WO2015068324A1 - 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム - Google Patents
電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム Download PDFInfo
- Publication number
- WO2015068324A1 WO2015068324A1 PCT/JP2014/004415 JP2014004415W WO2015068324A1 WO 2015068324 A1 WO2015068324 A1 WO 2015068324A1 JP 2014004415 W JP2014004415 W JP 2014004415W WO 2015068324 A1 WO2015068324 A1 WO 2015068324A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- particles
- electrolyte
- positive electrode
- power
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/10—Batteries in stationary systems, e.g. emergency power source in plant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/002—Inorganic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- This technology relates to batteries, electrolytes, battery packs, electronic devices, electric vehicles, power storage devices, and power systems.
- Lithium ion secondary batteries with excellent energy density and widespread use for portable devices are those that use a laminate film as the exterior member because they are lighter, have a higher energy density, and can be manufactured in extremely thin shapes. It has been put into practical use.
- an electrolyte and a polymer compound are used as an electrolyte for the purpose of leakage resistance and the like, which is known as a polymer battery.
- a battery using a gel electrolyte in which a electrolytic compound is held in a polymer compound to form a so-called gel is widely used.
- the polymer battery has greatly improved the degree of freedom of shape by using an aluminum laminate film for the exterior member, but on the other hand, the strength may not be sufficient, and it deforms when a strong force is applied due to misuse. It is easy to produce.
- Patent Document 1 proposes mixing particles such as alumina in the gel electrolyte to improve the gel strength.
- an object of the present technology is to provide a battery, an electrolyte, a battery pack, an electronic device, an electric vehicle, a power storage device, and a power system that can ensure safety without sacrificing capacity.
- the present technology includes a positive electrode, a negative electrode, a separator, an electrolyte containing particles, a resin, and an electrolytic solution, the shape of the particles includes a plane, and the plane rate of the particles is
- the battery is more than 40% and 100% or less, and the refractive index of the particles is 1.3 or more and less than 2.4.
- the present technology includes particles, a resin, and an electrolytic solution, the shape of the particles includes a flat surface, the flatness of the particles is more than 40% and 100% or less, and the refractive index of the particles is 1.3 or more and less than 2.4. It is an electrolyte.
- the battery pack, electronic device, electric vehicle, power storage device, and power system of the present technology include the above-described battery.
- FIG. 1 is an exploded perspective view showing a configuration of a laminated film type nonaqueous electrolyte battery according to a first embodiment of the present technology.
- 2A is a cross-sectional view showing a cross-sectional configuration along the line II of the spirally wound electrode body shown in FIG.
- FIG. 2B is a schematic cross-sectional view showing a part of a cross section along a direction orthogonal to the line II of the spirally wound electrode body.
- FIG. 3A is an SEM photograph of talc particles.
- FIG. 3B is an SEM photograph of boehmite particles.
- 4A to 4C are exploded perspective views showing the configuration of a laminated film type non-aqueous electrolyte battery using a laminated electrode body.
- FIG. 5 is an exploded perspective view showing a configuration example of a simple battery pack.
- FIG. 6A is a schematic perspective view showing the appearance of a simple battery pack.
- FIG. 6B is a schematic perspective view showing the appearance of a simple battery pack.
- FIG. 7 is a block diagram illustrating a circuit configuration example of the battery pack according to the embodiment of the present technology.
- FIG. 8 is a schematic diagram showing an example applied to a residential power storage system using the nonaqueous electrolyte battery of the present technology.
- FIG. 9 is a schematic diagram schematically illustrating an example of a configuration of a hybrid vehicle that employs a series hybrid system to which the present technology is applied.
- FIG. 10 is a schematic diagram for explaining the battery bending test.
- FIG. 11 is a schematic cross-sectional view for explaining the battery bending test.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2010-198757 proposes mixing particles such as alumina in the gel electrolyte to improve the strength of the gel electrolyte. .
- a gel electrolyte (a gel electrolyte made into a sol with a solvent or dissolved in heat to form a hot melt) in advance is formed on an electrode (or a separator) and then solidified. Then, an electrode and a separator are laminated
- the gel electrolyte When forming the power generation element, the gel electrolyte is applied to at least the entire surface of the active material mixture layer (active material layer), and in particular, the gel electrolyte should be sufficiently applied to the cut end surface including the active material mixture layer of the electrode. is important. Insufficient electrolyte creates a part that cannot contribute to the charging reaction, causing capacity loss, but also causing burrs generated on the cut end face, dropped conductive agent, metal ion elution due to high potential application phenomenon, etc. It is because it becomes the cause of.
- a gel electrolyte mixed with particles such as alumina is sufficiently applied to the cut end surface of the electrode, a gel electrolyte layer having a width wider than the width of the electrode is formed, and the gel electrolyte layer is formed from both ends in the width direction of the electrode. Will protrude in the width direction. In this state after coating, the gel electrolyte mixed with particles such as alumina is clouded, making it difficult to distinguish the outline of the electrode viewed through the gel electrolyte.
- the present technology improves the transparency of the gel electrolyte, thereby ensuring safety without sacrificing capacity, battery, electrolyte, battery pack, electronic device, electric vehicle, power storage device And providing a power system.
- a laminated film type nonaqueous electrolyte battery (battery) will be described.
- This nonaqueous electrolyte battery is, for example, a nonaqueous electrolyte secondary battery that can be charged and discharged, and is, for example, a lithium ion secondary battery.
- two structural examples (a 1st example and a 2nd example) of a laminate film type nonaqueous electrolyte battery are explained.
- FIG. 1 shows the configuration of the nonaqueous electrolyte battery 62 according to the first embodiment.
- This non-aqueous electrolyte battery 62 is a so-called laminate film type, in which a wound electrode body 50 to which a positive electrode lead 51 and a negative electrode lead 52 are attached is housed in a film-like exterior member 60.
- the positive electrode lead 51 and the negative electrode lead 52 are led out from the inside of the exterior member 60 toward the outside, for example, in the same direction.
- the positive electrode lead 51 and the negative electrode lead 52 are made of, for example, a metal material such as aluminum, copper, nickel, or stainless steel, and each have a thin plate shape or a mesh shape.
- the exterior member 60 is made of, for example, a laminate film in which resin layers are formed on both surfaces of a metal layer.
- an outer resin layer is formed on the surface of the metal layer that is exposed to the outside of the battery, and an inner resin layer is formed on the inner surface of the battery facing the power generation element such as the wound electrode body 50.
- the metal layer plays the most important role in preventing moisture, oxygen and light from entering and protecting the contents.
- Aluminum (Al) is most often used because of its lightness, extensibility, price and ease of processing.
- the outer resin layer has a beautiful appearance, toughness, flexibility, and the like, and a resin material such as nylon or polyethylene terephthalate (PET) is used. Since the inner resin layer is a portion that melts and fuses with heat or ultrasonic waves, a polyolefin resin is appropriate, and unstretched polypropylene (CPP) is often used.
- An adhesive layer may be provided between the metal layer, the outer resin layer, and the inner resin layer as necessary.
- the exterior member 60 is provided with a recess that accommodates the wound electrode body 50 formed by, for example, deep drawing from the inner resin layer side toward the outer resin layer, and the inner resin layer serves as the wound electrode body 50. It is arrange
- the inner resin layers facing each other of the exterior member 60 are in close contact with each other by fusion or the like at the outer edge of the recess.
- the adhesion film 61 is made of a resin material having high adhesion to a metal material, and is made of, for example, polyethylene, polypropylene, or a polyolefin resin such as modified polyethylene or modified polypropylene obtained by modifying these materials.
- the exterior member 60 may be made of a laminated film having another structure, a polymer film such as polypropylene, or a metal film, instead of the aluminum laminated film whose metal layer is made of aluminum (Al).
- FIG. 2A shows a cross-sectional structure taken along line II of the spirally wound electrode body 50 shown in FIG.
- FIG. 2B is a schematic cross-sectional view showing a part of a cross section along a direction orthogonal to the line II of the wound electrode body 50.
- the wound electrode body 50 is formed by laminating a belt-like positive electrode 53 and a belt-like negative electrode 54 via a belt-like separator 55 and a gel electrolyte layer 56, and winding the outermost peripheral portion. Is protected by a protective tape 57 as necessary.
- the relationship between the width of the strip-shaped positive electrode 53, the width of the strip-shaped negative electrode 54, and the width of the strip-shaped separator 55 is typically, for example, the width of the strip-shaped positive electrode 53 ⁇ the strip-shaped negative electrode 54. Width ⁇ the width of the strip-shaped separator 55.
- the gel electrolyte layer 56 is formed with a width wider than the width of the strip-like positive electrode 53 and the width of the strip-like negative electrode 54, and at least a part of both end faces in the width direction of the strip-like positive electrode 53 and both ends of the strip-like negative electrode 54 in the width direction. Covers at least part of the surface.
- the gel electrolyte layer 56 preferably covers all of both end faces of the positive electrode 53 and both end faces of the negative electrode 54.
- the positive electrode 53, the negative electrode 54, and the separator 55 are formed between the ends of the positive electrode 53, the negative electrode 54, and the end of the separator 55 so as to have a predetermined appropriate clearance in the width direction.
- the gel electrolyte layers 56 are stacked.
- the positive electrode 53 has a structure in which a positive electrode active material layer 53B is provided on one or both surfaces of the positive electrode current collector 53A.
- the positive electrode 53 is obtained by forming a positive electrode active material layer 53B containing a positive electrode active material on both surfaces of a positive electrode current collector 53A.
- a positive electrode current collector 53A for example, a metal foil such as an aluminum (Al) foil, a nickel (Ni) foil, or a stainless steel (SUS) foil can be used.
- the positive electrode active material layer 53B includes, for example, a positive electrode active material, a conductive agent, and a binder.
- a positive electrode active material any one or more of positive electrode materials capable of inserting and extracting lithium can be used, and other materials such as a binder and a conductive agent can be used as necessary. May be included.
- a lithium-containing compound As the positive electrode material capable of inserting and extracting lithium, for example, a lithium-containing compound is preferable. This is because a high energy density can be obtained.
- the lithium-containing compound include a composite oxide containing lithium and a transition metal element, and a phosphate compound containing lithium and a transition metal element.
- the group which consists of cobalt (Co), nickel (Ni), manganese (Mn), and iron (Fe) as a transition metal element is preferable. This is because a higher voltage can be obtained.
- a lithium-containing compound represented by Li x M1O 2 or Li y M2PO 4 can be used as the positive electrode material.
- M1 and M2 represent one or more transition metal elements.
- the values of x and y vary depending on the charge / discharge state of the battery, and are generally 0.05 ⁇ x ⁇ 1.10 and 0.05 ⁇ y ⁇ 1.10.
- Examples of the composite oxide containing lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), and lithium nickel cobalt composite oxide (Li x Ni).
- lithium nickel cobalt manganese composite oxide Li x Ni (1-vw) Co v Mn w O 2 (0 ⁇ v + w ⁇ 1, v> 0, w > 0)
- lithium manganese composite oxide LiMn 2 O 4
- lithium manganese nickel composite oxide LiMn 2 ⁇ t N t O 4 (0 ⁇ t ⁇ 2) having a spinel structure.
- a complex oxide containing cobalt is preferable. This is because a high capacity can be obtained and excellent cycle characteristics can be obtained.
- Examples of the phosphate compound containing lithium and a transition metal element include a lithium iron phosphate compound (LiFePO 4 ) or a lithium iron manganese phosphate compound (LiFe 1-u Mn u PO 4 (0 ⁇ u ⁇ 1). ) And the like.
- lithium composite oxide examples include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium manganate (LiMn 2 O 4 ).
- LiCoO 2 lithium cobaltate
- LiNiO 2 lithium nickelate
- LiMn 2 O 4 lithium manganate
- a solid solution in which a part of the transition metal element is substituted with another element can also be used.
- nickel cobalt composite lithium oxide LiNi 0.5 Co 0.5 O 2 , LiNi 0.8 Co 0.2 O 2, etc.
- composite particles in which the surfaces of particles made of any of the above lithium-containing compounds are coated with fine particles made of any of the other lithium-containing compounds can be used. Good.
- positive electrode materials capable of inserting and extracting lithium include oxides such as vanadium oxide (V 2 O 5 ), titanium dioxide (TiO 2 ), manganese dioxide (MnO 2 ), and iron disulfide. (FeS 2 ), disulfides such as titanium disulfide (TiS 2 ) and molybdenum disulfide (MoS 2 ), and chalcogenides containing no lithium such as niobium diselenide (NbSe 2 ) (particularly layered compounds and spinel compounds) ), Lithium-containing compounds containing lithium, and conductive polymers such as sulfur, polyaniline, polythiophene, polyacetylene, or polypyrrole.
- the positive electrode material capable of inserting and extracting lithium may be other than the above. Further, two or more kinds of the series of positive electrode materials described above may be mixed in any combination.
- a carbon material such as carbon black or graphite
- the binder include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resin materials. At least one selected from a copolymer or the like mainly composed of is used.
- the positive electrode 53 has a positive electrode lead 51 connected to one end of the positive electrode current collector 53A by spot welding or ultrasonic welding.
- the positive electrode lead 51 is preferably a metal foil or a mesh-like one, but there is no problem even if it is not a metal as long as it is electrochemically and chemically stable and can conduct electricity. Examples of the material of the positive electrode lead 51 include aluminum (Al) and nickel (Ni).
- the negative electrode 54 has a structure in which a negative electrode active material layer 54B is provided on one surface or both surfaces of a negative electrode current collector 54A, and the negative electrode active material layer 54B and the positive electrode active material layer 53B are arranged to face each other. Yes.
- the negative electrode active material layer 54B may be provided only on one surface of the negative electrode current collector 54A.
- the negative electrode current collector 54A is made of, for example, a metal foil such as a copper foil.
- the negative electrode active material layer 54B includes one or more negative electrode materials capable of occluding and releasing lithium as the negative electrode active material, and the positive electrode active material layer 53B as necessary. Other materials such as a binder and a conductive agent similar to those described above may be included.
- the electrochemical equivalent of the negative electrode material capable of inserting and extracting lithium is larger than the electrochemical equivalent of the positive electrode 53, and theoretically, the negative electrode 54 is in the middle of charging. Lithium metal is prevented from precipitating.
- the nonaqueous electrolyte battery 62 is designed such that the open circuit voltage (that is, the battery voltage) in the fully charged state is in the range of, for example, 2.80 V or more and 6.00 V or less.
- the open circuit voltage in a fully charged state is, for example, 4.20 V or more and 6. It is designed to be within the range of 00V or less.
- the open circuit voltage in the fully charged state is preferably 4.25V or more and 6.00V or less.
- the open circuit voltage in the fully charged state is 4.25 V or higher
- the amount of lithium released per unit mass is increased even with the same positive electrode active material as compared to the 4.20 V battery. Accordingly, the amounts of the positive electrode active material and the negative electrode active material are adjusted. Thereby, a high energy density can be obtained.
- Examples of the negative electrode material capable of inserting and extracting lithium include non-graphitizable carbon, graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, and fired organic polymer compounds And carbon materials such as carbon fiber and activated carbon.
- examples of coke include pitch coke, needle coke, and petroleum coke.
- An organic polymer compound fired body is a carbonized material obtained by firing a polymer material such as a phenol resin or a furan resin at an appropriate temperature, and part of it is non-graphitizable carbon or graphitizable carbon.
- These carbon materials are preferable because the change in crystal structure that occurs during charge and discharge is very small, a high charge and discharge capacity can be obtained, and good cycle characteristics can be obtained.
- graphite is preferable because it has a high electrochemical equivalent and can provide a high energy density.
- non-graphitizable carbon is preferable because excellent cycle characteristics can be obtained.
- those having a low charge / discharge potential, specifically, those having a charge / discharge potential close to that of lithium metal are preferable because a high energy density of the battery can be easily realized.
- lithium can be inserted and extracted, and at least one of a metal element and a metalloid element can be used.
- a material containing as a constituent element is included. This is because a high energy density can be obtained by using such a material. In particular, the use with a carbon material is more preferable because a high energy density can be obtained and excellent cycle characteristics can be obtained.
- the negative electrode material may be a single element, alloy or compound of a metal element or metalloid element, or may have at least a part of one or more of these phases.
- the alloy includes an alloy including one or more metal elements and one or more metalloid elements in addition to an alloy composed of two or more metal elements.
- the nonmetallic element may be included.
- Examples of the metal element or metalloid element constituting the negative electrode material include a metal element or metalloid element capable of forming an alloy with lithium.
- a metal element or metalloid element capable of forming an alloy with lithium.
- the negative electrode material preferably includes a 4B group metal element or metalloid element in the short periodic table as a constituent element, and more preferably includes at least one of silicon (Si) and tin (Sn) as a constituent element. And particularly preferably those containing at least silicon. This is because silicon (Si) and tin (Sn) have a large ability to occlude and release lithium, and a high energy density can be obtained.
- Examples of the negative electrode material having at least one of silicon and tin include at least a part of a simple substance, an alloy or a compound of silicon, a simple substance, an alloy or a compound of tin, or one or more phases thereof. The material which has in is mentioned.
- tin alloys include silicon (Si), nickel (Ni), copper (Cu), iron (Fe), cobalt (Co), and manganese (Mn) as second constituent elements other than tin (Sn).
- tin (Sn) compound or silicon (Si) compound examples include those containing oxygen (O) or carbon (C).
- O oxygen
- C carbon
- the above-described compounds are used. Two constituent elements may be included.
- cobalt (Co), tin (Sn), and carbon (C) are included as constituent elements, and the carbon content is 9.9 mass% or more and 29.7 mass% or less.
- SnCoC containing material whose ratio of cobalt (Co) with respect to the sum total of tin (Sn) and cobalt (Co) is 30 mass% or more and 70 mass% or less is preferable. This is because a high energy density can be obtained in such a composition range, and excellent cycle characteristics can be obtained.
- This SnCoC-containing material may further contain other constituent elements as necessary.
- other constituent elements include silicon (Si), iron (Fe), nickel (Ni), chromium (Cr), indium (In), niobium (Nb), germanium (Ge), titanium (Ti), and molybdenum.
- Mo silicon
- Al aluminum
- phosphorus (P) gallium
- Ga bismuth
- This SnCoC-containing material has a phase containing tin (Sn), cobalt (Co), and carbon (C), and this phase has a low crystallinity or an amorphous structure. It is preferable.
- this SnCoC-containing material it is preferable that at least a part of carbon (C) as a constituent element is bonded to a metal element or a metalloid element as another constituent element.
- the decrease in cycle characteristics is considered to be due to aggregation or crystallization of tin (Sn) or the like.
- the combination of carbon (C) with other elements suppresses such aggregation or crystallization. Because it can.
- XPS X-ray photoelectron spectroscopy
- the peak of the carbon 1s orbital (C1s) appears at 284.5 eV in an energy calibrated apparatus so that the peak of the gold atom 4f orbital (Au4f) is obtained at 84.0 eV if it is graphite. .
- Au4f gold atom 4f orbital
- it will appear at 284.8 eV.
- the charge density of the carbon element increases, for example, when carbon is bonded to a metal element or a metalloid element, the C1s peak appears in a region lower than 284.5 eV.
- the peak of the synthetic wave of C1s obtained for the SnCoC-containing material appears in a region lower than 284.5 eV
- at least a part of the carbon contained in the SnCoC-containing material is a metal element or a half of other constituent elements. Combined with metal elements.
- the C1s peak is used to correct the energy axis of the spectrum.
- the C1s peak of the surface-contaminated carbon is set to 284.8 eV, which is used as an energy standard.
- the waveform of the C1s peak is obtained as a shape including the surface contamination carbon peak and the carbon peak in the SnCoC-containing material. Therefore, by analyzing using, for example, commercially available software, the surface contamination The carbon peak and the carbon peak in the SnCoC-containing material are separated. In the waveform analysis, the position of the main peak existing on the lowest bound energy side is used as the energy reference (284.8 eV).
- Examples of the negative electrode material capable of occluding and releasing lithium include metal oxides and polymer compounds capable of occluding and releasing lithium.
- Examples of the metal oxide include lithium titanium oxide containing titanium and lithium such as lithium titanate (Li 4 Ti 5 O 12 ), iron oxide, ruthenium oxide, or molybdenum oxide.
- Examples of the polymer compound include polyacetylene, polyaniline, polypyrrole, and the like.
- the separator 55 is a porous film made of an insulating film having a high ion permeability and a predetermined mechanical strength. A non-aqueous electrolyte is held in the pores of the separator 55.
- a polyolefin resin such as polypropylene or polyethylene, an acrylic resin, a styrene resin, a polyester resin, or a nylon resin is preferably used as the resin material constituting the separator 55.
- polyethylene such as low density polyethylene, high density polyethylene and linear polyethylene, or their low molecular weight wax content, or polyolefin resin such as polypropylene is suitable because it has an appropriate melting temperature and is easily available.
- a material including a porous film made of a polyolefin resin is excellent in separability between the positive electrode 53 and the negative electrode 54 and can further reduce a decrease in internal short circuit.
- the thickness of the separator 55 can be arbitrarily set as long as it is equal to or greater than the thickness that can maintain the required strength.
- the separator 55 insulates between the positive electrode 53 and the negative electrode 54 to prevent a short circuit and the like, and has ion permeability for suitably performing a battery reaction via the separator 55, and the battery reaction in the battery. It is preferable to set the thickness so that the volumetric efficiency of the active material layer contributing to the above can be as high as possible.
- the thickness of the separator 55 is preferably 7 ⁇ m or more and 20 ⁇ m or less, for example.
- the gel electrolyte layer 56 includes a filler, a matrix polymer compound (resin), and a nonaqueous electrolytic solution (electrolytic solution).
- the gel electrolyte layer 56 is a layer made of a gel electrolyte in which a non-aqueous electrolyte is held by a matrix polymer compound.
- the strength of the gel electrolyte layer 56 can be improved.
- particles having a shape including a flat surface, a predetermined flatness, and a predetermined refractive index are used as the filler. Since the gel electrolyte layer 56 is transparent, it can be solved that the safety of the battery cannot be ensured without sacrificing the capacity due to the gel electrolyte layer 56 not being transparent.
- “transparent” means that the outline of the electrode (the separator 55 when formed on the separator 55) can be visually recognized through the gel electrolyte layer 56 formed on the electrode (or the separator 55). It means transparency. The case where the outline of the electrode (or separator 55) can be clearly seen through the gel electrolyte layer 56, as well as the case where the outline of the electrode (or separator 55) can be seen slightly, is included in “transparent”. The state where the gel electrolyte layer 56 becomes translucent, colored, cloudy, etc., and the outline of the electrode (or separator 55) cannot be completely seen through the gel electrolyte layer 56 is not included in “transparent”. In addition, it is preferable that the outline of the electrode (or the separator 55) can be visually recognized more clearly (higher transparency) through the gel electrolyte layer 56 because it is easier to ensure safety.
- the nonaqueous electrolytic solution includes an electrolyte salt and a nonaqueous solvent that dissolves the electrolyte salt.
- the electrolyte salt contains, for example, one or more light metal compounds such as lithium salts.
- the lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium tetraphenylborate (LiB (C 6 H 5) 4), methanesulfonic acid lithium (LiCH 3 SO 3), lithium trifluoromethanesulfonate (LiCF 3 SO 3), tetrachloroaluminate lithium (LiAlCl 4), six Examples thereof include dilithium fluorosilicate (Li 2 SiF 6 ), lithium chloride (LiCl), and lithium bromide (LiBr).
- At least one selected from the group consisting of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, and lithium hexafluoroarsenate is preferable, and lithium hexafluorophosphate is more preferable.
- Nonaqueous solvent examples include lactone solvents such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, and ⁇ -caprolactone, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, ethyl methyl carbonate, Carbonate ester solvents such as diethyl carbonate, ether solvents such as 1,2-dimethoxyethane, 1-ethoxy-2-methoxyethane, 1,2-diethoxyethane, tetrahydrofuran or 2-methyltetrahydrofuran, and nitriles such as acetonitrile
- Nonaqueous solvents such as solvents, sulfolane-based solvents, phosphoric acids, phosphate ester solvents, and pyrrolidones are exemplified. Any one type of solvent may be used alone, or two or more types may be mixed and used.
- a mixture of a cyclic carbonate and a chain carbonate as the non-aqueous solvent, and it may contain a compound in which a part or all of the hydrogen of the cyclic carbonate or the chain carbonate includes a fluorination.
- the fluorinated compounds include fluoroethylene carbonate (4-fluoro-1,3-dioxolan-2-one: FEC) and difluoroethylene carbonate (4,5-difluoro-1,3-dioxolan-2-one: DFEC) is preferably used.
- the negative electrode 54 containing a compound such as silicon (Si), tin (Sn), or germanium (Ge) is used as the negative electrode active material, charge / discharge cycle characteristics can be improved.
- difluoroethylene carbonate is preferably used as the non-aqueous solvent. This is because the cycle characteristic improvement effect is excellent.
- resin As the resin, it is possible to use a matrix polymer compound that retains the electrolytic solution and has a property compatible with a solvent.
- resins include fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene, fluorine-containing rubbers such as vinylidene fluoride-tetrafluoroethylene copolymer and ethylene-tetrafluoroethylene copolymer, and styrene-butadiene copolymer.
- the filler contained in the gel electrolyte layer 56 has a shape including a plane and a predetermined plane rate from the viewpoint of reducing light scattering and improving the transparency of the gel electrolyte layer 56, and Particles having a predetermined refractive index are used.
- white inorganic powders such as alumina particles are formed of colorless and transparent particles, but are white due to light scattering.
- the filler in order to suppress light scattering, which is a factor of whitening, and to improve the transparency of the gel electrolyte layer 56, the filler has a shape including a plane and has a predetermined plane ratio, and It is preferable to use particles having a predetermined refractive index.
- the particle plane includes at least one of a crystal plane, a fracture plane, and a cleavage plane formed by crystal growth.
- the crushing surface is spontaneously cracked during mixing of the particles, the resin, and the diluent solvent, or intentionally divided for particle size control during particle preparation. Is formed.
- the cleavage plane is formed, for example, by intentional cracking or spontaneous cracking at a specific atomic arrangement plane in the single crystal.
- the particles may be, for example, single crystal or polycrystal, and may be a single crystal and polycrystal aggregate.
- FIG. 3A shows an SEM photograph of a talc particle having a shape including a plane observed with a scanning electron microscope (SEM).
- FIG. 3B shows an SEM photograph of boehmite particles having a shape including a plane observed by SEM.
- SEM photograph of FIG. 3A the particle surface centering on the cleavage of the talc particles is observed.
- FIG. 3B a particle surface surrounded by a crystal plane formed by crystal growth by boehmite hydrothermal synthesis is observed.
- the plane rate is more than 40% and 100% or less, and from the viewpoint of further improving the transparency, it is more preferably 45% or more and 100% or less. More preferably, it is 60% or more and 100%.
- the plane rate can be obtained as follows, for example.
- the gel electrolyte layer 56 is observed with a SEM (Scanning Electron Microscope) from the direction perpendicular to the contact surface of the gel electrolyte layer 56 with the electrode, and the volume-based 50% average particle diameter (D50) is around 50%. Take a picture of 10 particles of typical shape in size. The average particle diameter (D50) is measured by putting the powder after removing the gel electrolyte component and the like from the gel electrolyte layer 56 into a laser diffraction type particle size distribution measuring apparatus.
- SEM Sccanning Electron Microscope
- the projection area of the plane corresponding to the crystal plane, the crushing plane, and the cleaved plane (the total area if there are multiple planes) is calculated, and the projection of the plane with respect to the projection area of the entire particle is calculated.
- the percentage of the area is calculated, and the average value of the calculated percentage of each particle is defined as the plane rate.
- Method for producing particles having a shape including a flat surface In order to produce particles having a shape including a flat surface, there are a growing method in which a single crystal is grown to form a smooth crystal surface, a method in which crystal particles are broken by pulverization, and the like. As a method for growing a single crystal, a flux method for growing in a liquid, a hydrothermal growth method, a coprecipitation method and the like are preferable.
- a material having a Mohs hardness of 5 or less is used, or a method of cleaving on a specific lattice plane is used.
- the dispersion of the material and the pulverization of the material may be performed simultaneously using a dispersion method such as Desperm or bead mill. Good.
- the refractive index of the particles is 1.3 or more and less than 2.4 and 1.3 or more and 2.1 or less from the viewpoint of suppressing light scattering and ensuring the transparency of the gel electrolyte layer 56. preferable. This is to suppress a decrease in transparency due to light refraction due to the difference in refractive index between the gel electrolyte and the filler (particles) (difference that the solid has a high refractive index and the liquid has a low refractive index).
- the lower refractive index is 1.3 or more and less than 2.4.
- particles in the range of 1.3 to 2.1 are used.
- the particles for example, at least one of inorganic particles and organic particles can be used.
- the inorganic particles include particles of metal oxide, sulfate compound, carbonate compound, metal hydroxide, metal carbide, metal nitride, metal fluoride, phosphate compound, mineral, and the like.
- particles having electrical insulation properties are typically used.
- the surface of the particles (fine particles) of the conductive material is electrically insulated by performing surface treatment with the electrical insulation material. Sedimented particles (fine particles) may be used.
- metal oxide examples include silicon oxide (SiO 2 , silica (silica powder, quartz glass, glass beads, diatomaceous earth, wet or dry synthetic products, etc.), wet synthetic products such as colloidal silica, and dry synthetic products such as fumed silica.
- Zinc oxide (ZnO), tin oxide (SnO), magnesium oxide (magnesia, MgO), antimony oxide (Sb 2 O 3 ), aluminum oxide (alumina, Al 2 O 3 ), etc. are preferably used. be able to.
- magnesium sulfate (MgSO 4 ), calcium sulfate (CaSO 4 ), barium sulfate (BaSO 4 ), strontium sulfate (SrSO 4 ) and the like can be suitably used.
- carbonate compound magnesium carbonate (MgCO 3 , magnesite), calcium carbonate (CaCO 3 , calcite), barium carbonate (BaCO 3 ), lithium carbonate (Li 2 CO 3 ) and the like can be suitably used.
- metal carbide boron carbide (B 4 C) or the like can be suitably used.
- metal nitride silicon nitride (Si 3 N 4 ), boron nitride (BN), aluminum nitride (AlN), titanium nitride (TiN), or the like can be suitably used.
- lithium fluoride LiF
- aluminum fluoride AlF 3
- calcium fluoride CaF 2
- barium fluoride BaF 2
- magnesium fluoride or the like
- phosphate compound trilithium phosphate (Li 3 PO 4 ), magnesium phosphate, magnesium hydrogen phosphate, ammonium polyphosphate, and the like can be suitably used.
- Examples of minerals include silicate minerals, carbonate minerals, and oxide minerals.
- Silicate minerals are classified into nesosilicate minerals, solosilicate minerals, cyclosilicate minerals, inosilicate minerals, layered (phyllo) silicate minerals, and tectosilicate minerals based on their crystal structures. . Some are classified into fibrous silicate minerals called asbestos based on a classification standard different from the crystal structure.
- the nesosilicate mineral is an island-like tetrahedral silicate mineral made of an independent Si—O tetrahedron ([SiO 4 ] 4 ⁇ ).
- Examples of the nesosilicate mineral include those corresponding to olivines and meteorites.
- olivine a continuous solid solution of Mg 2 SiO 4 (magnerite olivine) and Fe 2 SiO 4 (iron olivine)
- magnesium silicate forsterite (bitter) Earth olivine
- Mg 2 SiO 4 aluminum silicate
- Al 2 SiO 5 aluminum silicate
- Zn 2 SiO 4 zirconium silicate
- mullite 3Al 2 O 3 .2SiO 2 to 2Al 2 O 3 .SiO 2
- the solosilicate mineral is a group structure type silicate mineral composed of a Si—O tetrahedral double bond group ([Si 2 O 7 ] 6 ⁇ , [Si 5 O 16 ] 12 ⁇ ).
- Examples of the silicate mineral include those corresponding to vesuvite and chlorite.
- the cyclosilicate mineral is composed of a Si—O tetrahedral finite (3-6) ring ([Si 3 O 9 ] 6 ⁇ , [Si 4 O 12 ] 8 ⁇ , [Si 6 O 18 ] 12. - ) An annular silicate mineral.
- Examples of the cyclosilicate mineral include beryl and tourmaline.
- Inosilicate minerals have an infinite number of Si—O tetrahedral linkages, and are chain-like ([Si 2 O 6 ] 4 ⁇ ) and belt-like ([Si 3 O 9 ] 6 ⁇ , [Si 4 O 11 ] 6 - , [Si 5 O 15 ] 10- , [Si 7 O 21 ] 14- ).
- Examples of the inosilicate mineral include those corresponding to pyroxenes such as calcium silicate (wollastonite, CaSiO 3 ), and those corresponding to amphibole.
- the layered silicate mineral is a layered silicate mineral that forms a network bond of Si—O tetrahedra ([SiO 4 ] 4 ⁇ ).
- SiO 4 tetrahedra
- the specific example of a layered silicate mineral is mentioned later.
- the tectosilicate mineral is a three-dimensional network structure type silicate mineral in which a Si—O tetrahedron ([SiO 4 ] 4 ⁇ ) forms a three-dimensional network bond.
- the tectosilicates minerals, quartz, feldspars, zeolites, and the like, zeolite (M 2 / n O ⁇ Al 2 O 3 ⁇ xSiO 2 ⁇ yH 2 O, M is a metal element, n represents the valence of M, x ⁇ 2, y ⁇ 0) aluminosilicate zeolite such as (aM 2 O ⁇ bAl 2 O 3 ⁇ cSiO 2 ⁇ dH 2 O, M is as defined above .a, b, c, d are each 1 or more And the like.) And the like.
- Examples of asbestos include chrysotile, amosite and anthophinite.
- the carbonate minerals dolomite (dolomite, CaMg (CO 3) 2) , hydrotalcite (Mg 6 Al 2 (CO 3 ) (OH) 16 ⁇ 4 (H 2 O)) and the like.
- oxide mineral examples include spinel (MgAl 2 O 4 ).
- Examples of other minerals include barium titanate (BaTiO 3 ) and strontium titanate (SrTiO 3 ).
- the mineral may be a natural mineral or an artificial mineral.
- clay minerals include a crystalline clay mineral, an amorphous or quasicrystalline clay mineral, and the like.
- crystalline clay minerals include layered silicate minerals, those having a structure similar to layered silicates, silicate minerals such as other silicate minerals, and layered carbonate minerals.
- the layered silicate mineral includes a Si—O tetrahedral sheet and an octahedral sheet such as Al—O and Mg—O combined with the tetrahedral sheet.
- Layered silicates are typically classified by the number of tetrahedral and octahedral sheets, the number of cations in the octahedron, and the layer charge.
- the layered silicate mineral may be one obtained by substituting all or part of metal ions between layers with organic ammonium ions or the like.
- the layered silicate minerals include a kaolinite-serpentine group with a 1: 1 type structure, a pyrophyllite-talc group, a smectite group, a vermiculite group, a mica group with a 2: 1 type structure. And those corresponding to the brittle mica (brittle mica) family, chlorite (chlorite group), and the like.
- Examples of the kaolinite-serpentine family include chrysotile, antigolite, lizardite, kaolinite (Al 2 Si 2 O 5 (OH) 4 ), and dickite.
- Examples of the pyrophyllite-talc family include talc (Mg 3 Si 4 O 10 (OH) 2 ), willemsite, and granite (pyrophyllite, Al 2 Si 4 O 10 (OH) 2. ) And the like.
