WO2023179447A1 - Al/B共包覆的正极材料及其制备方法 - Google Patents

Al/B共包覆的正极材料及其制备方法 Download PDF

Info

Publication number
WO2023179447A1
WO2023179447A1 PCT/CN2023/081861 CN2023081861W WO2023179447A1 WO 2023179447 A1 WO2023179447 A1 WO 2023179447A1 CN 2023081861 W CN2023081861 W CN 2023081861W WO 2023179447 A1 WO2023179447 A1 WO 2023179447A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
cathode material
preparation
coated
positive electrode
Prior art date
Application number
PCT/CN2023/081861
Other languages
English (en)
French (fr)
Inventor
赵俊豪
黄承焕
郭忻
周友元
王可
唐朝辉
熊学
黄滔
Original Assignee
湖南长远锂科新能源有限公司
金驰能源材料有限公司
湖南长远锂科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南长远锂科新能源有限公司, 金驰能源材料有限公司, 湖南长远锂科股份有限公司 filed Critical 湖南长远锂科新能源有限公司
Publication of WO2023179447A1 publication Critical patent/WO2023179447A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium-ion battery materials, and specifically relates to the coating modification of positive electrode materials.
  • the main reason for the reduced cycle life of lithium-ion batteries is that during the charge and discharge process, there are many side reactions at the electrolyte/electrode interface, which will continue to consume Li in the positive active material, increase the internal resistance of the battery, and reduce the capacity of the battery. and performance continues to degrade. How to suppress the vicious interaction between active materials and electrolytes is the key to improving the cycle life of lithium-ion batteries.
  • coating is mainly used to reduce the direct contact between active materials and electrolytes.
  • different coating elements, coating amounts, and uniformity of the coating layer affect the final coating effect, and the degree of improvement in material properties is also affected. Are not the same.
  • the patent document with announcement number CN110534717B discloses a coating method for cathode materials.
  • the lithium salt and the nickel cobalt manganese hydroxide precursor are uniformly mixed, and then sintered at high temperature to obtain the lithium nickel cobalt manganese oxide matrix, and then mixed with the metal oxide.
  • a lithium nickel cobalt manganese cathode material coated with a metal oxide film is obtained, which is then mixed with a boron compound and heat treated to produce a glassy composite coated with a metal oxide film and LiMO 2 -B 2 O 3 Coated lithium nickel cobalt manganese cathode material.
  • the patent document with the announcement number CN111952552B discloses the preparation method of glassy coated cathode material.
  • the raw materials are weighed according to the ratio, the Al source is dissolved in the ethanol solvent, and then the B source and the Li source are added successively and stirred to obtain a glassy viscous material.
  • Thick colloidal coating material Li 3-3f Al f BO 3 ; add the glassy viscous colloidal coating material to the cathode material matrix to be coated, stir, dry, and sieve; and then sinter to obtain a glassy state Covered cathode material.
  • the wet or segmented coating process is complex and costly, making it difficult to industrialize; the simple dry process has poor coating uniformity and cannot form a dense coating layer on the particle surface. It cannot block the action of the active material and the electrolyte more; the metal oxide coating can reduce the side reactions between the positive active material and the electrolyte to a certain extent, but it does not have conductivity, resulting in increased internal resistance and reduced capacity.
  • the coating on the surface of the active material is granular, with most areas exposed in the electrolyte, and the performance improvement is limited; metal lithium-containing compounds can improve the conductive activity of ions, but the single-layer coating film is difficult to operate at high temperatures, high voltages, Under high current conditions, the HF corrosion resistance will gradually decrease, and the cycle and rate performance will decrease.
  • the main purpose of the present invention is to provide a method for preparing an Al/B co-coated cathode material.
  • Another object of the present invention is to provide an Al/B co-coated cathode material.
  • the present invention provides the following technical solutions.
  • a method for preparing an Al/B co-coated cathode material including the following steps:
  • Step S1 mix the precursor material and the lithium source evenly, and sinter them in an air or oxygen atmosphere to obtain a cathode material matrix
  • Step S2 mix the cathode material matrix and the nano-scale Al source in a mixer at high speed, then add the lithium source and the micron-scale B source and mix at low speed to obtain a mixture;
  • Step S3 sinter the mixture described in step S2 in an air or oxygen atmosphere to obtain an Al/B co-coated positive Extreme material.
  • the sintering temperature in step S1 is 700-950°C, and the sintering time is 10-20 hours.
  • the rotation speed of the high-speed mixing in step S2 is 800-1200 rpm, and the rotation speed of the low-speed mixing is 200-400 rpm.
  • the Al source is nano-sized particles, which need to be mixed evenly at high speed.
  • the B source is micron-sized powdery crystals, which are highly viscous and easy to absorb water. During the mixing process, the rotation speed is too fast, the material temperature is too high, and the material agglomeration phenomenon is serious. The purpose of uniform coating cannot be achieved, so the mixing speed is controlled to be low.
  • the Al source is at least one of nanoscale aluminum oxide, aluminum oxyhydroxide, and aluminum hydroxide. It is further preferred that the size of the Al source is 10-50 nm.
  • the B source is at least one of micron-sized boron oxide, boron nitride and boric acid. It is further preferred that the size of the B source is 10-30 ⁇ m.
  • the amount of the Al source added is calculated as Al element, and the mass of the Al element is 0.1 to 0.3% of the mass of the cathode material matrix.
  • the added amount of the B source is calculated as B element, and the mass of the B element is 0.1 to 0.3% of the mass of the cathode material matrix.
  • the lithium source is at least one of LiOH ⁇ H 2 O or Li 2 CO 3 .
  • the temperature of the mixture in step S2 is controlled to be no higher than 40°C.
  • the sintering temperature in step S3 is 300-550°C, and the sintering time is 5-10 hours.
  • the present invention provides an Al/B co-coated cathode material, which includes a cathode material matrix and a Li-Al-O/Li-B-O double-layer coating film covering the surface of the cathode material.
  • the present invention uses a pure dry coating process to form Al/B co-coating on the surface of the cathode material.
  • the Al source is coated on the surface of the cathode material matrix under high-speed mixing conditions, and the Al source is evenly attached to the surface of the particles; then the B source is coated on the surface of the cathode material matrix under low-speed conditions, and the lithium source is supplemented.
  • the coated Al source combines with the residual alkali on the surface, and the coated B source combines with the supplementary Li source.
  • a double-layer coating film of Li-Al-O/Li-B-O is formed respectively.
  • the ions of the cathode material The conductivity is further improved.
  • the cathode material is evenly covered with a double-layer film and has less contact with the electrolyte.
  • the HF corrosion resistance is enhanced, and the cycle and rate performance are improved.
  • Figure 1 is an SEM image of the cathode material prepared in Example 1, a is a SEM image at 20K times, and b is an SEM image at 5K times.
  • Figure 2 is an SEM image of the cathode material prepared in Comparative Example 1.
  • Figure 3 is an SEM image of the cathode material matrix.
  • the cathode material matrix was prepared in the following manner: LiOH ⁇ H 2 O and The precursor materials Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 and WO 3 are evenly mixed at a molar ratio of 1.04:0.98:0.01, and then sintered at 900°C for 12 hours in an air atmosphere to obtain the LiNi 0.6 Co 0.2 Mn 0.19 W 0.01 O 2 positive electrode. Material matrix.
  • the positive electrode material matrix and 20 nm alumina were mixed in a high-speed mixer at a rotation speed of 1000 rpm, and then cooled to room temperature.
  • the mass of the Al element is 0.2% of the mass of the cathode material matrix
  • the mass of the B element is 0.2% of the mass of the cathode material matrix
  • the molar ratio of Li:B is 1:3.
  • the mixed materials were kept at 450°C for 6 hours in an air atmosphere to obtain an Al/B co-coated cathode material.
  • the positive electrode material matrix, 20 nm alumina, 20 ⁇ m boric acid and LiOH ⁇ H 2 O were mixed in a high-speed mixer at a rotation speed of 1000 rpm.
  • the mass of the Al element is 0.2% of the mass of the cathode material matrix
  • the mass of the B element is 0.2% of the mass of the cathode material matrix
  • the molar ratio of Li:B is 1:3.
  • the temperature of the mixed material reaches 60°C.
  • the mixed materials were kept at 450°C for 6 hours in an air atmosphere to obtain an Al/B co-coated cathode material.
  • the cathode material matrix and 20 nm alumina were mixed in a high-speed mixer at a rotation speed of 1000 rpm. Among them, the mass of Al element is 0.2% of the mass of the cathode material matrix.
  • the mixture was kept at 450°C for 6 hours in an air atmosphere to obtain an Al-coated cathode material.
  • the cathode material matrix and 20 ⁇ m boric acid and LiOH ⁇ H 2 O were mixed in a high-speed mixer at a rotation speed of 400 rpm.
  • the mass of B element is 0.2% of the mass of the cathode material matrix, and the molar ratio of Li:B is 1:3.
  • the mixture was kept at 450°C for 6 hours in an air atmosphere to obtain a B-coated cathode material.
  • the cathode material matrix and 20 ⁇ m boric acid were mixed in a high-speed mixer at a rotation speed of 400 rpm.
  • the mass of B element is 0.2% of the mass of the cathode material matrix.
  • the mixed materials were kept at 450°C for 6 hours in an air atmosphere to obtain a B-coated cathode material.
  • Figure 1 is an SEM image of the cathode material obtained in Example 1. It can be seen from the figure that the surface of the cathode material is evenly coated with a layer of coating, and there is no agglomeration of the coating.
  • Figure 2 is an SEM image of the cathode material obtained in Comparative Example 1. In the image, multiple coating agglomerations that are not evenly mixed can be seen.
  • Figure 3 is an SEM image of the cathode material matrix. It can be seen that the cathode material matrix has no coating traces.
  • Example 1 The positive electrode material matrix and the positive electrode materials obtained in Example 1 and Comparative Examples 1-4 were assembled into button cells according to conventional methods in the art. Test the electrochemical performance of button cells. The results are shown in Table 1.
  • Comparative Example 1 The difference between the technical solutions of Comparative Example 1 and Example 1 is that during the coating process of Comparative Example 1, the Al source, B source, and Li source were not mixed in stages, and both were under high-speed conditions and the material temperature reached 60°C. Under this condition, agglomeration occurs, resulting in obvious coating source agglomerates between particles, and the coating effect is poor. Effective Al and B coating layers are not formed on the surfaces of many particles, resulting in high magnification and high temperature of the material. The cycle performance and internal resistance are both poor.
  • Comparative Example 2 only underwent Al coating
  • Comparative Example 3 underwent Li-supplemented B coating
  • Comparative Example 4 only underwent Al coating.
  • B coating the obtained cathode material makes the electrical performance of the battery show disadvantages in different aspects compared with Example 1.
  • the gram capacity of the cathode material coated only with Al is significantly reduced, indicating that a small amount of oxidation exists after Al is coated alone.
  • Example 1 promotes a uniform Li-Al-O/Li-B-O double-layer coating film by coating Al and B in sections, supplementing the Li source during the coating process of B, and controlling different mixing conditions. With the formation of double-layer metal lithium-containing compounds, the gram capacity, rate performance and high-temperature cycle are all improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于锂离子电池材料技术领域,公开了Al/B共包覆的正极材料的制备方法。将前驱体材料与锂源混合均匀,在空气或氧气气氛下烧结,得到正极材料基体;将正极材料基体与纳米级Al源在混料机中高速混合,然后再加入锂源和微米级B源低速混合,得到混合物;将混合物在空气或氧气气氛下烧结,得到Al/B共包覆的正极材料。本发明提供的制备方法简单,包覆后的正极材料的离子传导率进一步提升,同时正极材料在双层膜的均匀包覆下,更少的接触电解液,耐HF腐蚀性增强,循环、倍率性能提升。

Description

Al/B共包覆的正极材料及其制备方法 技术领域
本发明属于锂离子电池材料技术领域,具体涉及正极材料的包覆改性。
背景技术
锂离子电池循环寿命降低的原因主要是:在充放电过程中,电解液/电极界面存在较多的副反应,会持续消耗正极活性物质中的Li,并使得电池内阻增加,导致电池的容量和性能不断衰减。如何抑制活性物质和电解液之间的恶性相互作用,是提高锂离子电池循环寿命的关键。目前,主要通过包覆来减少活性物质与电解液的直接接触,但不同的包覆元素、包覆量和包覆层的均匀性等影响了最终的包覆效果,对材料性能的改善程度也不相同。
公告号为CN110534717B的专利文献公开了正极材料的包覆方法,先将锂盐与镍钴锰氢氧化物前驱体均匀混合,高温烧结后得到锂镍钴锰氧化物基体,然后与金属氧化物混合后经热处理,制得包覆有金属氧化物膜的锂镍钴锰正极材料,再与硼化合物混合后经热处理,制得包覆有金属氧化物膜和LiMO2-B2O3玻璃态复合包覆膜的锂镍钴锰正极材料。
公告号为CN111952552B的专利文献公开了玻璃态包覆型正极材料的制备方法,按照配比称取原料,将Al源溶解于乙醇溶剂中,再先后加入B源和Li源搅拌,得到玻璃态粘稠胶状包覆物质Li3-3f AlfBO3;将所述玻璃态粘稠胶状包覆物质加入待包覆的正极材料基体中,搅拌,干燥,筛分;再进行烧结得到玻璃态包覆型正极材料。
现有技术中在正极材料表面包覆Al/B时,采用分段包覆+热处理的工艺,或先湿法制得Al/B包覆剂,再进行湿法包覆工艺,或直接采用简单干法工艺一次性包覆,存在以下问题:湿法或分段包覆工艺复杂,成本较高,难以产业化;简单的干法工艺包覆均匀性差,无法在颗粒表面形成致密的包覆层,无法更多的阻隔活性物质与电解液的作用;金属氧化物包覆层能在一定程度上减少正极活性物质与电解液的副反应,但其不具备导电性,导致内阻增大,容量降低,且包覆在活性物质表面呈颗粒状,大部分的区域被裸露在电解液中,性能改善有限;金属含锂化合物能提高离子的传导活性,但单层包覆膜在高温、高电压、大电流的条件下,耐HF腐蚀性也会逐渐降低,循环、倍率性能下降。
发明内容
针对现有技术存在的问题,本发明的主要目的是提供一种Al/B共包覆的正极材料的制备方法。本发明的另一目的是提供一种Al/B共包覆的正极材料。
为实现上述目的,本发明提供以下技术方案。
一种Al/B共包覆的正极材料的制备方法,包括以下步骤:
步骤S1,将前驱体材料与锂源混合均匀,在空气或氧气气氛下烧结,得到正极材料基体;
步骤S2,将正极材料基体与纳米级Al源在混料机中高速混合,然后再加入锂源和微米级B源低速混合,得到混合物;
步骤S3,将步骤S2所述的混合物在空气或氧气气氛下烧结,得到Al/B共包覆的正 极材料。
在部分优选实施方案中,步骤S1所述烧结的温度为700~950℃,所述烧结的时间为10~20h。
在部分优选实施方案中,步骤S2所述的高速混合的转速为800~1200rpm,所述的低速混合的转速为200~400rpm。Al源为纳米级颗粒物,需在高速状态下混合均匀,B源为微米级的粉末状结晶,粘性较大、易吸水,混合过程中转速过快、物料温度过高,物料结块现象严重,无法达到均匀包覆的目的,因此控制混合的速度为低速。
在部分优选实施方案中,所述的Al源为纳米级的氧化铝、羟基氧化铝、氢氧化铝中的至少一种。进一步优选Al源的尺寸为10-50nm。
在部分优选实施方案中,所述的B源为微米级的氧化硼、氮化硼和硼酸中的至少一种。进一步优选B源的尺寸为10-30μm。
在部分优选实施方案中,所述的Al源的加入量以Al元素计,Al元素的质量为正极材料基体质量的0.1~0.3%。
在部分优选实施方案中,所述的B源的加入量以B元素计,B元素的质量为正极材料基体质量的0.1~0.3%。
在部分优选实施方案中,所述的锂源为LiOH·H2O或Li2CO3中的至少一种。
在部分优选实施方案中,控制步骤S2所述的混合物的温度不高于40℃。
在部分优选实施方案中,步骤S3所述的烧结的温度为300~550℃,所述的烧结的时间为5~10h。
基于同样的发明构思,本发明提供一种Al/B共包覆的正极材料,包括正极材料基体以及包覆在正极材料表面的Li-Al-O/Li-B-O的双层包覆膜。
本发明采用纯干法包覆工艺在正极材料的表面形成Al/B共包覆。先在高速混合的条件下在正极材料基体表面包覆Al源,Al源均匀附着于颗粒表面;然后在低速条件下在正极材料基体表面包覆B源,并补充锂源。包覆的Al源结合表面的残碱、包覆的B源结合补充的Li源,在二次烧结后分别形成了Li-Al-O/Li-B-O的双层包覆膜,正极材料的离子传导率进一步提升,同时正极材料在双层膜的均匀包覆下,更少的接触电解液,耐HF腐蚀性增强,循环、倍率性能提升。
附图说明
图1是实施例1制备得到的正极材料的SEM图,a为20K倍数的SEM图,b为5K倍数的SEM图。
图2是对比例1制备得到的正极材料的SEM图。
图3是正极材料基体的SEM图。
具体实施方式
下面结合附图对本发明进行详细描述,本部分的描述仅是示范性和解释性,不应对本发明的保护范围有任何的限制作用。此外,本领域技术人员根据本文件的描述,可以对本文件实施例中以及不同实施例中的特征进行相应组合。
在具体实施例和对比例中,通过以下方式制备得到正极材料基体:将LiOH·H2O与 前驱体材料Ni0.6Co0.2Mn0.2(OH)2及WO3按1.04:0.98:0.01的摩尔比混合均匀,于空气气氛中在900℃烧结12h,得到LiNi0.6Co0.2Mn0.19W0.01O2正极材料基体。
实施例1:
将正极材料基体和20nm的氧化铝在高速混合机中以转速1000rpm混合后,冷却到室温。
加入20μm的硼酸和LiOH·H2O在转速400rpm下混合。控制混合过程中物料的温度≤40℃。
混合后的物料中,Al元素的质量为正极材料基体质量的0.2%,B元素的质量为正极材料基体质量的0.2%,Li:B的摩尔比为1:3。
混合后的物料在空气气氛下,于450℃保温6h,得到Al/B共包覆的正极材料。
对比例1:
将正极材料基体和20nm的氧化铝、20μm的硼酸和LiOH·H2O在高速混合机中以转速1000rpm混合。
混合后的物料中,Al元素的质量为正极材料基体质量的0.2%,B元素的质量为正极材料基体质量的0.2%,Li:B的摩尔比为1:3。
混合后的物料的温度达到60℃。
混合后的物料在空气气氛下,于450℃保温6h,得到Al/B共包覆的正极材料。
对比例2:
将正极材料基体和20nm的氧化铝在高速混合机中以转速1000rpm混合。其中,Al元素的质量为正极材料基体质量的0.2%。
混合物在空气气氛下,于450℃保温6h,得到Al包覆的正极材料。
对比例3:
将正极材料基体和20μm的硼酸和LiOH·H2O在高速混合机中以转速400rpm混合。
混合后的物料中,B元素的质量为正极材料基体质量的0.2%,Li:B的摩尔比为1:3。
混合物在空气气氛下,于450℃下保温6h,得到B包覆的正极材料。
对比例4:
将正极材料基体和20μm的硼酸在高速混合机中以转速400rpm混合。混合后的物料中,B元素的质量为正极材料基体质量的0.2%。
混合后的物料在空气气氛下,于450℃保温6h,得到B包覆的正极材料。
图1为实施例1得到的正极材料的SEM图,从图中可以看出,正极材料表面均匀包覆一层包覆物,无包覆物团聚现象。图2是对比例1得到的正极材料的SEM图,图中可见多处未混合均匀的包覆物团聚。图3是正极材料基体的SEM图,可以看出正极材料基体没有包覆痕迹。
将正极材料基体、实施例1以及对比例1-4得到的正极材料,按照本领域的常规方法组装成扣式电池。测试扣式电池的电化学性能。结果如表1所示。
表1电化学性能数据

对比例1与实施例1的技术方案的差别在于对比例1包覆过程中未将Al源和B源、Li源分段混合,且均在高速条件下、物料温度达到60℃,包覆化合物在此条件下发生结块,导致颗粒间出现明显的包覆源团聚物,包覆效果较差,在许多的颗粒表面并未形成有效的Al和B的包覆层,导致材料的倍率、高温循环性能和内阻均较差。
对比例2、对比例3、对比例4与实施例1的技术方案的差别在于,对比例2仅进行了Al包覆、对比例3进行了补Li的B包覆,对比例4仅进行了B包覆,得到的正极材料使得电池的电性能均较实施例1分别在不同方面体现出劣势,其中仅包覆Al的正极材料的克容量明显降低,说明单独包覆Al后少量存在的氧化铝降低了材料表面的Li离子活性;仅包覆B的正极材料的高温循环性能明显降低,说明单独包覆B后少量存在的氧化硼会破坏表面的SEI膜;而对比例3在包覆B的过程中进行了补Li,说明补Li后抑制了更多氧化硼的产生,高温循环性能在对比例4的基础上得到提高。未进行任何包覆的正极材料基体的综合电性能较差。
实施例1通过将Al和B分段包覆,并在包覆B的过程中补充Li源,控制不同的混合条件,促进了均匀的Li-Al-O/Li-B-O的双层包覆膜的形成,在双层金属含锂化合物的作用下,克容量、倍率性能和高温循环均得到提升。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

  1. 一种Al/B共包覆的正极材料的制备方法,其特征在于,包括以下步骤:
    步骤S1,将前驱体材料与锂源混合均匀,在空气或氧气气氛下烧结,得到正极材料基体;
    步骤S2,将正极材料基体与纳米级Al源在混料机中高速混合,然后再加入锂源和微米级B源低速混合,得到混合物;所述高速混合的转速为800~1200rpm,所述低速混合的转速为200~400rpm;
    步骤S3,将步骤S2所述的混合物在空气或氧气气氛下烧结,得到Al/B共包覆的正极材料。
  2. 如权利要求1所述的制备方法,其特征在于,步骤S1所述烧结的温度为700~950℃,所述烧结的时间为10~20h。
  3. 如权利要求1所述的制备方法,其特征在于,所述Al源为纳米级的氧化铝、羟基氧化铝、氢氧化铝中的至少一种;所述B源为微米级的氧化硼、氮化硼和硼酸中的至少一种。
  4. 如权利要求3所述的制备方法,其特征在于,所述Al源的尺寸为10-50nm;所述B源的尺寸为10-30μm。
  5. 如权利要求3或4所述的制备方法,其特征在于,所述Al源的加入量以Al元素计,Al元素的质量为正极材料基体质量的0.1~0.3%;所述B源的加入量以B元素计,B元素的质量为正极材料基体质量的0.1~0.3%。
  6. 如权利要求1所述的制备方法,其特征在于,所述锂源为LiOH·H2O或Li2CO3中的至少一种。
  7. 如权利要求1所述的制备方法,其特征在于,控制步骤S2所述的混合物的温度不高于40℃。
  8. 如权利要求1所述的制备方法,其特征在于,步骤S3所述烧结的温度为300~550℃,所述烧结的时间为5~10h。
  9. 一种Al/B共包覆的正极材料,其特征在于,包括正极材料基体以及包覆在正极材料基体表面的Li-Al-O/Li-B-O的双层包覆膜,通过权利要求1-8任一项所述的制备方法制备得到。
PCT/CN2023/081861 2022-03-23 2023-03-16 Al/B共包覆的正极材料及其制备方法 WO2023179447A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210287611.3 2022-03-23
CN202210287611.3A CN114400330B (zh) 2022-03-23 2022-03-23 Al/B共包覆的正极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2023179447A1 true WO2023179447A1 (zh) 2023-09-28

Family

ID=81234427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081861 WO2023179447A1 (zh) 2022-03-23 2023-03-16 Al/B共包覆的正极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN114400330B (zh)
WO (1) WO2023179447A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400330B (zh) * 2022-03-23 2022-07-12 湖南长远锂科新能源有限公司 Al/B共包覆的正极材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108091830A (zh) * 2017-10-30 2018-05-29 广东邦普循环科技有限公司 一种在高镍三元材料上包覆氧化铝和氧化硼的方法
CN108336327A (zh) * 2017-12-30 2018-07-27 宁夏科捷锂电池股份有限公司 一种掺杂al离子包覆四硼酸锂制备锰酸锂的方法
CN108878795A (zh) * 2017-05-15 2018-11-23 宁德时代新能源科技股份有限公司 改性正极活性材料及其制备方法及电化学储能装置
CN111620384A (zh) * 2020-05-22 2020-09-04 广东邦普循环科技有限公司 一种高电压钴酸锂材料及其制备方法和应用
CN111640918A (zh) * 2020-05-11 2020-09-08 深圳新恒业电池科技有限公司 电极材料及其制备方法、电极片
CN113764628A (zh) * 2020-06-01 2021-12-07 蜂巢能源科技有限公司 一种双层包覆四元正极材料及其制备方法
CN114400330A (zh) * 2022-03-23 2022-04-26 湖南长远锂科新能源有限公司 Al/B共包覆的正极材料及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100346542B1 (ko) * 1999-01-25 2002-07-26 삼성에스디아이 주식회사 리튬 이차 전지
DE10014884A1 (de) * 2000-03-24 2001-09-27 Merck Patent Gmbh Beschichtete Lithium-Mischoxid-Partikel und ein Verfahren zu deren Herstellung
JP2007242318A (ja) * 2006-03-07 2007-09-20 Sony Corp 正極活物質およびその製造方法、並びに非水電解質二次電池
CN102593445B (zh) * 2012-03-15 2014-12-24 湖南杉杉户田新材料有限公司 铝包覆锰基层状复合锂离子电池正极材料及其制备方法
CN106784675B (zh) * 2016-12-16 2019-05-31 无锡晶石新型能源有限公司 一种锂电池正极材料的干法包覆方法
CN111162279A (zh) * 2019-12-25 2020-05-15 复阳固态储能科技(溧阳)有限公司 一种多元导体层包覆的高镍三元正极及锂离子电池
CN111435735B (zh) * 2019-12-27 2022-10-25 蜂巢能源科技有限公司 富锂锰基正极材料及其制备方法和应用
JP7460437B2 (ja) * 2020-04-27 2024-04-02 住友化学株式会社 正極活物質、正極、リチウムイオン二次電池及び正極活物質の製造方法
CN113830846B (zh) * 2021-11-24 2022-03-04 湖南长远锂科股份有限公司 一种包覆改性的正极材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878795A (zh) * 2017-05-15 2018-11-23 宁德时代新能源科技股份有限公司 改性正极活性材料及其制备方法及电化学储能装置
CN108091830A (zh) * 2017-10-30 2018-05-29 广东邦普循环科技有限公司 一种在高镍三元材料上包覆氧化铝和氧化硼的方法
CN108336327A (zh) * 2017-12-30 2018-07-27 宁夏科捷锂电池股份有限公司 一种掺杂al离子包覆四硼酸锂制备锰酸锂的方法
CN111640918A (zh) * 2020-05-11 2020-09-08 深圳新恒业电池科技有限公司 电极材料及其制备方法、电极片
CN111620384A (zh) * 2020-05-22 2020-09-04 广东邦普循环科技有限公司 一种高电压钴酸锂材料及其制备方法和应用
CN113764628A (zh) * 2020-06-01 2021-12-07 蜂巢能源科技有限公司 一种双层包覆四元正极材料及其制备方法
CN114400330A (zh) * 2022-03-23 2022-04-26 湖南长远锂科新能源有限公司 Al/B共包覆的正极材料及其制备方法

Also Published As

Publication number Publication date
CN114400330B (zh) 2022-07-12
CN114400330A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
CN112490415B (zh) 一种锂离子正极材料补锂添加剂及其制备方法
WO2021023313A1 (zh) 一种双包覆层改性锂离子电池正极材料及其制备方法
WO2021238152A1 (zh) 一种锂离子电池用复合正极材料、其制备方法及用途
JP7446486B2 (ja) コバルトフリーの層状正極材料及び調製方法、リチウムイオン電池
WO2023071409A1 (zh) 一种单晶三元正极材料及其制备方法和应用
EP3972017A1 (en) Cobalt-free layered positive electrode material and preparation method therefor, and lithium-ion battery
JP7272134B2 (ja) リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
CN114122385B (zh) 一种锂离子电池用低钴三元正极材料及其制备方法、锂离子电池正极极片和锂离子电池
CN111094188A (zh) 金属复合氢氧化物及其制造方法、非水电解质二次电池用正极活性物质及其制造方法、以及使用其的非水电解质二次电池
JP2023143694A (ja) 正極材料、電池及び電子機器
WO2023184996A1 (zh) 一种改性高镍三元正极材料及其制备方法
WO2023179447A1 (zh) Al/B共包覆的正极材料及其制备方法
CN113725418A (zh) 一种稀土氧化物包覆改性的锂离子电池用三元正极材料及其制备方法
WO2019065254A1 (ja) 正極活物質、及び、その製造方法、並びに、正極、及びリチウムイオン電池
CN115663134A (zh) 一种新型表面纳米包覆和梯度掺杂一体化修饰超高镍三元正极材料及其制备方法
CN113707870A (zh) 一种无钴正极材料及其制备方法和应用
CN112186187B (zh) 一种三维网状包覆的三元材料的制备方法及应用
CN113023790A (zh) 一种正极材料及其制备方法与应用
CN116805680A (zh) 一种复合正极材料及其制备方法和应用
CN108023079B (zh) 一种混合过渡金属硼酸盐负极材料及其制备方法
CN112599736B (zh) 一种掺硼磷酸锂包覆锂离子电池正极材料及其制备方法
CN114335481A (zh) 导电和导离子双层原位包覆的磷酸铁锂、制备方法及应用
JP6633161B1 (ja) 正極活物質、及び、その製造方法、並びに、正極、及びリチウムイオン電池
CN111276691A (zh) 一种高电压单晶低钴三元正极材料及其制备方法
CN113353993A (zh) 一种复合高镍三元材料的制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773695

Country of ref document: EP

Kind code of ref document: A1