WO2021238152A1 - 一种锂离子电池用复合正极材料、其制备方法及用途 - Google Patents
一种锂离子电池用复合正极材料、其制备方法及用途 Download PDFInfo
- Publication number
- WO2021238152A1 WO2021238152A1 PCT/CN2020/135525 CN2020135525W WO2021238152A1 WO 2021238152 A1 WO2021238152 A1 WO 2021238152A1 CN 2020135525 W CN2020135525 W CN 2020135525W WO 2021238152 A1 WO2021238152 A1 WO 2021238152A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- cathode material
- electrode material
- oxygen
- lithium ion
- Prior art date
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 96
- 239000002131 composite material Substances 0.000 title claims abstract description 58
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 41
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 239000011248 coating agent Substances 0.000 claims abstract description 48
- 150000004820 halides Chemical class 0.000 claims abstract description 34
- 239000011247 coating layer Substances 0.000 claims abstract description 25
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 8
- 150000002367 halogens Chemical class 0.000 claims abstract description 7
- 239000010406 cathode material Substances 0.000 claims description 69
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 55
- 239000001301 oxygen Substances 0.000 claims description 55
- 229910052760 oxygen Inorganic materials 0.000 claims description 55
- 238000000034 method Methods 0.000 claims description 38
- 239000012298 atmosphere Substances 0.000 claims description 37
- 238000002156 mixing Methods 0.000 claims description 32
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 20
- BDKWOJYFHXPPPT-UHFFFAOYSA-N lithium dioxido(dioxo)manganese nickel(2+) Chemical compound [Mn](=O)(=O)([O-])[O-].[Ni+2].[Li+] BDKWOJYFHXPPPT-UHFFFAOYSA-N 0.000 claims description 20
- 239000011572 manganese Substances 0.000 claims description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 16
- 239000002243 precursor Substances 0.000 claims description 12
- 229910052744 lithium Inorganic materials 0.000 claims description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 9
- FRMOHNDAXZZWQI-UHFFFAOYSA-N lithium manganese(2+) nickel(2+) oxygen(2-) Chemical compound [O-2].[Mn+2].[Ni+2].[Li+] FRMOHNDAXZZWQI-UHFFFAOYSA-N 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 8
- 229910013716 LiNi Inorganic materials 0.000 claims description 7
- 238000000227 grinding Methods 0.000 claims description 6
- 238000007873 sieving Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 2
- 238000007580 dry-mixing Methods 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 39
- 238000000576 coating method Methods 0.000 abstract description 35
- 230000000052 comparative effect Effects 0.000 description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 17
- 239000002585 base Substances 0.000 description 17
- 230000000694 effects Effects 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000003513 alkali Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000007784 solid electrolyte Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- -1 halogen ion Chemical class 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 150000002696 manganese Chemical class 0.000 description 3
- ZAUUZASCMSWKGX-UHFFFAOYSA-N manganese nickel Chemical compound [Mn].[Ni] ZAUUZASCMSWKGX-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002203 sulfidic glass Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229910011331 LiNi0.6Mn0.4O2 Inorganic materials 0.000 description 2
- 229910011729 LiNi0.7Mn0.3O2 Inorganic materials 0.000 description 2
- 229910015973 LiNi0.8Mn0.2O2 Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- BLYYANNQIHKJMU-UHFFFAOYSA-N manganese(2+) nickel(2+) oxygen(2-) Chemical compound [O--].[O--].[Mn++].[Ni++] BLYYANNQIHKJMU-UHFFFAOYSA-N 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910017288 Ni0.8Mn0.2(OH)2 Inorganic materials 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
- H01M4/1315—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/582—Halogenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to the field of battery technology, for example, to a composite positive electrode material for lithium ion batteries, a preparation method and application thereof.
- Lithium-ion batteries have penetrated every aspect of life due to their high energy density and better cycle performance.
- the development of cathode materials directly affects the development prospects of lithium-ion batteries.
- they are widely used in the automotive and electronic industries.
- NCM Ni x Co y Mn z
- NCA Ni x Co y Al z
- cobalt is expensive and pollutes the environment.
- CN107546385A discloses a method for preparing LiNi x Mn 1-x O 2 binary cathode material and the prepared LiNi x Mn 1-x O 2.
- the method includes: (1) preparing binary nickel and manganese salt aqueous solutions and Mixed alkali aqueous solution; (2) Respectively, binary nickel, manganese salt aqueous solution and mixed alkali aqueous solution were added to a microwave reactor protected by nitrogen at a certain flow rate, and stirred at a constant temperature for reaction; (3) The reactants were transferred to the hydrothermal reactor (4) Co-precipitate is filtered, washed, and dried; (5) The dried co-precipitate is mixed with lithium salt, mixed and ground, and then placed in a sintering furnace for high-temperature solid-phase reaction to obtain a binary cathode material .
- the prepared nickel-manganese-based binary cathode material has an initial discharge capacity of more than 170 mAh/g and good cycle performance.
- CN109811412A discloses a layered lithium nickel manganate cathode material with a single crystal morphology and a preparation method thereof.
- the method includes: (1) a nickel salt and a manganese salt are prepared by a wet chemical method to obtain a nickel manganese precursor, wherein The molar ratio of Ni and Mn is 1:1; (2) Pre-sintering the nickel-manganese precursor to obtain a nickel-manganese oxide precursor; (3) Mixing the nickel-manganese oxide precursor with the lithium source and the M source additive, Then it is calcined to obtain a layered lithium nickel manganate cathode material with a single crystal morphology.