- smectite group examples include saponite [(Ca / 2, Na) 0.33 (Mg, Fe 2+ ) 3 (Si, Al) 4 O 10 (OH) 2 .4H 2 O], hectorite, Sauconite, montmorillonite ⁇ (Na, Ca) 0.33 (Al, Mg) 2Si 4 O 10 (OH) 2 .nH 2 O, where clay containing montmorillonite as a main component is called bentonite ⁇ , beidellite, nontrite, etc. .
- Examples of the mica (mica) family include, for example, moscovite (muscovite, KAl 2 (AlSi 3 ) O 10 (OH) 2 ) sericite (sericite), phlogopite (phlogopite), biotite, lipidite ( Lithia mica) and the like.
- Examples of those belonging to the brittle mica (brittle mica) family include margarite, clintonite, and anandite.
- Examples of the chlorite (chlorite) family include kukkeite, sudokuite, clinochlore, chamosite, and nimite.
- a hydrous magnesium silicate having a 2: 1 ribbon structure in which a tetrahedron sheet arranged in a ribbon shape is connected to a tetrahedron sheet arranged in an adjacent ribbon shape while reversing the apex.
- the hydrous magnesium silicate include sepiolite (foamstone: Mg 9 Si 12 O 30 (OH) 6 (OH 2 ) 4 .6H 2 O), palygorskite and the like.
- silicate minerals zeolites (M 2 / n O ⁇ Al 2 O 3 ⁇ xSiO 2 ⁇ yH 2 O, M is a metal element, n represents the valence of M, x ⁇ 2, y ⁇ 0) , etc.
- the layered carbonate minerals hydrotalcite (Mg 6 Al 2 (CO 3 ) (OH) 16 ⁇ 4 (H 2 O)) and the like.
- amorphous or quasicrystalline clay mineral examples include bingellite, imogolite (Al 2 SiO 3 (OH)), and allophane.
- inorganic particles may be used alone or in combination of two or more.
- the inorganic particles also have oxidation resistance.
- the gel electrolyte layer 56 is provided between the positive electrode 53 and the separator 55, the inorganic particles have strong resistance to an oxidizing environment in the vicinity of the positive electrode during charging.
- the particles may be organic particles.
- Materials constituting the organic particles include melamine, melamine cyanurate, melamine polyphosphate, cross-linked polymethyl methacrylate (cross-linked PMMA), polyethylene, polypropylene, polystyrene, polytetrafluoroethylene, polyvinylidene fluoride, polyamide, polyimide, melamine Resins, phenol resins, epoxy resins and the like can be mentioned. These materials may be used alone or in combination of two or more.
- the content of the particles is preferably 5.2% by mass or more and 50.0% by mass or less with respect to the mass of the electrolyte from the viewpoint that the refractive index of the gel electrolyte can be made close to that of the filler particles and the transparency can be further improved. More preferably, it is 5.2 mass% or more and 30.8 mass% or less.
- the content of the resin is preferably 5.6% by mass or more and 30.8% by mass or less with respect to the mass of the electrolyte from the viewpoint that the refractive index of the gel electrolyte can be made closer to the filler particles and the transparency can be further improved. 7.7% by mass or more and 30.8% by mass or less is more preferable.
- resin when there is more content of resin than 30.8 mass%, it exists in the tendency for the ion migration resistance of a battery to increase and for an output to fall.
- the content of the electrolyte salt is 5.6% by mass or more and 30.8% by mass or less with respect to the mass of the electrolyte from the viewpoint of making the refractive index of the gel electrolyte close to that of the filler particles and further improving the transparency. Preferably, it is 7.7 mass% or more and 30.8 mass% or less. In addition, when there is more content of electrolyte salt than 30.8 mass%, it exists in the tendency for the ion migration resistance of a battery to increase and for an output to fall.
- This nonaqueous electrolyte battery 62 can be manufactured as follows, for example.
- a positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and the positive electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to form a paste-like positive electrode mixture slurry Is made.
- the positive electrode mixture slurry is applied to the positive electrode current collector 53A, the solvent is dried, and the positive electrode active material layer 53B is formed by compression molding with a roll press or the like, and the positive electrode 53 is manufactured.
- a negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and the negative electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to prepare a paste-like negative electrode mixture slurry.
- this negative electrode mixture slurry is applied to the negative electrode current collector 54A, the solvent is dried, and the negative electrode active material layer 54B is formed by compression molding with a roll press machine or the like, and the negative electrode 54 is manufactured.
- the nonaqueous electrolytic solution is prepared by dissolving an electrolyte salt in a nonaqueous solvent.
- the positive electrode 53 on which the gel electrolyte layer 56 is formed and the negative electrode 54 on which the gel electrolyte layer 56 is formed are laminated through a separator 55 to form a laminate, and then the laminate is wound in the longitudinal direction.
- the wound electrode body 50 is formed by adhering the protective tape 57 to the outermost periphery.
- the wound electrode body 50 may be formed as follows. After applying the precursor solution to at least one side of both sides of the separator 55, the diluting solvent is volatilized. Thereby, the gel electrolyte layer 56 is formed on both surfaces of the separator 55.
- the positive lead 51 is attached to the end of the positive current collector 53A in advance by welding, and the negative lead 52 is attached to the end of the negative current collector 54A by welding.
- the positive electrode 53 and the negative electrode 54 are laminated through a separator 55 having a gel electrolyte layer 56 formed on both sides to form a laminated body, and then the laminated body is wound in the longitudinal direction to obtain a wound electrode body 50. .
- the accuracy of the clearance between the end of the positive electrode 53, the end of the negative electrode 54, and the end of the separator 55 with respect to an appropriate clearance is such that when the wound electrode body 50 is formed, the end of the electrode or the like is attached to a camera or the like Therefore, the gel electrolyte layer 56 is required to be transparent.
- the stacking and winding of the positive electrode 53, the negative electrode 54, and the separator 55 when forming the wound electrode body 50 typically involves, for example, a winding device (winder) for winding the positive electrode 53, the negative electrode 54, and the separator 55. And laminating and winding.
- a winding device for winding the positive electrode 53, the negative electrode 54, and the separator 55.
- laminating and winding At this time, a camera is installed in the winding device, the state of winding is photographed (for example, every rotation), and the photographed image data is sent to the image processing device.
- the edge position data of each electrode and / or separator is detected by image processing, and is wound between the positive electrode 53, the negative electrode 54, and the separator 55 based on, for example, the difference in edge position data of each member. Detect whether there is a shift.
- the feedback is fed back to the winding unit of the winding device, and the winding of the winding device is performed so that the edge positions of the positive electrode 53, the negative electrode 54, and the separator 55 coincide with the correct edge positions. Control part.
- the photographing of the end portion of the coating object by the photographing means such as a camera is performed through the gel electrolyte layer 56 formed on the coating object (the positive electrode 53, the negative electrode 54, or the separator 55).
- the gel electrolyte layer 56 is not transparent, the detection of the edge position to be applied is not successful, and winding deviation occurs.
- the edge position is detected only on one side on one side as a reference, and when winding misalignment occurs due to erroneous detection, the positive and negative edges on the opposite side of the reference one side may protrude from the separator, causing a short circuit. May occur.
- the gel electrolyte layer 56 formed on the application target is transparent, it is possible to eliminate the failure of detecting the edge position of the application target, and it is possible to suppress the occurrence of winding deviation. . Thereby, short circuit failure due to battery winding deviation can be avoided, and safety can be ensured.
- the wound electrode body 50 is sandwiched between the exterior members 60, and the outer edges of the exterior members 60 are sealed by thermal fusion or the like and sealed.
- an adhesion film 61 is inserted between the positive electrode lead 51 and the negative electrode lead 52 and the exterior member 60.
- the nonaqueous electrolyte battery 62 shown in FIGS. 1 and 2 is completed.
- FIG. 4A is an external view of the nonaqueous electrolyte battery 62 that houses the laminated electrode body 70.
- FIG. 4B is an exploded perspective view showing a state in which the laminated electrode body 70 is accommodated in the exterior member 60.
- 4C is an external view showing an external appearance of the nonaqueous electrolyte battery 62 shown in FIG. 4A from the bottom surface side.
- the laminated electrode body 70 uses a laminated electrode body 70 in which a rectangular positive electrode 73 and a rectangular negative electrode 74 are laminated via a rectangular separator 75 and fixed by a fixing member 76.
- the gel electrolyte layer is provided in contact with the positive electrode 73 and the negative electrode 74.
- a gel electrolyte layer (not shown) is provided between the positive electrode 73 and the separator 75 and between the negative electrode 74 and the separator 75. This gel electrolyte layer is the same as the gel electrolyte layer 56 of the first example.
- a positive electrode lead 71 connected to the positive electrode 73 and a negative electrode lead 72 connected to the negative electrode 74 are led out from the laminated electrode body 70, and the positive electrode lead 71, the negative electrode lead 72, and the exterior member 60 are in close contact with each other.
- a film 61 is provided.
- the ends of the four sides of the rectangular positive electrode 73, the four sides of the rectangular negative electrode 74, and the four sides of the rectangular separator 75 are each end.
- the positive electrode 73, the negative electrode 74, and the separator 75 are laminated via a gel electrolyte layer (not shown) formed therebetween so that there is a predetermined clearance therebetween.
- the gel electrolyte layer covers at least a part of the peripheral end surface of the positive electrode 73 and at least a part of the peripheral end surface of the negative electrode 74.
- the formation method of the gel electrolyte layer and the heat fusion method of the exterior member 60 are the same as in the first example.
- the edge position cannot be detected successfully, resulting in a laminating deviation.
- the detection of the edge position is performed only on two adjacent sides as a reference, and when a misalignment causes a stacking shift, the positive and negative edges on the opposite side of the two adjacent sides as a reference may protrude from the separator. There is a risk of short circuit.
- the gel electrolyte layer formed on the application target is transparent, it is possible to eliminate the failure of detecting the edge of the application target (electrode or separator 75). In addition, it is possible to suppress the occurrence of a deviation in the clearance (stacking deviation) between the edges of the positive electrode 73, the negative electrode 74, and the separator 75. Thereby, the short circuit defect of a battery can be avoided and safety
- Second Embodiment an example of a battery pack of a laminate film type battery (non-aqueous electrolyte battery) provided with the same gel electrolyte layer as in the first embodiment will be described.
- This battery pack is a simple battery pack (also referred to as a soft pack).
- a simple battery pack is built in an electronic device.
- a battery cell, a protection circuit, etc. are fixed with an insulating tape or the like, a part of the battery cell is exposed, and a connector is connected to the main body of the electronic device. are provided.
- FIG. 5 is an exploded perspective view showing a configuration example of a simple battery pack.
- FIG. 6A is a schematic perspective view showing an external appearance of a simple battery pack, and
- FIG. 6B is a schematic perspective view showing an external appearance of the simple battery pack.
- the simplified battery pack includes a battery cell 101, leads 102a and 102b derived from the battery cell 101, insulating tapes 103a to 103c, an insulating plate 104, A circuit board 105 on which a protection circuit (PCM (Protection Circuit Module)) is formed and a connector 106 are provided.
- the battery cell 101 is the same as the nonaqueous electrolyte secondary battery according to the first embodiment, for example.
- the insulating plate 104 and the circuit board 105 are disposed on the terrace portion 101 a at the front end of the battery cell 101, and the leads 102 a and the leads 102 b led out from the battery cell 101 are connected to the circuit board 105.
- a connector 106 for output is connected to the circuit board 105.
- Members such as the battery cell 101, the insulating plate 104, and the circuit board 105 are fixed by applying insulating tapes 103a to 103c to predetermined positions.
- FIG. 7 is a block diagram showing a circuit configuration example when the battery according to the first embodiment of the present technology (hereinafter appropriately referred to as a secondary battery) is applied to a battery pack.
- the battery pack includes a switch unit 304 including an assembled battery 301, an exterior, a charge control switch 302a, and a discharge control switch 303a, a current detection resistor 307, a temperature detection element 308, and a control unit 310.
- the battery pack includes a positive electrode terminal 321 and a negative electrode lead 322, and at the time of charging, the positive electrode terminal 321 and the negative electrode lead 322 are connected to the positive electrode terminal and the negative electrode terminal of the charger, respectively, and charging is performed. Further, when the electronic device is used, the positive electrode terminal 321 and the negative electrode lead 322 are connected to the positive electrode terminal and the negative electrode terminal of the electronic device, respectively, and discharge is performed.
- the assembled battery 301 is formed by connecting a plurality of secondary batteries 301a in series and / or in parallel.
- the secondary battery 301a is a secondary battery of the present technology.
- FIG. 7 a case where six secondary batteries 301a are connected in two parallel three series (2P3S) is shown as an example, but in addition, n parallel m series (n and m are integers) Any connection method may be used.
- the switch unit 304 includes a charge control switch 302a and a diode 302b, and a discharge control switch 303a and a diode 303b, and is controlled by the control unit 310.
- the diode 302b has a reverse polarity with respect to the charging current flowing from the positive electrode terminal 321 in the direction of the assembled battery 301 and the forward polarity with respect to the discharging current flowing from the negative electrode lead 322 in the direction of the assembled battery 301.
- the diode 303b has a forward polarity with respect to the charging current and a reverse polarity with respect to the discharging current.
- the switch unit 304 is provided on the + side, but may be provided on the-side.
- the charge control switch 302a is turned off when the battery voltage becomes the overcharge detection voltage, and is controlled by the charge / discharge control unit so that the charge current does not flow in the current path of the assembled battery 301. After the charging control switch 302a is turned off, only discharging is possible via the diode 302b. Further, it is turned off when a large current flows during charging, and is controlled by the control unit 310 so that the charging current flowing in the current path of the assembled battery 301 is cut off.
- the discharge control switch 303 a is turned off when the battery voltage becomes the overdischarge detection voltage, and is controlled by the control unit 310 so that the discharge current does not flow in the current path of the assembled battery 301. After the discharge control switch 303a is turned off, only charging is possible via the diode 303b. Further, it is turned off when a large current flows during discharging, and is controlled by the control unit 310 so as to cut off the discharging current flowing in the current path of the assembled battery 301.
- the temperature detection element 308 is, for example, a thermistor, is provided in the vicinity of the assembled battery 301, measures the temperature of the assembled battery 301, and supplies the measured temperature to the control unit 310.
- the voltage detection unit 311 measures the voltage of the assembled battery 301 and each secondary battery 301a constituting the assembled battery 301, performs A / D conversion on the measured voltage, and supplies the voltage to the control unit 310.
- the current measurement unit 313 measures the current using the current detection resistor 307 and supplies this measurement current to the control unit 310.
- the switch control unit 314 controls the charge control switch 302a and the discharge control switch 303a of the switch unit 304 based on the voltage and current input from the voltage detection unit 311 and the current measurement unit 313.
- the switch control unit 314 sends a control signal to the switch unit 304 when any voltage of the secondary battery 301a falls below the overcharge detection voltage or overdischarge detection voltage, or when a large current flows suddenly. By sending, overcharge, overdischarge, and overcurrent charge / discharge are prevented.
- the overcharge detection voltage is determined to be 4.20 V ⁇ 0.05 V, for example, and the overdischarge detection voltage is determined to be 2.4 V ⁇ 0.1 V, for example. .
- the charge / discharge switch for example, a semiconductor switch such as a MOSFET can be used.
- the parasitic diode of the MOSFET functions as the diodes 302b and 303b.
- the switch control unit 314 supplies control signals DO and CO to the gates of the charge control switch 302a and the discharge control switch 303a, respectively.
- the charge control switch 302a and the discharge control switch 303a are P-channel type, they are turned on by a gate potential that is lower than the source potential by a predetermined value or more. That is, in normal charging and discharging operations, the control signals CO and DO are set to the low level, and the charging control switch 302a and the discharging control switch 303a are turned on.
- control signals CO and DO are set to the high level, and the charge control switch 302a and the discharge control switch 303a are turned off.
- the memory 317 includes a RAM and a ROM, and includes, for example, an EPROM (Erasable Programmable Read Only Memory) that is a nonvolatile memory.
- EPROM Erasable Programmable Read Only Memory
- the numerical value calculated by the control unit 310, the internal resistance value of the battery in the initial state of each secondary battery 301a measured in the manufacturing process, and the like are stored in advance, and can be appropriately rewritten. . (Also, by storing the full charge capacity of the secondary battery 301a, for example, the remaining capacity can be calculated together with the control unit 310.
- the temperature detection unit 318 measures the temperature using the temperature detection element 308, performs charge / discharge control at the time of abnormal heat generation, and performs correction in the calculation of the remaining capacity.
- the battery according to the first embodiment of the present technology described above and the battery pack according to the second embodiment and the third embodiment using the battery are mounted on devices such as an electronic device, an electric vehicle, and a power storage device, for example. Or it can be used to supply power.
- Examples of electronic devices include notebook computers, PDAs (personal digital assistants), mobile phones, cordless phones, video movies, digital still cameras, electronic books, electronic dictionaries, music players, radios, headphones, game consoles, navigation systems, Memory card, pacemaker, hearing aid, electric tool, electric shaver, refrigerator, air conditioner, TV, stereo, water heater, microwave oven, dishwasher, washing machine, dryer, lighting equipment, toy, medical equipment, robot, road conditioner, traffic light Etc.
- examples of the electric vehicle include a railway vehicle, a golf cart, an electric cart, an electric vehicle (including a hybrid vehicle), and the like, and these are used as a driving power source or an auxiliary power source.
- Examples of power storage devices include power storage power supplies for buildings such as houses or power generation facilities.
- the first power storage system is a power storage system in which a power storage device is charged by a power generation device that generates power from renewable energy.
- the second power storage system is a power storage system that includes a power storage device and supplies power to an electronic device connected to the power storage device.
- the third power storage system is an electronic device that receives power supply from the power storage device.
- the fourth power storage system includes an electric vehicle having a conversion device that receives power supplied from the power storage device and converts the power into a driving force of the vehicle, and a control device that performs information processing related to vehicle control based on information related to the power storage device. It is.
- the fifth power storage system is a power system that includes a power information transmission / reception unit that transmits / receives signals to / from other devices via a network, and performs charge / discharge control of the power storage device described above based on information received by the transmission / reception unit.
- the sixth power storage system is a power system that receives power from the power storage device described above or supplies power from the power generation device or the power network to the power storage device.
- the power storage system will be described.
- a power storage device using a battery of the present technology is applied to a residential power storage system
- a power storage system 400 for a house 401 power is stored from a centralized power system 402 such as a thermal power generation 402a, a nuclear power generation 402b, and a hydroelectric power generation 402c through a power network 409, an information network 412, a smart meter 407, a power hub 408, and the like.
- a power storage device 403 Supplied to the device 403.
- power is supplied to the power storage device 403 from an independent power source such as the power generation device 404 in the home.
- the electric power supplied to the power storage device 403 is stored. Electric power used in the house 401 is supplied using the power storage device 403.
- the same power storage system can be used not only for the house 401 but also for buildings.
- the house 401 is provided with a power generation device 404, a power consumption device 405, a power storage device 403, a control device 410 that controls each device, a smart meter 407, and a sensor 411 that acquires various types of information.
- Each device is connected by a power network 409 and an information network 412.
- a solar cell, a fuel cell, or the like is used as the power generation device 404, and the generated power is supplied to the power consumption device 405 and / or the power storage device 403.
- the power consuming device 405 is a refrigerator 405a, an air conditioner 405b, a television receiver 405c, a bath 405d, and the like.
- the electric power consumption device 405 includes an electric vehicle 406.
- the electric vehicle 406 is an electric vehicle 406a, a hybrid car 406b, and an electric motorcycle 406c.
- the battery of the present technology is applied to the power storage device 403.
- the battery of the present technology may be configured by, for example, the above-described lithium ion secondary battery.
- the smart meter 407 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company.
- the power network 409 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
- the various sensors 411 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by various sensors 411 is transmitted to the control device 410. Based on the information from the sensor 411, the weather condition, the condition of the person, and the like can be grasped, and the power consumption device 405 can be automatically controlled to minimize the energy consumption. Furthermore, the control apparatus 410 can transmit the information regarding the house 401 to an external electric power company etc. via the internet.
- the power hub 408 performs processing such as branching of power lines and DC / AC conversion.
- Communication methods of the information network 412 connected to the control device 410 include a method using a communication interface such as UART (Universal Asynchronous Receiver-Transceiver), wireless communication such as Bluetooth, ZigBee, Wi-Fi, etc.
- a communication interface such as UART (Universal Asynchronous Receiver-Transceiver), wireless communication such as Bluetooth, ZigBee, Wi-Fi, etc.
- Bluetooth method is applied to multimedia communication and can perform one-to-many connection communication.
- ZigBee uses the physical layer of IEEE (Institute of Electrical and Electronics Electronics) (802.15.4).
- IEEE802.15.4 is a name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
- the control device 410 is connected to an external server 413.
- the server 413 may be managed by any one of the house 401, the power company, and the service provider.
- the information transmitted and received by the server 413 is, for example, information related to power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device (for example, a television receiver) in the home, or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, for example, a television receiver, a mobile phone, a PDA (Personal Digital Assistant) or the like.
- the control device 410 that controls each unit includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and is stored in the power storage device 403 in this example.
- the control device 410 is connected to the power storage device 403, the domestic power generation device 404, the power consumption device 405, various sensors 411, the server 413 and the information network 412, and adjusts, for example, the amount of commercial power used and the amount of power generation It has a function to do. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
- the power generation device 404 (solar power generation, wind power generation) in the home is used as the power storage device 403. Can be stored. Therefore, even if the generated power of the power generation device 404 in the home fluctuates, it is possible to perform control such that the amount of power transmitted to the outside is constant or discharge is performed as necessary. For example, the power obtained by solar power generation is stored in the power storage device 403, and the nighttime power at a low charge is stored in the power storage device 403 at night, and the power stored by the power storage device 403 is discharged during a high daytime charge. You can also use it.
- control device 410 is stored in the power storage device 403 .
- control device 410 may be stored in the smart meter 407 or may be configured independently.
- the power storage system 400 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
- FIG. 9 schematically shows an example of the configuration of a hybrid vehicle that employs a series hybrid system to which the present technology is applied.
- a series hybrid system is a car that runs on an electric power driving force conversion device using electric power generated by a generator driven by an engine or electric power once stored in a battery.
- the hybrid vehicle 500 includes an engine 501, a generator 502, a power driving force conversion device 503, driving wheels 504 a, driving wheels 504 b, wheels 505 a, wheels 505 b, a battery 508, a vehicle control device 509, various sensors 510, and a charging port 511. Is installed.
- the battery of the present technology described above is applied to the battery 508.
- Hybrid vehicle 500 travels using power driving force conversion device 503 as a power source.
- An example of the power / driving force conversion device 503 is a motor.
- the electric power / driving force converter 503 is operated by the electric power of the battery 508, and the rotational force of the electric power / driving force converter 503 is transmitted to the driving wheels 504a and 504b.
- DC-AC DC-AC
- AC-DC conversion AC-DC conversion
- the power driving force converter 503 can be applied to either an AC motor or a DC motor.
- the various sensors 510 control the engine speed through the vehicle control device 509 and control the opening (throttle opening) of a throttle valve (not shown).
- Various sensors 510 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
- the rotational force of the engine 501 is transmitted to the generator 502, and the electric power generated by the generator 502 by the rotational force can be stored in the battery 508.
- the resistance force at the time of deceleration is applied as a rotational force to the electric power driving force conversion device 503, and the regenerative electric power generated by the electric power driving force conversion device 503 by this rotational force becomes the battery 508. Accumulated in.
- the battery 508 is connected to an external power source of the hybrid vehicle 500, so that it can receive power from the external power source using the charging port 511 as an input port and store the received power.
- an information processing device that performs information processing related to vehicle control based on information related to the secondary battery may be provided.
- an information processing apparatus for example, there is an information processing apparatus that displays a battery remaining amount based on information on the remaining amount of the battery.
- the present technology is also effective for a parallel hybrid vehicle in which the engine and motor outputs are both driving sources, and the system is switched between the three modes of driving with only the engine, driving with the motor, and engine and motor. Applicable. Furthermore, the present technology can be effectively applied to a so-called electric vehicle that travels only by a drive motor without using an engine.
- Example 1-1 [Production of positive electrode] A positive electrode mixture obtained by mixing 91% by mass of lithium cobaltate (LiCoO 2 ) as a positive electrode active material, 6% by mass of carbon black as a conductive agent, and 3% by mass of polyvinylidene fluoride (PVdF) as a binder.
- the positive electrode mixture was dispersed in N-methyl-2-pyrrolidone (NMP) as a dispersion medium to obtain a positive electrode mixture slurry.
- NMP N-methyl-2-pyrrolidone
- This positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of a strip-shaped aluminum foil having a thickness of 12 ⁇ m so that a part of the positive electrode current collector was exposed.
- the dispersion medium of the applied positive electrode mixture slurry was evaporated and dried, and compression-molded with a roll press to form a positive electrode active material layer.
- the positive electrode terminal was attached to the exposed portion of the positive electrode current collector to form the positive electrode.
- coated negative mix slurry was evaporated and dried, and the negative electrode active material layer was formed by compression molding with a roll press. Finally, the negative electrode terminal was attached to the exposed portion of the positive electrode current collector to form a negative electrode.
- EC ethylene carbonate
- PC propylene carbonate
- VC vinylene carbonate
- PVdF polyvinylidene fluoride
- DMC dimethyl carbonate
- the precursor solution is a component of the gel electrolyte layer (boehmite particles: 10% by mass, matrix polymer compound (PVdF) mass: 10% by mass, LiPF 6 : 10% by mass, nonaqueous solvent: 70% by mass). And a non-aqueous solvent having the same mass as a diluent solvent (DMC).
- the mass ratio of boehmite particles to LiPF 6 is 50/50
- the mass ratio of boehmite particles to PVdF (boehmite particles / PVdF) is 50/50.
- the precursor solution is applied to both surfaces of the positive electrode and the negative electrode, dried to remove the diluting solvent (DMC), and a gel electrolyte layer is formed on the surfaces of the positive electrode and the negative electrode while adjusting the film thickness to 5 ⁇ m. did.
- DMC diluting solvent
- the positions of the edges of the positive electrode, the separator, and the negative electrode were detected only on one side as a reference.
- the edge of the positive and negative electrodes on the opposite side of one side as a reference may protrude from the separator, and a short circuit may occur.
- the wound electrode body is covered with a laminate film having a soft aluminum layer, and the lead-out side of the positive electrode terminal and the negative electrode terminal around the wound electrode body and the other two sides are thermally fused under reduced pressure. Sealed and sealed.
- a laminated film type battery shown in FIG. 1 having a battery shape of 4.5 mm in thickness, 30 mm in width, and 50 mm in height was produced.
- Example 1-2 to Example 1-55 laminate film type batteries were produced in the same manner as in Example 1-1 except that the filler used was changed as shown in Table 1 below.
- Comparative Example 1-1 A laminated film type battery of Comparative Example 1-1 was produced in the same manner as in Example 1-1 except that a filler (boehmite particles) was not mixed in the precursor solution and a gel electrolyte layer containing no filler was formed.
- Comparative Example 1-2 to Comparative Example 1-10 laminate film type batteries were produced in the same manner as in Example 1-1 except that the filler used was changed as shown in Table 1 below.
- the flatness was measured as follows.
- the gel electrolyte layer is observed with a SEM from the direction perpendicular to the contact surface of the gel electrolyte layer with the electrode, and a photograph of 10 particles having a typical shape with a size around 50% average particle diameter (D50) based on volume.
- the average particle size (D50) is obtained by measuring the powder after removing the gel electrolyte component and the like from the gel electrolyte layer 56 with a laser diffraction particle size distribution measuring device.
- the projection area of the plane corresponding to the crystal plane, the crushing plane, and the cleaved plane (the total area if there are multiple planes) is calculated, and the projection of the plane with respect to the projection area of the entire particle is calculated.
- the percentage of the area was calculated, and the average value of the calculated percentage of each particle was defined as the plane rate.
- the appearance of the gel electrolyte layer was observed by visual observation.
- the degree of transparency was evaluated stepwise as transparent, almost transparent, nearly transparent, and translucent.
- the outline of the application target (electrode or separator) could be completely visually confirmed through the gel electrolyte layer.
- it was evaluated stepwise as lightly cloudy, cloudy, or deeply cloudy. In the case of thin white turbidity, white turbidity, dark white turbidity, and brown opaqueness, the outline of the application target (electrode or separator) could not be visually recognized through the gel electrolyte layer 56.
- the battery was charged at a constant current of 1 C until the battery voltage reached 4.2 V in an atmosphere at 23 ° C., and then the total charging time was 2.5 hours at a constant voltage of 4.2 V. Until constant voltage charging.
- Battery evaluation measurement of battery capacity
- the battery capacity was measured as follows for the batteries in which the short circuit did not occur.
- the battery after charging was discharged at a constant current of 1 C to a battery voltage of 3.0 V, and the discharge capacity at this time was measured to obtain the battery capacity.
- the battery capacity it was determined whether or not the required battery capacity was satisfied with the required capacity of 1000 mAh required for the manufactured battery as a reference value. In Comparative Examples 1-2 to 1-10, the battery capacity could not be measured because a short circuit occurred.
- Battery evaluation Battery bending test
- the produced battery was charged under the same conditions as the battery capacity measurement.
- a charged battery CELL is placed on two round bars S juxtaposed at an interval of 30 mm, and one battery from the top with respect to the center position of the battery CELL.
- the voltage of the battery CELL was confirmed with a voltmeter (tester) 600, and if a voltage drop of 1% or more was confirmed, the short circuit determination was rejected.
- test impossible when it short-circuited, it was set as the test impossible, and other than that was set as the pass.
- the gel electrolyte includes particles having a plane ratio in a predetermined range and a refractive index in a predetermined range, so that the appearance is transparent.
- the battery capacity was not impaired (required capacity: 1000 mAh or more), the winding misalignment short-circuit inspection and the battery bending test were also passed, and safety could be ensured.
- Comparative Example 1-1 the gel electrolyte did not contain particles, so the strength was insufficient, and the battery bending test was unacceptable.
- the gel electrolyte contains particles that do not have at least one of a predetermined range of flatness and a predetermined range of refractive index. Since the battery bending test was rejected and the battery capacity was short-circuited, the test was not possible (measurement was impossible).
- Example 2-1> A laminated film type battery was produced in the same manner as in Example 1-1.
- Example 2-2 to Example 2-7 As the filler, boehmite particles having different plane rates were used. The plane rate of the boehmite particles was adjusted to a desired one by increasing the ratio of spherical surfaces by increasing the growth rate during hydrothermal synthesis of boehmite particles or increasing the ratio of planes by decreasing the growth rate. Specifically, in Example 2-2, boehmite particles having a plane rate of 45% were used as the filler. In Example 2-3, boehmite particles having a plane rate of 50% were used as the filler. In Example 2-4, boehmite particles having a plane rate of 60% were used as the filler.
- Example 2-5 boehmite particles having a plane rate of 80% were used as the filler.
- Example 2-6 boehmite particles having a plane rate of 90% were used as the filler.
- Example 2-7 boehmite particles having a plane rate of 100% were used as the filler. Except for the above, a laminated film type battery was produced in the same manner as in Example 2-1.
- Example 2-8> A laminated film type battery was produced in the same manner as Example 1-2.
- Example 2-9 to Example 2-14> As the filler, talc particles having different plane rates were used. In the pulverization process using a hammer mill and roll mill, talc is increased by increasing the time ratio of the hammer mill to increase the ratio of the cleaved surface, or increasing the time ratio of the roll mill to decrease the ratio of the cleaved surface. The flatness of the particles was adjusted to the desired one.
- Example 2-9 talc particles having a plane rate of 45% were used as the filler.
- Example 2-10 talc particles having a plane rate of 50% were used as the filler.
- Example 2-11 talc particles having a plane rate of 60% were used as the filler.
- Example 2-12 talc particles having a plane rate of 80% were used as the filler.
- Example 2-13 talc particles having a plane rate of 90% were used as the filler.
- Example 2-14 talc particles having a plane rate of 100% were used as the filler. Except for the above, a laminated film type battery was produced in the same manner as in Example 2-8.
- Comparative Example 2-1 aluminum oxide particles having different plane rates were used as the filler. Specifically, in Comparative Example 2-1, aluminum oxide particles having a plane rate of 40% were used as the filler. In Comparative Example 2-2, aluminum oxide particles having a plane rate of 30% were used as the filler. In Comparative Example 2-3, aluminum oxide particles having a plane rate of 20% were used as the filler. In Comparative Example 2-4, aluminum oxide particles having a plane rate of 10% were used as the filler. In Comparative Example 2-5, spherical aluminum oxide (plane rate 0%) particles were used as the filler. Except for the above, a laminated film type battery was produced in the same manner as in Example 2-1.
- a positive electrode having a width of 10% thinner than that of Example 2-1 was used. Except for the above, a laminated film type battery was produced in the same manner as in Comparative Example 2-5.
- Example evaluation Winding short circuit inspection, battery capacity measurement, battery bending test
- the laminated film type batteries of each Example and each Comparative Example were subjected to the winding short circuit inspection, the battery capacity measurement, and the battery bending test in the same manner as Example 1-1.
- the gel electrolyte layer includes particles having a plane ratio in a predetermined range and a refractive index in a predetermined range. It was transparent, the battery capacity was not impaired (required capacity: 1000 mAh or more), the winding slip short circuit inspection and the battery bending test were also passed, and safety could be secured.
- the gel electrolyte layer contains particles that do not have at least one of a predetermined range of flatness and a predetermined range of refractive index. The short-circuit inspection and the battery bending test were rejected, and the battery capacity was short-circuited.
- Example 3-1 to Example 3-8 the amounts of each component of the filler (boehmite particles), matrix polymer (PVdF), LiPF 6 and non-aqueous solvent (solvent), which are constituent components of the gel electrolyte, are listed below.
- a laminated film type battery was produced in the same manner as in Example 1-1 except that the changes were made as shown in Table 3 below.
- Table 3 the amount of each component of particles (filler), PVdF, LiPF 6 , and solvent is shown as a mass percentage with respect to the total amount of gel electrolyte (total amount of constituent components) (also Table 8 described later). The same).
- Examples 3-9 to 3-15 the amounts of the respective components of the filler (talc particles), the matrix polymer (PVdF), LiPF 6 and the solvent (solvent), which are constituents of the gel electrolyte, are listed in the table below.
- a laminated film type battery was produced in the same manner as in Example 1-2 except that the changes were made as shown in FIG.
- the gel electrolyte includes particles having a plane ratio in a predetermined range and a refractive index in a predetermined range, so that the appearance is transparent.
- the battery capacity was not impaired (required capacity: 1000 mAh or more), the winding misalignment short-circuit inspection and the battery bending test were also passed, and safety could be ensured. Further, it was confirmed that the degree of transparency can be changed by changing the ratio (mixing ratio) between the particles and the matrix polymer compound and / or the ratio (mixing ratio) between the particles and the electrolyte salt.
- Example 4-1 a laminated film type battery was produced in the same manner as in Example 1-1.
- Example 4-2 to Example 4-3 the type of matrix polymer (resin) constituting the gel electrolyte layer was changed.
- PAN polyacrylonitrile
- PEG polyethylene glycol
- Example 4-4 a laminated film type battery was produced in the same manner as in Example 1-2.
- Example 4-5 to Example 4-6 the type of matrix polymer constituting the gel electrolyte layer was changed.
- PAN polyacrylonitrile
- PEG polyethylene glycol
- the gel electrolyte layer includes particles having a plane ratio in a predetermined range and a refractive index in a predetermined range. It was transparent, the battery capacity was not impaired (required capacity: 1000 mAh or more), the winding slip short circuit inspection and the battery bending test were also passed, and safety could be secured.
- Example 5-1 to Example 5-2 the configuration of each of the positive electrode, the negative electrode, the separator, and the gel electrolyte layer is the same as that of each of Examples 1-1 to 1-2.
- a laminated film type battery covered with a laminated film was produced.
- Example 1-1 or Example 1-2 The same precursor solution as in Example 1-1 or Example 1-2 was applied to both sides of the rectangular positive electrode and negative electrode, dried to remove the diluting solvent, and a gel electrolyte layer was formed on the surfaces of the positive electrode and negative electrode did.
- a rectangular positive electrode (having a gel electrolyte layer formed on both surfaces) and a rectangular negative electrode (having a gel electrolyte layer formed on both surfaces) and a rectangular separator are combined into a positive electrode, a separator, and a negative electrode.
- a laminated electrode body was formed by laminating in the order of the separator.
- the lamination of the positive electrode, the separator, and the negative electrode detects the positions of the edges of the four sides of the rectangular member by processing an image captured by the camera, and an appropriate clearance is provided between the four edges between the members. Then, after positioning in the horizontal direction, a sheet laminating apparatus that performs a laminating operation was performed. In the laminating apparatus, the position of the edge was detected only on two adjacent sides as a reference. When misalignment occurs due to erroneous detection, the positive and negative edges on the opposite sides of the two adjacent sides as a reference may protrude from the separator, and a short circuit may occur.
- the laminated electrode body is covered with a laminated film having a soft aluminum layer, and the lead-out side of the positive electrode terminal and the negative electrode terminal around the laminated electrode body and the other three sides are heat-sealed and sealed. did.
- a laminated film type battery shown in FIG. 4 having a thickness of 4.5 mm, a width of 30 mm, and a height of 50 mm was produced.
- the gel electrolyte layer includes particles having a plane ratio in a predetermined range and a refractive index in a predetermined range. It was transparent, the battery capacity was not impaired (required capacity: 1000 mAh or more), the stacking misalignment short circuit inspection and the battery bending test were also passed, and safety was ensured.
- Example 6-1 to Example 6-55> and ⁇ Comparative Example 6-1 to Comparative Example 6-10> instead of forming a gel electrolyte layer on both surfaces of the positive electrode and the negative electrode, a gel electrolyte was formed on both surfaces of the separator. That is, a laminated film type battery was obtained in the same manner as in Example 1-1 to Example 1-55 and Comparative Example 1-1 to Comparative Example 1-10, except that the formation of the gel electrolyte layer was changed as follows. Was made.
- EC ethylene carbonate
- PC propylene carbonate
- VC vinylene carbonate
- PVdF polyvinylidene fluoride
- DMC dimethyl carbonate
- the precursor solution is a constituent of the gel electrolyte (boehmite particles: 10% by mass, matrix polymer compound (PVdF) mass: 10% by mass, LiPF 6 : 10% by mass, nonaqueous solvent: 70% by mass), It contains the same amount of diluent solvent (DMC) as the non-aqueous solvent.
- the mass ratio of boehmite particles to LiPF 6 is 50/50
- the mass ratio of boehmite particles to PVdF (boehmite particles / PVdF) is 50/50.
- the precursor solution was applied to both sides of the separator and dried to remove the diluting solvent (DMC). Thereby, a gel electrolyte layer was formed on the surface of the separator.
- DMC diluting solvent
- a positive electrode, a negative electrode, and a separator having a gel electrolyte layer formed on both surfaces are laminated in the order of the positive electrode, the separator, the negative electrode, and the separator, and then a large number in the longitudinal direction using the same winding device as in Example 1-1. And rolled into a flat shape. Then, the winding electrode part was formed by fixing a winding end part with an adhesive tape.
- the wound electrode body is covered with a laminate film having a soft aluminum layer, and the lead-out side of the positive electrode terminal and the negative electrode terminal around the wound electrode body and the other two sides are heat-sealed under reduced pressure and sealed. Stopped and sealed.
- a laminated film type battery shown in FIG. 1 having a battery shape of 4.5 mm in thickness, 30 mm in width, and 50 mm in height was produced.
- Example evaluation Winding short circuit inspection, battery capacity measurement, battery bending test
- the laminated film type batteries of each Example and each Comparative Example were subjected to the winding short circuit inspection, the battery capacity measurement, and the battery bending test in the same manner as Example 1-1.
- the gel electrolyte includes particles having a predetermined range of flatness and a predetermined range of refractive index, so that the appearance is transparent.
- the battery capacity was not impaired (required capacity: 1000 mAh or more), the winding misalignment short-circuit inspection and the battery bending test were also passed, and safety could be ensured.
- Comparative Example 6-1 the gel electrolyte did not contain particles, so the strength was insufficient, and the battery bending test failed.
- the gel electrolyte contains particles that do not have at least one of a predetermined range of planarity and a predetermined range of refractive index. Since the battery bending test was rejected and the battery capacity was short-circuited, the test was impossible (measurement was impossible).
- Example 7-1 A laminated film type battery was produced in the same manner as Example 6-1.
- Example 7-2 to Example 7-7> As the filler, boehmite particles having different plane rates were used. The plane rate of the boehmite particles was adjusted to a desired one by increasing the ratio of spherical surfaces by increasing the growth rate during hydrothermal synthesis of boehmite particles or increasing the ratio of planes by decreasing the growth rate. Specifically, in Example 7-2, boehmite particles having a plane rate of 45% were used as the filler. In Example 7-3, boehmite particles having a plane rate of 50% were used as the filler. In Example 7-4, boehmite particles having a plane rate of 60% were used as the filler.
- Example 7-5 boehmite particles having a plane rate of 80% were used as the filler.
- Example 7-6 boehmite particles having a plane rate of 90% were used as the filler.
- Example 7-7 boehmite particles having a plane rate of 100% were used as the filler. Except for the above, a laminated film type battery was produced in the same manner as in Example 7-1.
- Example 7-8> A laminated film type battery was produced in the same manner as in Example 6-2.
- Example 7-9 to Example 7-14> As the filler, talc particles having different plane rates were used. In the pulverization process using a hammer mill and roll mill, talc is increased by increasing the time ratio of the hammer mill to increase the ratio of the cleaved surface, or increasing the time ratio of the roll mill to decrease the ratio of the cleaved surface. The flatness of the particles was adjusted to the desired one.
- talc particles having a plane rate of 45% were used as the filler.
- talc particles having a plane rate of 50% were used as the filler.
- talc particles having a plane rate of 60% were used as the filler.
- talc particles having a plane rate of 80% were used as the filler.
- talc particles having a plane rate of 90% were used as the filler.
- talc particles having a plane rate of 100% were used as the filler. Except for the above, a laminated film type battery was produced in the same manner as in Example 7-8.
- Comparative Examples 7-1 to 7-5> instead of boehmite particles, aluminum oxide particles having different plane rates were used as the filler. Specifically, in Comparative Example 7-1, aluminum oxide particles having a plane rate of 40% were used as the filler. In Comparative Example 7-2, aluminum oxide particles having a plane rate of 30% were used as the filler. In Comparative Example 7-3, aluminum oxide particles having a plane rate of 20% were used as the filler. In Comparative Example 7-4, aluminum oxide particles having a plane rate of 10% were used as the filler. In Comparative Example 7-5, spherical aluminum oxide (plane rate 0%) particles were used as the filler. Except for the above, a laminated film type battery was produced in the same manner as in Example 7-1.
- Example 7-6 A positive electrode having a positive electrode width 10% thinner than that of Example 7-1 was used as the positive electrode. Except for the above, a laminated film type battery was produced in the same manner as in Comparative Example 7-5.
- Example evaluation Winding short circuit inspection, battery capacity measurement, battery bending test
- the laminated film type batteries of each Example and each Comparative Example were subjected to the winding short circuit inspection, the battery capacity measurement, and the battery bending test in the same manner as Example 1-1.
- Table 9 shows the evaluation results.
- the gel electrolyte layer includes particles having a plane ratio in a predetermined range and a refractive index in a predetermined range. Is transparent, The battery capacity was not impaired (required capacity of 1000 mAh or more), the winding slip short circuit inspection and the battery bending test were also passed, and safety was ensured.
- the gel electrolyte layer contains particles that do not have at least one of a predetermined range of flatness and a predetermined range of refractive index. The short-circuit inspection and the battery bending test were rejected, and the battery capacity was short-circuited.
- Comparative Example 7-6 since the positive electrode width was 10% thinner than the positive electrode width of Comparative Example 7-5 as in the conventional case, the winding deviation was large, but each of the positive electrode, the negative electrode, and the separator was There was no short circuit due to the large clearance between the ends. However, the battery capacity did not reach the required capacity of 1000 mAh.
- Example 8-1 to Example 8-8 the amounts of each component of the filler (boehmite particles), matrix polymer (PVdF), LiPF 6 and solvent, which are constituent components of the gel electrolyte, are shown in Table 8 below.
- a laminated film type battery was produced in the same manner as in Example 6-1 except that the above was changed.
- Example 8-9 to Example 8-15 the amounts of filler (talc particles), matrix polymer (PVdF), LiPF 6 and solvent, which are constituents of the gel electrolyte, are shown in Table 8 below.
- a laminated film type battery was produced in the same manner as in Example 6-2 except that the above was changed.
- Table 8 shows the evaluation results.
- the gel electrolyte has particles having a plane ratio in a predetermined range and a refractive index in a predetermined range, so that the appearance is transparent.
- the battery capacity was not impaired (required capacity: 1000 mAh or more), the winding misalignment short-circuit inspection and the battery bending test were also passed, and safety could be ensured. Further, it was confirmed that the degree of transparency can be changed by changing the ratio (mixing ratio) between the particles and the matrix polymer compound and / or the ratio (mixing ratio) between the particles and the electrolyte salt.
- Example 9-1 a laminated film type battery was produced in the same manner as in Example 6-1.
- Example 9-2 to Example 9-3 the type of matrix polymer (resin) constituting the gel electrolyte layer was changed.
- PAN polyacrylonitrile
- PEG polyethylene glycol
- Example 9-4 a laminated film type battery was produced in the same manner as in Example 9-2.
- Example 9-5 to Example 9-6 the type of matrix polymer constituting the gel electrolyte layer was changed.
- PAN polyacrylonitrile
- PEG polyethylene glycol
- Table 9 shows the evaluation results.
- the gel electrolyte layer contains particles having a predetermined range of flatness and a predetermined range of refractive index, so that the appearance is It was transparent, the battery capacity was not impaired (required capacity: 1000 mAh or more), the winding slip short circuit inspection and the battery bending test were also passed, and safety could be secured.
- Example 10-1 to Example 10-2 In Examples 10-1 to 10-2, the configurations of the positive electrode, the negative electrode, the separator, and the gel electrolyte layer are the same as those in Examples 6-1 to 6-2. A laminated film type battery covered with a laminated film was produced.
- the laminated electrode body was covered with a laminate film having a soft aluminum layer, and the lead-out side of the positive electrode terminal and the negative electrode terminal around the laminated electrode body and the other three sides were heat-sealed and sealed, and sealed. .
- a laminated film type battery shown in FIG. 4 having a thickness of 4.5 mm, a width of 30 mm, and a height of 50 mm was produced.
- Table 10 shows the evaluation results.
- the gel electrolyte layer includes particles having a plane ratio in a predetermined range and a refractive index in a predetermined range. It was transparent, the battery capacity was not impaired (required capacity: 1000 mAh or more), the winding slip short circuit inspection and the battery bending test were also passed, and safety could be secured.
- the nonaqueous electrolyte battery may be a primary battery.
- the electrolyte layer of the present technology can be similarly applied to a case where it has another battery structure such as a cylindrical shape, a coin shape, a square shape, or a button shape.
- this technique can also take the following structures.
- the plane includes at least one of a crystal plane, a crush plane, and a cleavage plane.
- the inorganic particles are silicon oxide, zinc oxide, tin oxide, magnesium oxide, antimony oxide, aluminum oxide, magnesium sulfate, calcium sulfate, barium sulfate, strontium sulfate, magnesium carbonate, calcium carbonate, barium carbonate, lithium carbonate, magnesium hydroxide.
- the organic particles include melamine, melamine cyanurate, melamine polyphosphate, cross-linked polymethyl methacrylate, polyethylene, polypropylene, polystyrene, polytetrafluoroethylene, polyvinylidene fluoride, polyamide, polyimide, melamine resin, phenol resin, and epoxy resin.
- the silicate mineral is talc, calcium silicate, zinc silicate, zirconium silicate, aluminum silicate, magnesium silicate, kaolinite, sepiolite, imogolite, sericite, pyrophyllite, mica, zeolite, mullite, saponite.
- the carbonate mineral is at least one selected from the group consisting of hydrotalcite and dolomite
- the resin is polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer.
- Polymer Polymer, styrene-butadiene copolymer and its hydride, acrylonitrile-butadiene copolymer and its hydride, acrylonitrile-butadiene-styrene copolymer and its hydride, methacrylic acid ester-acrylic acid ester copolymer, styrene -Acrylate ester copolymer, Acrylonitrile- Acrylate ester copolymer, Ethylene propylene rubber, Polyvinyl alcohol, Polyvinyl acetate, Ethyl cellulose, Cellulose derivatives, Polyphenylene ether At least one selected from the group consisting of tellurium, polysulfone, polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, polyamideimide, polyacrylonitrile, polyvinyl alcohol, polyether, acrylic resin, polyester, polyethylene glycol The battery according to any one of [1
- the electrolytic solution includes an electrolyte salt and a non-aqueous solvent in which the electrolyte salt is dissolved,
- the mass ratio of the particles to the resin (particle / resin) and the mass ratio of the particles to the electrolyte salt (particle / electrolyte salt) is at least 15/85 to 90/10.
- the electrolytic solution includes an electrolyte salt and a non-aqueous solvent in which the electrolyte salt is dissolved, The battery according to any one of [1] to [10], wherein a content of the electrolyte salt is 5.6% by mass or more and 30.8% by mass or less with respect to a mass of the electrolyte.
- the electrolyte is a gel electrolyte in which the electrolytic solution is held by the resin.
- the electrolyte is formed on both surfaces of at least one of the positive electrode and the negative electrode, or at least one surface of the separator, and the positive electrode, the negative electrode, and the separator are stacked or stacked and wound.
- An electronic device comprising the battery according to any one of [13] and receiving power supply from the battery.
- a conversion device that receives supply of electric power from the battery and converts it into driving force of a vehicle;
- An electric vehicle comprising: a control device that performs information processing related to vehicle control based on information related to the battery.
- a power storage device that includes the battery according to any one of [13] and supplies electric power to an electronic device connected to the battery.
- a power information control device that transmits and receives signals to and from other devices via a network, The power storage device according to [18], wherein charge / discharge control of the battery is performed based on information received by the power information control device.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
Description
まず、本技術の理解を容易にするため、本技術の技術的背景について説明する。[背景技術]の欄で述べたように、特許文献1(特開2010-198757号公報)では、ゲル電解質中にアルミナ等の粒子を混ぜてゲル電解質の強度を向上することが提案されている。
1.第1の実施の形態(電池の第1の例および第2の例)
2.第2の実施の形態(電池パックの例)
3.第3の実施の形態(電池パックの例)
4.第4の実施の形態(蓄電システム等の例)
5.他の実施の形態(変形例)
なお、以下に説明する実施の形態等は本技術の好適な具体例であり、本技術の内容がこれらの実施の形態等に限定されるものではない。また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また例示した効果と異なる効果が存在することを否定するものではない。
本技術の第1の実施の形態では、ラミネートフィルム型の非水電解質電池(電池)について説明する。この非水電解質電池は、例えば充電および放電が可能な非水電解質二次電池であり、また、例えばリチウムイオン二次電池である。以下では、ラミネートフィルム型の非水電解質電池の2つの構成例(第1の例および第2の例)について説明する。
〔非水電解質電池の構成例〕
図1は、第1の実施の形態による非水電解質電池62の構成を表すものである。この非水電解質電池62は、いわゆるラミネートフィルム型といわれるものであり、正極リード51および負極リード52が取り付けられた巻回電極体50をフィルム状の外装部材60の内部に収容したものである。
正極53は、正極集電体53Aの片面あるいは両面に正極活物質層53Bが設けられた構造を有している。
負極54は、負極集電体54Aの片面あるいは両面に負極活物質層54Bが設けられた構造を有しており、負極活物質層54Bと正極活物質層53Bとが対向するように配置されている。
セパレータ55は、イオン透過度が大きく、所定の機械的強度を有する絶縁性の膜から構成される多孔質膜である。セパレータ55の空孔には、非水電解液が保持される。
ゲル電解質層56は、フィラーとマトリックス高分子化合物(樹脂)と非水電解液(電解液)とを含む。ゲル電解質層56は、非水電解液がマトリックス高分子化合物により保持されたゲル状の電解質からなる層である。ゲル電解質層56にフィラーを含有させることによって、ゲル電解質層56の強度を向上することができる。また、ゲル電解質層56の透明性を向上させるために、フィラーとして、平面を含む形状であり、且つ、所定の平面率を有し、且つ、所定の屈折率を有する粒子を用いている。ゲル電解質層56が透明であることによって、ゲル電解質層56が透明でないことに起因して、電池が容量を犠牲にすることなく安全性を確保できなくなることを解消できる。
非水電解液は、電解質塩と、この電解質塩を溶解する非水溶媒とを含む。
電解質塩は、例えば、リチウム塩等の軽金属化合物の1種あるいは2種以上を含有している。このリチウム塩としては、例えば、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、過塩素酸リチウム(LiClO4)、六フッ化ヒ酸リチウム(LiAsF6)、テトラフェニルホウ酸リチウム(LiB(C6H5)4)、メタンスルホン酸リチウム(LiCH3SO3)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、テトラクロロアルミン酸リチウム(LiAlCl4)、六フッ化ケイ酸二リチウム(Li2SiF6)、塩化リチウム(LiCl)あるいは臭化リチウム(LiBr)等が挙げられる。中でも、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウムおよび六フッ化ヒ酸リチウムからなる群のうちの少なくとも1種が好ましく、六フッ化リン酸リチウムがより好ましい。
非水溶媒としては、例えば、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトンあるいはε-カプロラクトン等のラクトン系溶媒、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ビニレン、炭酸ジメチル、炭酸エチルメチルあるいは炭酸ジエチル等の炭酸エステル系溶媒、1,2-ジメトキシエタン、1-エトキシ-2-メトキシエタン、1,2-ジエトキシエタン、テトラヒドロフランあるいは2-メチルテトラヒドロフラン等のエーテル系溶媒、アセトニトリル等のニトリル系溶媒、スルフォラン系溶媒、リン酸類、リン酸エステル溶媒、またはピロリドン類等の非水溶媒が挙げられる。溶媒は、いずれか1種を単独で用いてもよく、2種以上を混合して用いてもよい。
樹脂としては、電解液を保持するマトリックス高分子化合物として、溶媒に相溶可能な性質を有するもの等を用いることができる。このような樹脂としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等の含フッ素樹脂、フッ化ビニリデン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体等の含フッ素ゴム、スチレン-ブタジエン共重合体およびその水素化物、アクリロニトリル-ブタジエン共重合体およびその水素化物、アクリロニトリル-ブタジエン-スチレン共重合体およびその水素化物、メタクリル酸エステル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニル等のゴム類、エチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド(特にアラミド)、ポリアミドイミド、ポリアクリロニトリル、ポリビニルアルコール、ポリエーテル、アクリル酸樹脂またはポリエステル等の融点およびガラス転移温度の少なくとも一方が180℃以上の樹脂、ポリエチレングリコール等が挙げられる。
ゲル電解質層56に含まれるフィラーとしては、光の散乱を低減させてゲル電解質層56の透明性を向上できる観点から、平面を含む形状であり、且つ、所定の平面率を有し、且つ、所定の屈折率を有する粒子を用いる。例えば、アルミナ粒子等の白い無機物の粉体は、無色透明な粒子で構成されているが、光の散乱現象により白くなっている。本技術では、白くなる要因である光の散乱を抑制し、ゲル電解質層56の透明性を向上するために、フィラーとして、平面を含む形状であり、且つ、所定の平面率を有し、且つ、所定の屈折率を有する粒子を用いることが好ましい。
平面を含む形状の粒子の典型的な例の外観を示すため、図3Aに走査型電子顕微鏡(SEM:Scanning Electron Microscope)で観察した平面を含む形状のタルク粒子のSEM写真を示す。図3BにSEMで観察した平面を含む形状のベーマイト粒子のSEM写真を示す。図3AのSEM写真では、タルク粒子の劈開を中心とする粒子表面が観察される。図3BのSEM写真では、ベーマイトの水熱合成での結晶成長で作られた結晶面に囲まれた粒子表面が観察される。
ゲル電解質層56の電極との接触面に対して垂直方向から、SEM(Scanning Electron Microscope、走査型顕微鏡)にてゲル電解質層56を観察し、体積基準の50%平均粒径(D50)前後のサイズの典型的形状の粒子10個の写真を撮影する。なお、平均粒径(D50)は、ゲル電解質層56からゲル電解質成分等を除去した後の粉体を、レーザー回折式粒度分布測定装置に投入して測定したものである。次に、各粒子について、投影面積のうち、結晶面、破砕面、劈開面に相当する平面の投影面積(複数面ある場合はそれらの合計面積)を求め、粒子全体の投影面積に対する平面の投影面積の百分率を算出し、算出した各粒子の百分率の平均値を平面率とする。
平面を含む形状の粒子を作るには、単結晶を育成し平滑な結晶面を形成させる育成方法、結晶粒子を粉砕によって割る方法等がある。単結晶を育成する方法としては、液中で成長させるフラックス法、水熱育成法、共沈法等が好ましい。
粒子の屈折率は、光の散乱を抑制して、ゲル電解質層56の透明性を確保できる観点から、1.3以上2.4未満であり、1.3以上2.1以下であることが好ましい。ゲル電解質とフィラー(粒子)の屈折率の違い(固体は屈折率が高く、液体は屈折率が低いという違い)からくる光の屈折による散乱による透明性の低下を抑えるためである。固体である粒子の屈折率を、液体である電解液を含むため低くなるゲル電解質の屈折率に近づけるため、固体である粒子の中でも、低い方の屈折率である1.3以上2.4未満、好ましくは1.3以上2.1以下の範囲の粒子を用いる。
粒子と樹脂との混合比は、ゲル電解質の屈折率をフィラー粒子に近づけ、透明性をより向上できる観点から、質量比(粒子/樹脂)で粒子/樹脂=15/85以上90/10以下の範囲であることが好ましく、20/80以上90/10以下の範囲であることがより好ましく、粒子/樹脂=20/80以上80/20以下の範囲であることがさらに好ましい。
粒子と電解質塩との混合比は、ゲル電解質の屈折率をフィラー粒子に近づけ、透明性をより向上できる観点から、質量比(粒子/電解質塩)で粒子/電解質塩=15/85以上90/10以下の範囲であることが好ましく、20/80以上90/10以下の範囲であることがより好ましく、粒子/電解質塩=20/80以上80/20以下の範囲であることがさらに好ましい。
粒子の含有量は、ゲル電解質の屈折率をフィラー粒子に近づけ、透明性をより向上できる観点から、電解質の質量に対して、5.2質量%以上50.0質量%以下であることが好ましく、5.2質量%以上30.8質量%以下であることがより好ましい。
樹脂の含有量は、ゲル電解質の屈折率をフィラー粒子に近づけ、透明性をより向上できる観点から、電解質の質量に対して、5.6質量%以上30.8質量%以下であることが好ましく、7.7質量%以上30.8質量%以下であることがより好ましい。なお、樹脂の含有量が、30.8質量%より多いと、電池のイオン移動抵抗が増し出力が低下する傾向にある。
電解質塩の含有量は、ゲル電解質の屈折率をフィラー粒子に近づけ、透明性をより向上できる観点から、電解質の質量に対して、5.6質量%以上30.8質量%以下であることが好ましく、7.7質量%以上30.8質量%以下であることがより好ましい。なお、電解質塩の含有量が、30.8質量%より多いと、電池のイオン移動抵抗が増し出力が低下する傾向にある。
この非水電解質電池62は、例えば、以下のようにして、製造することができる。
正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤をN-メチル-2-ピロリドン等の溶剤に分散させてペースト状の正極合剤スラリーを作製する。次に、この正極合剤スラリーを正極集電体53Aに塗布し溶剤を乾燥させ、ロールプレス機等により圧縮成型することにより正極活物質層53Bを形成し、正極53を作製する。
負極活物質と、結着剤とを混合して負極合剤を調製し、この負極合剤をN-メチル-2-ピロリドン等の溶剤に分散させてペースト状の負極合剤スラリーを作製する。次に、この負極合剤スラリーを負極集電体54Aに塗布し溶剤を乾燥させ、ロールプレス機等により圧縮成型することにより負極活物質層54Bを形成し、負極54を作製する。
非水電解液は、非水溶媒に対して電解質塩を溶解させて調製する。
正極53および負極54の少なくとも一方の両面に、非水電解液と、樹脂と、フィラーと、希釈溶媒(ジメチルカーボネート等)とを含む前駆溶液(塗料)を塗布した後、希釈溶媒を揮発させてゲル電解質層56を形成する。そののち、正極集電体53Aの端部に正極リード51を溶接により取り付けると共に、負極集電体54Aの端部に負極リード52を溶接により取り付ける。
上述の第1の例では、巻回電極体50が外装部材60で外装された非水電解質電池62について説明したが、図4A~図4Cに示すように、巻回電極体50の代わりに積層電極体70を用いてもよい。図4Aは、積層電極体70を収容した非水電解質電池62の外観図である。図4Bは、外装部材60に積層電極体70が収容される様子を示す分解斜視図である。図4Cは、図4Aに示す非水電解質電池62の底面側からの外観を示す外観図である。
第2の実施の形態では、第1の実施の形態と同様のゲル電解質層を備えたラミネートフィルム型の電池(非水電解質電池)の電池パックの例について説明する
図7は、本技術の第1の実施の形態による電池(以下、二次電池と適宜称する)を電池パックに適用した場合の回路構成例を示すブロック図である。電池パックは、組電池301、外装、充電制御スイッチ302aと、放電制御スイッチ303a、を備えるスイッチ部304、電流検出抵抗307、温度検出素子308、制御部310を備えている。
上述した本技術の第1の実施の形態による電池およびこれを用いた第2の実施の形態および第3の実施の形態による電池パックは、例えば電子機器や電動車両、蓄電装置等の機器に搭載または電力を供給するために使用することができる。
本技術の電池を用いた蓄電装置を住宅用の蓄電システムに適用した例について、図8を参照して説明する。例えば住宅401用の蓄電システム400においては、火力発電402a、原子力発電402b、水力発電402c等の集中型電力系統402から電力網409、情報網412、スマートメータ407、パワーハブ408等を介し、電力が蓄電装置403に供給される。これと共に、家庭内の発電装置404等の独立電源から電力が蓄電装置403に供給される。蓄電装置403に供給された電力が蓄電される。蓄電装置403を使用して、住宅401で使用する電力が給電される。住宅401に限らずビルに関しても同様の蓄電システムを使用できる。
本技術を車両用の蓄電システムに適用した例について、図9を参照して説明する。図9に、本技術が適用されるシリーズハイブリッドシステムを採用するハイブリッド車両の構成の一例を概略的に示す。シリーズハイブリッドシステムはエンジンで動かす発電機で発電された電力、あるいはそれをバッテリーに一旦貯めておいた電力を用いて、電力駆動力変換装置で走行する車である。
[正極の作製]
正極活物質であるコバルト酸リチウム(LiCoO2)91質量%と、導電剤であるカーボンブラック6質量%と、結着剤であるポリフッ化ビニリデン(PVdF)3質量%とを混合して正極合剤を調製し、この正極合剤を分散媒であるN-メチル-2-ピロリドン(NMP)に分散させて正極合剤スラリーとした。この正極合剤スラリーを厚さ12μmの帯状アルミニウム箔からなる正極集電体の両面に、正極集電体の一部が露出するようにして塗布した。この後、塗布した正極合剤スラリーの分散媒を蒸発・乾燥させ、ロールプレスにて圧縮成型することにより、正極活物質層を形成した。最後に、正極端子を正極集電体露出部に取り付け、正極を形成した。
負極活物質である平均粒径20μmの粒状黒鉛粉末96質量%と、結着剤としてスチレン-ブタジエン共重合体のアクリル酸変性体1.5質量%と、増粘剤としてカルボキシメチルセルロース1.5質量%とを混合して負極合剤とし、さらに適量の水を加えて攪拌することにより、負極合剤スラリーを調製した。この負極合剤スラリーを厚さ15μmの帯状銅箔からなる負極集電体の両面に、負極集電体の一部が露出するようにして塗布した。この後、塗布した負極合剤スラリーの分散媒を蒸発・乾燥させ、ロールプレスにて圧縮成型することにより、負極活物質層を形成した。最後に、負極端子を正極集電体露出部に取り付け、負極を形成した。
炭酸エチレン(EC)と炭酸プロピレン(PC)と炭酸ビニレン(VC)とを、質量比49:49:2で混合した非水溶媒に対して、電解質塩として六フッ化リン酸リチウム(LiPF6)を1mol/dm3の濃度で溶解させることにより、非水電解液を調製した。
ゲル電解質層が両面に形成された正極および負極と、セパレータとを、正極、セパレータ、負極、セパレータの順に積層したのち、巻回装置を用いて、長手方向に多数回、扁平形状に巻回した。その後、巻き終わり部分を粘着テープで固定することにより巻回電極体を形成した。なお、巻回装置はカメラ撮影による画像データを画像処理装置に送り、画像データから正極、セパレータ、負極のエッジの位置を検出し、検出結果をフィードバックして、正極、セパレータ、負極の幅方向の位置を正しい位置に制御する機能を備えたものである。巻回装置において、正極、セパレータ、負極のエッジの位置の検出は、基準とする片側1辺のみ行った。誤検出により巻きずれが生じる場合、基準とする1辺の反対側の正負極のエッジが、セパレータからはみだすおそれがあり、短絡が生じるおそれがある。
実施例1-2~実施例1-55では、下掲の表1に示すように、用いるフィラーを変えたこと以外は、実施例1-1と同様にして、ラミネートフィルム型電池を作製した。
前駆溶液にフィラー(ベーマイト粒子)を混合せず、フィラーを含有しないゲル電解質層を形成したこと以外は実施例1-1と同様にして比較例1-1のラミネートフィルム型電池を作製した。
比較例1-2~比較例1-10では、下掲の表1に示すように、用いるフィラーを変えたこと以外は、実施例1-1と同様にして、ラミネートフィルム型電池を作製した。
上述の実施例および比較例において、フィラーの平面率、ゲル電解質層の外観は以下のようにして測定または評価したものである。(後述の実施例および比較例も同様)
平面率は以下のように測定した。ゲル電解質層の電極との接触面に対して垂直方向から、SEMにてゲル電解質層を観察し、体積基準の50%平均粒径(D50)前後のサイズの典型的形状の粒子10個の写真を撮影した。なお、平均粒径(D50)は、ゲル電解質層56からゲル電解質成分等を除去した後の粉体を、レーザー回折式粒度分布測定装置で測定したものである。次に、各粒子について、投影面積のうち、結晶面、破砕面、劈開面に相当する平面の投影面積(複数面ある場合はそれらの合計面積)を求め、粒子全体の投影面積に対する平面の投影面積の百分率を算出し、算出した各粒子の百分率の平均値を平面率とした。
視覚観察により、ゲル電解質層の外観を観察した。なお、透明性の程度で、透明、ほぼ透明、透明に近い、半透明と段階的に評価した。透明、ほぼ透明、透明に近い場合は、いずれも、ゲル電解質層を通して、塗布対象(電極またはセパレータ)の輪郭を完全に視認できた。また、白濁の色の濃さの程度により、薄く白濁、白濁、濃い白濁と段階的に評価した。薄く白濁、白濁、濃い白濁、褐色不透明の場合は、ゲル電解質層56を通して、塗布対象(電極またはセパレータ)の輪郭を視認できなかった。
以下のようにして、巻きずれによる短絡が生じているかを確認するための短絡検査を行った。作製した電池について、電池の初回充電時の巻きずれによる短絡の有無を確認した。具体的には、電池の初回充電が終了してから24時間経過するまでの間に電圧の低下が0.5V以上になったものを短絡と判定することにより、短絡の有無を確認した。
短絡検査において、短絡が生じなかった電池について、以下のようにして電池容量の測定を行った。上記充電後の電池を1Cの放電電流で電池電圧3.0Vまで定電流放電を行い、このときの放電容量を測定して電池容量とした。電池容量は、作製した電池に求められる必要容量1000mAhを基準値として、必要な電池容量を満足しているかどうかを判断した。なお、比較例1-2~比較例1-10では、短絡が生じたため、電池容量測定ができなかった。
作製した電池を電池容量の測定と同条件で充電した。次に、図10および図11に示すように、30mmの間隔で並置された2本の丸棒S上に、充電した電池CELLを配置し、電池CELLのセンター位置に対して、上方から1本の丸棒Sを押し当てて、300Nまたは押し当てた部分が3mmたわむ(下方に3mm下がる状態になる)まで加圧した。その際、電圧計(テスター)600により電池CELLの電圧を確認し、1%以上の電圧低下を確認したら短絡判定を不合格とした。また短絡した場合は試験不能とし、それ以外を合格とした。
実施例1-1と同様にして、ラミネートフィルム型電池を作製した。
フィラーとして、平面率の異なるベーマイト粒子を用いた。ベーマイト粒子の水熱合成時の成長速度を速くして球面の比率を多くしたり、成長速度を遅くして平面の比率を上げたりすることによりベーマイト粒子の平面率を所望のものに調整した。具体的には、実施例2-2では、フィラーとして、平面率45%のベーマイト粒子を用いた。実施例2-3では、フィラーとして、平面率50%のベーマイト粒子を用いた。実施例2-4では、フィラーとして、平面率60%のベーマイト粒子を用いた。実施例2-5では、フィラーとして、平面率80%のベーマイト粒子を用いた。実施例2-6では、フィラーとして、平面率90%のベーマイト粒子を用いた。実施例2-7では、フィラーとして、平面率100%のベーマイト粒子を用いた。以上のこと以外は、実施例2-1と同様にして、ラミネートフィルム型電池を作製した。
実施例1-2と同様にして、ラミネートフィルム型電池を作製した。
フィラーとして、平面率の異なるタルク粒子を用いた。なお、ハンマーミルおよびロールミルを用いて行う粉砕工程において、ハンマーミルの時間比率を多くして劈開面の比率を上げたり、ロールミルの時間比率を多くして劈開面の比率を下げたりして、タルク粒子の平面率を所望のものに調整した。
フィラーとして、ベーマイト粒子に代えて、平面率の異なる酸化アルミニウム粒子を用いた。具体的には、比較例2-1では、フィラーとして、平面率40%の酸化アルミニウム粒子を用いた。比較例2-2では、フィラーとして、平面率30%の酸化アルミニウム粒子を用いた。比較例2-3では、フィラーとして、平面率20%の酸化アルミニウム粒子を用いた。比較例2-4では、フィラーとして、平面率10%の酸化アルミニウム粒子を用いた。比較例2-5では、フィラーとして、球状の酸化アルミニウム(平面率0%)粒子を用いた。以上のこと以外は、実施例2-1と同様にして、ラミネートフィルム型電池を作製した。
正極として、実施例2-1の正極電極幅と比べて正極電極幅を10%細くしたものを用いた。以上のこと以外は、比較例2-5と同様にして、ラミネートフィルム型電池を作製した。
作製した各実施例および各比較例のラミネートフィルム型電池について、実施例1-1と同様にして、巻きずれ短絡検査、電池容量の測定、電池折曲げ試験を行った。
実施例3-1~実施例3-8では、ゲル電解質の構成成分であるフィラー(ベーマイト粒子)、マトリックス高分子(PVdF)、LiPF6および非水溶媒(溶媒)の各成分の量を下掲の表3に示すように変えたこと以外は、実施例1-1と同様にして、ラミネートフィルム型電池を作製した。なお、表3中において、粒子(フィラー)、PVdF、LiPF6、溶媒の各成分の量は、ゲル電解質の全体量(構成成分の合計量)に対する質量百分率で示している(後述の表8も同様)。
実施例3-9~実施例3-15では、ゲル電解質の構成成分であるフィラー(タルク粒子)、マトリックス高分子(PVdF)、LiPF6と溶媒(溶媒)の各成分の量を下掲の表3に示すように変えたこと以外は、実施例1-2と同様にして、ラミネートフィルム型電池を作製した。
作製した各実施例のラミネートフィルム型電池について、実施例1-1と同様にして、巻きずれ短絡検査、電池容量の測定、電池折曲げ試験を行った。
実施例4-1では、実施例1-1と同様にしてラミネートフィルム型電池を作製した。
実施例4-2~実施例4-3では、ゲル電解質層を構成するマトリックス高分子(樹脂)の種類を変えた。実施例4-2では、マトリックス高分子としてPAN(ポリアクリロニトリル)を用いた。実施例4-3では、マトリックス高分子として、PEG(ポリエチレングリコール)を用いた。以上のこと以外は、実施例4-1と同様にして、ラミネートフィルム型電池を作製した。
実施例4-4では、実施例1-2と同様にしてラミネートフィルム型電池を作製した。
実施例4-5~実施例4-6では、ゲル電解質層を構成するマトリックス高分子の種類を変えた。実施例4-5では、マトリックス高分子としてPAN(ポリアクリロニトリル)を用いた。実施例4-6では、マトリックス高分子として、PEG(ポリエチレングリコール)を用いた。以上のこと以外は、実施例4-4と同様にして、ラミネートフィルム型電池を作製した。
作製した各実施例のラミネートフィルム型電池について、実施例1-1と同様にして、巻きずれ短絡検査、電池容量の測定、電池折曲げ試験を行った。
実施例5-1~実施例5-2では、正極、負極、セパレータおよびゲル電解質層のそれぞれの構成が、実施例1-1~実施例1-2のそれぞれと同様であり、積層電極体をラミネートフィルムで外装したラミネートフィルム型電池を作製した。
矩形状の正極および負極の両面に、実施例1-1または実施例1-2と同様の前駆溶液を塗布し、乾燥させて希釈溶媒を除去し、正極および負極の表面にゲル電解質層を形成した。次に、矩形状の正極(両面にゲル電解質層が形成されたもの)および矩形状の負極(両面にゲル電解質層が形成されたもの)と、矩形状のセパレータとを、正極、セパレータ、負極、セパレータの順に、積層して積層電極体を形成した。
作製した各実施例のラミネートフィルム型電池について、実施例1-1と同様にして、積層ずれ短絡検査、電池容量の測定、電池折曲げ試験を行った。
正極および負極のそれぞれの両面にゲル電解質層を形成する代わりに、セパレータの両面にゲル電解質を形成した。すなわち、ゲル電解質層の形成を以下のように変えたこと以外は、実施例1-1~実施例1-55および比較例1-1~比較例1-10と同様にして、ラミネートフィルム型電池を作製した。
炭酸エチレン(EC)と炭酸プロピレン(PC)と炭酸ビニレン(VC)とを、質量比49:49:2で混合した非水溶媒に対して、電解質塩として六フッ化リン酸リチウム(LiPF6)を1mol/dm3の濃度で溶解させることにより、非水電解液を調製した。
正極および負極と、ゲル電解質層が両面に形成されたセパレータとを、正極、セパレータ、負極、セパレータの順に積層したのち、実施例1-1と同様の巻回装置を用いて、長手方向に多数回、扁平形状に巻回した。その後、巻き終わり部分を粘着テープで固定することにより巻回電極体を形成した。
作製した各実施例および各比較例のラミネートフィルム型電池について、実施例1-1と同様にして、巻きずれ短絡検査、電池容量の測定、電池折曲げ試験を行った。
実施例6-1と同様にして、ラミネートフィルム型電池を作製した。
フィラーとして、平面率の異なるベーマイト粒子を用いた。ベーマイト粒子の水熱合成時の成長速度を速くして球面の比率を多くしたり、成長速度を遅くして平面の比率を上げたりすることによりベーマイト粒子の平面率を所望のものに調整した。具体的には、実施例7-2では、フィラーとして、平面率45%のベーマイト粒子を用いた。実施例7-3では、フィラーとして、平面率50%のベーマイト粒子を用いた。実施例7-4では、フィラーとして、平面率60%のベーマイト粒子を用いた。実施例7-5では、フィラーとして、平面率80%のベーマイト粒子を用いた。実施例7-6では、フィラーとして、平面率90%のベーマイト粒子を用いた。実施例7-7では、フィラーとして、平面率100%のベーマイト粒子を用いた。以上のこと以外は、実施例7-1と同様にして、ラミネートフィルム型電池を作製した。
実施例6-2と同様にして、ラミネートフィルム型電池を作製した。
フィラーとして、平面率の異なるタルク粒子を用いた。なお、ハンマーミルおよびロールミルを用いて行う粉砕工程において、ハンマーミルの時間比率を多くして劈開面の比率を上げたり、ロールミルの時間比率を多くして劈開面の比率を下げたりして、タルク粒子の平面率を所望のものに調整した。
フィラーとして、ベーマイト粒子に代えて、平面率の異なる酸化アルミニウム粒子を用いた。具体的には、比較例7-1では、フィラーとして、平面率40%の酸化アルミニウム粒子を用いた。比較例7-2では、フィラーとして、平面率30%の酸化アルミニウム粒子を用いた。比較例7-3では、フィラーとして、平面率20%の酸化アルミニウム粒子を用いた。比較例7-4では、フィラーとして、平面率10%の酸化アルミニウム粒子を用いた。比較例7-5では、フィラーとして、球状の酸化アルミニウム(平面率0%)粒子を用いた。以上のこと以外は、実施例7-1と同様にして、ラミネートフィルム型電池を作製した。
正極として、実施例7-1の正極電極幅と比べて正極電極幅を10%細くしたものを用いた。以上のこと以外は、比較例7-5と同様にして、ラミネートフィルム型電池を作製した。
作製した各実施例および各比較例のラミネートフィルム型電池について、実施例1-1と同様にして、巻きずれ短絡検査、電池容量の測定、電池折曲げ試験を行った。
電池容量も損なわれず(必要容量1000mAh以上)、巻きずれ短絡検査および電池折曲げ試験も合格であり、安全性を確保できた。一方、比較例7-1~比較例7-5では、ゲル電解質層が、所定範囲の平面率および所定範囲の屈折率の少なくとも何れかを有さない粒子を含むので、透明ではなくなり、巻きずれ短絡検査および電池折曲げ試験が不合格、電池容量も短絡が生じたため、試験不能(測定不能)であった。なお、比較例7-6では、従来のように、正極電極幅を比較例7-5の正極電極幅より10%細くしたものであるので、巻きずれは大きいが、正極、負極およびセパレータの各端間のクリアランスも大きいため短絡が生じなかった。しかしながら電池容量は必要容量1000mAhに達しなかった。
実施例8-1~実施例8-8では、ゲル電解質の構成成分であるフィラー(ベーマイト粒子)、マトリックス高分子(PVdF)、LiPF6および溶媒の各成分の量を下掲の表8に示すように変えたこと以外は、実施例6-1と同様にして、ラミネートフィルム型電池を作製した。
実施例8-9~実施例8-15では、ゲル電解質の構成成分であるフィラー(タルク粒子)、マトリックス高分子(PVdF)、LiPF6および溶媒の各成分の量を下掲の表8に示すように変えたこと以外は、実施例6-2と同様にして、ラミネートフィルム型電池を作製した。
作製した各実施例のラミネートフィルム型電池について、実施例1-1と同様にして、巻きずれ短絡検査、電池容量の測定、電池折曲げ試験を行った。
実施例9-1では、実施例6-1と同様にしてラミネートフィルム型電池を作製した。
実施例9-2~実施例9-3では、ゲル電解質層を構成するマトリックス高分子(樹脂)の種類を変えた。実施例9-2では、マトリックス高分子としてPAN(ポリアクリロニトリル)を用いた。実施例9-3では、マトリックス高分子として、PEG(ポリエチレングリコール)を用いた。以上のこと以外は、実施例9-1と同様にして、ラミネートフィルム型電池を作製した。
実施例9-4では、実施例9-2と同様にしてラミネートフィルム型電池を作製した。
実施例9-5~実施例9-6では、ゲル電解質層を構成するマトリックス高分子の種類を変えた。実施例9-5では、マトリックス高分子としてPAN(ポリアクリロニトリル)を用いた。実施例9-6では、マトリックス高分子として、PEG(ポリエチレングリコール)を用いた。以上のこと以外は、実施例9-4と同様にして、ラミネートフィルム型電池を作製した。
作製した各実施例のラミネートフィルム型電池について、実施例1-1と同様にして、巻きずれ短絡検査、電池容量の測定、電池折曲げ試験を行った。
実施例10-1~実施例10-2では、正極、負極、セパレータおよびゲル電解質層のそれぞれの構成が、実施例6-1~実施例6-2のそれぞれと同様であり、積層電極体をラミネートフィルムで外装したラミネートフィルム型電池を作製した。
矩形状のセパレータの両面に、実施例6-1または実施例6-2と同様の前駆溶液を塗布し、乾燥させて希釈溶媒を除去し、セパレータの両面の表面にゲル電解質層を形成した。次に、矩形状の正極および矩形状の負極と、矩形状のセパレータ(両面にゲル電解質層が形成されたもの)とを、正極、セパレータ(両面にゲル電解質層が形成されたもの)、負極、セパレータ(両面にゲル電解質層が形成されたもの)の順に、積層して積層電極体を形成した。なお、正極、セパレータ、負極の積層は、実施例6-1と同様のシート積層装置を用いて行った。
作製した各実施例のラミネートフィルム型電池について、実施例1-1と同様にして、積層ずれ短絡検査、電池容量の測定、電池折曲げ試験を行った。
以上、本技術を各実施の形態および実施例によって説明したが、本技術はこれらに限定されるものではなく、本技術の要旨の範囲内で種々の変形が可能である。
[1]
正極と、
負極と、
セパレータと、
粒子、樹脂および電解液を含む電解質と
を備え、
前記粒子の形状は平面を含み、且つ、前記粒子の平面率は40%超100%以下であり、前記粒子の屈折率は1.3以上2.4未満である電池。
[2]
前記電解質は、透明である[1]に記載の電池。
[3]
前記平面は、結晶面、破砕面、および劈開面うちの少なくとも何れかを含む[1]~[2]の何れかに記載の電池。
[4]
前記粒子は、無機粒子および有機粒子の少なくとも何れかである[1]~[3]の何れかに記載の電池。
[5]
前記無機粒子は、酸化ケイ素、酸化亜鉛、酸化スズ、酸化マグネシウム、酸化アンチモン、酸化アルミニウム、硫酸マグネシウム、硫酸カルシウム、硫酸バリウム、硫酸ストロンチウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、炭酸リチウム、水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、ベーマイト、ホワイトカーボン、酸化ジルコニウム水和物、酸化マグネシウム水和物、水酸化マグネシウム8水和物、炭化ホウ素、窒化ケイ素、窒化ホウ素、窒化アルミニウム、窒化チタン、フッ化リチウム、フッ化アルミニウム、フッ化カルシウム、フッ化バリウム、フッ化マグネシウム、リン酸トリリチウム、リン酸マグネシウム、リン酸水素マグネシウム、ポリリン酸アンモニウム、ケイ酸塩鉱物、炭酸塩鉱物、酸化鉱物からなる群から選ばれた少なくとも何れかの粒子であり、
前記有機粒子は、メラミン、メラミンシアヌレート、ポリリン酸メラミン、架橋ポリメタクリル酸メチル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリテトラフルオロエチレン、ポリビニリデンフルオリド、ポリアミド、ポリイミド、メラミン樹脂、フェノール樹脂、エポキシ樹脂からなる群から選ばれた少なくとも何れかの粒子である[4]に記載の電池。
[6]
前記ケイ酸塩鉱物は、タルク、ケイ酸カルシウム、ケイ酸亜鉛、ケイ酸ジルコニウム、ケイ酸アルミニウム、ケイ酸マグネシウム、カオリナイト、セピオライト、イモゴライト、セリサイト、パイロフィライト、雲母、ゼオライト、ムライト、サポナイト、アタパルジャイト、モンモリロナイトからなる群から選ばれた少なくとも1種であり、
前記炭酸塩鉱物は、ハイドロタルサイト、ドロマイトからなる群から選ばれた少なくとも1種であり、
前記酸化鉱物は、スピネルである[5]に記載の電池。
[7]
前記樹脂は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ化ビニリデン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合体およびその水素化物、アクリロニトリル-ブタジエン共重合体およびその水素化物、アクリロニトリル-ブタジエン-スチレン共重合体およびその水素化物、メタクリル酸エステル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニル、エチルセルロース、セルロース誘導体、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、ポリアミドイミド、ポリアクリロニトリル、ポリビニルアルコール、ポリエーテル、アクリル酸樹脂、ポリエステル、ポリエチレングリコールからなる群から選ばれた少なくとも何れかである[1]~[6]の何れかに記載の電池。
[8]
前記電解液は、電解質塩および該電解質塩が溶解された非水溶媒を含み、
前記粒子と前記樹脂との質量比(粒子/樹脂)および前記粒子と前記電解質塩との質量比(粒子/電解質塩)のうちの少なくとも一方の質量比は、15/85以上90/10以下である[1]~[7]の何れかに記載の電池。
[9]
前記粒子の含有量は、前記電解質の質量に対して、5.6質量%以上50.0質量%以下である[1]~[8]の何れかに記載の電池。
[10]
前記樹脂の含有量は、前記電解質の質量に対して、5.6質量%以上30.8質量%以下である[1]~[9]の何れかに記載の電池。
[11]
前記電解液は、電解質塩および該電解質塩が溶解された非水溶媒を含み、
前記電解質塩の含有量は、前記電解質の質量に対して、5.6質量%以上30.8質量%以下である[1]~[10]の何れかに記載の電池。
[12]
前記電解質は、前記電解液が前記樹脂により保持されたゲル状の電解質である[1]~[11]の何れかに記載の電池。
[13]
前記正極および前記負極の少なくとも一方の電極の両面、または、前記セパレータの両面のうちの少なくとも一方の面に前記電解質が形成され、前記正極、前記負極、前記セパレータを積層または積層および巻回することにより形成された電極体を含む[1]~[12]の何れかに記載の電池。
[14]
粒子、樹脂および電解液を含み、
前記粒子の形状は平面を含み、且つ、前記粒子の平面率は40%超100%以下であり、前記粒子の屈折率は1.3以上2.4未満である電解質。
[15]
[1]~[13]の何れかに記載の電池と、
前記電池を制御する制御部と、
前記電池を内包する外装と
を有する電池パック。
[16]
[1]~[13]の何れかに記載の電池を有し、前記電池から電力の供給を受ける電子機器。
[17]
[1]~[13]の何れかに記載の電池と、
前記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
前記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
を有する電動車両。
[18]
[1]~[13]の何れかに記載の電池を有し、前記電池に接続される電子機器に電力を供給する蓄電装置。
[19]
他の機器とネットワークを介して信号を送受信する電力情報制御装置を備え、
前記電力情報制御装置が受信した情報に基づき、前記電池の充放電制御を行う[18]に記載の蓄電装置。
[20]
[1]~[13]の何れかに記載の電池から電力の供給を受け、または、発電装置もしくは電力網から前記電池に電力が供給される電力システム。
Claims (20)
- 正極と、
負極と、
セパレータと、
粒子、樹脂および電解液を含む電解質と
を備え、
前記粒子の形状は平面を含み、且つ、前記粒子の平面率は40%超100%以下であり、前記粒子の屈折率は1.3以上2.4未満である電池。 - 前記電解質は、透明である請求項1に記載の電池。
- 前記平面は、結晶面、破砕面、および劈開面うちの少なくとも何れかを含む請求項1に記載の電池。
- 前記粒子は、無機粒子および有機粒子の少なくとも何れかである請求項1に記載の電池。
- 前記無機粒子は、酸化ケイ素、酸化亜鉛、酸化スズ、酸化マグネシウム、酸化アンチモン、酸化アルミニウム、硫酸マグネシウム、硫酸カルシウム、硫酸バリウム、硫酸ストロンチウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、炭酸リチウム、水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、ベーマイト、ホワイトカーボン、酸化ジルコニウム水和物、酸化マグネシウム水和物、水酸化マグネシウム8水和物、炭化ホウ素、窒化ケイ素、窒化ホウ素、窒化アルミニウム、窒化チタン、フッ化リチウム、フッ化アルミニウム、フッ化カルシウム、フッ化バリウム、フッ化マグネシウム、リン酸トリリチウム、リン酸マグネシウム、リン酸水素マグネシウム、ポリリン酸アンモニウム、ケイ酸塩鉱物、炭酸塩鉱物、酸化鉱物からなる群から選ばれた少なくとも何れかの粒子であり、
前記有機粒子は、メラミン、メラミンシアヌレート、ポリリン酸メラミン、架橋ポリメタクリル酸メチル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリテトラフルオロエチレン、ポリビニリデンフルオリド、ポリアミド、ポリイミド、メラミン樹脂、フェノール樹脂、エポキシ樹脂からなる群から選ばれた少なくとも何れかの粒子である請求項4に記載の電池。 - 前記ケイ酸塩鉱物は、タルク、ケイ酸カルシウム、ケイ酸亜鉛、ケイ酸ジルコニウム、ケイ酸アルミニウム、ケイ酸マグネシウム、カオリナイト、セピオライト、イモゴライト、セリサイト、パイロフィライト、雲母、ゼオライト、ムライト、サポナイト、アタパルジャイト、モンモリロナイトからなる群から選ばれた少なくとも1種であり、
前記炭酸塩鉱物は、ハイドロタルサイト、ドロマイトからなる群から選ばれた少なくとも1種であり、
前記酸化鉱物は、スピネルである請求項5に記載の電池。 - 前記樹脂は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ化ビニリデン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合体およびその水素化物、アクリロニトリル-ブタジエン共重合体およびその水素化物、アクリロニトリル-ブタジエン-スチレン共重合体およびその水素化物、メタクリル酸エステル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニル、エチルセルロース、セルロース誘導体、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、ポリアミドイミド、ポリアクリロニトリル、ポリビニルアルコール、ポリエーテル、アクリル酸樹脂、ポリエステル、ポリエチレングリコールからなる群から選ばれた少なくとも何れかである請求項1に記載の電池。
- 前記電解液は、電解質塩および該電解質塩が溶解された非水溶媒を含み、
前記粒子と前記樹脂との質量比(粒子/樹脂)および前記粒子と前記電解質塩との質量比(粒子/電解質塩)のうちの少なくとも一方の質量比は、15/85以上90/10以下である請求項1に記載の電池。 - 前記粒子の含有量は、前記電解質の質量に対して、5.6質量%以上50.0質量%以下である請求項1に記載の電池。
- 前記樹脂の含有量は、前記電解質の質量に対して、5.6質量%以上30.8質量%以下である請求項1に記載の電池。
- 前記電解液は、電解質塩および該電解質塩が溶解された非水溶媒を含み、
前記電解質塩の含有量は、前記電解質の質量に対して、5.6質量%以上30.8質量%以下である請求項1に記載の電池。 - 前記電解質は、前記電解液が前記樹脂により保持されたゲル状の電解質である請求項1に記載の電池。
- 前記正極および前記負極の少なくとも一方の電極の両面、または、前記セパレータの両面のうちの少なくとも一方の面に前記電解質が形成され、前記正極、前記負極、前記セパレータを積層または積層および巻回することにより形成された電極体を含む請求項1に記載の電池。
- 粒子、樹脂および電解液を含み、
前記粒子の形状は平面を含み、且つ、前記粒子の平面率は40%超100%以下であり、前記粒子の屈折率は1.3以上2.4未満である電解質。 - 請求項1に記載の電池と、
前記電池を制御する制御部と、
前記電池を内包する外装と
を有する電池パック。 - 請求項1に記載の電池を有し、前記電池から電力の供給を受ける電子機器。
- 請求項1に記載の電池と、
前記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
前記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
を有する電動車両。 - 請求項1に記載の電池を有し、前記電池に接続される電子機器に電力を供給する蓄電装置。
- 他の機器とネットワークを介して信号を送受信する電力情報制御装置を備え、
前記電力情報制御装置が受信した情報に基づき、前記電池の充放電制御を行う請求項18に記載の蓄電装置。 - 請求項1に記載の電池から電力の供給を受け、または、発電装置もしくは電力網から前記電池に電力が供給される電力システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/031,064 US10263278B2 (en) | 2013-11-05 | 2014-08-28 | Battery, electrolyte, battery pack, electronic apparatus, electrically driven vehicle, electrical storage device, and electric power system |
EP14859812.1A EP3067980B1 (en) | 2013-11-05 | 2014-08-28 | Battery, electrolyte, battery pack, electronic apparatus, electric vehicle, electricity storage device, and power system |
KR1020167010796A KR102101533B1 (ko) | 2013-11-05 | 2014-08-28 | 전지, 전해질, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템 |
CN201480059245.XA CN105684205B (zh) | 2013-11-05 | 2014-08-28 | 电池、电解质、电池组、电子装置、电动车辆、电存储设备和电力系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013229672A JP2015090777A (ja) | 2013-11-05 | 2013-11-05 | 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム |
JP2013-229672 | 2013-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015068324A1 true WO2015068324A1 (ja) | 2015-05-14 |
Family
ID=53041123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/004415 WO2015068324A1 (ja) | 2013-11-05 | 2014-08-28 | 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム |
Country Status (6)
Country | Link |
---|---|
US (1) | US10263278B2 (ja) |
EP (1) | EP3067980B1 (ja) |
JP (1) | JP2015090777A (ja) |
KR (1) | KR102101533B1 (ja) |
CN (1) | CN105684205B (ja) |
WO (1) | WO2015068324A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017112424A1 (en) * | 2015-12-22 | 2017-06-29 | E. I. Du Pont De Nemours And Company | Electrolyte compositions comprising metal fluoride particles |
WO2018220800A1 (ja) * | 2017-06-01 | 2018-12-06 | 日立化成株式会社 | 電解質組成物、二次電池、及び電解質シートの製造方法 |
WO2018221670A1 (ja) * | 2017-06-01 | 2018-12-06 | 日立化成株式会社 | 電解質組成物、二次電池、及び電解質シートの製造方法 |
US11296356B2 (en) | 2017-04-21 | 2022-04-05 | Showa Denko Materials Co., Ltd. | Polymer electrolyte composition including polymer having a structural unit represented by formula (1), electrolyte salt, and molten salt, and polymer secondary battery including the same |
US11462767B2 (en) | 2017-04-21 | 2022-10-04 | Showa Denko Materials Co., Ltd. | Electrochemical device electrode. method for producing electrochemical device electrode and electrochemical device |
US11777137B2 (en) | 2017-04-21 | 2023-10-03 | Lg Energy Solution, Ltd. | Member for electrochemical devices, and electrochemical device |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015090777A (ja) * | 2013-11-05 | 2015-05-11 | ソニー株式会社 | 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム |
US10147973B2 (en) * | 2015-06-09 | 2018-12-04 | Murata Manufacturing Co., Ltd. | Battery, battery pack, electronic device, electric vehicle, electricity storage device, and power system |
WO2020252389A1 (en) * | 2019-06-12 | 2020-12-17 | HHeLI, LLC | Blended active materials for battery cells |
US10650621B1 (en) | 2016-09-13 | 2020-05-12 | Iocurrents, Inc. | Interfacing with a vehicular controller area network |
US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
US12199246B2 (en) | 2017-06-15 | 2025-01-14 | A123 Systems Llc | Stacked prismatic architecture for electrochemical cell |
WO2018231605A1 (en) * | 2017-06-15 | 2018-12-20 | A123 Systems Llc | Stacked prismatic architecture for electrochemical cell |
CN107293792A (zh) * | 2017-08-21 | 2017-10-24 | 宁波诺丁汉大学 | 一种非水电解液及高镍三元正极材料电池 |
JP7069689B2 (ja) * | 2017-12-19 | 2022-05-18 | 株式会社Gsユアサ | 蓄電素子の充電制御方法、状態推定方法、寿命推定方法、蓄電システムの製造方法、及び、蓄電素子の管理装置 |
US11316199B2 (en) | 2018-01-16 | 2022-04-26 | International Business Machines Corporation | Rechargeable metal halide battery |
US11539047B2 (en) * | 2018-03-12 | 2022-12-27 | Tdk Corporation | Positive electrode and lithium ion secondary battery |
JP2019212576A (ja) * | 2018-06-08 | 2019-12-12 | 株式会社日立製作所 | 半固体電解質層及び二次電池 |
CN108808077B (zh) * | 2018-07-10 | 2021-01-12 | 北京化工大学 | 梯度钛酸钡含量的多功能凝胶聚合物电解质的制备方法 |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
CN109935885B (zh) * | 2019-01-29 | 2021-02-09 | 浙江隆劲电池科技有限公司 | 一种葡聚糖凝胶界面膜及其制备方法和在固态碱金属/碱土金属电池中的应用 |
US11165093B2 (en) | 2019-03-08 | 2021-11-02 | International Business Machines Corporation | Rechargeable metal halide battery |
CN109755641B (zh) * | 2019-03-18 | 2021-05-11 | 珠海冠宇电池股份有限公司 | 一种锂离子电池用复合材料及其制备方法及锂离子电池 |
US20220231334A1 (en) * | 2019-05-22 | 2022-07-21 | Showa Denko Materials Co., Ltd. | Battery member, method for manufacturing battery member, and secondary battery |
CN110400970B (zh) * | 2019-06-04 | 2023-09-05 | 江西力能新能源科技有限公司 | 一种电解质材料及其在高温锂电池上的应用 |
US20220216525A1 (en) * | 2019-06-12 | 2022-07-07 | HHeLI, LLC | Alkaline and Acidified Metal Oxide Blended Active Materials |
US11335908B2 (en) | 2019-07-30 | 2022-05-17 | International Business Machines Corporation | Rechargeable metal halide battery |
TWI705601B (zh) * | 2019-09-12 | 2020-09-21 | 明志科技大學 | 用於全固態鋰電池的鋰離子傳導組成物、固態聚合物電解質及全固態鋰電池 |
CN110911665B (zh) * | 2019-11-21 | 2020-12-29 | 湖北工程学院 | 一种硼、氮掺杂锂离子电池负极材料及其制备方法 |
US11652240B1 (en) * | 2019-12-03 | 2023-05-16 | GRU Energy Lab Inc. | Solid-state electrochemical cells comprising coated negative electrodes and methods of fabricating thereof |
JP7211354B2 (ja) * | 2019-12-25 | 2023-01-24 | トヨタ自動車株式会社 | 電池システムおよびリチウムイオン電池の制御方法 |
US20220069418A1 (en) * | 2020-09-03 | 2022-03-03 | Sumitomo Chemical Company, Limited | Porous layer for nonaqueous electrolyte secondary battery |
EP4270430A1 (en) | 2020-12-28 | 2023-11-01 | DKS Co. Ltd. | Electrolyte and electricity storage device |
JP7407339B2 (ja) * | 2021-09-28 | 2023-12-28 | 寧徳時代新能源科技股▲分▼有限公司 | ずれ検出方法およびずれ検出装置 |
WO2023105573A1 (ja) * | 2021-12-06 | 2023-06-15 | 日本電信電話株式会社 | リチウム二次電池、及び、リチウム二次電池の製造方法 |
CN114289926B (zh) * | 2022-03-07 | 2022-05-31 | 北京奥邦新材料有限公司 | 一种用于辊压机硬面修复的高铌药芯焊丝及其制备方法 |
WO2024090132A1 (ja) * | 2022-10-26 | 2024-05-02 | ステラケミファ株式会社 | フッ化物粒子の分散液 |
CN118610611A (zh) * | 2024-06-28 | 2024-09-06 | 海南大学 | 一种矿物质基全固态电解质及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004014373A (ja) * | 2002-06-10 | 2004-01-15 | Tdk Corp | 固体電解質電池 |
JP2004327423A (ja) * | 2003-04-25 | 2004-11-18 | Korea Electronics Telecommun | 単イオン伝導体を含むリチウム2次電池用の複合高分子電解質およびその製造方法 |
JP2004327422A (ja) * | 2003-04-25 | 2004-11-18 | Korea Electronics Telecommun | 異性モルフォロジーを有するリチウム2次電池用複合高分子電解質およびその製造方法 |
JP2010198757A (ja) | 2009-02-23 | 2010-09-09 | Sony Corp | 非水電解質組成物及び非水電解質二次電池 |
JP2011210433A (ja) * | 2010-03-29 | 2011-10-20 | Sony Corp | 非水電解質組成物および非水電解質電池 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100326704B1 (ko) * | 1999-07-08 | 2002-03-12 | 이계안 | 전기 자동차의 배터리 충전 장치 및 방법 |
JP4046921B2 (ja) * | 2000-02-24 | 2008-02-13 | 触媒化成工業株式会社 | シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材 |
US20070256731A1 (en) * | 2004-08-17 | 2007-11-08 | National University Corporation Kyushu Institute Of Technology | Gel Electrolyte Precursor for Use in a Dye-Sensitized Solar Cell and Dye-Sensitized Solar Cell |
CN101379120B (zh) * | 2006-02-01 | 2012-04-11 | 丸尾钙株式会社 | 多孔树脂膜用微孔形成剂及配合其的多孔树脂膜用组合物 |
KR101943647B1 (ko) * | 2009-02-23 | 2019-01-29 | 가부시키가이샤 무라타 세이사쿠쇼 | 비수 전해질 조성물, 비수 전해질 이차 전지 및 비수 전해질 이차 전지의 제조 방법 |
JP5391940B2 (ja) | 2009-09-04 | 2014-01-15 | コニカミノルタ株式会社 | 固体電解質、その製造方法および二次電池 |
CN103069635B (zh) * | 2010-06-08 | 2015-11-25 | 印度孟买技术研究院 | 具有改善的导电性和溶剂保留的pan-peo凝胶 |
JP5891655B2 (ja) | 2010-08-30 | 2016-03-23 | ソニー株式会社 | 非水電解質電池および非水電解質電池の製造方法、並びに絶縁材および絶縁材の製造方法、並びに電池パック、電子機器、電動車両、蓄電装置および電力システム |
JP5966247B2 (ja) * | 2011-03-01 | 2016-08-10 | ソニー株式会社 | 電池パック、蓄電システム、電子機器、電動車両、電力システムおよび制御システム |
US20140255792A1 (en) * | 2011-10-28 | 2014-09-11 | Lubrizol Advanced Materials, Inc. | Polyurethane Based Electrolyte Systems For Electrochemical Cells |
CN104040757B (zh) * | 2012-01-18 | 2016-12-14 | 索尼公司 | 隔膜、电池、电池组、电子设备、电动车辆、电力存储设备和电力系统 |
EP3573137B1 (en) * | 2013-03-19 | 2020-12-23 | Murata Manufacturing Co., Ltd. | Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system |
KR102297634B1 (ko) * | 2013-04-19 | 2021-09-02 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 이차 전지 및 그 제작 방법 |
JP2015090777A (ja) * | 2013-11-05 | 2015-05-11 | ソニー株式会社 | 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム |
-
2013
- 2013-11-05 JP JP2013229672A patent/JP2015090777A/ja active Pending
-
2014
- 2014-08-28 EP EP14859812.1A patent/EP3067980B1/en active Active
- 2014-08-28 WO PCT/JP2014/004415 patent/WO2015068324A1/ja active Application Filing
- 2014-08-28 KR KR1020167010796A patent/KR102101533B1/ko active IP Right Grant
- 2014-08-28 US US15/031,064 patent/US10263278B2/en active Active
- 2014-08-28 CN CN201480059245.XA patent/CN105684205B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004014373A (ja) * | 2002-06-10 | 2004-01-15 | Tdk Corp | 固体電解質電池 |
JP2004327423A (ja) * | 2003-04-25 | 2004-11-18 | Korea Electronics Telecommun | 単イオン伝導体を含むリチウム2次電池用の複合高分子電解質およびその製造方法 |
JP2004327422A (ja) * | 2003-04-25 | 2004-11-18 | Korea Electronics Telecommun | 異性モルフォロジーを有するリチウム2次電池用複合高分子電解質およびその製造方法 |
JP2010198757A (ja) | 2009-02-23 | 2010-09-09 | Sony Corp | 非水電解質組成物及び非水電解質二次電池 |
JP2011210433A (ja) * | 2010-03-29 | 2011-10-20 | Sony Corp | 非水電解質組成物および非水電解質電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3067980A4 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017112424A1 (en) * | 2015-12-22 | 2017-06-29 | E. I. Du Pont De Nemours And Company | Electrolyte compositions comprising metal fluoride particles |
US11296356B2 (en) | 2017-04-21 | 2022-04-05 | Showa Denko Materials Co., Ltd. | Polymer electrolyte composition including polymer having a structural unit represented by formula (1), electrolyte salt, and molten salt, and polymer secondary battery including the same |
US11462767B2 (en) | 2017-04-21 | 2022-10-04 | Showa Denko Materials Co., Ltd. | Electrochemical device electrode. method for producing electrochemical device electrode and electrochemical device |
US11777137B2 (en) | 2017-04-21 | 2023-10-03 | Lg Energy Solution, Ltd. | Member for electrochemical devices, and electrochemical device |
WO2018220800A1 (ja) * | 2017-06-01 | 2018-12-06 | 日立化成株式会社 | 電解質組成物、二次電池、及び電解質シートの製造方法 |
WO2018221670A1 (ja) * | 2017-06-01 | 2018-12-06 | 日立化成株式会社 | 電解質組成物、二次電池、及び電解質シートの製造方法 |
JPWO2018221670A1 (ja) * | 2017-06-01 | 2019-06-27 | 日立化成株式会社 | 電解質組成物、二次電池、及び電解質シートの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2015090777A (ja) | 2015-05-11 |
KR20160081904A (ko) | 2016-07-08 |
EP3067980B1 (en) | 2020-08-26 |
CN105684205A (zh) | 2016-06-15 |
EP3067980A4 (en) | 2017-06-28 |
US10263278B2 (en) | 2019-04-16 |
KR102101533B1 (ko) | 2020-04-16 |
CN105684205B (zh) | 2019-06-07 |
US20160248115A1 (en) | 2016-08-25 |
EP3067980A1 (en) | 2016-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015068324A1 (ja) | 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
JP6489023B2 (ja) | 電池、電池の製造方法、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
JP6372491B2 (ja) | 電池、セパレータ、電極、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
US9947964B2 (en) | Battery, battery pack, electronic equipment, electric vehicle, power storage device, and power system | |
JP6699171B2 (ja) | 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
WO2015097953A1 (ja) | 電池、セパレータ、電極、塗料、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
JP5790241B2 (ja) | 非水電解質電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム | |
JP6209973B2 (ja) | リチウムイオン二次電池、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
WO2016136132A1 (ja) | 電解質、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
WO2017002288A1 (ja) | 負極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
WO2018066184A1 (ja) | 電池、電動車両および蓄電システム | |
JP6540013B2 (ja) | 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
US20200058939A1 (en) | Positive electrode active substance, positive electrode, battery, battery pack, electronic device, electric vehicle, electric power storage device, and electric power system | |
JP6209974B2 (ja) | リチウムイオン二次電池、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
JP2016119213A (ja) | 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
JP2016119211A (ja) | 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14859812 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15031064 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167010796 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014859812 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014859812 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |