WO2019035575A1 - 이차 전지용 전해질 및 이를 포함하는 이차 전지 - Google Patents

이차 전지용 전해질 및 이를 포함하는 이차 전지 Download PDF

Info

Publication number
WO2019035575A1
WO2019035575A1 PCT/KR2018/008633 KR2018008633W WO2019035575A1 WO 2019035575 A1 WO2019035575 A1 WO 2019035575A1 KR 2018008633 W KR2018008633 W KR 2018008633W WO 2019035575 A1 WO2019035575 A1 WO 2019035575A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
secondary battery
additive
group
trimethylsilyl
Prior art date
Application number
PCT/KR2018/008633
Other languages
English (en)
French (fr)
Inventor
박창훈
이호춘
강성진
장민철
김도연
김현지
Original Assignee
주식회사 엘지화학
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 재단법인대구경북과학기술원 filed Critical 주식회사 엘지화학
Priority to JP2020500645A priority Critical patent/JP7062155B2/ja
Priority to US16/629,239 priority patent/US11699813B2/en
Priority to EP18845985.3A priority patent/EP3641044B1/en
Priority to CN201880047984.5A priority patent/CN110945704B/zh
Publication of WO2019035575A1 publication Critical patent/WO2019035575A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/141Esters of phosphorous acids
    • C07F9/1415Compounds containing the structure P-O-acyl, P-O-heteroatom, P-O-CN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a secondary battery and a secondary battery including the same.
  • a lithium secondary battery can be made compact and lightweight, and its use range is expanding because of its advantages in terms of energy density, discharge voltage, and output stability.
  • the lithium secondary battery is a battery in which lithium ions (Li + ) participate in the oxidation-reduction reaction. Specifically, lithium ions contained in the battery cathode active material migrate to the cathode through the electrolyte and then are inserted into the layered anode active material. As the lithium ions inserted into the negative electrode active material move back to the anode, the battery operates. At this time, the capacity of the lithium secondary battery differs depending on the type of the electrode active material. In actual operation, sufficient capacity can not be secured by the theoretical capacity at the time of actual operation, and the charge / discharge stability and reliability are insufficient.
  • lithium is a rare metal with only 0.002% of the Earth's crust on Earth.
  • cobalt and copper which are widely used as cathode active materials for lithium secondary batteries, are also rare, and they are anxious to secure resources because they are produced mainly in South Africa and South America.
  • polyvalent metals such as magnesium, calcium, aluminum, yttrium and zinc are very difficult to be used as negative electrode materials for secondary batteries. It is difficult to disperse multivalent metal cations in the electrolyte composition for most lithium secondary batteries conventionally used, and in particular, the organic solvent used in the electrolyte forms a film on the surface of the multivalent metal, and the resistance of the resulting film is a film The electrochemical deposition / dissolution reaction of the metal ion at the cathode is suppressed when the cell is driven.
  • Se-Young Ha et al. And Tomokazu Fukutsuka et al. A glyme-based solvent, Sung-Jin Kang et al. Disclose that the characteristics of a magnesium battery can be improved by using an electrolyte containing a dialkylsulfone-based solvent, respectively.
  • A. Kitada et al. Disclose that the electrodeposition / desorption characteristics of a secondary battery including an aluminum metal can be improved by using a grit-based solvent.
  • Korean Patent Laid-Open Publication No. 2016-0070025 discloses that the properties of a secondary battery can be improved by using a polyvalent metal cation through the use of an electrolyte including a specific sulfonic solvent, an ether solvent, and an electrolytic salt.
  • the electrolyte has a low ionic conductivity and a low charge / discharge characteristic of a battery, and an electrolyte using a sulfonic solvent has a high melting point, exhibiting a high viscosity at room temperature and a low ionic conductivity, Resulting in limitations in battery performance. Therefore, it is further required to develop an electrolyte solution for a multivalent metal secondary battery, which can obtain excellent performance and stable lifetime characteristics as compared with existing secondary batteries.
  • the present inventors have conducted various studies to solve the above problems. As a result, the present inventors have found that when a compound containing a specific chemical bond is included as an additive in an electrolyte for a secondary battery, formation of a film due to side reactions between the polyvalent metal and the electrolyte is suppressed, The charging and discharging efficiency and lifetime of the secondary battery operated by the positive ions are improved, thereby completing the present invention.
  • an object of the present invention is to provide an electrolyte for a secondary battery having excellent charge / discharge efficiency.
  • Another object of the present invention is to provide a secondary battery comprising the electrolyte.
  • the present invention provides a process for producing an electrochemical cell, which comprises an electrolytic salt, an organic solvent and an additive, wherein the additive is at least one selected from the group consisting of a compound having an N-Si bond and a compound having an O- An electrolyte for a secondary battery comprising the compound.
  • the compound having an N-Si bond may be at least one selected from the group consisting of hexamethyldisilazane, heptamethyldisilazane, 2-allyl-1,1,1,3,3-hexamethyldisilazane, N, At least one member selected from the group consisting of N, N, N-dimethylaminotrimethylsilane, tris (trimethylsilyl) amine, trimethyl (allylamino) silane and N, N, O-tris (trimethylsilyl) . ≪ / RTI >
  • the compound having an O-Si bond is at least one compound selected from the group consisting of hexamethyldisiloxane, octamethyltrisiloxane, tris (trimethylsilyl) phosphate, tris (trimethylsilyl) phosphite, and tris (trimethylsilyl) . ≪ / RTI >
  • the additive may be included in an amount of 1 to 5% by weight based on 100% by weight of the total electrolyte for a secondary battery.
  • the electrolytic salt may include a polyvalent metal cation.
  • the present invention provides a secondary battery comprising the electrolyte.
  • the electrolyte for a secondary battery according to the present invention contains a compound having an N-Si-based bond or an O-Si-based bond as an additive, formation of a film on the surface of a polyvalent metal is suppressed and moisture in the electrolyte is removed, Charge and discharge efficiency can be improved.
  • Example 1 is a graph showing the results of cyclic voltammetry for electrochemical deposition / desorption of magnesium in the electrolyte prepared in Example 1, Example 2, Example 3, and Comparative Example 1 of the present invention.
  • FIG. 2 is a graph showing the results of cyclic voltammetry for the electrochemical deposition / desorption reaction of magnesium in the electrolyte prepared in Example 4, Example 5, Example 6, and Comparative Example 2.
  • FIG. 2 is a graph showing the results of cyclic voltammetry for the electrochemical deposition / desorption reaction of magnesium in the electrolyte prepared in Example 4, Example 5, Example 6, and Comparative Example 2.
  • FIG. 3 is a graph showing the results of cyclic voltammetry for the electrochemical deposition / desorption reaction of magnesium in the electrolyte prepared in Example 4, Example 7, Example 8, and Example 9.
  • FIG. 3 is a graph showing the results of cyclic voltammetry for the electrochemical deposition / desorption reaction of magnesium in the electrolyte prepared in Example 4, Example 7, Example 8, and Example 9.
  • Example 4 is a graph showing electrochemical resistance spectroscopic measurement results of a magnesium secondary battery using the electrolyte prepared in Example 1 and Comparative Example 1 of the present invention.
  • Magnesium and other multivalent metals have many advantages as electrode material, such as low oxidation-reduction potential and high theoretical capacity. Since the number of electrons transferred during the oxidation-reduction reaction is two, A double current can be obtained. In addition, the rich reserves of polyvalent metals, low price, environment friendliness and ease of handling are attracting attention as next generation batteries because they are advantageous not only in performance but also in stability and price competitiveness.
  • the theoretical capacity and the energy density are not realized in actual operation.
  • the metal hydroxide present on the metal surface easily reacts with the electrolyte solvent to generate a salt that is not dissolved, The reversible electrodeposition / desorption reaction can not be performed due to the formation of the film, and the reactivity of the electrode is lowered.
  • the present invention provides an electrolyte for a polyvalent metal secondary battery comprising a specific compound as an additive in order to suppress side reactions with an electrolyte forming a coating on an electrode surface.
  • the electrolyte for a secondary battery according to the present invention comprises an electrolytic salt, an organic solvent and an additive, wherein the additive is selected from the group consisting of a compound having an N-Si-based bond and a compound having an O- These compounds include the above compounds.
  • a compound containing a bond as described above is used as an electrolyte additive for a lithium secondary battery, but its object is mainly suppressing deterioration phenomenon or improving low temperature output.
  • the additive when used for prevention of deterioration, is for forming a protective film such as SEI (solid electrolyte interphase) or coating on the surface of the electrode.
  • SEI solid electrolyte interphase
  • the additive exhibits a film- have.
  • the additive includes at least one of an N-Si-based bond and an O-Si-based bond, thereby preventing a side reaction of forming a film on a polyvalent metal surface. The problem can be solved.
  • the compound having an N-Si bond is, for example, hexamethyldisilazane, heptamethyldisilazane, 2-allyl-1,1,1,3,3,3-hexamethyl (2-allyl-1,1,1,3,3-hexamethyldisilazan), N, N-diethylamino trimethylsilane, N, N-dimethylaminotrimethylsilane N, N-dimethylamino trimethylsilane, Tris (trimethylsilyl) amine, Trimethyl (allylamino) silane and N, N, O-tris (trimethylsilyl) (N, N, O-tris (trimethylsilyl) hydroxylamine).
  • it may be at least one member selected from the group consisting of hexamethyldisilazane, heptamethyldisilazane, N, N-diethylaminotrimethylsilane and tris (trimethylsilyl) amine, more preferably hexamethyldi Silazane, and heptamethyldisilazane. ≪ Desc / Clms Page number 7 >
  • the compound having an O-Si bond may be at least one selected from the group consisting of hexamethyldisiloxane, octamethyltrisiloxane, tris (trimethylsilyl) phosphate, tris (trimethylsilyl) phosphite, trimethylsilyl) phosphite, and tris (trimethylsilyl) borate). And preferably at least one member selected from the group consisting of hexamethyldisiloxane and tris (trimethylsilyl) phosphite.
  • a polyvalent metal when a polyvalent metal is included as an electrode, its surface is coated with metal hydroxide such as Mg (OH) 2 , Ca (OH) 2 , Al (OH) 3 , Water causes film formation of insoluble salts.
  • the additive is converted into a soluble form by reacting with the metal hydroxide to prevent film formation on the electrode surface.
  • the additives suppress the decomposition reaction of the electrolyte by removing moisture in the electrolyte, thereby improving the stability of the electrolyte.
  • the film formation inhibition reaction described above can be represented by the following reaction scheme 1, and the water removal reaction in the electrolyte can be represented by the following reaction formula 2, respectively.
  • the additive is used in the secondary battery 1 is operated by a polyvalent (multivalent) metal cation such as Mg 2 +, Ca 2 + or Al 3 + a non-metal cation such as Li + electrolyte used for the polyvalent cations secondary battery And the formation of a film having a very large resistance on the surface of the Mg, Ca or Al metal cathode can be suppressed, thereby maximizing the charging / discharging Coulomb efficiency of the metal cathode battery.
  • a polyvalent (multivalent) metal cation such as Mg 2 +, Ca 2 + or Al 3 +
  • a non-metal cation such as Li + electrolyte used for the polyvalent cations secondary battery
  • the additive may be included in an amount of 1 to 5% by weight, preferably 1.5 to 3.5% by weight based on 100% by weight of the total electrolyte for a secondary battery. If the amount of the additive contained in the electrolyte is less than the above range, the additive effect is insignificant and the effect of improving the battery characteristics is small. On the other hand, when the additive exceeds the above range, It is preferable to determine the titratable amount within the above range. However, the specific optimum amount of the additive may be set differently depending on the electrolyte to be provided and the other characteristics and the use environment of the battery, and the use of the additive is not limited by the preferred range.
  • the electrolyte for a secondary battery of the present invention includes conventional electrolyte components such as an electrolyte salt and an organic solvent.
  • the electrolytic salt is not particularly limited as long as it is dissociated into a cation and an anion in an organic solvent and is capable of transferring a polyvalent metal ion in a polyvalent metal secondary battery, and may be any of those generally used in the art.
  • the electrolytic salt may be represented by the following Chemical Formulas 1 to 3:
  • R 1 is a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched alkyl group having 6 to 10 carbon atoms, or a linear or branched amine group having 1 to 10 carbon atoms,
  • M is Mg, Ca, Al or Zn
  • X is a halogen atom
  • R 2 is an alkyl group having 1 to 20 carbon atoms, a dialkylboron group having 1 to 20 carbon atoms, a diarylboron group having 6 to 20 carbon atoms, an alkylcarbonyl group having 1 to 20 carbon atoms or an alkylsulfonyl group having 1 to 20 carbon atoms, (ClO 4 - ) or hexafluoroarsenate (AsF 6 - ).
  • R 1 is a methyl group, an ethyl group, a butyl group, a phenyl group, or an aniline group
  • X is a halogen atom, for example, chlorine or bromine.
  • X is, for example, chlorine, bromine or iodine.
  • the R 2 alkylcarbonyl group is, for example, a methylcarbonyl group (CH 3 CO 2 - ) and the alkylsulfonyl group is, for example, a trifluoromethylsulfonyl group (CF 3 SO 2 - ).
  • the electrolytic salt may be at least one selected from the group consisting of MgCl 2 , MgBr 2 , MgI 2 , CaCl 2 , CaBr 2 , CaI 2 , Mg (AlCl 2 BuEt) 2 (Bu is abbreviation of butyl group, Et is abbreviation of ethyl group) Mg (ClO 4) 2, Mg (PF 6) 2, Mg (BF 4) 2, Mg (CF 3 SO 3) 2, Mg (N (CF 3 SO 2) 2) 2 (Mg (TFSI) 2), MgN (C 2 F 5 SO 2 ) 2 , MgC (CF 3 SO 2 ) 3, and the like.
  • the concentration of the electrolytic salt may be suitably determined in consideration of ionic conductivity, solubility, etc., and may be, for example, 0.2 to 4 M, preferably 0.3 to 3 M, more preferably 0.5 to 2 M.
  • concentration of the electrolytic salt is less than the above range, it is difficult to secure ion conductivity suitable for driving the cell.
  • concentration exceeds the above range, the resistance or viscosity increases and the mobility of the polyvalent metal ion decreases. And the performance of the battery may be deteriorated. Therefore, it is suitably adjusted within the above range.
  • the organic solvent has a high oxidation potential and is capable of dissolving the electrolytic salt.
  • the organic solvent is not particularly limited and can be used alone or as a mixture of two or more.
  • the organic solvent may be a cyclic carbonate-based, linear carbonate-based, ether-based, sulfone-based, ester-based, nitrile-based, phosphate-based solvent or a mixture thereof, .
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • DPC dipropyl carbonate
  • ethylene glycol dimethyl ether glyme, 1G
  • triethylene glycol dimethyl ether Dimethyl sulfoxide acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran (THF), N-methyl-2-pyr
  • various additives may be added to the electrolyte for a secondary battery of the present invention as needed.
  • pyridine triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, glyme, hexamethylphosphoramide hexamethyl phosphoramide, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxyethanol, May be added.
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further added to impart nonflammability.
  • the present invention also provides a secondary battery comprising the electrolyte.
  • the secondary battery includes a positive electrode; cathode; And a separation membrane and an electrolyte interposed between the anode and the cathode, and the electrolyte for the secondary battery according to the present invention is used as the electrolyte.
  • the positive electrode and the negative electrode may be manufactured using a conventional method known in the art.
  • the electrode slurry is prepared by mixing each of the positive electrode active material and the negative electrode active material with a binder, a dispersant, etc., And drying. At this time, a small amount of conductive material and / or binder may be selectively added.
  • the positive electrode may include a positive electrode collector and a positive electrode active material coated on one or both surfaces of the positive electrode collector.
  • the positive electrode collector is for supporting the positive electrode active material and is not particularly limited as long as it is electrochemically stable in the voltage region of the secondary battery with excellent conductivity.
  • the positive electrode collector may be any metal selected from the group consisting of copper, aluminum, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof, , Nickel, titanium or silver.
  • the alloy may be an aluminum-cadmium alloy.
  • a non-conductive polymer surface-treated with a conductive material such as sintered carbon, a conductive polymer, or the like may be used have.
  • the cathode current collector can form fine irregularities on the surface thereof to enhance the bonding force with the anode active material, and various forms such as a film, a sheet, a foil, a mesh, a net, a porous body, a foam, and a nonwoven fabric can be used.
  • the cathode active material may include a cathode active material and optionally a conductive material and a binder.
  • the cathode active material may be any material that causes deintercalation or conversion of polyvalent metal cations.
  • the positive electrode active material examples include oxide-based compounds such as manganese oxide (MnO 2 ), vanadium oxide (V 2 O 5 ) or iron oxide, sulfide-based compounds such as Mo 6 S 8 and TiS 2 , and FeSiPO 4 Conversion type compounds such as the following polyanion compound, MF 2 (wherein M is Fe or Cu) can be used.
  • oxide-based compounds such as manganese oxide (MnO 2 ), vanadium oxide (V 2 O 5 ) or iron oxide
  • sulfide-based compounds such as Mo 6 S 8 and TiS 2
  • FeSiPO 4 Conversion type compounds such as the following polyanion compound, MF 2 (wherein M is Fe or Cu) can be used.
  • the conductive material serves as a path for electrically connecting the cathode active material and the electrolyte to move the electrons from the current collector to the active material, and can be used without limitation as long as it does not cause chemical change in a cell having porous and conductive properties .
  • carbon-based materials having porosity can be used.
  • the carbon-based materials include carbon black, graphite, graphene, activated carbon, carbon fiber, and the like; metallic fibers such as metal mesh; Metallic powder such as copper, silver, nickel, and aluminum; Or an organic conductive material such as a polyphenylene derivative.
  • the conductive materials may be used alone or in combination.
  • Commercially available conductive materials include acetylene black series (Chevron Chemical Company or Gulf Oil Company products), Ketjen Black EC series (Armak Company Vulcan XC-72 (Cabot Company) and Super P (MMM Co., Ltd.).
  • the binder is a material which is contained in the current collector for holding the slurry composition forming the anode and is well dissolved in a solvent and is capable of stably forming the conductive network with the above-mentioned active material and conductive material. All binders known in the art can be used unless otherwise specified.
  • the binder may include a fluororesin binder including polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE); Rubber-based binders including styrene butadiene rubber (SBR), acrylonitrile-butadiene rubber, and styrene-isoprene rubber; Cellulose-based binders including carboxyl methyl cellulose (CMC), starch, hydroxypropylcellulose, and regenerated cellulose; Polyalcohol-based binders; Polyolefin binders including polyethylene and polypropylene; Polyimide-based binders; Polyester binders; And a silane-based binder; and mixtures or copolymers of two or more thereof.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • Rubber-based binders including styrene butadiene rubber (SBR), acrylonitrile-butadiene
  • the negative electrode may include a negative electrode active material, a conductive material, and a binder in the same manner as the positive electrode, and the conductive material and the binder are as described above.
  • a Mg metal, a Ca metal, or an Al metal, or any material that causes de-insertion or alloy / non-alloy reaction of Mg, Ca, or Al ions can be used.
  • a Mg metal Ca metal or an Al metal may be used, and carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon capable of intercalating Mg, Ca or Al ions , Lithium titanium oxide, Mg metal Ca, or an alloy of magnesium and bismuth or tin causing an alloy / non-alloy reaction with an Al metal can be used.
  • Non-limiting examples of the lithium titanium oxide include Li 0 . 8 Ti 2 . 2 O 4 , Li 2 . 67 Ti 1 . 33 O 4 , LiTi 2 O 4 , Li 1.33 Ti 1.67 O 4 , Li 1 . 14 Ti 1 . 71 O 4 , but the present invention is not limited thereto.
  • the cathode and the anode may each have a conductive lead member for collecting a current generated during the operation of the battery, and the lead member may guide current generated in the anode and the cathode to the cathode terminal and the cathode terminal, respectively.
  • the separation membrane is used to physically separate both electrodes in the secondary battery of the present invention and can be used without any particular limitations as long as it is usually used as a separation membrane in a secondary battery.
  • the separation membrane is low resistance against ion migration of electrolyte, Is preferable.
  • the separator may be formed of a porous substrate.
  • the porous substrate may be any porous substrate commonly used in an electrochemical device.
  • the porous substrate may be a polyolefin porous film or a nonwoven fabric. .
  • polyolefin-based porous film examples include polyolefin-based polymers such as polyethylene, polypropylene, polybutylene, and polypentene, such as high-density polyethylene, linear low density polyethylene, low density polyethylene and ultra high molecular weight polyethylene, One membrane can be mentioned.
  • the nonwoven fabric may include, in addition to the polyolefin nonwoven fabric, for example, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polycarbonate ), Polyimide, polyetheretherketone, polyethersulfone, polyphenylene oxide, polyphenylenesulfide, and polyethylene naphthalate, which are used alone or in combination, Or a nonwoven fabric formed of a polymer mixed with these.
  • the structure of the nonwoven fabric may be a spun bond nonwoven fabric or a melt blown nonwoven fabric composed of long fibers.
  • the thickness of the porous substrate is not particularly limited, but may be 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the size and porosity of the pores present in the porous substrate are also not particularly limited, but may be 0.001 to 50 ⁇ and 10 to 95%, respectively.
  • the electrolyte is according to the present invention and as described above.
  • the electrolyte may include at least one selected from the group consisting of a liquid electrolyte, a gel polymer electrolyte, and a solid polymer electrolyte. And may be an electrolyte in a liquid state.
  • the injection of the electrolytic solution can be performed at an appropriate stage in the manufacturing process of the electrochemical device according to the manufacturing process and required properties of the final product. That is, it can be applied before assembling the electrochemical device or in the final stage of assembling the electrochemical device.
  • the secondary battery according to the present invention can be laminated, stacked, and folded in addition to winding, which is a general process.
  • the shape of the secondary battery is not particularly limited and may be various shapes such as a cylindrical shape, a laminate shape, and a coin shape.
  • MgCl 2 was added in an amount of 0.8 M as an electrolytic salt to an organic solvent in which dipropylsulfone (DPSO 2 ) and tetrahydrofuran (THF) were mixed at a volume ratio of 1: 1, and 2 parts by weight of tris (trimethylsilyl) phosphite % was added to prepare an electrolyte for a secondary battery.
  • DPSO 2 dipropylsulfone
  • THF tetrahydrofuran
  • An electrolyte was prepared in the same manner as in Example 1 except that hexamethyldisilazane was added in an equal amount instead of tris (trimethylsilyl) phosphite as an additive.
  • An electrolyte was prepared in the same manner as in Example 1 except that heptamethyldisilazane was added in an equal amount instead of tris (trimethylsilyl) phosphite as an additive.
  • An electrolyte was prepared in the same manner as in Example 1, except that triethylene glycol diethyl ether (triglyme, 3G) was used as the electrolyte solvent and Mg (TFSI) 2 was used as the electrolyte salt at a concentration of 0.5 M.
  • triethylene glycol diethyl ether triglyme, 3G
  • Mg TMSI 2
  • the electrolyte was prepared in the same manner as in Example 1 except that triethylene glycol diethyl ether was used as the electrolyte solvent, Mg (TFSI) 2 was used as the electrolytic salt at a concentration of 0.5 M, and the additive was added at 0.5 weight% Respectively.
  • An electrolyte was prepared in the same manner as in Example 1 except that ethylene glycol diethyl ether was used as the electrolyte solvent, Mg (TFSI) 2 was used as the electrolytic salt at a concentration of 0.5 M, and the additive was added at 6 wt% .
  • the electrolyte was prepared in the same manner as in Example 1 except that triethylene glycol diethyl ether was used as the electrolyte solvent, Mg (TFSI) 2 was used as the electrolytic salt at a concentration of 0.5 M, and the additive was added at 10 wt% Respectively.
  • An electrolyte was prepared in the same manner as in Example 1 except that no additive was used.
  • An electrolyte was prepared in the same manner as in Example 1 except that triethylene glycol diethyl ether was used as the electrolyte solvent, Mg (TFSI) 2 was used as the electrolytic salt at the concentration of 0.5 M, and additives were not used.
  • electrochemical deposition of magnesium was carried out using the Pt disk electrode as the working electrode of the secondary battery, the magnesium metal as the reference electrode and the counter electrode, and the electrolyte prepared in the following Examples 1 to 9 and Comparative Examples 1 and 2, / Electrochemical deposition / dissolution reaction was evaluated.
  • FIGS. 1 and Table 1 The first cycle of CV for the electrochemical electrodeposition / desorption reaction of magnesium in the electrolytes prepared in the above Examples and Comparative Examples is shown in FIGS. As shown in FIG. 1 and Table 1, it was found that the coulombic efficiency of the electrochemical deposition / desorption reaction of magnesium in the electrolyte prepared in Examples 1, 2 and 3 was excellent as 83% or more .
  • the electrolytes of Examples 1 to 6 according to the present invention containing the additive exhibit excellent deposition / desorption Coulomb efficiency of magnesium ions.
  • the following magnesium / magnesium symmetric electrode secondary battery was fabricated to evaluate the magnesium surface resistance reduction characteristics of the electrolyte for a magnesium secondary battery derived from the present invention.
  • a secondary battery was prepared by placing the magnesium anode and the magnesium anode facing each other, interposing a polyethylene separator therebetween, and injecting the electrolyte prepared in Example 1 and Comparative Example 1, respectively.
  • Figure 3 shows an equivalent circuit Nyquist plot after EIS measurement at 100 kHz to 100 mHz for electrochemical resistivity spectroscopy (EIS) of the fabricated cell.
  • EIS electrochemical resistivity spectroscopy
  • the electrolyte for a secondary battery according to the present invention includes an additive containing specific chemical bonds, thereby inhibiting film formation on the surface of a polyvalent metal, thereby enabling high capacity, high stabilization, and longevity of the polyvalent metal secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 이차 전지용 전해액 및 이를 포함하는 이차 전지에 관한 것으로, 보다 상세하게는 전해염, 유기 용매 및 첨가제를 포함하고, 상기 첨가제는 N-Si계 결합을 갖는 화합물 및 O-Si계 결합을 갖는 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물을 포함하는 이차 전지용 전해질에 관한 것이다. 상기 이차 전지용 전해질은 특정 화학 결합을 포함하는 첨가제를 포함함에 따라 다가 금속 표면에서의 피막 형성을 억제함으로써 다가 금속 이차 전지의 효율 및 수명 특성을 향상시킬 수 있다.

Description

이차 전지용 전해질 및 이를 포함하는 이차 전지
본 출원은 2017년 8월 16일자 한국 특허 출원 제10-2017-0103526호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 이차 전지용 전해질 및 이를 포함하는 이차 전지에 관한 것이다.
최근 전자기기, 통신기기의 소형화, 경량화 및 고성능화가 급속히 진행되고 있으며, 환경 문제와 관련하여 전기 자동차의 필요성이 크게 대두됨에 따라 이들 제품의 에너지원으로 사용할 수 있는 이차 전지에 대한 많은 연구가 진행되고 있다. 여러 이차 전지 중에서 리튬 이차 전지는 소형·경량화가 가능하고, 에너지 밀도, 방전 전압, 출력 안정성 측면에서 장점이 많아 사용 범위가 확대되고 있는 중이다.
리튬 이차 전지는 리튬 이온(Li+)이 산화환원 반응에 참여하는 전지로, 구체적으로 충전지 양극 활물질에 포함된 리튬 이온이 전해질을 통해 음극으로 이동한 후 층상 구조의 음극 활물질 사이로 삽입되며, 방전시 음극 활물질에 삽입되어 있던 리튬 이온이 다시 양극으로 이동함에 따라 전지가 작동하게 된다. 이때 리튬 이차 전지의 용량은 전극 활물질의 종류에 따라 차이가 있으며, 실제 구동시 이론 용량만큼 충분한 용량이 확보되지 않으며, 충방전 안정성, 신뢰성이 부족하여 본격적인 상용화에 이르지 못하고 있다.
또한, 리튬은 지구 상의 지각에 0.002 %밖에 존재하지 희귀 금속이다. 이에 더해서 리튬 이차 전지의 양극 활물질로 많이 사용되는 코발트와 구리 역시 역시 희귀하며, 주로 남아프리카와 남미에서만 생산되기 때문에 자원 확보에 불안감이 있다.
최근 이차 전지의 고용량화, 고출력화 및 가격 경쟁력 확보를 위해 가격이 훨씬 낮고 에너지 고밀도 용량을 갖춘 마그네슘(Mg), 칼슘(Ca), 알루미늄(Al), 이트륨(Y), 아연(Zn) 등을 리튬 대신 사용하려는 연구가 진행되고 있다.
기존 리튬 이온, 나트륨 이온(Na+) 등과 같은 1가 금속 양이온에 의해 작동하는 이차 전지보다 마그네슘 이온(Mg2 +), 칼슘 이온(Ca2 +), 알루미늄 이온(Al3 +), 이트륨 이온(Y3+)와 같은 다가(multivalent, 多價) 금속 양이온에 의해 동작하는 이차 전지의 경우 보다 많은 에너지를 저장할 수 있기 때문에 특히 용량 증대에 유리하다.
그러나 리튬, 나트륨과 같은 1가 금속과 달리 마그네슘, 칼슘, 알루미늄, 이트륨, 아연과 같은 다가 금속은 이차 전지의 음극 소재로 사용되기가 매우 어렵다. 종래 사용되는 대부분의 리튬 이차 전지용 전해질 조성에 다가 금속 양이온의 분산이 어렵고, 특히 전해질에 사용되는 유기 용매가 다가 금속 표면에 피막을 형성하며, 이때 생성된 피막의 저항이 1가 금속 표면에 형성된 피막의 저항보다 훨씬 크기 때문에 전지 구동시 음극에서의 금속 이온의 전기 화학적 전착/탈착(deposition/dissolution) 반응이 억제되기 때문이다.
이를 해결하기 위해 다가 금속 이차 전지용 전해질에 대한 다양한 기술이 제안되었다.
일례로, Se-Young Ha et al. Tomokazu Fukutsuka et al.은 글라임(glyme)계 용매, Sung-Jin Kang et al.은 디알킬 설폰(sulfone)계 용매를 각각 포함하는 전해질을 사용하여 마그네슘 전지의 특성이 개선될 수 있음을 보고하고 있다. 또한, A. Kitada et al.은 글라임계 용매를 사용하여 알루미늄 금속을 포함하는 이차 전지의 전착/탈착 특성이 향상될 수 있음을 보고하고 있다.
또한, 대한민국 공개특허 제2016-0070025호는 특정 설폰계 용매, 에테르계 용매 및 전해염을 포함하는 전해질의 사용을 통해 다가 금속 양이온에 의해 이차 전지의 특성을 개선할 수 있음을 개시하고 있다.
상기 선행문헌들은 다가 이온 전지의 구동 특성 개선 및 성능 안정화에 어느 정도 기여하였으나 그 효과가 충분치 않다. 또한, 상기 전해질은 이온 전도도와 전지의 충방전 특성이 여전히 낮고, 설폰계 용매를 사용하는 전해질의 경우 높은 녹는점을 가져 상온에서 높은 점도와 낮은 이온 전도성을 나타내며, 이로 인해 전지 구동 중 열화가 초래되고 결국 전지 성능의 한계를 나타낸다. 따라서, 기존 이차 전지와 비교하여 우수한 성능과 안정적인 수명 특성을 얻을 수 있는 다가 금속 이차 전지용 전해액의 개발이 더욱 필요한 실정이다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허 제2016-0070025호(2016.06.17), 전해질 및 이를 포함하는 이차 전지
[비특허문헌]
Se-Young Ha et al., Magnesium(II) Bis(trifluoromethane sulfonyl) Imide-Based Electrolytes with Wide Electrochemical Windows for Rechargeable Magnesium Batteries, ACS Appl. Mater. Interfaces, 2014, 6(6), pp.4063-4073
T. Fukutsuka et al., New Magnesium-ion Conductive Electrolyte Solution Based on Triglyme for Reversible Magnesium Metal Deposition and Dissolution at Ambient Temperature, Chem. Lett., 2014, 43(11) pp.1788-1790
Sung-Jin Kang et al., Non-Grignard and Lewis Acid-Free Sulfone Electrolytes for Rechargeable Magnesium Batteries, Chem . Mater., 2017, 29(7), pp.3174-3180
A. Kitada et al., Electrochemically active species in aluminum electrodeposition baths of AlCl3/glyme solutions, Electrochimica Acta, 2016, 211, pp.561-567
이에 본 발명자들은 상기 문제를 해결하고자 다각적으로 연구를 수행한 결과, 이차 전지용 전해액에 특정 화학 결합을 포함하는 화합물을 첨가제로 포함하는 경우 다가 금속과 전해질 사이의 부반응에 의한 피막 형성이 억제되어 다가 금속 양이온에 의해 동작되는 이차 전지의 충방전 효율 및 수명이 향상됨을 확인하여 본 발명을 완성하였다.
따라서, 본 발명의 목적은 충방전 효율이 우수한 이차 전지용 전해질을 제공하는데 있다.
또한, 본 발명의 다른 목적은 상기 전해질을 포함하는 이차 전지를 제공하는 것이다.
상기 목적을 달성하기 위해, 본 발명은 전해염, 유기 용매 및 첨가제를 포함하고, 상기 첨가제는 N-Si계 결합을 갖는 화합물 및 O-Si계 결합을 갖는 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물을 포함하는 이차 전지용 전해질을 제공한다.
상기 N-Si계 결합을 갖는 화합물은 헥사메틸디실라잔, 헵타메틸디실라잔, 2-알릴-1,1,1,3,3,3-헥사메틸디실라잔, N,N-디에틸아미노 트리메틸실란, N,N-디메틸아미노 트리메틸실란, 트리스(트리메틸실릴)아민, 트리메틸(알릴아미노)실란 및 N,N,O-트리스(트리메틸실릴)하이드록시아민으로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.
상기 O-Si계 결합을 갖는 화합물은 헥사메틸디실록산, 옥타메틸트리실록산, 트리스(트리메틸실릴)포스페이트, 트리스(트리메틸실릴)포스파이트 및 트리스(트리메틸실릴)보레이트로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.
상기 첨가제는 이차 전지용 전해질 전체 100 중량%를 기준으로 1 내지 5 중량%로 포함될 수 있다.
상기 전해염은 다가 금속 양이온을 포함할 수 있다.
아울러, 본 발명은 상기 전해질을 포함하는 이차 전지를 제공한다.
본 발명에 따른 이차 전지용 전해질은 N-Si계 결합 또는 O-Si계 결합을 갖는 화합물을 첨가제로 포함하는 경우 다가 금속 표면의 피막 형성이 억제되고 전해질 내 수분이 제거됨으로써 다가 금속 이차 전지 특성, 특히 충방전 효율을 향상시킬 수 있다.
도 1은 본 발명의 실시예 1, 실시예 2, 실시예 3 및 비교예 1에서 제조한 전해질에서의 마그네슘의 전기 화학적 증착/탈착 반응에 대한 순환 전압 측정 결과를 나타내는 그래프이다.
도 2는 본 발명의 실시예 4, 실시예 5, 실시예 6 및 비교예 2에서 제조한 전해질에서의 마그네슘의 전기 화학적 증착/탈착 반응에 대한 순환 전압 측정 결과를 나타내는 그래프이다.
도 3은 본 발명의 실시예 4, 실시예 7, 실시예 8 및 실시예 9에서 제조한 전해질에서의 마그네슘의 전기 화학적 증착/탈착 반응에 대한 순환 전압 측정 결과를 나타내는 그래프이다.
도 4는 본 발명의 실시예 1 및 비교예 1에서 제조한 전해질을 사용한 마그네슘 이차전지의 전기화학 저항 분광측정 결과를 나타낸 그래프이다.
이하, 본 발명을 더욱 상세히 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, ‘포함하다’ 또는 ‘가지다’ 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
마그네슘을 비롯한 다가 금속은 낮은 산화환원 전위, 높은 이론 용량 등 전극 소재로 여러 장점을 갖고 있으며, 산화환원 반응시 전달되는 전자 수가 2개이기 때문에 리튬, 나트륨 등의 1가 금속에 비해 단위 반응당 2배의 전류를 얻을 수 있다. 또한, 다가 금속의 풍부한 매장량, 낮은 가격, 환경 친화성, 취급 용이성 등은 단순히 성능 뿐 아니라 안정성과 가격 경쟁력 측면에서 유리하기 때문에 차세대 전지로 각광받고 있다.
이러한 장점에도 불구하고 실제 구동에 있어서는 이론 용량 및 에너지 밀도 전부를 구현하지 못하고 있다. 이는 다가 금속의 경우 기존 리튬 이차 전지에 사용되는 전해질에 혼화되기 어려울 뿐만 아니라 금속 표면에 존재하는 수산화 금속물이 전해질 용매와 쉽게 반응하여 용해되지 않은 염을 생성하며, 생성된 불용성 염은 전극 표면에 피막을 형성함으로써 가역적인 전착/탈착 반응이 불가능하여 전극의 반응성이 저하되기 때문이다.
이를 위해 종래 기술에서는 다가 금속 이온에 확산 및 분산 특성을 향상시키고 전기화학적 가역성을 높이기 위해 다양한 전해질 조성이 제안되었으나, 다가 금속 이차 전지의 효율, 수명이 효과적으로 개선되지 못하였다.
이에 본 발명에서는 전극 표면에서의 피막을 형성하는 전해질과의 부반응을 억제하기 위해 특정 화합물을 첨가제로 포함하는 다가 금속 이차 전지용 전해질을 제공한다.
구체적으로, 본 발명에 따른 이차 전지용 전해질은 전해염, 유기 용매 및 첨가제를 포함하고, 상기 첨가제는 N-Si계 결합을 갖는 화합물 및 O-Si계 결합을 갖는 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물을 포함한다.
종래 기술에서 상술한 결합을 포함하는 화합물이 리튬 이차 전지용 전해질 첨가제로 사용되었으나, 그 목적이 주로 열화 현상을 억제하거나 저온 출력 향상이다. 특히, 열화 방지를 위해 사용되는 경우 첨가제는 전극 표면에 SEI(solid electrolyte interphase), 피막 등의 보호막을 형성시키기 위한 것이었으나, 본 발명에서는 상기 첨가제가 피막 형성 억제 효과를 나타낸다는 점에서 그 특징이 있다.
본 발명에 따르면 상기 첨가제는 N-Si계 결합 또는 O-Si계 결합 중 적어도 하나 이상을 포함함으로써 다가 금속 표면에 피막을 형성하는 부반응을 방지하는 역할을 하며, 이로부터 전극의 반응성 및 전지 특성 저하 문제가 해결될 수 있다.
상기 N-Si계 결합을 갖는 화합물은 예를 들어, 헥사메틸디실라잔 (hexamethyldisilazane), 헵타메틸디실라잔(heptamethyldisilazane), 2-알릴-1,1,1,3,3,3-헥사메틸디실라잔 (2-allyl-1,1,1,3,3,3-hexamethyldisilazan), N,N-디에틸아미노 트리메틸실란(N,N-diethylamino trimethylsilane), N,N-디메틸아미노 트리메틸실란(N,N-dimethylamino trimethylsilane), 트리스(트리메틸실릴)아민 (Tris(trimethylsilyl)amine), 트리메틸(알릴아미노)실란 (Trimethyl(allylamino)silane) 및 N,N,O-트리스(트리메틸실릴)하이드록시아민 (N,N,O-tris(trimethylsilyl)hydroxylamine)으로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 바람직하게는 헥사메틸디실라잔, 헵타메틸디실라잔, N,N-디에틸아미노 트리메틸실란 및 트리스(트리메틸실릴)아민으로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 보다 바람직하게는 헥사메틸디실라잔 및 헵타메틸디실라잔으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 O-Si계 결합을 갖는 화합물은 헥사메틸디실록산(hexamethyldisiloxane), 옥타메틸트리실록산(octamethyltrisiloxane), 트리스(트리메틸실릴)포스페이트 (tris(trimethylsilyl)phosphate), 트리스(트리메틸실릴)포스파이트 (tris(trimethylsilyl)phosphite) 및 트리스(트리메틸실릴)보레이트 (tris(trimethylsilyl)borate) 로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 바람직하게는 헥사메틸디실록산 및 트리스(트리메틸실릴)포스파이트로 이루어진 군에서 선택되는 1종 이상일 수 있다.
일반적으로 다가 금속 이차 전지에 있어서, 다가 금속을 전극으로 포함하는 경우 그 표면이 Mg(OH)2, Ca(OH)2, Al(OH)3 등과 같은 수산화 금속물로 코팅되어 있으며, 이러한 수산화 금속물이 불용성 염으로 이루어진 피막 형성을 야기한다. 그러나, 본 발명에서는 상기 첨가제가 상기 수산화 금속물과 반응하여 용해 가능한 형태로 전환시켜 줌으로써 전극 표면에 피막 형성이 방지된다. 또한, 상기 첨가제는 전해질 내 수분을 제거함으로써 전해질의 분해 반응을 억제시키며 이를 통해 전해질의 안정성을 향상시킨다. 본 발명의 일 구현예에 따르면, 첨가제로 헵타메틸디실라잔을 사용한 경우에 상술한 피막 형성 억제 반응은 하기 반응식 1로, 상기 전해질 내 수분 제거 반응은 하기 반응식 2로 각각 나타낼 수 있다.
[반응식 1]
Figure PCTKR2018008633-appb-I000001
[반응식 2]
Figure PCTKR2018008633-appb-I000002
상기 첨가제는 Li+ 등과 같은 1가 금속 양이온이 아닌 Mg2 +, Ca2 + 또는 Al3 +와 같은 다가(multivalent) 금속 양이온에 의하여 동작되는 이차 전지에 사용되어 상기 다가 양이온 이차 전지에 사용되는 전해질 내의 수분 제거 및 Mg, Ca 또는 Al 금속 음극 표면에 매우 큰 저항을 갖는 피막 형성을 억제하여 금속 음극 전지의 충방전 쿨롱 효율을 극대화할 수 있다.
상기 첨가제는 이차 전지용 전해질 전체 100 중량%를 기준으로 1 내지 5 중량%, 바람직하기로 1.5 내지 3.5 중량%로 포함될 수 있다. 만약, 전해질 내 포함되는 첨가제가 상기 범위 미만일 경우에는 첨가 효과가 미미하여 전지 특성의 개선 효과가 적고, 이와 반대로 상기 범위 초과일 경우에는 저항으로 작용하여 전지 구동시 불필요한 반응을 일으켜 전지 성능에 악영향을 줄 수 있으므로 상기 범위 내에서 적정 함량을 결정하는 것이 바람직하다. 다만, 상기 첨가제의 구체적인 최적 함량은 제공하고자 하는 전해질 및 이를 구비하는 전지의 기타 특성 및 사용 환경에 따라 다르게 설정될 수 있으며 이러한 활용이 상기 바람직한 범위에 의해 제한되는 의미는 아니다.
본 발명의 이차 전지용 전해액은 통상적인 전해질 성분, 예를 들면 전해염과 유기 용매를 포함한다.
상기 전해염은 유기 용매에서 양이온 및 음이온으로 해리되어 다가 금속 이차 전지에서 다가 금속 이온을 전달할 수 있는 것이라면 특별히 한정되지 않으며, 당 기술분야에서 일반적으로 사용하는 것을 제한없이 사용할 수 있다.
상기 전해염은 하기 화학식 1 내지 3으로 표시될 수 있다:
[화학식 1]
R1MX
[화학식 2]
MX2
[화학식 3]
M(R2)2
(상기 화학식 1 내지 3에서,
상기 R1은 탄소수 1 내지 10인 직쇄형이거나 분지형의 알킬기, 탄소수 6 내지 10인 직쇄형이거나 분지형의 아릴기, 또는 탄소수 1 내지 10인 직쇄형이거나 분지형의 아민기이고,
상기 M은 Mg, Ca, Al 또는 Zn이며,
상기 X는 할로겐 원자이고,
상기 R2는 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 디알킬보론기, 탄소수 6 내지 20의 디아릴보론기, 탄소수 1 내지 20의 알킬카보닐기 또는 탄소수 1 내지 20의 알킬설포닐기, 과염소산기(ClO4 -) 또는 헥사플루오로아르세네이트(AsF6 -)이다).
구체적으로, 상기 화학식 1에서 R1은 메틸기, 에틸기, 부틸기, 페닐기, 또는 아닐린기이며, X는 할로겐 원자이고, 예를 들어 염소 또는 브롬이다. 그리고 상기 화학식 2에서 X는 예를 들어 염소, 브롬 또는 요오드이다. 또한, 상기 화학식 3에서 R2 중 알킬카보닐기는 예를 들면 메틸카보닐기(CH3CO2 -)이고, 알킬설포닐기은 예를 들어 트리플루오로메틸설포닐기(CF3SO2 -)이다.
예를 들어, 상기 전해염은 MgCl2, MgBr2, MgI2, CaCl2, CaBr2, CaI2, Mg(AlCl2BuEt)2(Bu은 부틸기의 약자이고, Et은 에틸기의 약자임), Mg(ClO4)2, Mg(PF6)2, Mg(BF4)2, Mg(CF3SO3)2, Mg(N(CF3SO2)2)2(Mg(TFSI)2), MgN(C2F5SO2)2, MgC(CF3SO2)3 등 일 수 있다.
상기 전해염의 농도는 이온 전도도, 용해도 등을 고려하여 적절하게 결정될 수 있으며, 예를 들어 0.2 내지 4 M, 바람직하게는 0.3 내지 3 M, 보다 바람직하게는 0.5 내지 2 M일 수 있다. 상기 전해염의 농도가 상기 범위 미만인 경우 전지 구동에 적합한 이온 전도도의 확보가 어려우며, 이와 반대로 상기 범위를 초과하는 경우 저항 또는 점도가 증가하여 다가 금속 이온의 이동성이 저하되며, 전해염 자체의 분해 반응이 증가하여 전지의 성능이 저하될 수 있으므로 상기 범위 내에서 적절히 조절한다.
상기 유기 용매는 높은 산화전위를 가지며, 상기 전해염을 용해시킬 수 있는 것을 사용한다. 상기 유기 용매는 이차 전지용 전해액으로 통상적으로 사용되는 것을 제한 없이 사용할 수 있으며, 이들을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
예를 들어, 상기 유기 용매로는 할로겐 치환체를 포함하거나 또는 포함하지 않는 환형 카보네이트계, 선형 카보네이트계, 에테르계, 설폰계, 에스테르계, 니트릴계, 인산염계 용매 또는 이들의 혼합물 등을 사용할 수 있다. 예를들면 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 에틸렌글리콜 디메틸에테르(글라임, 1G), 디에틸렌글리콜 디메틸에테르(디글라임, 2G), 트리에틸렌글리콜 디메틸에테르(트리글라임, 3G), 테트라에틸렌글리콜 디에틸에테르(테트라글라임, 4G), 디메틸설폰, 디에틸설폰, 에틸메틸설폰, 디프로필설폰, 디부틸설폰, 디페닐설폰, 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란(THF), N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤(GBL), 플루오로에틸렌 카보네이트(FEC), 포름산 메틸, 포름산 에틸, 포름산 프로필, 아세트산 메틸, 아세트산 에틸, 아세트산 프로필, 아세트산 펜틸, 프로피온산 메틸, 프로피온산 에틸, 프로피온산 에틸 및 프로피온산 부틸 또는 이들의 혼합물 등을 사용할 수 있다.
본 발명의 이차 전지용 전해질은 전술한 조성 이외에 필요에 따라 여러가지 첨가제를 첨가할 수 있다. 구체적으로는, 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사메틸포스포아미드(hexamethyl phosphoramide), 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N, N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있다.
또한, 본 발명은 상기 전해질을 포함하는 이차 전지를 제공한다.
상기 이차 전지는 양극; 음극; 및 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함하며, 상기 전해질로서 본 발명에 따른 이차 전지용 전해질을 사용한다.
상기 양극과 음극은 당업계에 알려진 통상적인 방법을 사용하여 제조될 수 있으며, 양극 활물질 및 음극 활물질 각각을 바인더, 분산제 등과 혼합하여 전극 슬러리를 제조하고 제조된 전극 슬러리를 집전체 상에 도포, 압연 및 건조하여 제조할 수 있다. 이때 선택적으로 도전재 및/또는 바인더를 소량 첨가할 수 있다.
상기 양극은 양극 집전체와 상기 양극 집전체의 일면 또는 양면에 도포된 양극 활물질을 포함할 수 있다.
상기 양극 집전체는 양극 활물질의 지지를 위한 것으로, 우수한 도전성을 가지고 이차 전지의 전압영역에서 전기화학적으로 안정한 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 상기 양극 집전체는 구리, 알루미늄, 스테인리스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 금속일 수 있고, 상기 스테인리스스틸은 카본, 니켈, 티탄 또는 은으로 표면 처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금을 바람직하게 사용할 수 있고, 그 외에도 소성 탄소, 도전재로 표면 처리된 비전도성 고분자, 또는 전도성 고분자 등을 사용할 수도 있다.
상기 양극 집전체는 그것의 표면에 미세한 요철을 형성하여 음극 활물질과의 결합력을 강화시킬 수 있으며, 필름, 시트, 호일, 메쉬, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.
상기 양극 활물질은 양극 활물질과 선택적으로 도전재 및 바인더를 포함할 수 있다.
상기 양극 활물질은 다가 금속 양이온의 탈삽입, 또는 컨버젼(conversion) 반응을 일으키는 모든 재료를 사용 가능하다.
예를 들어, 상기 양극 활물질로는 망간 산화물(MnO2), 바나듐 산화물(V2O5) 또는 철 산화물 등의 산화물계 화합물, Mo6S8 또는 TiS2 등과 같은 설파이드계 화합물, FeSiPO4 등과 같은 다음이온(polyanion)계 화합물, MF2(상기 M은 Fe 또는 Cu임)와 같은 컨버젼 타입의 화합물을 사용할 수 있다.
상기 도전재는 양극 활물질과 전해질을 전기적으로 연결시켜 주어 집전체로부터 전자가 활물질까지 이동하는 경로의 역할을 하는 물질로서 다공성 및 도전성을 갖고 구성되는 전지에 있어서 화학변화를 야기하지 않는 것이라면 제한 없이 사용할 수 있다.
예를 들어 다공성을 갖는 탄소계 물질을 사용할 수 있으며, 이와 같은 탄소계 물질로는 카본 블랙, 그라파이트, 그래핀, 활성탄, 탄소 섬유 등이 있고, 금속 메쉬 등의 금속성 섬유; 구리, 은, 니켈, 알루미늄 등의 금속성 분말; 또는 폴리페닐렌 유도체 등의 유기 도전성 재료가 있다. 상기 도전성 재료들은 단독 또는 혼합하여 사용될 수 있다. 현재 도전재로 시판되고 있는 상품으로는 아세틸렌 블랙계열(쉐브론 케미컬 컴퍼니(Chevron Chemical Company) 또는 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케트젠 블랙(Ketjen Black) EC 계열 (아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼P(엠엠엠(MMM)사 제품) 등이 있다.
상기 바인더는 양극을 형성하는 슬러리 조성물을 집전체에 유지시키기 위하여 포함하는 물질로서, 용매에 잘 용해되고 전술한 활물질 및 도전재와의 도전 네트워크를 안정적으로 형성할 수 있는 물질을 사용한다. 특별한 제한이 없는 한 당해 업계에서 공지된 모든 바인더를 사용할 수 있다. 예를 들어, 상기 바인더는 폴리비닐리덴 플루오라이드(pyvinylidene fluoride, PVdF) 또는 폴리테트라플루오로에틸렌(pytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무(styrene butadiene rubber, SBR), 아크릴로니트릴-부티디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 카르복시메틸셀룰로우즈(carboxyl methyl cellulose, CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로오스를 포함하는 셀룰로오스계 바인더; 폴리 알코올계 바인더; 폴리에틸렌, 폴리프로필렌를 포함하는 폴리 올레핀계 바인더; 폴리 이미드계 바인더; 폴리 에스테르계 바인더; 및 실란계 바인더;로 이루어진 군으로부터 선택된 1종, 2종 이상의 혼합물 또는 공중합체를 사용할 수 있다.
상기 음극은 상기 양극과 마찬가지로 음극 활물질, 도전재 및 바인더를 포함할 수 있으며, 이때 도전재 및 바인더는 전술한 바와 같다.
상기 음극 활물질로는 Mg 금속, Ca 금속 또는 Al 금속이나, 이들 Mg, Ca 또는 Al 이온의 탈삽입 또는 합금/비합금 반응을 일으키는 모든 재료를 사용 가능하다.
구체적으로, 상기 음극 활물질로는 Mg 금속 Ca 금속 또는 Al 금속을 사용할 수 있고, 상기 Mg, Ca 또는 Al 이온의 탈삽입이 가능한 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료, 리튬 티탄 산화물 및 Mg 금속 Ca 금속 또는 Al 금속과 합금/비합금 반응을 일으키는 마그네슘과 비스무트 또는 주석의 합금을 사용할 수 있다.
상기 리튬 티탄 산화물의 비제한적인 예로 Li0 . 8Ti2 . 2O4, Li2 . 67Ti1 . 33O4, LiTi2O4, Li1.33Ti1.67O4, Li1 . 14Ti1 . 71O4에서 선택된 1종 이상인 것이나 이에 한정되는 것은 아니다.
상기 음극 및 양극에는 전지 작용시 발생하는 전류를 집전하기 위한 도전성 리드 부재가 각기 부착될 수 있고, 상기 리드 부재는 각각 양극 및 음극에서 발생한 전류를 양극 단자 및 음극 단자로 유도할 수 있다.
상기 분리막은 본 발명의 이차 전지에 있어서 양 전극을 물리적으로 분리하기 위한 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해질의 함습 능력이 우수한 것이 바람직하다.
상기 분리막은 다공성 기재로 이루어질 수 있는데 상기 다공성 기재는 통상적으로 전기화학소자에 사용되는 다공성 기재라면 모두 사용이 가능하고, 예를 들면 폴리올레핀계 다공성 막 또는 부직포를 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다.
상기 폴리올레핀계 다공성 막의 예로는, 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 막(membrane)을 들 수 있다.
상기 부직포로는 폴리올레핀계 부직포 외에 예를 들어, 폴리에틸렌 테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌 테레프탈레이트(polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트 (polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌 옥사이드(polyphenyleneoxide), 폴리페닐렌 설파이드(polyphenylenesulfide) 및 폴리에틸렌 나프탈레이트(polyethylenenaphthalate) 등을 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 부직포를 들 수 있다. 상기 부직포의 구조는 장섬유로 구성된 스폰본드 부직포 또는 멜트 블로운 부직포일 수 있다.
상기 다공성 기재의 두께는 특별히 제한되지 않으나, 1 내지 100 ㎛, 바람직하게는 5 내지 50 ㎛일 수 있다.
상기 다공성 기재에 존재하는 기공의 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.001 내지 50 ㎛ 및 10 내지 95 %일 수 있다.
상기 전해질은 본 발명에 의한 것으로 앞서 언급한 바를 따른다.
상기 전해질은 액체 전해질, 겔 중합체 전해질 및 고체 중합체 전해질로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 바람직하게는 액체 상태의 전해질일 수 있다.
상기 전해액의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전기화학소자의 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전기화학소자 조립 전 또는 전기화학소자 조립 최종 단계 등에서 적용될 수 있다.
본 발명에 따른 이차 전지는 일반적인 공정인 권취(winding) 이외에도 분리막과 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.
상기 이차 전지의 형상은 특별히 제한되지 않으며 원통형, 적층형, 코인형 등 다양한 형상으로 할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예 및 비교예: 전해질의 제조
[실시예 1]
디프로필 설폰(DPSO2), 테트라하이드로퓨란(THF)를 1:1의 부피비로 혼합한 유기 용매에 전해염으로 MgCl2를 0.8 M 농도로 첨가하고, 첨가제로 트리스(트리메틸실릴)포스파이트 2 중량%를 첨가하여 이차 전지용 전해질을 제조하였다.
[실시예 2]
첨가제로 트리스(트리메틸실릴)포스파이트 대신 헥사메틸디실라잔을 동일 함량으로 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전해질을 제조하였다.
[실시예 3]
첨가제로 트리스(트리메틸실릴)포스파이트 대신 헵타메틸디실라잔을 동일 함량으로 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전해질을 제조하였다.
[실시예 4]
전해질 용매로 트리에틸렌글리콜 디에틸에테르(트리글라임, 3G)를, 전해염으로 Mg(TFSI)2를 0.5 M 농도로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전해질을 제조하였다.
[실시예 5]
전해질 용매로 트리에틸렌글리콜 디에틸에테르를, 전해염으로 Mg(TFSI)2를 0.5 M 농도로, 첨가제로 헥사메틸디실라잔을 동일 함량으로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전해질을 제조하였다.
[실시예 6]
전해질 용매로 트리에틸렌글리콜 디에틸에테르를, 전해염으로 Mg(TFSI)2를 0.5 M 농도로, 첨가제로 헵타메틸디실라잔을 동일 함량으로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전해질을 제조하였다.
[실시예 7]
전해질 용매로 트리에틸렌글리콜 디에틸에테르를, 전해염으로 Mg(TFSI)2를 0.5 M 농도로 사용하고, 첨가제를 0.5 중량%로 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전해질을 제조하였다.
[실시예 8]
전해질 용매로 에틸렌글리콜 디에틸에테르를, 전해염으로 Mg(TFSI)2를 0.5 M 농도로 사용하고, 첨가제를 6 중량%로 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전해질을 제조하였다.
[실시예 9]
전해질 용매로 트리에틸렌글리콜 디에틸에테르를, 전해염으로 Mg(TFSI)2를 0.5 M 농도로 사용하고, 첨가제를 10 중량%로 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전해질을 제조하였다.
[비교예 1]
첨가제를 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전해질을 제조하였다.
[비교예 2]
전해질 용매로 트리에틸렌글리콜 디에틸에테르를, 전해염으로 Mg(TFSI)2를 0.5 M 농도로 사용하고, 첨가제를 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전해질을 제조하였다.
실험예 1. 충방전 효율 평가
먼저, 이차 전지의 작업 전극으로서는 Pt 디스크 전극을, 기준전극 및 상대전극으로서는 마그네슘 금속을 사용하고, 하기 실시예 1 내지 9 및 비교예 1 내지 2에서 제조한 전해질을 사용하여, 마그네슘의 전기 화학적 증착/탈착(electrochemical deposition/dissolution) 반응을 평가하였다.
이때, 마그네슘의 전기 화학적 전착/탈착 특성은 수분과 산소 농도가 10 ppm 이하인 아르곤(Ar) 분위기의 글로브 박스(glove box) 하에서, 20mV/s의 주사 속도에서, 온도 25℃ 조건에서 순환 전압 측정법(Cyclic voltammetry, CV)으로 측정하였다. 이때 얻어진 결과는 표 1 및 도 1 내지 3에 나타내었다.
용매(부피비) 전해염(몰농도) 첨가제(중량%) 쿨롱효율(%)
실시예 1 DPSO2/THF(1/1) MgCl2(0.8M) 트리스(트리메틸실릴)포스파이트(2) 86
실시예 2 DPSO2/THF(1/1) MgCl2(0.8M) 헥사메틸디실라잔(2) 83
실시예 3 DPSO2/THF(1/1) MgCl2(0.8M) 헵타메틸디실라잔(2) 86
실시예 4 3G Mg(TFSI)2(0.5M) 트리스(트리메틸실릴)포스파이트(2) 42
실시예 5 3G Mg(TFSI)2(0.5M) 헥사메틸디실라잔(2) 41
실시예 6 3G Mg(TFSI)2(0.5M) 헵타메틸디실라잔(2) 66
실시예 7 3G Mg(TFSI)2(0.5M) 트리스(트리메틸실릴)포스파이트(0.5) 20
실시예 8 3G Mg(TFSI)2(0.5M) 트리스(트리메틸실릴)포스파이트(6) 27
실시예 9 3G Mg(TFSI)2(0.5M) 트리스(트리메틸실릴)포스파이트(10) -
비교예 1 DPSO2/THF(1/1) MgCl2(0.8M) - 58
비교예 2 3G Mg(TFSI)2(0.5M) - 20
상기 실시예 및 비교예에서 제조한 전해질에서의 마그네슘의 전기 화학적 전착/탈착 반응에 대한 CV 첫 사이클을 도 1 내지 3에 나타내었다. 상기 도 1과 표 1에 도시된 바와 같이, 상기 실시예 1, 실시예 2 및 실시예 3에서 제조한 전해질에서의 마그네슘의 전기 화학적 증착/탈착 반응의 쿨롱 효율이 83% 이상으로서 매우 우수함을 알 수 있다.
또한, 전해질을 구성하는 유기 용매와 전해염을 달리하여 제조한 상기 실시예 4, 실시예 5, 실시예 6 및 비교예 2의 전해질에서의 마그네슘의 전기 화학적 증착/탈착 반응의 쿨롱 효율이 41~66 % 이상으로서 비교예 2에 비해 2배 이상 우수함을 알 수 있다.
또한, 상기 도 3과 표 1에 도시된 바와 같이, 첨가제 함량 범위 1~5 중량% 미만 혹은 초과 사용한 실시예 7 내지 9의 경우 실시예 4와 비교시 마그네슘의 전기 화학적 증착/탈착 특성이 상대적으로 차이가 나지않거나 열악함을 알 수 있다. 이를 통해 첨가제의 함량 범위가 적정 중량% 안에서 사용되어야만 우수한 특성을 보임을 확인할 수 있다.
이처럼 첨가제가 들어간 본 발명에 따른 실시예 1 내지 6의 전해질은 우수한 마그네슘 이온의 증착/탈착 쿨롱 효율 증가를 보인다.
실험예 2. 마그네슘 전지 전기화학 저항 분광측정(EIS) 평가
본 발명에서 도출된 마그네슘 이차 전지용 전해질의 마그네슘 표면 저항 감소 특성을 평가하기 위해 다음과 같은 마그네슘/마그네슘 시메트릭(symmetric) 전극 이차 전지를 제작하였다.
마그네슘 양극과 마그네슘 음극을 대면하도록 위치시키고 그 사이에 폴리에틸렌 분리막을 개재한 후, 상기 실시예 1 및 비교예 1에서 제조된 전해질을 각각 주입하여 2개의 이차전지를 제조하였다.
제작한 전지의 전기화학 저항 분광측정(EIS)을 위해 100 kHz 에서 100 mHz 영역의 EIS 측정 후, equivalent circuit 나이퀴스트 그래프를 도 3에 나타내었다.
상기 도 3의 결과를 통해 실시예 1의 전해질이 비교예 1의 전해질보다 마그네슘 표면 저항이 훨씬 낮은 것을 확인할 수 있다.
본 발명에 따른 이차 전지용 전해질은 특정 화학 결합을 포함하는 첨가제를 포함함으로써 다가 금속 표면에서의 피막 형성을 억제하여 다가 금속 이차 전지의 고용량화, 고안정화 및 장수명화를 가능하게 한다.

Claims (7)

  1. 전해염, 유기 용매 및 첨가제를 포함하고,
    상기 첨가제는 N-Si계 결합을 갖는 화합물 및 O-Si계 결합을 갖는 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물을 포함하는, 이차 전지용 전해질.
  2. 제1항에 있어서,
    상기 N-Si계 결합을 갖는 화합물은 헥사메틸디실라잔, 헵타메틸디실라잔, 2-알릴-1,1,1,3,3,3-헥사메틸디실라잔, N,N-디에틸아미노 트리메틸실란, N,N-디메틸아미노 트리메틸실란, 트리스(트리메틸실릴)아민, 트리메틸(알릴아미노)실란 및 N,N,O-트리스(트리메틸실릴)하이드록시아민으로 이루어진 군에서 선택되는 1종 이상을 포함하는, 이차 전지용 전해질.
  3. 제1항에 있어서,
    상기 O-Si계 결합을 갖는 화합물은 헥사메틸디실록산, 옥타메틸트리실록산, 트리스(트리메틸실릴)포스페이트, 트리스(트리메틸실릴)포스파이트 및 트리스(트리메틸실릴)보레이트로 이루어진 군에서 선택되는 1종 이상을 포함하는, 이차 전지용 전해질.
  4. 제1항에 있어서,
    상기 첨가제는 이차 전지용 전해질 전체 100 중량%를 기준으로 1 내지 5 중량%로 포함되는, 이차 전지용 전해질.
  5. 제1항에 있어서,
    상기 전해염은 다가 금속 양이온을 포함하는, 이차 전지용 전해질.
  6. 제5항에 있어서,
    상기 다가 금속은 마그네슘, 칼슘, 알루미늄 및 아연으로 이루어진 군에서 선택되는 1종 이상을 포함하는, 이차 전지용 전해질.
  7. 제1항 내지 제6항 중 어느 한 항의 전해질을 포함하는, 이차 전지.
PCT/KR2018/008633 2017-08-16 2018-07-30 이차 전지용 전해질 및 이를 포함하는 이차 전지 WO2019035575A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020500645A JP7062155B2 (ja) 2017-08-16 2018-07-30 二次電池用電解質及びこれを含む二次電池
US16/629,239 US11699813B2 (en) 2017-08-16 2018-07-30 Electrolyte for secondary battery and secondary battery comprising same
EP18845985.3A EP3641044B1 (en) 2017-08-16 2018-07-30 Electrolyte for secondary battery and secondary battery comprising same
CN201880047984.5A CN110945704B (zh) 2017-08-16 2018-07-30 二次电池用电解质和包含所述电解质的二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170103526A KR102183661B1 (ko) 2017-08-16 2017-08-16 이차 전지용 전해질 및 이를 포함하는 이차 전지
KR10-2017-0103526 2017-08-16

Publications (1)

Publication Number Publication Date
WO2019035575A1 true WO2019035575A1 (ko) 2019-02-21

Family

ID=65362760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008633 WO2019035575A1 (ko) 2017-08-16 2018-07-30 이차 전지용 전해질 및 이를 포함하는 이차 전지

Country Status (6)

Country Link
US (1) US11699813B2 (ko)
EP (1) EP3641044B1 (ko)
JP (1) JP7062155B2 (ko)
KR (1) KR102183661B1 (ko)
CN (1) CN110945704B (ko)
WO (1) WO2019035575A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114207901A (zh) * 2019-08-08 2022-03-18 三菱化学株式会社 非水电解液及非水电解质电池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102392375B1 (ko) * 2019-04-26 2022-04-29 삼성에스디아이 주식회사 리튬 이차전지용 전해질 첨가제, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지
CN111628219A (zh) * 2020-06-05 2020-09-04 宁德新能源科技有限公司 电解液和包含电解液的电化学装置及电子装置
CN113258138B (zh) * 2021-05-18 2022-10-21 重庆大学 一种全无机盐型可充镁电池电解液及其制备方法
CN116344943B (zh) * 2023-05-30 2023-10-13 河南新太行电源股份有限公司 一种磷酸锰铁锂电池电解液

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065381B1 (ko) * 2009-01-22 2011-09-16 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
JP2012089469A (ja) * 2010-09-22 2012-05-10 Fujifilm Corp 非水二次電池用電解液及びリチウム二次電池
KR101265334B1 (ko) * 2005-08-23 2013-05-20 신에쓰 가가꾸 고교 가부시끼가이샤 비수전해액, 이차 전지 및 전기 화학 캐패시터
KR101444992B1 (ko) * 2012-02-28 2014-09-26 주식회사 엘지화학 비수계 이차전지용 전해질 및 이를 포함하는 이차전지
KR20150087457A (ko) * 2014-01-20 2015-07-30 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR20160070025A (ko) 2014-12-09 2016-06-17 주식회사 엘지화학 전해질 및 이를 포함하는 이차 전지
KR20170103526A (ko) 2016-03-04 2017-09-13 주식회사 네모레이드 콘텐츠가 표시된 표시영역 변경시에 정보영역을 디스플레이하는 방법 및 장치

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957888B2 (ja) 2005-08-23 2012-06-20 信越化学工業株式会社 非水電解液、二次電池及び電気化学キャパシタ
JP5003095B2 (ja) 2005-10-20 2012-08-15 三菱化学株式会社 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
KR100804696B1 (ko) 2006-11-20 2008-02-18 삼성에스디아이 주식회사 리튬 이차 전지용 전해질, 및 이를 포함하는 리튬 이차전지
JP4379743B2 (ja) 2006-12-08 2009-12-09 ソニー株式会社 電解液および二次電池
KR20080076813A (ko) 2007-02-16 2008-08-20 소니 가부시끼가이샤 부극 및 그 제조 방법과 전지
JP2009176719A (ja) * 2007-12-26 2009-08-06 Sony Corp 電解液、二次電池およびスルホン化合物
US20110076572A1 (en) 2009-09-25 2011-03-31 Khalil Amine Non-aqueous electrolytes for electrochemical cells
KR20140028592A (ko) 2012-08-29 2014-03-10 삼성에스디아이 주식회사 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
JPWO2014168218A1 (ja) * 2013-04-11 2017-02-16 国立大学法人京都大学 多価金属二次電池
KR101749186B1 (ko) 2013-09-11 2017-07-03 삼성에스디아이 주식회사 리튬 전지용 전해질, 이를 포함하는 리튬 전지, 및 리튬 전지용 전해질의 제조방법
JP2016189340A (ja) * 2013-09-25 2016-11-04 国立大学法人 東京大学 非水電解質二次電池
WO2015098471A1 (ja) 2013-12-25 2015-07-02 旭化成株式会社 シリル基含有化合物を含む電解液添加用組成物、該組成物を含む非水蓄電デバイス用電解液、及び該電解液を含むリチウムイオン二次電池
US9601801B2 (en) * 2014-07-18 2017-03-21 Uchicago Argonne, Llc Electrolytes comprising metal amide and metal chlorides for multivalent battery
KR101623867B1 (ko) * 2014-12-12 2016-05-25 주식회사 포스코 나트륨 이차 전지용 전해질, 이의 제조 방법, 및 이를 포함하는 나트륨 이차 전지
CN106159230B (zh) * 2016-08-12 2019-10-11 深圳博磊达新能源科技有限公司 一种有机硫复合正极材料、铝离子电池用正极极片及铝离子电池
US11010781B2 (en) * 2018-11-20 2021-05-18 Capital One Services, Llc Automatic rewards and benefits optimization

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101265334B1 (ko) * 2005-08-23 2013-05-20 신에쓰 가가꾸 고교 가부시끼가이샤 비수전해액, 이차 전지 및 전기 화학 캐패시터
KR101065381B1 (ko) * 2009-01-22 2011-09-16 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
JP2012089469A (ja) * 2010-09-22 2012-05-10 Fujifilm Corp 非水二次電池用電解液及びリチウム二次電池
KR101444992B1 (ko) * 2012-02-28 2014-09-26 주식회사 엘지화학 비수계 이차전지용 전해질 및 이를 포함하는 이차전지
KR20150087457A (ko) * 2014-01-20 2015-07-30 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR20160070025A (ko) 2014-12-09 2016-06-17 주식회사 엘지화학 전해질 및 이를 포함하는 이차 전지
KR20170103526A (ko) 2016-03-04 2017-09-13 주식회사 네모레이드 콘텐츠가 표시된 표시영역 변경시에 정보영역을 디스플레이하는 방법 및 장치

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. KITADA ET AL.: "Electrochemically active species in aluminum electrodeposition baths of AlCl3/glyme solutions", ELECTROCHIMICA ACTA, vol. 211, 2016, pages 561 - 567
See also references of EP3641044A4
SE-YOUNG HA ET AL.: "Magnesium(II) Bis(trifluoromethane sulfonyl) Imide-Based Electrolytes with Wide Electrochemical Windows for Rechargeable Magnesium Batteries", ACS APPL. MATER. INTERFACES, vol. 6, no. 6, 2014, pages 4063 - 4073, XP055167086, DOI: 10.1021/am405619v
SUNG-JIN KANG ET AL.: "Non-Grignard and Lewis Acid-Free Sulfone Electrolytes for Rechargeable Magnesium Batteries", CHEM. MATER., vol. 29, no. 7, 2017, pages 3174 - 3180, XP055570569, DOI: 10.1021/acs.chemmater.7b00248
T. FUKUTSUKA ET AL.: "New Magnesium-ion Conductive Electrolyte Solution Based on Triglyme for Reversible Magnesium Metal Deposition and Dissolution at Ambient Temperature", CHEM. LETT., vol. 43, no. 11, 2014, pages 1788 - 1790

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114207901A (zh) * 2019-08-08 2022-03-18 三菱化学株式会社 非水电解液及非水电解质电池
CN114207901B (zh) * 2019-08-08 2024-04-09 三菱化学株式会社 非水电解液及非水电解质电池

Also Published As

Publication number Publication date
EP3641044A4 (en) 2020-07-29
EP3641044B1 (en) 2023-06-28
US20200203766A1 (en) 2020-06-25
KR20190018866A (ko) 2019-02-26
CN110945704A (zh) 2020-03-31
US11699813B2 (en) 2023-07-11
JP2020526885A (ja) 2020-08-31
JP7062155B2 (ja) 2022-05-06
CN110945704B (zh) 2022-06-14
EP3641044A1 (en) 2020-04-22
KR102183661B1 (ko) 2020-11-26

Similar Documents

Publication Publication Date Title
WO2019035575A1 (ko) 이차 전지용 전해질 및 이를 포함하는 이차 전지
WO2017213325A1 (ko) 카본 나이트라이드와 그래핀 옥사이드의 자기조립 복합체 및 그 제조방법, 이를 적용한 양극 및 이를 포함하는 리튬-황 전지
WO2019088672A1 (ko) 전기화학소자용 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이를 포함하는 전기화학소자
WO2018012694A1 (ko) 리튬 금속이 양극에 형성된 리튬 이차전지와 이의 제조방법
WO2016159702A1 (ko) 비수 전해액 및 이를 구비한 리튬 이차전지
WO2019112167A1 (ko) 리튬금속전지용 음극 및 이를 포함한 리튬금속전지
WO2015065102A1 (ko) 리튬 이차전지
WO2015060697A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
WO2017010820A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 전해액 및 이차전지
WO2018097523A1 (ko) 이차전지용 전해액 및 이를 포함하는 이차전지
WO2017099420A1 (ko) 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
WO2020153822A1 (ko) 리튬 이차 전지
WO2019216713A1 (ko) 안전성이 향상된 리튬 금속 이차전지 및 그를 포함하는 전지모듈
WO2018016737A1 (ko) 리튬 코발트 산화물을 합성하기 위한 양극 활물질을 포함하는 리튬 이차전지, 이의 제조방법
WO2019103434A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차 전지
WO2019156434A1 (ko) 전해액 조성물 및 이를 이용한 이차전지
WO2021235760A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2013137596A1 (ko) 리튬 이차전지용 비수 전해액 및 그를 포함하는 리튬 이차전지
WO2019221410A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2020071814A1 (ko) 실리콘계 화합물을 포함하는 다층 구조 음극 및 이를 포함하는 리튬 이차전지
WO2013180522A1 (ko) 리튬 이차전지
WO2020105981A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2018004110A1 (ko) 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
WO2021210814A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500645

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018845985

Country of ref document: EP

Effective date: 20200115

NENP Non-entry into the national phase

Ref country code: DE