子科技大学 双层包覆锂离子电池正极材料LiNi0.6Co0.2Mn0.2O2及其制备方法
CN108878794A (zh) * 2017-05-11 2018-11-23 中国科学院宁波材料技术与工程研究所 具有复合包覆层的尖晶石结构锂离子电池正极材料及其制法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031262A (ja) * 2001-07-10 2003-01-31 Kansai Research Institute 非水系二次電池
KR101595165B1 (ko) * 2011-03-16 2016-02-17 어드밴스드 리튬 일렉트로케미스트리 컴퍼니 리미티드 이중 탄소 코팅을 갖는 캐소드 물질 및 이의 제조 방법
CN103682356B (zh) * 2012-09-18 2016-11-23 华为技术有限公司 一种锂离子电池正极材料及其制备方法
CN103606674B (zh) * 2013-11-21 2015-12-02 北大先行科技产业有限公司 一种表面改性处理的钴酸锂材料及其制备方法
CN105140482B (zh) * 2015-08-07 2018-06-19 中南大学 一种改性锂离子电池正极材料及其制备方法
CN108206277A (zh) * 2016-12-20 2018-06-26 宁德时代新能源科技股份有限公司 改性高镍三元正极材料及其制备方法、锂离子电池
CN107706390B (zh) * 2017-10-10 2020-06-05 长沙理工大学 一种快离子导体和导电聚合物双重修饰的锂离子电池三元正极材料的制备方法
CN109830651B (zh) * 2017-11-23 2021-06-22 天津国安盟固利新材料科技股份有限公司 一种双层包覆改性的三元正极高镍材料及其制备方法
CN108598379A (zh) * 2018-02-08 2018-09-28 中南大学 一种钨酸锂包覆镍钴铝酸锂复合材料及其制备方法和应用
CN108598400B (zh) * 2018-04-11 2020-12-04 桑顿新能源科技有限公司 一种三层核壳结构正极材料,制备方法及锂离子电池
CN108847477B (zh) * 2018-05-25 2021-09-21 彩虹集团新能源股份有限公司 一种镍钴锰酸锂三元正极材料及其制备方法
CN108878852A (zh) * 2018-07-09 2018-11-23 河南科技学院 一种锂离子电池锰酸锂正极材料及其制备方法
CN109244439B (zh) * 2018-11-27 2020-11-03 宁波容百新能源科技股份有限公司 一种多级层包覆的锂离子电池三元正极材料及其制备方法以及锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090155694A1 (en) * 2007-12-18 2009-06-18 Samsung Sdi Co., Ltd. Cathode and lithium battery using the same
CN107636866A (zh) * 2015-11-30 2018-01-26 株式会社Lg化学 二次电池用正极活性材料和包含其的二次电池
CN108878794A (zh) * 2017-05-11 2018-11-23 中国科学院宁波材料技术与工程研究所 具有复合包覆层的尖晶石结构锂离子电池正极材料及其制法
CN107104226A (zh) * 2017-05-18 2017-08-29 格林美(无锡)能源材料有限公司 复合锂离子电池三元正极材料及其制备方法
CN108172821A (zh) * 2017-12-28 2018-06-15 复旦大学 一种消除残锂并制备锂离子导体包覆高镍三元的正极材料的方法
CN108807886A (zh) * 2018-05-31 2018-11-13 电子科技大学 双层包覆锂离子电池正极材料LiNi0.6Co0.2Mn0.2O2及其制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968148A (zh) * 2021-03-29 2021-06-15 欣旺达电动汽车电池有限公司 一种锂离子电池负极片和锂离子电池
CN113839040A (zh) * 2021-08-31 2021-12-24 蜂巢能源科技有限公司 高镍三元正极材料及其制备方法、锂离子电池
CN114031124A (zh) * 2021-11-02 2022-02-11 远景动力技术(江苏)有限公司 钨双包覆正极材料及其制备方法与应用
CN114031124B (zh) * 2021-11-02 2024-03-26 远景动力技术(江苏)有限公司 钨双包覆正极材料及其制备方法与应用
CN114784283A (zh) * 2022-05-30 2022-07-22 深圳市德方纳米科技股份有限公司 一种包覆型正极材料及其制备方法和应用
CN114784283B (zh) * 2022-05-30 2024-03-29 深圳市德方纳米科技股份有限公司 一种包覆型正极材料及其制备方法和应用
CN115321614B (zh) * 2022-09-21 2023-10-31 合肥国轩高科动力能源有限公司 一种改善锂离子电池dcr的正极材料及其制备方法
CN115321614A (zh) * 2022-09-21 2022-11-11 合肥国轩高科动力能源有限公司 一种改善锂离子电池dcr的正极材料及其制备方法
CN115312783B (zh) * 2022-10-11 2023-01-24 湖南美特新材料科技有限公司 一种锂离子电池正极材料的包覆方法
CN115312783A (zh) * 2022-10-11 2022-11-08 湖南美特新材料科技有限公司 一种锂离子电池正极材料的包覆方法
CN116759583B (zh) * 2023-08-23 2023-11-10 浙江帕瓦新能源股份有限公司 包覆改性的前体及其制备方法、正极材料和锂离子电池
CN116759583A (zh) * 2023-08-23 2023-09-15 浙江帕瓦新能源股份有限公司 包覆改性的前体及其制备方法、正极材料和锂离子电池
CN117117158A (zh) * 2023-10-23 2023-11-24 浙江帕瓦新能源股份有限公司 一种改性钠离子电池正极材料及其制备方法、钠离子电池
CN117117158B (zh) * 2023-10-23 2024-01-23 浙江帕瓦新能源股份有限公司 一种改性钠离子电池正极材料及其制备方法、钠离子电池

Also Published As

Publication number Publication date
CN112349905A (zh) 2021-02-09
CN112349905B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2021023313A1 (zh) 一种双包覆层改性锂离子电池正极材料及其制备方法
JP7176412B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
US8709301B2 (en) Ni-, Co-, and Mn- multi-element doped positive electrode material for lithium battery and its preparation method
JP5971109B2 (ja) ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP5712544B2 (ja) 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
JP4894969B1 (ja) ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池
JP2022113734A (ja) リチウムニッケル含有複合酸化物の製造方法
WO2021238152A1 (zh) 一种锂离子电池用复合正极材料、其制备方法及用途
WO2011065464A1 (ja) 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
WO2021175233A1 (zh) 一种富锂锰基材料及其制备方法和应用
JP7260249B2 (ja) 遷移金属含有複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JPH11219706A (ja) リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
CN110235290B (zh) 正极活性物质及其制造方法、正极以及锂离子电池
WO2024046046A1 (zh) 一种正极活性材料及其应用
WO2023236906A1 (zh) 表面包覆正极材料及其制备方法、锂离子电池
WO2023221625A1 (zh) 大粒径单晶三元正极材料及其制备方法和应用
CN114804235B (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
JP7183815B2 (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP7183812B2 (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
WO2022022198A1 (zh) 一种改性高镍正极材料及其制备方法
WO2024060548A1 (zh) 一种铁包覆硼掺杂的高镍正极材料及其制备方法和应用
WO2023184996A1 (zh) 一种改性高镍三元正极材料及其制备方法
JP7183814B2 (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
WO2022209988A1 (ja) リチウムイオン二次電池用正極活物質の製造方法
EP3636597A1 (en) Lithium transition metal composite oxide and method of production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851044

Country of ref document: EP

Kind code of ref document: A1