WO2018220800A1 - 電解質組成物、二次電池、及び電解質シートの製造方法 - Google Patents

電解質組成物、二次電池、及び電解質シートの製造方法 Download PDF

Info

Publication number
WO2018220800A1
WO2018220800A1 PCT/JP2017/020487 JP2017020487W WO2018220800A1 WO 2018220800 A1 WO2018220800 A1 WO 2018220800A1 JP 2017020487 W JP2017020487 W JP 2017020487W WO 2018220800 A1 WO2018220800 A1 WO 2018220800A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
electrolyte composition
positive electrode
group
salt
Prior art date
Application number
PCT/JP2017/020487
Other languages
English (en)
French (fr)
Inventor
西村 勝憲
信之 小川
秀之 小川
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2017/020487 priority Critical patent/WO2018220800A1/ja
Priority to CN201810375618.4A priority patent/CN108735972B/zh
Priority to EP18809223.3A priority patent/EP3637522B1/en
Priority to KR1020217033514A priority patent/KR102428844B1/ko
Priority to US16/617,048 priority patent/US20210075054A1/en
Priority to EP22180702.7A priority patent/EP4102610A1/en
Priority to CN201880035462.3A priority patent/CN110710044B/zh
Priority to PCT/JP2018/021011 priority patent/WO2018221670A1/ja
Priority to JP2019510989A priority patent/JP6562184B2/ja
Priority to KR1020197037577A priority patent/KR102316808B1/ko
Priority to TW111104450A priority patent/TWI807628B/zh
Priority to TW107118886A priority patent/TWI758486B/zh
Publication of WO2018220800A1 publication Critical patent/WO2018220800A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrolyte composition, a secondary battery, and a method for producing an electrolyte sheet.
  • lithium secondary batteries have been attracting attention as power sources for electric vehicle batteries, power storage batteries, and the like because of their high energy density.
  • lithium secondary batteries as batteries for electric vehicles include zero-emission electric vehicles that are not equipped with engines, hybrid electric vehicles that are equipped with both engines and secondary batteries, and plug-in hybrids that are charged directly from the power system. It is used in electric vehicles such as electric vehicles.
  • lithium secondary batteries as power storage batteries are used in stationary power storage systems that supply power stored in advance in an emergency when the power system is shut off.
  • lithium secondary battery having a higher energy density is demanded and developed.
  • lithium secondary batteries for electric vehicles require high safety in addition to high input / output characteristics and high energy density, more advanced technology for ensuring safety is required.
  • the gel electrolyte has an ionic conductivity equivalent to that of the electrolyte solution used in the conventional lithium secondary battery, so that it is released without deteriorating the battery performance by changing the electrolyte solution to the gel electrolyte.
  • Patent Document 1 discloses a gel electrolyte layer containing a plasticizer containing a lithium salt, a matrix polymer in which the plasticizer is dispersed, and a fibrous insoluble material.
  • the fibrous insoluble matter contained in the gel electrolyte in an amount of 0.1 wt% to 50 wt% has a ratio of fiber length to fiber diameter of 10 to 3000, fiber length of 10 ⁇ m to 1 cm, and fiber diameter.
  • Patent Document 2 discloses a gel electrolyte and a gel electrolyte battery.
  • the gel electrolyte layer is formed by swelling a matrix polymer with an electrolytic solution and contains a large amount of a low viscosity solvent having a low boiling point.
  • a gel electrolyte containing a large amount of a low-boiling low-viscosity solvent By using a gel electrolyte containing a large amount of a low-boiling low-viscosity solvent, a gel electrolyte battery excellent in temperature characteristics, current characteristics, capacity, and charge / discharge characteristics at low temperatures is provided.
  • the present invention provides an electrolyte composition having a high electrical conductivity, which is suitable for preparing a slurry when formed into a sheet shape and capable of obtaining an electrolyte sheet excellent in smoothness.
  • the purpose is to do.
  • one or more polymers, oxide particles, at least one electrolyte salt selected from the group consisting of a lithium salt, a sodium salt, a calcium salt, and a magnesium salt, and a solvent And an electrolyte composition are included in the first aspect of the present invention.
  • a first structural unit selected from the group consisting of ethylene tetrafluoride and vinylidene fluoride, hexafluoropropylene, acrylic acid, maleic
  • a second structural unit selected from the group consisting of acid, ethyl methacrylate, and methyl methacrylate.
  • the polymer may be a copolymer including both the first structural unit and the second structural unit.
  • the polymer may be at least two types of polymers, a first polymer including the first structural unit and a second polymer including the second structural unit.
  • the content of the polymer is preferably 3 to 50% by mass based on the total amount of the electrolyte composition.
  • the oxide particles are preferably at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTiO 3 . Particles.
  • the average particle diameter of the oxide particles is preferably 0.005 to 1 ⁇ m.
  • the content of the oxide particles is preferably 5 to 40% by mass based on the total amount of the electrolyte composition.
  • the solvent may be glyme represented by the following formula (1).
  • R 1 and R 2 each independently represents an alkyl group having 4 or less carbon atoms or a fluoroalkyl group having 4 or less carbon atoms, and n represents an integer of 1 to 6.
  • the solvent may be an ionic liquid.
  • the total content of the electrolyte salt and the solvent is preferably 25 to 70% by mass based on the total amount of the electrolyte composition.
  • the electrolyte composition may be formed in a sheet shape.
  • a second aspect of the present invention is a secondary battery including a positive electrode, a negative electrode, and an electrolyte layer made of an electrolyte composition provided between the positive electrode and the negative electrode.
  • a third aspect of the present invention is an electrolyte salt that is at least one selected from the group consisting of one or more polymers, oxide particles, lithium salt, sodium salt, calcium salt, and magnesium salt,
  • An electrolyte sheet manufacturing method comprising: a step of placing a slurry containing a solvent and a dispersion medium on a substrate; and a step of volatilizing the dispersion medium to form an electrolyte layer on the substrate.
  • an electrolyte composition having a high electrical conductivity which is suitable for preparing a slurry when formed into a sheet shape and capable of obtaining an electrolyte sheet excellent in smoothness. Can be provided.
  • FIG. 1 is a perspective view showing a secondary battery according to a first embodiment. It is a disassembled perspective view which shows one Embodiment of the electrode group in the secondary battery shown in FIG.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of an electrode group in the secondary battery shown in FIG. 1.
  • A) is a schematic cross section which shows the electrolyte sheet which concerns on one Embodiment
  • (b) is a schematic cross section which shows the electrolyte sheet which concerns on other embodiment.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value described in another stepwise description.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • FIG. 1 is a perspective view showing the secondary battery according to the first embodiment.
  • the secondary battery 1 includes an electrode group 2 composed of a positive electrode, a negative electrode, and an electrolyte layer, and a bag-shaped battery outer package 3 that houses the electrode group 2.
  • a positive electrode current collecting tab 4 and a negative electrode current collecting tab 5 are provided on the positive electrode and the negative electrode, respectively.
  • the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 protrude from the inside of the battery outer package 3 to the outside so that the positive electrode and the negative electrode can be electrically connected to the outside of the secondary battery 1, respectively.
  • the battery outer package 3 may be formed of, for example, a laminate film.
  • the laminate film may be a laminate film in which a resin film such as a polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, and stainless steel, and a sealant layer such as polypropylene are laminated in this order.
  • PET polyethylene terephthalate
  • metal foil such as aluminum, copper, and stainless steel
  • sealant layer such as polypropylene
  • FIG. 2 is an exploded perspective view showing an embodiment of the electrode group 2 in the secondary battery 1 shown in FIG.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of the electrode group 2 in the secondary battery 1 shown in FIG.
  • the electrode group 2 ⁇ / b> A includes a positive electrode 6, an electrolyte layer 7, and a negative electrode 8 in this order.
  • the positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9.
  • the positive electrode current collector 9 is provided with a positive electrode current collector tab 4.
  • the negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11.
  • the negative electrode current collector 11 is provided with a negative electrode current collector tab 5.
  • the positive electrode current collector 9 may be formed of aluminum, stainless steel, titanium, or the like. Specifically, the positive electrode current collector 9 may be, for example, an aluminum perforated foil having a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like. In addition to the above, the positive electrode current collector 9 may be formed of any material as long as it does not cause changes such as dissolution and oxidation during use of the battery, and its shape, manufacturing method, etc. Not limited.
  • the thickness of the positive electrode current collector 9 may be 10 ⁇ m or more and 100 ⁇ m or less, and is preferably 10 ⁇ m or more and 50 ⁇ m or less from the viewpoint of reducing the volume of the entire positive electrode, and the positive electrode current collector 9 has a small curvature when forming a battery. From the viewpoint of turning, it is more preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • the positive electrode mixture layer 10 contains a positive electrode active material, a conductive agent, and a binder.
  • the positive electrode active material may be primary particles that are not granulated, or may be secondary particles that are granulated.
  • the particle diameter of the positive electrode active material is adjusted to be equal to or less than the thickness of the positive electrode mixture layer 10.
  • the coarse particles are removed in advance by sieving classification, wind classification, etc.
  • a positive electrode active material having a diameter is selected.
  • the average particle diameter of the positive electrode active material is preferably 0.1 ⁇ m or more, more preferably from the viewpoint of suppressing the deterioration of the filling property of the positive electrode active material accompanying the decrease in particle diameter and increasing the electrolyte salt retention ability. Is 1 ⁇ m or more, more preferably 2 ⁇ m or more, preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 8 ⁇ m or less.
  • the average particle diameter of the positive electrode active material is the particle diameter (D 50 ) when the ratio (volume fraction) to the volume of the entire positive electrode active material is 50%.
  • the average particle diameter (D 50 ) of the positive electrode active material is measured by suspending the positive electrode active material in water by a laser scattering method using a laser scattering particle size measuring device (for example, Microtrack). Can be obtained.
  • the content of the positive electrode active material may be 70% by mass or more, 80% by mass or more, or 85% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the positive electrode active material may be 95% by mass or less, 92% by mass or less, or 90% by mass or less based on the total amount of the positive electrode mixture layer.
  • the conductive agent may be carbon black, graphite, carbon fiber, carbon nanotube, or the like.
  • the content of the conductive agent may be 0.1% by mass or more, 1% by mass or more, or 3% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the conductive agent is preferably 15% by mass or less, more preferably, based on the total amount of the positive electrode mixture layer, from the viewpoint of suppressing the increase in the volume of the positive electrode 6 and the accompanying decrease in the energy density of the secondary battery 1. It is 10 mass% or less, More preferably, it is 8 mass% or less.
  • the binder is not limited as long as it does not decompose on the surface of the positive electrode 6, but is a polymer, for example.
  • the binder may be celluloses such as carboxymethyl cellulose, cellulose acetate, and ethyl cellulose, polyvinylidene fluoride, styrene / butadiene rubber, fluorine rubber, ethylene / propylene rubber, polyacrylic acid, polyimide, polyamide, and the like.
  • the binder content may be 0.5% by mass or more, 1% by mass or more, or 3% by mass or more based on the total amount of the positive electrode mixture layer.
  • the binder content may be 15% by mass or less, 10% by mass or less, or 7% by mass or less based on the total amount of the positive electrode mixture layer.
  • the thickness of the positive electrode mixture layer 10 is a thickness that is equal to or greater than the average particle diameter of the positive electrode active material, and specifically, is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more. More preferably, it is 20 ⁇ m or more.
  • the thickness of the positive electrode mixture layer 10 is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and still more preferably 50 ⁇ m or less.
  • the mixture density of the positive electrode mixture layer 10 is preferably 2 g / cm 3 or more from the viewpoint of bringing the conductive agent and the positive electrode active material into close contact with each other and reducing the electronic resistance of the positive electrode mixture layer 10.
  • the negative electrode current collector 11 may be formed of copper, stainless steel, titanium, nickel, or the like. Specifically, the negative electrode current collector 11 may be a rolled copper foil, for example, a copper perforated foil having holes having a hole diameter of 0.1 to 10 mm, an expanded metal, a metal foam plate, or the like. The negative electrode current collector 11 may be formed of any material other than the above, and its shape, manufacturing method, and the like are not limited.
  • the thickness of the negative electrode current collector 11 may be 10 ⁇ m or more and 100 ⁇ m or less, and is preferably 10 ⁇ m or more and 50 ⁇ m or less from the viewpoint of reducing the volume of the entire negative electrode, and the negative electrode current collector 11 has a small curvature when forming a battery. From the viewpoint of turning, it is more preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode mixture layer 12 contains a negative electrode active material and a binder in one embodiment.
  • the negative electrode active material those commonly used in the field of energy devices can be used.
  • the negative electrode active material include metal lithium, a lithium alloy, a metal compound, a carbon material, a metal complex, and an organic polymer compound.
  • the negative electrode active material may be used alone or in combination of two or more.
  • the negative electrode active material is preferably a carbon material.
  • Carbon materials include natural graphite (such as flake graphite), graphite such as artificial graphite, amorphous carbon, carbon fiber, and carbon such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. Black etc. are mentioned.
  • the negative electrode active material may be silicon, tin, or a compound containing these elements (oxide, nitride, alloy with other metals). Good.
  • the thickness of the negative electrode mixture layer 12 can be reduced, and the electrode area that can be accommodated in the secondary battery 1 can be increased.
  • the resistance of the secondary battery 1 can be reduced to enable high output, and at the same time, the capacity of the secondary battery 1 can be increased as compared with the case where a graphite negative electrode is used.
  • the average particle diameter (D 50 ) of the negative electrode active material is preferably 1 ⁇ m from the viewpoint of obtaining a well-balanced negative electrode 8 that suppresses an increase in irreversible capacity associated with a decrease in particle diameter and has improved electrolyte salt retention ability. It is above, More preferably, it is 5 micrometers or more, More preferably, it is 10 micrometers or more, Preferably it is 20 micrometers or less, More preferably, it is 50 micrometers or less, More preferably, it is 30 micrometers or less.
  • the average particle size of the negative electrode active material (D 50) is measured in the same manner as the average particle size of the positive electrode active material (D 50).
  • the binder and its content may be the same as the binder and its content in the positive electrode mixture layer 10 described above.
  • the negative electrode mixture layer 12 may further contain a conductive agent from the viewpoint of further reducing the resistance of the negative electrode 8.
  • the conductive agent and its content may be the same as the conductive agent and its content in the positive electrode mixture layer 10 described above.
  • the thickness of the negative electrode mixture layer 12 is not less than the average particle diameter of the negative electrode active material, specifically preferably not less than 10 ⁇ m, more preferably not less than 15 ⁇ m, More preferably, it is 20 ⁇ m or more.
  • the thickness of the negative electrode mixture layer 12 is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and even more preferably 30 ⁇ m or less.
  • the mixture density of the negative electrode mixture layer 12 is preferably 1 g / cm 3 or more from the viewpoint of bringing the conductive agent and the negative electrode active material into close contact with each other and reducing the electronic resistance of the negative electrode mixture layer 12.
  • the electrolyte layer 7 is made of an electrolyte composition.
  • the electrolyte composition contains one or more polymers, oxide particles, at least one electrolyte salt selected from the group consisting of lithium salts, sodium salts, calcium salts, and magnesium salts, and a solvent. To do.
  • a first structural unit (monomer unit) selected from the group consisting of tetrafluoroethylene and vinylidene fluoride, and hexafluoropropylene
  • a second structural unit (monomer unit) selected from the group consisting of acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate.
  • the first structural unit and the second structural unit may be included in one kind of polymer to constitute a copolymer. That is, in one embodiment, the electrolyte composition contains at least one copolymer including both the first structural unit and the second structural unit.
  • the copolymer may be a copolymer of vinylidene fluoride and hexafluoropropylene, a copolymer of vinylidene fluoride and maleic acid, a copolymer of vinylidene fluoride and methyl methacrylate, or the like.
  • the electrolyte composition may further contain another polymer.
  • the first structural unit and the second structural unit are included in different polymers, respectively, and are at least two of a first polymer having the first structural unit and a second polymer having the second structural unit.
  • a seed polymer may be constructed. That is, in one embodiment, the electrolyte composition contains at least two kinds of polymers of a first polymer including a first structural unit and a second polymer including a second structural unit. When the electrolyte composition contains the first polymer and the second polymer, the electrolyte composition may further contain other polymers.
  • the first polymer may be a polymer composed only of the first structural unit, or may be a polymer further having other structural units in addition to the first structural unit.
  • the other structural unit may be an oxygen-containing hydrocarbon structure such as ethylene oxide (—CH 2 CH 2 O—), carboxylic acid ester (—CH 2 COO—) and the like.
  • the first polymer may be polytetrafluoroethylene, polyvinylidene fluoride, polyvinylidene fluoride, or a polymer in which the oxygen-containing hydrocarbon structure is introduced inside these molecular structures.
  • the second polymer may be a polymer composed only of the second structural unit, or may be a polymer further having other structural units in addition to the second structural unit.
  • the other structural unit may be an oxygen-containing hydrocarbon structure such as ethylene oxide (—CH 2 CH 2 O—), carboxylic acid ester (—CH 2 COO—) and the like.
  • Examples of the combination of the first polymer and the second polymer include polyvinylidene fluoride and polyacrylic acid, polytetrafluoroethylene and polymethyl methacrylate, and polyvinylidene fluoride and polymethyl methacrylate.
  • the content of the first structural unit is preferably 5% by mass or more, more preferably, based on the total amount of structural units constituting the polymer, from the viewpoint of further improving the strength when the electrolyte composition is formed into a sheet. Is 10% by mass or more, more preferably 20% by mass or more.
  • the content of the first structural unit is preferably 98% by mass or less based on the total amount of the structural units constituting the polymer from the viewpoint of further improving the affinity with the solvent when the electrolyte composition contains the solvent. Yes, more preferably 95% by mass or less, still more preferably 90% by mass or less.
  • the content of the second structural unit is preferably 1% by mass or more based on the total amount of the structural units constituting the polymer from the viewpoint of further improving the affinity with the solvent when the electrolyte composition contains the solvent. Yes, more preferably 3% by mass or more, still more preferably 5% by mass or more.
  • the content of the second structural unit is preferably 50% by mass or less, more preferably, based on the total amount of the structural unit constituting the polymer, from the viewpoint of further improving the strength when the electrolyte composition is formed into a sheet. Is 20% by mass or less, more preferably 10% by mass or less.
  • the polymer content may be 3 to 60% by mass. From the viewpoint of further improving the strength when the electrolyte composition is formed into a sheet, it is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass based on the total amount of the electrolyte composition. % Or more, and particularly preferably 25% by mass or more. From the viewpoint of further improving the electrical conductivity, the polymer content is preferably 60% by mass or less, more preferably 50% by mass, and still more preferably 40% by mass or less, based on the total amount of the electrolyte composition. Especially preferably, it is 30 mass% or less, Most preferably, it is 28 mass% or less.
  • the content of the polymer is preferably 3 to 50% by mass, more preferably 5 to 60% by mass, and still more preferably from the viewpoint of achieving both strength and electrical conductivity when the electrolyte composition is formed into a sheet. It is 10 to 40% by mass, particularly preferably 20 to 30% by mass, and most preferably 25 to 28% by mass.
  • the polymer according to the present embodiment has excellent affinity with the solvent contained in the electrolyte composition, and therefore retains the electrolyte in the solvent. Thereby, the liquid leakage of the solvent when a load is applied to the electrolyte composition is suppressed.
  • the oxide particles are, for example, inorganic oxide particles.
  • the inorganic oxide is an inorganic oxide containing, for example, Li, Mg, Al, Si, Ca, Ti, Zr, La, Na, K, Ba, Sr, V, Nb, B, Ge and the like as constituent elements. Good.
  • the oxide particles are preferably at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTiO 3 . Particles. Since the oxide particles have polarity, it is possible to promote dissociation of the electrolyte in the electrolyte layer 7 and improve battery characteristics.
  • the average particle diameter (D 50 ) of the oxide particles is preferably 0.001 ⁇ m or more, more preferably 0.005 ⁇ m, from the viewpoint of increasing the cross-sectional area in which the cation component of the electrolyte diffuses and further improving the conductivity. Or more, more preferably 0.05 ⁇ m or more, particularly preferably 0.1 ⁇ m or more, and most preferably 0.5 ⁇ m or more.
  • the average particle diameter of the oxide particles is preferably 10 ⁇ m or less, more preferably 6 ⁇ m or less, still more preferably 3 ⁇ m or less, particularly preferably 2 ⁇ m or less, and most preferably 1 ⁇ m or less.
  • the electrolyte layer 7 can be suitably thinned. That is, in this case, the oxide particles hardly aggregate, and as a result, the oxide particles can be prevented from protruding from the electrolyte layer 7 and damaging the surfaces of the positive electrode 6 and the negative electrode 8. In addition, since it becomes easy to ensure the thickness of the electrolyte layer 7, it is possible to suppress a decrease in mechanical strength of the electrolyte layer 7.
  • the average particle size of the oxide particles suppresses lithium ion diffusion and further improves the conductivity, reduces the electrolyte composition from a thin layer, and suppresses the oxide particles from protruding from the electrolyte composition surface.
  • the average particle diameter of the oxide particles (D 50) is measured in the same manner as the average particle size of the positive electrode active material (D 50).
  • the shape of the oxide particles may be, for example, a block shape or a substantially spherical shape.
  • the aspect ratio of the oxide particles is preferably 10 or less, more preferably 5 or less, and even more preferably 2 or less, from the viewpoint of facilitating thinning of the electrolyte layer 7.
  • the aspect ratio is calculated from the scanning electron micrograph of the oxide particles.
  • the length of the particles in the long axis direction (maximum length of the particles) and the length of the particles in the short axis direction (minimum length of the particles) Defined as the ratio of The length of the particles is obtained by statistically calculating the above photograph using commercially available image processing software (for example, image analysis software manufactured by Asahi Kasei Engineering Co., Ltd., Image A (registered trademark)).
  • the content of the oxide particles is preferably 5% by mass or more, more preferably 10% by mass or more, and still more preferably 20% by mass based on the total amount of the electrolyte composition from the viewpoint of promoting dissociation of the electrolyte salt. % Or more.
  • the content of the oxide particles is preferably 50% by mass or less, more preferably 40% by mass or less, based on the total amount of the electrolyte composition, from the viewpoint of further improving the electrical conductivity.
  • the content of the oxide particles is preferably 5 to 50% by mass, 5 to 40% by mass, 10 to 10% based on the total amount of the electrolyte composition from the viewpoint of promoting dissociation of the electrolyte salt and further improving the electrical conductivity. 50 mass%, 10 to 40 mass%, 20 to 50 mass%, or 20 to 40 mass%.
  • the electrolyte salt is at least one selected from the group consisting of lithium salt, sodium salt, calcium salt and magnesium salt.
  • the electrolyte salt is a compound used to exchange cations between the positive electrode 6 and the negative electrode 8.
  • the above electrolyte salt is preferable in that it has a low degree of dissociation at a low temperature and easily diffuses in a solvent, and does not thermally decompose at a high temperature, so that the environmental temperature at which the secondary battery can be used is wide.
  • the electrolyte salt may be an electrolyte salt used in a fluorine ion battery.
  • the anion of the electrolyte salt includes halide ions (I ⁇ , Cl ⁇ , Br ⁇ etc.), SCN ⁇ , BF 4 ⁇ , BF 3 (CF 3 ) ⁇ , BF 3 (C 2 F 5 ) ⁇ , PF 6 ⁇ , ClO 4 ⁇ , SbF 6 ⁇ , N (SO 2 F) 2 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , N (SO 2 C 2 F 5 ) 2 ⁇ , B (C 6 H 5 ) 4 ⁇ , B (O 2 C 2 H 4 ) 2 ⁇ , C (SO 2 F) 3 ⁇ , C (SO 2 CF 3 ) 3 ⁇ , CF 3 COO ⁇ , CF 3 SO 2 O ⁇ , C 6 F 5 SO 2 O ⁇ , B (O 2 C 2 O 2 ) 2 — and the like.
  • halide ions I ⁇ , Cl ⁇ , Br ⁇
  • the anion is preferably PF 6 ⁇ , BF 4 ⁇ , N (SO 2 F) 2 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , B (O 2 C 2 O 2 ) 2 ⁇ , or ClO 4 ⁇ . is there.
  • [FSI] ⁇ N (SO 2 F) 2 ⁇ , bis (fluorosulfonyl) imide anion [TFSI] ⁇ : N (SO 2 CF 3 ) 2 ⁇ , bis (trifluoromethanesulfonyl) imide anion [BOB] ⁇ : B (O 2 C 2 O 2 ) 2 ⁇ , bisoxalate borate anion [f3C] ⁇ : C (SO 2 F) 3 ⁇ , tris (fluorosulfonyl) carbanion
  • Lithium salts include LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f 3 C], Li [BOB], LiClO 4 , LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , CF 3 SO 2 OLi, CF 3 COOLi, and RCOOLi (R is an alkyl group having 1 to 4 carbon atoms) , A phenyl group, or a naphthyl group).
  • Sodium salts include NaPF 6 , NaBF 4 , Na [FSI], Na [TFSI], Na [f 3 C], Na [BOB], NaClO 4 , NaBF 3 (CF 3 ), NaBF 3 (C 2 F 5 ), NaBF 3 (C 3 F 7 ), NaBF 3 (C 4 F 9 ), NaC (SO 2 CF 3 ) 3 , CF 3 SO 2 ONa, CF 3 COONa, and RCOONa (R is an alkyl group having 1 to 4 carbon atoms) , A phenyl group, or a naphthyl group).
  • the calcium salts are Ca (PF 6 ) 2 , Ca (BF 4 ) 2 , Ca [FSI] 2 , Ca [TFSI] 2 , Ca [f3C] 2 , Ca [BOB] 2 , Ca (ClO 4 ) 2 , Ca [BF 3 (CF 3 )] 2 , Ca [BF 3 (C 2 F 5 )] 2 , Ca [BF 3 (C 3 F 7 )] 2 , Ca [BF 3 (C 4 F 9 )] 2 , Ca [C (SO 2 CF 3 ) 3 ] 2 , (CF 3 SO 2 O) 2 Ca, (CF 3 COO) 2 Ca, and (RCOO) 2 Ca (R is an alkyl group having 1 to 4 carbon atoms, phenyl Or at least one selected from the group consisting of a naphthyl group).
  • Magnesium salts are Mg (PF 6 ) 2 , Mg (BF 4 ) 2 , Mg [FSI] 2 , Mg [TFSI] 2 , Mg [f 3 C] 2 , Mg [BOB] 2 , Na (ClO 4 ) 2 , Mg [BF 3 (CF 3 )] 2 , Mg [BF 3 (C 2 F 5 )] 2 , Mg [BF 3 (C 3 F 7 )] 2 , Mg [BF 3 (C 4 F 9 )] 2 , Mg [C (SO 2 CF 3 ) 3 ] 2 , (CF 3 SO 3 ) 2 Mg, (CF 3 COO) 2 Mg, and (RCOO) 2 Mg (R is an alkyl group having 1 to 4 carbon atoms, a phenyl group Or a naphthyl group) may be at least one selected from the group consisting of:
  • the electrolyte salt is preferably LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f 3 C], Li [BOB], LiClO 4. , LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , CF 3 SO 2 OLi, CF 3 COOLi and RCOOLi (where R is an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a naphthyl group), and more preferably Li [TFSI], Li [FSI], LiPF 6, LiBF 4, Li [BOB], and at least one selected from the group consisting of LiClO 4, more preferably Li [TF I], and is one selected from the group consisting of Li [FSI].
  • the content of the electrolyte salt may be 10% by mass or more and 60% by mass or less based on the total amount of the electrolyte composition in order to suitably produce the electrolyte layer.
  • the content of the electrolyte salt is preferably 20% by mass or more from the viewpoint of further increasing the conductivity of the electrolyte layer, and more preferably from the viewpoint of allowing the lithium secondary battery to be charged / discharged at a high load factor. 30% by mass or more.
  • the solvent preferably has a low vapor pressure and is difficult to burn.
  • the solvent may be glyme represented by the following formula (1).
  • R 1 and R 2 each independently represents an alkyl group having 4 or less carbon atoms or a fluoroalkyl group having 4 or less carbon atoms, and n represents an integer of 1 to 6.
  • R 1 and R 2 are each independently preferably a methyl group or an ethyl group.
  • the electrolyte composition contains glyme as a solvent, part or all of glyme may form a complex with the electrolyte salt.
  • the solvent may be an ionic liquid.
  • the ionic liquid contains the following anion component and cation component. Note that the ionic liquid in the present embodiment is a liquid material at ⁇ 20 ° C. or higher.
  • the anion component of the ionic liquid is not particularly limited, but is an anion of a halogen such as Cl ⁇ , Br ⁇ and I ⁇ , an inorganic anion such as BF 4 ⁇ and N (SO 2 F) 2 — , B (C 6 H 5 ) 4 ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 ⁇ , N (C 4 F 9 SO 2 ) 2 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , N (SO 2 C 4 F 9 ) 2 ⁇ and the like It may be an organic anion.
  • a halogen such as Cl ⁇ , Br ⁇ and I ⁇
  • an inorganic anion such as BF 4 ⁇ and N (SO 2 F) 2 — , B (C 6 H 5 ) 4 ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 ⁇ , N (C 4 F 9 SO 2 ) 2 ⁇ , N (SO 2 CF 3 ) 2
  • the anionic component of the ionic liquid is preferably B (C 6 H 5 ) 4 ⁇ , CH 3 SO 3 ⁇ , N (SO 2 C 4 F 9 ) 2 ⁇ , CF 3 SO 2 O ⁇ , N (SO 2 F ) 2 ⁇ , N (SO 2 CF 3 ) 2 — and N (SO 2 C 2 F 5 ) 2 — containing at least one selected from the group consisting of relatively low viscosity and further improving ionic conductivity
  • N (C 4 F 9 SO 2 ) 2 ⁇ , CF 3 SO 3 ⁇ , N (SO 2 F) 2 ⁇ , N (SO 2 CF 3 ) 2 -, and N (SO 2 CF 2 CF 3 ) 2 - contains at least one selected from the group consisting of, more preferably N (SO 2 F) 2 - containing.
  • the cation component of the ionic liquid is not particularly limited, but is preferably at least one selected from the group consisting of a chain quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation.
  • the chain quaternary onium cation is, for example, a compound represented by the following general formula (2).
  • R 1 to R 4 each independently represents a chain alkyl group having 1 to 20 carbon atoms, or a chain alkoxyalkyl group represented by R—O— (CH 2 ) n —.
  • R represents a methyl group or an ethyl group, and n represents an integer of 1 to 4
  • X represents a nitrogen atom or a phosphorus atom.
  • the number of carbon atoms of the alkyl group represented by R 1 to R 4 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the piperidinium cation is, for example, a nitrogen-containing six-membered cyclic compound represented by the following general formula (3).
  • R 5 and R 6 are each independently an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is methyl And n represents an integer of 1 to 4.
  • the number of carbon atoms of the alkyl group represented by R 5 and R 6 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the pyrrolidinium cation is, for example, a five-membered cyclic compound represented by the following general formula (4).
  • R 7 and R 8 are each independently an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is methyl And n represents an integer of 1 to 4.
  • the carbon number of the alkyl group represented by R 7 and R 8 is preferably 1-20, more preferably 1-10, and still more preferably 1-5.
  • the pyridinium cation is, for example, a compound represented by the following general formula (5).
  • R 9 to R 13 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R represents a methyl group) Or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom.
  • the number of carbon atoms of the alkyl group represented by R 9 to R 13 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the imidazolium cation is, for example, a compound represented by the following general formula (6).
  • R 14 to R 18 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is a methyl group) Or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom.
  • the number of carbon atoms of the alkyl group represented by R 14 to R 18 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the electrolyte composition is used as a solvent for the purpose of further improving the conductivity, for example, propylene carbonate, butylene carbonate, vinylene carbonate, ⁇ -butyrolactone, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 2- Methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphoric acid triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3-methyl-2-oxazolidinone , Tetrahydrofuran, 1,2-diethoxyethane, chloroethylene carbonate, chloropropylene carbonate, and the like may further be contained.
  • the electrolyte composition preferably contains at least one selected from the above-mentioned glyme and ionic
  • the content of the solvent may be 10% by mass or more and 60% by mass or less based on the total amount of the electrolyte composition from the viewpoint of suitably producing the electrolyte layer.
  • the content of the solvent is the total amount of the electrolyte composition from the viewpoint of increasing the conductivity of the electrolyte membrane by increasing the content of the electrolyte salt, thereby enabling charging and discharging of the lithium secondary battery at a high load factor. Is preferably 40% by mass or less, and more preferably 30% by mass or less.
  • the total content of the electrolyte salt and the solvent is preferably 10% by mass or more based on the total amount of the electrolyte composition from the viewpoint of further improving the conductivity and suppressing the capacity reduction of the secondary battery. More preferably, it is 25 mass% or more, More preferably, it is 40 mass% or more.
  • the total content of the electrolyte salt and the solvent is preferably 80% by mass or less, more preferably 70% by mass or less, from the viewpoint of suppressing a decrease in strength of the electrolyte composition.
  • the total content of the electrolyte salt and the solvent is based on the total amount of the electrolyte composition from the viewpoint of further improving the conductivity and suppressing the decrease in capacity of the secondary battery and the strength of the electrolyte composition.
  • it is 10 to 80% by mass, 10 to 70% by mass, 25 to 80% by mass, 25 to 70% by mass, 40 to 80% by mass, or 40 to 70% by mass.
  • the thickness of the electrolyte layer 7 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of increasing the electrical conductivity and improving the strength. From the viewpoint of suppressing the resistance of the electrolyte layer 7, the thickness of the electrolyte layer 7 is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the manufacturing method of the secondary battery 1 mentioned above includes the first step of forming the positive electrode mixture layer 10 on the positive electrode current collector 9 to obtain the positive electrode 6, and the negative electrode mixture on the negative electrode current collector 11. A second step of forming the layer 12 to obtain the negative electrode 8 and a third step of providing the electrolyte layer 7 between the positive electrode 6 and the negative electrode 8 are provided.
  • the positive electrode 6 is obtained by, for example, dispersing a material used for the positive electrode mixture layer in a dispersion medium using a kneader, a disperser or the like to obtain a slurry-like positive electrode mixture, and then the positive electrode mixture. Is applied onto the positive electrode current collector 9 by a doctor blade method, a dipping method, a spray method or the like, and then the dispersion medium is volatilized. After volatilizing the dispersion medium, a compression molding step using a roll press may be provided as necessary.
  • the positive electrode mixture layer 10 may be formed as a positive electrode mixture layer having a multilayer structure by performing the above-described steps from application of the positive electrode mixture to volatilization of the dispersion medium a plurality of times.
  • the dispersion medium used in the first step may be water, 1-methyl-2-pyrrolidone (hereinafter also referred to as NMP), or the like.
  • the dispersion medium is a compound other than the above-mentioned solvent.
  • the method of forming the negative electrode mixture layer 12 on the negative electrode current collector 11 may be the same method as in the first step described above.
  • the electrolyte layer 7 is formed by coating on at least one of the positive electrode mixture layer 10 side of the positive electrode 6 and the negative electrode mixture layer 12 side of the negative electrode 8, preferably the positive electrode 6. Are formed on both the positive electrode mixture layer 10 side and the negative electrode 8 on the negative electrode mixture layer 12 side by coating.
  • the secondary battery 1 is obtained by laminating the positive electrode 6 provided with the electrolyte layer 7 and the negative electrode 8 provided with the electrolyte layer 7 by, for example, laminating so that the electrolyte layers 7 are in contact with each other. It is done.
  • the method for forming the electrolyte layer 7 on the positive electrode mixture layer 10 by coating is, for example, by dispersing a material used for the electrolyte layer 7 in a dispersion medium to obtain a slurry, and then applying this electrolyte composition on the positive electrode mixture layer 10. It is the method of apply
  • the dispersion medium is preferably water, NMP, or the like.
  • the method for forming the electrolyte layer 7 on the negative electrode mixture layer 12 by coating may be the same as the method for forming the electrolyte layer 7 on the positive electrode mixture layer 10 by coating.
  • the electrolyte layer 7 is formed, for example, by producing an electrolyte sheet provided with an electrolyte composition on a base material.
  • FIG. 4A is a schematic cross-sectional view showing an electrolyte sheet according to an embodiment. As shown in FIG. 4A, the electrolyte sheet 13 ⁇ / b> A includes a base material 14 and an electrolyte layer 7 provided on the base material 14.
  • the electrolyte sheet 13A is produced, for example, by dispersing a material used for the electrolyte layer 7 in a dispersion medium to obtain a slurry, and applying the slurry onto the base material 14 and then volatilizing the dispersion medium.
  • the dispersion medium is preferably water, NMP, toluene or the like.
  • the substrate 14 is not limited as long as it has heat resistance capable of withstanding heating when the dispersion medium is volatilized, and does not react with the electrolyte composition and does not swell with the electrolyte composition. Is formed.
  • the base material 14 may be a film made of a resin (general-purpose engineer plastic) such as polyethylene terephthalate, polytetrafluoroethylene, polyimide, polyethersulfone, or polyetherketone.
  • the substrate 14 only needs to have a heat-resistant temperature that can withstand the processing temperature for volatilizing the dispersion medium in the process of manufacturing the electrolyte layer.
  • the heat-resistant temperature is a lower temperature of the softening point (temperature at which plastic deformation starts) or the melting point of the base material 14.
  • the heat-resistant temperature of the base material 14 is preferably 50 ° C. or higher, more preferably 100 ° C. or higher, further preferably 150 ° C. or higher, from the viewpoint of adaptability with the solvent used for the electrolyte layer 7. For example, it may be 400 ° C. or lower. If the base material which has said heat-resistant temperature is used, the above dispersion media (NMP, toluene, etc.) can be used conveniently.
  • the thickness of the base material 14 is preferably as thin as possible while maintaining the strength that can withstand the tensile force of the coating apparatus.
  • the thickness of the base material 14 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more from the viewpoint of securing strength when the electrolyte composition is applied to the base material 14 while reducing the volume of the entire electrolyte sheet 13A. More preferably, it is 25 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and still more preferably 40 ⁇ m or less.
  • the electrolyte sheet can be continuously produced while being wound into a roll.
  • the electrolyte layer 7 may be damaged by the surface of the electrolyte layer 7 coming into contact with the back surface of the substrate 14 and a part of the electrolyte layer 7 sticking to the substrate 14.
  • the electrolyte sheet may be provided with a protective material on the opposite side of the electrolyte layer 7 from the substrate 14 as another embodiment.
  • FIG. 4B is a schematic cross-sectional view showing an electrolyte sheet according to another embodiment. As shown in FIG. 4B, the electrolyte sheet 13 ⁇ / b> B further includes a protective material 15 on the opposite side of the electrolyte layer 7 from the base material 14.
  • the protective material 15 may be any material that can be easily peeled off from the electrolyte layer 7, and is preferably a nonpolar resin film such as polyethylene, polypropylene, polytetrafluoroethylene, or the like. When a nonpolar resin film is used, the electrolyte layer 7 and the protective material 15 do not stick to each other, and the protective material 15 can be easily peeled off.
  • a nonpolar resin film such as polyethylene, polypropylene, polytetrafluoroethylene, or the like.
  • the thickness of the protective material 15 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m, and preferably 100 ⁇ m or less, from the viewpoint of ensuring strength while reducing the volume of the entire electrolyte sheet 13B. Preferably it is 50 micrometers or less, More preferably, it is 30 micrometers or less.
  • the heat resistant temperature of the protective material 15 is preferably ⁇ 30 ° C. or higher, more preferably 0 ° C. or higher, from the viewpoint of suppressing deterioration in a low temperature environment and suppressing softening in a high temperature environment. Preferably it is 100 degrees C or less, More preferably, it is 50 degrees C or less.
  • the protective material 15 it is not necessary to increase the heat-resistant temperature because the volatilization step of the dispersion medium described above is not essential.
  • the method of providing the electrolyte layer 7 between the positive electrode 6 and the negative electrode 8 using the electrolyte sheet 13A is, for example, by peeling the base material 14 from the electrolyte sheet 13A and bonding the positive electrode 6, the electrolyte layer 7 and the negative electrode 8 by, for example, laminating.
  • the secondary battery 1 is obtained by stacking.
  • the electrolyte layer 7 is positioned on the positive electrode mixture layer 10 side of the positive electrode 6 and on the negative electrode mixture layer 12 side of the negative electrode 8, that is, the positive electrode current collector 9, the positive electrode mixture layer 10, and the electrolyte layer 7.
  • the negative electrode mixture layer 12 and the negative electrode current collector 11 are laminated so as to be arranged in this order.
  • FIG. 5 is a schematic cross-sectional view showing an embodiment of an electrode group in the secondary battery according to the second embodiment.
  • the secondary battery in the second embodiment is different from the secondary battery in the first embodiment in that the electrode group 2 ⁇ / b> B includes a bipolar electrode 16. That is, the electrode group 2B includes the positive electrode 6, the first electrolyte layer 7, the bipolar electrode 16, the second electrolyte layer 7, and the negative electrode 8 in this order.
  • the bipolar electrode 16 includes a bipolar electrode current collector 17, a positive electrode mixture layer 10 provided on a surface (positive electrode surface) on the negative electrode 8 side of the bipolar electrode current collector 17, and a positive electrode 6 side of the bipolar electrode current collector 17. And a negative electrode mixture layer 12 provided on the surface (negative electrode surface).
  • the positive electrode surface may be preferably formed of a material excellent in oxidation resistance, and may be formed of aluminum, stainless steel, titanium, or the like.
  • the negative electrode surface of the bipolar electrode current collector 17 using graphite or an alloy as the negative electrode active material may be formed of a material that does not form an alloy with lithium, specifically, stainless steel, nickel, iron, titanium, or the like. It may be formed.
  • the bipolar electrode current collector 17 may be a clad material in which different metal foils are laminated.
  • the bipolar electrode current collector 17 may be a single metal foil.
  • the bipolar electrode current collector 17 as a single metal foil may be an aluminum perforated foil having a hole diameter of 0.1 to 10 mm, an expanded metal, a metal foam plate, or the like.
  • the bipolar electrode current collector 17 may be formed of any material as long as it does not cause changes such as dissolution and oxidation during use of the battery, and its shape, manufacturing method, etc. Is not limited.
  • the thickness of the bipolar electrode current collector 17 may be 10 ⁇ m or more and 100 ⁇ m or less, and is preferably 10 ⁇ m or more and 50 ⁇ m or less from the viewpoint of reducing the volume of the entire positive electrode. More preferably, the thickness is 10 ⁇ m or more and 20 ⁇ m or less.
  • the manufacturing method of the secondary battery includes a first step of forming the positive electrode mixture layer 10 on the positive electrode current collector 9 to obtain the positive electrode 6, and the negative electrode mixture layer on the negative electrode current collector 11.
  • a positive electrode mixture layer 10 is formed on one surface of the bipolar electrode current collector 17, and a negative electrode mixture layer 12 is formed on the other surface of the bipolar electrode current collector 17. 16 and a fourth step of providing the electrolyte layer 7 between the positive electrode 6 and the bipolar electrode 16 and between the negative electrode 8 and the bipolar electrode 16.
  • the first step and the second step may be the same method as the first step and the second step in the first embodiment.
  • the method of forming the positive electrode mixture layer 10 on one surface of the bipolar electrode current collector 17 may be the same method as the first step in the first embodiment.
  • the method of forming the negative electrode mixture layer 12 on the other surface of the bipolar electrode current collector 17 may be the same method as the second step in the first embodiment.
  • the electrolyte layer 7 includes the positive electrode mixture layer 10 side of the positive electrode 6 and the negative electrode of the bipolar electrode 16. It is formed by coating on at least one of the mixture layer 12 side, and preferably formed by coating on both the positive electrode mixture layer 10 side of the positive electrode 6 and the negative electrode mixture layer 12 side of the bipolar electrode 16.
  • the positive electrode 6 provided with the electrolyte layer 7 and the bipolar electrode 16 provided with the electrolyte layer 7 are laminated by, for example, lamination so that the electrolyte layers 7 are in contact with each other.
  • the method of forming the electrolyte layer 7 on the positive electrode mixture layer 10 of the positive electrode 6 and the negative electrode mixture layer 12 of the bipolar electrode 16 by coating is a positive electrode mixture according to one embodiment of the third step in the first embodiment.
  • the method may be the same as the method of forming the electrolyte layer 7 on the layer 10 by coating and the method of forming the electrolyte layer 7 on the negative electrode mixture layer 12 by coating.
  • the electrolyte layer 7 is, for example, an electrolyte sheet provided with an electrolyte composition on a substrate. It is formed by manufacturing.
  • the manufacturing method of the electrolyte sheet may be the same method as the manufacturing method of the electrolyte sheets 13A and 13B in the first embodiment.
  • the method of providing the electrolyte layer 7 between the negative electrode 8 and the bipolar electrode 16 may be the same method as the method of providing the electrolyte layer 7 between the positive electrode 6 and the bipolar electrode 16 described above. .
  • 5% by mass was dispersed in NMP as a dispersion medium to prepare a slurry containing the electrolyte composition.
  • the obtained slurry was applied to a polyethylene terephthalate base material and heated to volatilize the dispersion medium to obtain an electrolyte sheet.
  • the thickness of the electrolyte layer in the obtained electrolyte sheet was 25 ⁇ 2 ⁇ m.
  • Example 2 to 4> In the electrolyte sheet of Example 1, an electrolyte sheet was produced in the same manner as in Example 1 except that the content of each material was changed to the content shown in Table 1.
  • Example 5 In the electrolyte sheet of Example 1, the content of the oxide particles was increased, and the total content of the electrolyte salt and the solvent ((A) + (B) in Table 1) was decreased. An electrolyte sheet was produced by the same method.
  • Examples 6 to 13 An electrolyte sheet was produced in the same manner as in Example 1, except that the type of oxide particles in the electrolyte sheet of Example 1 was changed to those shown in Tables 1 and 2.
  • Example 14 to 16> In the electrolyte sheet of Example 1, an electrolyte sheet was produced in the same manner as in Example 1 except that the average particle diameter of SiO 2 particles as oxide particles was changed to the average particle diameter shown in Table 2.
  • Examples 17 to 18> An electrolyte sheet was produced in the same manner as in Example 1 except that the content of hexafluoropropylene in the polymer in the electrolyte sheet of Example 1 was changed to the content shown in Table 2.
  • Example 19 to 22 An electrolyte sheet was produced in the same manner as in Example 1 except that the solvent used in the electrolyte sheet of Example 1 was changed to that shown in Tables 2 to 3.
  • EMI-BTI of Example 21 represents 1-ethyl-3-methylimidazolidinium-bis (trifluoromethylsulfonyl) imide [CAS number 174899-82-2]
  • EMI-DCA of Example 22 1-ethyl-3-methylimidazolium dicyanamide [CAS No. 370865-89-7] is represented.
  • Examples 23 to 27 An electrolyte sheet was produced in the same manner as in Example 1 except that the type of polymer in the electrolyte sheet of Example 1 was changed to that shown in Table 3. Abbreviations of polymers in Table 3 indicate the following.
  • PVDF + PA Mixture of polyvinylidene fluoride and polyacrylic acid
  • PVDF-MA Copolymer of vinylidene fluoride and maleic acid
  • PMMA Mixture of polytetrafluoroethylene and polymethyl methacrylate
  • PVDF + PMMA Polyvinylidene fluoride and polymethyl methacrylate
  • PVDF-HFP + PMMA Mixture of copolymer of vinylidene fluoride and hexafluoropyrene and polymethyl methacrylate
  • Example 5 in which the content of oxide particles was increased compared to Example 1 and the content of (A) + (B) was decreased, the content of the electrolyte salt was reduced compared to Example 1, so that the conductivity was increased. Although the rate decreased slightly, the conductivity was higher than that of Example 2 containing almost the same amount of electrolyte salt. That is, it was found that the conductivity is further improved by increasing the content of the oxide particles.
  • Examples 6 to 13 in which the type of oxide particles was changed had a high conductivity of 0.6 mS / cm or more, regardless of which oxide particle was used.
  • Example 17 As for Examples 17 to 18 in which the content of hexafluoropropylene in the polymer was changed, including Example 1, the conductivity tends to increase as the content of hexafluoropropylene increases.
  • Comparative Example 1 containing no oxide particles was inferior to that of Examples 1-27.

Abstract

本発明は、1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、溶媒と、を含有する、電解質組成物を提供する。

Description

電解質組成物、二次電池、及び電解質シートの製造方法
 本発明は、電解質組成物、二次電池、及び電解質シートの製造方法に関する。
 近年、携帯型電子機器、電気自動車等の普及により、高性能な二次電池が必要とされている。中でもリチウム二次電池は、高いエネルギ密度を有するため、電気自動車用電池、電力貯蔵用電池等の電源として注目されている。具体的には、電気自動車用電池としてのリチウム二次電池は、エンジンを搭載しないゼロエミッション電気自動車、エンジン及び二次電池の両方を搭載したハイブリッド電気自動車、電力系統から直接充電させるプラグイン・ハイブリッド電気自動車等の電気自動車に採用されている。また、電力貯蔵用電池としてのリチウム二次電池は、電力系統が遮断された非常時に、予め貯蔵しておいた電力を供給する定置式電力貯蔵システム等に用いられている。
 このような広範な用途に使用するために、より高いエネルギ密度のリチウム二次電池が求められており、その開発がなされている。特に、電気自動車用のリチウム二次電池には、高い入出力特性及び高いエネルギ密度に加えて、高い安全性が要求されるため、安全性を確保するためのより高度な技術が求められる。
 従来、リチウム二次電池の安全性を向上させる方法として、難燃剤の添加により電解液を難燃化する方法、電解液をポリマ電解質又はゲル電解質へ変更する方法等が知られている。特に、ゲル電解質は、従来のリチウム二次電池に使用されている電解液と同等のイオン導電率を有するため、電解液をゲル電解質へ変更する方法により、電池性能を悪化させずに、遊離する電解液量を減少させることで電解液の燃焼を抑制しうる。
 特許文献1は、リチウム塩を含有する可塑剤と、可塑剤を分散するマトリクス高分子と、繊維状不溶物とを含有したゲル状電解質層を開示している。ゲル状電解質中に0.1重量%以上50重量%以下含有されている繊維状不溶物は、繊維長と繊維径との比を10以上3000以下、繊維長を10μm以上1cm以下、繊維径を0.05μm以上50μm以下とすることにより、電池のサイクル特性及び高温保存特性を向上させている。
 特許文献2は、ゲル電解質及びゲル電解質電池を開示している。ゲル電解質層は、マトリクス高分子を電解液により膨潤させて形成され、低沸点の低粘度溶媒を多く含有する。低沸点の低粘度溶媒を多く含有したゲル電解質を用いることにより、温度特性、電流特性、容量、及び低温での充放電特性に優れたゲル電解質電池が提供される。
特開2000-164254号公報 特開2007-141467号公報
 しかしながら、上述したような従来のゲル電解質には、未だ改善の余地がある。例えば特許文献1に記載の発明においては、電解質シートを好適に形成する(特に電解質層を薄層にする)こと及び導電率を高めることが困難である。また、特許文献2に記載の発明においても、電解質の導電率が不十分である。
 そこで本発明は、導電率の高い電解質組成物であって、シート状に形成する際のスラリの調製に好適であり、かつ平滑性に優れた電解質シートを得ることが可能な電解質組成物を提供することを目的とする。
 本発明の第1の態様は、1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、溶媒と、を含有する、電解質組成物である。
 1種又は2種以上のポリマを構成する構造単位の中には、好ましくは、4フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれる。
 ポリマは、第1の構造単位と第2の構造単位との両方を含むコポリマであってよい。
 ポリマは、第1の構造単位を含む第1のポリマと、第2の構造単位を含む第2のポリマとの少なくとも2種のポリマであってもよい。
 ポリマの含有量は、電解質組成物全量を基準として、好ましくは3~50質量%である。
 酸化物粒子は、好ましくは、SiO、Al、AlOOH、MgO、CaO、ZrO、TiO、LiLaZr12、及びBaTiOからなる群より選ばれる少なくとも1種の粒子である。
 酸化物粒子の平均粒径は、好ましくは0.005~1μmである。
 酸化物粒子の含有量は、電解質組成物全量を基準として、好ましくは5~40質量%である。
 溶媒は、下記式(1)で表されるグライムであってよい。
 RO-(CHCHO)-R   (1)
[式(1)中、R及びRは、それぞれ独立に、炭素数4以下のアルキル基又は炭素数4以下のフルオロアルキル基を表し、nは1~6の整数を表す。]
 溶媒は、イオン液体であってもよい。
 電解質塩と溶媒の合計の含有量は、好ましくは、電解質組成物全量を基準として、25~70質量%である。
 電解質組成物は、シート状に形成されてもよい。
 本発明の第2の態様は、正極と、負極と、正極及び負極の間に設けられた電解質組成物からなる電解質層と、を備える二次電池である。
 本発明の第3の態様は、1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種である電解質塩と、溶媒と、分散媒と、を含有するスラリを基材上に配置する工程と、分散媒を揮発させて基材上に電解質層を形成する工程と、を備える、電解質シートの製造方法である。
 本発明によれば、導電率の高い電解質組成物であって、シート状に形成する際のスラリの調製に好適であり、かつ平滑性に優れた電解質シートを得ることが可能な電解質組成物を提供することができる。
第1実施形態に係る二次電池を示す斜視図である。 図1に示した二次電池における電極群の一実施形態を示す分解斜視図である。 図1に示した二次電池における電極群の一実施形態を示す模式断面図である。 (a)は一実施形態に係る電解質シートを示す模式断面図であり、(b)は他の実施形態に係る電解質シートを示す模式断面図である。 第2実施形態に係る二次電池における電極群の一実施形態を示す模式断面図である。
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。
 本明細書における数値及びその範囲は、本発明を制限するものではない。本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書において段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の上限値又は下限値に置き換えてもよい。また、本明細書中に記載される数値範囲において、その数値範囲の上限値又は下限値は、実施例中に示されている値に置き換えてもよい。
 [第1実施形態]
 図1は、第1実施形態に係る二次電池を示す斜視図である。図1に示すように、二次電池1は、正極、負極及び電解質層から構成される電極群2と、電極群2を収容する袋状の電池外装体3とを備えている。正極及び負極には、それぞれ正極集電タブ4及び負極集電タブ5が設けられている。正極集電タブ4及び負極集電タブ5は、それぞれ正極及び負極が二次電池1の外部と電気的に接続可能なように、電池外装体3の内部から外部へ突き出している。
 電池外装体3は、例えばラミネートフィルムで形成されていてよい。ラミネートフィルムは、例えば、ポリエチレンテレフタレート(PET)フィルム等の樹脂フィルムと、アルミニウム、銅、ステンレス鋼等の金属箔と、ポリプロピレン等のシーラント層とがこの順で積層された積層フィルムであってよい。
 図2は、図1に示した二次電池1における電極群2の一実施形態を示す分解斜視図である。図3は、図1に示した二次電池1における電極群2の一実施形態を示す模式断面図である。図2及び図3に示すように、本実施形態に係る電極群2Aは、正極6と、電解質層7と、負極8とをこの順に備えている。正極6は、正極集電体9と、正極集電体9上に設けられた正極合剤層10とを備えている。正極集電体9には、正極集電タブ4が設けられている。負極8は、負極集電体11と、負極集電体11上に設けられた負極合剤層12とを備えている。負極集電体11には、負極集電タブ5が設けられている。
 正極集電体9は、アルミニウム、ステンレス鋼、チタン等で形成されていてよい。正極集電体9は、具体的には、例えば孔径0.1~10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板等であってよい。正極集電体9は、上記以外にも、電池の使用中に溶解、酸化等の変化を生じないものであれば、任意の材料で形成されていてよく、また、その形状、製造方法等も制限されない。
 正極集電体9の厚さは、10μm以上100μm以下であってよく、正極全体の体積を小さくする観点から、好ましくは10μm以上50μm以下であり、電池を形成する際に小さな曲率で正極を捲回する観点から、より好ましくは10μm以上20μm以下である。
 正極合剤層10は、一実施形態において、正極活物質と、導電剤と、バインダとを含有する。
 正極活物質は、LiCoO、LiNiO、LiMn、LiMnO、LiMn、LiMnO、LiMn12、LiMn2-a (ただし、M=Co、Ni、Fe、Cr、Zn、及びTaからなる群より選ばれる1種であり、a=0.01~0.2である。)、LiMn(ただし、M=Fe、Co、Ni、Cu、及びZnからなる群より選ばれる1種である。)、Li1-b Mn(ただし、M=Mg、B、Al、Fe、Co、Ni、Cr、Zn、及びCaからなる群より選ばれる1種であり、b=0.01~0.1である。)、LiFeO、Fe(SO、LiCo1-c (ただし、M=Ni、Fe、及びMnからなる群より選ばれる1種であり、c=0.01~0.2である。)、LiNi1-d (ただし、M=Mn、Fe、Co、Al、Ga、Ca、及びMgからなる群より選ばれる1種であり、d=0.01~0.2である。)、Fe(MoO、FeF、LiFePO、LiMnPO等であってよい。
 正極活物質は、造粒されていない一次粒子であってもよく、造粒された二次粒子であってもよい。
 正極活物質の粒径は、正極合剤層10の厚さ以下になるように調整される。正極活物質中に正極合剤層10の厚さ以上の粒径を有する粗粒子がある場合、ふるい分級、風流分級等により粗粒子を予め除去し、正極合剤層10の厚さ以下の粒径を有する正極活物質を選別する。
 正極活物質の平均粒径は、粒径減少に伴う正極活物質の充填性の悪化を抑制しつつ、かつ、電解質塩の保持能力を高める観点から、好ましくは0.1μm以上であり、より好ましくは1μm以上であり、更に好ましくは2μm以上であり、また、好ましくは20μm以下であり、より好ましくは10μm以下であり、更に好ましくは8μm以下である。正極活物質の平均粒径は、正極活物質全体の体積に対する比率(体積分率)が50%のときの粒径(D50)である。正極活物質の平均粒径(D50)は、レーザー散乱型粒径測定装置(例えば、マイクロトラック)を用いて、レーザー散乱法により水中に正極活物質を懸濁させた懸濁液を測定することで得られる。
 正極活物質の含有量は、正極合剤層全量を基準として、70質量%以上、80質量%以上、又は85質量%以上であってよい。正極活物質の含有量は、正極合剤層全量を基準として、95質量%以下、92質量%以下、又は90質量%以下であってよい。
 導電剤は、カーボンブラック、黒鉛、炭素繊維、カーボンナノチューブ等であってよい。
 導電剤の含有量は、正極合剤層全量を基準として、0.1質量%以上、1質量%以上、又は3質量%以上であってよい。導電剤の含有量は、正極6の体積の増加及びそれに伴う二次電池1のエネルギ密度の低下を抑制する観点から、正極合剤層全量を基準として、好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下である。
 バインダは、正極6の表面で分解しないものであれば制限されないが、例えばポリマである。バインダは、カルボキシルメチルセルロース、酢酸セルロース、エチルセルロース等のセルロース類、ポリフッ化ビニリデン、スチレン・ブタジエンゴム、フッ素ゴム、エチレン・プロピレンゴム、ポリアクリル酸、ポリイミド、ポリアミドなどであってよい。
 バインダの含有量は、正極合剤層全量を基準として、0.5質量%以上、1質量%以上、又は3質量%以上であってよい。バインダの含有量は、正極合剤層全量を基準として、15質量%以下、10質量%以下、又は7質量%以下であってよい。
 正極合剤層10の厚さは、導電率を更に向上させる観点から、正極活物質の平均粒径以上の厚さであり、具体的には、好ましくは5μm以上であり、より好ましくは10μm以上であり、更に好ましくは20μm以上である。正極合剤層10の厚さは、好ましくは100μm以下であり、より好ましくは80μm以下であり、更に好ましくは50μm以下である。正極合剤層の厚さを80μm以下とすることにより、正極合剤層10の表面近傍及び正極集電体9の表面近傍の正極活物質の充電レベルのばらつきに起因する充放電の偏りを抑制できる。
 正極合剤層10の合剤密度は、導電剤と正極活物質とを互いに密着させ、正極合剤層10の電子抵抗を低減する観点から、好ましくは2g/cm以上である。
 負極集電体11は、銅、ステンレス鋼、チタン、ニッケル等で形成されていてよい。負極集電体11は、具体的には、圧延銅箔、例えば孔径0.1~10mmの孔を有する銅製穿孔箔、エキスパンドメタル、発泡金属板等であってよい。負極集電体11は、上記以外の任意の材料で形成されていてもよく、また、その形状、製造方法等も制限されない。
 負極集電体11の厚さは、10μm以上100μm以下であってよく、負極全体の体積を小さくする観点から、好ましくは10μm以上50μm以下であり、電池を形成する際に小さな曲率で負極を捲回する観点から、より好ましくは10μm以上20μm以下である。
 負極合剤層12は、一実施形態において、負極活物質とバインダとを含有する。
 負極活物質は、エネルギデバイスの分野で常用されるものを使用できる。負極活物質としては、具体的には、例えば、金属リチウム、リチウム合金、金属化合物、炭素材料、金属錯体、及び有機高分子化合物が挙げられる。負極活物質は上記のうち1種を単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。負極活物質は、好ましくは炭素材料である。炭素材料としては、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等の黒鉛、非晶質炭素、炭素繊維、及びアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラックなどが挙げられる。負極活物質は、より大きな理論容量(例えば500~1500Ah/kg)を得る観点から、シリコン、スズ又はこれらの元素を含む化合物(酸化物、窒化物、他の金属との合金)であってもよい。容量が大きい材料を用いると、負極合剤層12の厚さを薄くすることができ、二次電池1の中に収納可能な電極面積を増大させることができる。その結果、二次電池1の抵抗を低下させて高出力が可能になると同時に、黒鉛負極を用いたときよりも二次電池1の容量を高めることができる。
 負極活物質の平均粒径(D50)は、粒径減少に伴う不可逆容量の増加を抑制しつつ、かつ、電解質塩の保持能力を高めたバランスの良い負極8を得る観点から、好ましくは1μm以上であり、より好ましくは5μm以上であり、更に好ましくは10μm以上であり、また、好ましくは20μm以下であり、より好ましくは50μm以下であり、更に好ましくは30μm以下である。負極活物質の平均粒径(D50)は、正極活物質の平均粒径(D50)と同様の方法により測定される。
 バインダ及びその含有量は、上述した正極合剤層10におけるバインダ及びその含有量と同様であってよい。
 負極合剤層12は、負極8の抵抗を更に低くする観点から、導電剤を更に含有してもよい。導電剤及びその含有量は、上述した正極合剤層10における導電剤及びその含有量と同様であってよい。
 負極合剤層12の厚さは、導電率を更に向上させる観点から、負極活物質の平均粒径以上であり、具体的には、好ましくは10μm以上であり、より好ましくは15μm以上であり、更に好ましくは20μm以上である。負極合剤層12の厚さは、好ましくは50μm以下であり、より好ましくは40μm以下であり、更に好ましくは30μm以下である。負極合剤層12の厚さを50μm以下とすることにより、負極合剤層12の表面近傍及び負極集電体11の表面近傍の正極活物質の充電レベルのばらつきに起因する充放電の偏りを抑制できる。
 負極合剤層12の合剤密度は、導電剤と負極活物質とを互いにを密着させ、負極合剤層12の電子抵抗を低減する観点から、好ましくは1g/cm以上である。
 電解質層7は、電解質組成物からなっている。電解質組成物は、1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、溶媒と、を含有する。
 1種又は2種以上のポリマを構成する構造単位(モノマ単位)の中には、4フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位(モノマ単位)と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位(モノマ単位)とが含まれていてよい。
 第1の構造単位及び第2の構造単位は、1種のポリマに含まれてコポリマを構成してもよい。すなわち、電解質組成物は、一実施形態において、第1の構造単位と第2の構造単位との両方を含む少なくとも1種のコポリマを含有する。コポリマは、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ、フッ化ビニリデンとマレイン酸とのコポリマ、フッ化ビニリデンとメチルメタクリレートとのコポリマ等であってよい。電解質組成物は、コポリマを含有する場合、その他のポリマを更に含有していてもよい。
 第1の構造単位及び第2の構造単位は、それぞれ別のポリマに含まれて、第1の構造単位を有する第1のポリマと、第2の構造単位を有する第2のポリマとの少なくとも2種のポリマを構成していてもよい。すなわち、電解質組成物は、一実施形態において、第1の構造単位を含む第1のポリマと、第2の構造単位を含む第2のポリマとの少なくとも2種以上のポリマを含有する。電解質組成物は、第1のポリマ及び第2のポリマを含有する場合、その他のポリマを更に含有していてもよい。
 第1のポリマは、第1の構造単位のみからなるポリマであってもよく、第1の構造単位に加えてその他の構造単位を更に有するポリマであってもよい。その他の構造単位は、エチレンオキシド(-CHCHO-)、カルボン酸エステル(-CHCOO-)等の含酸素炭化水素構造であってよい。第1のポリマは、ポリ4フッ化エチレン、ポリフッ化ビニリデン、ポリフッ化ビニリデン、又は、これらの分子構造の内部に前記含酸素炭化水素構造が導入されたポリマであってよい。
 第2のポリマは、第2の構造単位のみからなるポリマであってもよく、第2の構造単位に加えてその他の構造単位を更に有するポリマであってもよい。その他の構造単位は、エチレンオキシド(-CHCHO-)、カルボン酸エステル(-CHCOO-)等の含酸素炭化水素構造であってよい。
 第1のポリマと第2のポリマとの組合せとしては、ポリフッ化ビニリデンとポリアクリル酸、ポリ4フッ化エチレンとポリメチルメタクリレート、ポリフッ化ビニリデンとポリメチルメタクリレート等が挙げられる。
 第1の構造単位の含有量は、電解質組成物をシート状にした場合の強度を更に向上させる観点から、ポリマを構成する構造単位全量を基準として、好ましくは5質量%以上であり、より好ましくは10質量%以上であり、更に好ましくは20質量%以上である。第1の構造単位の含有量は、電解質組成物が溶媒を含有する場合の溶媒との親和性を更に向上させる観点から、ポリマを構成する構造単位全量を基準として、好ましくは98質量%以下であり、より好ましくは95質量%以下であり、更に好ましくは90質量%以下である。
 第2の構造単位の含有量は、電解質組成物が溶媒を含有する場合の溶媒との親和性を更に向上させる観点から、ポリマを構成する構造単位全量を基準として、好ましくは1質量%以上であり、より好ましくは3質量%以上であり、更に好ましくは5質量%以上である。第2の構造単位の含有量は、電解質組成物をシート状にした場合の強度を更に向上させる観点から、ポリマを構成する構造単位全量を基準として、好ましくは50質量%以下であり、より好ましくは20質量%以下であり、更に好ましくは10質量%以下である。
 ポリマの含有量は、3~60質量%であってよい。電解質組成物をシート状にした場合の強度を更に向上させる観点から、電解質組成物全量を基準として、好ましくは5質量%以上であり、より好ましくは10質量%以上であり、更に好ましくは20質量%以上であり、特に好ましくは25質量%以上である。ポリマの含有量は、導電率を更に向上させる観点から、電解質組成物全量を基準として、好ましくは60質量%以下であり、より好ましくは50質量%であり、更に好ましくは40質量%以下であり、特に好ましくは30質量%以下であり、最も好ましくは28質量%以下である。ポリマの含有量は、電解質組成物をシート状にした場合の強度と導電率を両立させる観点から、好ましくは3~50質量%であり、より好ましくは5~60質量%であり、更に好ましくは10~40質量%であり、特に好ましくは20~30質量%であり、最も好ましくは25~28質量%である。
 本実施形態に係るポリマは、電解質組成物に含まれる溶媒との親和性に優れるため、溶媒中の電解質を保持する。これにより、電解質組成物に荷重が加えられた際の溶媒の液漏れが抑制される。
 酸化物粒子は、例えば無機酸化物の粒子である。無機酸化物は、例えば、Li、Mg、Al、Si、Ca、Ti、Zr、La、Na、K、Ba、Sr、V、Nb、B、Ge等を構成元素として含む無機酸化物であってよい。酸化物粒子は、好ましくは、SiO、Al、AlOOH、MgO、CaO、ZrO、TiO、LiLaZr12、及びBaTiOからなる群より選ばれる少なくとも1種の粒子である。酸化物粒子は極性を有するため、電解質層7中の電解質の解離を促進し、電池特性を高めることができる。
 酸化物粒子の平均粒径(D50)は、電解質のカチオン成分が拡散する断面積を大きくし、導電率を更に向上させる観点から、好ましくは0.001μm以上であり、より好ましくは0.005μm以上であり、更に好ましくは0.05μm以上であり、特に好ましくは0.1μm以上であり、最も好ましくは0.5μm以上である。酸化物粒子の平均粒径は、好ましくは10μm以下であり、より好ましくは6μm以下であり、更に好ましくは3μm以下であり、特に好ましくは2μm以下であり、最も好ましくは1μm以下である。酸化物粒子の平均粒径が6μm以下である場合、電解質層7を好適に薄くすることができる。すなわち、この場合、酸化物粒子が凝集しにくくなり、その結果、酸化物粒子が電解質層7から突出して正極6及び負極8の表面を損傷させることを抑制できる。加えて、電解質層7の厚さを確保しやすくなるため、電解質層7の機械的強度の低下を抑制できる。酸化物粒子の平均粒径は、リチウムイオンの拡散を抑制して導電率を更に向上させる観点、電解質組成物を薄層化する観点、及び電解質組成物表面からの酸化物粒子の突出を抑制する観点から、好ましくは0.001~10μmであり、電解質層がより好適に薄層化される観点から、より好ましくは0.001~6μmであり、液漏れを防止する観点から、更に好ましくは0.001~0.1μm又は0.005~1μmである。酸化物粒子の平均粒径(D50)は、正極活物質の平均粒径(D50)と同様の方法により測定される。
 酸化物粒子の形状は、例えば塊状又は略球状であってよい。酸化物粒子のアスペクト比は、電解質層7の薄層化を容易にする観点から、好ましくは10以下、より好ましくは5以下、更に好ましくは2以下である。アスペクト比は、酸化物粒子の走査型電子顕微鏡写真から算出した、粒子の長軸方向の長さ(粒子の最大長さ)と、粒子の短軸方向の長さ(粒子の最小長さ)との比として定義される。粒子の長さは、前記写真を、市販の画像処理ソフト(例えば、旭化成エンジニアリング株式会社製の画像解析ソフト、A像くん(登録商標))を用いて、統計的に計算して求められる。
 酸化物粒子の含有量は、電解質塩の解離を促進させる観点から、電解質組成物全量を基準として、好ましくは5質量%以上であり、より好ましくは10質量%以上であり、更に好ましくは20質量%以上である。酸化物粒子の含有量は、導電率を更に向上させる観点から、電解質組成物全量を基準として、好ましくは50質量%以下であり、より好ましくは40質量%以下である。酸化物粒子の含有量は、電解質塩の解離を促進させる観点及び導電率を更に向上させる観点から、電解質組成物全量を基準として、好ましくは5~50質量%、5~40質量%、10~50質量%、10~40質量%、20~50質量%、又は20~40質量%である。
 電解質塩は、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種である。電解質塩は、正極6と負極8との間でカチオンを授受させるために用いられる化合物である。上記の電解質塩は、低温では解離度が低く、溶媒中で拡散しやすいことに加え、高温により熱分解しないため、二次電池が使用可能な環境温度が広範となる点で好ましい。電解質塩は、フッ素イオン電池において用いられる電解質塩であってもよい。
 電解質塩のアニオンは、ハロゲン化物イオン(I、Cl、Br等)、SCN、BF 、BF(CF、BF(C、PF 、ClO 、SbF 、N(SOF) 、N(SOCF 、N(SO 、B(C 、B(O 、C(SOF) 、C(SOCF 、CFCOO、CFSO、CSO、B(O 等であってよい。アニオンは、好ましくは、PF 、BF 、N(SOF) 、N(SOCF 、B(O 、又はClO である。
 なお、以下では下記の略称を用いる場合がある。
[FSI]:N(SOF) 、ビス(フルオロスルホニル)イミドアニオン
[TFSI]:N(SOCF 、ビス(トリフルオロメタンスルホニル)イミドアニオン
[BOB]:B(O 、ビスオキサレートボラートアニオン
[f3C]:C(SOF) 、トリス(フルオロスルホニル)カルボアニオン
 リチウム塩は、LiPF、LiBF、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、LiClO、LiBF(CF)、LiBF(C)、LiBF(C)、LiBF(C)、LiC(SOCF、CFSOOLi、CFCOOLi、及びRCOOLi(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。
 ナトリウム塩は、NaPF、NaBF、Na[FSI]、Na[TFSI]、Na[f3C]、Na[BOB]、NaClO、NaBF(CF)、NaBF(C)、NaBF(C)、NaBF(C)、NaC(SOCF、CFSOONa、CFCOONa、及びRCOONa(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。
 カルシウム塩は、Ca(PF、Ca(BF、Ca[FSI]、Ca[TFSI]、Ca[f3C]、Ca[BOB]、Ca(ClO、Ca[BF(CF)]、Ca[BF(C)]、Ca[BF(C)]、Ca[BF(C)]、Ca[C(SOCF、(CFSOO)Ca、(CFCOO)Ca、及び(RCOO)Ca(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。
 マグネシウム塩は、Mg(PF、Mg(BF、Mg[FSI]、Mg[TFSI]、Mg[f3C]、Mg[BOB]、Na(ClO、Mg[BF(CF)]、Mg[BF(C)]、Mg[BF(C)]、Mg[BF(C)]、Mg[C(SOCF、(CFSOMg、(CFCOO)Mg、及び(RCOO)Mg(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。
 これらのうち、解離性及び電気化学的安定性の観点から、電解質塩は、好ましくはLiPF、LiBF、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、LiClO4、LiBF(CF)、LiBF(C)、LiBF(C)、LiBF(C)、LiC(SOCF、CFSOOLi、CFCOOLi、及びRCOOLi(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であり、より好ましくはLi[TFSI]、Li[FSI]、LiPF、LiBF、Li[BOB]、及びLiClO4からなる群より選ばれる少なくとも1種であり、更に好ましくはLi[TFSI]、及びLi[FSI]からなる群より選ばれる1種である。
 電解質塩の含有量は、電解質層を好適に作製するために、電解質組成物全量を基準として、10質量%以上60質量%以下であってよい。電解質塩の含有量は、電解質層の導電率を更に高める観点から、好ましくは20質量%以上であり、リチウム二次電池を高い負荷率で充放電することを可能にする観点から、より好ましくは30質量%以上である。
 溶媒は、好ましくは、蒸気圧が低く、かつ、燃焼しにくいものである。
 溶媒は、下記式(1)で表されるグライムであってよい。
 RO-(CHCHO)-R   (1)
 式(1)中、R及びRは、それぞれ独立に、炭素数4以下のアルキル基又は炭素数4以下のフルオロアルキル基を表し、nは1~6の整数を表す。R及びRは、それぞれ独立に、好ましくはメチル基又はエチル基である。
 グライムは、具体的には、モノグライム(n=1)、ジグライム(n=2)、トリグライム(n=3)、テトラグライム(n=4)、ペンタグライム(n=5)、ヘキサグライム(n=6)であってよい。
 電解質組成物が溶媒としてグライムを含有する場合、グライムの一部又は全部は、電解質塩と錯体を形成していてよい。
 溶媒は、イオン液体であってもよい。イオン液体は、以下のアニオン成分及びカチオン成分を含有する。なお、本実施形態におけるイオン液体は、-20℃以上で液状の物質である。
 イオン液体のアニオン成分は、特に限定されないが、Cl、Br、I等のハロゲンのアニオン、BF 、N(SOF) 等の無機アニオン、B(C 、CHSO 、CFSO 、N(CSO 、N(SOCF 、N(SO 等の有機アニオンなどであってよい。イオン液体のアニオン成分は、好ましくは、B(C 、CHSO 、N(SO 、CFSO、N(SOF) 、N(SOCF 及びN(SO からなる群より選ばれる少なくとも1種を含有し、比較的低粘度でイオン伝導度を更に向上させるとともに、充放電特性も更に向上させる観点から、より好ましくは、N(CSO 、CFSO 、N(SOF) 、N(SOCF 、及びN(SOCFCF からなる群より選ばれる少なくとも1種を含有し、更に好ましくはN(SOF) を含有する。
 イオン液体のカチオン成分は、特に限定されないが、好ましくは鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種である。
 鎖状四級オニウムカチオンは、例えば、下記一般式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000001
[式(2)中、R~Rは、それぞれ独立に、炭素数が1~20の鎖状アルキル基、又はR-O-(CH-で表される鎖状アルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表し、Xは、窒素原子又はリン原子を表す。R~Rで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 ピペリジニウムカチオンは、例えば、下記一般式(3)で表される、窒素を含有する六員環環状化合物である。
Figure JPOXMLDOC01-appb-C000002
[式(3)中、R及びRは、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R及びRで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 ピロリジニウムカチオンは、例えば、下記一般式(4)で表される五員環環状化合物である。
Figure JPOXMLDOC01-appb-C000003
[式(4)中、R及びRは、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R及びRで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 ピリジニウムカチオンは、例えば、下記一般式(5)で示される化合物である。
Figure JPOXMLDOC01-appb-C000004
[式(5)中、R~R13は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R~R13で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 イミダゾリウムカチオンは、例えば、下記一般式(6)で示される化合物である。
Figure JPOXMLDOC01-appb-C000005
[式(6)中、R14~R18は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R14~R18で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 電解質組成物は、溶媒として、導電率を更に向上させることを目的として、例えば、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン、ジエチルカーボネート、メチルエチルカーボネート、1,2-ジメトキシエタン、2-メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン、3-メチル-2-オキサゾリジノン、テトラヒドロフラン、1,2-ジエトキシエタン、クロルエチレンカーボネート、クロルプロピレンカーボネート等の非水溶媒を更に含有していてもよい。電解質組成物は、安全性を向上させる観点から、好ましくは、溶媒として、上述のグライム及びイオン液体から選ばれる少なくとも1種のみを含有する。
 溶媒の含有量は、電解質層を好適に作製する観点から、電解質組成物全量を基準として、10質量%以上60質量%以下であってよい。溶媒の含有量は、電解質塩の含有量を増加させることにより、電解質膜の導電率を増大させてリチウム二次電池を高い負荷率で充放電することを可能にする観点から、電解質組成物全量を基準として、好ましくは40質量%以下であり、より好ましくは30質量%以下である。
 電解質塩と溶媒(例えばテトラグライム)との合計の含有量は、導電率を更に向上させ、二次電池の容量低下を抑制する観点から、電解質組成物全量を基準として、好ましくは10質量%以上であり、より好ましくは25質量%以上であり、更に好ましくは40質量%以上である。電解質塩と溶媒との合計の含有量は、電解質組成物の強度低下を抑制する観点から、好ましくは80質量%以下であり、より好ましくは70質量%以下である。電解質塩と溶媒との合計の含有量は、導電率を更に向上させ、二次電池の容量低下を抑制する観点及び電解質組成物の強度低下を抑制する観点から、電解質組成物全量を基準として、好ましくは、10~80質量%、10~70質量%、25~80質量%、25~70質量%、40~80質量%、又は40~70質量%である。
 電解質層7の厚さは、導電率を高め、強度を向上させる観点から、好ましくは5μm以上であり、より好ましくは10μm以上である。電解質層7の厚さは、電解質層7の抵抗を抑制する観点から、好ましくは200μm以下であり、より好ましくは150μm以下であり、更に好ましくは100μm以下であり、特に好ましくは50μm以下である。
 続いて、上述した二次電池1の製造方法について説明する。本実施形態に係る二次電池1の製造方法は、正極集電体9上に正極合剤層10を形成して正極6を得る第1の工程と、負極集電体11上に負極合剤層12を形成して負極8を得る第2の工程と、正極6と負極8との間に電解質層7を設ける第3の工程と、を備える。
 第1の工程では、正極6は、例えば、正極合剤層に用いる材料を混練機、分散機等を用いて分散媒に分散させてスラリ状の正極合剤を得た後、この正極合剤をドクターブレード法、ディッピング法、スプレー法等により正極集電体9上に塗布し、その後分散媒を揮発させることにより得られる。分散媒を揮発させた後、必要に応じて、ロールプレスによる圧縮成型工程が設けられてもよい。正極合剤層10は、上述した正極合剤の塗布から分散媒の揮発までの工程を複数回行うことにより、多層構造の正極合剤層として形成されてもよい。
 第1の工程において用いられる分散媒は、水、1-メチル-2-ピロリドン(以下、NMPともいう。)等であってよい。なお、分散媒は、上述の溶媒以外の化合物である。
 第2の工程において、負極集電体11に負極合剤層12を形成する方法は、上述した第1の工程と同様の方法であってよい。
 第3の工程では、一実施形態において、電解質層7は、正極6の正極合剤層10側及び負極8の負極合剤層12側の少なくともいずれか一方に塗布により形成され、好ましくは正極6の正極合剤層10側及び負極8の負極合剤層12側の両方に塗布により形成される。この場合、例えば、電解質層7が設けられた正極6と、電解質層7が設けられた負極8とを、電解質層7同士が接するように例えばラミネートにより積層することで、二次電池1が得られる。
 正極合剤層10上に電解質層7を塗布により形成する方法は、例えば、電解質層7に用いる材料を分散媒に分散させてスラリを得た後、この電解質組成物を正極合剤層10上にアプリケータを用いて塗布する方法である。分散媒は、好ましくは水、NMP等である。電解質層7に溶媒が含まれる場合、電解質塩を溶媒に溶解させてから、他の材料とともに分散媒に分散させることができる。
 負極合剤層12上に電解質層7を塗布により形成する方法は、正極合剤層10上に電解質層7を塗布により形成する方法と同様の方法であってよい。
 第3の工程では、他の実施形態において、電解質層7は、例えば、基材上に電解質組成物を備えた電解質シートを作製することにより形成される。図4(a)は、一実施形態に係る電解質シートを示す模式断面図である。図4(a)に示すように、電解質シート13Aは、基材14と、基材14上に設けられた電解質層7とを有する。
 電解質シート13Aは、例えば、電解質層7に用いる材料を分散媒に分散させてスラリを得た後、これを基材14上に塗布してから分散媒を揮発させることにより作製される。分散媒は、好ましくは水、NMP、トルエン等である。
 基材14は、分散媒を揮発させる際の加熱に耐えうる耐熱性を有するものであって、電解質組成物と反応せず、電解質組成物により膨潤しないものであれば制限されないが、例えば樹脂で形成されている。基材14は、具体的には、ポリエチレンテレフタレート、ポリ4フッ化エチレン、ポリイミド、ポリエーテルサルフォン、ポリエーテルケトン等の樹脂(汎用のエンジニアプラスチック)からなるフィルムであってよい。
 基材14は、電解質層を製造する過程において分散媒を揮発させる処理温度に耐えられる耐熱温度を有していればよい。耐熱温度は、基材14が樹脂で形成されている場合、基材14の軟化点(塑性変形し始める温度)又は融点のうち、より低い温度である。基材14の耐熱温度は、電解質層7に用いられる溶媒との適応性の観点から、好ましくは50℃以上であり、より好ましくは100℃以上であり、更に好ましくは150℃以上であり、また、例えば400℃以下であってよい。上記の耐熱温度を有する基材を使用すれば、上述したような分散媒(NMP、トルエン等)を好適に使用できる。
 基材14の厚さは、塗布装置での引張り力に耐えうる強度を維持しつつ、可能な限り薄いことが好ましい。基材14の厚さは、電解質シート13A全体の体積を小さくしつつ、電解質組成物を基材14に塗布する際に強度を確保する観点から、好ましくは5μm以上であり、より好ましくは10μm以上であり、更に好ましくは25μm以上であり、また、好ましくは100μm以下であり、より好ましくは50μm以下であり、更に好ましくは40μm以下である。
 電解質シートは、ロール状に巻き取りながら連続的に製造することもできる。その場合には、電解質層7の表面が基材14の背面に接触して電解質層7の一部が基材14に貼りつくことにより、電解質層7が破損することがある。このような事態を防ぐために、電解質シートは他の実施形態として、電解質層7の基材14と反対側に保護材を設けたものであってもよい。図4(b)は、他の実施形態に係る電解質シートを示す模式断面図である。図4(b)に示すように、電解質シート13Bは、電解質層7の基材14と反対側に保護材15を更に備えている。
 保護材15は、電解質層7から容易に剥離可能なものであればよく、好ましくはポリエチレン、ポリプロピレン、ポリ4フッ化エチレン等の無極性の樹脂フィルムである。無極性の樹脂フィルムを用いると、電解質層7と保護材15とが互いに貼りつかず、保護材15を容易に剥離することができる。
 保護材15の厚さは、電解質シート13B全体の体積を小さくしつつ、強度を確保する観点から、好ましくは5μm以上であり、より好ましくは10μmであり、また、好ましくは100μm以下であり、より好ましくは50μm以下であり、更に好ましくは30μm以下である。
 保護材15の耐熱温度は、低温環境での劣化を抑制するとともに、高温環境下での軟化を抑制する観点から、好ましくは-30℃以上であり、より好ましくは0℃以上であり、また、好ましくは100℃以下であり、より好ましくは50℃以下である。保護材15を設ける場合、上述した分散媒の揮発工程を必須としないため、耐熱温度を高くする必要がない。
 電解質シート13Aを用いて正極6と負極8との間に電解質層7を設ける方法は、例えば、電解質シート13Aから基材14を剥離し、正極6、電解質層7及び負極8を、例えばラミネートにより積層することで二次電池1が得られる。このとき、電解質層7が、正極6の正極合剤層10側かつ負極8の負極合剤層12側に位置するように、すなわち、正極集電体9、正極合剤層10、電解質層7、負極合剤層12及び負極集電体11がこの順で配置されるように積層する。
 [第2実施形態]
 次に、第2実施形態に係る二次電池について説明する。図5は、第2実施形態に係る二次電池における電極群の一実施形態を示す模式断面図である。図5に示すように、第2実施形態における二次電池が第1実施形態における二次電池と異なる点は、電極群2Bが、バイポーラ電極16を備えている点である。すなわち、電極群2Bは、正極6と、第1の電解質層7と、バイポーラ電極16と、第2の電解質層7と、負極8とをこの順に備えている。
 バイポーラ電極16は、バイポーラ電極集電体17と、バイポーラ電極集電体17の負極8側の面(正極面)に設けられた正極合剤層10と、バイポーラ電極集電体17の正極6側の面(負極面)に設けられた負極合剤層12とを備えている。
 バイポーラ電極集電体17において、正極面は、好ましくは耐酸化性に優れた材料で形成されていてよく、アルミニウム、ステンレス鋼、チタン等で形成されていてよい。負極活物質として黒鉛又は合金を用いたバイポーラ電極集電体17における負極面は、リチウムと合金を形成しない材料で形成されていてよく、具体的には、ステンレス鋼、ニッケル、鉄、チタン等で形成されていてよい。正極面と負極面に異種の金属を用いる場合、バイポーラ電極集電体17は、異種金属箔を積層させたクラッド材であってよい。ただし、チタン酸リチウムのように、リチウムと合金を形成しない電位で動作する負極8を用いる場合、上述の制限はなくなり、負極面は、正極集電体9と同様の材料であってよい。その場合、バイポーラ電極集電体17は、単一の金属箔であってよい。単一の金属箔としてのバイポーラ電極集電体17は、孔径0.1~10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板等であってよい。バイポーラ電極集電体17は、上記以外にも、電池の使用中に溶解、酸化等の変化を生じないものであれば、任意の材料で形成されていてよく、また、その形状、製造方法等も制限されない。
 バイポーラ電極集電体17の厚さは、10μm以上100μm以下であってよく、正極全体の体積を小さくする観点から、好ましくは10μm以上50μm以下であり、電池を形成する際に小さな曲率でバイポーラ電極を捲回する観点から、より好ましくは10μm以上20μm以下である。
 続いて、第2実施形態に係る二次電池の製造方法について説明する。本実施形態に係る二次電池の製造方法は、正極集電体9上に正極合剤層10を形成して正極6を得る第1の工程と、負極集電体11上に負極合剤層12を形成して負極8を得る第2の工程と、バイポーラ電極集電体17の一方の面に正極合剤層10を形成し、他方の面に負極合剤層12を形成してバイポーラ電極16を得る第3の工程と、正極6とバイポーラ電極16との間及び負極8とバイポーラ電極16との間に電解質層7を設ける第4の工程と、を有する。
 第1の工程及び第2の工程は、第1実施形態における第1の工程及び第2の工程と同様の方法であってよい。
 第3の工程において、バイポーラ電極集電体17の一方の面に正極合剤層10を形成する方法は、第1実施形態における第1の工程と同様の方法であってよい。バイポーラ電極集電体17の他方の面に負極合剤層12を形成する方法は、第1実施形態における第2の工程と同様の方法であってよい。
 第4の工程のうち正極6とバイポーラ電極16との間に電解質層7を設ける方法としては、一実施形態において、電解質層7は、正極6の正極合剤層10側及びバイポーラ電極16の負極合剤層12側の少なくともいずれか一方に塗布により形成され、好ましくは正極6の正極合剤層10側及びバイポーラ電極16の負極合剤層12側の両方に塗布により形成される。この場合、例えば、電解質層7が設けられた正極6と、電解質層7が設けられたバイポーラ電極16とを、電解質層7同士が接するように例えばラミネートにより積層する。
 正極6の正極合剤層10上及びバイポーラ電極16の負極合剤層12上に電解質層7を塗布により形成する方法は、第1実施形態における第3工程の一実施形態に係る、正極合剤層10上に電解質層7を塗布により形成する方法及び負極合剤層12上に電解質層7を塗布により形成する方法と同様の方法であってよい。
 第4の工程のうち正極6とバイポーラ電極16との間に電解質層7を設ける方法としては、他の実施形態において、電解質層7は、例えば、基材上に電解質組成物を備えた電解質シートを製造することにより形成される。電解質シートの製造方法は、第1実施形態における電解質シート13A,13Bの製造方法と同様の方法であってよい。
 第4の工程において、負極8とバイポーラ電極16との間に電解質層7を設ける方法は、上述した正極6とバイポーラ電極16との間に電解質層7を設ける方法と同様の方法であってよい。
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 [電解質シートの作製]
 <実施例1>
 ポリマであるフッ化ビニリデンとヘキサフルオロピレンとのコポリマ(フッ化ビニリデン:ヘキサフルオロピレン=95質量%:5質量%。以下、PVDF-HFPとも称する。)を26質量%と、酸化物粒子であるSiO粒子(平均粒径0.1μm)を13質量%と、電解質塩であるリチウムビス(フルオロスルホニル)イミド(Li[FSI])を34.5質量%と、溶媒であるテトラグライムを26.5質量%とを、分散媒であるNMPに分散させ、電解質組成物を含むスラリを調製した。得られたスラリを、ポリエチレンテレフタレート製の基材に塗布し、加熱して分散媒を揮発させることにより電解質シートを得た。得られた電解質シートにおける電解質層の厚さは、25±2μmであった。
 <実施例2~4>
 実施例1の電解質シートにおいて、各材料の含有量を表1に示す含有量に変更した以外は、実施例1の同様の方法により電解質シートを作製した。
 <実施例5>
 実施例1の電解質シートにおいて、酸化物粒子の含有量を増加させて、電解質塩と溶媒の合計含有量(表1における(A)+(B))を減少させた以外は、実施例1と同様の方法により電解質シートを作製した。
 <実施例6~13>
 実施例1の電解質シートにおいて、酸化物粒子の種類を表1~表2に示したものに変更した以外は、実施例1と同様の方法により電解質シートを作製した。
 <実施例14~16>
 実施例1の電解質シートにおいて、酸化物粒子であるSiO粒子の平均粒径を表2に示した平均粒径に変更した以外は、実施例1と同様の方法により電解質シートを作製した。
 <実施例17~18>
 実施例1の電解質シートにおいて、ポリマ中のヘキサフルオロプロピレンの含有量を表2に示した含有量に変更した以外は、実施例1と同様の方法により電解質シートを作製した。
 <実施例19~22>
 実施例1の電解質シートにおいて、溶媒を表2~表3に示したものに変更した以外は、実施例1と同様の方法により電解質シートを作製した。表3において、実施例21のEMI-BTIは1-エチル-3-メチルイミダゾリジウム-ビス(トリフルオロメチルスルフォニル)イミド[CAS番号174899-82-2]を表し、実施例22のEMI-DCAは1-エチル-3-メチルイミダゾリウムジシアナミド[CAS番号370865-89-7]を表す。
 <実施例23~27>
 実施例1の電解質シートにおいて、ポリマの種類を表3に示したものに変更した以外は、実施例1と同様の方法により電解質シートを作製した。表3におけるポリマの略称は、以下のものを示す。
 PVDF+PA:ポリフッ化ビニリデンとポリアクリル酸との混合物
 PVDF-MA:フッ化ビニリデンとマレイン酸とのコポリマ
 PTFE+PMMA:ポリ4フッ化エチレンとポリメチルメタクリレートとの混合物
 PVDF+PMMA:ポリフッ化ビニリデンとポリメチルメタクリレートとの混合物
 PVDF-HFP+PMMA:フッ化ビニリデンとヘキサフルオロピレンとのコポリマと、ポリメチルメタクリレートとの混合物
 <比較例1>
 実施例1の電解質シートにおいて、酸化物粒子を使用しなかった以外は、実施例1と同様の方法により電解質シートを得た。
 [電解質シートの評価]
 実施例及び比較例に係る電解質シートの特性について、以下の項目を評価した。
 (導電率)
 電解質シートを直径15mm、面積1.77cmの円状に切断し、2枚のチタン板に挟み、交流インピーダンスを測定することにより、電解質シートの抵抗を測定した。測定温度は25℃であった。得られた抵抗の値と電解質組成物の厚さを基に、下記の式(7)により導電率を算出した。
 導電率=電解質シートの面積÷抵抗÷電解質組成物の厚さ   (7)
 (スラリの性状)
 電解質シートの調製工程におけるスラリの性状について、ゲル化の有無を目視により確認した。スラリのゲル化は、ポリマと、電解質塩と、溶媒について、分散媒に対する相互の溶解性が低い場合に生じうる。ゲル化が生ずると電解質シートを薄層化することが困難になるため、ゲル化が生じない方がよい。表1~表3においては、ゲル化したものを+、ゲル化しなかったものを-と示した。
 (電解質組成物の表面性状)
 電解質シートにおいて、電解質組成物の表面性状を目視により確認した。電解質組成物の表面は、平滑であり、凹凸及び欠損部分がないことが好ましい。表1~表3においては、凹凸を有していたものを+、凹凸を有しなかったものを-と示した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 各材料の含有量を変化させた実施例1~4における導電率を比較すると、電解質塩と溶媒の合計含有量((A)+(B))が多いほど、すなわち電解質塩の添加量が多いほど、導電率が増大する傾向があった。
 実施例1に対して酸化物粒子の含有量を増加させ、(A)+(B)の含有量を減少させた実施例5は、実施例1に比べて電解質塩の含有量が減少したため導電率がやや低下したが、ほぼ同じ量の電解質塩を含有する実施例2よりも導電率が高かった。すなわち、酸化物粒子の含有量が増加することにより、導電性が更に向上することが分かった。
 酸化物粒子の種類を変更させた実施例6~13は、いずれの酸化物粒子を使用しても、0.6mS/cm以上の高い導電率を有していた。
 酸化物粒子の平均粒径を変化させた実施例14~16については、実施例1を含めて比較すると、酸化物粒子の平均粒径が0.1μmから3μmである実施例14と実施例15はほぼ同等の導電率を示し、6μmである実施例16の導電率はやや低下する傾向が認められた。この結果より、平均粒径6μm程度までの酸化物粒子を用いることにより強度と導電性に優れた電解質シートを得ることができるが、導電率を更に向上させるためには平均粒径を1μm以下にすることが望ましいことがわかる。
 ポリマ中のヘキサフルオロプロピレンの含有量を変化させた実施例17~18については、実施例1を含めて比較すると、ヘキサフルオロプロピレンの含有量が多いほど、導電率が増大する傾向にある。
 溶媒の種類を変更した実施例19~22のうち、実施例21及び22では、導電率が1mS/cmを超えていた。
 ポリマの種類を変更した実施例23~27については、3種類のポリマを用いた実施例27において、導電率が最も高かった。
 酸化物粒子を含有しない比較例1の導電率は、実施例1~27よりも劣っていた。
 実施例及び比較例に係る電解質シートについて、下記の項目についても更に評価を行った。結果を表4に示す。
 (破断の有無)
 電解質シートにおいて、電解質層を基材から剥離する際の破断の有無を目視により評価した。表4においては、破断が生じたものを+、破断が生じなかったものを-と示した。
 (液漏れの有無)
 電解質シートに荷重を加えた際の、溶媒による液漏れの有無を評価した。切断した電解質シートに2kg/cmの荷重を加えた場合において、電解質組成物からの液漏れの有無を目視により評価した。表4においては、液漏れが生じたものを+、液漏れが生じなかったものを-とした。
Figure JPOXMLDOC01-appb-T000009
 1…二次電池、6…正極、7…電解質層、8…負極、13A,13B…電解質シート、14…基材。

Claims (14)

  1.  1種又は2種以上のポリマと、
     酸化物粒子と、
     リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、
     溶媒と、を含有する、電解質組成物。
  2.  前記1種又は2種以上のポリマを構成する構造単位の中に、4フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれる、請求項1に記載の電解質組成物。
  3.  前記ポリマとして、前記第1の構造単位と前記第2の構造単位との両方を含むコポリマを含有する、請求項2に記載の電解質組成物。
  4.  前記ポリマとして、前記第1の構造単位を含む第1のポリマと、前記第2の構造単位を含む第2のポリマとの少なくとも2種のポリマを含有する、請求項2又は3に記載の電解質組成物。
  5.  前記ポリマの含有量が、前記電解質組成物全量を基準として3~50質量%である、請求項1~4のいずれか一項に記載の電解質組成物。
  6.  前記酸化物粒子が、SiO、Al、AlOOH、MgO、CaO、ZrO、TiO、LiLaZr12、及びBaTiOからなる群より選ばれる少なくとも1種の粒子である、請求項1~5のいずれか一項に記載の電解質組成物。
  7.  前記酸化物粒子の平均粒径が0.005~1μmである、請求項1~6のいずれか一項に記載の電解質組成物。
  8.  前記酸化物粒子の含有量が、前記電解質組成物全量を基準として、5~40質量%である、請求項1~7のいずれか一項に記載の電解質組成物。
  9.  前記溶媒が下記式(1)で表されるグライムである、請求項1~8のいずれか一項に記載の電解質組成物。
     RO-(CHCHO)-R   (1)
    [式(1)中、R及びRは、それぞれ独立に、炭素数4以下のアルキル基又は炭素数4以下のフルオロアルキル基を表し、nは1~6の整数を表す。]
  10.  前記溶媒がイオン液体である、請求項1~8のいずれか一項に記載の電解質組成物。
  11.  前記電解質塩と前記溶媒との合計の含有量が、前記電解質組成物全量を基準として、25~70質量%である、請求項1~10のいずれか一項に記載の電解質組成物。
  12.  シート状に形成された、請求項1~11のいずれか一項に記載の電解質組成物。
  13.  正極と、
     負極と、
     前記正極及び前記負極の間に設けられた、請求項1~12のいずれか一項に記載の電解質組成物からなる電解質層と、を備える二次電池。
  14.  1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種である電解質塩と、溶媒と、分散媒と、を含有するスラリを基材上に配置する工程と、
     前記分散媒を揮発させて前記基材上に電解質層を形成する工程と、を備える、電解質シートの製造方法。
PCT/JP2017/020487 2017-04-21 2017-06-01 電解質組成物、二次電池、及び電解質シートの製造方法 WO2018220800A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
PCT/JP2017/020487 WO2018220800A1 (ja) 2017-06-01 2017-06-01 電解質組成物、二次電池、及び電解質シートの製造方法
CN201810375618.4A CN108735972B (zh) 2017-04-21 2018-04-19 二次电池用电池构件的制造方法
EP18809223.3A EP3637522B1 (en) 2017-06-01 2018-05-31 Electrolyte composition, secondary cell, and method for manufacturing electrolyte sheet
KR1020217033514A KR102428844B1 (ko) 2017-06-01 2018-05-31 전해질 조성물, 이차 전지, 및 전해질 시트의 제조 방법
US16/617,048 US20210075054A1 (en) 2017-06-01 2018-05-31 Electrolyte composition, secondary cell, and method for manufacturing electrolyte sheet
EP22180702.7A EP4102610A1 (en) 2017-06-01 2018-05-31 Electrolyte composition, secondary cell, and method for manufacturing electrolyte sheet
CN201880035462.3A CN110710044B (zh) 2017-06-01 2018-05-31 电解质组合物、二次电池、和电解质片的制造方法
PCT/JP2018/021011 WO2018221670A1 (ja) 2017-06-01 2018-05-31 電解質組成物、二次電池、及び電解質シートの製造方法
JP2019510989A JP6562184B2 (ja) 2017-06-01 2018-05-31 電解質組成物、二次電池、及び電解質シートの製造方法
KR1020197037577A KR102316808B1 (ko) 2017-06-01 2018-05-31 전해질 조성물, 이차 전지, 및 전해질 시트의 제조 방법
TW111104450A TWI807628B (zh) 2017-06-01 2018-06-01 電解質組成物、二次電池、及電解質片的製造方法
TW107118886A TWI758486B (zh) 2017-06-01 2018-06-01 電解質組成物、二次電池、及電解質片的製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020487 WO2018220800A1 (ja) 2017-06-01 2017-06-01 電解質組成物、二次電池、及び電解質シートの製造方法

Publications (1)

Publication Number Publication Date
WO2018220800A1 true WO2018220800A1 (ja) 2018-12-06

Family

ID=64454612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020487 WO2018220800A1 (ja) 2017-04-21 2017-06-01 電解質組成物、二次電池、及び電解質シートの製造方法

Country Status (1)

Country Link
WO (1) WO2018220800A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145338A1 (ja) * 2019-01-09 2020-07-16 日立化成株式会社 電解液、電解質スラリ組成物及び二次電池
JPWO2020240786A1 (ja) * 2019-05-30 2020-12-03
WO2021193023A1 (ja) * 2020-03-27 2021-09-30 第一工業製薬株式会社 リチウムイオン二次電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090728A (ja) * 1998-09-10 2000-03-31 Korea Advanced Inst Of Sci Technol 均質状の固体ポリマ―アロイ電解質及びその製造方法、それを利用した複合電極、並びにリチウム高分子電池及びリチウムイオン高分子電池並びにそれらの製造方法
JP2003077539A (ja) * 2001-09-04 2003-03-14 Mitsubishi Materials Corp ゲル状ポリマー電解質及びそれを用いたリチウムポリマー電池
WO2011037060A1 (ja) * 2009-09-24 2011-03-31 コニカミノルタホールディングス株式会社 電解質組成物、及びリチウムイオン二次電池
CN102522589A (zh) * 2011-12-16 2012-06-27 浙江大东南集团有限公司 一种新型具有互穿网络结构凝胶聚合物电解质及其制备方法和应用
WO2015068324A1 (ja) * 2013-11-05 2015-05-14 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2015097952A1 (ja) * 2013-12-27 2015-07-02 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090728A (ja) * 1998-09-10 2000-03-31 Korea Advanced Inst Of Sci Technol 均質状の固体ポリマ―アロイ電解質及びその製造方法、それを利用した複合電極、並びにリチウム高分子電池及びリチウムイオン高分子電池並びにそれらの製造方法
JP2003077539A (ja) * 2001-09-04 2003-03-14 Mitsubishi Materials Corp ゲル状ポリマー電解質及びそれを用いたリチウムポリマー電池
WO2011037060A1 (ja) * 2009-09-24 2011-03-31 コニカミノルタホールディングス株式会社 電解質組成物、及びリチウムイオン二次電池
CN102522589A (zh) * 2011-12-16 2012-06-27 浙江大东南集团有限公司 一种新型具有互穿网络结构凝胶聚合物电解质及其制备方法和应用
WO2015068324A1 (ja) * 2013-11-05 2015-05-14 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2015097952A1 (ja) * 2013-12-27 2015-07-02 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145338A1 (ja) * 2019-01-09 2020-07-16 日立化成株式会社 電解液、電解質スラリ組成物及び二次電池
JP2020113386A (ja) * 2019-01-09 2020-07-27 日立化成株式会社 電解液、電解質スラリ組成物及び二次電池
JPWO2020240786A1 (ja) * 2019-05-30 2020-12-03
WO2020240786A1 (ja) * 2019-05-30 2020-12-03 昭和電工マテリアルズ株式会社 電池用スラリ組成物、並びに、電極、電解質シート、及び電池部材の製造方法
JP7438207B2 (ja) 2019-05-30 2024-02-26 エルジー エナジー ソリューション リミテッド 電池用スラリ組成物、並びに、電極、電解質シート、及び電池部材の製造方法
WO2021193023A1 (ja) * 2020-03-27 2021-09-30 第一工業製薬株式会社 リチウムイオン二次電池
JP2021157983A (ja) * 2020-03-27 2021-10-07 第一工業製薬株式会社 リチウムイオン二次電池

Similar Documents

Publication Publication Date Title
JP6562184B2 (ja) 電解質組成物、二次電池、及び電解質シートの製造方法
WO2018193628A1 (ja) ポリマ電解質組成物及びポリマ二次電池
WO2019180845A1 (ja) 電解質組成物、電解質シート及び二次電池
WO2018193630A1 (ja) 電気化学デバイス用電極及び電気化学デバイス
WO2020145338A1 (ja) 電解液、電解質スラリ組成物及び二次電池
US11296356B2 (en) Polymer electrolyte composition including polymer having a structural unit represented by formula (1), electrolyte salt, and molten salt, and polymer secondary battery including the same
WO2018220800A1 (ja) 電解質組成物、二次電池、及び電解質シートの製造方法
WO2019035190A1 (ja) 二次電池用電池部材及び二次電池
JP7337432B2 (ja) 電解質組成物、電解質シート及び二次電池
JP7423120B2 (ja) 電解質スラリー組成物、電解質シートの製造方法、及び二次電池の製造方法
WO2018221668A1 (ja) 電解質組成物及び二次電池
WO2020017439A1 (ja) 電解質シートの製造方法及び二次電池の製造方法
JP6642781B1 (ja) 電解質シート及び二次電池
JP2020113527A (ja) 電解質スラリ組成物及びその製造方法、並びに、電解質シート及びその製造方法
WO2018193631A1 (ja) ポリマ電解質組成物及びポリマ二次電池
JP2019021538A (ja) ポリマ電解質組成物及びポリマ二次電池
JP2019153545A (ja) 二次電池用負極及び二次電池
JP2019021539A (ja) ポリマ電解質組成物及びポリマ二次電池
JP2021018925A (ja) 非水電解液、並びにそれを用いた半固体電解質シート及び半固体電解質複合シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP