WO2018221670A1 - 電解質組成物、二次電池、及び電解質シートの製造方法 - Google Patents

電解質組成物、二次電池、及び電解質シートの製造方法 Download PDF

Info

Publication number
WO2018221670A1
WO2018221670A1 PCT/JP2018/021011 JP2018021011W WO2018221670A1 WO 2018221670 A1 WO2018221670 A1 WO 2018221670A1 JP 2018021011 W JP2018021011 W JP 2018021011W WO 2018221670 A1 WO2018221670 A1 WO 2018221670A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
mass
structural unit
electrolyte composition
content
Prior art date
Application number
PCT/JP2018/021011
Other languages
English (en)
French (fr)
Inventor
西村 勝憲
信之 小川
秀之 小川
由磨 五行
紘揮 三國
西村 拓也
謙次 高岡
みゆき 室町
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=64456069&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018221670(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from PCT/JP2017/020487 external-priority patent/WO2018220800A1/ja
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to EP22180702.7A priority Critical patent/EP4102610A1/en
Priority to CN201880035462.3A priority patent/CN110710044B/zh
Priority to US16/617,048 priority patent/US20210075054A1/en
Priority to JP2019510989A priority patent/JP6562184B2/ja
Priority to EP18809223.3A priority patent/EP3637522B1/en
Priority to KR1020217033514A priority patent/KR102428844B1/ko
Priority to KR1020197037577A priority patent/KR102316808B1/ko
Publication of WO2018221670A1 publication Critical patent/WO2018221670A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte composition, a secondary battery, and a method for producing an electrolyte sheet.
  • lithium secondary batteries have been attracting attention as power sources for electric vehicle batteries, power storage batteries, and the like because of their high energy density.
  • lithium secondary batteries as batteries for electric vehicles include zero-emission electric vehicles that are not equipped with engines, hybrid electric vehicles that are equipped with both engines and secondary batteries, and plug-in hybrids that are charged directly from the power system. It is used in electric vehicles such as electric vehicles.
  • lithium secondary batteries as power storage batteries are used in stationary power storage systems that supply power stored in advance in an emergency when the power system is shut off.
  • lithium secondary battery having a higher energy density is demanded and developed.
  • lithium secondary batteries for electric vehicles require high safety in addition to high input / output characteristics and high energy density, more advanced technology for ensuring safety is required.
  • the gel electrolyte has an ionic conductivity equivalent to that of the electrolyte solution used in the conventional lithium secondary battery, so that it is released without deteriorating the battery performance by changing the electrolyte solution to the gel electrolyte.
  • Patent Document 1 discloses a gel electrolyte layer containing a plasticizer containing a lithium salt, a matrix polymer in which the plasticizer is dispersed, and a fibrous insoluble material.
  • the fibrous insoluble matter contained in the gel electrolyte in an amount of 0.1 wt% to 50 wt% has a ratio of fiber length to fiber diameter of 10 to 3000, fiber length of 10 ⁇ m to 1 cm, and fiber diameter.
  • Patent Document 2 discloses a gel electrolyte and a gel electrolyte battery.
  • the gel electrolyte layer is formed by swelling a matrix polymer with an electrolytic solution and contains a large amount of a low viscosity solvent having a low boiling point.
  • a gel electrolyte containing a large amount of a low-boiling low-viscosity solvent By using a gel electrolyte containing a large amount of a low-boiling low-viscosity solvent, a gel electrolyte battery excellent in temperature characteristics, current characteristics, capacity, and charge / discharge characteristics at low temperatures is provided.
  • an object of the present invention is to provide an electrolyte composition having a high conductivity and capable of obtaining an electrolyte sheet excellent in smoothness.
  • the content of the first structural unit relative to the content of the second structural unit in one or two or more types of polymers exceeds 90% by mass based on the total amount of the polymer contained
  • the quantitative ratio is 50/50 or more, an electrolyte composition.
  • This electrolyte composition provides an electrolyte sheet with excellent conductivity and excellent smoothness. Moreover, this electrolyte composition is suitable for the preparation of a slurry when it is formed into a sheet, and when this electrolyte composition is formed into a sheet, the resulting electrolyte sheet is excellent in tensile strength. According to this electrolyte composition, it is possible to produce a lithium secondary battery having excellent discharge rate characteristics and high initial characteristics in which the initial discharge capacity (initial capacity) is as close as possible to the designed capacity.
  • the polymer may be a copolymer including both the first structural unit and the second structural unit.
  • the polymer may be at least two types of polymers, a first polymer including the first structural unit and a second polymer including the second structural unit.
  • the content of the polymer is preferably 3 to 50% by mass based on the total amount of the electrolyte composition.
  • the oxide particles are preferably at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTiO 3 . Particles.
  • the content of the oxide particles is preferably 5 to 40% by mass based on the total amount of the electrolyte composition.
  • the solvent may be glyme represented by the following formula (1).
  • R 1 and R 2 each independently represents an alkyl group having 4 or less carbon atoms or a fluoroalkyl group having 4 or less carbon atoms, and k represents an integer of 1 to 6.
  • the solvent may be an ionic liquid.
  • the ionic liquid contains at least one selected from the group consisting of a chain quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation as a cation component.
  • a component you may contain at least 1 sort (s) of the anion component represented by following formula (2).
  • M and n each independently represents an integer of 0 to 5. ]
  • the total content of the electrolyte salt and the solvent is preferably 25 to 70% by mass based on the total amount of the electrolyte composition.
  • the electrolyte composition may be formed in a sheet shape.
  • a second aspect of the present invention is a secondary battery including a positive electrode, a negative electrode, and an electrolyte layer made of an electrolyte composition provided between the positive electrode and the negative electrode.
  • a third aspect of the present invention is an electrolyte salt that is at least one selected from the group consisting of one or more polymers, oxide particles, lithium salt, sodium salt, calcium salt, and magnesium salt, A step of disposing a slurry containing a solvent and a dispersion medium on the substrate; and a step of volatilizing the dispersion medium to form an electrolyte layer on the substrate.
  • the structural units constituting the first structural unit selected from the group consisting of tetrafluoroethylene and vinylidene fluoride, and the group consisting of hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate
  • the content of the one or two polymers exceeds 90% by mass based on the total amount of the polymer contained in the solid content of the slurry.
  • the mass ratio of the content of the first structural unit to the content of the second structural unit is 50/50 or more, a manufacturing method of the electrolyte sheet.
  • an electrolyte composition having a high conductivity and capable of obtaining an electrolyte sheet excellent in smoothness.
  • FIG. 1 is a perspective view showing a secondary battery according to a first embodiment. It is a disassembled perspective view which shows one Embodiment of the electrode group in the secondary battery shown in FIG.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of an electrode group in the secondary battery shown in FIG. 1.
  • A) is a schematic cross section which shows the electrolyte sheet which concerns on one Embodiment
  • (b) is a schematic cross section which shows the electrolyte sheet which concerns on other embodiment.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value described in another stepwise description.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • FIG. 1 is a perspective view showing the secondary battery according to the first embodiment.
  • the secondary battery 1 includes an electrode group 2 composed of a positive electrode, a negative electrode, and an electrolyte layer, and a bag-shaped battery outer package 3 that houses the electrode group 2.
  • a positive electrode current collecting tab 4 and a negative electrode current collecting tab 5 are provided on the positive electrode and the negative electrode, respectively.
  • the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 protrude from the inside of the battery outer package 3 to the outside so that the positive electrode and the negative electrode can be electrically connected to the outside of the secondary battery 1, respectively.
  • the battery outer package 3 may be formed of, for example, a laminate film.
  • the laminate film may be a laminate film in which a resin film such as a polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, and stainless steel, and a sealant layer such as polypropylene are laminated in this order.
  • PET polyethylene terephthalate
  • metal foil such as aluminum, copper, and stainless steel
  • sealant layer such as polypropylene
  • FIG. 2 is an exploded perspective view showing an embodiment of the electrode group 2 in the secondary battery 1 shown in FIG.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of the electrode group 2 in the secondary battery 1 shown in FIG.
  • the electrode group 2 ⁇ / b> A includes a positive electrode 6, an electrolyte layer 7, and a negative electrode 8 in this order.
  • the positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9.
  • the positive electrode current collector 9 is provided with a positive electrode current collector tab 4.
  • the negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11.
  • the negative electrode current collector 11 is provided with a negative electrode current collector tab 5.
  • the positive electrode current collector 9 may be formed of aluminum, stainless steel, titanium, or the like. Specifically, the positive electrode current collector 9 may be, for example, an aluminum perforated foil having a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like. In addition to the above, the positive electrode current collector 9 may be formed of any material as long as it does not cause changes such as dissolution and oxidation during use of the battery, and its shape, manufacturing method, etc. Not limited.
  • the thickness of the positive electrode current collector 9 may be 10 to 100 ⁇ m, and is preferably 10 to 50 ⁇ m from the viewpoint of reducing the entire volume of the positive electrode, and the positive electrode is wound with a small curvature when forming a battery. From the viewpoint, it is more preferably 10 to 20 ⁇ m.
  • the positive electrode mixture layer 10 contains a positive electrode active material, a conductive agent, and a binder.
  • the positive electrode active material may be primary particles that are not granulated, or may be secondary particles that are granulated.
  • the particle diameter of the positive electrode active material is adjusted to be equal to or less than the thickness of the positive electrode mixture layer 10.
  • the coarse particles are removed in advance by sieving classification, wind classification, etc.
  • a positive electrode active material having a diameter is selected.
  • the average particle diameter of the positive electrode active material is preferably 0.1 ⁇ m or more, more preferably from the viewpoint of suppressing the deterioration of the filling property of the positive electrode active material accompanying the decrease in particle diameter and increasing the electrolyte salt retention ability. Is 1 ⁇ m or more, more preferably 2 ⁇ m or more, and preferably 30 ⁇ m or less, 25 ⁇ m or less, 20 ⁇ m or less, 10 ⁇ m or less, or 8 ⁇ m or less.
  • the average particle diameter of the positive electrode active material is the particle diameter (D 50 ) when the ratio (volume fraction) to the volume of the entire positive electrode active material is 50%.
  • the average particle diameter (D 50 ) of the positive electrode active material is measured by suspending the positive electrode active material in water by a laser scattering method using a laser scattering particle size measuring device (for example, Microtrack). Can be obtained.
  • the content of the positive electrode active material may be 70% by mass or more, 80% by mass or more, or 85% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the positive electrode active material may be 99% by mass or less, 95% by mass or less, 92% by mass or less, or 90% by mass or less based on the total amount of the positive electrode mixture layer.
  • the conductive agent may be a carbon material such as carbon black, acetylene black, graphite, carbon fiber, or carbon nanotube. These electrically conductive agents are used individually by 1 type or in mixture of 2 or more types.
  • the content of the conductive agent may be 0.1% by mass or more, 1% by mass or more, or 3% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the conductive agent is preferably 15% by mass or less, more preferably, based on the total amount of the positive electrode mixture layer, from the viewpoint of suppressing the increase in the volume of the positive electrode 6 and the accompanying decrease in the energy density of the secondary battery 1. It is 10 mass% or less, More preferably, it is 8 mass% or less.
  • the binder is not limited as long as it does not decompose on the surface of the positive electrode 6, but is a polymer, for example.
  • the binder is at least one selected from the group consisting of celluloses such as carboxymethyl cellulose, cellulose acetate, and ethyl cellulose, ethylene tetrafluoride, vinylidene fluoride, hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate. It may be a polymer containing monomer units, rubber such as styrene-butadiene rubber, ethylene-propylene rubber, isoprene rubber, acrylic rubber, or fluororubber.
  • the binder may be polyvinylidene fluoride, polyacrylic acid, polyimide, polyamide, or the like.
  • the binder is preferably a copolymer containing ethylene tetrafluoride and vinylidene fluoride as structural units, or a copolymer containing vinylidene fluoride and hexafluoropropylene as structural units.
  • the binder content may be 0.5% by mass or more, 1% by mass or more, or 3% by mass or more based on the total amount of the positive electrode mixture layer.
  • the binder content may be 20% by mass or less, 15% by mass or less, 10% by mass or less, or 7% by mass or less based on the total amount of the positive electrode mixture layer.
  • the positive electrode mixture layer 10 may further contain an ionic liquid described later.
  • the content of the ionic liquid is preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, and preferably 30% by mass based on the total amount of the positive electrode mixture layer. % Or less, more preferably 25% by mass or less, and still more preferably 20% by mass or less.
  • the thickness of the positive electrode mixture layer 10 is a thickness that is equal to or greater than the average particle diameter of the positive electrode active material, and specifically, is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more. More preferably, it is 15 ⁇ m or more, and particularly preferably 20 ⁇ m or more.
  • the thickness of the positive electrode mixture layer 10 is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, still more preferably 70 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the thickness of the positive electrode mixture layer 10 By setting the thickness of the positive electrode mixture layer 10 to 100 ⁇ m or less, the charge / discharge bias due to the variation in the charge level of the positive electrode active material in the vicinity of the surface of the positive electrode mixture layer 10 and in the vicinity of the surface of the positive electrode current collector 9 is reduced. Can be suppressed.
  • the mixture density of the positive electrode mixture layer 10 is preferably 2 g / cm 3 or more from the viewpoint of bringing the conductive agent and the positive electrode active material into close contact with each other and reducing the electronic resistance of the positive electrode mixture layer 10.
  • the negative electrode current collector 11 may be formed of aluminum, copper, stainless steel, titanium, nickel, an alloy thereof, or the like. Specifically, the negative electrode current collector 11 may be a rolled copper foil, for example, a copper perforated foil having holes having a hole diameter of 0.1 to 10 mm, an expanded metal, a metal foam plate, or the like. The negative electrode current collector 11 may be formed of any material other than the above, and its shape, manufacturing method, and the like are not limited.
  • the thickness of the negative electrode current collector 11 may be 10 to 100 ⁇ m, and is preferably 10 to 50 ⁇ m from the viewpoint of reducing the entire volume of the negative electrode, and the negative electrode is wound with a small curvature when forming a battery. From the viewpoint, it is more preferably 10 to 20 ⁇ m.
  • the negative electrode mixture layer 12 contains a negative electrode active material and a binder in one embodiment.
  • the negative electrode active material those commonly used in the field of energy devices can be used.
  • the negative electrode active material include metal lithium, a lithium alloy or other metal compound, a carbon material, a metal complex, and an organic polymer compound.
  • the negative electrode active material may be used alone or in combination of two or more.
  • the negative electrode active material is preferably a carbon material.
  • Carbon materials include natural graphite (such as flake graphite), graphite such as artificial graphite, amorphous carbon, carbon fiber, and carbon such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. Black etc. are mentioned.
  • the negative electrode active material may be silicon, tin, or a compound containing these elements (oxide, nitride, alloy with other metals). Good.
  • the thickness of the negative electrode mixture layer 12 can be reduced, and the electrode area that can be accommodated in the secondary battery 1 can be increased.
  • the resistance of the secondary battery 1 can be reduced to enable high output, and at the same time, the capacity of the secondary battery 1 can be increased as compared with the case where a graphite negative electrode is used.
  • the average particle diameter (D 50 ) of the negative electrode active material is preferably 1 ⁇ m from the viewpoint of obtaining a well-balanced negative electrode 8 that suppresses an increase in irreversible capacity associated with a decrease in particle diameter and has improved electrolyte salt retention ability. It is above, More preferably, it is 5 micrometers or more, More preferably, it is 10 micrometers or more, Preferably it is 50 micrometers or less, More preferably, it is 40 micrometers or less, More preferably, it is 30 micrometers or less.
  • the average particle size of the negative electrode active material (D 50) is measured in the same manner as the average particle size of the positive electrode active material (D 50).
  • the binder and its content may be the same as the binder and its content in the positive electrode mixture layer 10 described above.
  • the negative electrode mixture layer 12 may further contain a conductive agent from the viewpoint of further reducing the resistance of the negative electrode 8.
  • the negative electrode mixture layer 12 may further contain an ionic liquid.
  • the kind and content of the conductive agent and the ionic liquid may be the same as the kind and content of the conductive agent and the ionic liquid in the positive electrode mixture layer 10 described above.
  • the thickness of the negative electrode mixture layer 12 is not less than the average particle diameter of the negative electrode active material, specifically preferably not less than 10 ⁇ m, more preferably not less than 15 ⁇ m, More preferably, it is 20 ⁇ m or more.
  • the thickness of the negative electrode mixture layer 12 is preferably 100 ⁇ m or less, 80 ⁇ m or less, 70 ⁇ m or less, 50 ⁇ m or less, 40 ⁇ m or less, or 30 ⁇ m or less.
  • the mixture density of the negative electrode mixture layer 12 is preferably 1 g / cm 3 or more from the viewpoint of bringing the conductive agent and the negative electrode active material into close contact with each other and reducing the electronic resistance of the negative electrode mixture layer 12.
  • the electrolyte layer 7 is made of an electrolyte composition.
  • the electrolyte composition contains one or more polymers, oxide particles, at least one electrolyte salt selected from the group consisting of lithium salts, sodium salts, calcium salts, and magnesium salts, and a solvent. To do.
  • the electrolyte salt and the solvent may be collectively referred to as “electrolyte”, and the components of the electrolyte composition excluding the electrolyte may be collectively referred to as “electrolyte support material”.
  • a first structural unit (monomer unit) selected from the group consisting of tetrafluoroethylene and vinylidene fluoride, and hexafluoropropylene
  • a second structural unit (monomer unit) selected from the group consisting of acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate.
  • the first structural unit and the second structural unit may be included in one kind of polymer to constitute a copolymer. That is, in one embodiment, the electrolyte composition contains at least one copolymer including both the first structural unit and the second structural unit.
  • the copolymer may be a copolymer of vinylidene fluoride and hexafluoropropylene, a copolymer of vinylidene fluoride and maleic acid, a copolymer of vinylidene fluoride and methyl methacrylate, or the like.
  • the copolymer may consist of only the first structural unit and the second structural unit, or may further contain a structural unit other than the first structural unit and the second structural unit.
  • the electrolyte composition contains a copolymer, it may contain only a copolymer containing the first structural unit and the second structural unit, or may further contain other polymers.
  • the first structural unit and the second structural unit are included in different polymers, respectively, and are at least two of a first polymer having the first structural unit and a second polymer having the second structural unit.
  • a seed polymer may be constructed. That is, in one embodiment, the electrolyte composition contains at least two kinds of polymers of a first polymer including a first structural unit and a second polymer including a second structural unit. When the electrolyte composition contains the first polymer and the second polymer, the electrolyte composition may contain only the first polymer and the second polymer, or may further contain other polymers.
  • the first polymer may be a polymer composed only of the first structural unit, or may be a polymer further having other structural units in addition to the first structural unit.
  • the other structural unit may be an oxygen-containing hydrocarbon structure such as ethylene oxide (—CH 2 CH 2 O—), carboxylic acid ester (—CH 2 COO—) and the like.
  • the first polymer may be polytetrafluoroethylene, polyvinylidene fluoride, polyvinylidene fluoride, or a polymer in which the oxygen-containing hydrocarbon structure is introduced inside these molecular structures.
  • the second polymer may be a polymer composed only of the second structural unit, or may be a polymer further having other structural units in addition to the second structural unit.
  • the other structural unit may be an oxygen-containing hydrocarbon structure such as ethylene oxide (—CH 2 CH 2 O—), carboxylic acid ester (—CH 2 COO—) and the like.
  • Examples of the combination of the first polymer and the second polymer include polyvinylidene fluoride and polyacrylic acid, polytetrafluoroethylene and polymethyl methacrylate, polyvinylidene fluoride and polymethyl methacrylate, and the like.
  • one or more polymers are preferably used as structural units (monomer units).
  • One or both of acrylonitrile and vinyl chloride are not included. That is, the electrolyte composition may not contain a polymer containing one or both of acrylonitrile and vinyl chloride as a structural unit (monomer unit).
  • the electrolyte composition contains a copolymer including the first structural unit and the second structural unit, the copolymer may not include one or both of acrylonitrile and vinyl chloride as the structural unit (monomer unit).
  • the first polymer and the second polymer may not contain one or both of acrylonitrile and vinyl chloride as a structural unit (monomer unit).
  • Other polymers other than the first polymer and the second polymer may not contain one or both of acrylonitrile and vinyl chloride as structural units (monomer units).
  • the content of the first structural unit is preferably based on the total content of the first structural unit and the second structural unit from the viewpoint of further improving the strength when the electrolyte composition is formed into a sheet. , 50% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • the content of the first structural unit is based on the total content of the first structural unit and the second structural unit from the viewpoint of further improving the affinity with the solvent when the electrolyte composition contains the solvent. Preferably, it is 99 mass% or less, 98 mass% or less, 97 mass% or less, or 96 mass% or less.
  • the content of the first structural unit is preferably 5% by mass or more and 10% by mass based on the total amount of structural units constituting the polymer from the viewpoint of further improving the strength when the electrolyte composition is formed into a sheet. As mentioned above, they are 20 mass% or more, 50 mass% or more, 70 mass% or more, or 90 mass% or more.
  • the content of the first structural unit is preferably 98% by mass or less, based on the total amount of the structural units constituting the polymer, from the viewpoint of further improving the affinity with the solvent when the electrolyte composition contains a solvent. 95 mass% or less, or 90 mass% or less.
  • the content of the second structural unit is based on the total content of the first structural unit and the second structural unit from the viewpoint of further improving the affinity with the solvent when the electrolyte composition contains the solvent. Preferably, it is 1 mass% or more, 3 mass% or more, or 4 mass% or more.
  • the content of the second structural unit is preferably based on the total content of the first structural unit and the second structural unit from the viewpoint of further improving the strength when the electrolyte composition is formed into a sheet. 50 mass% or less, 40 mass% or less, 30 mass% or less, 20 mass% or less, 10 mass% or less, or 5 mass% or less.
  • the content of the second structural unit is preferably 1% by mass or more based on the total amount of structural units constituting the polymer from the viewpoint of further improving the affinity with the solvent when the electrolyte composition contains a solvent. 3% by mass or more, or 5% by mass or more.
  • the content of the second structural unit is preferably 50% by mass or less and 40% by mass based on the total amount of the structural unit constituting the polymer from the viewpoint of further improving the strength when the electrolyte composition is formed into a sheet. Hereinafter, it is 30 mass% or less, 20 mass% or less, or 10 mass% or less.
  • the mass ratio of the content of the first structural unit to the content of the second structural unit is 50/50 or more.
  • the mass ratio of the content of the first structural unit to the content of the second structural unit is preferably 60/40 or more, 70/30 or more, 80/20 or more, 85/15 or more, 90/10 or more, 93/7 or more, or 95/5 or more.
  • the mass ratio of the content of the first structural unit to the content of the second structural unit may be 99/1 or less, 97/3 or less, or 95/5 or less.
  • the content of one or more polymers exceeds 90% by mass based on the total amount of polymer contained in the electrolyte composition from the viewpoint of improving the electrical conductivity of the electrolyte composition.
  • the content of one or more polymers is preferably 92% by mass or more, more preferably 94% by mass or more, and still more preferably 96% by mass or more, based on the total amount of polymers contained in the electrolyte composition. It is.
  • the polymer contained in the electrolyte composition may consist of only one kind or two or more kinds of polymers.
  • the content of the polymer is preferably 3% by mass or more, more preferably 5% by mass or more, based on the total amount of the electrolyte composition, from the viewpoint of further improving the strength when the electrolyte composition is formed into a sheet. More preferably, it is 10% by mass or more, particularly preferably 20% by mass or more, and most preferably 25% by mass or more. From the viewpoint of further improving the electrical conductivity, the polymer content is preferably 60% by mass or less, more preferably 50% by mass, and still more preferably 40% by mass or less, based on the total amount of the electrolyte composition. Especially preferably, it is 30 mass% or less, Most preferably, it is 28 mass% or less.
  • the content of the polymer is preferably 3 to 60% by mass, 3 to 50% by mass, 3% by mass based on the total amount of the electrolyte composition from the viewpoint of achieving both strength and conductivity when the electrolyte composition is formed into a sheet.
  • the polymer according to the present embodiment has excellent affinity with the solvent contained in the electrolyte composition, and therefore retains the electrolyte in the solvent. Thereby, the liquid leakage of the solvent when a load is applied to the electrolyte composition is suppressed.
  • the oxide particles are, for example, inorganic oxide particles.
  • the inorganic oxide is an inorganic oxide containing, for example, Li, Mg, Al, Si, Ca, Ti, Zr, La, Na, K, Ba, Sr, V, Nb, B, Ge and the like as constituent elements. Good.
  • the oxide particles are preferably at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTiO 3 . Particles. Since the oxide particles have polarity, it is possible to promote dissociation of the electrolyte in the electrolyte layer 7 and improve battery characteristics.
  • the oxide particles may be rare earth metal oxides.
  • the oxide particles include scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, eurobium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, and oxide. It may be thulium, ytterbium oxide, lutetium oxide or the like.
  • the specific surface area of the oxide particles is 2 to 380 m 2 / g, and may be 5 to 100 m 2 / g, 10 to 80 m 2 / g, or 15 to 60 m 2 / g.
  • the specific surface area of the oxide particles may be 5 m 2 / g or more, 10 m 2 / g or more, or 15 m 2 / g or more, 100 m 2 / g or less, 80 m 2 / g or less, or 60m 2 / g may be less than or equal to.
  • the specific surface area of the oxide particles means the specific surface area of the whole oxide particles including primary particles and secondary particles, and is measured by the BET method.
  • the average primary particle size of the oxide particles is preferably 0.005 ⁇ m (5 nm) or more, more preferably 0.01 ⁇ m (10 nm) or more from the viewpoint of further improving the electrical conductivity. More preferably 0.015 ⁇ m (15 nm) or more. From the viewpoint of making the electrolyte layer 7 thin, the average primary particle size of the oxide particles is preferably 1 ⁇ m or less, more preferably 0.1 ⁇ m or less, and even more preferably 0.05 ⁇ m or less.
  • the average primary particle size of the oxide particles can be measured by a method similar to the average particle size (D 50 ) of the positive electrode active material in a state where the particles are sufficiently crushed or dispersed. When it is difficult to disintegrate or disperse the particles, the oxide particles may be observed with a scanning electron microscope, and the average primary particle size may be measured by image analysis.
  • the average primary particle diameter of the oxide particles is preferably 0.05 ⁇ m (50 nm) or more, more preferably 0.07 ⁇ m (70 nm) from the viewpoint of increasing the tensile strength when the electrolyte composition is formed into a sheet shape. ) Or more, more preferably 0.5 ⁇ m or more, particularly preferably 1 ⁇ m or more, preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, and further preferably 2 ⁇ m or less.
  • the average particle diameter (D 50 ) of the oxide particles is preferably 0.001 ⁇ m or more, more preferably 0.005 ⁇ m, from the viewpoint of increasing the cross-sectional area in which the cation component of the electrolyte diffuses and further improving the conductivity. Or more, more preferably 0.05 ⁇ m or more, particularly preferably 0.1 ⁇ m or more, and most preferably 0.5 ⁇ m or more.
  • the average particle diameter of the oxide particles is preferably 10 ⁇ m or less, more preferably 6 ⁇ m or less, still more preferably 3 ⁇ m or less, particularly preferably 2 ⁇ m or less, and most preferably 1 ⁇ m or less.
  • the electrolyte layer 7 can be suitably thinned. That is, in this case, the oxide particles hardly aggregate, and as a result, the oxide particles can be prevented from protruding from the electrolyte layer 7 and damaging the surfaces of the positive electrode 6 and the negative electrode 8. In addition, since it becomes easy to ensure the thickness of the electrolyte layer 7, it is possible to suppress a decrease in mechanical strength of the electrolyte layer 7.
  • the average particle size of the oxide particles suppresses lithium ion diffusion and further improves the conductivity, reduces the electrolyte composition from a thin layer, and suppresses the oxide particles from protruding from the electrolyte composition surface.
  • the average particle diameter of the oxide particles (D 50) is measured in the same manner as the average particle size of the positive electrode active material (D 50).
  • the shape of the oxide particles may be, for example, a block shape or a substantially spherical shape.
  • the aspect ratio of the oxide particles is preferably 10 or less, more preferably 5 or less, and even more preferably 2 or less, from the viewpoint of facilitating thinning of the electrolyte layer 7.
  • the aspect ratio is calculated from the scanning electron micrograph of the oxide particles.
  • the length of the particles in the long axis direction (maximum length of the particles) and the length of the particles in the short axis direction (minimum length of the particles) Defined as the ratio of The length of the particles is obtained by statistically calculating the above photograph using commercially available image processing software (for example, image analysis software manufactured by Asahi Kasei Engineering Co., Ltd., Image A (registered trademark)).
  • the oxide particles may be surface-treated with a silicon-containing compound. That is, the oxide particle may be one in which the surface of the oxide particle and the silicon atom of the silicon-containing compound are bonded via an oxygen atom.
  • the silicon-containing compound is preferably at least one selected from the group consisting of alkoxysilane, epoxy group-containing silane, amino group-containing silane, silazane, and siloxane.
  • Alkoxysilanes are methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldi It may be ethoxysilane, n-propyltriethoxysilane, or the like.
  • Epoxy group-containing silanes are 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxy. Silane, 3-glycidoxypropyltriethoxysilane and the like may be used.
  • Amino group-containing silanes are N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- Phenyl-3-aminopropyltrimethoxysilane or the like may be used.
  • Silazane may be hexamethyldisilazane or the like.
  • Siloxane may be dimethyl silicone oil or the like.
  • One or both of these terminals may have a reactive functional group (for example, a carboxyl group).
  • the surface-treated oxide particles those produced by a known method may be used, or commercially available products may be used as they are.
  • the content of the oxide particles is preferably 5% by mass or more, 10% by mass or more, 15% by mass or more, and 20% by mass or more based on the total amount of the electrolyte composition from the viewpoint of promoting dissociation of the electrolyte salt. .
  • the content of the oxide particles is preferably 50% by mass or less, more preferably 40% by mass or less, based on the total amount of the electrolyte composition, from the viewpoint of further improving the electrical conductivity.
  • the content of the oxide particles is preferably 5 to 50% by mass, 5 to 40% by mass, 10 to 10% based on the total amount of the electrolyte composition from the viewpoint of promoting dissociation of the electrolyte salt and further improving the electrical conductivity. 50 mass%, 10 to 40 mass%, 15 to 50 mass%, 15 to 40 mass%, 20 to 50 mass%, or 20 to 40 mass%.
  • the mass ratio of the polymer content to the oxide particle content may be, for example, 2/3 or more, 1/1 or more, or 3/2 or more. It may be 4/1 or less, 3/1 or less, or 2/1 or less.
  • the electrolyte salt is at least one selected from the group consisting of lithium salt, sodium salt, calcium salt and magnesium salt.
  • the electrolyte salt is a compound used to exchange cations between the positive electrode 6 and the negative electrode 8.
  • the above electrolyte salt is preferable in that it has a low degree of dissociation at a low temperature and easily diffuses in a solvent, and does not thermally decompose at a high temperature, so that the environmental temperature at which the secondary battery can be used is wide.
  • the electrolyte salt may be an electrolyte salt used in a fluorine ion battery.
  • the anion of the electrolyte salt includes halide ions (I ⁇ , Cl ⁇ , Br ⁇ etc.), SCN ⁇ , BF 4 ⁇ , BF 3 (CF 3 ) ⁇ , BF 3 (C 2 F 5 ) ⁇ , PF 6 ⁇ , ClO 4 ⁇ , SbF 6 ⁇ , N (SO 2 F) 2 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , N (SO 2 C 2 F 5 ) 2 ⁇ , B (C 6 H 5 ) 4 ⁇ , B (O 2 C 2 H 4 ) 2 ⁇ , C (SO 2 F) 3 ⁇ , C (SO 2 CF 3 ) 3 ⁇ , CF 3 COO ⁇ , CF 3 SO 2 O ⁇ , C 6 F 5 SO 2 O ⁇ , B (O 2 C 2 O 2 ) 2 — and the like.
  • halide ions I ⁇ , Cl ⁇ , Br ⁇
  • the anion is preferably PF 6 ⁇ , BF 4 ⁇ , N (SO 2 F) 2 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , B (O 2 C 2 O 2 ) 2 ⁇ , or ClO 4 ⁇ . is there.
  • [FSI] ⁇ N (SO 2 F) 2 ⁇ , bis (fluorosulfonyl) imide anion [TFSI] ⁇ : N (SO 2 CF 3 ) 2 ⁇ , bis (trifluoromethanesulfonyl) imide anion [BOB] ⁇ : B (O 2 C 2 O 2 ) 2 ⁇ , bisoxalate borate anion [f3C] ⁇ : C (SO 2 F) 3 ⁇ , tris (fluorosulfonyl) carbanion
  • Lithium salts include LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f 3 C], Li [BOB], LiClO 4 , LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiCF 3 SO 2 O, LiCF 3 COO, and LiRCOO (R is an alkyl group having 1 to 4 carbon atoms) , A phenyl group, or a naphthyl group).
  • Sodium salts include NaPF 6 , NaBF 4 , Na [FSI], Na [TFSI], Na [f 3 C], Na [BOB], NaClO 4 , NaBF 3 (CF 3 ), NaBF 3 (C 2 F 5 ), NaBF 3 (C 3 F 7 ), NaBF 3 (C 4 F 9 ), NaC (SO 2 CF 3 ) 3 , NaCF 3 SO 2 O, NaCF 3 COO, and NaRCOO (R is an alkyl group having 1 to 4 carbon atoms) , A phenyl group, or a naphthyl group).
  • the calcium salts are Ca (PF 6 ) 2 , Ca (BF 4 ) 2 , Ca [FSI] 2 , Ca [TFSI] 2 , Ca [f3C] 2 , Ca [BOB] 2 , Ca (ClO 4 ) 2 , Ca [BF 3 (CF 3 )] 2 , Ca [BF 3 (C 2 F 5 )] 2 , Ca [BF 3 (C 3 F 7 )] 2 , Ca [BF 3 (C 4 F 9 )] 2 , Ca [C (SO 2 CF 3 ) 3 ] 2 , Ca (CF 3 SO 2 O) 2 , Ca (CF 3 COO) 2 , and Ca (RCOO) 2 (R is an alkyl group having 1 to 4 carbon atoms, phenyl Or at least one selected from the group consisting of a naphthyl group).
  • Magnesium salts are Mg (PF 6 ) 2 , Mg (BF 4 ) 2 , Mg [FSI] 2 , Mg [TFSI] 2 , Mg [f 3 C] 2 , Mg [BOB] 2 , Mg (ClO 4 ) 2 , Mg [BF 3 (CF 3 )] 2 , Mg [BF 3 (C 2 F 5 )] 2 , Mg [BF 3 (C 3 F 7 )] 2 , Mg [BF 3 (C 4 F 9 )] 2 , Mg [C (SO 2 CF 3 ) 3 ] 2 , Mg (CF 3 SO 3 ) 2 , Mg (CF 3 COO) 2 , and Mg (RCOO) 2 (R is an alkyl group having 1 to 4 carbon atoms, a phenyl group Or a naphthyl group) may be at least one selected from the group consisting of:
  • the electrolyte salt is preferably LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f 3 C], Li [BOB], LiClO 4.
  • LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiCF 3 SO 2 O It is at least one selected from the group consisting of LiCF 3 COO and LiRCOO (where R is an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a naphthyl group), more preferably Li [TFSI], Li [FSI], LiPF 6, LiBF 4, Li [BOB], and at least one selected from the group consisting of LiClO 4, more preferably Li [TF I], and is one selected from the group consisting of Li [FSI].
  • the content of the electrolyte salt may be 10% by mass or more and 60% by mass or less based on the total amount of the electrolyte composition in order to suitably produce the electrolyte layer 7.
  • the content of the electrolyte salt is preferably 20% by mass or more from the viewpoint of further increasing the conductivity of the electrolyte layer, and more preferably from the viewpoint of allowing the lithium secondary battery to be charged / discharged at a high load factor. 30% by mass or more.
  • the solvent preferably has a low vapor pressure and is difficult to burn.
  • the solvent may be glyme represented by the following formula (1).
  • R 1 and R 2 each independently represents an alkyl group having 4 or less carbon atoms or a fluoroalkyl group having 4 or less carbon atoms, and k represents an integer of 1 to 6.
  • R 1 and R 2 are each independently preferably a methyl group or an ethyl group.
  • the electrolyte composition contains glyme as a solvent, part or all of glyme may form a complex with the electrolyte salt.
  • the solvent may be an ionic liquid.
  • the ionic liquid contains the following anion component and cation component. Note that the ionic liquid in the present embodiment is a liquid material at ⁇ 20 ° C. or higher.
  • the anion component of the ionic liquid is not particularly limited, but is an anion of a halogen such as Cl ⁇ , Br ⁇ and I ⁇ , an inorganic anion such as BF 4 ⁇ and N (SO 2 F) 2 — , B (C 6 H 5 ) 4 ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 ⁇ , N (C 4 F 9 SO 2 ) 2 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , N (SO 2 C 4 F 9 ) 2 ⁇ and the like It may be an organic anion.
  • a halogen such as Cl ⁇ , Br ⁇ and I ⁇
  • an inorganic anion such as BF 4 ⁇ and N (SO 2 F) 2 — , B (C 6 H 5 ) 4 ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 ⁇ , N (C 4 F 9 SO 2 ) 2 ⁇ , N (SO 2 CF 3 ) 2
  • the anionic component of the ionic liquid is preferably B (C 6 H 5 ) 4 ⁇ , CH 3 SO 3 ⁇ , N (SO 2 C 4 F 9 ) 2 ⁇ , CF 3 SO 2 O ⁇ , N (SO 2 F ) 2 ⁇ , N (SO 2 CF 3 ) 2 — and N (SO 2 C 2 F 5 ) 2 — containing at least one selected from the group consisting of relatively low viscosity and further improving ionic conductivity
  • N (C 4 F 9 SO 2 ) 2 ⁇ , CF 3 SO 3 ⁇ , N (SO 2 F) 2 ⁇ , N (SO 2 CF 3 ) 2 -, and N (SO 2 CF 2 CF 3 ) 2 - contains at least one selected from the group consisting of, more preferably N (SO 2 F) 2 - containing.
  • the anion component of the ionic liquid may contain at least one anion component represented by the following formula (2).
  • m and n each independently represents an integer of 0 to 5.
  • m and n may be the same as or different from each other, and are preferably the same as each other.
  • Examples of the anion component represented by the formula (2) include N (SO 2 C 4 F 9 ) 2 ⁇ , N (SO 2 F) 2 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , and N (SO 2 C 2 F 5 ) 2 — .
  • the cation component of the ionic liquid is not particularly limited, but is preferably at least one selected from the group consisting of a chain quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation.
  • the chain quaternary onium cation is, for example, a compound represented by the following formula (3).
  • R 3 to R 6 each independently represents a chain alkyl group having 1 to 20 carbon atoms, or a chain alkoxyalkyl group represented by R—O— (CH 2 ) n —.
  • R represents a methyl group or an ethyl group, and n represents an integer of 1 to 4
  • X represents a nitrogen atom or a phosphorus atom.
  • the number of carbon atoms of the alkyl group represented by R 3 to R 6 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the piperidinium cation is, for example, a nitrogen-containing six-membered cyclic compound represented by the following formula (4).
  • R 7 and R 8 are each independently an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is methyl And n represents an integer of 1 to 4.
  • the carbon number of the alkyl group represented by R 7 and R 8 is preferably 1-20, more preferably 1-10, and still more preferably 1-5.
  • the pyrrolidinium cation is, for example, a five-membered cyclic compound represented by the following formula (5).
  • R 9 and R 10 are each independently an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is methyl And n represents an integer of 1 to 4.
  • the number of carbon atoms of the alkyl group represented by R 9 and R 10 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • R 9 and R 10 are each independently an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is methyl And n represents an integer of 1 to 4.
  • the number of carbon atoms of the alkyl group represented by R 9 and R 10 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the pyridinium cation is, for example, a compound represented by the following formula (6).
  • R 11 to R 15 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is a methyl group) Or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom.
  • the number of carbon atoms of the alkyl group represented by R 11 to R 15 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the imidazolium cation is, for example, a compound represented by the following formula (7).
  • R 16 to R 20 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R represents a methyl group) Or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom.
  • the number of carbon atoms of the alkyl group represented by R 16 to R 20 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the ionic liquid may be N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium-bis (trifluoromethanesulfonyl) imide (DEME-TFSI), N, N-diethyl-N -Methyl-N- (2-methoxyethyl) ammonium-bis (fluorosulfonyl) imide (DEME-FSI), 1-ethyl-3-methylimidazolidium-bis (trifluoromethanesulfonyl) imide (EMI-TFSI), 1- Ethyl-3-methylimidazolidium-bis (fluorosulfonyl) imide (EMI-FSI), N-methyl-N-propylpyrrolidinium-bis (trifluoromethanesulfonyl) imide (Py13-TFSI), N-methyl-N- Propylpyrrolidinium-bis (fluorosulfonyl)
  • the electrolyte composition is used as a solvent for the purpose of further improving the electrical conductivity, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, ⁇ -butyrolactone, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 2 -Methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphate triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3-methyl-2- It may further contain a non-aqueous solvent such as oxazolidinone, tetrahydrofuran, 1,2-diethoxyethane, chloroethylene carbonate, chloropropylene carbonate and the like. From the viewpoint of improving safety, the electrolyte composition preferably contains at least one selected
  • the content of the solvent may be 10 to 80% by mass or 10 to 60% by mass or less based on the total amount of the electrolyte composition from the viewpoint of suitably producing the electrolyte layer.
  • the content of the solvent is preferably 80% by mass or less based on the total amount of the electrolyte layer from the viewpoint of suppressing the strength reduction of the electrolyte layer.
  • the content of the solvent is the total amount of the electrolyte composition from the viewpoint of increasing the conductivity of the electrolyte membrane by increasing the content of the electrolyte salt, thereby enabling charging and discharging of the lithium secondary battery at a high load factor. May be 40% by mass or less, or 30% by mass or less.
  • the total content of the electrolyte salt and the solvent is based on the total amount of the electrolyte composition from the viewpoint of further improving the conductivity and suppressing the capacity reduction of the secondary battery.
  • it is 10 mass% or more, More preferably, it is 25 mass% or more, More preferably, it is 40 mass% or more.
  • the total content of the electrolyte salt and the solvent is preferably 80% by mass or less, more preferably 70% by mass or less, from the viewpoint of suppressing a decrease in strength of the electrolyte composition.
  • the total content of the electrolyte salt and the solvent is based on the total amount of the electrolyte composition from the viewpoint of further improving the conductivity and suppressing the decrease in capacity of the secondary battery and the strength of the electrolyte composition.
  • it is 10 to 80% by mass, 10 to 70% by mass, 25 to 80% by mass, 25 to 70% by mass, 40 to 80% by mass, or 40 to 70% by mass.
  • the concentration of the electrolyte salt per unit volume of the solvent is preferably 0.5 mol / L or more, more preferably 0.7 mol / L or more, and still more preferably 0, from the viewpoint of further improving charge / discharge characteristics.
  • 0.8 mol / L or more preferably 2.0 mol / L or less, more preferably 1.8 mol / L or less, and still more preferably 1.5 mol / L or less.
  • the mass ratio of the electrolyte content to the electrolyte support material content is 1/4 or more, or 2 / from the viewpoint of suppressing leakage of the electrolyte composition. It may be 3 or more, and may be 3/1 or less, 3/2 or less, or 1/1 or less.
  • the thickness of the electrolyte layer 7 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of increasing the electrical conductivity and improving the strength. From the viewpoint of suppressing the resistance of the electrolyte layer 7, the thickness of the electrolyte layer 7 is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the manufacturing method of the secondary battery 1 mentioned above includes the first step of forming the positive electrode mixture layer 10 on the positive electrode current collector 9 to obtain the positive electrode 6, and the negative electrode mixture on the negative electrode current collector 11. A second step of forming the layer 12 to obtain the negative electrode 8 and a third step of providing the electrolyte layer 7 between the positive electrode 6 and the negative electrode 8 are provided.
  • the positive electrode 6 is obtained by, for example, dispersing a material used for the positive electrode mixture layer in a dispersion medium using a kneader, a disperser or the like to obtain a slurry-like positive electrode mixture, and then the positive electrode mixture. Is applied onto the positive electrode current collector 9 by a doctor blade method, a dipping method, a spray method or the like, and then the dispersion medium is volatilized. After volatilizing the dispersion medium, a compression molding step using a roll press may be provided as necessary.
  • the positive electrode mixture layer 10 may be formed as a positive electrode mixture layer having a multilayer structure by performing the above-described steps from application of the positive electrode mixture to volatilization of the dispersion medium a plurality of times.
  • the dispersion medium used in the first step may be water, 1-methyl-2-pyrrolidone (hereinafter also referred to as NMP), or the like.
  • the dispersion medium is a compound other than the above-mentioned solvent.
  • the positive electrode mixture layer 10 includes a positive electrode active material, a conductive agent, a binder, an electrolyte salt, and a solvent
  • the mixing ratio of the positive electrode active material, the conductive agent, the binder, and the solvent in which the electrolyte salt is dissolved is, for example, positive electrode active material
  • Conductive agent: Binder: Solvent in which electrolyte salt is dissolved 69 to 82: 0.1 to 10: 1 to 12:10 to 17 (mass ratio). However, it is not necessarily limited to this range.
  • the method of forming the negative electrode mixture layer 12 on the negative electrode current collector 11 may be the same method as in the first step described above.
  • the negative electrode mixture layer 12 includes a negative electrode active material, a conductive agent, a binder, an electrolyte salt, and a solvent
  • the electrolyte layer 7 is formed, for example, by producing an electrolyte sheet provided with an electrolyte composition on a base material.
  • FIG. 4A is a schematic cross-sectional view showing an electrolyte sheet according to an embodiment. As shown in FIG. 4A, the electrolyte sheet 13 ⁇ / b> A includes a base material 14 and an electrolyte layer 7 provided on the base material 14.
  • the electrolyte sheet 13A is produced, for example, by dispersing a material (solid content) used for the electrolyte layer 7 in a dispersion medium to obtain a slurry, and then applying the slurry onto the substrate 14 and then volatilizing the dispersion medium.
  • the dispersion medium is preferably water, NMP, toluene or the like.
  • the substrate 14 is not limited as long as it has heat resistance capable of withstanding heating when the dispersion medium is volatilized, and does not react with the electrolyte composition and does not swell with the electrolyte composition. Is formed.
  • the base material 14 may be a film made of a resin (general-purpose engineer plastic) such as polyethylene terephthalate, polytetrafluoroethylene, polyimide, polyethersulfone, or polyetherketone.
  • the substrate 14 only needs to have a heat-resistant temperature that can withstand the processing temperature for volatilizing the dispersion medium in the process of manufacturing the electrolyte layer.
  • the heat-resistant temperature is a lower temperature of the softening point (temperature at which plastic deformation starts) or the melting point of the base material 14.
  • the heat-resistant temperature of the base material 14 is preferably 50 ° C. or higher, more preferably 100 ° C. or higher, further preferably 150 ° C. or higher, from the viewpoint of adaptability with the solvent used for the electrolyte layer 7. For example, it may be 400 ° C. or lower. If the base material which has said heat-resistant temperature is used, the above dispersion media (NMP, toluene, etc.) can be used conveniently.
  • the thickness of the base material 14 is preferably as thin as possible while maintaining the strength that can withstand the tensile force of the coating apparatus.
  • the thickness of the base material 14 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more from the viewpoint of securing strength when the electrolyte composition is applied to the base material 14 while reducing the volume of the entire electrolyte sheet 13A. More preferably, it is 25 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and still more preferably 40 ⁇ m or less.
  • the electrolyte sheet can be continuously produced while being wound into a roll.
  • the electrolyte layer 7 may be damaged by the surface of the electrolyte layer 7 coming into contact with the back surface of the substrate 14 and a part of the electrolyte layer 7 sticking to the substrate 14.
  • the electrolyte sheet may be provided with a protective material on the opposite side of the electrolyte layer 7 from the substrate 14 as another embodiment.
  • FIG. 4B is a schematic cross-sectional view showing an electrolyte sheet according to another embodiment. As shown in FIG. 4B, the electrolyte sheet 13 ⁇ / b> B further includes a protective material 15 on the opposite side of the electrolyte layer 7 from the base material 14.
  • the protective material 15 may be any material that can be easily peeled off from the electrolyte layer 7, and is preferably a nonpolar resin film such as polyethylene, polypropylene, or polytetrafluoroethylene. When a nonpolar resin film is used, the electrolyte layer 7 and the protective material 15 do not stick to each other, and the protective material 15 can be easily peeled off.
  • a nonpolar resin film such as polyethylene, polypropylene, or polytetrafluoroethylene.
  • the thickness of the protective material 15 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m, and preferably 100 ⁇ m or less, from the viewpoint of ensuring strength while reducing the volume of the entire electrolyte sheet 13B. Preferably it is 50 micrometers or less, More preferably, it is 30 micrometers or less.
  • the heat resistant temperature of the protective material 15 is preferably ⁇ 30 ° C. or higher, more preferably 0 ° C. or higher, from the viewpoint of suppressing deterioration in a low temperature environment and suppressing softening in a high temperature environment. Preferably it is 100 degrees C or less, More preferably, it is 50 degrees C or less.
  • the protective material 15 it is not necessary to increase the heat-resistant temperature because the volatilization step of the dispersion medium described above is not essential.
  • the base material 14 is peeled from the electrolyte sheet 13A, and the positive electrode 6, the electrolyte layer 7 and the negative electrode 8 are laminated, for example.
  • the secondary battery 1 is obtained by stacking.
  • the electrolyte layer 7 is positioned on the positive electrode mixture layer 10 side of the positive electrode 6 and on the negative electrode mixture layer 12 side of the negative electrode 8, that is, the positive electrode current collector 9, the positive electrode mixture layer 10, and the electrolyte layer 7.
  • the negative electrode mixture layer 12 and the negative electrode current collector 11 are laminated so as to be arranged in this order.
  • FIG. 5 is a schematic cross-sectional view showing an embodiment of an electrode group in the secondary battery according to the second embodiment.
  • the secondary battery in the second embodiment is different from the secondary battery in the first embodiment in that the electrode group 2 ⁇ / b> B includes a bipolar electrode 16. That is, the electrode group 2B includes the positive electrode 6, the first electrolyte layer 7, the bipolar electrode 16, the second electrolyte layer 7, and the negative electrode 8 in this order.
  • the bipolar electrode 16 includes a bipolar electrode current collector 17, a positive electrode mixture layer 10 provided on a surface (positive electrode surface) on the negative electrode 8 side of the bipolar electrode current collector 17, and a positive electrode 6 side of the bipolar electrode current collector 17. And a negative electrode mixture layer 12 provided on the surface (negative electrode surface).
  • the positive electrode surface may be preferably formed of a material excellent in oxidation resistance, and may be formed of aluminum, stainless steel, titanium, or the like.
  • the negative electrode surface of the bipolar electrode current collector 17 using graphite or an alloy as the negative electrode active material may be formed of a material that does not form an alloy with lithium, specifically, stainless steel, nickel, iron, titanium, or the like. It may be formed.
  • the bipolar electrode current collector 17 may be a clad material in which different metal foils are laminated.
  • the bipolar electrode current collector 17 may be a single metal foil.
  • the bipolar electrode current collector 17 as a single metal foil may be an aluminum perforated foil having a hole diameter of 0.1 to 10 mm, an expanded metal, a metal foam plate, or the like.
  • the bipolar electrode current collector 17 may be formed of any material as long as it does not cause changes such as dissolution and oxidation during use of the battery, and its shape, manufacturing method, etc. Is not limited.
  • the thickness of the bipolar electrode current collector 17 may be 10 ⁇ m or more and 100 ⁇ m or less, and is preferably 10 ⁇ m or more and 50 ⁇ m or less from the viewpoint of reducing the volume of the entire positive electrode. More preferably, the thickness is 10 ⁇ m or more and 20 ⁇ m or less.
  • the manufacturing method of the secondary battery includes a first step of forming the positive electrode mixture layer 10 on the positive electrode current collector 9 to obtain the positive electrode 6, and the negative electrode mixture layer on the negative electrode current collector 11.
  • a positive electrode mixture layer 10 is formed on one surface of the bipolar electrode current collector 17, and a negative electrode mixture layer 12 is formed on the other surface of the bipolar electrode current collector 17. 16 and a fourth step of providing the electrolyte layer 7 between the positive electrode 6 and the bipolar electrode 16 and between the negative electrode 8 and the bipolar electrode 16.
  • the first step and the second step may be the same method as the first step and the second step in the first embodiment.
  • the method of forming the positive electrode mixture layer 10 on one surface of the bipolar electrode current collector 17 may be the same method as the first step in the first embodiment.
  • the method of forming the negative electrode mixture layer 12 on the other surface of the bipolar electrode current collector 17 may be the same method as the second step in the first embodiment.
  • the electrolyte layer 7 is, for example, an electrolyte sheet provided with an electrolyte composition on a substrate. It is formed by manufacturing.
  • the manufacturing method of the electrolyte sheet may be the same method as the manufacturing method of the electrolyte sheets 13A and 13B in the first embodiment.
  • the method of providing the electrolyte layer 7 between the negative electrode 8 and the bipolar electrode 16 may be the same method as the method of providing the electrolyte layer 7 between the positive electrode 6 and the bipolar electrode 16 described above. .
  • NMP electrolyte salt lithium bis (fluorosulfonyl) imide
  • the obtained slurry was applied to a polyethylene terephthalate base material and heated to volatilize the dispersion medium to obtain an electrolyte sheet.
  • the thickness of the electrolyte layer in the obtained electrolyte sheet was 25 ⁇ 2 ⁇ m.
  • Example 1 In the electrolyte sheet of Example 1, an electrolyte sheet was produced in the same manner as in Example 1 except that the content of each material was changed to the content shown in Table 1.
  • Example 1-5 In the electrolyte sheet of Example 1, the content of the oxide particles was increased, and the total content of the electrolyte salt and the solvent ((A) + (B) in Table 1) was decreased. An electrolyte sheet was produced by the same method.
  • Example 1-6 to 1-13 An electrolyte sheet was produced in the same manner as in Example 1, except that the type of oxide particles in the electrolyte sheet of Example 1 was changed to those shown in Tables 1 and 2.
  • Example 1-14 to 1-16 In the electrolyte sheet of Example 1, an electrolyte sheet was produced in the same manner as in Example 1 except that the average particle diameter of SiO 2 particles as oxide particles was changed to the average particle diameter shown in Table 2.
  • Example 1-17 to 1-18 An electrolyte sheet was produced in the same manner as in Example 1 except that the content of hexafluoropropylene in the polymer in the electrolyte sheet of Example 1 was changed to the content shown in Table 2.
  • Example 1-19 to 1-22 An electrolyte sheet was produced in the same manner as in Example 1 except that the solvent used in the electrolyte sheet of Example 1 was changed to that shown in Tables 2 to 3.
  • EMI-TFSI EMI-BTI
  • Example 1-21 represents 1-ethyl-3-methylimidazolidinium-bis (trifluoromethanesulfonyl) imide [CAS No. 174899-82-2].
  • EMI-DCA represents 1-ethyl-3-methylimidazolium dicyanamide [CAS No. 370865-89-7].
  • Examples 1-23 to 1-30 An electrolyte sheet was produced in the same manner as in Example 1 except that the type of polymer in the electrolyte sheet of Example 1 was changed to that shown in Table 3.
  • Table 3 the abbreviations of polymers indicate the following, and the mixing ratio of polymers means mass ratio.
  • PVDF + PA Mixture of polyvinylidene fluoride and polyacrylic acid
  • PVDF-MA Copolymer of vinylidene fluoride and maleic acid
  • PMMA Mixture of polytetrafluoroethylene and polymethyl methacrylate PVDF +
  • PMMA Polyvinylidene fluoride and polymethyl methacrylate Mixture
  • PVDF-HFP + PMMA Vinylidene fluoride / hexafluoropyrene copolymer and polymethyl methacrylate
  • PAN Vinylidene fluoride / hexafluoropyrene copolymer / polyacrylonitrile PVDF-HFP +
  • PVC Fluoride Mixture of vinylidene and hexafluoropyrene copolymer and polypolyvinyl chloride
  • the surface of the electrolyte composition is preferably smooth and free from irregularities and defects. In Table 5, those having unevenness were indicated as +, and those having no unevenness were indicated as-.
  • Example 1-5 in which the content of oxide particles was increased and the content of (A) + (B) was decreased compared to Example 1-1, was higher than that of Example 1-1. Although the conductivity decreased slightly because the content decreased, the conductivity was higher than that of Example 1-2 containing almost the same amount of electrolyte salt. That is, it was found that the conductivity is further improved by increasing the content of the oxide particles.
  • Example 1-14 to 1-16 in which the average particle diameter of the oxide particles was changed, the average particle diameter of the oxide particles was 0.1 ⁇ m to 3 ⁇ m as compared with Example 1-1.
  • Example 1-14 and Example 1-15 showed substantially the same conductivity, and the conductivity of Example 1-16, which was 6 ⁇ m, tended to decrease slightly. From this result, it is possible to obtain an electrolyte sheet excellent in strength and conductivity by using oxide particles having an average particle size of about 6 ⁇ m, but in order to further improve the conductivity, the average particle size is set to 1 ⁇ m or less. It turns out to be desirable.
  • Example 1-28 In Examples 1-23 to 1-30 in which the type of polymer was changed, the conductivity was highest in Example 1-28 in which three types of polymers composed of the first structural unit and the second structural unit were used. It was.
  • Comparative Example 1-1 containing no oxide particles was inferior to that of Examples 1-1 to 1-30.
  • Comparative Example 1-2 using a polymer not containing the second structural unit, and the content of the polymer containing the first structural unit and the second structural unit is 90% by mass or less based on the total amount of the polymer.
  • the electrical conductivity of Comparative Examples 1-3 to 1-7 was inferior to that of Examples 1-1 to 1-30.
  • the slurries in Comparative Examples 1-2 to 1-7 gelled, and irregularities were generated on the surface of the electrolyte composition.
  • the larger the content of the polymer (PVDF-HFP) containing the first structural unit the more difficult the liquid leakage.
  • Comparative Example 1-8 in which the mass ratio of the content of the first structural unit to the content of the second structural unit was less than 50/50, unevenness occurred on the surface of the electrolyte composition.
  • PVDF-HFP vinylene fluoride / hexafluoro
  • the slurry was applied to a base material made of polyethylene terephthalate and heated to volatilize the dispersion medium to obtain an electrolyte sheet.
  • the thickness of the electrolyte layer in the dissociation sheet was 25 ⁇ 2 ⁇ m.
  • Graphite 1 negative electrode active material, manufactured by Hitachi Chemical Co., Ltd.
  • Graphite 2 manufactured by Nippon Graphite Industry Co., Ltd.
  • carbon fiber conductive agent, product name: VGCF-H, Showa Denko Co., Ltd.
  • Manufactured 0.6 parts by mass, 5 parts by mass of a copolymer solution of vinylidene fluoride and hexafluoropropylene (solid content 12% by mass), an ionic liquid (1.5M / Li [FSI] / Py13-FSI) in which an electrolyte salt is dissolved ) 14 parts by mass was mixed to prepare a negative electrode mixture slurry.
  • This negative electrode mixture slurry was applied on a current collector (copper foil having a thickness of 10 ⁇ m) at a coating amount of 60 g / m 2 , heated at 80 ° C. and dried to obtain a mixture density of 1.8 g / cm 2.
  • a negative electrode mixture layer 3 was formed. This was cut into a width of 31 mm and a length of 46 mm to form a negative electrode plate, and a negative electrode current collecting tab was attached to the negative electrode plate as shown in FIG.
  • the base material was peeled off from the electrolyte sheet and arranged to prepare a laminated electrode group.
  • the above electrode group was accommodated in a battery exterior body made of an aluminum laminate film. Inside the battery outer package, the opening of the battery container was sealed so that the positive electrode current collecting tab and the negative electrode current collecting tab were taken out to produce a lithium ion secondary battery of Example 2-1.
  • the aluminum laminate film is a laminate of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene, etc.).
  • PET polyethylene terephthalate
  • aluminum foil / sealant layer polypropylene, etc.
  • Example 6 shows the mass ratio of the electrolyte (electrolyte salt and solvent) content to the content of the electrolyte support material (material other than the electrolyte salt and solvent) (electrolyte content / electrolyte support material content).
  • a lithium ion secondary battery was produced in the same manner as in Example 2-1, except for changing to the one shown.
  • Example 2-4 to 2-5 A lithium ion secondary battery was produced in the same manner as in Example 2-1, except that the electrolyte salt concentration in the electrolyte was changed to that shown in Table 6.
  • Examples 2-6 to 2-7) A lithium ion secondary battery was produced in the same manner as in Example 2-1, except that the electrolyte salt and the solvent in the electrolyte were changed to those shown in Table 6 in the electrolyte sheet.
  • Example 2-8 A lithium ion secondary battery was produced in the same manner as in Example 2-1, except that the average particle diameter of the oxide particles in the electrolyte sheet was changed to that shown in Table 6.
  • Example 2-1 except that in the electrolyte sheet, the mass ratio of the polymer content to the oxide particle content (polymer content / oxide particle content) was changed to that shown in Table 6 A lithium ion secondary battery was produced by the same method.
  • Examples 2-11 to 2-12 A lithium ion secondary battery was fabricated in the same manner as in Example 2-1, except that the mass ratio of the structural units in the polymer in the electrolyte sheet was changed to that shown in Table 7.
  • Example 2-13 Example 2 except that the average particle diameter of oxide particles, the type of electrolyte salt, the type of solvent, and the content of the electrolyte / content of the electrolytic support material were changed to those shown in Table 7 in the electrolyte sheet.
  • a lithium ion secondary battery was produced in the same manner as in -1.
  • Example 2-14 A lithium ion secondary battery was fabricated in the same manner as in Example 2-13, except that the average particle size of the oxide particles in the electrolyte sheet was changed to that shown in Table 7.
  • Example 2-15 A lithium ion secondary battery was produced in the same manner as in Example 2-13, except that the electrolyte content / electrolytic support material content (mass ratio) in the electrolyte sheet was changed to that shown in Table 7. .
  • Examples 2-16 to 2-1-7 In the electrolyte sheet, except that the polymer content / oxide particle content (mass ratio) and the electrolyte content / electrolytic support material content (mass ratio) were changed to those shown in Table 7, A lithium ion secondary battery was produced in the same manner as in Example 2-13.
  • Example 2-18 A lithium ion secondary battery was produced in the same manner as in Example 2-13, except that the electrolyte sheet was changed to the type shown in Table 7 for the ionic liquid.
  • Example 2-19 A lithium ion secondary battery was fabricated in the same manner as in Example 2-18, except that the average particle diameter of the oxide particles in the electrolyte sheet was changed to that shown in Table 7.
  • Example 2-20 A lithium ion secondary battery was fabricated in the same manner as in Example 2-18, except that the electrolyte sheet content / electrolytic support material content was changed to that shown in Table 7.
  • the electrolyte solution thus prepared was dispersed in NMP as a dispersion medium to prepare a slurry containing the electrolyte composition.
  • NMP was further added to adjust the viscosity, and this slurry was applied onto a polyethylene terephthalate base material (product name: Teonex R-Q51, manufactured by Teijin DuPont Films, Inc., thickness 38 ⁇ m) using an applicator. .
  • the applied slurry was dried by heating at 100 ° C. for 2 hours to volatilize the dispersion medium, thereby obtaining an electrolyte sheet.
  • An evaluation coin-type battery was fabricated using a positive electrode containing LiNi 1/3 Mn 1/3 Co 1/3 as a positive electrode active material, an electrolyte sheet, and a negative electrode containing natural graphite as a negative electrode active material.
  • the electrolyte layer obtained by peeling the base material from the positive electrode, the electrolyte sheet, and the negative electrode are stacked in this order, placed in a CR2016 type coin cell container, and then a liquid having the same composition as the slurry used to prepare the electrolyte sheet (electrolytic solution) A small amount of was added, and the upper part of the battery container was caulked and sealed through an insulating gasket.
  • the electrolytic solution was added so as to be 130 to 200% of the void volume of the positive electrode and the negative electrode.
  • the void volume of the electrode mixture layer was calculated according to the following formula after measuring the apparent volume (area ⁇ thickness) of the electrode mixture layer excluding the current collector.
  • Void volume of positive electrode mixture layer apparent volume of positive electrode mixture layer ⁇ (mass of positive electrode active material / true density of positive electrode active material) ⁇ (mass of conductive agent / true density of conductive agent) ⁇ (mass of binder / binder) True density)
  • Void volume of negative electrode mixture layer apparent volume of negative electrode mixture layer ⁇ (mass of negative electrode active material / true density of negative electrode active material) ⁇ (mass of conductive agent / true density of conductive agent) ⁇ (mass of binder / binder) True density)
  • Example 3 Example 3 except that the oxide particles used in the electrolyte sheet were SiO 2 particles having different average primary particle sizes (average primary particle size of about 2 ⁇ m, product name: AEROSIL SO-C6, manufactured by Nippon Aerosil Co., Ltd.).
  • a coin-type battery for evaluation was produced in the same manner as in Example 1.

Abstract

本発明は、1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、溶媒と、を含有する電解質組成物であって、1種又は2種以上のポリマを構成する構造単位の中には、四フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれ、1種又は2種以上のポリマの含有量は、前記電解質組成物に含まれるポリマ全量基準で、90質量%を超え、1種又は2種以上のポリマにおいて、第2の構造単位の含有量に対する第1の構造単位の含有量の質量比は、50/50以上である、電解質組成物を提供する。

Description

電解質組成物、二次電池、及び電解質シートの製造方法
 本発明は、電解質組成物、二次電池、及び電解質シートの製造方法に関する。
 近年、携帯型電子機器、電気自動車等の普及により、高性能な二次電池が必要とされている。中でもリチウム二次電池は、高いエネルギ密度を有するため、電気自動車用電池、電力貯蔵用電池等の電源として注目されている。具体的には、電気自動車用電池としてのリチウム二次電池は、エンジンを搭載しないゼロエミッション電気自動車、エンジン及び二次電池の両方を搭載したハイブリッド電気自動車、電力系統から直接充電させるプラグイン・ハイブリッド電気自動車等の電気自動車に採用されている。また、電力貯蔵用電池としてのリチウム二次電池は、電力系統が遮断された非常時に、予め貯蔵しておいた電力を供給する定置式電力貯蔵システム等に用いられている。
 このような広範な用途に使用するために、より高いエネルギ密度のリチウム二次電池が求められており、その開発がなされている。特に、電気自動車用のリチウム二次電池には、高い入出力特性及び高いエネルギ密度に加えて、高い安全性が要求されるため、安全性を確保するためのより高度な技術が求められる。
 従来、リチウム二次電池の安全性を向上させる方法として、難燃剤の添加により電解液を難燃化する方法、電解液をポリマ電解質又はゲル電解質へ変更する方法等が知られている。特に、ゲル電解質は、従来のリチウム二次電池に使用されている電解液と同等のイオン導電率を有するため、電解液をゲル電解質へ変更する方法により、電池性能を悪化させずに、遊離する電解液量を減少させることで電解液の燃焼を抑制しうる。
 特許文献1は、リチウム塩を含有する可塑剤と、可塑剤を分散するマトリクス高分子と、繊維状不溶物とを含有したゲル状電解質層を開示している。ゲル状電解質中に0.1重量%以上50重量%以下含有されている繊維状不溶物は、繊維長と繊維径との比を10以上3000以下、繊維長を10μm以上1cm以下、繊維径を0.05μm以上50μm以下とすることにより、電池のサイクル特性及び高温保存特性を向上させている。
 特許文献2は、ゲル電解質及びゲル電解質電池を開示している。ゲル電解質層は、マトリクス高分子を電解液により膨潤させて形成され、低沸点の低粘度溶媒を多く含有する。低沸点の低粘度溶媒を多く含有したゲル電解質を用いることにより、温度特性、電流特性、容量、及び低温での充放電特性に優れたゲル電解質電池が提供される。
特開2000-164254号公報 特開2007-141467号公報
 しかしながら、上述したような従来のゲル電解質には、未だ改善の余地がある。例えば特許文献1に記載の発明においては、電解質シートを好適に形成する(特に電解質層を薄層にする)こと及び導電率を高めることが困難である。また、特許文献2に記載の発明においても、電解質の導電率が不十分である。
 そこで本発明は、導電率の高い電解質組成物であって、平滑性に優れた電解質シートを得ることが可能な電解質組成物を提供することを目的とする。
 本発明の第1の態様は、1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、溶媒と、を含有する電解質組成物であって、1種又は2種以上のポリマを構成する構造単位の中には、四フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれ、1種又は2種以上のポリマの含有量は、電解質組成物に含まれるポリマ全量基準で、90質量%を超え、1種又は2種以上のポリマにおいて、第2の構造単位の含有量に対する第1の構造単位の含有量の質量比は、50/50以上である、電解質組成物である。
 この電解質組成物は、導電率に優れ、平滑性に優れた電解質シートが得られる。また、この電解質組成物はシート状に形成する際のスラリの調製に好適であり、この電解質組成物をシート状に形成した場合、得られる電解質シートは引張強度に優れる。この電解質組成物によれば、放電レート特性に優れ、また、初期の放電容量(初期容量)が設計容量にできる限り近い、いわゆる初期特性の高いリチウム二次電池を作製することができる。
 ポリマは、第1の構造単位と第2の構造単位との両方を含むコポリマであってよい。
 ポリマは、第1の構造単位を含む第1のポリマと、第2の構造単位を含む第2のポリマとの少なくとも2種のポリマであってもよい。
 ポリマの含有量は、電解質組成物全量を基準として、好ましくは3~50質量%である。
 酸化物粒子は、好ましくは、SiO、Al、AlOOH、MgO、CaO、ZrO、TiO、LiLaZr12、及びBaTiOからなる群より選ばれる少なくとも1種の粒子である。
 酸化物粒子の含有量は、電解質組成物全量を基準として、好ましくは5~40質量%である。
 溶媒は、下記式(1)で表されるグライムであってよい。
 RO-(CHCHO)-R   (1)
[式(1)中、R及びRは、それぞれ独立に、炭素数4以下のアルキル基又は炭素数4以下のフルオロアルキル基を表し、kは1~6の整数を表す。]
 溶媒は、イオン液体であってもよい。
 イオン液体は、カチオン成分として、鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種を含有し、イオン液体が、アニオン成分として、下記式(2)で表されるアニオン成分の少なくとも1種を含有してよい。
N(SO2m+1)(SO2n+1    (2)
[m及びnは、それぞれ独立に0~5の整数を表す。]
 電解質塩と溶媒の合計の含有量は、好ましくは、電解質組成物全量を基準として、25~70質量%である。
 電解質組成物は、シート状に形成されてもよい。
 本発明の第2の態様は、正極と、負極と、正極及び負極の間に設けられた電解質組成物からなる電解質層と、を備える二次電池である。
 本発明の第3の態様は、1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種である電解質塩と、溶媒と、分散媒と、を含有するスラリを基材上に配置する工程と、分散媒を揮発させて基材上に電解質層を形成する工程と、を備え、1種又は2種以上のポリマを構成する構造単位の中には、四フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれ、1種又は2種のポリマの含有量は、スラリの固形分に含まれるポリマ全量基準で、90質量%を超え、1種又は2種のポリマにおいて、第2の構造単位の含有量に対する第1の構造単位の含有量の質量比は、50/50以上である、電解質シートの製造方法である。
 本発明によれば、導電率の高い電解質組成物であって、平滑性に優れた電解質シートを得ることが可能な電解質組成物を提供することができる。
第1実施形態に係る二次電池を示す斜視図である。 図1に示した二次電池における電極群の一実施形態を示す分解斜視図である。 図1に示した二次電池における電極群の一実施形態を示す模式断面図である。 (a)は一実施形態に係る電解質シートを示す模式断面図であり、(b)は他の実施形態に係る電解質シートを示す模式断面図である。 第2実施形態に係る二次電池における電極群の一実施形態を示す模式断面図である。
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。
 本明細書における数値及びその範囲は、本発明を制限するものではない。本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書において段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の上限値又は下限値に置き換えてもよい。また、本明細書中に記載される数値範囲において、その数値範囲の上限値又は下限値は、実施例中に示されている値に置き換えてもよい。
 [第1実施形態]
 図1は、第1実施形態に係る二次電池を示す斜視図である。図1に示すように、二次電池1は、正極、負極及び電解質層から構成される電極群2と、電極群2を収容する袋状の電池外装体3とを備えている。正極及び負極には、それぞれ正極集電タブ4及び負極集電タブ5が設けられている。正極集電タブ4及び負極集電タブ5は、それぞれ正極及び負極が二次電池1の外部と電気的に接続可能なように、電池外装体3の内部から外部へ突き出している。
 電池外装体3は、例えばラミネートフィルムで形成されていてよい。ラミネートフィルムは、例えば、ポリエチレンテレフタレート(PET)フィルム等の樹脂フィルムと、アルミニウム、銅、ステンレス鋼等の金属箔と、ポリプロピレン等のシーラント層とがこの順で積層された積層フィルムであってよい。
 図2は、図1に示した二次電池1における電極群2の一実施形態を示す分解斜視図である。図3は、図1に示した二次電池1における電極群2の一実施形態を示す模式断面図である。図2及び図3に示すように、本実施形態に係る電極群2Aは、正極6と、電解質層7と、負極8とをこの順に備えている。正極6は、正極集電体9と、正極集電体9上に設けられた正極合剤層10とを備えている。正極集電体9には、正極集電タブ4が設けられている。負極8は、負極集電体11と、負極集電体11上に設けられた負極合剤層12とを備えている。負極集電体11には、負極集電タブ5が設けられている。
 正極集電体9は、アルミニウム、ステンレス鋼、チタン等で形成されていてよい。正極集電体9は、具体的には、例えば孔径0.1~10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板等であってよい。正極集電体9は、上記以外にも、電池の使用中に溶解、酸化等の変化を生じないものであれば、任意の材料で形成されていてよく、また、その形状、製造方法等も制限されない。
 正極集電体9の厚さは、10~100μmであってよく、正極全体の体積を小さくする観点から、好ましくは10~50μmであり、電池を形成する際に小さな曲率で正極を捲回する観点から、より好ましくは10~20μmである。
 正極合剤層10は、一実施形態において、正極活物質と、導電剤と、バインダとを含有する。
 正極活物質は、LiCoO、LiNiO、LiMn、LiMnO、LiMn、LiMnO、LiMn12、LiMn2-a (ただし、M=Co、Ni、Fe、Cr、Zn、及びTaからなる群より選ばれる1種であり、a=0.01~0.2である。)、LiMn(ただし、M=Fe、Co、Ni、Cu、及びZnからなる群より選ばれる1種である。)、Li1-b Mn(ただし、M=Mg、B、Al、Fe、Co、Ni、Cr、Zn、及びCaからなる群より選ばれる1種であり、b=0.01~0.1である。)、LiFeO、Fe(SO、LiCo1-c (ただし、M=Ni、Fe、及びMnからなる群より選ばれる1種であり、c=0.01~0.2である。)、LiNi1-d (ただし、M=Mn、Fe、Co、Al、Ga、Ca、及びMgからなる群より選ばれる1種であり、d=0.01~0.2である。)、Fe(MoO、FeF、LiFePO、LiMnPO等であってよい。
 正極活物質は、造粒されていない一次粒子であってもよく、造粒された二次粒子であってもよい。
 正極活物質の粒径は、正極合剤層10の厚さ以下になるように調整される。正極活物質中に正極合剤層10の厚さ以上の粒径を有する粗粒子がある場合、ふるい分級、風流分級等により粗粒子を予め除去し、正極合剤層10の厚さ以下の粒径を有する正極活物質を選別する。
 正極活物質の平均粒径は、粒径減少に伴う正極活物質の充填性の悪化を抑制しつつ、かつ、電解質塩の保持能力を高める観点から、好ましくは0.1μm以上であり、より好ましくは1μm以上であり、更に好ましくは2μm以上であり、また、好ましくは、30μm以下、25μm以下、20μm以下、10μm以下、又は8μm以下である。正極活物質の平均粒径は、正極活物質全体の体積に対する比率(体積分率)が50%のときの粒径(D50)である。正極活物質の平均粒径(D50)は、レーザー散乱型粒径測定装置(例えば、マイクロトラック)を用いて、レーザー散乱法により水中に正極活物質を懸濁させた懸濁液を測定することで得られる。
 正極活物質の含有量は、正極合剤層全量を基準として、70質量%以上、80質量%以上、又は85質量%以上であってよい。正極活物質の含有量は、正極合剤層全量を基準として、99質量%以下、95質量%以下、92質量%以下、又は90質量%以下であってよい。
 導電剤は、カーボンブラック、アセチレンブラック、黒鉛、炭素繊維、カーボンナノチューブ等の炭素材料であってよい。これらの導電剤は、1種単独で又は2種以上を混合して用いられる。
 導電剤の含有量は、正極合剤層全量を基準として、0.1質量%以上、1質量%以上、又は3質量%以上であってよい。導電剤の含有量は、正極6の体積の増加及びそれに伴う二次電池1のエネルギ密度の低下を抑制する観点から、正極合剤層全量を基準として、好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下である。
 バインダは、正極6の表面で分解しないものであれば制限されないが、例えばポリマである。バインダは、カルボキシルメチルセルロース、酢酸セルロース、エチルセルロース等のセルロース類、四フッ化エチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる少なくとも1種をモノマ単位として含有するポリマ、スチレン-ブタジエンゴム、エチレン-プロピレンゴム、イソプレンゴム、アクリルゴム、フッ素ゴム等のゴムなどであってよい。バインダは、ポリフッ化ビニリデン、ポリアクリル酸、ポリイミド、ポリアミドなどであってもよい。バインダは、好ましくは、四フッ化エチレンとフッ化ビニリデンとを構造単位として含有するコポリマ、フッ化ビニリデンとヘキサフルオロプロピレンとを構造単位として含有するコポリマである。
 バインダの含有量は、正極合剤層全量を基準として、0.5質量%以上、1質量%以上、又は3質量%以上であってよい。バインダの含有量は、正極合剤層全量を基準として、20質量%以下、15質量%以下、10質量%以下、又は7質量%以下であってよい。
 正極合剤層10は、後述するイオン液体を更に含有してもよい。その場合、イオン液体の含有量は、正極合剤層全量を基準として、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上であり、また、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下である。
 正極合剤層10の厚さは、導電率を更に向上させる観点から、正極活物質の平均粒径以上の厚さであり、具体的には、好ましくは5μm以上であり、より好ましくは10μm以上であり、更に好ましくは15μm以上であり、特に好ましくは20μm以上である。正極合剤層10の厚さは、好ましくは100μm以下であり、より好ましくは80μm以下であり、更に好ましくは70μm以下であり、特に好ましくは50μm以下である。正極合剤層10の厚さを100μm以下とすることにより、正極合剤層10の表面近傍及び正極集電体9の表面近傍の正極活物質の充電レベルのばらつきに起因する充放電の偏りを抑制できる。
 正極合剤層10の合剤密度は、導電剤と正極活物質とを互いに密着させ、正極合剤層10の電子抵抗を低減する観点から、好ましくは2g/cm以上である。
 負極集電体11は、アルミニウム、銅、ステンレス鋼、チタン、ニッケル、これらの合金等で形成されていてよい。負極集電体11は、具体的には、圧延銅箔、例えば孔径0.1~10mmの孔を有する銅製穿孔箔、エキスパンドメタル、発泡金属板等であってよい。負極集電体11は、上記以外の任意の材料で形成されていてもよく、また、その形状、製造方法等も制限されない。
 負極集電体11の厚さは、10~100μmであってよく、負極全体の体積を小さくする観点から、好ましくは10~50μmであり、電池を形成する際に小さな曲率で負極を捲回する観点から、より好ましくは10~20μmである。
 負極合剤層12は、一実施形態において、負極活物質とバインダとを含有する。
 負極活物質は、エネルギデバイスの分野で常用されるものを使用できる。負極活物質としては、具体的には、例えば、金属リチウム、リチウム合金又はその他の金属化合物、炭素材料、金属錯体、及び有機高分子化合物が挙げられる。負極活物質は上記のうち1種を単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。負極活物質は、好ましくは炭素材料である。炭素材料としては、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等の黒鉛、非晶質炭素、炭素繊維、及びアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラックなどが挙げられる。負極活物質は、より大きな理論容量(例えば500~1500Ah/kg)を得る観点から、シリコン、スズ又はこれらの元素を含む化合物(酸化物、窒化物、他の金属との合金)であってもよい。容量が大きい材料を用いると、負極合剤層12の厚さを薄くすることができ、二次電池1の中に収納可能な電極面積を増大させることができる。その結果、二次電池1の抵抗を低下させて高出力が可能になると同時に、黒鉛負極を用いたときよりも二次電池1の容量を高めることができる。
 負極活物質の平均粒径(D50)は、粒径減少に伴う不可逆容量の増加を抑制しつつ、かつ、電解質塩の保持能力を高めたバランスの良い負極8を得る観点から、好ましくは1μm以上であり、より好ましくは5μm以上であり、更に好ましくは10μm以上であり、また、好ましくは50μm以下であり、より好ましくは40μm以下であり、更に好ましくは30μm以下である。負極活物質の平均粒径(D50)は、正極活物質の平均粒径(D50)と同様の方法により測定される。
 バインダ及びその含有量は、上述した正極合剤層10におけるバインダ及びその含有量と同様であってよい。
 負極合剤層12は、負極8の抵抗を更に低くする観点から、導電剤を更に含有してもよい。負極合剤層12は、イオン液体を更に含有してもよい。導電剤及びイオン液体の種類及び含有量は、上述した正極合剤層10における導電剤及びイオン液体の種類及び含有量と同様であってよい。
 負極合剤層12の厚さは、導電率を更に向上させる観点から、負極活物質の平均粒径以上であり、具体的には、好ましくは10μm以上であり、より好ましくは15μm以上であり、更に好ましくは20μm以上である。負極合剤層12の厚さは、好ましくは、100μm以下、80μm以下、70μm以下、50μm以下、40μm以下、又は30μm以下である。負極合剤層12の厚さを100μm以下とすることにより、負極合剤層12の表面近傍及び負極集電体11の表面近傍の正極活物質の充電レベルのばらつきに起因する充放電の偏りを抑制できる。
 負極合剤層12の合剤密度は、導電剤と負極活物質とを互いに密着させ、負極合剤層12の電子抵抗を低減する観点から、好ましくは1g/cm以上である。
 電解質層7は、電解質組成物からなっている。電解質組成物は、1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、溶媒と、を含有する。本明細書において、電解質塩及び溶媒をまとめて「電解質」と呼び、電解質を除く電解質組成物の成分をまとめて「電解質支持材」と呼ぶことがある。
 1種又は2種以上のポリマを構成する構造単位(モノマ単位)の中には、四フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位(モノマ単位)と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位(モノマ単位)とが含まれる。
 第1の構造単位及び第2の構造単位は、1種のポリマに含まれてコポリマを構成してもよい。すなわち、電解質組成物は、一実施形態において、第1の構造単位と第2の構造単位との両方を含む少なくとも1種のコポリマを含有する。コポリマは、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ、フッ化ビニリデンとマレイン酸とのコポリマ、フッ化ビニリデンとメチルメタクリレートとのコポリマ等であってよい。コポリマは、第1の構造単位及び第2の構造単位のみからなっていてもよいし、第1の構造単位及び第2の構造単位以外の構造単位を更に含有してもよい。電解質組成物は、コポリマを含有する場合、第1の構造単位及び第2の構造単位を含むコポリマのみを含有してもよいし、その他のポリマを更に含有していてもよい。
 第1の構造単位及び第2の構造単位は、それぞれ別のポリマに含まれて、第1の構造単位を有する第1のポリマと、第2の構造単位を有する第2のポリマとの少なくとも2種のポリマを構成していてもよい。すなわち、電解質組成物は、一実施形態において、第1の構造単位を含む第1のポリマと、第2の構造単位を含む第2のポリマとの少なくとも2種以上のポリマを含有する。電解質組成物は、第1のポリマ及び第2のポリマを含有する場合、第1のポリマ及び第2のポリマのみを含有してもよいし、その他のポリマを更に含有していてもよい。
 第1のポリマは、第1の構造単位のみからなるポリマであってもよく、第1の構造単位に加えてその他の構造単位を更に有するポリマであってもよい。その他の構造単位は、エチレンオキシド(-CHCHO-)、カルボン酸エステル(-CHCOO-)等の含酸素炭化水素構造であってよい。第1のポリマは、ポリ四フッ化エチレン、ポリフッ化ビニリデン、ポリフッ化ビニリデン、又は、これらの分子構造の内部に前記含酸素炭化水素構造が導入されたポリマであってよい。
 第2のポリマは、第2の構造単位のみからなるポリマであってもよく、第2の構造単位に加えてその他の構造単位を更に有するポリマであってもよい。その他の構造単位は、エチレンオキシド(-CHCHO-)、カルボン酸エステル(-CHCOO-)等の含酸素炭化水素構造であってよい。
 第1のポリマと第2のポリマとの組合せとしては、ポリフッ化ビニリデンとポリアクリル酸、ポリ四フッ化エチレンとポリメチルメタクリレート、ポリフッ化ビニリデンとポリメチルメタクリレート等が挙げられる。
 電解質組成物のゲル化を抑制し、電解質組成物をシート状に形成した際の凹凸の発生を抑制する観点から、1種又は2種以上のポリマは、好ましくは、構造単位(モノマ単位)として、アクリロニトリル及び塩化ビニルの一方又は両方を含まない。すなわち、電解質組成物は、アクリロニトリル及び塩化ビニルの一方又は両方を構造単位(モノマ単位)として含むポリマを含有しなくてよい。電解質組成物が第1の構造単位及び第2の構造単位を含むコポリマを含有する場合、コポリマは、構造単位(モノマ単位)として、アクリロニトリル及び塩化ビニルの一方又は両方を含まなくてよい。電解質組成物が2種以上のポリマを含有する場合、第1のポリマ及び第2のポリマは、構造単位(モノマ単位)として、アクリロニトリル及び塩化ビニルの一方又は両方を含まなくてよく、また、第1のポリマ及び第2のポリマ以外のその他のポリマは、構造単位(モノマ単位)として、アクリロニトリル及び塩化ビニルの一方又は両方を含まなくてよい。
 第1の構造単位の含有量は、電解質組成物をシート状にした場合の強度を更に向上させる観点から、第1の構造単位及び第2の構造単位の含有量の合計を基準として、好ましくは、50質量%以上、70質量%以上、80質量%以上、90質量%以上、又は95質量%以上である。第1の構造単位の含有量は、電解質組成物が溶媒を含有する場合の溶媒との親和性を更に向上させる観点から、第1の構造単位及び第2の構造単位の含有量の合計を基準として、好ましくは、99質量%以下、98質量%以下、97質量%以下、又は96質量%以下である。
 第1の構造単位の含有量は、電解質組成物をシート状にした場合の強度を更に向上させる観点から、ポリマを構成する構造単位全量を基準として、好ましくは、5質量%以上、10質量%以上、20質量%以上、50質量%以上、70質量%以上、又は90質量%以上である。第1の構造単位の含有量は、電解質組成物が溶媒を含有する場合の溶媒との親和性を更に向上させる観点から、ポリマを構成する構造単位全量を基準として、好ましくは、98質量%以下、95質量%以下、又は90質量%以下である。
 第2の構造単位の含有量は、電解質組成物が溶媒を含有する場合の溶媒との親和性を更に向上させる観点から、第1の構造単位及び第2の構造単位の含有量の合計を基準として、好ましくは、1質量%以上、3質量%以上、又は4質量%以上である。第2の構造単位の含有量は、電解質組成物をシート状にした場合の強度を更に向上させる観点から、第1の構造単位及び第2の構造単位の含有量の合計を基準として、好ましくは、50質量%以下、40質量%以下、30質量%以下、20質量%以下、10質量%以下、又は5質量%以下である。
 第2の構造単位の含有量は、電解質組成物が溶媒を含有する場合の溶媒との親和性を更に向上させる観点から、ポリマを構成する構造単位全量を基準として、好ましくは、1質量%以上、3質量%以上、又は5質量%以上である。第2の構造単位の含有量は、電解質組成物をシート状にした場合の強度を更に向上させる観点から、ポリマを構成する構造単位全量を基準として、好ましくは、50質量%以下、40質量%以下、30質量%以下、20質量%以下、又は10質量%以下である。
 1種又は2種のポリマにおいて、第2の構造単位の含有量に対する第1の構造単位の含有量の質量比(第1の構造単位の含有量(質量)/第2の構造単位の含有量(質量))は、50/50以上である。第2の構造単位の含有量に対する第1の構造単位の含有量の質量比は、好ましくは、60/40以上、70/30以上、80/20以上、85/15以上、90/10以上、93/7以上、又は95/5以上である。第2の構造単位の含有量に対する第1の構造単位の含有量の質量比は、99/1以下、97/3以下、又は95/5以下であってよい。
 1種又は2種以上のポリマの含有量は、電解質組成物の導電率を向上させる観点から、電解質組成物に含まれるポリマ全量基準で、90質量%を超える。1種又は2種以上のポリマの含有量は、電解質組成物に含まれるポリマ全量基準で、好ましくは92質量%以上であり、より好ましくは94質量%以上であり、更に好ましくは96質量%以上である。電解質組成物に含まれるポリマは、1種又は2種以上のポリマのみからなっていてもよい。
 ポリマの含有量は、電解質組成物をシート状にした場合の強度を更に向上させる観点から、電解質組成物全量を基準として、好ましくは3質量%以上であり、より好ましくは5質量%以上であり、更に好ましくは10質量%以上であり、特に好ましくは20質量%以上であり、最も好ましくは25質量%以上である。ポリマの含有量は、導電率を更に向上させる観点から、電解質組成物全量を基準として、好ましくは60質量%以下であり、より好ましくは50質量%であり、更に好ましくは40質量%以下であり、特に好ましくは30質量%以下であり、最も好ましくは28質量%以下である。
 ポリマの含有量は、電解質組成物をシート状にした場合の強度と導電率を両立させる観点から、電解質組成物全量を基準として、好ましくは、3~60質量%、3~50質量%、3~40質量%、3~30質量%、3~28質量%、5~60質量%、5~50質量%、5~40質量%、5~30質量%、5~28質量%、10~60質量%、10~50質量%、10~40質量%、10~30質量%、10~28質量%、20~60質量%、20~50質量%、20~40質量%、20~30質量%、20~28質量%、25~60質量%、25~50質量%、25~40質量%、25~30質量%、又は25~28質量%である。
 本実施形態に係るポリマは、電解質組成物に含まれる溶媒との親和性に優れるため、溶媒中の電解質を保持する。これにより、電解質組成物に荷重が加えられた際の溶媒の液漏れが抑制される。
 酸化物粒子は、例えば無機酸化物の粒子である。無機酸化物は、例えば、Li、Mg、Al、Si、Ca、Ti、Zr、La、Na、K、Ba、Sr、V、Nb、B、Ge等を構成元素として含む無機酸化物であってよい。酸化物粒子は、好ましくは、SiO、Al、AlOOH、MgO、CaO、ZrO、TiO、LiLaZr12、及びBaTiOからなる群より選ばれる少なくとも1種の粒子である。酸化物粒子は極性を有するため、電解質層7中の電解質の解離を促進し、電池特性を高めることができる。
 酸化物粒子は、希土類金属の酸化物であってもよい。酸化物粒子は、具体的には、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロビウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム等であってよい。
 酸化物粒子の比表面積は、2~380m/gであり、5~100m/g、10~80m/g、又は15~60m/gであってもよい。比表面積が2~380m/gであると、このような酸化物粒子を含有する電解質組成物を用いた二次電池は、放電特性に優れる傾向にある。同様の観点から、酸化物粒子の比表面積は、5m/g以上、10m/g以上、又は15m/g以上であってもよく、100m/g以下、80m/g以下、又は60m/g以下であってもよい。酸化物粒子の比表面積は、一次粒子及び二次粒子を含む酸化物粒子全体の比表面積を意味し、BET法によって測定される。
 酸化物粒子の平均一次粒径(一次粒子の平均粒径)は、導電率を更に向上させる観点から、好ましくは0.005μm(5nm)以上であり、より好ましくは0.01μm(10nm)以上であり、更に好ましくは0.015μm(15nm)以上である。酸化物粒子の平均一次粒径は、電解質層7を薄くする観点から、好ましくは1μm以下であり、より好ましくは0.1μm以下であり、更に好ましくは0.05μm以下である。酸化物粒子の平均一次粒径は、粒子を十分に解砕又は分散させた状態で、正極活物質の平均粒径(D50)と同様の方法により測定することができる。粒子を解砕又は分散させることが難しい場合には、走査型電子顕微鏡で酸化物粒子を観察し、画像解析によって平均一次粒径を測定してもよい。
 酸化物粒子の平均一次粒径は、電解質組成物をシート状に形成した場合の引張強度を高める観点からは、好ましくは、0.05μm(50nm)以上であり、より好ましくは0.07μm(70nm)以上であり、更に好ましくは0.5μm以上であり、特に好ましくは1μm以上であり、また、好ましくは5μm以下であり、より好ましくは4μm以下であり、更に好ましくは2μm以下である。
 酸化物粒子の平均粒径(D50)は、電解質のカチオン成分が拡散する断面積を大きくし、導電率を更に向上させる観点から、好ましくは0.001μm以上であり、より好ましくは0.005μm以上であり、更に好ましくは0.05μm以上であり、特に好ましくは0.1μm以上であり、最も好ましくは0.5μm以上である。酸化物粒子の平均粒径は、好ましくは10μm以下であり、より好ましくは6μm以下であり、更に好ましくは3μm以下であり、特に好ましくは2μm以下であり、最も好ましくは1μm以下である。酸化物粒子の平均粒径が6μm以下である場合、電解質層7を好適に薄くすることができる。すなわち、この場合、酸化物粒子が凝集しにくくなり、その結果、酸化物粒子が電解質層7から突出して正極6及び負極8の表面を損傷させることを抑制できる。加えて、電解質層7の厚さを確保しやすくなるため、電解質層7の機械的強度の低下を抑制できる。酸化物粒子の平均粒径は、リチウムイオンの拡散を抑制して導電率を更に向上させる観点、電解質組成物を薄層化する観点、及び電解質組成物表面からの酸化物粒子の突出を抑制する観点から、好ましくは0.001~10μmであり、電解質層がより好適に薄層化される観点から、より好ましくは0.001~6μmであり、液漏れを防止する観点から、更に好ましくは0.001~0.1μm又は0.005~1μmである。酸化物粒子の平均粒径(D50)は、正極活物質の平均粒径(D50)と同様の方法により測定される。
 酸化物粒子の形状は、例えば塊状又は略球状であってよい。酸化物粒子のアスペクト比は、電解質層7の薄層化を容易にする観点から、好ましくは10以下、より好ましくは5以下、更に好ましくは2以下である。アスペクト比は、酸化物粒子の走査型電子顕微鏡写真から算出した、粒子の長軸方向の長さ(粒子の最大長さ)と、粒子の短軸方向の長さ(粒子の最小長さ)との比として定義される。粒子の長さは、前記写真を、市販の画像処理ソフト(例えば、旭化成エンジニアリング株式会社製の画像解析ソフト、A像くん(登録商標))を用いて、統計的に計算して求められる。
 酸化物粒子は、ケイ素含有化合物で表面処理されていてもよい。すなわち、酸化物粒子は、酸化物粒子の表面とケイ素含有化合物のケイ素原子とが酸素原子を介して結合していているものであってもよい。ケイ素含有化合物は、好ましくはアルコキシシラン、エポキシ基含有シラン、アミノ基含有シラン、シラザン、及びシロキサンからなる群より選ばれる少なくとも1種である。
 アルコキシシランは、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメトキシジフェニルシラン、n-プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、n-プロピルトリエトキシシラン等であってもよい。
 エポキシ基含有シランは、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等であってもよい。
 アミノ基含有シランは、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等であってもよい。
 シラザンは、ヘキサメチルジシラザン等であってもよい。シロキサンは、ジメチルシリコーンオイル等であってもよい。これらの片末端又は両末端に、反応性官能基(例えば、カルボキシル基等)を有するものであってもよい。
 表面処理された酸化物粒子は、公知の方法によって製造したものを用いてもよく、市販品をそのまま用いてもよい。
 酸化物粒子の含有量は、電解質塩の解離を促進させる観点から、電解質組成物全量を基準として、好ましくは、5質量%以上、10質量%以上、15質量%以上、20質量%以上である。酸化物粒子の含有量は、導電率を更に向上させる観点から、電解質組成物全量を基準として、好ましくは50質量%以下であり、より好ましくは40質量%以下である。酸化物粒子の含有量は、電解質塩の解離を促進させる観点及び導電率を更に向上させる観点から、電解質組成物全量を基準として、好ましくは5~50質量%、5~40質量%、10~50質量%、10~40質量%、15~50質量%、15~40質量%、20~50質量%、又は20~40質量%である。
 酸化物粒子の含有量に対するポリマの含有量の質量比(ポリマの含有量/酸化物粒子の含有量)は、例えば、2/3以上、1/1以上、又は3/2以上であってよく、4/1以下、3/1以下、又は2/1以下であってよい。
 電解質塩は、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種である。電解質塩は、正極6と負極8との間でカチオンを授受させるために用いられる化合物である。上記の電解質塩は、低温では解離度が低く、溶媒中で拡散しやすいことに加え、高温により熱分解しないため、二次電池が使用可能な環境温度が広範となる点で好ましい。電解質塩は、フッ素イオン電池において用いられる電解質塩であってもよい。
 電解質塩のアニオンは、ハロゲン化物イオン(I、Cl、Br等)、SCN、BF 、BF(CF、BF(C、PF 、ClO 、SbF 、N(SOF) 、N(SOCF 、N(SO 、B(C 、B(O 、C(SOF) 、C(SOCF 、CFCOO、CFSO、CSO、B(O 等であってよい。アニオンは、好ましくは、PF 、BF 、N(SOF) 、N(SOCF 、B(O 、又はClO である。
 なお、以下では下記の略称を用いる場合がある。
[FSI]:N(SOF) 、ビス(フルオロスルホニル)イミドアニオン
[TFSI]:N(SOCF 、ビス(トリフルオロメタンスルホニル)イミドアニオン
[BOB]:B(O 、ビスオキサレートボラートアニオン
[f3C]:C(SOF) 、トリス(フルオロスルホニル)カルボアニオン
 リチウム塩は、LiPF、LiBF、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、LiClO、LiBF(CF)、LiBF(C)、LiBF(C)、LiBF(C)、LiC(SOCF、LiCFSOO、LiCFCOO、及びLiRCOO(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。
 ナトリウム塩は、NaPF、NaBF、Na[FSI]、Na[TFSI]、Na[f3C]、Na[BOB]、NaClO、NaBF(CF)、NaBF(C)、NaBF(C)、NaBF(C)、NaC(SOCF、NaCFSOO、NaCFCOO、及びNaRCOO(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。
 カルシウム塩は、Ca(PF、Ca(BF、Ca[FSI]、Ca[TFSI]、Ca[f3C]、Ca[BOB]、Ca(ClO、Ca[BF(CF)]、Ca[BF(C)]、Ca[BF(C)]、Ca[BF(C)]、Ca[C(SOCF、Ca(CFSOO)、Ca(CFCOO)、及びCa(RCOO)(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。
 マグネシウム塩は、Mg(PF、Mg(BF、Mg[FSI]、Mg[TFSI]、Mg[f3C]、Mg[BOB]、Mg(ClO、Mg[BF(CF)]、Mg[BF(C)]、Mg[BF(C)]、Mg[BF(C)]、Mg[C(SOCF、Mg(CFSO、Mg(CFCOO)、及びMg(RCOO)(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。
 これらのうち、解離性及び電気化学的安定性の観点から、電解質塩は、好ましくはLiPF、LiBF、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、LiClO4、LiBF(CF)、LiBF(C)、LiBF(C)、LiBF(C)、LiC(SOCF、LiCFSOO、LiCFCOO、及びLiRCOO(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であり、より好ましくはLi[TFSI]、Li[FSI]、LiPF、LiBF、Li[BOB]、及びLiClO4からなる群より選ばれる少なくとも1種であり、更に好ましくはLi[TFSI]、及びLi[FSI]からなる群より選ばれる1種である。
 電解質塩の含有量は、電解質層7を好適に作製するために、電解質組成物全量を基準として、10質量%以上60質量%以下であってよい。電解質塩の含有量は、電解質層の導電率を更に高める観点から、好ましくは20質量%以上であり、リチウム二次電池を高い負荷率で充放電することを可能にする観点から、より好ましくは30質量%以上である。
 溶媒は、好ましくは、蒸気圧が低く、かつ、燃焼しにくいものである。
 溶媒は、下記式(1)で表されるグライムであってよい。
 RO-(CHCHO)-R   (1)
 式(1)中、R及びRは、それぞれ独立に、炭素数4以下のアルキル基又は炭素数4以下のフルオロアルキル基を表し、kは1~6の整数を表す。R及びRは、それぞれ独立に、好ましくはメチル基又はエチル基である。
 グライムは、具体的には、モノグライム(k=1)、ジグライム(k=2)、トリグライム(k=3)、テトラグライム(k=4)、ペンタグライム(k=5)、ヘキサグライム(k=6)であってよい。
 電解質組成物が溶媒としてグライムを含有する場合、グライムの一部又は全部は、電解質塩と錯体を形成していてよい。
 溶媒は、イオン液体であってもよい。イオン液体は、以下のアニオン成分及びカチオン成分を含有する。なお、本実施形態におけるイオン液体は、-20℃以上で液状の物質である。
 イオン液体のアニオン成分は、特に限定されないが、Cl、Br、I等のハロゲンのアニオン、BF 、N(SOF) 等の無機アニオン、B(C 、CHSO 、CFSO 、N(CSO 、N(SOCF 、N(SO 等の有機アニオンなどであってよい。イオン液体のアニオン成分は、好ましくは、B(C 、CHSO 、N(SO 、CFSO、N(SOF) 、N(SOCF 及びN(SO からなる群より選ばれる少なくとも1種を含有し、比較的低粘度でイオン伝導度を更に向上させるとともに、充放電特性も更に向上させる観点から、より好ましくは、N(CSO 、CFSO 、N(SOF) 、N(SOCF 、及びN(SOCFCF からなる群より選ばれる少なくとも1種を含有し、更に好ましくはN(SOF) を含有する。
 イオン液体のアニオン成分は、下記式(2)で表されるアニオン成分の少なくとも1種を含有してもよい。
 N(SO2m+1)(SO2n+1    (2)
 m及びnは、それぞれ独立に0~5の整数を表す。m及びnは、互いに同一でも異なっていてもよく、好ましくは互いに同一である。
 式(2)で表されるアニオン成分としては、例えば、N(SO 、N(SOF) 、N(SOCF 、及びN(SO が挙げられる。
 イオン液体のカチオン成分は、特に限定されないが、好ましくは鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種である。
 鎖状四級オニウムカチオンは、例えば、下記式(3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000001
[式(3)中、R~Rは、それぞれ独立に、炭素数が1~20の鎖状アルキル基、又はR-O-(CH-で表される鎖状アルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表し、Xは、窒素原子又はリン原子を表す。R~Rで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 ピペリジニウムカチオンは、例えば、下記式(4)で表される、窒素を含有する六員環環状化合物である。
Figure JPOXMLDOC01-appb-C000002
[式(4)中、R及びRは、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R及びRで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 ピロリジニウムカチオンは、例えば、下記式(5)で表される五員環環状化合物である。
Figure JPOXMLDOC01-appb-C000003
[式(5)中、R及びR10は、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R及びR10で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 ピリジニウムカチオンは、例えば、下記式(6)で示される化合物である。
Figure JPOXMLDOC01-appb-C000004
[式(6)中、R11~R15は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R11~R15で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 イミダゾリウムカチオンは、例えば、下記式(7)で示される化合物である。
Figure JPOXMLDOC01-appb-C000005
[式(7)中、R16~R20は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R16~R20で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 イオン液体は、より具体的には、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム-ビス(トリフルオロメタンスルホニル)イミド(DEME-TFSI)、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム-ビス(フルオロスルホニル)イミド(DEME-FSI)、1-エチル-3-メチルイミダゾリジウム-ビス(トリフルオロメタンスルホニル)イミド(EMI-TFSI)、1-エチル-3-メチルイミダゾリジウム-ビス(フルオロスルホニル)イミド(EMI-FSI)、N-メチル-N-プロピルピロリジニウム-ビス(トリフルオロメタンスルホニル)イミド(Py13-TFSI)、N-メチル-N-プロピルピロリジニウム-ビス(フルオロスルホニル)イミド(Py13-FSI)、N-エチル-N-メチルピロリジニウム-ビス(トリフルオロメタンスルホニル)イミド(Py12-TFSI)、N-エチル-N-メチルピロリジニウム-ビス(フルオロスルホニル)イミド(Py12-FSI)、1-エチル-3-メチルイミダゾリウムジシアナミド(EMI-DCA)であってよい。
 電解質組成物は、溶媒として、導電率を更に向上させることを目的として、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン、ジエチルカーボネート、メチルエチルカーボネート、1,2-ジメトキシエタン、2-メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン、3-メチル-2-オキサゾリジノン、テトラヒドロフラン、1,2-ジエトキシエタン、クロルエチレンカーボネート、クロルプロピレンカーボネート等の非水溶媒を更に含有していてもよい。電解質組成物は、安全性を向上させる観点から、好ましくは、溶媒として、上述のグライム及びイオン液体から選ばれる少なくとも1種のみを含有する。
 溶媒の含有量は、電解質層を好適に作製する観点から、電解質組成物全量を基準として、10~80質量%、又は10~60質量%以下であってよい。溶媒の含有量は、電解質層の強度低下を抑制する観点から、電解質層全量を基準として、好ましくは80質量%以下である。溶媒の含有量は、電解質塩の含有量を増加させることにより、電解質膜の導電率を増大させてリチウム二次電池を高い負荷率で充放電することを可能にする観点から、電解質組成物全量を基準として、40質量%以下、又は30質量%以下であってもよい。
 電解質塩と溶媒(例えばテトラグライム等のグライム又はイオン液体)との合計の含有量は、導電率を更に向上させ、二次電池の容量低下を抑制する観点から、電解質組成物全量を基準として、好ましくは10質量%以上であり、より好ましくは25質量%以上であり、更に好ましくは40質量%以上である。電解質塩と溶媒との合計の含有量は、電解質組成物の強度低下を抑制する観点から、好ましくは80質量%以下であり、より好ましくは70質量%以下である。電解質塩と溶媒との合計の含有量は、導電率を更に向上させ、二次電池の容量低下を抑制する観点及び電解質組成物の強度低下を抑制する観点から、電解質組成物全量を基準として、好ましくは、10~80質量%、10~70質量%、25~80質量%、25~70質量%、40~80質量%、又は40~70質量%である。
 電解質組成物において、溶媒の単位体積あたりの電解質塩の濃度は、充放電特性を更に向上させる観点から、好ましくは0.5mol/L以上、より好ましくは0.7mol/L以上、更に好ましくは0.8mol/L以上であり、また、好ましくは2.0mol/L以下、より好ましくは1.8mol/L以下、更に好ましくは1.5mol/L以下である。
 電解質支持材の含有量に対する電解質の含有量の質量比(電解質の含有量/電解支持支持材の含有量)は、電解質組成物の液漏れを抑制する観点から、1/4以上、又は2/3以上であってよく、3/1以下、3/2以下、又は1/1以下であってよい。
 電解質層7の厚さは、導電率を高め、強度を向上させる観点から、好ましくは5μm以上であり、より好ましくは10μm以上である。電解質層7の厚さは、電解質層7の抵抗を抑制する観点から、好ましくは200μm以下であり、より好ましくは150μm以下であり、更に好ましくは100μm以下であり、特に好ましくは50μm以下である。
 続いて、上述した二次電池1の製造方法について説明する。本実施形態に係る二次電池1の製造方法は、正極集電体9上に正極合剤層10を形成して正極6を得る第1の工程と、負極集電体11上に負極合剤層12を形成して負極8を得る第2の工程と、正極6と負極8との間に電解質層7を設ける第3の工程と、を備える。
 第1の工程では、正極6は、例えば、正極合剤層に用いる材料を混練機、分散機等を用いて分散媒に分散させてスラリ状の正極合剤を得た後、この正極合剤をドクターブレード法、ディッピング法、スプレー法等により正極集電体9上に塗布し、その後分散媒を揮発させることにより得られる。分散媒を揮発させた後、必要に応じて、ロールプレスによる圧縮成型工程が設けられてもよい。正極合剤層10は、上述した正極合剤の塗布から分散媒の揮発までの工程を複数回行うことにより、多層構造の正極合剤層として形成されてもよい。
 第1の工程において用いられる分散媒は、水、1-メチル-2-ピロリドン(以下、NMPともいう。)等であってよい。なお、分散媒は、上述の溶媒以外の化合物である。
 正極合剤層10において、正極活物質、導電剤、バインダ、電解質塩及び溶媒が含まれる場合、正極活物質、導電剤、バインダ、及び電解質塩を溶解した溶媒の混合比は、例えば、正極活物質:導電剤:バインダ:電解質塩を溶解した溶媒=69~82:0.1~10:1~12:10~17(質量比)であってよい。ただし、必ずしもこの範囲に限定されない。
 第2の工程において、負極集電体11に負極合剤層12を形成する方法は、上述した第1の工程と同様の方法であってよい。
 負極合剤層12において、負極活物質、導電剤、バインダ、電解質塩及び溶媒が含まれる場合、負極活物質、導電剤、バインダ、及び電解質塩を溶解した溶媒の混合比は、例えば、負極活物質:導電剤:バインダ:電解質塩を溶解したイオン液体=69~82:0.1~10:1~12:10~17(質量比)であってよい。ただし、必ずしもこの範囲に限定されない。
 第3の工程では、一実施形態において、電解質層7は、例えば、基材上に電解質組成物を備えた電解質シートを作製することにより形成される。図4(a)は、一実施形態に係る電解質シートを示す模式断面図である。図4(a)に示すように、電解質シート13Aは、基材14と、基材14上に設けられた電解質層7とを有する。
 電解質シート13Aは、例えば、電解質層7に用いる材料(固形分)を分散媒に分散させてスラリを得た後、これを基材14上に塗布してから分散媒を揮発させることにより作製される。分散媒は、好ましくは水、NMP、トルエン等である。
 基材14は、分散媒を揮発させる際の加熱に耐えうる耐熱性を有するものであって、電解質組成物と反応せず、電解質組成物により膨潤しないものであれば制限されないが、例えば樹脂で形成されている。基材14は、具体的には、ポリエチレンテレフタレート、ポリ四フッ化エチレン、ポリイミド、ポリエーテルサルフォン、ポリエーテルケトン等の樹脂(汎用のエンジニアプラスチック)からなるフィルムであってよい。
 基材14は、電解質層を製造する過程において分散媒を揮発させる処理温度に耐えられる耐熱温度を有していればよい。耐熱温度は、基材14が樹脂で形成されている場合、基材14の軟化点(塑性変形し始める温度)又は融点のうち、より低い温度である。基材14の耐熱温度は、電解質層7に用いられる溶媒との適応性の観点から、好ましくは50℃以上であり、より好ましくは100℃以上であり、更に好ましくは150℃以上であり、また、例えば400℃以下であってよい。上記の耐熱温度を有する基材を使用すれば、上述したような分散媒(NMP、トルエン等)を好適に使用できる。
 基材14の厚さは、塗布装置での引張り力に耐えうる強度を維持しつつ、可能な限り薄いことが好ましい。基材14の厚さは、電解質シート13A全体の体積を小さくしつつ、電解質組成物を基材14に塗布する際に強度を確保する観点から、好ましくは5μm以上であり、より好ましくは10μm以上であり、更に好ましくは25μm以上であり、また、好ましくは100μm以下であり、より好ましくは50μm以下であり、更に好ましくは40μm以下である。
 電解質シートは、ロール状に巻き取りながら連続的に製造することもできる。その場合には、電解質層7の表面が基材14の背面に接触して電解質層7の一部が基材14に貼りつくことにより、電解質層7が破損することがある。このような事態を防ぐために、電解質シートは他の実施形態として、電解質層7の基材14と反対側に保護材を設けたものであってもよい。図4(b)は、他の実施形態に係る電解質シートを示す模式断面図である。図4(b)に示すように、電解質シート13Bは、電解質層7の基材14と反対側に保護材15を更に備えている。
 保護材15は、電解質層7から容易に剥離可能なものであればよく、好ましくはポリエチレン、ポリプロピレン、ポリ四フッ化エチレン等の無極性の樹脂フィルムである。無極性の樹脂フィルムを用いると、電解質層7と保護材15とが互いに貼りつかず、保護材15を容易に剥離することができる。
 保護材15の厚さは、電解質シート13B全体の体積を小さくしつつ、強度を確保する観点から、好ましくは5μm以上であり、より好ましくは10μmであり、また、好ましくは100μm以下であり、より好ましくは50μm以下であり、更に好ましくは30μm以下である。
 保護材15の耐熱温度は、低温環境での劣化を抑制するとともに、高温環境下での軟化を抑制する観点から、好ましくは-30℃以上であり、より好ましくは0℃以上であり、また、好ましくは100℃以下であり、より好ましくは50℃以下である。保護材15を設ける場合、上述した分散媒の揮発工程を必須としないため、耐熱温度を高くする必要がない。
 電解質シート13Aを用いて正極6と負極8との間に電解質層7を設ける方法としては、例えば、電解質シート13Aから基材14を剥離し、正極6、電解質層7及び負極8を、例えばラミネートにより積層することで二次電池1が得られる。このとき、電解質層7が、正極6の正極合剤層10側かつ負極8の負極合剤層12側に位置するように、すなわち、正極集電体9、正極合剤層10、電解質層7、負極合剤層12及び負極集電体11がこの順で配置されるように積層する。
 [第2実施形態]
 次に、第2実施形態に係る二次電池について説明する。図5は、第2実施形態に係る二次電池における電極群の一実施形態を示す模式断面図である。図5に示すように、第2実施形態における二次電池が第1実施形態における二次電池と異なる点は、電極群2Bが、バイポーラ電極16を備えている点である。すなわち、電極群2Bは、正極6と、第1の電解質層7と、バイポーラ電極16と、第2の電解質層7と、負極8とをこの順に備えている。
 バイポーラ電極16は、バイポーラ電極集電体17と、バイポーラ電極集電体17の負極8側の面(正極面)に設けられた正極合剤層10と、バイポーラ電極集電体17の正極6側の面(負極面)に設けられた負極合剤層12とを備えている。
 バイポーラ電極集電体17において、正極面は、好ましくは耐酸化性に優れた材料で形成されていてよく、アルミニウム、ステンレス鋼、チタン等で形成されていてよい。負極活物質として黒鉛又は合金を用いたバイポーラ電極集電体17における負極面は、リチウムと合金を形成しない材料で形成されていてよく、具体的には、ステンレス鋼、ニッケル、鉄、チタン等で形成されていてよい。正極面と負極面に異種の金属を用いる場合、バイポーラ電極集電体17は、異種金属箔を積層させたクラッド材であってよい。ただし、チタン酸リチウムのように、リチウムと合金を形成しない電位で動作する負極8を用いる場合、上述の制限はなくなり、負極面は、正極集電体9と同様の材料であってよい。その場合、バイポーラ電極集電体17は、単一の金属箔であってよい。単一の金属箔としてのバイポーラ電極集電体17は、孔径0.1~10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板等であってよい。バイポーラ電極集電体17は、上記以外にも、電池の使用中に溶解、酸化等の変化を生じないものであれば、任意の材料で形成されていてよく、また、その形状、製造方法等も制限されない。
 バイポーラ電極集電体17の厚さは、10μm以上100μm以下であってよく、正極全体の体積を小さくする観点から、好ましくは10μm以上50μm以下であり、電池を形成する際に小さな曲率でバイポーラ電極を捲回する観点から、より好ましくは10μm以上20μm以下である。
 続いて、第2実施形態に係る二次電池の製造方法について説明する。本実施形態に係る二次電池の製造方法は、正極集電体9上に正極合剤層10を形成して正極6を得る第1の工程と、負極集電体11上に負極合剤層12を形成して負極8を得る第2の工程と、バイポーラ電極集電体17の一方の面に正極合剤層10を形成し、他方の面に負極合剤層12を形成してバイポーラ電極16を得る第3の工程と、正極6とバイポーラ電極16との間及び負極8とバイポーラ電極16との間に電解質層7を設ける第4の工程と、を有する。
 第1の工程及び第2の工程は、第1実施形態における第1の工程及び第2の工程と同様の方法であってよい。
 第3の工程において、バイポーラ電極集電体17の一方の面に正極合剤層10を形成する方法は、第1実施形態における第1の工程と同様の方法であってよい。バイポーラ電極集電体17の他方の面に負極合剤層12を形成する方法は、第1実施形態における第2の工程と同様の方法であってよい。
 第4の工程のうち正極6とバイポーラ電極16との間に電解質層7を設ける方法としては、一実施形態において、電解質層7は、例えば、基材上に電解質組成物を備えた電解質シートを製造することにより形成される。電解質シートの製造方法は、第1実施形態における電解質シート13A,13Bの製造方法と同様の方法であってよい。
 第4の工程において、負極8とバイポーラ電極16との間に電解質層7を設ける方法は、上述した正極6とバイポーラ電極16との間に電解質層7を設ける方法と同様の方法であってよい。
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<試験例1>
(実施例1-1)
 ポリマであるフッ化ビニリデンとヘキサフルオロピレンとのコポリマ(フッ化ビニリデン/ヘキサフルオロピレン(質量比)=95/5。以下、PVDF-HFPとも称する。)を26質量%と、酸化物粒子であるSiO粒子(平均粒径0.1μm)を13質量%と、電解質塩であるリチウムビス(フルオロスルホニル)イミド(Li[FSI])を34.5質量%と、溶媒であるテトラグライムを26.5質量%とを、分散媒であるNMPに分散させ、電解質組成物を含むスラリを調製した。得られたスラリを、ポリエチレンテレフタレート製の基材に塗布し、加熱して分散媒を揮発させることにより電解質シートを得た。得られた電解質シートにおける電解質層の厚さは、25±2μmであった。
(実施例1-2~1-4)
 実施例1の電解質シートにおいて、各材料の含有量を表1に示す含有量に変更した以外は、実施例1の同様の方法により電解質シートを作製した。
(実施例1-5)
 実施例1の電解質シートにおいて、酸化物粒子の含有量を増加させて、電解質塩と溶媒の合計含有量(表1における(A)+(B))を減少させた以外は、実施例1と同様の方法により電解質シートを作製した。
(実施例1-6~1-13)
 実施例1の電解質シートにおいて、酸化物粒子の種類を表1~表2に示したものに変更した以外は、実施例1と同様の方法により電解質シートを作製した。
(実施例1-14~1-16)
 実施例1の電解質シートにおいて、酸化物粒子であるSiO粒子の平均粒径を表2に示した平均粒径に変更した以外は、実施例1と同様の方法により電解質シートを作製した。
(実施例1-17~1-18)
 実施例1の電解質シートにおいて、ポリマ中のヘキサフルオロプロピレンの含有量を表2に示した含有量に変更した以外は、実施例1と同様の方法により電解質シートを作製した。
(実施例1-19~1-22)
 実施例1の電解質シートにおいて、溶媒を表2~表3に示したものに変更した以外は、実施例1と同様の方法により電解質シートを作製した。表3において、実施例1-21のEMI-TFSI(EMI-BTI)は1-エチル-3-メチルイミダゾリジウム-ビス(トリフルオロメタンスルホニル)イミド[CAS番号174899-82-2]を表し、実施例1-22のEMI-DCAは1-エチル-3-メチルイミダゾリウムジシアナミド[CAS番号370865-89-7]を表す。
(実施例1-23~1-30)
 実施例1の電解質シートにおいて、ポリマの種類を表3に示したものに変更した以外は、実施例1と同様の方法により電解質シートを作製した。表3において、ポリマの略称は以下のものを示し、ポリマの混合比は質量比を意味する。
 PVDF+PA:ポリフッ化ビニリデンとポリアクリル酸との混合物
 PVDF-MA:フッ化ビニリデンとマレイン酸とのコポリマ
 PTFE+PMMA:ポリ四フッ化エチレンとポリメチルメタクリレートとの混合物
 PVDF+PMMA:ポリフッ化ビニリデンとポリメチルメタクリレートとの混合物
 PVDF-HFP+PMMA:フッ化ビニリデンとヘキサフルオロピレンとのコポリマと、ポリメチルメタクリレートとの混合物
 PVDF-HFP+PAN:フッ化ビニリデンとヘキサフルオロピレンとのコポリマと、ポリアクリロニトリルとの混合物
 PVDF-HFP+PVC:フッ化ビニリデンとヘキサフルオロピレンとのコポリマと、ポリポリ塩化ビニルとの混合物
(比較例1-1)
 実施例1-1の電解質シートにおいて、酸化物粒子を使用しなかった以外は、実施例1と同様の方法により電解質シートを作製した。
(比較例1-2~1-8)
 実施例1-1の電解質シートにおいて、ポリマの種類及び/又は混合比を表4に示したものに変更した以外は、実施例1と同様の方法により電解質シートを作製した。表4において、ポリマの略称は以下のものを示し、ポリマの混合比は質量比を意味する。
 PVDF:ポリフッ化ビニリデン
 PVDF-HFP+PAN+PVC:フッ化ビニリデンとヘキサフルオロピレンとのコポリマと、ポリアクリロニトリルと、ポリ塩化ビニルとの混合物
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
[電解質シートの評価]
 実施例及び比較例に係る電解質シートの特性について、以下の項目を評価した。結果を表5に示す。
(導電率)
 電解質シートの調製工程におけるスラリに市販の導電率計を投入し、25℃の条件で導電率を測定した。
(スラリの性状)
 電解質シートの調製工程におけるスラリの性状について、ゲル化の有無を目視により確認した。スラリ作製後に、ドライルーム内にてスラリを放置し、5時間経過後、スラリの少なくとも一部が固化(ゲル化)していない場合は、ゲル化していないと判定し、少なくとも一部が固化していれば、ゲル化していると判定した。スラリのゲル化は、ポリマと、電解質塩と、溶媒について、分散媒に対する相互の溶解性が低い場合に生じうる。ゲル化が生ずると電解質シートを薄層化することが困難になるため、ゲル化が生じない方がよい。表5においては、ゲル化したものを+、ゲル化しなかったものを-と示した。
(電解質組成物の表面性状)
 電解質シートにおいて、電解質組成物の表面性状を目視により確認した。電解質組成物の表面は、平滑であり、凹凸及び欠損部分がないことが好ましい。表5においては、凹凸を有していたものを+、凹凸を有しなかったものを-と示した。
(破断の有無)
 電解質シートにおいて、電解質層の端部を基材から剥離する際の破断の有無を目視により評価した。表5においては、破断が生じたものを+、破断が生じなかったものを-と示した。
(液漏れの有無)
 電解質シートに荷重を加えた際の、溶媒による液漏れの有無を評価した。切断した電解質シートに、樹脂フィルム(厚さ25μmのポリエチレンテレフタレート製フィルム)を2kg/cmの荷重を加えながら押し付けた。このとき、液状の電解質組成物の付着有無を目視により評価した。表5においては、液漏れが生じたものを+、液漏れが生じなかったものを-とした。
Figure JPOXMLDOC01-appb-T000010
 各材料の含有量を変化させた実施例1-1~1-4における導電率を比較すると、電解質塩と溶媒の合計含有量((A)+(B))が多いほど、すなわち電解質塩の添加量が多いほど、導電率が増大する傾向があった。
 実施例1-1に対して酸化物粒子の含有量を増加させ、(A)+(B)の含有量を減少させた実施例1-5は、実施例1-1に比べて電解質塩の含有量が減少したため導電率がやや低下したが、ほぼ同じ量の電解質塩を含有する実施例1-2よりも導電率が高かった。すなわち、酸化物粒子の含有量が増加することにより、導電性が更に向上することが分かった。
 酸化物粒子の種類を変更させた実施例1-6~1-13は、いずれの酸化物粒子を使用しても、0.6mS/cm以上の導電率を有していた。
 酸化物粒子の平均粒径を変化させた実施例1-14~1-16については、実施例1-1を含めて比較すると、酸化物粒子の平均粒径が0.1μmから3μmである実施例1-14と実施例1-15はほぼ同等の導電率を示し、6μmである実施例1-16の導電率はやや低下する傾向が認められた。この結果より、平均粒径6μm程度までの酸化物粒子を用いることにより強度と導電性に優れた電解質シートを得ることができるが、導電率を更に向上させるためには平均粒径を1μm以下にすることが望ましいことがわかる。
 ポリマ中のヘキサフルオロプロピレンの含有量を変化させた実施例1-17~1-18については、実施例1-1を含めて比較すると、ヘキサフルオロプロピレンの含有量が多いほど、導電率が増大する傾向にある。
 溶媒の種類を変更した実施例1-19~1-22のうち、実施例1-21及び1-22では、導電率が1mS/cmを超えていた。
 ポリマの種類を変更した実施例1-23~1-30については、第1の構造単位及び第2の構造単位からなる3種類のポリマを用いた実施例1-28において、導電率が最も高かった。
 酸化物粒子を含有しない比較例1-1の導電率は、実施例1-1~1-30よりも劣っていた。
 第2の構造単位を含有しないポリマを使用した比較例1-2、及び、第1の構造単位及び第2の構造単位が含まれるポリマの含有量が、ポリマ全量基準で90質量%以下である比較例1-3~1-7の導電率は、実施例1-1~1-30より劣っていた。また、比較例1-2~1-7におけるスラリはゲル化し、電解質組成物の表面に凹凸が生じた。液漏れに関しては、第1の構造単位を含有するポリマ(PVDF-HFP)の含有量が大きいほど、液漏れがしにくいが、比較例1-6のように含有量が少なくなると、液漏れが生じた。第2の構造単位の含有量に対する第1の構造単位の含有量の質量比が50/50より小さい比較例1-8においては、電解質組成物の表面に凹凸が生じた。
<試験例2>
(実施例2-1)
[電解質シートの作製]
 PVDF-HFP(フッ化ビニリデン/ヘキサフルオロピレン(質量比)=95/5)を21質量%と、酸化物粒子であるSiO粒子(平均粒径0.1μm)を14質量%と、電解質塩であるリチウムビス(トリフルオロメタンスルホニル)イミド(Li[TFSI])をイオン液体(N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム-ビス(トリフルオロメタンスルホニル)イミド(DEME-TFSI)に、電解質塩が1.5mol/Lの濃度となるように溶解させた電解質溶液65質量%とを、分散媒であるNMPに分散させ、電解質組成物を含むスラリを調製した。得られたスラリを、ポリエチレンテレフタレート製の基材に塗布し、加熱して分散媒を揮発させることにより電解質シートを得た。得られた電解質シートにおける電解質層の厚さは、25±2μmであった。以下、電解質塩を溶解させたイオン液体の組成を表す際に、「リチウム塩の濃度/リチウム塩の種類/イオン液体の種類」のように表記することがある。
[リチウムイオン二次電池の作製]
 層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(正極活物質)78.5質量部、アセチレンブラック(導電剤、製品名:HS-100、平均粒径48nm、デンカ株式会社製)5質量部、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ溶液(固形分12質量%)2.5質量部と、電解質塩を溶解させたイオン液体(1.5mol/L/Li[FSI]/Py13-FSI)を14質量部と、を混合して正極合剤スラリを調製した。この正極合剤スラリを正極集電体(厚さ20μmのアルミニウム箔)上に塗工量125g/mで塗工し、80℃で加熱して乾燥させることにより、合剤密度2.7g/cmの正極合剤層を形成した。これを幅30mm、長さ45mmに切断して正極板とし、図2に示すようにこの正極板に正極集電タブを取り付けた。
 黒鉛1(負極活物質、日立化成株式会社製)78質量部、黒鉛2(日本黒鉛工業株式会社製)2.4質量部、炭素繊維(導電剤、製品名:VGCF-H、昭和電工株式会社製)0.6質量部、フッ化ビニリデンとヘキサフルオロプロピレンのコポリマ溶液(固形分12質量%)5質量部、電解質塩を溶解させたイオン液体(1.5M/Li[FSI]/Py13-FSI)14質量部を混合して負極合剤スラリを調製した。この負極合剤スラリを集電体(厚さ10μmの銅箔)上に塗工量60g/mで塗工し、80℃で加熱して乾燥させることにより、合剤密度1.8g/cmの負極合剤層を形成した。これを幅31mm、長さ46mmに切断して負極板とし、図2に示すようにこの負極板に負極集電タブを取り付けた。
 作製した正極板と負極板との間に、電解質シートから基材を剥離して配置し、積層状の電極群を作製した。
 上記電極群を、図1に示すように、アルミニウム製のラミネートフィルムで構成された電池外装体内に収容した。この電池外装体内に、上記の正極集電タブと負極集電タブとを外部に取り出すようにして電池容器の開口部を封口し、実施例2-1のリチウムイオン二次電池を作製した。なお、アルミニウム製のラミネートフィルムは、ポリエチレンテレフタレート(PET)フィルム/アルミニウム箔/シーラント層(ポリプロピレン等)の積層体である。作製したリチウムイオン二次電池の設計容量は20mAhであった。
(実施例2-2~2-3)
 電解質シートにおいて、電解質支持材(電解質塩及び溶媒以外の材料)の含有量に対する電解質(電解質塩及び溶媒)の含有量の質量比(電解質の含有量/電解質支持材の含有量)を表6に示したものに変更した以外は、実施例2-1と同様の方法によりリチウムイオン二次電池を作製した。
(実施例2-4~2-5)
 電解質シートにおいて、電解質における電解質塩の濃度を表6に示したものに変更した以外は、実施例2-1と同様の方法によりリチウムイオン二次電池を作製した。
(実施例2-6~2-7)
 電解質シートにおいて、電解質における電解質塩及び溶媒を表6に示したものに変更した以外は、実施例2-1と同様の方法によりリチウムイオン二次電池を作製した。
(実施例2-8)
 電解質シートにおいて、酸化物粒子の平均粒径を表6に示したものに変更した以外は、実施例2-1と同様の方法によりリチウムイオン二次電池を作製した。
(実施例2-9~2-10)
 電解質シートにおいて、酸化物粒子の含有量に対するポリマの含有量の質量比(ポリマの含有量/酸化物粒子の含有量)を表6に示したものに変更した以外は、実施例2-1と同様の方法によりリチウムイオン二次電池を作製した。
(実施例2-11~2-12)
 電解質シートにおいて、ポリマにおける構造単位の質量比を表7に示したものに変更した以外は、実施例2-1と同様の方法によりリチウムイオン二次電池を作製した。
(実施例2-13)
 電解質シートにおいて、酸化物粒子の平均粒径、電解質塩の種類、溶媒の種類、及び、電解質の含有量/電解支持材の含有量を表7に示したものに変更した以外は、実施例2-1と同様の方法によりリチウムイオン二次電池を作製した。
(実施例2-14)
 電解質シートにおいて、酸化物粒子の平均粒径を表7に示したものに変更した以外は、実施例2-13と同様の方法によりリチウムイオン二次電池を作製した。
(実施例2-15)
 電解質シートにおいて、電解質の含有量/電解支持材の含有量(質量比)を表7に示したものに変更した以外は、実施例2-13と同様の方法によりリチウムイオン二次電池を作製した。
(実施例2-16~2-17)
 電解質シートにおいて、ポリマの含有量/酸化物粒子の含有量(質量比)、及び、電解質の含有量/電解支持材の含有量(質量比)を表7に示したものに変更した以外は、実施例2-13と同様の方法によりリチウムイオン二次電池を作製した。
(実施例2-18)
 電解質シートにおいて、イオン液体の種類を表7に示したものに変更した以外は、実施例2-13と同様の方法によりリチウムイオン二次電池を作製した。
(実施例2-19)
 電解質シートにおいて、酸化物粒子の平均粒径を表7に示したものに変更した以外は、実施例2-18と同様の方法によりリチウムイオン二次電池を作製した。
(実施例2-20)
 電解質シートにおいて、電解質の含有量/電解支持材の含有量を表7に示したものに変更した以外は、実施例2-18と同様の方法によりリチウムイオン二次電池を作製した。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
[電解質シートの評価]
 実施例2-1~2-20において作製した電解質シートについて、試験例1と同様の方法により、導電率、スラリの性状、電解質組成物の表面性状、及び液漏れの有無を評価した。結果を表8に示す。
[リチウムイオン二次電池の初期特性の評価]
 上記の実施例2-1~2-20に係るリチウムイオン二次電池を、充放電装置(BATTERY TEST UNIT、株式会社IEM製)を用いて、25℃において電流値0.2C、充電終止電圧4.2Vで定電流充電を行った。15分間休止後、電流値0.2C、放電終止電圧2.7Vで定電流放電した。上記の充放電条件で充放電を3回繰り返し、3回目の放電容量(初期容量)を測定した。以下の式(9)からリチウムイオン二次電池の初期特性を算出した。結果を表8に示す。
 初期特性(%)=(初期容量/設計容量)×100   (9)
Figure JPOXMLDOC01-appb-T000013
<試験例3(参考)>
 電解質組成物に含まれる酸化物粒子の平均一次粒径と、シート状に形成された電解質組成物の引張強度及び放電レート特性との関係を調べるために、下記の試験を実施した。
(参考例3-1)
[電解質シートの作製]
 PVDF-HFP(フッ化ビニリデン/ヘキサフルオロピレン(質量比)=95/5)と、酸化物粒子であるSiO粒子(平均一次粒径約1μm、製品名:AEROSIL SO-C4、日本アエロジル株式会社製)と、乾燥アルゴン雰囲気下で乾燥したリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)をテトラグライム(テトラエチレングリコールジメチルエーテル、G4)に、電解質塩が2.3mol/Lの濃度となるように溶解させた電解質溶液とを、分散媒であるNMPに分散させ、電解質組成物を含むスラリを調製した。このスラリに、電解質溶液を更に添加して混合し、ポリマと、酸化物粒子と、電解質溶液との質量比を、ポリマ:酸化物粒子:電解質溶液=30:20:50とした。その後、NMPを更に加えて粘度を調節し、このスラリをポリエチレンテレフタレート製の基材(製品名:テオネックスR-Q51、帝人デュポンフィルム株式会社製、厚さ38μm)上にアプリケータを用いて塗布した。塗布したスラリを100℃で2時間加熱乾燥することにより、分散媒を揮発させて、電解質シートを得た。
[評価用コイン型電池の作製]
 正極活物質としてLiNi1/3Mn1/3Co1/3が含まれる正極、電解質シート、負極活物質として天然黒鉛が含まれる負極を用いて評価用コイン型電池を作製した。正極、電解質シートから基材を剥離して得た電解質層、負極をこの順に重ね、CR2016型のコインセル容器内に配置した後、電解質シートの作製に用いたスラリと同じ組成の液(電解液)を少量添加し、絶縁性のガスケットを介して電池容器上部をかしめて密閉した。なお、電解液は、正極および負極の空隙体積の130~200%になるように添加した。電極合剤層の空隙体積は、集電体を除く電極合剤層の見かけ体積(面積×厚さ)を測定した後、下式に従ってそれぞれ計算した。
 正極合剤層の空隙体積=正極合剤層の見かけ体積-(正極活物質の質量/正極活物質の真密度)-(導電剤の質量/導電剤の真密度)-(バインダの質量/バインダの真密度)
 負極合剤層の空隙体積=負極合剤層の見かけ体積-(負極活物質の質量/負極活物質の真密度)-(導電剤の質量/導電剤の真密度)-(バインダの質量/バインダの真密度)
(参考例3-2)
 電解質シートにおいて、酸化物粒子を、表面処理(フェニルアミノシラン処理)がなされたSiO粒子(平均一次粒径約1μm、製品名:AEROSIL SX-C7、日本アエロジル株式会社製)を用いた以外は、実施例3-1と同様の方法により評価用コイン型電池を作製した。
(参考例3-3)
 電解質シートにおいて、酸化物粒子を、平均一次粒径の異なるSiO粒子(平均一次粒径約2μm、製品名:AEROSIL SO-C6、日本アエロジル株式会社製)を用いた以外は、実施例3-1と同様の方法により評価用コイン型電池を作製した。
(参考例3-4)
 電解質シートにおいて、酸化物粒子を、平均一次粒径の異なるSiO粒子(平均一次粒径約0.04μm、製品名:AEROSIL OX-10、日本アエロジル株式会社製)を用いた以外は、実施例3-1と同様の方法により評価用コイン型電池を作製した。
[電解質シートの評価]
(引張強度)
 得られた電解質シートを幅5mmにカットし、チャックで挟んだ後、長さ20mmとなるように台座にテープで固定した。そして、フォースゲージ(日本電産シンポ株式会社製、FGP-5)を用いることによって電解質シートを引張り、電解質シートが破断したときの強度を測定した。結果を表9に示す。
[評価用コイン型電池の放電レート特性の評価]
 得られたコイン型電池について、25℃での放電レート特性を、充放電装置(東洋システム株式会社製)を用いて以下の充放電条件の下で測定した。
(1)終止電圧4.2V、0.05Cで定電流定電圧(CCCV)充電を行った後、0.05Cで終止電圧2.7Vまで定電流(CC)放電するサイクルを2サイクル行った。なお、Cとは「電流値(A)/電池容量(Ah)」を意味する。
(2)次いで、終止電圧4.2V、0.05Cで定電流定電圧(CCCV)充電を行った後、0.1Cで終止電圧2.7Vまで定電流(CC)放電、するサイクルを1サイクル行った。さらに1サイクルごとに定電流(CC)放電のレートを0.2、0.3、0.5、1.0Cと変化させ、放電レート特性を評価した。0.05Cに対する0.2Cの放電レート特性を表9に示す。
Figure JPOXMLDOC01-appb-T000014
 1…二次電池、6…正極、7…電解質層、8…負極、13A,13B…電解質シート、14…基材。

Claims (13)

  1.  1種又は2種以上のポリマと、
     酸化物粒子と、
     リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、
     溶媒と、を含有する電解質組成物であって、
     前記1種又は2種以上のポリマを構成する構造単位の中には、四フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれ、
     前記1種又は2種以上のポリマの含有量は、前記電解質組成物に含まれるポリマ全量基準で、90質量%を超え、
     前記1種又は2種以上のポリマにおいて、前記第2の構造単位の含有量に対する前記第1の構造単位の含有量の質量比は、50/50以上である、電解質組成物。
  2.  前記ポリマとして、前記第1の構造単位と前記第2の構造単位との両方を含むコポリマを含有する、請求項1に記載の電解質組成物。
  3.  前記ポリマとして、前記第1の構造単位を含む第1のポリマと、前記第2の構造単位を含む第2のポリマとの少なくとも2種のポリマを含有する、請求項1に記載の電解質組成物。
  4.  前記ポリマの含有量が、前記電解質組成物全量を基準として3~50質量%である、請求項1~3のいずれか一項に記載の電解質組成物。
  5.  前記酸化物粒子が、SiO、Al、AlOOH、MgO、CaO、ZrO、TiO、LiLaZr12、及びBaTiOからなる群より選ばれる少なくとも1種の粒子である、請求項1~4のいずれか一項に記載の電解質組成物。
  6.  前記酸化物粒子の含有量が、前記電解質組成物全量を基準として、5~40質量%である、請求項1~5のいずれか一項に記載の電解質組成物。
  7.  前記溶媒が下記式(1)で表されるグライムである、請求項1~6のいずれか一項に記載の電解質組成物。
     RO-(CHCHO)-R   (1)
    [式(1)中、R及びRは、それぞれ独立に、炭素数4以下のアルキル基又は炭素数4以下のフルオロアルキル基を表し、kは1~6の整数を表す。]
  8.  前記溶媒がイオン液体である、請求項1~6のいずれか一項に記載の電解質組成物。
  9.  前記イオン液体が、カチオン成分として、鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種を含有し、
     前記イオン液体が、アニオン成分として、下記式(2)で表されるアニオン成分の少なくとも1種を含有する、請求項8に記載の電解質組成物。
    N(SO2m+1)(SO2n+1    (2)
    [m及びnは、それぞれ独立に0~5の整数を表す。]
  10.  前記電解質塩と前記溶媒との合計の含有量が、前記電解質組成物全量を基準として、25~70質量%である、請求項1~9のいずれか一項に記載の電解質組成物。
  11.  シート状に形成された、請求項1~10のいずれか一項に記載の電解質組成物。
  12.  正極と、
     負極と、
     前記正極及び前記負極の間に設けられた、請求項1~11のいずれか一項に記載の電解質組成物からなる電解質層と、を備える二次電池。
  13.  1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種である電解質塩と、溶媒と、分散媒と、を含有するスラリを基材上に配置する工程と、
     前記分散媒を揮発させて前記基材上に電解質層を形成する工程と、を備え、
     前記1種又は2種以上のポリマを構成する構造単位の中には、四フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれ、
     前記1種又は2種以上のポリマの含有量は、前記スラリの固形分に含まれるポリマ全量基準で、90質量%を超え、
     前記1種又は2種以上のポリマにおいて、前記第2の構造単位の含有量に対する前記第1の構造単位の含有量の質量比は、50/50以上である、電解質シートの製造方法。
PCT/JP2018/021011 2017-06-01 2018-05-31 電解質組成物、二次電池、及び電解質シートの製造方法 WO2018221670A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP22180702.7A EP4102610A1 (en) 2017-06-01 2018-05-31 Electrolyte composition, secondary cell, and method for manufacturing electrolyte sheet
CN201880035462.3A CN110710044B (zh) 2017-06-01 2018-05-31 电解质组合物、二次电池、和电解质片的制造方法
US16/617,048 US20210075054A1 (en) 2017-06-01 2018-05-31 Electrolyte composition, secondary cell, and method for manufacturing electrolyte sheet
JP2019510989A JP6562184B2 (ja) 2017-06-01 2018-05-31 電解質組成物、二次電池、及び電解質シートの製造方法
EP18809223.3A EP3637522B1 (en) 2017-06-01 2018-05-31 Electrolyte composition, secondary cell, and method for manufacturing electrolyte sheet
KR1020217033514A KR102428844B1 (ko) 2017-06-01 2018-05-31 전해질 조성물, 이차 전지, 및 전해질 시트의 제조 방법
KR1020197037577A KR102316808B1 (ko) 2017-06-01 2018-05-31 전해질 조성물, 이차 전지, 및 전해질 시트의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPPCT/JP2017/020487 2017-06-01
PCT/JP2017/020487 WO2018220800A1 (ja) 2017-06-01 2017-06-01 電解質組成物、二次電池、及び電解質シートの製造方法
JP2017109486 2017-06-01
JP2017-109486 2017-06-01

Publications (1)

Publication Number Publication Date
WO2018221670A1 true WO2018221670A1 (ja) 2018-12-06

Family

ID=64456069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021011 WO2018221670A1 (ja) 2017-06-01 2018-05-31 電解質組成物、二次電池、及び電解質シートの製造方法

Country Status (7)

Country Link
US (1) US20210075054A1 (ja)
EP (2) EP3637522B1 (ja)
JP (1) JP6562184B2 (ja)
KR (2) KR102316808B1 (ja)
CN (1) CN110710044B (ja)
TW (2) TWI807628B (ja)
WO (1) WO2018221670A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020205146A (ja) * 2019-06-14 2020-12-24 昭和電工マテリアルズ株式会社 電解質シート及びその製造方法、並びに二次電池
WO2021038862A1 (ja) * 2019-08-30 2021-03-04 昭和電工マテリアルズ株式会社 電解質シート及びその製造方法、並びに二次電池
JP2022069049A (ja) * 2020-10-23 2022-05-11 株式会社豊田中央研究所 透明樹脂組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202143541A (zh) 2020-03-27 2021-11-16 日商第一工業製藥股份有限公司 電解質及蓄電元件
KR20230038210A (ko) * 2020-08-28 2023-03-17 주식회사 엘지에너지솔루션 리튬 이온 2차 전지, 분리막 및 이들의 제조 방법
FR3132163A1 (fr) * 2022-01-21 2023-07-28 Arkema France Electrolyte solide pour batterie tout solide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090728A (ja) * 1998-09-10 2000-03-31 Korea Advanced Inst Of Sci Technol 均質状の固体ポリマ―アロイ電解質及びその製造方法、それを利用した複合電極、並びにリチウム高分子電池及びリチウムイオン高分子電池並びにそれらの製造方法
JP2000164254A (ja) 1998-11-26 2000-06-16 Sony Corp ゲル状電解質及びゲル状電解質電池
JP2003077539A (ja) * 2001-09-04 2003-03-14 Mitsubishi Materials Corp ゲル状ポリマー電解質及びそれを用いたリチウムポリマー電池
JP2007141467A (ja) 2005-11-14 2007-06-07 Sony Corp ゲル電解質およびゲル電解質電池
WO2011037060A1 (ja) * 2009-09-24 2011-03-31 コニカミノルタホールディングス株式会社 電解質組成物、及びリチウムイオン二次電池
CN102522589A (zh) * 2011-12-16 2012-06-27 浙江大东南集团有限公司 一种新型具有互穿网络结构凝胶聚合物电解质及其制备方法和应用
WO2015068324A1 (ja) * 2013-11-05 2015-05-14 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2015097952A1 (ja) * 2013-12-27 2015-07-02 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4005660B2 (ja) * 1997-03-28 2007-11-07 Tdk株式会社 高分子固体電解質の製造方法、高分子固体電解質およびこれを用いた電気化学デバイス
JPH11162513A (ja) * 1997-11-27 1999-06-18 Daikin Ind Ltd ポリマー電解質及びこれを用いたリチウム二次電池
JP2003157719A (ja) * 2001-11-22 2003-05-30 Hitachi Maxell Ltd 常温溶融塩型固体電解質およびそれを用いた全固体電気化学素子
JP4363436B2 (ja) * 2006-10-13 2009-11-11 ソニー株式会社 二次電池
JP5533875B2 (ja) * 2009-08-28 2014-06-25 コニカミノルタ株式会社 固体電解質の製造方法および二次電池
JP5381636B2 (ja) * 2009-11-18 2014-01-08 コニカミノルタ株式会社 電池用固体電解質およびリチウムイオン二次電池
US20120301794A1 (en) * 2010-02-05 2012-11-29 Daikin Industries, Ltd. Composite gel electrolyte film for secondary battery, and secondary battery
JP6255722B2 (ja) * 2012-06-13 2018-01-10 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
KR102155696B1 (ko) * 2013-09-13 2020-09-15 삼성전자주식회사 복합막, 그 제조방법 및 이를 포함한 리튬 공기 전지
KR101747864B1 (ko) * 2014-08-28 2017-06-27 삼성전자주식회사 복합전해질 및 이를 포함하는 리튬전지
KR20160077271A (ko) * 2014-12-22 2016-07-04 삼성에스디아이 주식회사 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
WO2017199572A1 (ja) * 2016-05-17 2017-11-23 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
KR102244414B1 (ko) * 2016-05-23 2021-04-23 후지필름 가부시키가이샤 고체 전해질 조성물, 고체 전해질 함유 시트 및 전고체 이차 전지와 고체 전해질 함유 시트 및 전고체 이차 전지의 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090728A (ja) * 1998-09-10 2000-03-31 Korea Advanced Inst Of Sci Technol 均質状の固体ポリマ―アロイ電解質及びその製造方法、それを利用した複合電極、並びにリチウム高分子電池及びリチウムイオン高分子電池並びにそれらの製造方法
JP2000164254A (ja) 1998-11-26 2000-06-16 Sony Corp ゲル状電解質及びゲル状電解質電池
JP2003077539A (ja) * 2001-09-04 2003-03-14 Mitsubishi Materials Corp ゲル状ポリマー電解質及びそれを用いたリチウムポリマー電池
JP2007141467A (ja) 2005-11-14 2007-06-07 Sony Corp ゲル電解質およびゲル電解質電池
WO2011037060A1 (ja) * 2009-09-24 2011-03-31 コニカミノルタホールディングス株式会社 電解質組成物、及びリチウムイオン二次電池
CN102522589A (zh) * 2011-12-16 2012-06-27 浙江大东南集团有限公司 一种新型具有互穿网络结构凝胶聚合物电解质及其制备方法和应用
WO2015068324A1 (ja) * 2013-11-05 2015-05-14 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2015097952A1 (ja) * 2013-12-27 2015-07-02 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 370865-89-7

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020205146A (ja) * 2019-06-14 2020-12-24 昭和電工マテリアルズ株式会社 電解質シート及びその製造方法、並びに二次電池
WO2021038862A1 (ja) * 2019-08-30 2021-03-04 昭和電工マテリアルズ株式会社 電解質シート及びその製造方法、並びに二次電池
JP2022069049A (ja) * 2020-10-23 2022-05-11 株式会社豊田中央研究所 透明樹脂組成物
JP7325721B2 (ja) 2020-10-23 2023-08-15 株式会社豊田中央研究所 透明樹脂組成物

Also Published As

Publication number Publication date
CN110710044A (zh) 2020-01-17
TW201904121A (zh) 2019-01-16
TW202226660A (zh) 2022-07-01
EP4102610A1 (en) 2022-12-14
KR20210130242A (ko) 2021-10-29
EP3637522A4 (en) 2021-04-07
KR102428844B1 (ko) 2022-08-02
KR20200014332A (ko) 2020-02-10
JP6562184B2 (ja) 2019-08-21
EP3637522B1 (en) 2022-07-27
CN110710044B (zh) 2023-08-18
TWI807628B (zh) 2023-07-01
KR102316808B1 (ko) 2021-10-25
US20210075054A1 (en) 2021-03-11
TWI758486B (zh) 2022-03-21
EP3637522A1 (en) 2020-04-15
JPWO2018221670A1 (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6562184B2 (ja) 電解質組成物、二次電池、及び電解質シートの製造方法
WO2020145338A1 (ja) 電解液、電解質スラリ組成物及び二次電池
US11923505B2 (en) Electrolyte composition and rechargeable battery
WO2019180845A1 (ja) 電解質組成物、電解質シート及び二次電池
WO2018220800A1 (ja) 電解質組成物、二次電池、及び電解質シートの製造方法
JP7423120B2 (ja) 電解質スラリー組成物、電解質シートの製造方法、及び二次電池の製造方法
TWI787485B (zh) 電解質組成物、電解質片材及二次電池
WO2018221668A1 (ja) 電解質組成物及び二次電池
JP7446657B2 (ja) 二次電池用電極、二次電池用電解質層及び二次電池
WO2020017439A1 (ja) 電解質シートの製造方法及び二次電池の製造方法
JP2020113527A (ja) 電解質スラリ組成物及びその製造方法、並びに、電解質シート及びその製造方法
JP6642781B1 (ja) 電解質シート及び二次電池
WO2021001970A1 (ja) 電解質シート及び二次電池
JP2021153010A (ja) リチウム二次電池
JP2021018925A (ja) 非水電解液、並びにそれを用いた半固体電解質シート及び半固体電解質複合シート
JP2019145298A (ja) 活物質およびそれを用いたリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197037577

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018809223

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018809223

Country of ref document: EP

Effective date: 20200102