WO2021001970A1 - 電解質シート及び二次電池 - Google Patents

電解質シート及び二次電池 Download PDF

Info

Publication number
WO2021001970A1
WO2021001970A1 PCT/JP2019/026531 JP2019026531W WO2021001970A1 WO 2021001970 A1 WO2021001970 A1 WO 2021001970A1 JP 2019026531 W JP2019026531 W JP 2019026531W WO 2021001970 A1 WO2021001970 A1 WO 2021001970A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
positive electrode
less
negative electrode
electrolyte layer
Prior art date
Application number
PCT/JP2019/026531
Other languages
English (en)
French (fr)
Inventor
真代 堀川
拓也 西村
紘揮 三國
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to PCT/JP2019/026531 priority Critical patent/WO2021001970A1/ja
Publication of WO2021001970A1 publication Critical patent/WO2021001970A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte sheet and a secondary battery.
  • lithium secondary battery has a high energy density, and is therefore attracting attention as a power source for electric vehicle batteries, power storage batteries, and the like.
  • lithium secondary batteries as batteries for electric vehicles include zero-emission electric vehicles that do not have an engine, hybrid electric vehicles that have both an engine and a secondary battery, and plug-in hybrids that charge directly from the power system. It is used in electric vehicles such as electric vehicles.
  • a lithium secondary battery as a power storage battery is used in a stationary power storage system or the like that supplies power stored in advance in an emergency when the power system is cut off.
  • lithium secondary battery with a higher energy density is required, and its development is being made.
  • lithium secondary batteries for electric vehicles are required to have high safety in addition to high input / output characteristics and high energy density, and therefore, more advanced technology for ensuring safety is required.
  • a method for improving the safety of a lithium secondary battery a method of making an electrolytic solution flame-retardant by adding a flame retardant, a method of changing the electrolytic solution to a polymer electrolyte or a gel electrolyte, and the like are known.
  • the gel electrolyte since the gel electrolyte has ionic conductivity equivalent to that of the electrolytic solution used in the conventional lithium secondary battery, it is released without deteriorating the battery performance by the method of changing the electrolytic solution to the gel electrolyte. Burning of the electrolytic solution can be suppressed by reducing the amount of the electrolytic solution.
  • Patent Document 1 discloses a gel-like electrolyte layer containing a plasticizer containing a lithium salt, a matrix polymer in which the plasticizer is dispersed, and a fibrous insoluble matter.
  • the fibrous insoluble material contained in the gel electrolyte in an amount of 0.1% by weight or more and 50% by weight or less has a ratio of fiber length to fiber diameter of 10 or more and 3000 or less, fiber length of 10 ⁇ m or more and 1 cm or less, and fiber diameter.
  • Patent Document 2 discloses a gel electrolyte and a gel electrolyte battery.
  • the gel electrolyte layer is formed by swelling a matrix polymer with an electrolytic solution, and contains a large amount of a low-viscosity solvent having a low boiling point.
  • a gel electrolyte battery having excellent temperature characteristics, current characteristics, capacitance, and charge / discharge characteristics at a low temperature is provided.
  • the conductivity of the conventional gel electrolyte as described above is insufficient, and for example, when these are applied to a secondary battery as an electrolyte, the discharge characteristics of the secondary battery may be significantly deteriorated.
  • a main object of the present invention is to provide an electrolyte sheet capable of producing a secondary battery having excellent discharge characteristics.
  • One aspect of the present invention is an electrolyte sheet provided with an electrolyte layer, and the proportion of voids observed in the cross section of the electrolyte layer in the thickness direction is 3.5 area% or less based on the total area of the cross section. , Provide an electrolyte sheet. According to such an electrolyte sheet, it may be possible to manufacture a secondary battery having excellent discharge characteristics. The reason for exerting such an effect is not always clear, but when the proportion of voids observed in the cross section of the electrolyte layer in the thickness direction becomes low, the carriers such as lithium ions move by charging / discharging. It is expected that the turnover rate will decrease. As a result of this, it is considered that the ionic conductivity of the electrolyte sheet is improved.
  • the electrolyte layer comprises one or more types of polymer, oxide particles having a hydrophobic surface, and at least one electrolyte salt selected from the group consisting of lithium salt, sodium salt, calcium salt, and magnesium salt. It may contain an ionic liquid.
  • the viscosity of the ionic liquid at 25 ° C. may be 40 mPa ⁇ s or less.
  • the oxide particles may be oxide particles having a hydrophobic surface.
  • Another aspect of the present invention provides a secondary battery including a positive electrode, a negative electrode, and an electrolyte layer of the above-mentioned electrolyte sheet provided between the positive electrode and the negative electrode.
  • an electrolyte sheet capable of producing a secondary battery having excellent discharge characteristics. Further, according to the present invention, a secondary battery using such an electrolyte sheet is provided.
  • FIG. 1 It is a perspective view which shows the secondary battery which concerns on 1st Embodiment. It is an exploded perspective view which shows one Embodiment of the electrode group in the secondary battery shown in FIG. It is a schematic cross-sectional view which shows one Embodiment of the electrode group in the secondary battery shown in FIG. (A) is a schematic cross-sectional view showing an electrolyte sheet according to one embodiment, and (b) is a schematic cross-sectional view showing an electrolyte sheet according to another embodiment. It is a figure which shows an example of the evaluation target of the electrolyte layer of the electrolyte sheet shown in FIG. 4 (a). It is a schematic cross-sectional view which shows one Embodiment of the electrode group in the secondary battery which concerns on 2nd Embodiment.
  • the numerical values and their ranges in the present specification do not limit the present invention.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value described in another stepwise description.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • FIG. 1 is a perspective view showing a secondary battery according to the first embodiment.
  • the secondary battery 1 includes an electrode group 2 composed of a positive electrode, a negative electrode, and an electrolyte layer, and a bag-shaped battery exterior body 3 accommodating the electrode group 2.
  • the positive electrode and the negative electrode are provided with a positive electrode current collecting tab 4 and a negative electrode current collecting tab 5, respectively.
  • the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 project from the inside to the outside of the battery exterior 3 so that the positive electrode and the negative electrode can be electrically connected to the outside of the secondary battery 1, respectively.
  • the battery exterior 3 may be formed of, for example, a laminated film.
  • the laminated film may be, for example, a laminated film in which a resin film such as polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, and stainless steel, and a sealant layer such as polypropylene are laminated in this order.
  • PET polyethylene terephthalate
  • metal foil such as aluminum, copper, and stainless steel
  • a sealant layer such as polypropylene
  • FIG. 2 is an exploded perspective view showing an embodiment of the electrode group 2 in the secondary battery 1 shown in FIG.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of the electrode group 2 in the secondary battery 1 shown in FIG.
  • the electrode group 2A according to the present embodiment includes a positive electrode 6, an electrolyte layer 7, and a negative electrode 8 in this order.
  • the positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9.
  • the positive electrode current collector 9 is provided with a positive electrode current collector tab 4.
  • the negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11.
  • the negative electrode current collector 11 is provided with a negative electrode current collector tab 5.
  • the positive electrode current collector 9 may be made of aluminum, stainless steel, titanium, or the like. Specifically, the positive electrode current collector 9 may be, for example, an aluminum perforated foil having holes with a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like. In addition to the above, the positive electrode current collector 9 may be made of any material as long as it does not cause changes such as dissolution and oxidation during use of the battery, and its shape, manufacturing method, etc. Not limited.
  • the thickness of the positive electrode current collector 9 may be 10 ⁇ m or more and 100 ⁇ m or less, preferably 10 ⁇ m or more and 50 ⁇ m or less from the viewpoint of reducing the volume of the entire positive electrode, and the positive electrode is wound with a small curvature when forming a battery. From the viewpoint of turning, it is more preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • the positive electrode mixture layer 10 contains a positive electrode active material, a conductive agent, and a binder.
  • the positive electrode active material may be a lithium transition metal compound such as a lithium transition metal oxide or a lithium transition metal phosphate.
  • the lithium transition metal oxide may be, for example, lithium manganate, lithium nickel oxide, lithium cobalt oxide, or the like.
  • the lithium transition metal oxide is a part of transition metals such as Mn, Ni, and Co contained in lithium manganate, lithium nickelate, lithium cobalt, etc., and one or more other transition metals, or It may be a lithium transition metal oxide substituted with a metal element (typical element) such as Mg or Al. That is, the lithium transition metal oxide may be a compound represented by LiM 1 O 2 or LiM 1 2 O 4 (M 1 comprises at least one transition metal).
  • the lithium transition metal oxides are Li (Co 1/3 Ni 1/3 Mn 1/3 ) O 2 , LiNi 1/2 Mn 1/2 O 2 , and LiNi 1/2 Mn 3/2 O. It may be 4 mag.
  • the lithium transition metal oxide is preferably a compound represented by the following formula (1) from the viewpoint of further improving the energy density.
  • Lithium transition metal phosphates are LiFePO 4 , LiMnPO 4 , LiMn x M 3 1-x PO 4 (0.3 ⁇ x ⁇ 1, M 3 are Fe, Ni, Co, Ti, Cu, Zn, Mg and Zr. It may be at least one element selected from the group consisting of) and the like.
  • the positive electrode active material may be primary particles that have not been granulated, or may be secondary particles that have been granulated.
  • the particle size of the positive electrode active material is adjusted so as to be equal to or less than the thickness of the positive electrode mixture layer 10.
  • the coarse particles are removed in advance by sieving classification, wind flow classification, etc., and particles having a thickness equal to or less than the thickness of the positive electrode mixture layer 10 are removed.
  • a positive electrode active material having a diameter is selected.
  • the average particle size of the positive electrode active material is 0.1 ⁇ m or more, more preferably 1 ⁇ m or more. Further, it is preferably 30 ⁇ m or less, and more preferably 25 ⁇ m or less.
  • the average particle size of the positive electrode active material is the particle size (D 50 ) when the ratio (volume fraction) to the volume of the entire positive electrode active material is 50%.
  • the average particle size (D 50 ) of the positive electrode active material is measured by using a laser scattering type particle size measuring device (for example, Microtrac) to measure a suspension in which the positive electrode active material is suspended in water by a laser scattering method. You can get it.
  • the content of the positive electrode active material may be 70% by mass or more, 80% by mass or more, or 85% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the positive electrode active material may be 95% by mass or less, 92% by mass or less, or 90% by mass or less based on the total amount of the positive electrode mixture layer.
  • the conductive agent is not particularly limited, but may be a carbon material such as graphite, acetylene black, carbon black, carbon fiber, or carbon nanotube.
  • the conductive agent may be a mixture of two or more of the above-mentioned carbon materials.
  • the content of the conductive agent may be 0.1% by mass or more, 1% by mass or more, or 3% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the conductive agent is preferably 15% by mass or less, more preferably 15% by mass or less, based on the total amount of the positive electrode mixture layer, from the viewpoint of suppressing the increase in the volume of the positive electrode 6 and the accompanying decrease in the energy density of the secondary battery 1. It is 10% by mass or less, more preferably 8% by mass or less.
  • the binder is not limited as long as it does not decompose on the surface of the positive electrode 6, but is selected from the group consisting of ethylene tetrafluoride, vinylidene fluoride, hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate. It may be a polymer containing at least one of these as a monomer unit, a rubber such as styrene-butadiene rubber, isoprene rubber, or acrylic rubber.
  • the binder is preferably a copolyma containing ethylene tetrafluoroethylene and vinylidene fluoride as structural units.
  • the content of the binder may be 0.5% by mass or more, 1% by mass or more, or 3% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the binder may be 20% by mass or less, 15% by mass or less, or 10% by mass or less based on the total amount of the positive electrode mixture layer.
  • the positive electrode mixture layer 10 may further contain an ionic liquid.
  • the ionic liquid used in the electrolyte sheet described later can be used.
  • the content of the ionic liquid contained in the positive electrode mixture layer 10 is preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, based on the total amount of the positive electrode mixture layer.
  • the content of the ionic liquid contained in the positive electrode mixture layer 10 is preferably 30% by mass or less, more preferably 25% by mass or less, still more preferably 20% by mass or less, based on the total amount of the positive electrode mixture layer.
  • the electrolyte salt may be dissolved in the ionic liquid contained in the positive electrode mixture layer 10.
  • the electrolyte salt used in the electrolyte sheet described later can be used.
  • the thickness of the positive electrode mixture layer 10 is at least the average particle size of the positive electrode active material from the viewpoint of further improving the conductivity, and specifically, is 10 ⁇ m or more, 15 ⁇ m or more, or 20 ⁇ m or more. Good.
  • the thickness of the positive electrode mixture layer 10 may be 100 ⁇ m or less, 80 ⁇ m or less, or 70 ⁇ m or less.
  • the negative electrode current collector 11 may be a metal such as aluminum, copper, nickel, stainless steel, an alloy thereof, or the like. Since the negative electrode current collector 11 is lightweight and has a high weight energy density, it is preferably aluminum or an alloy thereof. The negative electrode current collector 11 is preferably copper from the viewpoint of ease of processing into a thin film and cost.
  • the thickness of the negative electrode current collector 11 may be 10 ⁇ m or more and 100 ⁇ m or less, preferably 10 ⁇ m or more and 50 ⁇ m or less from the viewpoint of reducing the volume of the entire negative electrode, and the negative electrode is wound with a small curvature when forming a battery. From the viewpoint of turning, it is more preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode mixture layer 12 contains a negative electrode active material and a binder.
  • the negative electrode active material those commonly used in the field of energy devices can be used.
  • the negative electrode active material include metallic lithium, lithium titanate (Li 4 Ti 5 O 12 ), lithium alloy or other metal compounds, carbon materials, metal complexes, organic polymer compounds and the like. ..
  • the negative electrode active material may be one of these alone or a mixture of two or more of them.
  • Examples of carbon materials include natural graphite (scaly graphite, etc.), graphite such as artificial graphite (graphite), amorphous carbon, carbon fiber, and acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. Such as carbon black and the like.
  • the negative electrode active material may be silicon, tin or a compound containing these elements (alloy with oxide, nitride, other metal) from the viewpoint of obtaining a larger theoretical capacity (for example, 500 to 1500 Ah / kg). Good.
  • the average particle size (D 50 ) of the negative electrode active material is preferably 1 ⁇ m or more from the viewpoint of obtaining a well-balanced negative electrode having an enhanced electrolyte salt retention capacity while suppressing an increase in irreversible capacity due to a decrease in particle size. It is more preferably 5 ⁇ m or more, further preferably 10 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, still more preferably 30 ⁇ m or less.
  • the average particle size (D 50 ) of the negative electrode active material is measured by the same method as the average particle size (D 50 ) of the positive electrode active material described above.
  • the content of the negative electrode active material may be 60% by mass or more, 65% by mass or more, or 70% by mass or more based on the total amount of the negative electrode mixture layer.
  • the content of the negative electrode active material may be 99% by mass or less, 95% by mass or less, or 90% by mass or less based on the total amount of the negative electrode mixture layer.
  • the binder and its content may be the same as the binder and its content in the positive electrode mixture layer 10 described above.
  • the negative electrode mixture layer 12 may further contain a conductive agent from the viewpoint of further lowering the resistance of the negative electrode 8.
  • the conductive agent and its content may be the same as the conductive agent and its content in the positive electrode mixture layer 10 described above.
  • the negative electrode mixture layer 12 may further contain an ionic liquid.
  • the ionic liquid used in the electrolyte sheet described later can be used.
  • the content of the ionic liquid contained in the negative electrode mixture layer 12 is preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, based on the total amount of the negative electrode mixture layer.
  • the content of the ionic liquid contained in the negative electrode mixture layer 12 is preferably 30% by mass or less, more preferably 25% by mass or less, still more preferably 20% by mass or less, based on the total amount of the negative electrode mixture layer.
  • the ionic liquid contained in the negative electrode mixture layer 12 may contain an electrolyte salt similar to the electrolyte salt that can be used in the positive electrode mixture layer 10 described above.
  • the thickness of the negative electrode mixture layer 12 may be 10 ⁇ m or more, 15 ⁇ m or more, or 20 ⁇ m or more.
  • the thickness of the negative electrode mixture layer 12 may be 100 ⁇ m or less, 80 ⁇ m or less, or 70 ⁇ m or less.
  • the electrolyte layer 7 is formed, for example, by preparing an electrolyte sheet using an electrolyte composition.
  • FIG. 4A is a schematic cross-sectional view showing an electrolyte sheet according to an embodiment. As shown in FIG. 4A, the electrolyte sheet 13A includes a base material 14 and an electrolyte layer 7 provided on the base material 14.
  • the electrolyte sheet 13A is produced, for example, by dispersing the material used for the electrolyte layer 7 in a dispersion medium to obtain a slurry, applying the slurry on the base material 14, and then volatilizing the dispersion medium.
  • the dispersion medium is preferably water, N-methyl-2-pyrrolidone (NMP) (hereinafter, also referred to as “NMP”), toluene or the like.
  • the base material 14 is not limited as long as it has heat resistance that can withstand heating when the dispersion medium is volatilized, does not react with the electrolyte composition, and does not swell due to the electrolyte composition, but is not limited, for example, with a resin. It is formed.
  • the base material 14 may be a film made of a resin (general-purpose engineering plastic) such as polyethylene terephthalate, polytetrafluoroethylene, polyimide, polyethersulfone, and polyetherketone.
  • the base material 14 may have a heat resistant temperature that can withstand the treatment temperature at which the dispersion medium is volatilized in the process of producing the electrolyte layer.
  • the heat-resistant temperature is the lower of the softening point (the temperature at which plastic deformation begins) or the melting point of the base material 14 when the base material 14 is made of resin.
  • the heat resistant temperature of the base material 14 is preferably 50 ° C. or higher, more preferably 100 ° C. or higher, still more preferably 150 ° C. or higher, from the viewpoint of adaptability to the ionic liquid used for the electrolyte layer 7. Further, for example, the temperature may be 400 ° C. or lower. If a base material having the above heat resistant temperature is used, the above-mentioned dispersion medium (NMP, toluene, etc.) can be preferably used.
  • the thickness of the base material 14 is preferably as thin as possible while maintaining the strength that can withstand the tensile force of the coating device.
  • the thickness of the base material 14 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of ensuring the strength when the electrolyte composition is applied to the base material 14 while reducing the volume of the entire electrolyte sheet 13A. It is more preferably 25 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 40 ⁇ m or less.
  • the electrolyte sheet can be continuously manufactured while being wound into a roll.
  • the surface of the electrolyte layer 7 may come into contact with the back surface of the base material 14 and a part of the electrolyte layer 7 may adhere to the base material 14, thereby damaging the electrolyte layer 7.
  • the electrolyte sheet may be provided with a protective material on the opposite side of the electrolyte layer 7 from the base material 14.
  • FIG. 4B is a schematic cross-sectional view showing an electrolyte sheet according to another embodiment. As shown in FIG. 4B, the electrolyte sheet 13B further includes a protective material 15 on the side opposite to the base material 14 of the electrolyte layer 7.
  • the protective material 15 may be any material that can be easily peeled off from the electrolyte layer 7, and is preferably a non-polar resin film such as polyethylene, polypropylene, or polytetrafluoroethylene. When a non-polar resin film is used, the electrolyte layer 7 and the protective material 15 do not stick to each other, and the protective material 15 can be easily peeled off.
  • a non-polar resin film such as polyethylene, polypropylene, or polytetrafluoroethylene.
  • the thickness of the protective material 15 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m, and preferably 100 ⁇ m or less, from the viewpoint of ensuring the strength while reducing the volume of the entire electrolyte sheet 13B. It is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the heat-resistant temperature of the protective material 15 is preferably ⁇ 30 ° C. or higher, more preferably 0 ° C. or higher, and more preferably 0 ° C. or higher, from the viewpoint of suppressing deterioration in a low temperature environment and suppressing softening in a high temperature environment. It is preferably 100 ° C. or lower, and more preferably 50 ° C. or lower.
  • the protective material 15 it is not necessary to raise the heat resistant temperature because the above-mentioned volatilization step of the dispersion medium is not essential.
  • the proportion of voids observed in the cross section of the electrolyte layer 7 in the thickness direction is 3.5 area% or less based on the total area of the cross section.
  • the ratio of voids is 3.5 area% or less based on the total area of the cross section, it is expected that the curvature ratio will decrease when carriers such as lithium ions move by charging and discharging. ..
  • the ionic conductivity of the electrolyte sheet will be improved and the discharge characteristics of the obtained secondary battery will be excellent.
  • the ratio of voids is 3.2 area% or less, 3 area% or less, 2.9 area% or less, 2.7 area% or less, 2.5 area% or less, 2.3 area, based on the total area of the cross section. % Or less, 2 area% or less, 1.8 area% or less, 1.5 area% or less, 1.2 area% or less, 1 area% or less, 0.7 area% or less, 0.5 area% or less, 0. It may be 3 area% or less, 0.2 area% or less, or 0.1 area% or less.
  • the ratio of voids can be adjusted, for example, by changing the type of material constituting the electrolyte layer 7.
  • the ratio of voids observed in the cross section of the electrolyte layer 7 in the thickness direction with respect to the total area of the cross section can be obtained by the following method.
  • the electrolyte sheet 13A is prepared and cut at an arbitrary position in the thickness direction of the electrolyte layer 7.
  • the laminate is preferably cut at a low temperature (preferably ⁇ 50 ° C. or lower, more preferably ⁇ 100 ° C. or lower, still more preferably ⁇ 120 ° C. or lower).
  • the electrolyte layer 7 is preferably cut using a cross-section sample preparation device (product name: IB-19520CCP, manufactured by JEOL Ltd.) or the like.
  • a cross-section sample preparation device product name: IB-19520CCP, manufactured by JEOL Ltd.
  • an SEM image is taken of the cut surface of the electrolyte layer 7 using, for example, a field emission scanning electron microscope (FE-SEM) or the like.
  • FE-SEM field emission scanning electron microscope
  • the void portion of the electrolyte layer 7 and the other portion can be binarized, and the ratio of voids based on the entire cross-sectional area of the electrolyte layer 7 can be calculated from each area. it can. If the size of the electrolyte layer 7 is large, the measurement target is wide and binarization may be difficult.
  • the ratio of voids obtained by the following method may be regarded as the ratio of voids based on the entire cross-sectional area of the electrolyte layer 7.
  • the width direction 40 ⁇ m ⁇ thickness direction of the central portion of the cross section of the electrolyte layer 7 (the region including the intersection of the center line with respect to the width of the electrolyte layer 7 and the center line with respect to the thickness of the electrolyte layer 7).
  • a viewing range of 30 ⁇ m is extracted as an evaluation target.
  • the ratio of voids in the cross-sectional area of the electrolyte layer 7 in the visual field range is substantially the same as the ratio of voids based on the entire cross-sectional area of the electrolyte layer 7.
  • FIG. 5 is a schematic cross-sectional view showing an example of an evaluation target of the electrolyte layer 7 of the electrolyte sheet 13A shown in FIG. 4A.
  • the visual field range to be evaluated may be, for example, part a.
  • the void portion and the other portion of the electrolyte layer 7 in the evaluation target are binarized, and the evaluation target (width direction 40 ⁇ m ⁇ thickness direction) is obtained from each area.
  • the ratio of the void portion based on the entire (viewing range of 30 ⁇ m) can be calculated, and this can be regarded as the ratio of the void portion based on the entire cross-sectional area of the electrolyte layer 7.
  • the electrolyte layer 7 is made of an electrolyte composition.
  • the electrolyte layer 7 (electrolyte composition) comprises one or more types of polyma, oxide particles, and at least one electrolyte salt selected from the group consisting of lithium salt, sodium salt, calcium salt and magnesium salt. It may contain an ionic liquid.
  • the polymer preferably has a first structural unit selected from the group consisting of ethylene tetrafluoroethylene and vinylidene fluoride.
  • the structural unit constituting the polymer includes the above-mentioned first structural unit and a second structural unit selected from the group consisting of hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate. May be. That is, the first structural unit and the second structural unit may be contained in one kind of polymer to form a copolymer, and each of them is contained in another polymer and has a first structural unit. And a second polymer having a second structural unit may constitute at least two kinds of polymers.
  • the polymer may be polytetrafluoroethylene, polyvinylidene fluoride, or a copolymer of vinylidene fluoride and hexafluoropropylene.
  • the polymer content is preferably 3% by mass or more based on the total amount of the electrolyte layer.
  • the content of the polymer is preferably 50% by mass or less, more preferably 40% by mass or less, based on the total amount of the electrolyte layer.
  • the content of the polymer is preferably 3 to 50% by mass, or 3 to 40% by mass, based on the total amount of the electrolyte layer.
  • the polymer according to the present embodiment Since the polymer according to the present embodiment has an excellent affinity with the ionic liquid contained in the electrolyte composition, it retains the electrolyte in the ionic liquid. As a result, leakage of the ionic liquid when a load is applied to the electrolyte composition is suppressed.
  • Oxide particles are, for example, inorganic oxide particles.
  • the inorganic oxide is, for example, an inorganic oxide containing Li, Mg, Al, Si, Ca, Ti, Zr, La, Na, K, Ba, Sr, V, Nb, B, Ge and the like as constituent elements. Good.
  • the oxide particles are preferably at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTIO 3 . It is a particle. Since the oxide particles have polarity, the dissociation of the electrolyte in the electrolyte layer 7 can be promoted and the battery characteristics can be enhanced.
  • the oxide particles may be oxide particles having a hydrophobic surface because the proportion of voids observed in the cross section of the electrolyte layer 7 in the thickness direction can be further reduced.
  • Oxide particles usually have a hydroxyl group on their surface and tend to be hydrophilic.
  • Oxide particles having a hydrophobic surface have a reduced number of hydroxyl groups on the surface as compared with oxide particles having no hydrophobic surface, and the ability to retain an ionic liquid is reduced. As a result, it is expected that the excess ionic liquid that has not been retained fills the voids in the electrolyte layer 7. It is believed that this reduces the proportion of voids and, as a result, further improves the ionic conductivity.
  • Oxide particles having a hydrophobic surface can be obtained, for example, by treating the oxide particles exhibiting hydrophilicity with a surface treatment agent capable of imparting a hydrophobic surface. That is, the oxide particles having a hydrophobic surface may be oxide particles surface-treated with a surface treatment agent capable of imparting a hydrophobic surface. Examples of the surface treatment agent include silicon-containing compounds and the like.
  • the oxide particles having a hydrophobic surface may be oxide particles surface-treated with a silicon-containing compound. That is, the oxide particles having a hydrophobic surface may be those in which the surface of the oxide particles and the silicon atom of the silicon-containing compound are bonded via an oxygen atom.
  • the silicon-containing compound as the surface treatment agent is preferably at least one selected from the group consisting of alkoxysilane, epoxy group-containing silane, amino group-containing silane, (meth) acryloyl group-containing silane, silazane, and siloxane.
  • the alkoxysilanes are methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, and dimethyldiphenyl. It may be ethoxysilane, n-propyltriethoxysilane, or the like.
  • the epoxy group-containing silanes are 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropylmethyldiethoxy. It may be silane, 3-glycidoxypropyltriethoxysilane, or the like.
  • Amino group-containing silanes are N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- It may be phenyl-3-aminopropyltrimethoxysilane or the like.
  • the (meth) acryloyl group-containing silanes are 3-methacryloyloxypropylmethyldimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropylmethyldiethoxysilane, 3-methacryloyloxypropyltriethoxysilane, and 3-acryloyloxy. It may be propyltrimethoxysilane or the like.
  • a (meth) acryloyl group means an acryloyl group or a methacryloyl group corresponding thereto.
  • Cilazan may be hexamethyldisilazan or the like.
  • the siloxane may be dimethyl silicone oil such as dimethyl siloxane.
  • Those having a reactive functional group (for example, a carboxyl group) at one end or both ends thereof may be used.
  • oxide particles having a hydrophobic surface those produced by a known method may be used, or commercially available products may be used as they are.
  • Oxide particles are generally a primary particle (a particle that does not constitute a secondary particle) that integrally forms a single particle and a plurality of primary particles, judging from the apparent geometrical morphology. May include secondary particles formed by the aggregation of.
  • the specific surface area of the oxide particles may be, for example, 2 to 380 m 2 / g.
  • the specific surface area is 2 to 380 m 2 / g, the obtained secondary battery tends to have excellent discharge characteristics.
  • the specific surface area of the oxide particles may be 5 m 2 / g or more, 10 m 2 / g or more, 15 m 2 / g or more, 20 m 2 / g or more, or 30 m 2 / g or more.
  • the specific surface areas of the oxide particles are 350 m 2 / g or less, 300 m 2 / g or less, 250 m 2 / g or less, 200 m 2 / /. It may be g or less, 180 m 2 / g or less, 150 m 2 / g or less, 130 m 2 / g or less, 100 m 2 / g or less, 80 m 2 / g or less, or 60 m 2 / g or less.
  • the specific surface area of the oxide particles means the specific surface area of the entire oxide particles including the primary particles and the secondary particles, and is measured by the BET method.
  • the average primary particle size of the oxide particles is preferably 0.005 ⁇ m (5 nm) or more, more preferably 0.01 ⁇ m (10 nm) or more, from the viewpoint of further improving the conductivity. Yes, more preferably 0.015 ⁇ m (15 nm) or more.
  • the average primary particle size of the oxide particles is preferably 1 ⁇ m or less, more preferably 0.1 ⁇ m or less, and further preferably 0.05 ⁇ m or less from the viewpoint of thinning the electrolyte layer 7.
  • the average primary particle size of the oxide particles is preferably 0.005 to 1 ⁇ m and 0.01 to 0 from the viewpoint of thinning the electrolyte composition and suppressing the protrusion of the oxide particles from the surface of the electrolyte composition. .1 ⁇ m, or 0.015 to 0.05 ⁇ m.
  • the average primary particle size of the oxide particles can be measured by observing the oxide particles with a transmission electron microscope or the like.
  • the average particle size of the oxide particles is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, and further preferably 0.03 ⁇ m or more.
  • the average particle size of the oxide particles is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and further preferably 1 ⁇ m or less.
  • the average particle size of the oxide particles is measured by a laser diffraction method, and corresponds to a particle size in which the volume accumulation is 50% when the volume cumulative particle size distribution curve is drawn from the small particle size side.
  • the shape of the oxide particles may be, for example, lumpy or substantially spherical.
  • the aspect ratio of the oxide particles is preferably 10 or less, more preferably 5 or less, still more preferably 2 or less, from the viewpoint of facilitating the thinning of the electrolyte layer 7.
  • the aspect ratio is the length in the major axis direction of the particles (maximum length of the particles) and the length in the minor axis direction of the particles (minimum length of the particles) calculated from the scanning electron micrograph of the oxide particles. Defined as a ratio of.
  • the length of the particles is obtained by statistically calculating the photograph using commercially available image processing software (for example, image analysis software manufactured by Asahi Kasei Engineering Co., Ltd., A-kun (registered trademark)).
  • the content of the oxide particles is preferably 5% by mass or more, more preferably 10% by mass or more, further preferably 15% by mass or more, and particularly preferably 20% by mass or more, based on the total amount of the electrolyte layer. It is preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less.
  • the electrolyte salt is at least one selected from the group consisting of lithium salt, sodium salt, calcium salt and magnesium salt.
  • the electrolyte salt is a compound used to transfer cations between the positive electrode 6 and the negative electrode 8.
  • the above-mentioned electrolyte salt has a low degree of dissociation at a low temperature, easily diffuses in an ionic liquid, and does not thermally decompose at a high temperature, so that the environmental temperature in which the secondary battery can be used is wide, which is preferable.
  • the electrolyte salt may be an electrolyte salt used in a fluorine ion battery.
  • Anionic component of the electrolyte salt preferably, N (SO 2 F) 2 -, N (SO 2 CF 3) 2 - anions represented by such the formulas as illustrated by the anion component of the ionic liquid below the (A) component, PF 6 -, BF 4 - , B (O 2 C 2 O 2) 2 -, or ClO 4 - is.
  • Lithium salts include LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f3C], Li [BOB], Li [DFOB], LiClO 4 , LiBF 3 (CF 3 ), LiBF 3 (C 2 ). F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , CF 3 SO 2 OLi, CF 3 COOLi, and R'COOLi (R'are It may be at least one selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a naphthyl group).
  • Sodium salts include NaPF 6 , NaBF 4 , Na [FSI], Na [TFSI], Na [f3C], Na [BOB], Na [DFOB], NaClO 4 , NaBF 3 (CF 3 ), NaBF 3 (C 2 ).
  • F 5 ), NaBF 3 (C 3 F 7 ), NaBF 3 (C 4 F 9 ), NaC (SO 2 CF 3 ) 3 , CF 3 SO 2 ONa, CF 3 COONa, and R'COONa R'are It may be at least one selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a naphthyl group).
  • Calcium salts are Ca (PF 6 ) 2 , Ca (BF 4 ) 2 , Ca [FSI] 2 , Ca [TFSI] 2 , Ca [f3C] 2 , Ca [BOB] 2 , Ca [DFOB] 2 , Ca ( ClO 4 ) 2 , Ca [BF 3 (CF 3 )] 2 , Ca [BF 3 (C 2 F 5 )] 2 , Ca [BF 3 (C 3 F 7 )] 2 , Ca [BF 3 (C 4 F) 9 )] 2 , Ca [C (SO 2 CF 3 ) 3 ] 2 , (CF 3 SO 2 O) 2 Ca, (CF 3 COO) 2 Ca, and (R'COO) 2 Ca (R'is carbon It may be at least one selected from the group consisting of an alkyl group, a phenyl group, or a naphthyl group having the number 1 to 4).
  • Magnesium salts include Mg (PF 6 ) 2 , Mg (BF 4 ) 2 , Mg [FSI] 2 , Mg [TFSI] 2 , Mg [f3C] 2 , Mg [BOB] 2 , Mg [DFOB] 2 , Na ( ClO 4 ) 2 , Mg [BF 3 (CF 3 )] 2 , Mg [BF 3 (C 2 F 5 )] 2 , Mg [BF 3 (C 3 F 7 )] 2 , Mg [BF 3 (C 4 F)] 9 )] 2 , Mg [C (SO 2 CF 3 ) 3 ] 2 , (CF 3 SO 3 ) 2 Mg, (CF 3 COO) 2 Mg, and (R'COO) 2 Mg (R'is the number of carbon atoms It may be at least one selected from the group consisting of 1 to 4 alkyl groups, phenyl groups, or naphthyl groups).
  • the electrolyte salt is preferably one selected from the group consisting of an imide-based lithium salt, an imide-based sodium salt, an imide-based calcium salt, and an imide-based magnesium salt, and more preferably an imide-based lithium salt.
  • the imide-based lithium salt may be Li [TFSI], Li [FSI] or the like.
  • the imide sodium salt may be Na [TFSI], Na [FSI] or the like.
  • the imide-based calcium salt may be Ca [TFSI] 2 , Ca [FSI] 2, or the like.
  • the imide-based magnesium salt may be Mg [TFSI] 2 , Mg [FSI] 2, or the like.
  • the ionic liquid contains the following anionic and cationic components.
  • the ionic liquid in this embodiment is a substance that is liquid at ⁇ 20 ° C. or higher.
  • Anion component of the ionic liquid is not particularly limited, Cl -, Br -, I - and a halogen anion, BF 4 -, [FSI] - inorganic anions such as, B (C 6 H 5) 4 -, CH It may be an organic anion such as 3 SO 2 O ⁇ , CF 3 SO 2 O ⁇ , N (SO 2 C 4 F 9 ) 2 ⁇ , [TFSI] ⁇ , N (SO 2 C 2 F 5 ) 2 ⁇ . ..
  • the anionic component of the ionic liquid preferably contains at least one of the anionic components represented by the following general formula (A). N (SO 2 C m F 2 m + 1 ) (SO 2 C n F 2n + 1 ) - (A)
  • M and n each independently represent an integer of 0 to 5.
  • m and n may be the same or different from each other, and are preferably the same as each other.
  • Anion component of the ionic liquid together with further improve the ionic conductivity at a relatively low viscosity, from the viewpoint of even further improve charge-discharge characteristics, more preferably, N (SO 2 C 4 F 9) 2 -, CF 3 SO It contains at least one selected from the group consisting of 2 O ⁇ , [FSI] ⁇ , [TFSI] ⁇ , and N (SO 2 C 2 F 5 ) 2 ⁇ , and more preferably [FSI] ⁇ .
  • the cation component of the ionic liquid is not particularly limited, but is preferably at least one selected from the group consisting of a chain quaternary onium cation, a piperidinium cation, a pyroridinium cation, a pyridinium cation, and an imidazolium cation.
  • the chain quaternary onium cation is, for example, a compound represented by the following general formula (2).
  • R 1 to R 4 are independently chain alkyl groups having 1 to 20 carbon atoms or chain alkoxyalkyl groups represented by RO- (CH 2 ) n-.
  • R represents a methyl group or an ethyl group
  • n represents an integer of 1 to 4
  • X represents a nitrogen atom or a phosphorus atom.
  • the number of carbon atoms of the alkyl group represented by R 1 to R 4 is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5.
  • the piperidinium cation is, for example, a nitrogen-containing six-membered cyclic compound represented by the following general formula (3).
  • R 5 and R 6 are each independently an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group represented by ROO- (CH 2 ) n- (R is methyl). Represents a group or an ethyl group, where n represents an integer of 1 to 4).
  • the alkyl group represented by R 5 and R 6 has preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5.
  • the pyrrolidinium cation is, for example, a five-membered cyclic compound represented by the following general formula (4).
  • R 7 and R 8 are each independently an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group represented by RO-O- (CH 2 ) n- (R is methyl). Represents a group or an ethyl group, where n represents an integer of 1 to 4).
  • the alkyl group represented by R 7 and R 8 has preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5.
  • the pyridinium cation is, for example, a compound represented by the general formula (5).
  • R 9 to R 13 are independently alkyl groups having 1 to 20 carbon atoms and alkoxyalkyl groups represented by ROO- (CH 2 ) n- (R is a methyl group). Alternatively, it represents an ethyl group, where n represents an integer of 1 to 4), or a hydrogen atom.
  • the number of carbon atoms of the alkyl group represented by R 9 to R 13 is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5.
  • the imidazolium cation is, for example, a compound represented by the general formula (6).
  • R 14 to R 18 are independently alkyl groups having 1 to 20 carbon atoms and alkoxyalkyl groups represented by RO-O- (CH 2 ) n- (R is a methyl group). Alternatively, it represents an ethyl group, where n represents an integer of 1 to 4), or a hydrogen atom.
  • the number of carbon atoms of the alkyl group represented by R 14 to R 18 is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5.
  • the viscosity of the ionic liquid at 25 ° C. may be 40 mPa ⁇ s or less because the proportion of voids observed in the cross section of the electrolyte layer 7 in the thickness direction can be further reduced.
  • the viscosity of the ionic liquid at 25 ° C. may be 30 mPa ⁇ s or less, 25 mPa ⁇ s or less, or 20 mPa ⁇ s or less.
  • the lower limit of the viscosity of the ionic liquid at 25 ° C. is not particularly limited, but may be, for example, 0.1 mPa ⁇ s or more or 1 mPa ⁇ s or more.
  • the content of the ionic liquid may be 10% by mass or more and 80% by mass or less based on the total amount of the electrolyte composition from the viewpoint of suitably producing the electrolyte layer.
  • the content of the ionic liquid is preferably 20% by mass or more, more preferably 30% by mass, based on the total amount of the electrolyte composition, from the viewpoint of enabling the lithium secondary battery to be charged and discharged at a high load factor. That is all.
  • the concentration of the electrolyte salt per unit volume of the ionic liquid in the electrolyte layer 7 is preferably 0.5 mol / L or more, more preferably 0.7 mol / L or more, still more preferably 1 from the viewpoint of further improving the charge / discharge characteristics. It is 0.0 mol / L or more, preferably 2.0 mol / L or less, more preferably 1.8 mol / L or less, and further preferably 1.6 mol / L or less.
  • the thickness of the electrolyte layer 7 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of increasing the conductivity and the strength.
  • the thickness of the electrolyte layer 7 is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less, from the viewpoint of suppressing the resistance of the electrolyte layer 7.
  • the method for manufacturing the secondary battery 1 includes a first step of forming a positive electrode mixture layer 10 on the positive electrode current collector 9 to obtain a positive electrode 6, and a negative electrode mixture on the negative electrode current collector 11. It includes a second step of forming the layer 12 to obtain the negative electrode 8 and a third step of providing the electrolyte layer 7 between the positive electrode 6 and the negative electrode 8.
  • the material used for the positive electrode mixture layer is dispersed in a dispersion medium using a kneader, a disperser, or the like to obtain a slurry-like positive electrode mixture, and then the positive electrode mixture is obtained.
  • the positive electrode current collector 9 Is applied onto the positive electrode current collector 9 by a doctor blade method, a dipping method, a spray method, or the like, and then the dispersion medium is volatilized.
  • a compression molding step by a roll press may be provided, if necessary.
  • the positive electrode mixture layer 10 may be formed as a multilayer structure positive electrode mixture layer by performing the above-mentioned steps from application of the positive electrode mixture to volatilization of the dispersion medium a plurality of times.
  • the dispersion medium used in the first step may be water, NMP, or the like.
  • the dispersion medium is a compound other than the above-mentioned ionic liquid.
  • the method of forming the negative electrode mixture layer 12 on the negative electrode current collector 11 may be the same method as in the first step described above.
  • the electrolyte layer 7 can be produced by using the above-mentioned electrolyte sheet 13A in one embodiment.
  • the base material 14 is peeled from the electrolyte sheet 13A, and the positive electrode 6, the electrolyte layer 7 and the negative electrode 8 are laminated, for example.
  • the secondary battery 1 is obtained by laminating.
  • the electrolyte layer 7 is located on the positive electrode mixture layer 10 side of the positive electrode 6 and on the negative electrode mixture layer 12 side of the negative electrode 8, that is, the positive electrode current collector 9, the positive electrode mixture layer 10, and the electrolyte layer 7. ,
  • the negative electrode mixture layer 12 and the negative electrode current collector 11 are laminated in this order.
  • the electrolyte layer 7 is kneaded with the material used for the electrolyte layer 7 in another embodiment, and the obtained kneaded product is sandwiched between resin sheets such as polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • An electrolyte sheet can be prepared by pressing with a roll press machine or the like, and can be prepared by using the electrolyte sheet.
  • FIG. 6 is a schematic cross-sectional view showing one embodiment of the electrode group in the secondary battery according to the second embodiment.
  • the difference between the secondary battery in the second embodiment and the secondary battery in the first embodiment is that the electrode group 2B includes the bipolar electrode 16. That is, the electrode group 2B includes a positive electrode 6, a first electrolyte layer 7, a bipolar electrode 16, a second electrolyte layer 7, and a negative electrode 8 in this order.
  • the bipolar electrode 16 includes a bipolar electrode current collector 17, a positive electrode mixture layer 10 provided on a surface (positive electrode surface) of the bipolar electrode current collector 17 on the negative electrode 8 side, and a positive electrode 6 side of the bipolar electrode current collector 17.
  • the negative electrode mixture layer 12 is provided on the surface (negative electrode surface).
  • the positive electrode surface may be preferably formed of a material having excellent oxidation resistance, and may be formed of aluminum, stainless steel, titanium, or the like.
  • the negative electrode surface of the bipolar electrode current collector 17 using graphite or an alloy as the negative electrode active material may be formed of a material that does not form an alloy with lithium, and specifically, stainless steel, nickel, iron, titanium, or the like. It may be formed.
  • the bipolar electrode current collector 17 may be a clad material in which dissimilar metal foils are laminated.
  • the bipolar electrode current collector 17 may be a single metal leaf.
  • the bipolar electrode current collector 17 as a single metal foil may be an aluminum perforated foil having holes with a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like.
  • the bipolar electrode current collector 17 may be made of any material as long as it does not cause changes such as dissolution and oxidation during use of the battery, and its shape, manufacturing method, etc. Is not restricted.
  • the thickness of the bipolar electrode current collector 17 may be 10 ⁇ m or more and 100 ⁇ m or less, preferably 10 ⁇ m or more and 50 ⁇ m or less from the viewpoint of reducing the volume of the entire positive electrode, and the bipolar electrode has a small curvature when forming a battery. It is more preferably 10 ⁇ m or more and 20 ⁇ m or less from the viewpoint of winding.
  • the method for manufacturing the secondary battery according to the present embodiment includes a first step of forming a positive electrode mixture layer 10 on the positive electrode current collector 9 to obtain a positive electrode 6, and a negative electrode mixture layer on the negative electrode current collector 11.
  • the positive electrode mixture layer 10 is formed on one surface of the bipolar electrode current collector 17, and the negative electrode mixture layer 12 is formed on the other surface to form the bipolar electrode.
  • It has a third step of obtaining 16 and a fourth step of providing an electrolyte layer 7 between the positive electrode 6 and the bipolar electrode 16 and between the negative electrode 8 and the bipolar electrode 16.
  • the first step and the second step may be the same method as the first step and the second step in the first embodiment.
  • the method of forming the positive electrode mixture layer 10 on one surface of the bipolar electrode current collector 17 may be the same method as the first step in the first embodiment.
  • the method of forming the negative electrode mixture layer 12 on the other surface of the bipolar electrode current collector 17 may be the same as the method of the second step in the first embodiment.
  • the electrolyte layer 7 is formed in one embodiment, for example, by producing an electrolyte sheet having an electrolyte composition on a substrate.
  • the electrolyte layer 7 between the positive electrode 6 and the bipolar electrode 16 using the electrolyte sheet the secondary battery according to the second embodiment can be obtained.
  • the obtained slurry was applied onto a base material made of polyethylene terephthalate (product name: Lumirror S, manufactured by Toray Industries, Inc., thickness 38 ⁇ m) using an applicator.
  • the applied slurry was heated and dried at 80 ° C. for 1 hour to volatilize the dispersion medium to obtain an electrolyte sheet of Example 1 having an electrolyte layer having a thickness of 20 ⁇ m on the substrate.
  • An SEM image was taken of the cut surface of the evaluation sample using a field emission scanning electron microscope (FE-SEM) (product name: JSM-7800F, manufactured by JEOL Ltd.).
  • the imaging conditions for the SEM image were an acceleration voltage of 1.0 kV, a magnification of 3000 times, and a visual field range of about 40 ⁇ m ⁇ 30 ⁇ m.
  • the photographed SEM image was image-processed using ImageJ by cutting out only the cross-sectional portion of the electrolyte layer from the SEM image using Paint 3D.
  • Example 2 SiO 2 particles as the oxide particles having a SiO 2 particles (hydrophobic surface as oxide particles, product name: AEROSIL RX50, manufactured by Nippon Aerosil Co., Ltd., specific surface area: 35m 2 / g, average primary particle diameter: about 40nm Ltd. ) was used, and the electrolyte sheet of Example 2 provided with an electrolyte layer having a thickness of 20 ⁇ m on the substrate was prepared in the same manner as in Example 1. In the electrolyte sheet of Example 2, the proportion of voids observed in the cross section of the electrolyte layer in the thickness direction was 0.05 area% based on the total area of the cross section.
  • An electrolyte salt solution was prepared by preparing Li [FSI] and [EMI] [FSI] and mixing them so as to have a concentration of 1.5 mol / L.
  • An additive was obtained by adding 0.5% by mass of Li [DFOB] to the total amount of the prepared electrolyte salt solution.
  • This positive electrode mixture slurry is applied onto a positive electrode current collector (aluminum foil with a thickness of 20 ⁇ m) at a coating rate of 125 g / m 2 , heated at 80 ° C. for 12 hours, dried, and pressed to form a mixture.
  • a positive electrode mixture intermediate layer having a density of 2.7 g / cm 3 was formed. This was cut into a width of 30 mm and a length of 45 mm, and then a positive electrode current collector tab was attached. Then, the above-mentioned additive was added to the formed positive electrode mixture intermediate layer to prepare a positive electrode. The additive was added in an amount of 15% by mass based on the total amount of the positive electrode active material.
  • a negative electrode mixture slurry was prepared by dispersing 5 parts by mass of a copolyma (polymer, PVDF-HFP) solution (solid content 12% by mass) of fluoropropylene in an appropriate amount of NMP as a dispersion medium.
  • This negative electrode mixture slurry is applied onto a current collector (copper foil with a thickness of 10 ⁇ m) at a coating rate of 60 g / m 2 , heated at 80 ° C. for 12 hours, dried, and pressed to obtain a mixture density.
  • a negative electrode mixture intermediate layer of 1.8 g / cm 3 was formed. After cutting this into a width of 31 mm and a length of 46 mm, a negative electrode current collecting tab was attached. Then, the above-mentioned additive was added to the formed negative electrode mixture intermediate layer to prepare a negative electrode. The additive was added in an amount of 20% by mass based on the total amount of the negative electrode active material.
  • Example 1 ⁇ Preparation of electrolyte layer>
  • the electrolyte sheets of Example 1, Example 2, and Comparative Example 1 were cut into a width of 40 mm and a length of 55 mm and used as an electrolyte layer.
  • An electrolyte layer was laminated on the prepared negative electrode.
  • an electrode group was prepared by arranging a positive electrode on the electrolyte layer. As shown in FIG. 1, this group of electrodes was housed inside a battery exterior made of a laminated film made of aluminum. The opening of the battery container is sealed by taking out the positive electrode current collecting tab and the negative electrode current collecting tab inside the battery exterior to obtain the secondary batteries of Example 1, Example 2, and Comparative Example 1. It was.
  • the aluminum laminate film is a laminate of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene or the like).
  • the capacity retention rate was superior to that of the secondary battery using the electrolyte sheet of Comparative Example 1 having more than 5 area%. From this result, it was confirmed that the electrolyte sheet of the present invention can produce a secondary battery having excellent discharge characteristics.

Abstract

電解質層を備える電解質シートであって、電解質層の厚さ方向の断面において観察される空隙の割合が、断面の全面積を基準として、3.5面積%以下である、電解質シートが開示される。また、このような電解質シートを用いた二次電池が開示される。

Description

電解質シート及び二次電池
 本発明は、電解質シート及び二次電池に関する。
 近年、携帯型電子機器、電気自動車等の普及により、高性能な二次電池が必要とされている。中でもリチウム二次電池は、高いエネルギー密度を有するため、電気自動車用電池、電力貯蔵用電池等の電源として注目されている。具体的には、電気自動車用電池としてのリチウム二次電池は、エンジンを搭載しないゼロエミッション電気自動車、エンジン及び二次電池の両方を搭載したハイブリッド電気自動車、電力系統から直接充電させるプラグイン・ハイブリッド電気自動車等の電気自動車に採用されている。また、電力貯蔵用電池としてのリチウム二次電池は、電力系統が遮断された非常時に、予め貯蔵しておいた電力を供給する定置式電力貯蔵システム等に用いられている。
 このような広範な用途に使用するために、より高いエネルギー密度のリチウム二次電池が求められており、その開発がなされている。特に、電気自動車用のリチウム二次電池には、高い入出力特性及び高いエネルギー密度に加えて、高い安全性が要求されるため、安全性を確保するためのより高度な技術が求められる。
 従来、リチウム二次電池の安全性を向上させる方法として、難燃剤の添加により電解液を難燃化する方法、電解液をポリマ電解質又はゲル電解質へ変更する方法等が知られている。特に、ゲル電解質は、従来のリチウム二次電池に使用されている電解液と同等のイオン導電率を有するため、電解液をゲル電解質へ変更する方法により、電池性能を悪化させずに、遊離する電解液量を減少させることで電解液の燃焼を抑制し得る。
 特許文献1は、リチウム塩を含有する可塑剤と、可塑剤を分散するマトリクス高分子と、繊維状不溶物とを含有したゲル状電解質層を開示している。ゲル状電解質中に0.1重量%以上50重量%以下含有されている繊維状不溶物は、繊維長と繊維径との比を10以上3000以下、繊維長を10μm以上1cm以下、繊維径を0.05μm以上50μm以下とすることにより、電池のサイクル特性及び高温保存特性を向上させている。
 特許文献2は、ゲル電解質及びゲル電解質電池を開示している。ゲル電解質層は、マトリクス高分子を電解液により膨潤させて形成され、低沸点の低粘度溶媒を多く含有する。低沸点の低粘度溶媒を多く含有したゲル電解質を用いることにより、温度特性、電流特性、容量、及び低温での充放電特性に優れたゲル電解質電池が提供される。
特開2000-164254号公報 特開2007-141467号公報
 しかしながら、上述したような従来のゲル電解質の導電率は不充分であり、例えば、これらを電解質として二次電池に適用した場合、二次電池の放電特性が著しく低下するおそれがある。
 そこで、本発明は、放電特性に優れる二次電池を作製することが可能な電解質シートを提供することを主な目的とする。
 本発明の一側面は、電解質層を備える電解質シートであって、電解質層の厚さ方向の断面において観察される空隙の割合が、断面の全面積を基準として、3.5面積%以下である、電解質シートを提供する。このような電解質シートによれば、放電特性に優れる二次電池を作製することが可能となり得る。このような効果を奏する理由は必ずしも明らかではないが、電解質層の厚さ方向の断面において観察される空隙の割合が低くなることによって、リチウムイオン等のキャリアが充放電によって移動する際に、その曲路率が減少することが予想される。このような結果として、電解質シートのイオン伝導性が向上するためであると考えられる。
 電解質層は、1種又は2種以上のポリマと、疎水性表面を有する酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、イオン液体とを含有していてもよい。
 イオン液体の25℃における粘度は、40mPa・s以下であってよい。
 酸化物粒子は、疎水性表面を有する酸化物粒子であってよい。
 本発明の他の一側面は、正極と、負極と、正極及び負極の間に設けられた、上記の電解質シートの電解質層とを備える、二次電池を提供する。
 本発明によれば、放電特性に優れる二次電池を作製することが可能な電解質シートが提供される。また、本発明によれば、このような電解質シートを用いた二次電池が提供される。
第1実施形態に係る二次電池を示す斜視図である。 図1に示した二次電池における電極群の一実施形態を示す分解斜視図である。 図1に示した二次電池における電極群の一実施形態を示す模式断面図である。 (a)は一実施形態に係る電解質シートを示す模式断面図であり、(b)は他の一実施形態に係る電解質シートを示す模式断面図である。 図4(a)に示した電解質シートの電解質層の評価対象の一例を示す図である。 第2実施形態に係る二次電池における電極群の一実施形態を示す模式断面図である。
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。
 本明細書における数値及びその範囲は、本発明を制限するものではない。本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書において段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の上限値又は下限値に置き換えてもよい。また、本明細書中に記載される数値範囲において、その数値範囲の上限値又は下限値は、実施例中に示されている値に置き換えてもよい。
[第1実施形態]
 図1は、第1実施形態に係る二次電池を示す斜視図である。図1に示すように、二次電池1は、正極、負極及び電解質層から構成される電極群2と、電極群2を収容する袋状の電池外装体3とを備えている。正極及び負極には、それぞれ正極集電タブ4及び負極集電タブ5が設けられている。正極集電タブ4及び負極集電タブ5は、それぞれ正極及び負極が二次電池1の外部と電気的に接続可能なように、電池外装体3の内部から外部へ突き出している。
 電池外装体3は、例えば、ラミネートフィルムで形成されていてよい。ラミネートフィルムは、例えば、ポリエチレンテレフタレート(PET)フィルム等の樹脂フィルムと、アルミニウム、銅、ステンレス鋼等の金属箔と、ポリプロピレン等のシーラント層とがこの順で積層された積層フィルムであってよい。
 図2は、図1に示した二次電池1における電極群2の一実施形態を示す分解斜視図である。図3は、図1に示した二次電池1における電極群2の一実施形態を示す模式断面図である。図2及び図3に示すように、本実施形態に係る電極群2Aは、正極6と、電解質層7と、負極8とをこの順に備えている。正極6は、正極集電体9と、正極集電体9上に設けられた正極合剤層10とを備えている。正極集電体9には、正極集電タブ4が設けられている。負極8は、負極集電体11と、負極集電体11上に設けられた負極合剤層12とを備えている。負極集電体11には、負極集電タブ5が設けられている。
 正極集電体9は、アルミニウム、ステンレス鋼、チタン等で形成されていてよい。正極集電体9は、具体的には、例えば孔径0.1~10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板等であってよい。正極集電体9は、上記以外にも、電池の使用中に溶解、酸化等の変化を生じないものであれば、任意の材料で形成されていてよく、また、その形状、製造方法等も制限されない。
 正極集電体9の厚さは、10μm以上100μm以下であってよく、正極全体の体積を小さくする観点から、好ましくは10μm以上50μm以下であり、電池を形成する際に小さな曲率で正極を捲回する観点から、より好ましくは10μm以上20μm以下である。
 正極合剤層10は、一実施形態において、正極活物質と、導電剤と、結着剤とを含有する。
 正極活物質は、正極活物質は、リチウム遷移金属酸化物、リチウム遷移金属リン酸塩等のリチウム遷移金属化合物であってよい。
 リチウム遷移金属酸化物は、例えば、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等であってよい。リチウム遷移金属酸化物は、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等に含有されるMn、Ni、Co等の遷移金属の一部を、1種若しくは2種以上の他の遷移金属、又はMg、Al等の金属元素(典型元素)で置換したリチウム遷移金属酸化物であってもよい。すなわち、リチウム遷移金属酸化物は、LiM又はLiM (Mは少なくとも1種の遷移金属を含む)で表される化合物であってよい。リチウム遷移金属酸化物は、具体的には、Li(Co1/3Ni1/3Mn1/3)O、LiNi1/2Mn1/2、LiNi1/2Mn3/2等であってよい。
 リチウム遷移金属酸化物は、エネルギー密度を更に向上させる観点から、好ましくは下記式(1)で表される化合物である。
 LiNiCo 2+e (1)
[式(1)中、Mは、Al、Mn、Mg及びCaからなる群より選ばれる少なくとも1種であり、a、b、c、d及びeは、それぞれ0.2≦a≦1.2、0.5≦b≦0.9、0.1≦c≦0.4、0≦d≦0.2、-0.2≦e≦0.2、かつb+c+d=1を満たす数である。]
 リチウム遷移金属リン酸塩は、LiFePO、LiMnPO、LiMn 1-xPO(0.3≦x≦1、MはFe、Ni、Co、Ti、Cu、Zn、Mg及びZrからなる群より選ばれる少なくとも1種の元素である)等であってよい。
 正極活物質は、造粒されていない一次粒子であってもよく、造粒された二次粒子であってもよい。
 正極活物質の粒径は、正極合剤層10の厚さ以下になるように調整される。正極活物質中に正極合剤層10の厚さ以上の粒径を有する粗粒子がある場合、ふるい分級、風流分級等により粗粒子を予め除去し、正極合剤層10の厚さ以下の粒径を有する正極活物質を選別する。
 正極活物質の平均粒径は、0.1μm以上であり、より好ましくは1μm以上である。また、好ましくは30μm以下であり、より好ましくは25μm以下である。正極活物質の平均粒径は、正極活物質全体の体積に対する比率(体積分率)が50%のときの粒径(D50)である。正極活物質の平均粒径(D50)は、レーザー散乱型粒径測定装置(例えば、マイクロトラック)を用いて、レーザー散乱法により水中に正極活物質を懸濁させた懸濁液を測定することで得られる。
 正極活物質の含有量は、正極合剤層全量を基準として、70質量%以上、80質量%以上、又は85質量%以上であってよい。正極活物質の含有量は、正極合剤層全量を基準として、95質量%以下、92質量%以下、又は90質量%以下であってよい。
 導電剤は、特に限定されないが、黒鉛、アセチレンブラック、カーボンブラック、炭素繊維、カーボンナノチューブ等の炭素材料などであってよい。導電剤は、上述した炭素材料の2種以上の混合物であってもよい。
 導電剤の含有量は、正極合剤層全量を基準として、0.1質量%以上、1質量%以上、又は3質量%以上であってよい。導電剤の含有量は、正極6の体積の増加及びそれに伴う二次電池1のエネルギー密度の低下を抑制する観点から、正極合剤層全量を基準として、好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下である。
 結着剤は、正極6の表面で分解しないものであれば制限されないが、四フッ化エチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる少なくとも1種をモノマ単位として含有するポリマ、スチレン-ブタジエンゴム、イソプレンゴム、アクリルゴム等のゴムなどであってよい。結着剤は、好ましくは四フッ化エチレンとフッ化ビニリデンとを構造単位として含有するコポリマである。
 結着剤の含有量は、正極合剤層全量を基準として、0.5質量%以上、1質量%以上、又は3質量%以上であってよい。結着剤の含有量は、正極合剤層全量を基準として、20質量%以下、15質量%以下、又は10質量%以下であってよい。
 正極合剤層10は、イオン液体を更に含有していてもよい。
 イオン液体は、後述の電解質シートで使用されるイオン液体を用いることができる。正極合剤層10に含まれるイオン液体の含有量は、正極合剤層全量を基準として、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上である。正極合剤層10に含まれるイオン液体の含有量は、正極合剤層全量を基準として、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下である。
 正極合剤層10に含まれるイオン液体には電解質塩が溶解されていてもよい。電解質塩は、後述の電解質シートで使用される電解質塩を用いることができる。
 正極合剤層10の厚さは、導電率を更に向上させる観点から、正極活物質の平均粒径以上の厚さであり、具体的には、10μm以上、15μm以上、又は20μm以上であってよい。正極合剤層10の厚さは、100μm以下、80μm以下、又は70μm以下であってよい。正極合剤層の厚さを100μm以下とすることにより、正極合剤層10の表面近傍及び正極集電体9の表面近傍の正極活物質の充電レベルのばらつきに起因する充放電の偏りを抑制できる。
 負極集電体11は、アルミニウム、銅、ニッケル、ステンレス等の金属、それらの合金などであってよい。負極集電体11は、軽量で高い重量エネルギー密度を有するため、好ましくはアルミニウム及びその合金である。負極集電体11は、薄膜への加工のし易さ及びコストの観点から、好ましくは銅である。
 負極集電体11の厚さは、10μm以上100μm以下であってよく、負極全体の体積を小さくする観点から、好ましくは10μm以上50μm以下であり、電池を形成する際に小さな曲率で負極を捲回する観点から、より好ましくは10μm以上20μm以下である。
 負極合剤層12は、一実施形態において、負極活物質と、結着剤とを含有する。
 負極活物質は、エネルギーデバイスの分野で常用されるものを使用できる。負極活物質としては、具体的には、例えば、金属リチウム、チタン酸リチウム(LiTi12)、リチウム合金又はその他の金属化合物、炭素材料、金属錯体、有機高分子化合物等が挙げられる。負極活物質はこれらの1種単独、若しくは2種以上の混合物であってよい。炭素材料としては、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等の黒鉛(グラファイト)、非晶質炭素、炭素繊維、及びアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラックなどが挙げられる。負極活物質は、より大きな理論容量(例えば500~1500Ah/kg)を得る観点から、シリコン、スズ又はこれらの元素を含む化合物(酸化物、窒化物、他の金属との合金)であってもよい。
 負極活物質の平均粒径(D50)は、粒径減少に伴う不可逆容量の増加を抑制しつつ、かつ、電解質塩の保持能力を高めたバランスの良い負極を得る観点から、好ましくは1μm以上であり、より好ましくは5μm以上であり、更に好ましくは10μm以上であり、また、好ましくは50μm以下であり、より好ましくは40μm以下であり、更に好ましくは30μm以下である。負極活物質の平均粒径(D50)は、上述した正極活物質の平均粒径(D50)と同様の方法により測定される。
 負極活物質の含有量は、負極合剤層全量を基準として、60質量%以上、65質量%以上、又は70質量%以上であってよい。負極活物質の含有量は、負極合剤層全量を基準として、99質量%以下、95質量%以下、又は90質量%以下であってよい。
 結着剤及びその含有量は、上述した正極合剤層10における結着剤及びその含有量と同様であってよい。
 負極合剤層12は、負極8の抵抗を更に低くする観点から、導電剤を更に含有してもよい。導電剤及びその含有量は、上述した正極合剤層10における導電剤及びその含有量と同様であってよい。
 負極合剤層12は、イオン液体を更に含有していてもよい。
 イオン液体は、後述の電解質シートで使用されるイオン液体を用いることができる。負極合剤層12に含まれるイオン液体の含有量は、負極合剤層全量を基準として、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上である。負極合剤層12に含まれるイオン液体の含有量は、負極合剤層全量を基準として、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下である。
 負極合剤層12に含まれるイオン液体には、上述した正極合剤層10に使用できる電解質塩と同様の電解質塩が溶解されていてもよい。
 負極合剤層12の厚さは、10μm以上、15μm以上、又は20μm以上であってよい。負極合剤層12の厚さは、100μm以下、80μm以下、又は70μm以下であってよい。
 電解質層7は、例えば、電解質組成物を用いて電解質シートを作製することによって形成される。図4(a)は、一実施形態に係る電解質シートを示す模式断面図である。図4(a)に示すように、電解質シート13Aは、基材14と、基材14上に設けられた電解質層7とを備える。
 電解質シート13Aは、例えば、電解質層7に用いる材料を分散媒に分散させてスラリを得た後、これを基材14上に塗布してから分散媒を揮発させることにより作製される。分散媒は、好ましくは水、N-メチル-2-ピロリドン(NMP)(以下、「NMP」ともいう。)、トルエン等である。
 基材14は、分散媒を揮発させる際の加熱に耐え得る耐熱性を有するものであって、電解質組成物と反応せず、電解質組成物により膨潤しないものであれば制限されないが、例えば樹脂で形成されている。基材14は、具体的には、ポリエチレンテレフタレート、ポリ四フッ化エチレン、ポリイミド、ポリエーテルサルフォン、ポリエーテルケトン等の樹脂(汎用のエンジニアプラスチック)からなるフィルムであってよい。
 基材14は、電解質層を製造する過程において分散媒を揮発させる処理温度に耐えられる耐熱温度を有していればよい。耐熱温度は、基材14が樹脂で形成されている場合、基材14の軟化点(塑性変形し始める温度)又は融点のうち、より低い温度である。基材14の耐熱温度は、電解質層7に用いられるイオン液体との適応性の観点から、好ましくは50℃以上であり、より好ましくは100℃以上であり、更に好ましくは150℃以上であり、また、例えば400℃以下であってよい。上記の耐熱温度を有する基材を使用すれば、上述したような分散媒(NMP、トルエン等)を好適に使用できる。
 基材14の厚さは、塗布装置での引張り力に耐え得る強度を維持しつつ、可能な限り薄いことが好ましい。基材14の厚さは、電解質シート13A全体の体積を小さくしつつ、電解質組成物を基材14に塗布する際に強度を確保する観点から、好ましくは5μm以上であり、より好ましくは10μm以上であり、更に好ましくは25μm以上であり、また、好ましくは100μm以下であり、より好ましくは50μm以下であり、更に好ましくは40μm以下である。
 電解質シートは、ロール状に巻き取りながら連続的に製造することもできる。その場合には、電解質層7の表面が基材14の背面に接触して電解質層7の一部が基材14に貼りつくことにより、電解質層7が破損することがある。このような事態を防ぐために、電解質シートは他の一実施形態として、電解質層7の基材14と反対側に保護材を設けたものであってもよい。図4(b)は、他の一実施形態に係る電解質シートを示す模式断面図である。図4(b)に示すように、電解質シート13Bは、電解質層7の基材14と反対側に保護材15を更に備えている。
 保護材15は、電解質層7から容易に剥離可能なものであればよく、好ましくはポリエチレン、ポリプロピレン、ポリ四フッ化エチレン等の無極性の樹脂フィルムである。無極性の樹脂フィルムを用いると、電解質層7と保護材15とが互いに貼りつかず、保護材15を容易に剥離することができる。
 保護材15の厚さは、電解質シート13B全体の体積を小さくしつつ、強度を確保する観点から、好ましくは5μm以上であり、より好ましくは10μmであり、また、好ましくは100μm以下であり、より好ましくは50μm以下であり、更に好ましくは30μm以下である。
 保護材15の耐熱温度は、低温環境での劣化を抑制するとともに、高温環境下での軟化を抑制する観点から、好ましくは-30℃以上であり、より好ましくは0℃以上であり、また、好ましくは100℃以下であり、より好ましくは50℃以下である。保護材15を設ける場合、上述した分散媒の揮発工程を必須としないため、耐熱温度を高くする必要がない。
 電解質シート13Aにおける電解質層7は、当該電解質層7の厚さ方向の断面において観察される空隙の割合が、断面の全面積を基準として、3.5面積%以下である。空隙の割合が、前記断面の全面積を基準として、3.5面積%以下であると、リチウムイオン等のキャリアが充放電によって移動する際に、その曲路率が減少することが予想される。このような結果として、電解質シートのイオン伝導性が向上し、得られる二次電池の放電特性に優れることが期待される。空隙の割合は、断面の全面積を基準として、3.2面積%以下、3面積%以下、2.9面積%以下、2.7面積%以下、2.5面積%以下、2.3面積%以下、2面積%以下、1.8面積%以下、1.5面積%以下、1.2面積%以下、1面積%以下、0.7面積%以下、0.5面積%以下、0.3面積%以下、0.2面積%以下、又は0.1面積%以下であってよい。空隙の割合は、例えば、電解質層7を構成する材料の種類等を変更することによって調整することができる。
 ここで、電解質層7の厚さ方向の断面において観察される、断面の全面積を基準としたときの空隙の割合は、以下の方法によって求めることができる。まず、電解質シート13Aを準備し、これを任意の箇所で電解質層7の厚さ方向に切断する。このとき、熱ダメージを低減する観点から、電解質シート13Aを銅箔等で挟み込むことによって積層体を作製し、作製した積層体を切断することが好ましい。電解質層7の切断は、熱ダメージを低減する観点から、低温下(好ましくは-50℃以下、より好ましくは-100℃以下、更に好ましくは-120℃以下)で行うことが好ましい。電解質層7の切断は、断面試料作製装置(製品名:IB-19520CCP、日本電子株式会社製)等を用いて行うことが好ましい。次いで、電解質層7の切断面について、例えば、電解放出型走査電子顕微鏡(FE-SEM)等を用いてSEM像を撮影する。SEM像における断面全体において、電解質層7の空隙部分とそれ以外の部分とを二値化し、それぞれの面積から、電解質層7の断面積全体を基準としたときの空隙の割合を算出することができる。なお、電解質層7のサイズが大きい場合、測定対象が広く、二値化が困難となる可能性がある。そのため、以下の方法によって求められる空隙の割合を、電解質層7の断面積全体を基準としたときの空隙の割合と見なしてもよい。まず、撮影したSEM像において、電解質層7の断面の中心部(電解質層7の幅に対する中心線と電解質層7の厚さに対する中心線との交点を含む領域)の幅方向40μm×厚さ方向30μmの視野範囲を評価対象として抽出する。当該視野範囲の電解質層7の断面積における空隙の割合は、電解質層7の断面積全体を基準としたときの空隙の割合とほぼ一致する。図5は、図4(a)に示した電解質シート13Aの電解質層7の評価対象の一例を示す模式断面図である。評価対象である視野範囲は、例えば、部分aであり得る。次いで、評価対象(幅方向40μm×厚さ方向30μmの視野範囲)における電解質層7の空隙部分とそれ以外の部分とを二値化し、それぞれの面積から、評価対象(幅方向40μm×厚さ方向30μmの視野範囲)全体を基準としたときの空隙部分の割合を算出し、これを、電解質層7の断面積全体を基準としたときの空隙の割合と見なすことができる。
 電解質層7は、電解質組成物からなるものである。電解質層7(電解質組成物)は、1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、イオン液体とを含有していてもよい。
 ポリマは、好ましくは、四フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位を有する。
 ポリマを構成する構造単位の中には、上記第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれていてもよい。すなわち、第1の構造単位及び第2の構造単位は、1種のポリマに含まれてコポリマを構成していてもよく、それぞれ別のポリマに含まれて、第1の構造単位を有する第1のポリマと、第2の構造単位を有する第2のポリマとの少なくとも2種のポリマを構成していてもよい。
 ポリマは、具体的には、ポリ四フッ化エチレン、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマなどであってよい。
 ポリマの含有量は、電解質層全量を基準として、好ましくは3質量%以上である。ポリマの含有量は、電解質層全量を基準として、好ましくは50質量%以下であり、より好ましくは40質量%以下である。ポリマの含有量は、電解質層全量を基準として、好ましくは3~50質量%、又は3~40質量%である。
 本実施形態に係るポリマは、電解質組成物に含まれるイオン液体との親和性に優れるため、イオン液体中の電解質を保持する。これにより、電解質組成物に荷重が加えられた際のイオン液体の液漏れが抑制される。
 酸化物粒子は、例えば無機酸化物の粒子である。無機酸化物は、例えば、Li、Mg、Al、Si、Ca、Ti、Zr、La、Na、K、Ba、Sr、V、Nb、B、Ge等を構成元素として含む無機酸化物であってよい。酸化物粒子は、好ましくは、SiO、Al、AlOOH、MgO、CaO、ZrO、TiO、LiLaZr12、及びBaTiOからなる群より選ばれる少なくとも1種の粒子である。酸化物粒子は極性を有するため、電解質層7中の電解質の解離を促進し、電池特性を高めることができる。
 酸化物粒子は、電解質層7の厚さ方向の断面において観察される空隙の割合をより低減できることから、疎水性表面を有する酸化物粒子であってよい。酸化物粒子は、通常、その表面に水酸基を有し、親水性を示す傾向にある。疎水性表面を有する酸化物粒子は、疎水性表面を有しない酸化物粒子に比べて、表面の水酸基が減少しており、イオン液体を保液する能力が低下する。これによって、保液されなかった余剰のイオン液体が電解質層7の空隙を補填することが予想される。これによって、空隙の割合が低減し、その結果として、イオン伝導率が更に向上すると考えられる。
 疎水性表面を有する酸化物粒子は、例えば、親水性を示す酸化物粒子を、疎水性表面を付与することが可能な表面処理剤で処理することによって、得ることができる。すなわち、疎水性表面を有する酸化物粒子は、疎水性表面を付与することが可能な表面処理剤で表面処理された酸化物粒子であってよい。表面処理剤としては、例えば、ケイ素含有化合物等が挙げられる。
 疎水性表面を有する酸化物粒子は、ケイ素含有化合物で表面処理された酸化物粒子であってよい。すなわち、疎水性表面を有する酸化物粒子は、酸化物粒子の表面とケイ素含有化合物のケイ素原子とが酸素原子を介して結合していているものであってよい。表面処理剤としてのケイ素含有化合物は、好ましくはアルコキシシラン、エポキシ基含有シラン、アミノ基含有シラン、(メタ)アクリロイル基含有シラン、シラザン、及びシロキサンからなる群より選ばれる少なくとも1種である。
 アルコキシシランは、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメトキシジフェニルシラン、n-プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、n-プロピルトリエトキシシラン等であってもよい。
 エポキシ基含有シランは、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等であってもよい。
 アミノ基含有シランは、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等であってもよい。
 (メタ)アクリロイル基含有シランは、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルメチルジエトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン等であってよい。なお、本明細書において、(メタ)アクリロイル基は、アクリロイル基又はそれに対応するメタクリロイル基を意味する。
 シラザンは、ヘキサメチルジシラザン等であってもよい。
 シロキサンは、ジメチルシロキサン等のジメチルシリコーンオイル等であってもよい。これらの片末端又は両末端に、反応性官能基(例えば、カルボキシル基等)を有するものであってもよい。
 疎水性表面を有する酸化物粒子(表面処理された酸化物粒子)は、公知の方法によって製造したものを用いてもよく、市販品をそのまま用いてもよい。
 酸化物粒子は、一般に、見かけ上の幾何学的形態から判断して、一体的に単一の粒子を形成している一次粒子(二次粒子を構成していない粒子)と、複数の一次粒子が集合することで形成される二次粒子とを含んでいてもよい。
 酸化物粒子の比表面積は、例えば、2~380m/gであってよい。比表面積が2~380m/gであると、得られる二次電池は、放電特性に優れる傾向にある。同様の観点から、酸化物粒子の比表面積は、5m/g以上、10m/g以上、15m/g以上、20m/g以上、又は30m/g以上であってもよい。また、電解質シートにおける電解質層の基材からの剥離のし易さの観点から、酸化物粒子の比表面積は、350m/g以下、300m/g以下、250m/g以下、200m/g以下、180m/g以下、150m/g以下、130m/g以下、100m/g以下、80m/g以下、又は60m/g以下であってもよい。酸化物粒子の比表面積は、一次粒子及び二次粒子を含む酸化物粒子全体の比表面積を意味し、BET法によって測定される。
 酸化物粒子の平均一次粒径(一次粒子の平均粒径)は、導電率を更に向上させる観点から、好ましくは0.005μm(5nm)以上であり、より好ましくは0.01μm(10nm)以上であり、更に好ましくは0.015μm(15nm)以上である。酸化物粒子の平均一次粒径は、電解質層7を薄くする観点から、好ましくは1μm以下であり、より好ましくは0.1μm以下であり、更に好ましくは0.05μm以下である。酸化物粒子の平均一次粒径は、電解質組成物を薄層化する観点及び電解質組成物表面からの酸化物粒子の突出を抑制する観点から、好ましくは0.005~1μm、0.01~0.1μm、又は0.015~0.05μmである。酸化物粒子の平均一次粒径は、酸化物粒子を透過型電子顕微鏡等によって観察することによって測定できる。
 酸化物粒子の平均粒子径は、好ましくは0.005μm以上であり、より好ましくは0.01μm以上であり、更に好ましくは0.03μm以上である。酸化物粒子の平均粒子径は、好ましくは5μm以下であり、より好ましくは3μm以下であり、更に好ましくは1μm以下である。酸化物粒子の平均粒子径は、レーザー回折法により測定され、体積累積粒度分布曲線を小粒径側から描いた場合に、体積累積が50%となる粒子径に対応する。
 酸化物粒子の形状は、例えば塊状又は略球状であってよい。酸化物粒子のアスペクト比は、電解質層7の薄層化を容易にする観点から、好ましくは10以下、より好ましくは5以下、更に好ましくは2以下である。アスペクト比は、酸化物粒子の走査型電子顕微鏡写真から算出した、粒子の長軸方向の長さ(粒子の最大長さ)と、粒子の短軸方向の長さ(粒子の最小長さ)との比として定義される。粒子の長さは、前記写真を、市販の画像処理ソフト(例えば、旭化成エンジニアリング株式会社製の画像解析ソフト、A像くん(登録商標))を用いて、統計的に計算して求められる。
 酸化物粒子の含有量は、電解質層全量を基準として、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上、特に好ましくは20質量%以上であり、また、好ましくは60質量%以下、より好ましくは50質量%以下、更に好ましくは40質量%以下である。
 電解質塩は、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種である。電解質塩は、正極6と負極8との間でカチオンを授受させるために用いられる化合物である。上記の電解質塩は、低温では解離度が低く、イオン液体中で拡散し易いことに加え、高温により熱分解しないため、二次電池が使用可能な環境温度が広範となる点で好ましい。電解質塩は、フッ素イオン電池において用いられる電解質塩であってもよい。
 電解質塩のアニオン成分は、ハロゲン化物イオン(I、Cl、Br等)、SCN、BF 、BF(CF、BF(C、PF 、ClO 、SbF 、N(SOF) 、N(SOCF 、N(SO 、B(C 、B(O 、C(SOF) 、C(SOCF 、CFCOO、CFSO、CSO、B(O 等であってよい。電解質塩のアニオン成分は、好ましくは、N(SOF) 、N(SOCF 等の後述のイオン液体のアニオン成分で例示される式(A)で表されるアニオン成分、PF 、BF 、B(O 、又はClO である。
 なお、以下では下記の略称を用いる場合がある。
[FSI]:N(SOF) 、ビス(フルオロスルホニル)イミドアニオン
[TFSI]:N(SOCF 、ビス(トリフルオロメタンスルホニル)イミドアニオン
[BOB]:B(O 、ビスオキサレートボラートアニオン
[DFOB]:B(O)F 、ジフルオロ(オキサレート)ボラートアニオン
[f3C]:C(SOF) 、トリス(フルオロスルホニル)カルボアニオン
 リチウム塩は、LiPF、LiBF、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、Li[DFOB]、LiClO、LiBF(CF)、LiBF(C)、LiBF(C)、LiBF(C)、LiC(SOCF、CFSOOLi、CFCOOLi、及びR’COOLi(R’は、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。
 ナトリウム塩は、NaPF、NaBF、Na[FSI]、Na[TFSI]、Na[f3C]、Na[BOB]、Na[DFOB]、NaClO、NaBF(CF)、NaBF(C)、NaBF(C)、NaBF(C)、NaC(SOCF、CFSOONa、CFCOONa、及びR’COONa(R’は、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。
 カルシウム塩は、Ca(PF、Ca(BF、Ca[FSI]、Ca[TFSI]、Ca[f3C]、Ca[BOB]、Ca[DFOB]、Ca(ClO、Ca[BF(CF)]、Ca[BF(C)]、Ca[BF(C)]、Ca[BF(C)]、Ca[C(SOCF、(CFSOO)Ca、(CFCOO)Ca、及び(R’COO)Ca(R’は、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。
 マグネシウム塩は、Mg(PF、Mg(BF、Mg[FSI]、Mg[TFSI]、Mg[f3C]、Mg[BOB]、Mg[DFOB]、Na(ClO、Mg[BF(CF)]、Mg[BF(C)]、Mg[BF(C)]、Mg[BF(C)]、Mg[C(SOCF、(CFSOMg、(CFCOO)Mg、及び(R’COO)Mg(R’は、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。
 電解質塩は、好ましくは、イミド系リチウム塩、イミド系ナトリウム塩、イミド系カルシウム塩、及びイミド系マグネシウム塩からなる群より選ばれる1種であり、より好ましくは、イミド系リチウム塩である。
 イミド系リチウム塩は、Li[TFSI]、Li[FSI]等であってよい。イミド系ナトリウム塩は、Na[TFSI]、Na[FSI]等であってよい。イミド系カルシウム塩は、Ca[TFSI]、Ca[FSI]等であってよい。イミド系マグネシウム塩は、Mg[TFSI]、Mg[FSI]等であってよい。
 イオン液体は、以下のアニオン成分及びカチオン成分を含有する。なお、本実施形態におけるイオン液体は、-20℃以上で液状の物質である。
 イオン液体のアニオン成分は、特に限定されないが、Cl、Br、I等のハロゲンのアニオン、BF 、[FSI]等の無機アニオン、B(C 、CHSO、CFSO、N(SO 、[TFSI]、N(SO 等の有機アニオンなどであってよい。
 イオン液体のアニオン成分は、好ましくは、下記一般式(A)で表されるアニオン成分の少なくとも1種を含有する。
 N(SO2m+1)(SO2n+1 (A)
 m及びnは、それぞれ独立に0~5の整数を表す。m及びnは、互いに同一でも異なっていてもよく、好ましくは互いに同一である。
 式(A)で表されるアニオン成分は、例えば、N(SO 、[FSI]、[TFSI]、及びN(SO である。
 イオン液体のアニオン成分は、比較的低粘度でイオン伝導度を更に向上させるとともに、充放電特性も更に向上させる観点から、より好ましくは、N(SO 、CFSO、[FSI]、[TFSI]、及びN(SO からなる群より選ばれる少なくとも1種を含有し、更に好ましくは[FSI]を含有する。
 イオン液体のカチオン成分は、特に限定されないが、好ましくは鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種である。
 鎖状四級オニウムカチオンは、例えば、下記一般式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000001
[式(2)中、R~Rは、それぞれ独立に、炭素数が1~20の鎖状アルキル基、又はR-O-(CH-で表される鎖状アルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表し、Xは、窒素原子又はリン原子を表す。R~Rで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 ピペリジニウムカチオンは、例えば、下記一般式(3)で表される、窒素を含有する六員環環状化合物である。
Figure JPOXMLDOC01-appb-C000002
[式(3)中、R及びRは、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R及びRで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 ピロリジニウムカチオンは、例えば、下記一般式(4)で表される五員環環状化合物である。
Figure JPOXMLDOC01-appb-C000003
[式(4)中、R及びRは、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R及びRで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 ピリジニウムカチオンは、例えば、一般式(5)で示される化合物である。
Figure JPOXMLDOC01-appb-C000004
[式(5)中、R~R13は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R~R13で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 イミダゾリウムカチオンは、例えば、一般式(6)で示される化合物である。
Figure JPOXMLDOC01-appb-C000005
[式(6)中、R14~R18は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R14~R18で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 イオン液体の25℃における粘度は、電解質層7の厚さ方向の断面において観察される空隙の割合をより低減できることから、40mPa・s以下であってよい。イオン液体の25℃における粘度は、30mPa・s以下、25mPa・s以下、又は20mPa・s以下であってもよい。イオン液体の25℃における粘度の下限は、特に制限されないが、例えば、0.1mPa・s以上又は1mPa・s以上であってよい。
 イオン液体の含有量は、電解質層を好適に作製する観点から、電解質組成物全量を基準として、10質量%以上であってよく、80質量%以下であってよい。イオン液体の含有量は、リチウム二次電池を高い負荷率で充放電することを可能にする観点から、電解質組成物全量を基準として、好ましくは20質量%以上であり、より好ましくは30質量%以上である。
 電解質層7におけるイオン液体の単位体積あたりの電解質塩の濃度は、充放電特性を更に向上させる観点から、好ましくは0.5mol/L以上、より好ましくは0.7mol/L以上、更に好ましくは1.0mol/L以上であり、また、好ましくは2.0mol/L以下、より好ましくは1.8mol/L以下、更に好ましくは1.6mol/L以下である。
 電解質層7の厚さは、導電率を高め、強度を向上させる観点から、好ましくは5μm以上であり、より好ましくは10μm以上である。電解質層7の厚さは、電解質層7の抵抗を抑制する観点から、好ましくは200μm以下であり、より好ましくは150μm以下であり、更に好ましくは100μm以下であり、特に好ましくは50μm以下である。
 続いて、上述した二次電池1の製造方法について説明する。本実施形態に係る二次電池1の製造方法は、正極集電体9上に正極合剤層10を形成して正極6を得る第1の工程と、負極集電体11上に負極合剤層12を形成して負極8を得る第2の工程と、正極6と負極8との間に電解質層7を設ける第3の工程とを備える。
 第1の工程では、正極6は、例えば、正極合剤層に用いる材料を混練機、分散機等を用いて分散媒に分散させてスラリ状の正極合剤を得た後、この正極合剤をドクターブレード法、ディッピング法、スプレー法等により正極集電体9上に塗布し、その後分散媒を揮発させることにより得られる。分散媒を揮発させた後、必要に応じて、ロールプレスによる圧縮成型工程が設けられてもよい。正極合剤層10は、上述した正極合剤の塗布から分散媒の揮発までの工程を複数回行うことにより、多層構造の正極合剤層として形成されてもよい。
 第1の工程において用いられる分散媒は、水、NMP等であってよい。なお、分散媒は、上述のイオン液体以外の化合物である。
 第2の工程において、負極集電体11に負極合剤層12を形成する方法は、上述した第1の工程と同様の方法であってよい。
 第3の工程において、電解質層7は、一実施形態において、上述の電解質シート13Aを用いて作製することができる。電解質シート13Aを用いて正極6と負極8との間に電解質層7を設ける方法は、例えば、電解質シート13Aから基材14を剥離し、正極6、電解質層7及び負極8を、例えばラミネートにより積層することで二次電池1が得られる。このとき、電解質層7が、正極6の正極合剤層10側かつ負極8の負極合剤層12側に位置するように、すなわち、正極集電体9、正極合剤層10、電解質層7、負極合剤層12及び負極集電体11がこの順で配置されるように積層する。
 第3の工程において、電解質層7は、他の一実施形態において、電解質層7に用いる材料を混錬し、得られた混錬物をポリ四フッ化エチレン(PTFE)等の樹脂シートで挟み、ロールプレス機等によりプレスして電解質シートを作製し、電解質シートを用いて作製することができる。
[第2実施形態]
 次に、第2実施形態に係る二次電池について説明する。図6は、第2実施形態に係る二次電池における電極群の一実施形態を示す模式断面図である。図6に示すように、第2実施形態における二次電池が第1実施形態における二次電池と異なる点は、電極群2Bが、バイポーラ電極16を備えている点である。すなわち、電極群2Bは、正極6と、第1の電解質層7と、バイポーラ電極16と、第2の電解質層7と、負極8とをこの順に備えている。
 バイポーラ電極16は、バイポーラ電極集電体17と、バイポーラ電極集電体17の負極8側の面(正極面)に設けられた正極合剤層10と、バイポーラ電極集電体17の正極6側の面(負極面)に設けられた負極合剤層12とを備えている。
 バイポーラ電極集電体17において、正極面は、好ましくは耐酸化性に優れた材料で形成されていてよく、アルミニウム、ステンレス鋼、チタン等で形成されていてよい。負極活物質として黒鉛又は合金を用いたバイポーラ電極集電体17における負極面は、リチウムと合金を形成しない材料で形成されていてよく、具体的には、ステンレス鋼、ニッケル、鉄、チタン等で形成されていてよい。正極面と負極面に異種の金属を用いる場合、バイポーラ電極集電体17は、異種金属箔を積層させたクラッド材であってよい。ただし、チタン酸リチウムのように、リチウムと合金を形成しない電位で動作する負極8を用いる場合、上述の制限はなくなり、負極面は、正極集電体9と同様の材料であってよい。その場合、バイポーラ電極集電体17は、単一の金属箔であってよい。単一の金属箔としてのバイポーラ電極集電体17は、孔径0.1~10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板等であってよい。バイポーラ電極集電体17は、上記以外にも、電池の使用中に溶解、酸化等の変化を生じないものであれば、任意の材料で形成されていてよく、また、その形状、製造方法等も制限されない。
 バイポーラ電極集電体17の厚さは、10μm以上100μm以下であってよく、正極全体の体積を小さくする観点から、好ましくは10μm以上50μm以下であり、電池を形成する際に小さな曲率でバイポーラ電極を捲回する観点から、より好ましくは10μm以上20μm以下である。
 続いて、第2実施形態に係る二次電池の製造方法について説明する。本実施形態に係る二次電池の製造方法は、正極集電体9上に正極合剤層10を形成して正極6を得る第1の工程と、負極集電体11上に負極合剤層12を形成して負極8を得る第2の工程と、バイポーラ電極集電体17の一方の面に正極合剤層10を形成し、他方の面に負極合剤層12を形成してバイポーラ電極16を得る第3の工程と、正極6とバイポーラ電極16との間及び負極8とバイポーラ電極16との間に電解質層7を設ける第4の工程とを有する。
 第1の工程及び第2の工程は、第1実施形態における第1の工程及び第2の工程と同様の方法であってよい。
 第3の工程において、バイポーラ電極集電体17の一方の面に正極合剤層10を形成する方法は、第1実施形態における第1の工程と同様の方法であってよい。バイポーラ電極集電体17の他方の面に負極合剤層12を形成する方法は、第1実施形態における第2の工程と同様の方法であってよい。
 第4の工程において、電解質層7は、一実施形態において、例えば、基材上に電解質組成物を備えた電解質シートを製造することにより形成される。電解質シートを用いて、正極6とバイポーラ電極16との間に電解質層7を設けることによって、第2実施形態に係る二次電池を得ることができる。
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<電解質層の作製>
(実施例1)
 乾燥アルゴン雰囲気下で乾燥したリチウムビス(フルオロスルホニル)イミド(Li[FSI])を電解質塩として用い、イオン液体である1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド([EMI][FSI]、25℃のおける粘度:17mPa・s)に、電解質塩を1.5mol/Lの濃度で溶解させた(以下、電解質塩を溶解させたイオン液体の組成を表す際に、「リチウム塩の濃度/リチウム塩の種類/イオン液体の種類」のように表記することがある。)。次に、ポリマとしてのフッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ(PVDF-HFP)と、酸化物粒子としてのSiO粒子(表面処理がされていないSiO粒子、製品名:AEROSIL OX50、日本アエロジル株式会社製、比表面積:50m/g、平均一次粒径:40nm)とを混合した後、分散媒としてのN-メチル-2-ピロリドン(NMP)を添加し、スラリを作製した。スラリにおける、ポリマと、酸化物粒子と、電解質塩を溶解させたイオン液体との質量比は、ポリマ:酸化物粒子:電解質塩を溶解させたイオン液体=34:23:43であった。その後、得られたスラリをポリエチレンテレフタレート製の基材(製品名:ルミラーS、東レ株式会社製、厚さ38μm)上にアプリケータを用いて塗布した。塗布したスラリを80℃で1時間加熱乾燥することによって、分散媒を揮発させて、基材上に厚さ20μmの電解質層を備える実施例1の電解質シートを得た。
<電解質層の断面観察>
 2枚の銅箔を用意し、実施例1の電解質シートを2枚の銅箔で挟むことによって積層体を作製した。なお、銅箔と電解質シートと接着させるために接着剤を用いた。作製した積層体を断面試料作製装置(製品名:IB-19520CCP、日本電子株式会社製)を用いて、任意の箇所で電解質層の厚さ方向に切断して断面を観察するための評価サンプルを作製した。積層体を切断する際の条件は、電圧:4.0kV、時間:3時間、温度:-120℃とした。評価サンプルの切断面を、電解放出型走査電子顕微鏡(FE-SEM)(製品名:JSM-7800F、日本電子株式会社製)を用いてSEM像を撮影した。SEM像の撮影条件は、加速電圧:1.0kV、倍率:3000倍、視野範囲:約40μm×30μmとした。撮影したSEM像を、ペイント3Dを用いて、SEM像から電解質層の断面部分だけを切り取り、ImageJを用いて画像処理した。画像処理後の電解質層の断面の中心部(電解質層7の幅に対する中心線と電解質層7の厚さに対する中心線との交点を含む領域)の幅方向40μm×厚さ方向30μmの視野範囲として抽出した。評価対象における電解質層の空隙部分とそれ以外の部分とを二値化して、評価対象における電解質層の断面積全体を基準としたときの空隙部分の割合を算出した。実施例1の電解質シートにおいて、電解質層の厚さ方向の断面において観察される空隙の割合は、断面の全面積を基準として、1.76面積%であった。
(実施例2)
 酸化物粒子としてSiO粒子(疎水性表面を有する酸化物粒子としてのSiO粒子、製品名:AEROSIL RX50、日本アエロジル株式会社製、比表面積:35m/g、平均一次粒径:約40nm製)を用いた以外は、実施例1と同様にして、基材上に厚さ20μmの電解質層を備える実施例2の電解質シートを作製した。実施例2の電解質シートにおいて、電解質層の厚さ方向の断面において観察される空隙の割合は、断面の全面積を基準として、0.05面積%であった。
(比較例1)
 電解質塩としてリチウムビス(トリフルメタンオロスルホニル)イミド(Li[TFSI])及びイオン液体としてN,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミド([DEME][TFSI]、25℃のおける粘度:67mPa・s)を用いた以外は、実施例1と同様にして、基材上に厚さ20μmの電解質層を備える比較例1の電解質シートを作製した。比較例1の電解質シートにおいて、電解質層の厚さ方向の断面において観察される空隙の割合は、断面の全面積を基準として、3.77面積%であった。
<添加剤の調製>
 Li[FSI]及び[EMI][FSI]を用意し、濃度が1.5mol/Lとなるように混合することによって、電解質塩溶液を調製した。調製した電解質塩溶液全量に対して、0.5質量%のLi[DFOB]を添加することによって、添加剤を得た。
<正極の作製>
 層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(正極活物質)92.5質量部と、アセチレンブラック(導電剤、製品名:HS-100、平均粒径48nm、デンカ株式会社製)2.5質量部と、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ(ポリマ、PVDF-HFP)溶液(固形分12質量%)5質量部とを、分散媒であるN-メチル-2-ピロリドン(NMP)適量に分散させて正極合剤スラリを調製した。この正極合剤スラリを正極集電体(厚さ20μmのアルミニウム箔)上に塗工量125g/mで塗工し、80℃で12時間加熱して乾燥させ、プレスすることによって、合剤密度2.7g/cmの正極合剤中間層を形成した。これを幅30mm、長さ45mmに切断してから、正極集電タブを取り付けた。その後、形成した正極合剤中間層に対して、上記添加剤を添加し、正極を作製した。なお、添加剤は、正極活物質全量に対して、15質量%添加した。
<負極の作製>
 黒鉛(負極活物質、日立化成株式会社製)92質量部と、アセチレンブラック(導電剤、製品名:HS-100、平均粒径48nm、デンカ株式会社製)3質量部と、フッ化ビニリデンとヘキサフルオロプロピレンのコポリマ(ポリマ、PVDF-HFP)溶液(固形分12質量%)5質量部とを、分散媒であるNMP適量に分散させて負極合剤スラリを調製した。この負極合剤スラリを集電体(厚さ10μmの銅箔)上に塗工量60g/mで塗工し、80℃で12時間加熱して乾燥させ、プレスすることによって、合剤密度1.8g/cmの負極合剤中間層を形成させた。これを幅31mm、長さ46mmに切断してから、負極集電タブを取り付けた。その後、形成した負極合剤中間層に、上記添加剤をし、負極を作製した。なお、添加剤は、負極活物質全量に対して、20質量%添加した。
<電解質層の作製>
 実施例1、実施例2、及び比較例1の電解質シートを幅40mm、長さ55mmに切断して、電解質層として用いた。
<二次電池の作製>
 作製した負極上に、電解質層を積層した。次いで、電解質層上に正極を配置することによって電極群を作製した。この電極群を、図1に示すように、アルミニウム製のラミネートフィルムで構成された電池外装体内に収容した。この電池外装体内に、正極集電タブと負極集電タブとを外部に取り出すようにして電池容器の開口部を封口し、実施例1、実施例2、及び比較例1の二次電池を得た。なお、アルミニウム製のラミネートフィルムは、ポリエチレンテレフタレート(PET)フィルム/アルミニウム箔/シーラント層(ポリプロピレン等)の積層体である。
<放電特性の評価>
 得られた実施例1、実施例2、及び比較例1の二次電池について、25℃での放電容量を、充放電装置(東洋システム株式会社製)を用いて以下の充放電条件の下で測定した。結果を表1に示す。
(1)終止電圧4.2V、0.1Cで定電流定電圧(CCCV)充電を行った後、0.1Cで終止電圧2.7Vまで定電流(CC)放電するサイクルを3サイクル行い、0.1Cにおける放電容量を求めた。なお、Cとは「電流値(A)/電池容量(Ah)」を意味する。
(2)次いで、終止電圧4.2V、2Cで定電流定電圧(CCCV)充電を行った後、2Cで終止電圧2.7Vまで定電流(CC)放電するサイクルを1サイクル行い、2Cにおける放電容量を求めた。
(3)0.1Cにおける放電容量に対する2Cにおける放電容量の割合(2Cにおける放電容量/0.1Cにおける放電容量)を百分率で算出し、これを容量維持率(%)とした。
Figure JPOXMLDOC01-appb-T000006
 電解質層の厚さ方向の断面において観察される空隙割合が、断面の全面積を基準として、3.5面積%以下である実施例1、2の電解質シートを用いた二次電池は、3.5面積%を超える比較例1の電解質シートを用いた二次電池に比べて容量維持率が優れていた。この結果より、本発明の電解質シートが、放電特性に優れる二次電池を作製することが可能であることが確認された。
 1…二次電池、6…正極、7…電解質層、8…負極、9…正極集電体、10…正極合剤層、11…負極集電体、12…負極合剤層、13A,13B…電解質シート、14…基材。

Claims (5)

  1.  電解質層を備える電解質シートであって、
     前記電解質層の厚さ方向の断面において観察される空隙の割合が、前記断面の全面積を基準として、3.5面積%以下である、電解質シート。
  2.  前記電解質層が、1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、イオン液体とを含有する、請求項1に記載の電解質シート。
  3.  前記イオン液体の25℃における粘度が、40mPa・s以下である、請求項2に記載の電解質シート。
  4.  前記酸化物粒子が、疎水性表面を有する酸化物粒子である、請求項2又は3に記載の電解質シート。
  5.  正極と、
     負極と、
     前記正極及び前記負極の間に設けられた、請求項1~4のいずれか一項に記載の電解質シートの前記電解質層と、
    を備える、二次電池。
PCT/JP2019/026531 2019-07-03 2019-07-03 電解質シート及び二次電池 WO2021001970A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/026531 WO2021001970A1 (ja) 2019-07-03 2019-07-03 電解質シート及び二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/026531 WO2021001970A1 (ja) 2019-07-03 2019-07-03 電解質シート及び二次電池

Publications (1)

Publication Number Publication Date
WO2021001970A1 true WO2021001970A1 (ja) 2021-01-07

Family

ID=74100797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026531 WO2021001970A1 (ja) 2019-07-03 2019-07-03 電解質シート及び二次電池

Country Status (1)

Country Link
WO (1) WO2021001970A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176541A (ja) * 2008-01-23 2009-08-06 Idemitsu Kosan Co Ltd 全固体リチウム二次電池用の固体電解質膜、正極膜、又は負極膜、及びそれらの製造方法並びに全固体リチウム二次電池
JP2016152204A (ja) * 2015-02-19 2016-08-22 三星電子株式会社Samsung Electronics Co.,Ltd. 固体電池及びその製造方法
JP2018078030A (ja) * 2016-11-10 2018-05-17 株式会社日立製作所 電解質、全固体二次電池
WO2018186442A1 (ja) * 2017-04-04 2018-10-11 株式会社村田製作所 全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両
WO2018221669A1 (ja) * 2017-06-01 2018-12-06 日立化成株式会社 電解質組成物及び二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176541A (ja) * 2008-01-23 2009-08-06 Idemitsu Kosan Co Ltd 全固体リチウム二次電池用の固体電解質膜、正極膜、又は負極膜、及びそれらの製造方法並びに全固体リチウム二次電池
JP2016152204A (ja) * 2015-02-19 2016-08-22 三星電子株式会社Samsung Electronics Co.,Ltd. 固体電池及びその製造方法
JP2018078030A (ja) * 2016-11-10 2018-05-17 株式会社日立製作所 電解質、全固体二次電池
WO2018186442A1 (ja) * 2017-04-04 2018-10-11 株式会社村田製作所 全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両
WO2018221669A1 (ja) * 2017-06-01 2018-12-06 日立化成株式会社 電解質組成物及び二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MTEM: "Hisolv MTEM Tetraethylene Glycol Dimethyl Ether page", TOHO CHEMICAL INDUSTRY, 25 September 2019 (2019-09-25), XP055783559, Retrieved from the Internet <URL:https://toho-chem.co.jp/schemical/viscosity> *

Similar Documents

Publication Publication Date Title
JP6562184B2 (ja) 電解質組成物、二次電池、及び電解質シートの製造方法
JP7442911B2 (ja) 電解質組成物、二次電池、及び電解質シートの製造方法
WO2019035190A1 (ja) 二次電池用電池部材及び二次電池
JP7423120B2 (ja) 電解質スラリー組成物、電解質シートの製造方法、及び二次電池の製造方法
JP7438207B2 (ja) 電池用スラリ組成物、並びに、電極、電解質シート、及び電池部材の製造方法
WO2018221668A1 (ja) 電解質組成物及び二次電池
JP7446657B2 (ja) 二次電池用電極、二次電池用電解質層及び二次電池
WO2020017439A1 (ja) 電解質シートの製造方法及び二次電池の製造方法
WO2021001970A1 (ja) 電解質シート及び二次電池
JP2020113527A (ja) 電解質スラリ組成物及びその製造方法、並びに、電解質シート及びその製造方法
JP7438605B2 (ja) 二次電池用電池部材の製造方法
JP7416426B2 (ja) 二次電池用電池部材の製造方法
KR102655290B1 (ko) 전해질 조성물 및 이차 전지
WO2021205550A1 (ja) 電解質シート及び二次電池の製造方法
WO2021038862A1 (ja) 電解質シート及びその製造方法、並びに二次電池
JP2020136223A (ja) リチウム二次電池
JP2020205146A (ja) 電解質シート及びその製造方法、並びに二次電池
JP2021018925A (ja) 非水電解液、並びにそれを用いた半固体電解質シート及び半固体電解質複合シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.05.2022)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19935946

Country of ref document: EP

Kind code of ref document: A1