- the present disclosure provides a composite positive electrode material for lithium ion batteries, a preparation method and application thereof.
- a composite cathode material for lithium ion batteries includes a cathode material core and a halide coating layer coated on the surface of the cathode material core.
- the halide includes Li 3 YX 6 , where X is at least one of halogens.
- the halide-coated cathode material is coated with the halide coating layer, which greatly improves the ion conductivity and structural stability of the cathode material, and reduces the surface impedance of the material.
- the interaction between the halogen-1 valent anion and the lithium ion in the halide provided by the present disclosure is weaker, and has better lithium ion conductivity; secondly, due to the larger halogen ion radius, it is beneficial to lithium ion Thirdly, the halide has good stability and is convenient to form a stable and firm connection with the base material; moreover, the halide coating layer has good chemical stability, which blocks the contact between the positive electrode material and the electrolyte, and reduces the side effects. The reaction occurs.
- the combined effect of the above factors makes the obtained composite positive electrode material have extremely high ionic conductivity and structural stability, thereby improving the capacity, first effect and cycle performance of the material.
- the sulfide solid electrolyte or the oxide solid electrolyte has good ionic conductivity, it cannot achieve the technical effect to be achieved by the present disclosure because the sulfide chemical stability is poor.
- the reactions involved in the oxide solid electrolyte are more complicated.
- the oxide solid electrolyte will react with air and moisture, and the cycle stability will decrease; the oxide particles are relatively hard, the solid interface contact is not good, the density is large, the mass energy density is low, and it is not suitable Large-scale production process.
- the halide is Li 3 YCl 6 and/or Li 3 YBr 6 , for example, the halide can be Li 3 YCl 6 , or Li 3 YBr 6 , or Li 3 YCl 6 and Li 3 YBr 6 mixture.
- the positive electrode material core includes a cobalt-free positive electrode material.
- the positive electrode material core includes lithium nickel manganate positive electrode material.
- the chemical formula of the lithium nickel manganese oxide cathode material is LiNi x Mn y O 2 , 0.55 ⁇ x ⁇ 0.95, 0.05 ⁇ y ⁇ 0.45, where x is for example 0.55, 0.6, 0.65, 0.7, 0.72, 0.75, 0.8, 0.9 or 0.95, etc.
- y is, for example, 0.05, 0.08, 0.1, 0.2, 0.3, 0.35, 0.4, or 0.45.
- halides are useful for various lithium-ion battery cathode materials commonly used in the art (for example, lithium iron phosphate, NCM ternary, NCA ternary, lithium cobaltate, lithium manganate, lithium nickel cobaltate, Lithium nickel manganese oxide, etc.) can play a role in improving ionic conductivity and stabilizing the structure.
- lithium iron phosphate for example, lithium iron phosphate, NCM ternary, NCA ternary, lithium cobaltate, lithium manganate, lithium nickel cobaltate, Lithium nickel manganese oxide, etc.
- the present disclosure particularly improves the performance of the cobalt-free positive electrode material by introducing a halide coating layer.
- the cobalt-free positive electrode material is a cobalt-free positive electrode material based on a ternary material.
- the present disclosure can also reduce the residual alkali by coating the halide coating layer on the surface of the cobalt-free positive electrode material.
- the technical principle is: at a higher temperature (700-800°C), the halide coating layer and the cobalt-free positive electrode material Where the surface is in contact, the halogen in the halide (such as Cl) will react with a part of the lithium, forming an oxide at high temperature to be embedded in the material, reducing residual alkali and improving product performance.
- the content of Y element in the Li 3 YX 6 is 0.1%-1%, such as 0.1%, 0.3%, 0.5%, 0.7%, 0.8% , 0.9% or 1%, etc.
- the conductivity improvement effect will be insignificant; if the content of Y element in Li 3 YX 6 is greater than 1%, it will hinder lithium The insertion and extraction of ions reduces electrochemical performance.
- the content of the Y element in the Li 3 YX 6 is 0.1%-0.3%.
- the particle size D50 of the core of the positive electrode material is 1 ⁇ m-5 ⁇ m, such as 1 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, or 5 ⁇ m, etc.
- the particle size D50 of the core of the positive electrode material is 1 ⁇ m-3 ⁇ m.
- the particle size D50 of the Li 3 YX 6 is 5nm-500nm, such as 5nm, 10nm, 15nm, 20nm, 25nm, 30nm, 35nm, 40nm, 50nm, 65nm, 80nm, 100nm, 15nm, 130nm, 150nm, 180nm, 200nm, 230nm, 260nm, 300nm, 350nm, 375nm, 400nm, 450nm, 500nm, etc.
- the particle size D50 of the Li 3 YX 6 is 50 nm-100 nm.
- the core particle size D50 of the positive electrode material is 1 ⁇ m-5 ⁇ m, and the particle size D50 of Li 3 YX 6 is 5 nm-500 nm. Within this range, it can be better formed on the surface of the coated base material. Better coating.
- the halide coating layer has good chemical stability and does not react with oxygen and water in the air.
- the content of residual alkali and free water of the composite cathode material is low, and the material
- the total amount of residual lithium carbonate and lithium hydroxide is less than 0.3% (wt); the free water content in the material is less than 200ppm; its specific surface area is in the range of 0.2m 2 /g-0.9m 2 /g; the pH of the material is less than 12 .
- a method for preparing the composite cathode material for lithium ion batteries includes the following steps:
- the coating agent is mixed with the base cathode material, and then processed at a high temperature of 400°C-800°C in an oxygen-containing atmosphere to obtain a composite cathode material, such as 400°C, 425°C, 450°C, 460°C, 480°C, 500°C, 525°C , 550°C, 580°C, 600°C, 650°C, 700°C, 730°C, 750°C or 800°C etc.
- a composite cathode material such as 400°C, 425°C, 450°C, 460°C, 480°C, 500°C, 525°C , 550°C, 580°C, 600°C, 650°C, 700°C, 730°C, 750°C or 800°C etc.
- the coating agent includes Li 3 YX 6 , and X is at least one of halogens.
- high temperature treatment is performed at 400°C-800°C. If the temperature is lower than 400°C, it will cause poor bonding between the coating layer and the core of the positive electrode material; if the temperature is higher than 800°C, it will lead to halogenation.
- the structure of the substance has undergone serious changes, and for ternary materials or cobalt-free cathode materials, the mixing of lithium and nickel will be aggravated, thereby reducing the effect of improving conductivity, and the temperature is preferably 400°C-700°C.
- Li3YX6 when the high temperature treatment temperature is higher than 700°C and below 800°C, the structure of Li3YX6 will be slightly damaged, reducing its effect on improving ion conductivity, and at the same time, it will contact the surface of the positive electrode material, especially the cobalt-free positive electrode material.
- the halogen (such as Cl) in Li3YX6 will react with a part of the lithium, forming an oxide at high temperature to be embedded in the material, reducing residual alkali and improving product performance.
- the volume concentration of oxygen in the oxygen-containing atmosphere is 20%-100%, for example, 20%, 25%, 30%, 40%, 45%, 50%, 60%, 70%, 80%. %, 90% or 100% etc.
- the volume concentration of oxygen in the oxygen-containing atmosphere is 50%-90%.
- the mixing method is dry mixing.
- the mixing includes: mixing the coating agent and the base cathode material in a mixing device at a rotation speed of 2000 rpm to 3000 rpm, for example, 2000 rpm, 2250 rpm, 2500 rpm, 2700 rpm, 2800 rpm, or 3000 rpm.
- the mixing time is 10 minutes to 20 minutes, such as 10 minutes, 15 minutes, 18 minutes, or 20 minutes.
- the temperature of the high temperature treatment is 400-700°C.
- the high temperature treatment time is 4h-8h, such as 4h, 4.2h, 4.5h, 5h, 5.5h, 5.7h, 6h, 6.5h, 7h, 7.5h or 8h.
- the method further includes the steps of grinding and sieving after the high temperature treatment.
- the base cathode material is lithium nickel manganese oxide
- the preparation method of the lithium nickel manganese oxide includes:
- the lithium source in step (a) is LiOH.
- the mixing in step (a) is: mixing in a high-speed mixing device at a rotation speed of 2000 rpm-3000 rpm for 10 minutes to 20 minutes.
- the high temperature reaction time in step (b) is 8h-12h, such as 8h, 9h, 9.5h, 10h, 11h or 12h.
- the high-temperature reaction in step (b) is performed in an oxygen-containing atmosphere with an oxygen volume concentration greater than 90%.
- the gas flow rate of the oxygen-containing atmosphere is 2L/min-20L/min, such as 2L/min, 5L/min, 7L/min, 10L/min, 12L/min, 14L/min, 15L/min or 20L/min etc.
- step (b) after the high temperature reaction in step (b), a step of cooling and crushing is performed.
- the method includes the following steps:
- the coating agent and the base cathode material are mixed in a mixing device, the coating agent is Li 3 YCl 6 and/or Li 3 YBr 6 , mixed at a speed of 2000rpm-3000rpm for 10 minutes-20 minutes, and then placed in an oxygen-containing atmosphere High temperature treatment at 400°C-700°C for 4h-8h, in the oxygen-containing atmosphere, the volume concentration of oxygen is 20%-100%, grinding, sieving with a 300-400 mesh sieve, to obtain a composite positive electrode material.
- the composite cathode material includes lithium nickel manganate and a coating layer coated on the surface of the lithium nickel manganate, the coating layer being Li 3 YCl 6 and/or Li 3 YBr 6 ;
- the content of the Y element in the coating layer is 0.1%-1%.
- a positive electrode in one embodiment of the present disclosure, includes the composite positive electrode material for lithium ion batteries according to one embodiment of the present disclosure.
- a lithium ion battery is provided, and the lithium ion battery includes the positive electrode according to an embodiment of the present disclosure.
- Figures 1a and 1b are SEM images of the material before coating (the positive electrode material prepared in the comparative example provided in the present disclosure) under different magnifications;
- 2a and 2b are SEM images of the coated material (the cathode material prepared in the embodiment provided in the present disclosure) under different magnifications;
- Figure 3 is the first charge-discharge curve of the material before and after coating.
- the two curves indicated by arrows in the figure correspond to the composite cathode material after coating, and the two curves not indicated by arrows correspond to the positive electrode material before coating.
- the former corresponds to the positive electrode material of the comparative example, and the composite positive electrode material of the embodiment after coating;
- FIG. 4 is a cycle performance curve of the materials before and after coating, wherein the positive electrode material of the comparative example before coating corresponds to the composite positive electrode material of the embodiment after coating.
- This embodiment provides a composite positive electrode material for a lithium ion battery.
- the composite positive electrode material includes a positive electrode material core and a halide coating layer coated on the surface of the positive electrode material core.
- the positive electrode material core is LiNi 0.75 Mn 0.25 O 2
- the halide is Li 3 YCl 6 , based on the mass of the positive electrode material core as 100%, the content of Y element in the Li 3 YCl 6 is 0.5%, and the particle size D50 of the positive electrode material core is 3 ⁇ m .
- This embodiment also provides a method for preparing the composite cathode material, which includes the following steps:
- the coating agent Li 3 YCl 6 and the base cathode material are mixed in a mixing device at a rotation speed of 2200 rpm for 20 minutes, and then treated at a high temperature of 600 °C under an oxygen-containing atmosphere for 5 hours.
- the oxygen-containing atmosphere is a combination of oxygen and nitrogen.
- the volume concentration of nitrogen is 40%, and the volume concentration of oxygen is 60%, ground, and sieved with a 300-mesh sieve to obtain a composite positive electrode material.
- This embodiment provides a composite positive electrode material for a lithium ion battery.
- the composite positive electrode material includes a positive electrode material core and a halide coating layer coated on the surface of the positive electrode material core.
- the positive electrode material core is LiNi 0.6 Mn 0.4 O 2
- the halide is Li 3 YBr 6 , based on the mass of the positive electrode material core being 100%, the content of Y element in the Li 3 YBr 6 is 0.3%, and the particle size D50 of the positive electrode material core is 3 ⁇ m .
- This embodiment also provides a method for preparing the composite cathode material, which includes the following steps:
- the coating agent Li 3 YBr 6 and the base cathode material are mixed in a mixing device at a speed of 2750 rpm for 10 minutes, and then treated at a high temperature of 500° C. for 5.5 hours in an oxygen-containing atmosphere.
- the atmosphere is a mixed atmosphere of oxygen and nitrogen, the volume concentration of nitrogen is 60%, and the volume concentration of oxygen is 40%, grinding and sieving with a 300-mesh sieve to obtain the composite positive electrode material.
- This embodiment provides a composite positive electrode material for a lithium ion battery.
- the composite positive electrode material includes a positive electrode material core and a halide coating layer coated on the surface of the positive electrode material core.
- the positive electrode material core is LiNi 0.7 Mn 0.3 O 2
- the halide is Li 3 YCl 6 , based on the mass of the positive electrode material core being 100%, the content of Y element in the Li 3 YCl 6 is 0.8%, and the particle size D50 of the positive electrode material core is 3 ⁇ m .
- This embodiment also provides a method for preparing the composite cathode material, which includes the following steps:
- the coating agent Li 3 YCl 6 and the base cathode material are mixed in a mixing device at a speed of 2250 rpm for 15 minutes, and then treated at a high temperature of 450 °C under an oxygen-containing atmosphere for 8 hours.
- the oxygen-containing atmosphere is a combination of oxygen and nitrogen.
- the volume concentration of nitrogen is 15%, and the volume concentration of oxygen is 85%, grinding, and sieving with a 400-mesh sieve to obtain a composite positive electrode material.
- This embodiment provides a composite positive electrode material for a lithium ion battery.
- the composite positive electrode material includes a positive electrode material core and a halide coating layer coated on the surface of the positive electrode material core.
- the positive electrode material core is lithium iron phosphate
- the halide is Li 3 YCl 6 , based on the mass of the positive electrode material core being 100%, the content of Y element in the Li 3 YCl 6 is 0.7%, and the particle size D50 of the positive electrode material core is 3.5 ⁇ m.
- Coating process mix the coating agent (Li 3 YCl 6 ) and the matrix material in a mixing device, and then treat them at a high temperature of 450° C. for 8 hours under an oxygen-containing atmosphere.
- the oxygen-containing atmosphere is a mixed atmosphere of oxygen and nitrogen.
- the volume concentration is 15%, and the volume concentration of oxygen is 85%, ground, and sieved with a 400-mesh sieve to obtain a composite positive electrode material.
- This embodiment provides a composite positive electrode material for a lithium ion battery.
- the composite positive electrode material includes a positive electrode material core and a halide coating layer coated on the surface of the positive electrode material core.
- the positive electrode material core is LiNi 0.8 Mn 0.2 O 2
- the halide is Li 3 YCl 6 , based on the mass of the positive electrode material core being 100%, the content of Y element in the Li 3 YCl 6 is 0.15%, and the particle size D50 of the positive electrode material core is 5 ⁇ m .
- This embodiment also provides a method for preparing the composite cathode material, which includes the following steps:
- the coating agent Li 3 YCl 6 and the base cathode material are mixed in a mixing device at a speed of 2600 rpm for 15 minutes, and then treated at a high temperature of 550°C for 7 hours in an oxygen-containing atmosphere, the oxygen-containing atmosphere is oxygen and argon
- the volume concentration of argon gas is 10%
- the volume concentration of oxygen gas is 90%, ground, and sieved with a 250-mesh sieve to obtain a composite positive electrode material.
- Example 1 Except that the mass of the core of the positive electrode material is 100%, the content of the Y element in the Li 3 YCl 6 is 0.05%, and the other preparation methods and conditions are the same as in Example 1.
- This comparative example is the uncoated cathode material LiNi 0.75 Mn 0.25 O 2 .
- step (2) Except that the temperature of the high-temperature treatment in step (2) is adjusted to 300° C., the other preparation methods and conditions are the same as in Example 1.
- step (2) Except that the temperature of the high-temperature treatment in step (2) is adjusted to 820°C, the other preparation methods and conditions are the same as in Example 1.
- Figure 1a and Figure 1b are the SEM images of the material before coating (the cathode material of Comparative Example 1) under different magnifications.
- Figure 2a and Figure 2b are the material after coating. (Composite cathode material of Example 1) SEM images at different magnifications. It can be seen from the figure that fragmented coatings are distributed on the coated sample particles.
- GITT constant current intermittent titration technique
- Li3YCl6 coating increases the diffusion rate of lithium ions and improves the conductivity of the material.
- the battery was prepared with the materials of the respective examples and comparative examples, and the first charge-discharge performance and cycle performance tests were performed.
- Preparation of the battery First, the obtained cathode material and the conductive agent SP, polyvinylidene fluoride, and N-methylpyrrolidone are mixed to prepare a slurry.
- the mass ratio of the cathode material, the conductive agent and the polyvinylidene fluoride is 92:4 : 4.
- the amount of N-methylpyrrolidone added is to make the solid content of the slurry 50%; secondly, the slurry is evenly coated on the aluminum foil and dried at 100°C for 12 hours to prepare pole pieces; then the pole pieces are punched out A circular pole piece with a diameter of 14 ⁇ m was prepared and prepared into a button half-cell battery in a glove box. Finally, the button battery was put aside, charged and discharged, and the first charge-discharge performance test and cycle test were obtained under the same test process. Test conditions: 25°C constant temperature oven, the charge rate of the first effect test is 0.1C, and the discharge rate is 0.1C; the charge rate of the cycle test is 0.5C, and the discharge rate is 1C. See Table 2 for the test results.
- Figure 3 is the first charge-discharge curve of the material before and after coating.
- the two curves indicated by arrows in the figure correspond to the composite cathode material after coating, and the two curves not indicated by arrows correspond to the positive electrode material before coating.
- the former corresponds to the positive electrode material of Comparative Example 1, and the composite positive electrode material of Example 1 after coating.
- the 0.1C discharge capacity of the uncoated material is 183.4mAh/g, and the first effect is 86.7%; the 0.1C discharge capacity of the material after this solution is coated is 192.2mAh/g, and the first effect is 87.29%. Therefore, after coating Li 3 YCl 6 , the electrochemical performance of the material is improved.
- the positive electrode material of Comparative Example 1 before coating corresponds to the composite positive electrode material of Example 1 after coating. It can be seen from the curve that the material has good cycle stability after coating.
- the reason for the improved stability is that the halide coating layer formed on the surface of the material has good stability, forming a stable and firm connection with the base material, and blocking The contact between the positive electrode material and the electrolyte is reduced, and the occurrence of side reactions is reduced.
- the reason for the improvement of the first effect is that the interaction between the halogen-1 valent anion and the lithium ion in the halide is weaker, which has better lithium ion conductivity and reduces the surface resistance. Moreover, due to the larger halide ion radius, it is beneficial The migration of lithium ions.
- Example 1 By comparing Example 1 with Comparative Example 2, the coating is an oxide solid electrolyte, which has poor ionic conductivity, resulting in a decrease in the electrochemical performance of the material.
- Example 1 By comparing Example 1 with Comparative Example 3, the coating is a sulfide solid electrolyte, which has poor stability during the cycle, resulting in a decrease in the cycle performance of the material.
- Example 1 By comparing Example 1 with Comparative Example 4, when the coating temperature is 300° C., the coating material and the matrix material are not tightly combined, resulting in a decrease in the cycle stability of the material.
- the coating temperature is 820°C, and the structure of the coating material may change, which affects the cycle stability of the material.
- Example 1 By comparing Example 1 with Example 6, the thickness of the coating layer is increased, which makes it difficult for lithium ions to deintercalate during charging and discharging.
- Example 7 has a smaller halide coating amount, and the improvement in ion conductivity is lower.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
序号 | 样品 | D(cm2/s) |
对比例1 | 包覆前 | 1.32*10-8 |
实施例1 | 包覆后 | 1.65*10-7 |
对比例2 | 氧化物电解质替代 | 0.93*10-7 |
对比例3 | 硫化物电解质替代 | 1.33*10-7 |
Claims (30)
- 一种锂离子电池用复合正极材料,所述复合正极材料包括正极材料内核及包覆在所述正极材料内核表面的卤化物包覆层,所述卤化物包括Li 3YX 6,其中,X为卤素中的至少一种。
- 根据权利要求1所述的锂离子电池用复合正极材料,其中,所述卤化物为Li 3YCl 6和/或Li 3YBr 6。
- 根据权利要求1或2所述的锂离子电池用复合正极材料,其中,所述正极材料内核包括无钴正极材料。
- 根据权利要求1-3任一项所述的锂离子电池用复合正极材料,其中,所述正极材料内核包括镍锰酸锂正极材料。
- 根据权利要求4所述的锂离子电池用复合正极材料,其中,所述镍锰酸锂正极材料的化学式为LiNi xMn yO 2,0.55≤x≤0.95,0.05≤y≤0.45。
- 根据权利要求1-5任一项所述的锂离子电池用复合正极材料,其中,以正极材料内核的质量为100%计,所述Li 3YX 6中Y元素的含量为0.1%-1%。
- 根据权利要求1-6任一项所述的锂离子电池用复合正极材料,其中,以正极材料内核的质量为100%计,所述Li 3YX 6中Y元素的含量为0.1%-0.3%。
- 根据权利要求1-7任一项所述的锂离子电池用复合正极材料,其中,所述正极材料内核的粒径D50为1μm-5μm。
- 根据权利要求1-8任一项所述的锂离子电池用复合正极材料,其中,所述正极材料内核的粒径D50为1μm-3μm。
- 根据权利要求1-9任一项所述的锂离子电池用复合正极材料,其中,所述Li 3YX 6的粒径D50为5nm-500nm。
- 根据权利要求1-10任一项所述的锂离子电池用复合正极材料,其中,所述Li 3YX 6的粒径D50为50nm-100nm。
- 一种权利要求1-11任一项所述的锂离子电池用复合正极材料的制备方法,所述方法包括以下步骤:将包覆剂与基体正极材料混合,然后在含氧气氛下400℃-800℃高温处理,得到复合正极材料;其中,所述包覆剂包括Li 3YX 6,X为卤素中的至少一种。
- 根据权利要求12所述的方法,其中,所述含氧气氛中,氧气的体积浓度为20%-100%。
- 根据权利要求12或13所述的方法,其中,所述含氧气氛中,氧气的体积浓度为50%-90%。
- 根据权利要求12-14任一项所述的方法,其中,所述混合的方式为干法混合。
- 根据权利要求12-15任一项所述的方法,其中,所述混合包括:将包覆剂与基体正极材料在混合设备中,以2000rpm-3000rpm的转速混合。
- 根据权利要求12-16任一项所述的方法,其中,所述混合的时间为10分钟-20分钟。
- 根据权利要求12-17任一项所述的方法,其中,所述高温处理的温度为400-700℃。
- 根据权利要求12-18任一项所述的方法,其中,所述高温处理的时间为4h-8h。
- 根据权利要求12-19任一项所述的方法,其中,所述方法还包括在高温处理后进行研磨和筛分的步骤。
- 根据权利要求12-20任一项所述的方法,其中,所述基体正极材料为镍锰酸锂,所述镍锰酸锂的制备方法包括:(a)将锂源和前驱体Ni xMn y(OH) 2,0.55≤x≤0.95,0.05≤y≤0.45混合均匀;(b)于800℃-1000℃高温反应,得到镍锰酸锂。
- 根据权利要求21所述的方法,其中,步骤(a)所述锂源为LiOH。
- 根据权利要求21或22所述的方法,其中,步骤(a)所述混合为:在高速混合设备中,于2000rpm-3000rpm的转速混合10分钟-20分钟。
- 根据权利要求21-23任一项所述的方法,其中,步骤(b)所述高温反应的时间为8h-12h。
- 根据权利要求21-24任一项所述的方法,其中,步骤(b)所述高温反应在氧气体积浓度大于90%的含氧气氛下进行。
- 根据权利要求25所述的方法,其中,含氧气氛的气体流量为2L/min-20L/min。
- 根据权利要求21-26任一项所述的方法,其中,步骤(b)所述高温反应之后进行降温冷却并破碎的步骤。
- 根据权利要求12-27任一项所述的方法,其中,所述方法包括以下步骤:(1)制备基体正极材料镍锰酸锂:(a)将LiOH和前驱体Ni xMn y(OH) 2在高速混合设备中,于2000rpm-3000rpm的转速混合10分钟-20分钟,0.55≤x≤0.95,0.05≤y≤0.45;(b)于氧气体积浓度大于90%的含氧气氛下,800℃-1000℃高温反应8h-12h,含氧气氛的气体流量为2L/min-20L/min,得到镍锰酸锂,降温冷却并破碎,备用;(2)将包覆剂与基体正极材料在混合设备中,包覆剂为Li 3YCl 6和/或Li 3YBr 6,以2000rpm-3000rpm的转速混合10分钟-20分钟,然后在含氧气氛下400℃-700℃高温处理4h-8h,所述含氧气氛中,氧气的体积浓度为20%-100%,研磨,采用300目-400目筛进行筛分,得到复合正极材料,所述复合正极材料包括镍锰酸锂及包覆在所述镍锰酸锂表面的包覆层,所述包覆层为Li 3YCl 6和/或Li 3YBr 6;以正极材料内核的质量为100%计,所述包覆层中Y元素的含量为0.1%-1%。
- 一种正极,所述正极包括权利要求1-11任一项所述的锂离子电池用复合正极材料。
- 一种锂离子电池,所述锂离子电池包括权利要求29所述的正极。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/787,465 US20230032851A1 (en) | 2020-05-25 | 2020-12-11 | Composite positive electrode material for lithium ion battery, preparation method therefor, and use thereof |
JP2022521739A JP7389247B2 (ja) | 2020-05-25 | 2020-12-11 | リチウムイオン電池用複合正極材料、その調製方法および使用 |
EP20937875.1A EP4024516A4 (en) | 2020-05-25 | 2020-12-11 | COMPOSITE POSITIVE ELECTRODE MATERIAL FOR LITHIUM-ION BATTERY, PREPARATION METHOD AND USE THEREOF |
KR1020227034553A KR20220150938A (ko) | 2020-05-25 | 2020-12-11 | 리튬 이온 배터리용 복합 양극재료, 이의 제조방법 및 용도 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010448907.X | 2020-05-25 | ||
CN202010448907.XA CN111490243B (zh) | 2020-05-25 | 2020-05-25 | 一种锂离子电池用复合正极材料、其制备方法及用途 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021238152A1 true WO2021238152A1 (zh) | 2021-12-02 |
Family
ID=71812039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/135525 WO2021238152A1 (zh) | 2020-05-25 | 2020-12-11 | 一种锂离子电池用复合正极材料、其制备方法及用途 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230032851A1 (zh) |
EP (1) | EP4024516A4 (zh) |
JP (1) | JP7389247B2 (zh) |
KR (1) | KR20220150938A (zh) |
CN (1) | CN111490243B (zh) |
WO (1) | WO2021238152A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111490243B (zh) * | 2020-05-25 | 2022-03-11 | 蜂巢能源科技有限公司 | 一种锂离子电池用复合正极材料、其制备方法及用途 |
CN111785974B (zh) * | 2020-08-25 | 2022-03-08 | 中南大学 | 用于硫化物固态锂离子电池的正极包覆方法、正极及电池 |
CN112582594B (zh) * | 2020-12-14 | 2022-03-15 | 格林美(湖北)新能源材料有限公司 | 一种无钴单晶正极材料及其制备方法和应用 |
CN113517424A (zh) * | 2021-04-27 | 2021-10-19 | 湖南杉杉能源科技股份有限公司 | 一种高电压锂离子电池无钴正极材料及其制备方法 |
CN113451566A (zh) * | 2021-06-22 | 2021-09-28 | 合肥国轩高科动力能源有限公司 | 一种复合包覆正极材料及其制备方法与应用 |
CN113764641B (zh) * | 2021-09-07 | 2022-10-25 | 蜂巢能源科技(马鞍山)有限公司 | 正极材料及其制备方法和锂离子电池 |
CN113991167A (zh) * | 2021-10-26 | 2022-01-28 | 西安交通大学 | 一种卤化物固态电解质材料及其制备方法和应用 |
CN115050962B (zh) * | 2022-06-23 | 2024-05-03 | 惠州亿纬锂能股份有限公司 | 一种具有混合导体包覆层的正极材料及其制备方法和应用 |
CN117594793B (zh) * | 2024-01-18 | 2024-05-14 | 中国第一汽车股份有限公司 | 复合正极材料及其制备方法和应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107546385A (zh) | 2017-09-11 | 2018-01-05 | 江西理工大学 | 一种制备LiNixMn1‑xO2二元正极材料的方法 |
CN109449414A (zh) * | 2018-11-01 | 2019-03-08 | 江西中汽瑞华新能源科技有限公司 | 一种锂离子电池正极复合材料以及含该材料的全固态电池 |
CN109811412A (zh) | 2018-12-28 | 2019-05-28 | 广东邦普循环科技有限公司 | 一种单晶形貌的层状镍锰酸锂正极材料及其制备方法 |
WO2019135346A1 (ja) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | 正極材料、および、電池 |
CN110931730A (zh) * | 2019-11-04 | 2020-03-27 | 浙江锋锂新能源科技有限公司 | 一种铌酸钛负极材料及其制备方法和应用 |
CN111129429A (zh) * | 2019-12-31 | 2020-05-08 | 国联汽车动力电池研究院有限责任公司 | 一种富锂锰基固态电池电极和二次电池 |
CN111146425A (zh) * | 2019-12-30 | 2020-05-12 | 国联汽车动力电池研究院有限责任公司 | 一种电极材料包覆固态电解质的方法和该包覆材料和使用该包覆方法制备电极 |
CN111490243A (zh) * | 2020-05-25 | 2020-08-04 | 蜂巢能源科技有限公司 | 一种锂离子电池用复合正极材料、其制备方法及用途 |
CN111785974A (zh) * | 2020-08-25 | 2020-10-16 | 中南大学 | 用于硫化物固态锂离子电池的正极包覆方法、正极及电池 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6212592B2 (ja) * | 2016-04-11 | 2017-10-11 | 出光興産株式会社 | 負極合材、電極及びリチウムイオン電池 |
JP7164939B2 (ja) * | 2017-08-25 | 2022-11-02 | 株式会社サムスン日本研究所 | 全固体型二次電池 |
JP7281771B2 (ja) * | 2018-01-05 | 2023-05-26 | パナソニックIpマネジメント株式会社 | 正極材料、および、電池 |
EP3745519B1 (en) * | 2018-01-26 | 2022-11-02 | Panasonic Intellectual Property Management Co., Ltd. | Battery |
WO2019146236A1 (ja) * | 2018-01-26 | 2019-08-01 | パナソニックIpマネジメント株式会社 | 正極材料、および、電池 |
EP3745500A4 (en) * | 2018-01-26 | 2021-03-31 | Panasonic Intellectual Property Management Co., Ltd. | BATTERY |
-
2020
- 2020-05-25 CN CN202010448907.XA patent/CN111490243B/zh active Active
- 2020-12-11 US US17/787,465 patent/US20230032851A1/en active Pending
- 2020-12-11 WO PCT/CN2020/135525 patent/WO2021238152A1/zh unknown
- 2020-12-11 EP EP20937875.1A patent/EP4024516A4/en active Pending
- 2020-12-11 JP JP2022521739A patent/JP7389247B2/ja active Active
- 2020-12-11 KR KR1020227034553A patent/KR20220150938A/ko active Search and Examination
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107546385A (zh) | 2017-09-11 | 2018-01-05 | 江西理工大学 | 一种制备LiNixMn1‑xO2二元正极材料的方法 |
WO2019135346A1 (ja) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | 正極材料、および、電池 |
CN109449414A (zh) * | 2018-11-01 | 2019-03-08 | 江西中汽瑞华新能源科技有限公司 | 一种锂离子电池正极复合材料以及含该材料的全固态电池 |
CN109811412A (zh) | 2018-12-28 | 2019-05-28 | 广东邦普循环科技有限公司 | 一种单晶形貌的层状镍锰酸锂正极材料及其制备方法 |
CN110931730A (zh) * | 2019-11-04 | 2020-03-27 | 浙江锋锂新能源科技有限公司 | 一种铌酸钛负极材料及其制备方法和应用 |
CN111146425A (zh) * | 2019-12-30 | 2020-05-12 | 国联汽车动力电池研究院有限责任公司 | 一种电极材料包覆固态电解质的方法和该包覆材料和使用该包覆方法制备电极 |
CN111129429A (zh) * | 2019-12-31 | 2020-05-08 | 国联汽车动力电池研究院有限责任公司 | 一种富锂锰基固态电池电极和二次电池 |
CN111490243A (zh) * | 2020-05-25 | 2020-08-04 | 蜂巢能源科技有限公司 | 一种锂离子电池用复合正极材料、其制备方法及用途 |
CN111785974A (zh) * | 2020-08-25 | 2020-10-16 | 中南大学 | 用于硫化物固态锂离子电池的正极包覆方法、正极及电池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4024516A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4024516A4 (en) | 2024-05-01 |
KR20220150938A (ko) | 2022-11-11 |
JP7389247B2 (ja) | 2023-11-29 |
CN111490243B (zh) | 2022-03-11 |
CN111490243A (zh) | 2020-08-04 |
EP4024516A1 (en) | 2022-07-06 |
JP2023500040A (ja) | 2023-01-04 |
US20230032851A1 (en) | 2023-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021238152A1 (zh) | 一种锂离子电池用复合正极材料、其制备方法及用途 | |
CN110931768B (zh) | 一种高镍类单晶锂离子电池正极材料及制备方法 | |
US10916767B2 (en) | Carbon-coated ternary positive electrode material, preparation method therefor, and lithium ion battery | |
WO2021143373A1 (zh) | 无钴层状正极材料及其制备方法、锂离子电池 | |
CN111430687B (zh) | 碳包覆磷酸铁锂复合材料及其制备方法,锂离子电池 | |
CN113353995B (zh) | 一种具有低钴含量的正极材料及其制备方法和应用 | |
CN111293288B (zh) | 一种NaF/金属复合补钠正极活性材料、正极材料、正极及其制备和在钠电中的应用 | |
CN113871603A (zh) | 一种高镍三元正极材料及其制备方法 | |
CN112635752B (zh) | 三元正极材料及其制备方法、锂电池 | |
WO2023221625A1 (zh) | 大粒径单晶三元正极材料及其制备方法和应用 | |
CN109728277A (zh) | 对高镍三元正极材料进行表面处理的方法及产品和电池 | |
CN113571679A (zh) | 一种尖晶石氧化物包覆富锂锰基正极材料 | |
CN112701276A (zh) | 一种四元多晶正极材料及其制备方法和应用 | |
WO2023185548A1 (zh) | 一种改性磷酸锰铁锂正极材料及其制备方法和应用 | |
CN113707870A (zh) | 一种无钴正极材料及其制备方法和应用 | |
CN112919554B (zh) | 氟掺杂锂正极材料及其制备方法和应用 | |
CN112186187B (zh) | 一种三维网状包覆的三元材料的制备方法及应用 | |
CN113764638A (zh) | 正极材料、其制备方法、包括其的正极和锂离子电池 | |
CN113772718A (zh) | 一种SnS-SnS2@GO异质结构复合材料及其制备方法和应用 | |
WO2023179447A1 (zh) | Al/B共包覆的正极材料及其制备方法 | |
WO2023130829A1 (zh) | 一种锂离子电池正极材料及其制备方法和锂离子电池 | |
CN111276691A (zh) | 一种高电压单晶低钴三元正极材料及其制备方法 | |
CN115196683B (zh) | 一种正极材料、二次电池及用电设备 | |
CN114620781B (zh) | 高压电三元正极材料及其制备方法 | |
CN111029536A (zh) | 一种锂离子电池正极材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20937875 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022521739 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020937875 Country of ref document: EP Effective date: 20220329 |
|
ENP | Entry into the national phase |
Ref document number: 20227034553 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |