WO2018194163A1 - リチウムイオン電池用電極活物質成形体の製造方法及びリチウムイオン電池の製造方法 - Google Patents

リチウムイオン電池用電極活物質成形体の製造方法及びリチウムイオン電池の製造方法 Download PDF

Info

Publication number
WO2018194163A1
WO2018194163A1 PCT/JP2018/016338 JP2018016338W WO2018194163A1 WO 2018194163 A1 WO2018194163 A1 WO 2018194163A1 JP 2018016338 W JP2018016338 W JP 2018016338W WO 2018194163 A1 WO2018194163 A1 WO 2018194163A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
molded body
ion battery
lithium ion
Prior art date
Application number
PCT/JP2018/016338
Other languages
English (en)
French (fr)
Inventor
卓也 末永
健一 川北
雄樹 草地
大澤 康彦
佐藤 一
赤間 弘
堀江 英明
Original Assignee
三洋化成工業株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社, 日産自動車株式会社 filed Critical 三洋化成工業株式会社
Priority to KR1020197028340A priority Critical patent/KR102600726B1/ko
Priority to US16/606,858 priority patent/US11211596B2/en
Priority to EP18788333.5A priority patent/EP3614464A4/en
Priority to JP2019513704A priority patent/JP7104028B2/ja
Priority to CN201880025665.4A priority patent/CN110521032B/zh
Publication of WO2018194163A1 publication Critical patent/WO2018194163A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an electrode active material molded body for a lithium ion battery and a method for producing a lithium ion battery.
  • Lithium ion (secondary) batteries have been widely used in various applications in recent years as high-capacity, small and lightweight secondary batteries.
  • a positive electrode active material layer and a negative electrode active material layer are formed on the surfaces of a sheet-like positive electrode and negative electrode current collector, respectively.
  • a method has been proposed in which a separator layer is interposed between the positive electrode and the negative electrode current collector, and the peripheral portions of the positive electrode and negative electrode current collectors are joined via an insulating material (see Patent Document 1).
  • the above-described conventional method for manufacturing a lithium ion battery requires a step of forming an active material layer in which an active material is fixed by a binder on the surface of a sheet-like current collector. Since it is performed by applying a slurry in which an active material and a binder are dispersed in a non-aqueous solvent on the surface of the body, followed by drying, sintering, etc., it takes time to form the active material layer. It was. In addition, since it is necessary to recover the nonaqueous solvent in the slurry, it is difficult to simplify the manufacturing process and the manufacturing apparatus.
  • the present invention has been made in view of the above problems, and a method for producing an electrode active material molded body for a lithium ion battery suitable for the production of a lithium ion battery capable of suppressing the time, labor, equipment, etc. involved in the production. And it aims at providing the manufacturing method of a lithium ion battery using the same.
  • the present invention forms a composition containing a lithium ion battery electrode active material and an electrolytic solution to obtain a lithium ion battery electrode active material molded body that is a non-binding body of a lithium ion battery electrode active material.
  • a method for producing an electrode active material molded body for a lithium ion battery characterized in that the electrolytic solution content of the composition is 0.1 to 40% by weight based on the weight of the composition.
  • An electrode active material molded body for a lithium ion battery is disposed in the housing part of the battery outer body having a housing part formed at least in part, and the electrode active material molded body is integrated with the battery outer body to form an electrode.
  • the manufacturing method of a lithium ion battery characterized by including the combination process which prepares a structure, and the accommodation process of accommodating the electrode active material fabrication object for lithium ion batteries manufactured by this manufacturing method in a battery exterior body
  • a method of manufacturing a lithium ion battery wherein in the molding step, the positive electrode active material molded body in which the lithium ion battery electrode active material is a positive electrode active material, and the lithium ion A battery in which a negative electrode active material molded body in which an electrode active material for an ion battery is a negative electrode active material is prepared, and the positive electrode active material molded body and the negative electrode active material molded body are arranged via a separator in the housing step.
  • the present invention relates to a method for producing a lithium ion battery, wherein the positive electrode active material molded body and the negative electrode active material molded body are accommodated in the battery outer package so that a plurality of unit structures are connected in parallel or in series. .
  • FIG. 1A to FIG. 1C are schematic views showing an example of a mold used in the molding process.
  • 2A to 2F are schematic views showing an example of the molding process.
  • FIG. 3A to FIG. 3C are schematic views showing another example of a mold used in the molding process.
  • FIGS. 4A to 4G are schematic views showing another example of the molding process.
  • 5 (a) to 5 (c) are schematic views showing an example of a method for producing a lithium ion battery of the present invention.
  • 6 (a) to 6 (c) are schematic views showing another example of the method for producing a lithium ion battery of the present invention.
  • FIGS. 7A to 7C are schematic views showing still another example of the method for manufacturing a lithium ion battery of the present invention.
  • FIG. 8 is a schematic diagram showing a battery unit structure for explaining the arrangement of the positive electrode active material molded body and the negative electrode active material molded body in the method for producing a lithium ion battery of the present invention.
  • FIG. 9 is a schematic view showing an example of a lithium ion battery produced by the method for producing a lithium ion battery of the present invention.
  • FIG. 10 is a schematic view showing another example of a lithium ion battery produced by the method for producing a lithium ion battery of the present invention.
  • the method for producing an electrode active material molded body for a lithium ion battery according to the present invention is a non-binding body of an electrode active material for a lithium ion battery by molding a composition containing an electrode active material for a lithium ion battery and an electrolytic solution. Including a molding step of obtaining an electrode active material molded body for a lithium ion battery, wherein the electrolyte solution content of the composition is 0.1 to 40% by weight based on the weight of the composition.
  • a composition comprising an electrode active material for a lithium ion battery (hereinafter also simply referred to as an active material) and an electrolytic solution is molded.
  • An electrode active material molded body for a lithium ion battery (hereinafter also simply referred to as an electrode active material molded body), which is a non-binding body of an electrode active material for a lithium ion battery, is obtained.
  • the electrode active material molded body obtained by the molding step contains an electrode active material for a lithium ion battery and an electrolytic solution, and satisfies the configuration as an electrode for a lithium ion battery.
  • the electrode active material molded object is shape
  • the method of molding the composition is not particularly limited.
  • a composition that is a mixture of an electrode active material for lithium ion batteries and an electrolytic solution is filled in a mold having a bottom surface and a side surface to have an arbitrary shape.
  • examples thereof include a method of pressure molding, a method of continuous molding by extrusion molding, a method of molding by calendar molding (rolling), and the like.
  • FIG. 1A to FIG. 1C are schematic views showing an example of a mold used in the molding process.
  • FIG. 1 (a) is a perspective view schematically showing an example of a mold used in the molding process
  • FIG. 1 (b) is a cross-sectional view taken along the line AA in FIG. 1 (a).
  • FIG. 2C is a perspective view schematically showing a state where the mold shown in FIG.
  • a mold 100 includes a mold 101 that forms a side surface and a mold 103 that forms a bottom surface.
  • FIG. 1A to FIG. 1C are schematic views showing an example of a mold used in the molding process.
  • FIG. 1 (a) is a perspective view schematically showing an example of a mold used in the molding process
  • FIG. 1 (b) is a cross-sectional view taken along the line AA in FIG. 1 (a).
  • FIG. 2C is a perspective view schematically showing a state where the mold shown in FIG.
  • a mold 100 includes a mold 101 that
  • the mold 100 the space V 1 surrounded by upper bottom surface 103a of the mold 103 constituting the inner wall surface 101a and the bottom surface of the mold 101 that defines the side surface is formed.
  • mold 103 which comprises a bottom face are separable.
  • FIGS. 2A to 2F are schematic views showing an example of the molding process.
  • 2 (a) shows an example of a mold used in the molding process
  • FIG. 2 (b) shows an example of how the composition is filled in the mold in the molding process
  • FIG. 2E Shows an example of the appearance of taking out the compressed electrode active material molded body from the mold.
  • the mold 100 is bottom formed by the mold 103 constituting a bottom surface, and a space V 1 whose side surface is formed by the mold 101 constituting the side surface.
  • the space V 1 is filled with the composition 110 and pressed by the compression jig 104.
  • the degree to which the composition 110 is compressed is not particularly limited as long as it is a pressure at which the composition 110 can be molded.
  • the electrode active material molded body 10 (which is finally used as a lithium ion battery) shown in FIG. 2D may be used.
  • the molded electrode active material molded body 10 is taken out from the mold 100 as shown in FIG. In addition, you may take out the electrode active material molded object 15 shown in FIG.2 (c) from the type
  • FIG. Through the steps shown in FIGS. 2 (a) to 2 (e), an electrode active material molded body 10 shown in FIG. 2 (f) in which the electrode active material composition is formed is obtained.
  • the composition contains an electrode active material for lithium ion batteries and an electrolytic solution, it is formed into a fixed shape by a method such as using a mold having a predetermined shape, as in the case of forming a mixture of sand and water. And an electrode active material molded body can be obtained.
  • the electrode active material for a lithium ion battery is a coated active material in which at least a part of its surface is coated with a coating containing a coating resin, the coating containing the electrolyte swells and becomes sticky. Since it shows, it can shape
  • filling means a state in which the entire composition is accommodated in a mold space. It is desirable that the active material and the electrolytic solution constituting the composition are filled in a uniformly mixed state, but by first containing only the active material in the mold, and then impregnating the active material with the electrolytic solution, You may employ
  • the content of the electrolytic solution of the composition may be 0.1 to 40% by weight based on the weight of the composition.
  • the properties of the mixture of the active material and the electrolytic solution are a solid-liquid mixture having fluidity (also referred to as slurry), a solid-liquid mixture having low fluidity (also referred to as pendular or funicular), gel-like, and There may be wet powder.
  • the slurry state is a property in which at least all of the voids between the active materials are filled with the electrolytic solution or a volume of the electrolytic solution exceeding the active material, and the pendular shape or the funicular shape is active.
  • a part of the gap between the substances is filled with the electrolyte, and the funicular shape is obtained by mixing the electrolyte and the active material in a volume less than the total volume of the gaps between the active materials. It is.
  • a liquid is added to the close-packed particle group, if the amount of the liquid is small, the liquid adheres in an annular shape centering on the contact point of the particles and exists discontinuously (pendular state). And as the amount of liquid increases, the liquid adhering to the ring increases in size, and finally the rings can be connected to each other, so that the liquid phase has a continuous structure even though there are voids (funicular state) .
  • the electrode active material when the amount of liquid increases, voids disappear, and only the solid-liquid two phase takes a continuous structure, and shifts to a slurry state. Among these, a pendular shape, a funicular shape, a gel shape, and a wet powder shape are desirable. When the properties of the electrode active material are those described above, the electrode active material can be molded under simpler conditions.
  • a separator having a bottom surface and a side surface is covered with a separator so as to cover the entire bottom surface of the mold and at least a part of the side surface of the mold. And filling and molding the composition into the mold in which the separator is disposed, and at least of the surface corresponding to the bottom surface of the mold and the surface corresponding to the side surface of the mold of the composition It is desirable to continuously cover a part with the separator.
  • FIG. 3A to FIG. 3C are schematic views showing another example of a mold used in the molding process.
  • FIG. 3 (a) is a perspective view schematically showing an example of a mold used in the molding process
  • FIG. 3 (b) is a cross-sectional view taken along line BB in FIG. 3 (a).
  • FIG. 3C is a perspective view schematically showing a state in which the mold shown in FIG. As shown in FIGS.
  • the mold 200 includes a mold 201 that constitutes a side surface, a mold 203 that constitutes a bottom surface, and a mold 202 that constitutes a corner portion.
  • an inner wall surface 201a of the mold 201 that defines the side surface, the space V 2 enclosed is formed by the upper bottom surface 203a of the mold 203 constituting the bottom.
  • the mold 201 constituting the side surface, the mold 203 constituting the bottom surface, and the mold 202 constituting the corner portion may be separable from each other.
  • the mold 202 constituting the corner portion functions to fix the mold 203 constituting the bottom face at a predetermined position in the state shown in FIGS. 3A and 3B. When the forming mold 203 is moved downward, it functions as a mold forming the side surface.
  • FIGS. 4 (a) to 4 (g) are also explanatory views schematically showing an example of a molding process using the mold shown in FIGS. 3 (a) to 3 (c).
  • FIGS. 4A to 4G are schematic views showing another example of the molding process.
  • 4A is an example of a mold used in the molding process
  • FIG. 4B is an example of a state in which a separator is placed in the mold in the molding process
  • FIG. 4C is a composition filled in the mold. 4 (d) to FIG.
  • FIGS. 4 (a) to 4 (f) are examples of how the composition is compressed
  • FIG. 4 (g) is obtained by the steps shown in FIGS. 4 (a) to 4 (f).
  • One example of the electrode active material molded body unit is shown.
  • the mold 200, the bottom surface is formed by the mold 203 constituting a bottom surface, and a space V 2 which side is formed by the mold 201 constituting the side surface.
  • the separator 20 is arranged on a mold 203 constituting the bottom surface and a mold 202 constituting the corner portion.
  • the separator 20 is disposed on the mold 203 constituting the bottom surface and between the mold 201 constituting the side surface and the mold 202 constituting the corner portion.
  • the separator 20 covers the entire upper bottom surface of the mold 203 constituting the bottom surface, and has a larger area than the upper bottom surface of the mold 203 constituting the bottom surface.
  • the separator 20 is disposed between the mold 201 constituting the side surface and the mold 202 constituting the corner portion.
  • the mold 201 constituting the side surface and the mold 202 constituting the corner portion May be separated (that is, using the mold 100 shown in FIGS. 1 (a) to 1 (c)), and the separator 20 may be disposed in the mold in a U-shaped state.
  • the separator 20 is arranged in a U-shape in the mold, in order to improve the contact between the separator 20 and the mold 200, the bottom surface of the separator 20 is fixed using a jig having a shape corresponding to the shape of the space.
  • the separator may be brought into close contact with the bottom surface of the mold 200 by a method of pressing the upper surface of the mold 203 to be configured.
  • FIG. 4 (c) As a method of filling the composition into the separator is arranged mold, for example, as shown in FIG. 4 (c), filling the composition 110 in the space V 2 in the mold 200 comprising an active material and electrolyte To do. Since the separator 20 is disposed on the bottom surface of the mold 200, the composition 110 filled in the mold 200 is disposed on the separator 20.
  • a method of molding the composition filled in the mold for example, as shown in FIGS. 4D and 4E, the composition 110 filled in the mold 200 is replaced with a mold 203 constituting the bottom surface.
  • tool 204 for compression from the surface on the opposite side is mentioned.
  • Compression jig 204 is preferably in the shape of the space V 2 which is formed in the mold 200 a substantially corresponding shape.
  • an electrode active material molded body 11 shown in FIG. 4F by moving the mold 203 constituting the bottom surface in the same direction as the compression direction of the compression jig 204, the mold 201 constituting the side surface and the mold constituting the corner portion.
  • the end portions 20 c and 20 d of the separator sandwiched between 202 can be drawn out to the side surface of the mold 202 constituting the corner portion and can be disposed on the side surface of the electrode active material molded body 11.
  • the electrode active material molded body 11 and the separator 20 are integrated to correspond to the bottom surface of the mold 200 in the electrode active material molded body 11.
  • the electrode active material molded body unit 30 as shown in FIG. 4G can be obtained in which the entire surface to be processed and at least a part of the surface corresponding to the side surface of the mold 200 are continuously covered with the separator 20. .
  • the degree to which the composition 110 is compressed is not particularly limited as long as the pressure allows the composition 110 to be molded, and the electrode active material molded body 15 (finally used as a lithium ion battery) shown in FIG.
  • the electrode active material molded body 11 (which is finally used as a lithium ion battery) shown in FIG. 4E may be used. That is, in the molding process, the mold 201 that forms the bottom surface is moved in the same direction as the compression direction of the compression jig 204 from the state shown in FIG.
  • the end portions 20c and 20d of the separator sandwiched between the molds 202 constituting the metal parts are drawn out to the side surfaces of the molds 202 constituting the corner parts and arranged on the side surfaces of the electrode active material molded body 15, thereby An electrode may be obtained by integrating the material molded body 15 and the separator 20.
  • the shape of the mold only needs to have a bottom surface and side surfaces, and other shapes are not particularly limited.
  • the mold constituting the bottom surface and the mold constituting the side surface may be integrated. However, as described in FIGS. 1A to 1C, the mold constituting the side surface and the mold constituting the bottom surface are different. It is desirable to be configured to be separable, and as described in FIGS. 3A to 3C, the mold constituting the side surface is configured to be separable into two at the height of the bottom surface. More desirable.
  • the mold that constitutes the portion lower than the height of the bottom surface does not substantially constitute the side surfaces, and is also referred to as a mold that constitutes the corners.
  • the material constituting the mold examples include general materials such as metals used for molds. Further, in order to reduce friction generated between the mold and the electrode active material molded body, the surface of the mold may be coated with fluorine.
  • the shape of the space formed in the mold (hereinafter also simply referred to as space) may be adjusted according to the shape of the electrode active material molded body desired to be obtained, and it is desirable that the shape does not change in the compression direction. For example, a cylindrical shape, a prismatic shape or the like is desirable.
  • An electrode active material molded body having a substantially circular shape in plan view when a space-shaped mold is used and a rectangular shape in plan view when a space-shaped mold is used is obtained.
  • a separator may be disposed so as to cover the entire bottom surface of the mold and at least a part of the side surface.
  • an electrode active material molded body unit in which the separator and the electrode active material molded body are integrated can be obtained.
  • an electrode active material molded body unit when a lithium ion battery is manufactured by combining the electrode active material molded body units, it is not necessary to prepare a separator separately, and the handleability of the electrode active material molded body is improved. ,preferable.
  • the electrode active material molded body unit in which the entire surface corresponding to the bottom surface of the mold and at least a part of the surface corresponding to the side surface of the mold are covered with the separator is integrated with the battery exterior body in the combination process, Since the area where the electrode active material molded body is exposed decreases, the quality of the manufactured lithium ion battery is less likely to vary, which is preferable.
  • the separator to be used has a shape capable of completely covering the bottom surface of the mold and covering at least a part of the side surface of the mold.
  • the separator does not need to be in close contact with the bottom surface of the mold, but it is more preferable that the separator is in close contact.
  • Examples of the method of bringing the separator into close contact with the bottom surface of the mold include a method of pressing the separator disposed on the bottom surface of the mold against the bottom surface of the mold using a jig or the like.
  • a crease that matches the size of the molded electrode active material molded body may be formed in the separator in advance.
  • mold does not necessarily need to become the solid
  • the area of the separator is that of the surface corresponding to the bottom surface of the mold (that is, the bottom surface of the electrode active material molded body) and the surface corresponding to the side surface of the mold (that is, the side surface of the electrode active material molded body). It is preferably an area that can cover at least a part, more preferably an area that can cover the entire surface corresponding to the bottom surface of the mold and the entire surface corresponding to the side surface of the mold. It is more preferable to cover not only the entire surface corresponding to the surface and the entire surface corresponding to the side surface of the mold, but also the entire surface corresponding to the surface facing the bottom surface of the mold (that is, the upper surface of the electrode active material molded body). .
  • a separator When a separator covers the whole bottom face of an electrode active material molded object, it can prevent that a positive electrode active material molded object and a negative electrode active material composition contact directly. Further, when covering the entire bottom surface and at least a part of the side surface of the electrode active material molded body (more preferably, the entire bottom surface of the electrode active material molded body, the entire side surface and the entire top surface of the electrode active material molded body) Since the exposed portion of the electrode active material molded body is reduced when the body is integrated with the battery exterior body, a positive electrode member (positive electrode current collector and positive electrode active material molded body) and a negative electrode member (negative electrode current collector) are formed inside the battery. And the negative electrode active material molded body) are not in direct contact with each other, and the quality of the manufactured lithium ion battery is less likely to vary, which is preferable.
  • a step of separately covering the surface of the electrode active material molded body with a separator is provided after the molding process. Also good. At this time, the region that is preferably covered with the separator on the surface of the electrode active material molded body, the area of the separator, and the arrangement of the current collector are the same as in the case where the electrode active material molded body is covered with the separator in the molding process. .
  • the material constituting the separator includes polyethylene, a microporous film of polypropylene film, a multilayer film of porous polyethylene film and polypropylene, a nonwoven fabric made of polyester fiber, aramid fiber, glass fiber, etc., and silica, alumina on the surface thereof And ceramic fine particles such as titania attached thereto.
  • the electrode active material molded body preferably has 5 to 100% of the side surface covered with a separator.
  • the strength of pressing the compression jig against the composition is not particularly limited, but is preferably 10 to 2000 MPa, and more preferably 50 to 1000 MPa.
  • the filling rate of the molded composition is desirably 40 to 70% when the active material is a positive electrode active material (that is, in the case of a positive electrode active material molded body), and the active material is a negative electrode active material. In the case of (ie, in the case of a negative electrode active material molded body), it is desirable to be 50 to 80%.
  • a filling rate is represented by the ratio (volume percentage) of the volume of solid content contained in the electrode active material molded object with respect to the volume of an electrode active material molded object.
  • extrusion molding will be described.
  • a method for obtaining an electrode active material molded body by extrusion include a method using a conventionally known extrusion molding machine.
  • an extrusion molding machine for example, a raw material cylinder to which raw material is supplied, a die (also referred to as a mold) attached to the raw material discharge side of the raw material cylinder, and a raw material placed in the raw material cylinder are extruded toward the die. And those having a rotating shaft-like screw.
  • An active material and an electrolytic solution which are raw materials of an electrode active material molded body, are charged into a raw material cylinder, and an active material and an electrolytic solution that have moved the raw material cylinder by rotating a screw are extruded from a die to obtain an electrode active material molded body.
  • An active material and an electrolytic solution which are raw materials of an electrode active material molded body, are charged into a raw material cylinder, and an active material and an electrolytic solution that have moved the raw material cylinder by rotating a screw are extruded from a die to obtain an electrode active material molded body.
  • the shape of the electrode active material molded body can be appropriately adjusted by adjusting the shape of the die and the rotational speed of the screw.
  • the shape of the composition discharged from the die is not particularly limited, but is preferably a cylindrical shape or a quadrangular prism shape.
  • the method of cutting the composition discharged from the die is not particularly limited, and examples thereof include a method of cutting with a rotary cutter, yarn, and the like.
  • the temperature of the composition at the time of extrusion molding is not particularly limited, but is preferably 40 ° C. or less from the viewpoint of moldability and the like.
  • the preferable mixing ratio of the active material and the electrolytic solution and the preferable properties of the composition before molding are the same as those in the case of pressure molding using a mold.
  • the electrode active material molded body obtained by extrusion molding is the same as the electrode active material molded body obtained by the method of molding the electrode active material molded body without disposing a separator in the mold, and the housing part of the battery exterior body Can be accommodated.
  • Examples of a method for obtaining an electrode active material molded body by calendering include a method using a known roll press apparatus.
  • the mixture is charged from a continuous mixer such as a kneader, and a sheet-shaped electrode active is obtained by roll-pressing a mixture of an active material and an electrolyte solution spread on a smooth surface such as a film with a doctor blade.
  • a material compact can be obtained.
  • the forming process is completed by cutting the sheet-shaped electrode active material molded body into a predetermined length.
  • molding are the same as the case of the pressure molding which used the type
  • the electrode active material molded body for a lithium ion battery obtained by the method for producing an electrode active material molded body for a lithium ion battery of the present invention contains an electrolytic solution, but the amount of the electrolytic solution used is the optimum condition for the molding process. In this case, the battery performance of the lithium ion battery may not be satisfied. Therefore, after the electrode active material molded body obtained by the molding process is accommodated in the accommodating portion of the battery exterior body, the electrode active material molded body is further electrolyzed. A liquid may be added.
  • the composition comprises an active material and an electrolytic solution, and may contain a conductive additive, a viscosity modifier, and the like as necessary.
  • the amount of the electrolytic solution in the composition is 0.1 to 40.0% by weight.
  • the composition (a mixture of the active material and the electrolytic solution) before molding is a non-binding body of a mixture of the electrode active material for a lithium ion battery and the electrolytic solution.
  • molding this composition is also a non-binding body of the mixture of the electrode active material for lithium ion batteries, and electrolyte solution.
  • the active materials are not bound to each other by the conductive additive, the viscosity modifier, etc.
  • the molded body of the lithium ion battery electrode active material is also a non-binding body of a mixture of the lithium ion battery electrode active material and the electrolytic solution.
  • the electrolyte content of the composition is 0.1 to 40% by weight based on the weight of the composition.
  • the electrolytic solution content of the composition is less than 0.1% by weight based on the weight of the composition, the liquid cross-linking force is insufficient and the shape retention of the molded article becomes insufficient.
  • the electrolytic solution content of the composition can be within the above range by adjusting the amount of the electrolytic solution added to the active material.
  • the electrolyte solution content of the composition is preferably 5 to 35% by weight, more preferably 10 to 30% by weight, based on the weight of the composition.
  • the amount of the electrolytic solution is sufficient to maintain the shape when the composition is molded, but the amount of the electrolytic solution of the composition is sufficient, but it may be insufficient to satisfy the battery performance of the lithium ion battery.
  • the amount of the electrolytic solution in the molded body can be adjusted by further adding an electrolytic solution to the molded body. At this time, since the electrolytic solution already exists in the molded body, the added electrolytic solution can easily penetrate into the composition without performing a decompression operation, etc., in order to absorb the electrolytic solution. Such time can be shortened.
  • the weight ratio of the active material contained in the composition is desirably 80 to 100% by weight based on the total solid weight of the composition from the viewpoint of achieving both shape retention and battery performance.
  • the electrode active material for a lithium ion battery is a coated active material in which at least a part of the surface is coated with a coating material containing a coating resin, the weight of the coating material is not included in the weight of the active material.
  • the composition is a non-binder of a mixture of an active material and an electrolytic solution, because the active materials constituting the composition are bound to each other by a binder (also called a binder). It means that the positions of each other are not fixed, and all the active materials in the composition are not bound to each other.
  • An active material layer in a conventional lithium ion battery (corresponding to the electrode active material molded body in the method for producing a lithium ion battery of the present invention) is a current collector or the like obtained by dispersing a slurry in which an active material and a binder are dispersed in a solvent. Therefore, the active material layer is hardened with a binder.
  • the active materials are bound to each other by the binder, and the positions of the active materials are irreversibly fixed.
  • the electrode active material for lithium ion battery in the electrode active material molded body produced by the method for producing the electrode active material molded body for lithium ion battery of the present invention is not bound to each other, and the electrode active material for lithium ion battery is The position between substances is not fixed. Therefore, when a composition containing a lithium ion battery electrode active material that is not bound to each other is taken out, the lithium ion battery electrode active material contained in the composition can be easily loosened by hand, and the state is confirmed. can do.
  • binder examples include starch, polyvinyl alcohol, carboxymethylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene, polypropylene, polyvinylidene fluoride (PVdF), and styrene-butadiene rubber (SBR).
  • binder for a lithium ion battery examples include, but in the method for producing an electrode active material molded body for a lithium ion battery according to the present invention, it is desirable that these compounds are not added to the composition as a binder. It is more desirable not to use these compounds as the compounds constituting the agent.
  • the electrode active material for a lithium ion battery constituting the electrode active material molded body may be a positive electrode active material or a negative electrode active material.
  • a composition using a positive electrode active material as an electrode active material for a lithium ion battery is also referred to as a positive electrode composition
  • a composition using a negative electrode active material as an electrode active material for a lithium ion battery is also referred to as a negative electrode composition.
  • the coating material when the lithium ion battery electrode active material is a positive electrode active material is also referred to as a positive electrode coating material
  • the coating material when the lithium ion battery electrode active material is a negative electrode active material is also referred to as a negative electrode coating material.
  • An electrode active material molded body using a positive electrode composition as a composition is also referred to as a positive electrode active material molded body, and an electrode active material molded body using a negative electrode composition as a composition is also referred to as a negative electrode active material molded body.
  • an electrode active material molded body unit using a positive electrode composition as a composition is also referred to as a positive electrode active material molded body unit, and an electrode active material molded body unit using a negative electrode composition as a composition is also referred to as a negative electrode active material molded body unit.
  • a lithium ion battery is manufactured by combining a positive electrode active material molded body and a negative electrode active material molded body so that the compositions are arranged via a separator and covering the periphery with a battery outer package or the like.
  • the positive electrode active material constituting the positive electrode composition a conventionally known material can be suitably used, which is a compound capable of inserting and detaching lithium ions by applying a certain potential, and used as a counter electrode.
  • a compound that can insert and remove lithium ions at a higher potential than the active material can be used.
  • a composite oxide of lithium and a transition metal a composite oxide having one transition metal (such as LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2, and LiMn 2 O 4 )) or a transition metal element
  • a composite oxide having one transition metal such as LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2, and LiMn 2 O 4
  • Two kinds of complex oxides for example, LiFeMnO 4 , LiNi 1-x Co x O 2 , LiMn 1-y Co y O 2 , LiNi 1/3 Co 1/3 Al 1/3 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2
  • lithium-containing transition metal phosphate e.g. LiFePO 4, Li OPO 4, LiMnPO 4 and LiNiPO 4
  • transition metal oxides e.g., MnO 2 and V 2 O 5
  • transition metal sulfides e.g., MoS 2 and TiS 2
  • the conductive polymer such as polyaniline, polypyrrole, polythiophene, Polyacetylene, poly-p-phenylene and polyvinylcarbazole
  • the lithium-containing transition metal phosphate may be one in which a part of the transition metal site is substituted with another transition metal.
  • the volume average particle diameter of the positive electrode active material is preferably 0.01 to 100 ⁇ m, more preferably 0.1 to 35 ⁇ m, and more preferably 1 to 30 ⁇ m, from the viewpoint of the electrical characteristics of the lithium ion battery. Further preferred.
  • the negative electrode active material examples include carbon-based materials [for example, graphite, non-graphitizable carbon, amorphous carbon, resin fired bodies (for example, those obtained by firing and carbonizing phenol resin, furan resin, etc.), cokes (for example, pitch coke, Needle coke and petroleum coke etc.), silicon carbide and carbon fiber etc.], conductive polymers (eg polyacetylene and polypyrrole etc.), metals (tin, silicon, aluminum, zirconium and titanium etc.), metal oxides (titanium oxide, Lithium / titanium oxide, silicon oxide, etc.) and metal alloys (eg, lithium-tin alloy, lithium-silicon alloy, lithium-aluminum alloy, lithium-aluminum-manganese alloy, etc.) and mixtures thereof with carbon-based materials Is mentioned.
  • carbon-based materials for example, graphite, non-graphitizable carbon, amorphous carbon, resin fired bodies (for example, those obtained by firing and carbonizing phenol
  • the volume average particle diameter of the negative electrode active material is preferably from 0.01 to 100 ⁇ m, more preferably from 0.1 to 40 ⁇ m, and even more preferably from 2 to 35 ⁇ m, from the viewpoint of the electrical characteristics of the lithium ion battery.
  • the volume average particle diameters of the positive electrode active material and the negative electrode active material mean the particle diameter (Dv50) at an integrated value of 50% in the particle size distribution obtained by the microtrack method (laser diffraction / scattering method).
  • the microtrack method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light.
  • Nikkiso Co., Ltd. microtrack etc. can be used for the measurement of a volume average particle diameter.
  • the electrode active material for a lithium ion battery is a coated active material in which at least a part of the surface is coated with a coating containing a coating resin.
  • the coating agent containing the electrolytic solution swells and exhibits adhesiveness, so that molding can be performed under simpler conditions.
  • the coated active material is one in which at least a part of the surface of the lithium ion battery electrode active material is coated with a coating agent containing a coating resin.
  • the coating agent includes a coating resin, and may further include a conductive material as necessary.
  • the coated active material is a material in which at least a part of the surface of the electrode active material for a lithium ion battery is coated with a coating material containing a coating resin.
  • the coated active materials are in contact with each other. Even if it does, the electrode active material for lithium ion batteries is not irreversibly adhered on the contact surface, and the adhesion is temporary and can be easily loosened by hand.
  • the electrode active materials for use are not fixed by the coating agent. Therefore, the composition comprising the coating active material is not one in which the electrode active materials for lithium ion batteries are bound together.
  • the coating resin examples include thermoplastic resins and thermosetting resins.
  • fluororesins acrylic resins, urethane resins, polyester resins, polyether resins, polyamide resins, epoxy resins, polyimide resins, silicone resins, phenols.
  • examples thereof include resins, melamine resins, urea resins, aniline resins, ionomer resins, polycarbonates, polysaccharides (such as sodium alginate), and mixtures thereof.
  • acrylic resins, urethane resins, polyester resins or polyamide resins are preferable, and acrylic resins are more preferable.
  • a coating resin having a liquid absorption rate of 10% or more when immersed in an electrolytic solution and a tensile elongation at break in a saturated liquid absorption state of 10% or more is more preferable.
  • the liquid absorption rate when immersed in the electrolytic solution is obtained by the following equation by measuring the weight of the coating resin before and after being immersed in the electrolytic solution.
  • Absorption rate (%) [(weight of coating resin after immersion in electrolytic solution ⁇ weight of coating resin before immersion in electrolytic solution) / weight of coating resin before immersion in electrolytic solution] ⁇ 100
  • An electrolytic solution dissolved to a concentration of L is used.
  • the immersion in the electrolytic solution for determining the liquid absorption rate is performed at 50 ° C. for 3 days.
  • the saturated liquid absorption state refers to a state in which the weight of the coating resin does not increase even when immersed in the electrolyte.
  • the electrolyte solution used when manufacturing a lithium ion battery is not limited to the said electrolyte solution, You may use another electrolyte solution.
  • the liquid absorption is 10% or more, lithium ions can easily permeate the coating resin, so that the ionic resistance in the composition can be kept low.
  • the liquid absorption is less than 10%, the lithium ion conductivity is lowered, and the performance as a lithium ion battery may not be sufficiently exhibited.
  • the liquid absorption is more preferably 20% or more, and further preferably 30% or more.
  • a preferable upper limit of a liquid absorption rate it is 400%, and as a more preferable upper limit, it is 300%.
  • the tensile elongation at break in the saturated liquid absorption state was determined by punching the coating resin into a dumbbell shape and immersing it in an electrolytic solution at 50 ° C. for 3 days in the same manner as the measurement of the liquid absorption rate.
  • the state can be measured according to ASTM D683 (test piece shape Type II).
  • the tensile elongation at break is a value obtained by calculating the elongation until the test piece breaks in the tensile test according to the following formula.
  • Tensile elongation at break (%) [(length of specimen at break ⁇ length of specimen before test) / length of specimen before test] ⁇ 100
  • the coating resin has appropriate flexibility. It becomes easy to suppress that an agent peels.
  • the tensile elongation at break is more preferably 20% or more, and further preferably 30% or more. Further, the preferable upper limit value of the tensile elongation at break is 400%, and the more preferable upper limit value is 300%.
  • those described as a coating resin in International Publication No. 2015/005117 constitute a coating agent in the method for producing an electrode active material molded body for a lithium ion battery of the present invention. It can be particularly suitably used as a coating resin.
  • the conductive material is selected from materials having conductivity. Specifically, metals [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), etc. , And mixtures thereof, but are not limited thereto. These conductive materials may be used alone or in combination of two or more. Further, these alloys or metal oxides may be used. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, copper, titanium and a mixture thereof are preferable, silver, aluminum, stainless steel and carbon are more preferable, and carbon is more preferable. In addition, as these conductive materials, a particulate ceramic material or a resin material may be coated with a conductive material (a metal material among the above-described conductive materials) by plating or the like.
  • a conductive material a metal material among the above-described conductive materials
  • the average particle size of the conductive material is not particularly limited, but is preferably 0.01 to 10 ⁇ m, more preferably 0.02 to 5 ⁇ m, from the viewpoint of the electrical characteristics of the lithium ion battery. More preferably, it is 0.03 to 1 ⁇ m.
  • the “particle diameter” means the maximum distance L among the distances between any two points on the particle outline.
  • the value of “average particle size” is the average value of the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
  • the shape (form) of the conductive material is not limited to the particle form, but may be a form other than the particle form, or may be a form put into practical use as a so-called filler-based conductive material such as a carbon nanotube.
  • the conductive material may be a conductive fiber having a fibrous shape.
  • conductive fibers include carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, conductive fibers obtained by uniformly dispersing highly conductive metal and graphite in synthetic fibers, and metals such as stainless steel.
  • examples thereof include fiberized metal fibers, conductive fibers in which the surface of organic fiber is coated with metal, and conductive fibers in which the surface of organic fiber is coated with a resin containing a conductive substance.
  • carbon fibers are preferable.
  • a polypropylene resin in which graphene is kneaded is also preferable.
  • the average fiber diameter is preferably 0.1 to 20 ⁇ m.
  • the electrode active material for lithium ion batteries is a positive electrode active material.
  • the ratio of the total weight of the coating resin and the conductive material to the weight of the positive electrode active material is not particularly limited, but is preferably 2 to 25% by weight.
  • the ratio of the weight of the coating resin to the weight of the positive electrode active material is not particularly limited, but is preferably 0.1 to 10% by weight.
  • the ratio of the weight of the conductive material to the weight of the positive electrode active material is not particularly limited, but is preferably 2 to 15% by weight.
  • the conductivity of the positive electrode coating agent is preferably 0.001 to 10 mS / cm, and more preferably 0.01 to 5 mS / cm.
  • the conductivity of the positive electrode coating material can be determined by a four-terminal method. When the electrical conductivity of the positive electrode coating agent is 0.001 mS / cm or more, the electrical resistance of the positive electrode active material molded body is hardly increased.
  • the ratio of the total weight of the coating resin and the conductive material contained in the negative electrode coating agent is not particularly limited, but is preferably 25% by weight or less based on the weight of the negative electrode active material.
  • the ratio of the weight of the coating resin to the weight of the negative electrode active material is not particularly limited, but is preferably 0.1 to 20% by weight.
  • the ratio of the weight of the conductive material to the weight of the negative electrode active material is not particularly limited, but is preferably 10% by weight or less.
  • the same conductive material as that which may be contained in the coating agent can be suitably used.
  • the electrolytic solution As the electrolytic solution, one containing an electrolyte and a non-aqueous solvent used in the production of a lithium ion battery can be used.
  • lithium salt electrolytes of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4 , LiN (SO 2 CF 3 ) 2 and an imide-based electrolyte such as LiN (SO 2 C 2 F 5 ) 2 , an alkyl lithium-based electrolyte such as LiC (SO 2 CF 3 ) 3, and the like.
  • LiPF 6 is preferable from the viewpoint of ion conductivity at high concentration and thermal decomposition temperature. LiPF 6 may be used in combination with other electrolytes, but is more preferably used alone.
  • the electrolyte concentration of the electrolytic solution is not particularly limited, but is preferably 0.5 to 5 mol / L, more preferably 0.8 to 4 mol / L, and further preferably 1 to 2 mol / L. preferable.
  • non-aqueous solvent those used in known electrolytic solutions can be used, for example, lactone compounds, cyclic or chain carbonates, chain carboxylates, cyclic or chain ethers, phosphates, nitriles. Compounds, amide compounds, sulfones and the like and mixtures thereof can be used.
  • lactone compound examples include a 5-membered ring ( ⁇ -butyrolactone, ⁇ -valerolactone, etc.) and a 6-membered lactone compound ( ⁇ -valerolactone, etc.).
  • Examples of the cyclic carbonate include propylene carbonate, ethylene carbonate and butylene carbonate.
  • Examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate.
  • chain carboxylic acid esters include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate.
  • cyclic ether examples include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane and the like.
  • chain ether examples include dimethoxymethane and 1,2-dimethoxyethane.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, tri (trichloromethyl) phosphate, Tri (trifluoroethyl) phosphate, tri (triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphosphoran-2-one, 2-trifluoroethoxy-1,3,2- Examples include dioxaphospholan-2-one and 2-methoxyethoxy-1,3,2-dioxaphosphoran-2-one.
  • Examples of the nitrile compound include acetonitrile.
  • Examples of the amide compound include DMF.
  • Examples of the sulfone include chain sulfones such as dimethyl sulfone and diethyl sulfone, and cyclic sulfones such as sulfolane.
  • a non-aqueous solvent may be used individually by 1 type, and may use 2 or more types together.
  • a lactone compound preferred are a lactone compound, a cyclic carbonate, a chain carbonate and a phosphate ester from the viewpoint of the output of the lithium ion battery and the charge / discharge cycle characteristics. More preferred are a lactone compound, a cyclic carbonate and a chain carbonate, and particularly preferred is a cyclic carbonate or a mixture of a cyclic carbonate and a chain carbonate. Most preferred is a mixture of ethylene carbonate (EC) and propylene carbonate (PC), a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC), or a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC). It is a liquid.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • One aspect of the method for producing a lithium ion battery of the present invention is that at least a part of the electrode active material molded body for a lithium ion battery produced by the method for producing an electrode active material molded body for a lithium ion battery of the present invention is accommodated. And a combination step of preparing the electrode structure by integrating the electrode active material molded body with the battery exterior body and arranging the electrode active material molded body in the housing portion of the battery exterior body in which the portion is formed. .
  • the electrode active material for a lithium ion battery is desirably a coated active material in which at least a part of the surface is coated with a coating agent containing a coating resin.
  • the coating agent containing the electrolytic solution swells and exhibits adhesiveness, so that molding can be performed under simpler conditions.
  • FIGS. 5 (a) to 5 (c) are schematic views showing an example of a method for producing a lithium ion battery of the present invention.
  • FIG. 5A is an explanatory view schematically showing an example of the combination process.
  • FIGS. 5B and 5C show a lithium ion battery using the electrode structure prepared by the combination process.
  • FIG. 5 (a) in the combining step, the positive electrode active material molded body 10a is disposed in the housing portion of the positive electrode exterior body 50a in which the positive electrode housing portion 55a is formed at least partially, and the positive electrode active material molded body 10a. And the positive electrode exterior body 50a are integrated to obtain the positive electrode structure 12a.
  • the inner surface of the positive electrode outer package 50a the surface in contact with the positive electrode active material molded body 10a
  • a method for manufacturing a lithium ion battery using the electrode structure obtained by the combination process will be described with reference to FIGS. 5B and 5C.
  • two types of electrodes having different types of active materials are required.
  • 5B and 5C a lithium ion battery is formed using a positive electrode structure using a positive electrode active material as an electrode active material and a negative electrode structure using a negative electrode active material as an electrode active material. A manufacturing method will be described. As shown in FIG.
  • FIG. 5B a positive electrode structure 12a whose electrode active material molded body is a positive electrode active material molded body 10a, and a negative electrode structure 12b whose electrode active material molded body is a negative electrode active material molded body 10b, It arrange
  • FIG. The configuration of the negative electrode structure 12b is substantially the same as that of the positive electrode structure 12a, and a negative electrode current collector 40b is disposed between the negative electrode active material molded body 10b and the negative electrode exterior body 50b.
  • An insulating adhesive resin layer 60a is provided on a portion of the surface of the positive electrode outer package 50a facing the negative electrode outer package 50b where the housing portion is not formed.
  • an insulating adhesive resin layer 60b is provided on a portion of the surface of the negative electrode outer package 50b facing the positive electrode outer package 50a where the housing portion is not formed. Therefore, the positive electrode exterior body 50a and the negative electrode exterior body 50b are not in direct contact and do not short-circuit. Therefore, by performing a sealing process in which the positive electrode outer package 50a and the negative electrode outer package 50b are bonded and sealed with the adhesive resin layers 60a and 60b, as shown in FIG. The lithium ion battery 1 in which the negative electrode exterior body 50b is sealed with the adhesive resin layer 60 is obtained.
  • an electrode active material in which an electrode active material molded body and a separator are integrated in place of the electrode active material molded body described in FIGS. 5 (a) to 5 (c).
  • a material compact unit may be used.
  • a method of manufacturing a lithium ion battery using the electrode active material molded unit will be described with reference to FIGS. 6 (a) to 6 (c).
  • FIG. 6A is an explanatory view schematically showing another example of the combination process
  • FIGS. 6B and 6C show lithium ions using the electrode structure obtained by the combination process. It is explanatory drawing which shows typically another example of the method of manufacturing a battery.
  • the positive electrode active material molded body unit 30a in which the positive electrode active material molded body 11a and the separator 20a are integrated is accommodated in the positive electrode accommodating portion 56a of the positive electrode exterior body 51a. .
  • the separator 20a is disposed so as to face the opposite side of the positive electrode active material molded body 11a from the positive electrode outer package 51a, and a positive electrode current collector 41a is disposed between the positive electrode outer package 51a and the positive electrode active material molded body 11a.
  • a positive electrode current collector 41a is disposed between the positive electrode outer package 51a and the positive electrode active material molded body 11a.
  • a negative electrode active material molded body unit 30b in which the material molded body 11b and the separator 20b are integrated is accommodated, and a negative electrode current collector 41b is disposed between the negative electrode active material molded body unit 30b and the negative electrode exterior body 51b.
  • the structure 13b is bonded by the adhesive resin layer 61 (61a, 61b), whereby the lithium ion battery 2 shown in FIG. 6C is obtained.
  • the separator when the separator is disposed, it is necessary to dispose the separator so as to cover an area larger than the contact area between the positive electrode active material and the negative electrode active material so that the positive electrode active material and the negative electrode active material do not contact each other. In this case, the minimum area that can seal the battery outer package is increased by the amount of the separator protruding from the contact area between the positive electrode active material and the negative electrode active material. Therefore, by using the electrode active material molded body unit, it is possible to increase the volume ratio of the positive electrode active material and the negative electrode active material in the total volume of the lithium ion battery.
  • the electrode active material molded body unit prepared in the combination step may be one in which the electrode active material molded body protrudes from the housing portion of the battery outer package.
  • a lithium ion battery can be manufactured by compressing an electrode active material molded object when sealing a battery exterior body.
  • FIGS. 7A to 7C are schematic views showing still another example of the method for manufacturing a lithium ion battery of the present invention.
  • FIG.7 (a) is explanatory drawing which illustrates typically another example of the combination process in the manufacturing method of the lithium ion battery of this invention
  • FIG.7 (b) and FIG.7 (c) are combination processes. It is explanatory drawing which shows typically the method of manufacturing a lithium ion battery using the electrode structure prepared in FIG.
  • the positive electrode active material molded body unit 35a in which the positive electrode active material molded body 15a and the separator 20a are integrated is accommodated in the positive electrode accommodating portion 56a of the positive electrode exterior body 51a.
  • the positive electrode structure 14a is prepared.
  • the positive electrode active material molded body unit 35a is pressurized until the molding step shown in FIG. 4D, and is obtained when no pressure is applied until the molding step shown in FIG. 4E. It corresponds to.
  • a part of the positive electrode active material molded body unit 35a is a positive electrode exterior body. It protrudes from the positive electrode accommodating part 56a of 51a.
  • the negative electrode active material molded body unit 35b protrudes from the negative electrode housing portion of the negative electrode exterior body 51b. Then, as shown in FIG.
  • a lithium ion battery 2 as shown in FIG. 7C is obtained by performing a sealing process in which the adhesive resin layers 61 (61a and 61b) are bonded and sealed.
  • the positive electrode active material molded object 15a and the negative electrode active material molded object 15b are compressed until it becomes the same density as the shaping
  • the positive electrode active material molded body 15a and the negative electrode active material molded body 15b become the positive electrode active material molded body 11a and the negative electrode active material molded body 11b, respectively, and the lithium ion battery 2 shown in FIG. It becomes the same as the lithium ion battery 2 shown in c).
  • the electrode active material molded body obtained in the molding process is disposed in the housing part of the battery outer body in which the housing part is formed at least partially, and the electrode active material molded body is integrated with the battery outer body.
  • the method of disposing the electrode active material molded body in the housing part of the battery outer body is not particularly limited, but the electrode active material molded body placed on the smooth surface may be covered with the battery outer body.
  • the battery outer package may also serve as a current collector, and the current collector may be disposed on the inner surface of the battery outer package (the surface in contact with the electrode active material molded body).
  • a material that functions as a current collector a material similar to a metal current collector or a resin current collector made of a conductive agent and a resin can be suitably used.
  • metal current collector for example, selected from the group consisting of copper, aluminum, titanium, nickel, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, alloys containing one or more of these, and stainless steel alloys
  • metal materials to be used may be used in the form of a thin plate, a metal foil or the like, or the above metal material may be formed on the surface of the substrate by means such as sputtering, electrodeposition or coating.
  • a part provided with a resin layer made of an insulating resin on a part or the whole of the surface of the current collector may be used.
  • the current collector provided with a resin layer on the surface include a laminated aluminum foil (aluminum laminate film).
  • the resin layer may be a single layer or may be laminated, but the battery outer body can be bonded to the portion of the battery outer body that comes into contact with the battery outer body constituting the counter electrode by thermocompression bonding or the like. It is desirable that a layer composed of a conductive resin is provided.
  • the layer composed of the adhesive resin is also referred to as an adhesive resin layer.
  • the adhesive resin layer is not particularly limited as long as it is a material having adhesion to the battery exterior material and durability to the electrolyte solution, and a polymer material, particularly a thermosetting resin or a thermoplastic resin is preferable. Specific examples include epoxy resins, polyolefin resins, polyurethane resins, and polyvinylidene fluoride resins. Epoxy resins are preferred because they are highly durable and easy to handle.
  • the resin adhesive layer it is possible to use the above-mentioned material in a double-sided tape shape (formed by applying the above-mentioned thermosetting resin or thermoplastic resin on both surfaces of a flat substrate), etc.
  • a known film such as a three-layer seal film (such as a film in which a modified polypropylene film or an epoxy resin is laminated on the top and bottom of a polyethylene naphthalate film) can be used.
  • the same conductive material as that which may be included in the coating agent can be suitably used.
  • the battery exterior body has a housing part at least in part, and the volume of the housing part may be a volume that can accommodate the whole or a part of the accommodated electrode active material molded body, and is the same as the volume of the electrode active material molded body or It is desirable that the volume is smaller than the volume of the electrode active material molded body. If the volume of the housing portion is smaller than the volume of the electrode active material molded body to be housed, the positive electrode housing body and the negative electrode housing body are not in contact with each other only by placing the positive electrode housing body and the negative electrode housing body facing each other. Can not do it.
  • the size and shape of the housing part are not particularly limited, but the volume of the housing part is preferably 50 to 96% by volume of the volume of the electrode active material molded body to be housed.
  • the shape of the housing portion is not particularly limited, but it is desirable that the shape is not so complicated considering compression of the electrode active material molded body, for example, a substantially circular shape in a plan view and a substantially rectangular shape in a sectional view, or a plan view. It is desirable that it is polygonal and has a substantially rectangular shape in a sectional view. Moreover, when the shape of the accommodating part is a shape having corners such as a polygon in plan view, the corners may be rounded.
  • positioned at fixed intervals as a battery exterior body.
  • an electrode structure in which an electrode active material molded body is disposed in each housing portion can be obtained. You may cut
  • the continuous body of the electrode structure where the positive electrode structure and the negative electrode structure were connected can be prepared by arrange
  • Such a continuous body of electrode structures is preferable because the positive electrode active material molded body and the negative electrode active material molded body can be opposed to each other by bending the battery exterior body.
  • a formation process and a combination process simultaneously.
  • a method for simultaneously performing the forming step and the combining step for example, a battery exterior body in which a housing portion is formed at least partially corresponds to the shape of the housing portion and the shape of the mold in a mold having a predetermined shape. And a method of pressure forming with a jig or the like after the container is filled with the composition.
  • the forming step and the combining step can be performed simultaneously.
  • any one of the positive electrode structure and the negative electrode structure may be produced by a molding process, but the positive electrode structure and the negative electrode structure Both bodies are preferably produced by a molding process.
  • the electrode active material molded body for a lithium ion battery produced by the method for producing an electrode active material molded body for a lithium ion battery of the present invention is accommodated in a battery casing.
  • a method for producing a lithium ion battery comprising a housing step, wherein in the molding step, the positive electrode active material molded body in which the lithium ion battery electrode active material is a positive electrode active material, and the lithium ion battery electrode active material is a negative electrode
  • a negative electrode active material molded body that is an active material is prepared, and in the housing step, a plurality of battery unit components in which the positive electrode active material molded body and the negative electrode active material molded body are arranged via a separator, The positive electrode active material molded body and the negative electrode active material molded body are accommodated in the battery outer package so as to be connected in parallel or in series.
  • the forming step constituting another aspect of the method for manufacturing a lithium ion battery of the present invention includes the above-described method for manufacturing the electrode active material molded body for a lithium ion battery of the present invention and the method for manufacturing the lithium ion battery of the present invention. It is the same as that of the shaping
  • the electrode active material for a lithium ion battery is desirably a coated active material in which at least a part of the surface is coated with a coating agent containing a coating resin.
  • the coating agent containing the electrolytic solution swells and exhibits adhesiveness, so that molding can be performed under simpler conditions.
  • the accommodation process which comprises another aspect of the manufacturing method of the lithium ion battery of this invention is demonstrated.
  • the positive electrode active material molded body, the negative electrode active material molded body, the current collector, and the separator are appropriately housed in the battery exterior body.
  • a battery unit structure in which the positive electrode active material molded body and the negative electrode active material molded body are disposed via the separator is used.
  • the battery unit components are accommodated so as to be connected in parallel or in series. A specific example will be described with reference to FIGS.
  • FIG. 8 is a schematic diagram showing a battery unit structure for explaining the arrangement of the positive electrode active material molded body and the negative electrode active material molded body in the method for producing a lithium ion battery of the present invention.
  • the battery unit structure 70 includes a positive electrode active material molded body 11a and a negative electrode active material molded body 11b arranged via separators 20a and 20b.
  • the positive electrode active material and the negative electrode active material are disposed so as to face each other with a separator interposed therebetween, and thus function as a lithium ion battery by arranging current collectors at both ends.
  • the battery unit structure 70 is a convenient unit for explaining the arrangement of the positive electrode active material formed body, the negative electrode active material formed body, the separator, and the current collector, and the battery unit structure 70 is actually prepared. There is no need.
  • the method for producing a lithium ion battery of the present invention in the housing process, the current collector, the separator, and the positive electrode active material molded body and / or the negative electrode active material molded body prepared by the molding process are appropriately disposed in the battery outer body.
  • the lithium ion battery can be manufactured by housing. That is, the method for producing a lithium ion battery of the present invention may be a method in which the battery unit structure 70 is prepared and the battery unit structure 70 and the current collector are appropriately accommodated in the battery outer body.
  • the positive electrode active material molded body, the negative electrode active material molded body, the separator, and the current collector may be appropriately disposed.
  • 8 includes two separators (20a, 20b), but the number of separators is not limited to two, and may be one separator, or three or more separators. May be arranged.
  • the separator is not limited to the embodiment shown in FIG. 8 as long as the positive electrode active material molded body and the negative electrode active material molded body are not directly in contact with each other.
  • FIG. 9 is a schematic view showing an example of a lithium ion battery manufactured by the method for manufacturing a lithium ion battery of the present invention, and is an example in the case where battery unit structural bodies are connected in series.
  • the lithium ion battery 3 can be obtained by hermetically sealing and housing the battery unit structure 70 in a state in which the plurality of battery unit structural bodies 70 are arranged in series in an insulating battery outer body 52. .
  • FIG. 9 illustrates an aspect in which the positive electrode current collector 42a and the negative electrode current collector 42b function as terminals for extracting current by being exposed from the battery exterior body 52.
  • the terminal may be connected to a terminal for taking out current at the terminal, and the terminal may be exposed to the outside of the battery exterior body 52.
  • the bipolar current collector may be a current collector that functions as a positive electrode current collector on the surface in contact with the positive electrode active material and functions as a negative electrode current collector on the surface in contact with the negative electrode active material.
  • Examples of the bipolar current collector include a positive electrode current collector and a negative electrode current collector joined by a conductive adhesive or welding, a resin current collector that can be used for both the positive electrode current collector and the negative electrode current collector, etc. Is mentioned.
  • FIG. 10 is a schematic view showing another example of a lithium ion battery produced by the method for producing a lithium ion battery of the present invention, and is an example in the case where battery unit structures are connected in parallel.
  • the lithium ion battery 4 shown in FIG. 10 is accommodated in a battery outer body 53 having an insulating inner surface in a state where battery unit structural bodies 70 are connected in parallel.
  • the side surface of the battery unit structure 70 shown in FIG. 10 is covered with an insulating seal material 80, and the positive electrode current collector 43a and the negative electrode current collector 43b penetrate the seal material 80 and pass through the positive electrode terminal 44 and the negative electrode terminal. 45 respectively.
  • the battery unit structure 76 arranged at the third stage and the battery unit structure 77 arranged at the fourth stage are also directed toward the positive electrode active material molded body 11a. Opposite via 43a.
  • the two positive electrode current collectors 43 a are connected to the positive electrode terminal 44 exposed to the outside of the battery outer package 53.
  • the battery unit structure 74 disposed in the first stage and the battery unit structure 77 disposed in the fourth stage are respectively provided with the negative electrode active material molded body 11b on the bottom surface side and the top surface side, respectively. In contact with the negative electrode current collector 43b. Further, the battery unit structure 75 arranged in the second stage and the battery unit structure 76 arranged in the third stage are opposed to each other with the negative electrode active material molded body 11b facing through the negative electrode current collector 43b. . The three negative electrode current collectors 43 b are connected to the negative electrode terminal 45 exposed outside the battery outer package 53.
  • All the positive electrode active material molded bodies 11a constituting the lithium ion battery 4 are connected to the positive electrode terminal 44 via the positive electrode current collector 43a, and all the negative electrode active material molded bodies 11b are connected via the negative electrode current collector 43b.
  • the four battery unit structural bodies 70 (74, 75, 76, 77) are connected in parallel in the battery exterior body 53. Since the sealing material 80 prevents contact between the positive electrode member (positive electrode current collector and positive electrode active material molded body) and the negative electrode member (negative electrode current collector and negative electrode active material molded body), other insulating materials are used.
  • the number of battery unit structures is not particularly limited as long as it is two or more.
  • the lithium ion battery of the present invention includes two or more positive electrode active material molded bodies and negative electrode active material molded bodies
  • the configuration of the minimum unit (battery unit) constituting the lithium ion battery is shown in FIG.
  • the configuration of the battery unit structure 70 is not limited.
  • FIGS. 9 to 10 in addition to the battery unit structure 70 laminated in the battery outer package, the positive electrode active material molding laminated through the separator And a negative electrode active material molded body, a battery unit structure obtained by sealing between a positive electrode current collector and a negative electrode current collector, FIG. 5 (c), FIG. 6 (c) and FIG.
  • the batteries 50 and 51 include those that also function as a current collector and prepared as a battery unit (single cell) lithium ion battery, and the battery units stacked in a battery casing. 5 (c), 6 (c), and 7 (c), the battery exterior material 50 (50a, 50b) and the battery exterior body 51 (51a, 51b) also function as a current collector.
  • the current collector 40 (40a, 40b) and the current collector 41 (41a, 41b) may or may not be arranged separately.
  • sealing material it is also called a sealing member
  • the thing similar to the above-mentioned resin contact bonding layer can be used.
  • the lithium ion battery obtained by the manufacturing method of the lithium ion battery of this invention may be further accommodated in the laminate pack, the battery can, etc.
  • a terminal for extracting current may be installed on the battery outer package.
  • ⁇ Production Example 2 Production of coated positive electrode active material particles (CA-1)> 100 parts of positive electrode active material powder (LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, volume average particle diameter 4 ⁇ m) were put into a universal mixer high speed mixer FS25 [manufactured by Earth Technica Co., Ltd.] With stirring at 720 rpm, 20.3 parts of the coating polymer compound solution obtained in Production Example 1 was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes. Next, 6.1 parts of acetylene black [DENKA BLACK (registered trademark) manufactured by Denka Co., Ltd.], which is a conductive material, was added in 6 minutes while stirring, and stirring was continued for 30 minutes.
  • acetylene black [DENKA BLACK (registered trademark) manufactured by Denka Co., Ltd.]
  • the obtained powder was classified with a sieve having an opening of 212 ⁇ m to obtain coated positive electrode active material particles (CA-1).
  • ⁇ Production Example 3 Production of coated positive electrode active material particles (CA-2)>
  • 100 parts of positive electrode active material powder LiNi 0.5 Mn 0.3 Co 0.2 O 2 powder, volume average particle diameter 5 ⁇ m
  • 100 parts of positive electrode active material powder LiNi 0.5 Mn 0.3 Co 0.2 O 2 powder, volume average particle diameter 5 ⁇ m
  • 9.3 parts of the coating polymer compound solution obtained in Production Example 1 was added dropwise over 3 minutes, and the mixture was further stirred for 5 minutes.
  • 10 parts of acetylene black, which is a conductive material was added in 2 minutes while stirring, and stirring was continued for 30 minutes. Thereafter, the pressure was reduced to 0.01 MPa while maintaining the stirring, and then the temperature was raised to 140 ° C.
  • the obtained powder was classified with a sieve having an opening of 212 ⁇ m to obtain coated positive electrode active material particles (CA-2).
  • the obtained powder was classified with a sieve having an opening of 212 ⁇ m to obtain coated positive electrode active material particles (CA-3).
  • ⁇ Production Example 5 Production of coated negative electrode active material particles (AA-1)>
  • 100 parts of negative electrode active material powder non-graphite activated carbon powder, volume average particle diameter: 7 ⁇ m
  • 11.3 parts of the polymer compound solution was added dropwise over 3 minutes, followed by further stirring for 5 minutes.
  • 1.0 part of acetylene black, which is a conductive material was added in 2 minutes while stirring, and stirring was continued for 30 minutes. Thereafter, the pressure was reduced to 0.01 MPa while maintaining the stirring, and then the temperature was raised to 140 ° C.
  • coated negative electrode active material particles (AA-1).
  • ⁇ Production Example 6 Production of coated negative electrode active material particles (AA-2)> As in Production Example 2, 100 parts of negative electrode active material powder (artificial graphite powder, volume average particle size 12 ⁇ m) was placed in a universal mixer and stirred at room temperature at 720 rpm, and the coating polymer obtained in Production Example 1 was used. 1.3 parts of the compound solution was added dropwise over 30 seconds and further stirred for 5 minutes. Next, 0.6 parts of acetylene black, which is a conductive material, was added in 2 minutes while stirring, and stirring was continued for 30 minutes. Thereafter, the pressure was reduced to 0.01 MPa while maintaining the stirring, and then the temperature was raised to 140 ° C.
  • negative electrode active material powder artificial graphite powder, volume average particle size 12 ⁇ m
  • coated negative electrode active material particles (AA-2).
  • ⁇ Production Example 7 Production of coated negative electrode active material particles (AA-3)>
  • 100 parts of negative electrode active material powder non-graphite activated carbon powder, volume average particle diameter 7 ⁇ m
  • 104 parts of the polymer compound solution was added dropwise over 30 minutes, and the mixture was further stirred for 5 minutes.
  • 3.3 parts of acetylene black, which is a conductive material was added in 2 minutes while stirring, and stirring was continued for 30 minutes. Thereafter, the pressure was reduced to 0.01 MPa while maintaining the stirring, and then the temperature was raised to 140 ° C.
  • coated negative electrode active material particles (AA-3).
  • LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 1: 1) at a rate of 1 mol / L to prepare an electrolytic solution for a lithium ion battery.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Example 1 Production of Positive Electrode Active Material Molded Body (CE-1) 5 g of coated positive electrode active material particles (CA-1) obtained in Production Example 2 and carbon fiber as a conductive additive [manufactured by Osaka Gas Chemical Co., Ltd. Donacabo Milled S-242] (0.1 g) was mixed for 3 minutes at 1500 rpm using a planetary stirring type mixing and kneading apparatus ⁇ Awatori Nertaro [manufactured by Shinky Co., Ltd.] ⁇ . Further, the step of adding 0.02 g of the electrolytic solution prepared in Production Example 8 and mixing for 1 minute at 1500 rpm was repeated twice, and a total of 0.04 g of the electrolytic solution was added.
  • CE-1 Positive Electrode Active Material Molded Body
  • 0.217 g of the above mixture is weighed, the mixture is placed in a cylindrical bottomed container having an inner diameter of 15 mm, and compressed by a pressure device to obtain a positive electrode active material molded body (CE-1) formed into a cylindrical shape. It was.
  • the pressurization conditions were a pressurization pressure of 150 MPa and a pressurization time of 5 seconds.
  • Example 2 Production of Positive Electrode Active Material Molded Body (CE-2) 5 g of coated positive electrode active material particles (CA-1) obtained in Production Example 2 and carbon fiber as a conductive additive [manufactured by Osaka Gas Chemical Co., Ltd. 0.05 g of Donakabo Milled S-242] was mixed at 1500 rpm for 3 minutes using a planetary stirring type mixing kneader. Further, the step of adding 0.1 g of the electrolytic solution prepared in Production Example 8 and mixing for 1 minute at 1500 rpm was repeated three times to add a total of 0.3 g of the electrolytic solution.
  • 0.227 g of the above mixture was weighed, put into a cylindrical bottomed container having an inner diameter of 15 mm, and compressed by a pressure device to obtain a positive electrode active material molded body (CE-2) formed into a cylindrical shape. It was.
  • the pressurization conditions were a pressurization pressure of 150 MPa and a pressurization time of 5 seconds.
  • Example 3 Production of Positive Electrode Active Material Molded Body (CE-3) 5 g of coated positive electrode active material particles (CA-1) obtained in Production Example 2 and carbon fiber as a conductive additive [manufactured by Osaka Gas Chemical Co., Ltd. Donacarbo Milled S-243] (0.1 g) was mixed at 2000 rpm for 3 minutes using a planetary stirring type mixing kneader. Further, the step of adding 0.2 g of the electrolytic solution prepared in Production Example 8 and mixing for 1 minute at 1500 rpm was repeated three times to add a total of 0.6 g of the electrolytic solution.
  • CE-3 Production of Positive Electrode Active Material Molded Body (CE-3) 5 g of coated positive electrode active material particles (CA-1) obtained in Production Example 2 and carbon fiber as a conductive additive [manufactured by Osaka Gas Chemical Co., Ltd. Donacarbo Milled S-243] (0.1 g) was mixed at 2000 rpm for 3 minutes using a planetary stirring type mixing
  • 0.241 g of the above mixture is weighed, put into a cylindrical bottomed container having an inner diameter of 15 mm, and compressed by a pressure device to obtain a positive electrode active material molded body (CE-3) formed into a cylindrical shape. It was.
  • the pressurization conditions were a pressurization pressure of 150 MPa and a pressurization time of 5 seconds.
  • Example 4 Production of Positive Electrode Active Material Molded Body (CE-4) 5 g of coated positive electrode active material particles (CA-2) obtained in Production Example 3 and carbon fiber as a conductive additive [manufactured by Nippon Polymer Sangyo Co., Ltd. Milled fiber CFMP-300X] 0.25 g was mixed for 3 minutes at 1500 rpm using a planetary stirring type mixing and kneading apparatus. Furthermore, the process of adding 0.5 g of the electrolytic solution prepared in Production Example 8 and mixing at 1500 rpm for 1 minute was repeated three times to add a total of 1.5 g of the electrolytic solution.
  • CE-4 Production of Positive Electrode Active Material Molded Body (CE-4) 5 g of coated positive electrode active material particles (CA-2) obtained in Production Example 3 and carbon fiber as a conductive additive [manufactured by Nippon Polymer Sangyo Co., Ltd. Milled fiber CFMP-300X] 0.25 g was mixed for 3 minutes at 1500 rpm using a
  • 0.298 g of the above mixture was weighed, put into a cylindrical bottomed container having an inner diameter of 15 mm, and compressed by a pressure device to obtain a positive electrode active material molded body (CE-4) formed into a cylindrical shape. It was.
  • the pressurization conditions were a pressurization pressure of 150 MPa and a pressurization time of 5 seconds.
  • Example 5 Production of Positive Electrode Active Material Molded Body (CE-5)
  • the coated positive electrode active material particles (CA-2) obtained in Production Example 3 were added to the electrolyte solution 0.6 g produced in Production Example 8 at 1500 rpm.
  • the process of mixing for 1 minute was repeated 3 times, and a total of 1.8 g of electrolyte was added.
  • 0.305 g of the above mixture was weighed, put into a cylindrical bottomed container having an inner diameter of 15 mm, and compressed with a pressure device to obtain a positive electrode active material molded body (CE-5) formed into a cylindrical shape. It was.
  • the pressurization conditions were a pressurization pressure of 150 MPa and a pressurization time of 5 seconds.
  • Example 6 Production of Positive Electrode Active Material Molded Body (CE-6) 5 g of coated positive electrode active material particles (CA-1) obtained in Production Example 2 and carbon fiber as a conductive additive [manufactured by Osaka Gas Chemical Co., Ltd. Donacabo Milled S-243] 0.15 g and carbon fiber [Mildo Fiber CFMP-300X manufactured by Nippon Polymer Sangyo Co., Ltd.] 0.6 g were mixed for 3 minutes at 1500 rpm using a planetary stirring type mixing kneader. Further, the step of adding 0.3 g of the electrolytic solution prepared in Production Example 8 and mixing for 1 minute at 1500 rpm was repeated three times, and a total of 0.9 g of the electrolytic solution was added.
  • 0.244 g of the above mixture was weighed, put into a cylindrical bottomed container having an inner diameter of 15 mm, and compressed by a pressure device to obtain a positive electrode active material molded body (CE-6) formed into a cylindrical shape. It was.
  • the pressurization conditions were a pressurization pressure of 150 MPa and a pressurization time of 5 seconds.
  • Example 7 Production of Positive Electrode Active Material Molded Body (CE-7) 5 g of coated positive electrode active material particles (CA-3) obtained in Production Example 4 and carbon fiber as a conductive additive [manufactured by Nippon Polymer Sangyo Co., Ltd. Milled fiber CFMP-300X] 0.4 g was mixed for 3 minutes at 1500 rpm using a planetary stirring type mixing kneader. Furthermore, the process of adding 0.4 g of the electrolyte prepared in Production Example 8 and mixing for 1 minute at 1500 rpm was repeated three times, and a total of 1.2 g of electrolyte was added.
  • CE-7 Production of Positive Electrode Active Material Molded Body (CE-7) 5 g of coated positive electrode active material particles (CA-3) obtained in Production Example 4 and carbon fiber as a conductive additive [manufactured by Nippon Polymer Sangyo Co., Ltd. Milled fiber CFMP-300X] 0.4 g was mixed for 3 minutes at 1500 rpm using
  • 0.271 g of the above mixture was weighed, and the mixture was placed in a cylindrical bottomed container having an inner diameter of 15 mm and compressed by a pressure device to obtain a positive electrode active material molded body (CE-7) formed into a cylindrical shape. It was.
  • the pressurization conditions were a pressurization pressure of 150 MPa and a pressurization time of 5 seconds.
  • Comparative Example 1 Production of Positive Electrode Active Material Molded Body (CE-8) 5 g of coated positive electrode active material particles (CA-1) obtained in Production Example 2 and carbon fiber as a conductive additive [manufactured by Osaka Gas Chemical Co., Ltd. Donacarbo Milled S-243] 0.1 g was mixed for 3 minutes at 1500 rpm using a planetary stirring type mixing kneader. Further, 0.216 g of the mixture was weighed, the mixture was placed in a cylindrical bottomed container having an inner diameter of 15 mm, and compressed by a pressurizing device to form a positive electrode active material molded body (CE-8). Got. The pressurization conditions were a pressurization pressure of 150 MPa and a pressurization time of 5 seconds.
  • Comparative Example 2 Production of Positive Electrode Active Material Molded Body (CE-9) 5 g of coated positive electrode active material particles (CA-2) obtained in Production Example 3 and carbon fiber as a conductive additive [manufactured by Osaka Gas Chemical Co., Ltd. Donacarbo Milled S-243] 0.1 g was mixed at 1500 rpm for 3 minutes using a planetary stirring type mixing kneader. Furthermore, the process of adding 0.9 g of the electrolyte prepared in Production Example 8 and mixing for 1 minute at 1500 rpm was repeated 6 times, and a total of 5.4 g of electrolyte was added.
  • 0.458 g of the above mixture was weighed, put into a cylindrical bottomed container having an inner diameter of 15 mm, and compressed by a pressure device to obtain a positive electrode active material molded body (CE-9) formed into a cylindrical shape. It was.
  • the pressurization conditions were a pressurization pressure of 150 MPa and a pressurization time of 5 seconds.
  • Example 8 Production of Negative Electrode Active Material Molded Body (AE-1) 5 g of coated negative electrode active material particles (AA-1) obtained in Production Example 5 and carbon fiber [Nippon Polymer Sangyo Co., Ltd. Milled fiber CFMP-300X] 0.05 g was mixed at 1500 rpm for 3 minutes using a planetary stirring type mixing and kneading apparatus. Further, the step of adding 0.02 g of the electrolytic solution prepared in Production Example 8 and mixing for 1 minute at 1500 rpm was repeated three times to add a total of 0.06 g of the electrolytic solution.
  • AE-1 Negative Electrode Active Material Molded Body
  • AE-1 negative electrode active material molded body
  • Example 9 Production of Negative Electrode Active Material Molded Body (AE-2) 5 g of coated negative electrode active material particles (AA-1) obtained in Production Example 5 and carbon fiber as a conductive additive [manufactured by Osaka Gas Chemical Co., Ltd. 0.05 g of Donakerbo Milled S-243] was mixed at 1500 rpm for 3 minutes using a planetary stirring type mixing kneader. Further, the step of adding 0.13 g of the electrolytic solution prepared in Production Example 8 and mixing for 1 minute at 1500 rpm was repeated three times to add a total of 0.39 g of the electrolytic solution.
  • AE-2 Negative Electrode Active Material Molded Body
  • AE-2 negative electrode active material molded body
  • Example 10 Production of Negative Electrode Active Material Molded Body (AE-3) 0.3 g of the electrolytic solution produced in Production Example 8 was added to 5 g of the coated negative electrode active material particles (AA-1) obtained in Production Example 5. The process of mixing at 1500 rpm for 1 minute was repeated three times, and a total of 0.9 g of electrolyte was added. 0.121 g of the above mixture is weighed, put into a cylindrical bottomed container having an inner diameter of 16 mm, and compressed by a pressure device to obtain a negative electrode active material molded body (AE-3) formed into a cylindrical shape. It was. The pressurization conditions were a pressurization pressure of 150 MPa and a pressurization time of 5 seconds.
  • Example 11 Production of Negative Electrode Active Material Molded Body (AE-4) 0.6 g of the electrolytic solution produced in Production Example 8 was added to 5 g of the coated negative electrode active material particles (AA-2) obtained in Production Example 6. The process of mixing at 1500 rpm for 1 minute was repeated 3 times, and a total of 1.8 g of electrolyte was added. 0.169 g of the above mixture was weighed, put into a cylindrical bottomed container having an inner diameter of 16 mm, and compressed by a pressure device to obtain a negative electrode active material molded body (AE-4) formed into a cylindrical shape. It was. The pressurization conditions were a pressurization pressure of 150 MPa and a pressurization time of 5 seconds.
  • Example 12 Production of Negative Electrode Active Material Molded Body (AE-5) 5 g of coated negative electrode active material particles (AA-2) obtained in Production Example 6 and carbon fiber as a conductive additive [manufactured by Nippon Polymer Sangyo Co., Ltd. Milled fiber CFMP-300X] 0.05 g was mixed at 1500 rpm for 3 minutes using a planetary stirring type mixing and kneading apparatus. Further, the step of adding 0.94 g of the electrolytic solution prepared in Production Example 8 and mixing for 1 minute at 1500 rpm was repeated three times to add a total of 2.82 g of the electrolytic solution.
  • Example 13 Production of Negative Electrode Active Material Molded Body (AE-6) 5 g of coated negative electrode active material particles (AA-1) obtained in Production Example 5 and carbon fiber as a conductive additive [manufactured by Osaka Gas Chemical Co., Ltd. 0.3 g of Donacarbo Mild S-243] and 0.95 g of carbon fiber [Nippon Polymer Industrial Co., Ltd. Milled Fiber CFMP-300X] were mixed at 1500 rpm for 3 minutes using a planetary stirring type mixing kneader. Furthermore, the process of adding 0.4 g of the electrolyte prepared in Production Example 8 and mixing for 1 minute at 1500 rpm was repeated three times, and a total of 1.2 g of electrolyte was added.
  • AE-6 Negative Electrode Active Material Molded Body
  • AE-6 negative electrode active material molded body
  • Example 14 Production of Negative Electrode Active Material Molded Body (AE-7) 5 g of coated negative electrode active material particles (AA-3) obtained in Production Example 7 and carbon fiber as a conductive additive [manufactured by Osaka Gas Chemical Co., Ltd. 0.05 g of Donakabo Milled S-242] was mixed at 1500 rpm for 3 minutes using a planetary stirring type mixing kneader. Furthermore, the process of adding 0.4 g of the electrolyte prepared in Production Example 8 and mixing for 1 minute at 1500 rpm was repeated three times, and a total of 1.2 g of electrolyte was added.
  • AE-7 Negative Electrode Active Material Molded Body
  • AE-7 negative electrode active material molded body
  • ⁇ Production Example 9 Production of battery exterior material> A copper foil (3 cm ⁇ 3 cm, thickness 17 ⁇ m) ultrasonically welded with a nickel foil terminal having a width of 5 mm and a length of 3 cm and a carbon coated aluminum foil (3 cm) of an aluminum foil terminal having a width of 5 mm and a length of 3 cm being ultrasonically welded. ⁇ 3cm, thickness 21 ⁇ m) are stacked in order in the same direction with two terminals coming out, sandwiched between two commercially available heat-sealing aluminum laminate films (10cm ⁇ 8cm), and the terminals are coming out One side was heat-sealed to prepare a battery exterior material.
  • Example 15 Production of Lithium Ion Battery (L-1)
  • the negative electrode active material molded body (AE-3) obtained in Example 10 was placed on the copper foil of the battery exterior material, and 40 ⁇ L of electrolyte was added.
  • a separator (5 cm ⁇ 5 cm, thickness 23 ⁇ m, Celgard 2500 polypropylene) was placed on the negative electrode active material molded body (AE-3), and 20 ⁇ L of electrolyte was further added.
  • the positive electrode active material molded body (CE-1) obtained in Example 1 was laminated so as to face the negative electrode active material molded body (AE-3) through a separator, and 50 ⁇ L of an electrolytic solution was added.
  • a battery exterior material was covered so that the carbon-coated aluminum foil overlapped on the positive electrode active material molded body.
  • the battery exterior material was sealed by heat-sealing the three sides that were not heat-sealed while evacuating the interior of the battery exterior material to obtain a lithium ion battery (L-1).
  • Example 16 Production of Lithium Ion Battery (L-2)
  • the negative electrode active material form (AE-3) obtained in Example 10 was placed on the copper foil of the battery exterior material, and 40 ⁇ L of electrolyte was added.
  • the separator was placed on the negative electrode active material molded body (AE-3), and 20 ⁇ L of electrolyte was further added.
  • the positive electrode active material molded body (CE-2) obtained in Example 2 was laminated so as to face the negative electrode active material molded body (AE-3) through a separator, and 40 ⁇ L of an electrolytic solution was added.
  • a battery exterior material was covered so that the carbon-coated aluminum foil overlapped on the positive electrode active material molded body.
  • the battery case was sealed by heat-sealing the three sides that were not heat-sealed while evacuating the inside of the case to obtain a lithium ion battery (L-2).
  • Example 17 Production of Lithium Ion Battery (L-3)
  • the negative electrode active material molded body (AE-3) obtained in Example 10 was placed on the copper foil of the battery outer packaging material, and 40 ⁇ L of electrolyte was added.
  • the separator was placed on the negative electrode active material molded body (AE-3), and 20 ⁇ L of electrolyte was further added.
  • the positive electrode active material molded body (CE-3) obtained in Example 3 was laminated so as to face the negative electrode active material molded body (AE-3) via a separator, and 40 ⁇ L of an electrolytic solution was added.
  • a battery exterior material was covered so that the carbon-coated aluminum foil overlapped on the positive electrode active material molded body.
  • the battery case was sealed by heat-sealing the three sides that were not heat-sealed while evacuating the inside of the case to obtain a lithium ion battery (L-3).
  • Example 18 Production of Lithium Ion Battery (L-4)
  • the negative electrode active material molded body (AE-3) obtained in Example 10 was placed on the copper foil of the battery exterior material, and 40 ⁇ L of electrolyte was added.
  • the separator was placed on the negative electrode active material molded body (AE-3), and 20 ⁇ L of electrolyte was further added.
  • the positive electrode active material molded body (CE-4) obtained in Example 4 was laminated so as to face the negative electrode active material molded body (AE-3) through a separator, and 40 ⁇ L of an electrolytic solution was added.
  • a battery exterior material was covered so that the carbon-coated aluminum foil overlapped on the positive electrode active material molded body.
  • the battery case was sealed by heat-sealing three sides that were not heat-sealed while evacuating the inside of the case, thereby obtaining a lithium ion battery (L-4).
  • Example 19 Production of Lithium Ion Battery (L-5)
  • the negative electrode active material molded body (AE-3) obtained in Example 10 was placed on the copper foil of the battery exterior material, and 40 ⁇ L of electrolyte was added.
  • the separator was placed on the negative electrode active material molded body (AE-3), and 20 ⁇ L of electrolyte was further added.
  • the positive electrode active material molded body (CE-5) obtained in Example 5 was laminated so as to face the negative electrode active material molded body (AE-3) through a separator, and 30 ⁇ L of an electrolytic solution was added.
  • a battery exterior material was covered so that the carbon-coated aluminum foil overlapped on the positive electrode active material molded body.
  • the battery case was sealed by heat-sealing the three sides that were not heat-sealed while evacuating the inside of the case to obtain a lithium ion battery (L-5).
  • Example 20 Production of Lithium Ion Battery (L-6)
  • the negative electrode active material molded body (AE-3) obtained in Example 10 was placed on the copper foil of the battery outer packaging material, and 40 ⁇ L of electrolyte was added.
  • the separator was placed on the negative electrode active material molded body (AE-3), and 20 ⁇ L of electrolyte was further added.
  • the positive electrode active material molded body (CE-6) obtained in Example 6 was laminated so as to face the negative electrode active material molded body (AE-3) through a separator, and 40 ⁇ L of an electrolytic solution was added.
  • a battery exterior material was covered so that the carbon-coated aluminum foil overlapped on the positive electrode active material molded body.
  • the battery case was sealed by heat-sealing the three sides that were not heat-sealed while evacuating the inside of the case to obtain a lithium ion battery (L-6).
  • Example 21 Production of Lithium Ion Battery (L-7)
  • the negative electrode active material molded body (AE-3) obtained in Example 10 was placed on the copper foil of the battery outer packaging material, and 40 ⁇ L of electrolyte was added.
  • the separator was placed on the negative electrode active material molded body (AE-3), and 20 ⁇ L of electrolyte was further added.
  • the positive electrode active material molded body (CE-7) obtained in Example 7 was laminated so as to face the negative electrode active material molded body (AE-3) through a separator, and 40 ⁇ L of an electrolytic solution was added.
  • a battery exterior material was covered so that the carbon-coated aluminum foil overlapped on the positive electrode active material molded body.
  • the battery case was sealed by heat-sealing the three sides that were not heat-sealed while evacuating the inside of the case to obtain a lithium ion battery (L-7).
  • Comparative Example 5 Production of Lithium Ion Battery (L-8)
  • the negative electrode active material molded body (AE-3) obtained in Example 10 was placed on the copper foil of the battery outer packaging material, and 40 ⁇ L of electrolyte was added.
  • the separator was placed on the negative electrode active material molded body (AE-3), and 20 ⁇ L of electrolyte was further added.
  • the positive electrode active material molded body (CE-8) obtained in Comparative Example 1 was laminated so as to face the negative electrode active material molded body (AE-3) through a separator, and 50 ⁇ L of an electrolytic solution was added.
  • a battery exterior material was covered so that the carbon-coated aluminum foil overlapped on the positive electrode active material molded body.
  • the battery case was sealed by heat-sealing the three sides that were not heat-sealed while evacuating the inside of the case to obtain a lithium ion battery (L-8).
  • Example 22 Production of Lithium Ion Battery (L-10)
  • the negative electrode active material molded body (AE-1) obtained in Example 8 was placed on the copper foil of the battery outer packaging material, and 50 ⁇ L of electrolyte was added.
  • the separator was placed on the negative electrode active material molded body (AE-1), and 20 ⁇ L of electrolyte was further added.
  • the positive electrode active material molded body (CE-3) obtained in Example 3 was laminated so as to face the negative electrode active material molded body (AE-1) through a separator, and 40 ⁇ L of an electrolytic solution was added.
  • a battery exterior material was covered so that the carbon-coated aluminum foil overlapped on the positive electrode active material molded body.
  • the battery case was sealed by heat-sealing the three sides that were not heat-sealed while the inside of the battery case was evacuated to obtain a lithium ion battery (L-10).
  • Example 23 Production of Lithium Ion Battery (L-11)
  • the negative electrode active material molded body (AE-2) obtained in Example 9 was placed on the copper foil of the battery outer packaging material, and 40 ⁇ L of electrolyte was added.
  • the separator was placed on the negative electrode active material molded body (AE-2), and 20 ⁇ L of electrolyte was further added.
  • the positive electrode active material molded body (CE-3) obtained in Example 3 was laminated so as to face the negative electrode active material molded body (AE-2) through a separator, and 40 ⁇ L of an electrolytic solution was added.
  • a battery exterior material was covered so that the carbon-coated aluminum foil overlapped on the positive electrode active material molded body.
  • the battery case was sealed by heat-sealing the three sides that were not heat-sealed while evacuating the inside of the case to obtain a lithium ion battery (L-11).
  • Example 24 Production of Lithium Ion Battery (L-12)
  • the negative electrode active material molded body (AE-4) obtained in Example 11 was placed on the copper foil of the battery exterior material, and 40 ⁇ L of electrolyte was added.
  • the separator was placed on the negative electrode active material molded body (AE-4), and 20 ⁇ L of electrolyte was further added.
  • the positive electrode active material molded body (CE-3) obtained in Example 3 was laminated so as to face the negative electrode active material molded body (AE-4) through a separator, and 40 ⁇ L of an electrolytic solution was added.
  • a battery exterior material was covered so that the carbon-coated aluminum foil overlapped on the positive electrode active material molded body.
  • the battery case was sealed by heat-sealing the three sides that were not heat-sealed while evacuating the inside of the case, thereby obtaining a lithium ion battery (L-12).
  • Example 25 Production of Lithium Ion Battery (L-13)
  • the negative electrode active material molded body (AE-5) obtained in Example 12 was placed on the copper foil of the battery outer packaging material, and 30 ⁇ L of electrolyte was added.
  • the separator was placed on the negative electrode active material molded body (AE-5), and 20 ⁇ L of electrolyte was further added.
  • the positive electrode active material molded body (CE-3) obtained in Example 3 was laminated so as to face the negative electrode active material molded body (AE-5) through a separator, and 40 ⁇ L of an electrolytic solution was added.
  • a battery exterior material was covered so that the carbon-coated aluminum foil overlapped on the positive electrode active material molded body.
  • the battery case was sealed by heat-sealing the three sides that were not heat-sealed while evacuating the inside of the case to obtain a lithium ion battery (L-13).
  • Example 26 Production of Lithium Ion Battery (L-14)
  • the negative electrode active material molded body (AE-6) obtained in Example 13 was placed on the copper foil of the battery outer packaging material, and 40 ⁇ L of electrolyte was added.
  • the separator was placed on the negative electrode active material molded body (AE-6), and 20 ⁇ L of electrolyte was further added.
  • the positive electrode active material molded body (CE-3) obtained in Example 3 was laminated so as to face the negative electrode active material molded body (AE-6) through a separator, and 40 ⁇ L of an electrolytic solution was added.
  • a battery exterior material was covered so that the carbon-coated aluminum foil overlapped on the positive electrode active material molded body.
  • the battery case was sealed by heat-sealing the three sides that were not heat-sealed while evacuating the inside of the case to obtain a lithium ion battery (L-14).
  • Example 27 Production of Lithium Ion Battery (L-15)
  • the negative electrode active material molded body (AE-7) obtained in Example 14 was placed on the copper foil of the battery outer packaging material, and 40 ⁇ L of electrolyte was added.
  • the separator was placed on the negative electrode active material molded body (AE-7), and 20 ⁇ L of electrolyte was further added.
  • the positive electrode active material molded body (CE-3) obtained in Example 3 was laminated so as to face the negative electrode active material molded body (AE-7) through a separator, and 40 ⁇ L of an electrolytic solution was added.
  • a battery exterior material was covered so that the carbon-coated aluminum foil overlapped on the positive electrode active material molded body.
  • the battery case was sealed by heat-sealing the three sides that were not heat-sealed while evacuating the inside of the case to obtain a lithium ion battery (L-15).
  • Comparative Example 7 Production of Lithium Ion Battery (L-16)
  • the negative electrode active material molded body (AE-8) obtained in Comparative Example 3 was placed on the copper foil of the battery outer packaging material, and 50 ⁇ L of electrolyte was added.
  • the separator was placed on the negative electrode active material molded body (AE-8), and 20 ⁇ L of electrolyte was further added.
  • the positive electrode active material molded body (CE-3) obtained in Example 3 was laminated so as to face the negative electrode active material molded body (AE-8) through a separator, and 40 ⁇ L of an electrolytic solution was added.
  • a battery exterior material was covered so that the carbon-coated aluminum foil overlapped on the positive electrode active material molded body.
  • the battery case was sealed by heat-sealing the three sides that were not heat-sealed while evacuating the inside of the case to obtain a lithium ion battery (L-16).
  • the initial performance of the lithium ion battery was evaluated by the following method using a charge / discharge measuring device “HJ-SD8” (manufactured by Hokuto Denko Co., Ltd.) at 25 ° C.
  • the battery was charged to 4.2 V with a current of 0.1 C by a constant current constant voltage charging method (also referred to as CCCV mode), and then charged until the current value became 0.01 C while maintaining 4.2 V.
  • CCCV mode constant current constant voltage charging method
  • the battery was discharged to 2.5 V with a current of 0.1 C.
  • the capacity charged at this time was defined as [initial charge capacity (mAh)], and the discharged capacity was defined as [initial discharge capacity (mAh)].
  • the electrode active material molded bodies produced in Examples 1 to 14 were able to maintain the shape even during the production of the lithium ion batteries produced in Examples 15 to 27 and had good handleability. A battery could be manufactured.
  • the lithium ion battery obtained by the method for producing an electrode active material molded body for a lithium ion battery of the present invention is particularly useful for mobile phones, personal computers, hybrid vehicles, and electric vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、製造に係る時間、労力、設備等を抑制することのできるリチウムイオン電池の製造に適したリチウムイオン電池用電極活物質成形体の製造方法及びこれを用いたリチウムイオン電池の製造方法を提供する。 リチウムイオン電池用電極活物質と電解液とを含む組成物を成形してリチウムイオン電池用電極活物質の非結着体であるリチウムイオン電池用電極活物質成形体を得る成形工程を含み、上記組成物の電解液含有量が上記組成物の重量を基準として0.1~40重量%であることを特徴とするリチウムイオン電池用電極組成物成形体の製造方法。

Description

リチウムイオン電池用電極活物質成形体の製造方法及びリチウムイオン電池の製造方法
本発明は、リチウムイオン電池用電極活物質成形体の製造方法及びリチウムイオン電池の製造方法に関する。
リチウムイオン(二次)電池は、高容量で小型軽量な二次電池として、近年様々な用途に多用されている。このようなリチウムイオン電池の製造方法の一例として、シート状の正極及び負極集電体の表面にそれぞれ正極活物質層及び負極活物質層を形成して、これら正極活物質層及び負極活物質層の間にセパレータ層を介在させ、正極及び負極集電体の周縁部を絶縁材料を介して接合する方法が提案されている(特許文献1参照)。
特開2002-260739号公報
しかしながら、上述した従来のリチウムイオン電池の製造方法では、シート状の集電体の表面に、活物質がバインダにより固定された活物質層を形成する工程が必要であり、かかる工程は、集電体の表面に活物質とバインダを非水溶媒中に分散させたスラリーを塗布した後、乾燥、焼結等することにより行われているので、活物質層を形成する工程に手間を要していた。また、スラリー中の非水溶媒を回収する必要があることから、製造工程、製造装置の簡略化が困難であった。
本発明は、上記課題を鑑みてなされたものであり、製造に係る時間、労力、設備等を抑制することのできるリチウムイオン電池の製造に適したリチウムイオン電池用電極活物質成形体の製造方法及びこれを用いたリチウムイオン電池の製造方法を提供することを目的とする。
すなわち、本発明は、リチウムイオン電池用電極活物質と電解液とを含む組成物を成形してリチウムイオン電池用電極活物質の非結着体であるリチウムイオン電池用電極活物質成形体を得る成形工程を含み、
上記組成物の電解液含有量が上記組成物の重量を基準として0.1~40重量%であることを特徴とするリチウムイオン電池用電極活物質成形体の製造方法、この製造方法により製造されたリチウムイオン電池用電極活物質成形体を、少なくとも一部に収容部が形成された電池外装体の上記収容部内に配置し、上記電極活物質成形体を上記電池外装体と一体化させて電極構造体を準備する組み合わせ工程を含むことを特徴とするリチウムイオン電池の製造方法、及び、この製造方法により製造されたリチウムイオン電池用電極活物質成形体を電池外装体内に収容する収容工程を備えるリチウムイオン電池の製造方法であって、上記成形工程において、上記リチウムイオン電池用電極活物質が正極活物質である正極活物質成形体と、上記リチウムイオン電池用電極活物質が負極活物質である負極活物質成形体とを準備し、上記収容工程において、上記正極活物質成形体と上記負極活物質成形体とがセパレータを介して配置された電池単位構成体が、複数個、並列又は直列に接続されるように上記正極活物質成形体及び上記負極活物質成形体を上記電池外装体内に収容することを特徴とするリチウムイオン電池の製造方法に関する。
本発明のリチウムイオン電池用電極活物質成形体の製造方法、及び、本発明のリチウムイオン電池の製造方法によると、集電体の表面への活物質スラリーの塗布が不要となり、リチウムイオン電池の製造に係る時間、労力、設備等を抑制することができる。
図1(a)~図1(c)は、成形工程で用いられる型の一例を示した模式図である。 図2(a)~図2(f)は、成形工程の一例を示した模式図である。 図3(a)~図3(c)は、成形工程で用いられる型の別の一例を示した模式図である。 図4(a)~図4(g)は、成形工程の別の一例を示した模式図である。 図5(a)~図5(c)は、本発明のリチウムイオン電池の製造方法の一例を示す模式図である。 図6(a)~図6(c)は、本発明のリチウムイオン電池の製造方法の別の一例を示す模式図である。 図7(a)~図7(c)は、本発明のリチウムイオン電池の製造方法のさらに別の一例を示す模式図である。 図8は、本発明のリチウムイオン電池の製造方法において正極活物質成形体及び負極活物質成形体の配置を説明するための、電池単位構成体を示す模式図である。 図9は、本発明のリチウムイオン電池の製造方法によって製造されるリチウムイオン電池の一例を示す模式図である。 図10は、本発明のリチウムイオン電池の製造方法によって製造されるリチウムイオン電池の別の一例を示す模式図である。
以下、本発明を詳細に説明する。
本発明のリチウムイオン電池用電極活物質成形体の製造方法は、リチウムイオン電池用電極活物質と電解液とを含む組成物を成形してリチウムイオン電池用電極活物質の非結着体であるリチウムイオン電池用電極活物質成形体を得る成形工程を含み、上記組成物の電解液含有量が上記組成物の重量を基準として0.1~40重量%であることを特徴とする。
本発明のリチウムイオン電池用電極活物質成形体の製造方法では、成形工程において、リチウムイオン電池用電極活物質(以下、単に活物質ともいう)と電解液を含んでなる組成物を成形してリチウムイオン電池用電極活物質の非結着体であるリチウムイオン電池用電極活物質成形体(以下、単に電極活物質成形体ともいう)を得る。
成形工程により得られる電極活物質成形体は、リチウムイオン電池用電極活物質と電解液とを含んでおり、リチウムイオン電池用の電極としての構成を満足する。そして、電極活物質成形体は成形されているから、リチウムイオン電池用電極活物質として異なる種類の活物質を使用したものを2つ用意し、セパレータを介して配置することによって、リチウムイオン電池とすることができる。従って、従来のリチウムイオン電池の製造方法のように、集電体上に活物質スラリーを塗布し、乾燥する工程が不要となる。さらに、電極活物質成形体は成形されているため、取扱性が良好であり、製造工程が煩雑となることもない。
すなわち、本発明のリチウムイオン電池用電極活物質成形体の製造方法を用いると、従来よりも簡易な手順によりリチウムイオン電池を製造することができ、製造に係る時間、労力、設備等を抑制することができる。
成形工程において、組成物を成形する方法は特に限定されないが、例えば、リチウムイオン電池用電極活物質及び電解液の混合物である組成物を、底面及び側面を有する型内に充填して任意の形状に加圧成形する方法、押出成形により連続的に成形する方法、カレンダー成形(圧延加工)によって成形する方法等が挙げられる。
成形工程で用いることのできる型について説明する。
図1(a)~図1(c)は、成形工程で用いられる型の一例を示した模式図である。図1(a)は、成形工程で用いられる型の一例を模式的に示す斜視図であり、図1(b)は、図1(a)におけるA-A線断面図であり、図1(c)は、図1(a)に示す型を構成部分毎に分離した状態を模式的に示す斜視図である。
図1(a)~図1(c)に示すように、型100は、側面を構成する型101と底面を構成する型103からなる。図1(b)に示すように、型100には、側面を構成する型101の内壁面101aと底面を構成する型103の上底面103aにより囲まれた空間Vが形成されている。図1(c)に示すように、側面を構成する型101と底面を構成する型103とは分離可能であることが好ましい。
続いて、図1(a)~図1(c)に示す型を用いた成形工程について図2(a)~図2(f)を例に説明する。
図2(a)~図2(f)は、成形工程の一例を示した模式図である。図2(a)は、成形工程において用いられる型の一例を、図2(b)は、成形工程において型内に組成物を充填する様子の一例を、図2(c)及び図2(d)は組成物を圧縮する様子の一例を、図2(e)は、圧縮した電極活物質成形体を型から取り出す様子の一例を、それぞれ示している。
図2(a)に示すように、型100は、底面を構成する型103により底面が形成され、側面を構成する型101により側面が形成された空間Vを有している。
図2(b)~図2(d)に示すように、空間Vには組成物110が充填され、圧縮用治具104により加圧される。なお、組成物110を圧縮する程度は、組成物110を成形できるような圧力であれば特に限定されず、図2(c)に示す電極活物質成形体15(最終的にリチウムイオン電池として使用される状態よりも密度の低い状態)であってもよく、図2(d)に示す電極活物質成形体10(最終的にリチウムイオン電池として使用される状態)であってもよい。
成形された電極活物質成形体10は、図2(e)に示すように、型100から取り出される。なお、図2(c)に示す電極活物質成形体15を型100から取り出してもよい。図2(a)~図2(e)に示す工程を経ることで、電極活物質組成物を成形した、図2(f)に示す電極活物質成形体10が得られる。
組成物はリチウムイオン電池用電極活物質と電解液とを含むため、砂と水との混合物が成形されるのと同様に、所定の形状の型を用いる等の方法によって、一定の形状に成形することができ、電極活物質成形体が得られる。リチウムイオン電池用電極活物質が、その表面の少なくとも一部が被覆用樹脂を含む被覆剤で被覆された被覆活物質である場合には、電解液を含んだ被覆剤が膨潤して粘着性を示すため、より簡便な条件で成形することができる。
本発明のリチウムイオン電池用電極活物質成形体の製造方法において、「充填」とは、型の空間内に組成物の全部が収容されている状態を意味する。
組成物を構成する活物質及び電解液は均一に混合された状態で充填されていることが望ましいが、型内にまず活物質のみを収容し、その後活物質に電解液を含浸させることによって、型内に組成物を充填する方法を採用してもよい。
本発明のリチウムイオン電池用電極活物質成形体の製造方法においては、組成物を型の空間内に充填する際に、振動、衝撃を与えることが好ましい。
組成物を型の空間内に充填する際に、振動、衝撃を与えることで、組成物を型の空間内に均一に充填しやすくなる。
本発明のリチウムイオン電池用電極活物質成形体の製造方法において、組成物の電解液含有量が組成物の重量を基準として0.1~40重量%であればよく、成形する前の組成物(活物質と電解液との混合物)の性状は、流動性のある固液混合物(スラリー状ともいう)、流動性の低い固液混合物(ペンデュラー状又はファニキュラー状ともいう)、ゲル状、及び湿潤粉末状等がありうる。
なお、スラリー状とは、組成物において、少なくとも活物質同士の空隙の全てが電解液で満たされている状態又はそれを超える体積の電解液を有する性状であり、ペンデュラー状又はファニキュラー状は活物質同士の空隙の一部が電解液で満たされた状態であり、ファニキュラー状とは活物質同士の空隙の合計体積に満たない体積の電解液と活物質とを混合することで得られる性状である。最密充填された粒子群に液体が加わると、液体量が少ないと液体は粒子の接触点を中心として環状に付着して不連続に存在する(ペンデュラー状態)。そして、液体の量が増すと環状に付着した液体は大きさを増してゆき、ついには環相互の連繋ができて、空隙はあるものの液相が連続構造を持つようになる(ファニキュラー状態)。さらに液体の量が増すと空隙がなくなり、固液2相のみが連続構造をとるようになり、スラリー状態に移行する。
これらの中でも、ペンデュラー状、ファニキュラー状、ゲル状及び湿潤粉末状であることが望ましい。電極活物質の性状が上記のものであると、より簡便な条件で成形することができる。
本発明のリチウムイオン電池用電極活物質成形体の製造方法において、上記成形工程では、底面及び側面を有する型内に、上記型の底面全体と上記型の側面の少なくとも一部を覆うようにセパレータを配置し、上記組成物をセパレータが配置された上記型内に充填して成形するとともに、上記組成物のうち上記型の底面に対応する面の全部と上記型の側面に対応する面の少なくとも一部を上記セパレータにより連続的に覆うことが望ましい。
上記方法により、成形工程において、電極活物質成形体とセパレータとが一体化した電極活物質成形体ユニットを得ることができる。
上述した電極活物質成形体ユニットを製造できる型の例を、図3(a)~図3(c)を用いて説明する。
図3(a)~図3(c)は、成形工程で用いられる型の別の一例を示した模式図である。図3(a)は、成形工程で用いられる型の一例を模式的に示す斜視図であり、図3(b)は、図3(a)におけるB-B線断面図であり、図3(c)は、図3(a)に示す型を構成部分毎に分離した状態を模式的に示す斜視図である。
図3(a)及び図3(b)に示すように、型200は、側面を構成する型201、底面を構成する型203、及び、角部を構成する型202からなり、型200には、側面を構成する型201の内壁面201aと、底面を構成する型203の上底面203aにより囲まれた空間Vが形成されている。
図3(c)に示すように、側面を構成する型201、底面を構成する型203及び角部を構成する型202は互いに分離可能であってよい。
角部を構成する型202は、図3(a)及び図3(b)に示す状態では、底面を構成する型203を所定の位置に固定する機能を果たしているが、後述する工程において底面を構成する型203を下方に移動させた際に、側面を構成する型として機能する。
続いて、上記型を用いて電極活物質成形体をセパレータと一体化させた電極活物質成形体ユニットを得る方法について、図4(a)~図4(g)を用いて説明する。
図4(a)~図4(g)は、図3(a)~図3(c)に示す型を用いた成形工程の一例を模式的に示す説明図でもある。
図4(a)~図4(g)は、成形工程の別の一例を示した模式図である。図4(a)は成形工程において用いられる型の一例を、図4(b)は成形工程において型内にセパレータを配置する様子の一例を、図4(c)は組成物を型内に充填する様子の一例を、図4(d)~図4(f)は組成物を圧縮する様子の一例を、図4(g)は図4(a)~図4(f)に示す工程により得られる電極活物質成形体ユニットの一例をそれぞれ示している。
図4(a)に示すように、型200は、底面を構成する型203により底面が形成され、側面を構成する型201により側面が形成された空間Vを有している。
続いて、図4(b)を用いて、型内にセパレータを配置する方法の一例を説明する。
セパレータを配置する際、例えば、図4(b)に示すように、底面を構成する型203及び角部を構成する型202上にセパレータ20を配置する。
セパレータ20は底面を構成する型203上、かつ、側面を構成する型201と角部を構成する型202との間に配置されている。セパレータ20は底面を構成する型203の上底面全体を覆い、かつ、底面を構成する型203の上底面よりも面積が大きい。
なお、図4(b)ではセパレータ20が側面を構成する型201と角部を構成する型202との間に配置されているが、側面を構成する型201と角部を構成する型202とを分離可能とせずに(すなわち、図1(a)~図1(c)に示す型100を用いて)、U字状に折り曲げた状態でセパレータ20を型内に配置してもよい。セパレータ20を型内にU字状に配置した場合には、セパレータ20と型200との接触性を向上させるため、空間の形状に対応する形状を有する治具等を用いてセパレータ20を底面を構成する型203の上底面に押し当てる方法等により、型200の底面にセパレータを密着させてもよい。
続いて、図4(c)を用いて、セパレータが配置された型内に組成物を充填する方法の一例について説明する。
セパレータが配置された型内に組成物を充填する方法としては例えば、図4(c)に示すように、型200内の空間Vに活物質及び電解液を含んでなる組成物110を充填する。型200の底面にはセパレータ20が配置されているため、型200内に充填された組成物110はセパレータ20上に配置されることとなる。
続いて、図4(d)~図4(f)を用いて、型内に充填された組成物を成形する方法を説明する。
型内に充填された組成物を成形する方法としては例えば、図4(d)及び図4(e)に示すように、型200内に充填された組成物110を、底面を構成する型203とは反対側の面から、圧縮用治具204を用いて圧縮する方法が挙げられる。
圧縮用治具204は型200に形成された空間Vの形状に略対応する形状であることが望ましい。圧縮用治具204を用いて空間V内に充填された組成物110を圧縮することにより、組成物110を成形して、図4(d)に示す電極活物質成形体15とし、さらに圧縮することにより図4(e)に示す電極活物質成形体11とする。
続いて、図4(f)に示すように、底面を構成する型203を圧縮用治具204の圧縮方向と同じ方向に移動させることにより、側面を構成する型201及び角部を構成する型202の間に挟持されていたセパレータの端部20c、20dを角部を構成する型202の側面に引き出し、かつ、電極活物質成形体11の側面に配置することができる。
図4(e)に加えて図4(f)に示す工程を経ることにより、電極活物質成形体11とセパレータ20とを一体化させ、電極活物質成形体11のうち型200の底面に対応する面の全部と、型200の側面に対応する面の少なくとも一部がセパレータ20により連続的に覆われた、図4(g)に示すような電極活物質成形体ユニット30を得ることができる。
なお、図4(f)に示すように、得られた電極活物質成形体ユニット30は底面を構成する型203側から取り出すことが望ましい。反対方向(圧縮用治具204の存在する方向)に取り出そうとすると、型の側面に配置されたセパレータ20がめくれたり、破損するおそれがある。
なお、セパレータ20をU字状に型200内に配置した場合、図4(f)に示す工程は不要である。
組成物110を圧縮する程度は、組成物110を成形できるような圧力であれば特に限定されず、図4(d)に示す電極活物質成形体15(最終的にリチウムイオン電池として使用される状態よりも密度の低い状態)であってもよく、図4(e)に示す電極活物質成形体11(最終的にリチウムイオン電池として使用される状態)であってもよい。すなわち、成形工程においては、図4(d)に示す状態から、底面を構成する型203を圧縮用治具204の圧縮方向と同じ方向に移動させることにより、側面を構成する型201及び角部を構成する型202の間に挟持されていたセパレータの端部20c、20dを角部を構成する型202の側面に引き出し、かつ、電極活物質成形体15の側面に配置することによって、電極活物質成形体15とセパレータ20とを一体化させることによって電極を得てもよい。
型の形状は、底面及び側面を有していればよく、その他の形状は特に限定されない。
底面を構成する型と側面を構成する型は一体化していてもよいが、図1(a)~図1(c)に記載したように、側面を構成する型と底面を構成する型とが分離可能に構成されていることが望ましく、図3(a)~図3(c)に記載したように、側面を構成する型が、底面の高さで2つに分離可能に構成されていることがさらに望ましい。
側面を構成する型のうち、底面の高さよりも低い部分を構成する型は、実質的には側面を構成するものではないため、角部を構成する型ともいう。
型を構成する材料としては、金型等に使用される金属等の一般的な材料が挙げられる。
また、型と電極活物質成形体との間で発生する摩擦を低減するため、型の表面にはフッ素コート等が施されていてもよい。
型内に形成された空間(以下、単に空間ともいう)の形状は、得たい電極活物質成形体の形状に応じて調整すればよく、圧縮方向における形状変化がないものであることが望ましく、例えば、円柱形、角柱形等であることが望ましい。
空間の形状が円柱形の型を用いた場合には平面視略円形の、空間の形状が角柱状の型を用いた場合には平面視矩形の電極活物質成形体が得られる。
成形工程では、型の底面全体と側面の少なくとも一部を覆うようにセパレータを配置してもよい。型の底面全体と側面の少なくとも一部を覆うようにセパレータを配置することで、セパレータと電極活物質成形体が一体化した電極活物質成形体ユニットを得ることができる。このような電極活物質成形体ユニットは、電極活物質成形体ユニット同士を組み合わせてリチウムイオン電池を製造する際にセパレータを別途準備する必要がなく、電極活物質成形体の取扱性が向上するため、好ましい。また、型の底面に対応する面の全体と型の側面に対応する面の少なくとも一部がセパレータにより覆われた電極活物質成形体ユニットは、組み合わせ工程において電池外装体と一体化させた場合に、電極活物質成形体が露出する面積が減少するため、製造されるリチウムイオン電池の品質にバラツキが発生しにくく、好ましい。
使用するセパレータは、型の底面を完全に覆うことができ、かつ、型の側面の少なくとも一部を覆うことができる形状であることが望ましい。セパレータは型の底面に密着している必要はないが、密着していることがより望ましい。
セパレータを型の底面に密着させる方法としては、例えば、型の底面に配置したセパレータを治具等を用いて型の底面に押し当てる方法等が挙げられる。
セパレータを型内に配置する際には、セパレータを型の底面及び側面に密着させるために、予め成形後の電極活物質成形体の大きさに合致する折り目をセパレータに形成していてもよく、予め所定の立体形状に成形したセパレータを型内に配置してもよい。
また、型内に配置するセパレータは、必ずしも型の底面及び側面に密着する立体形状となっていなくてもよい。その場合、セパレータを配置した型の内部に組成物を充填する際やこれを圧縮する際に、底面及び側面に密着する立体形状とすればよい。
セパレータの面積は、電極活物質成形体のうち型の底面に対応する面(すなわち電極活物質成形体の底面)の全部と型の側面に対応する面(すなわち電極活物質成形体の側面)の少なくとも一部を覆うことができる面積であることが好ましく、型の底面に対応する面の全部と型の側面に対応する面の全部を覆うことができる面積であることがより好ましく、型の底面に対応する面の全部と型の側面に対応する面の全部だけでなく、さらに型の底面に対向する面に対応する面(すなわち電極活物質成形体の上面)の全部を覆うことがさらに好ましい。ただし、電極活物質成形体の上面に集電体を積層した状態でセパレータによって上面の全部を覆う場合には、セパレータの内側(電極活物質成形体側)に配置された集電体の一部が外側へと露出するように集電体を配置しておく必要がある。セパレータの内側に配置された集電体の一部を外側へと露出させる方法としては、重なるセパレータ同士の間に集電体が折りたたまれるように配置する方法や、セパレータに切り込みを設け、該切り込みを通じて集電体を外部に引き出す方法が挙げられる。
セパレータが、電極活物質成形体の底面全体を覆う場合、正極活物質成形体と負極活物質組成物とが直接接触することを防ぐことができる。さらに、電極活物質成形体の底面全体と側面の少なくとも一部(より好ましくは、電極活物質成形体の底面全体、側面全体及び電極活物質成形体の上面全体)を覆う場合、電極活物質成形体を電池外装体と一体化させた際の電極活物質成形体の露出部分が減少するため、電池内部で正極部材(正極集電体及び正極活物質成形体)と負極部材(負極集電体及び負極活物質成形体)とが直接に接触することがなくなり、製造されるリチウムイオン電池の品質にバラツキが発生しにくく、好ましい。
本発明のリチウムイオン電池用電極活物質成形体の製造方法においては、セパレータを配置せずに成形工程を行った場合、成形工程後に電極活物質成形体の表面を別途セパレータで覆う工程を設けてもよい。
この時、電極活物質成形体の表面のうちセパレータで覆われることが好ましい領域、セパレータの面積、集電体の配置については、成形工程において電極活物質成形体をセパレータで覆う場合と同様である。
セパレータを構成する材料としては、ポリエチレン、ポリプロピレン製フィルムの微多孔膜、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルム、ポリエステル繊維、アラミド繊維、ガラス繊維等からなる不織布及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等が挙げられる。
電極活物質成形体は、側面の5~100%がセパレータにより覆われていることが好ましい。
圧縮用治具を組成物に押し当てる強さ(プレス強度ともいう)は特に限定されないが、10~2000MPaであることが望ましく、50~1000MPaであることがさらに望ましい。
このとき、成形された組成物の充填率は、活物質が正極活物質の場合(すなわち、正極活物質成形体の場合)には40~70%とすることが望ましく、活物質が負極活物質の場合(すなわち、負極活物質成形体の場合)には、50~80%とすることが望ましい。なお、充填率は、電極活物質成形体の体積に対する電極活物質成形体に含まれる固形分の体積の割合(体積百分率)で表される。
続いて、電極活物質成形体を得る方法のうち、押出成形について説明する。
押出成形によって電極活物質成形体を得る方法としては、従来公知の押出成形機を用いる方法が挙げられる。
押出成形機としては、例えば、原料が供給される原料筒と、原料筒の原料吐出側に取り付けられたダイス(モールドともいう)と、原料筒内に配置された原料をダイスの方へ押し出すための回転軸状のスクリュとを有するものが挙げられる。
原料筒に電極活物質成形体の原料である活物質及び電解液を投入し、スクリュの回転により原料筒を移動した活物質及び電解液をダイスから押し出すことにより、電極活物質成形体を得る事ができる。電極活物質成形体の形状は、ダイスの形状、及び、スクリュの回転速度を調整することによって適宜調整することができる。
ダイスから吐出される組成物の形状は特に限定されないが、円柱形又は四角柱形であることが好ましい。ダイスから吐出される組成物を所定の長さで切断することにより、リチウムイオン電池用電極活物質成形体が得られる。
ダイスから吐出された組成物を切断する方法は、特に限定されないが、ロータリーカッター、糸等によって切断する方法が挙げられる。
押出成形時の組成物の温度は特に限定されないが、成形性等の観点から、40℃以下であることが好ましい。
活物質と電解液との好ましい混合比率、及び、成形する前の組成物の好ましい性状は、型を用いた加圧成形の場合と同じである。
押出成形により得られる電極活物質成形体は、型内にセパレータを配置せずに電極活物質成形体を成形する方法により得られる電極活物質成形体と同様の方法で、電池外装体の収容部に収容すればよい。
カレンダー成形によって電極活物質成形体を得る方法としては、公知のロールプレス装置を用いる方法が挙げられる。
ニーダー等の連続混合機から混合物を投入し、ドクターブレード等によってフィルム等の平滑な面上に一定の厚みに広げた活物質と電解液との混合物をロールプレス処理することでシート状の電極活物質成形体を得る事ができる。シート状の電極活物質成形体を所定の長さで切断することにより、成形工程が完了する。
なお、活物質と電解液との好ましい混合比率、及び成形する前の組成物の好ましい性状は、型を用いた加圧成形の場合と同じである。
本発明のリチウムイオン電池用電極活物質成形体の製造方法で得られるリチウムイオン電池用電極活物質成形体は電解液を含んでいるが、電解液の使用量が成形工程に最適な条件であった場合には、リチウムイオン電池の電池性能を満足しない場合があるため、成形工程により得られる電極活物質成形体を電池外装体の収容部に収容した後、該電極活物質成形体にさらに電解液を添加してもよい。
続いて、組成物について説明する。
組成物は、活物質と電解液を含んでなり、必要に応じて導電助剤や粘度調整剤等を含んでいてもよい。組成物における電解液量は、0.1~40.0重量%である。
また、成形する前の組成物(活物質と電解液との混合物)は、リチウムイオン電池用電極活物質と電解液との混合物の非結着体である。そして、該組成物を成形して得られる電極活物質成形体もまた、リチウムイオン電池用電極活物質と電解液との混合物の非結着体である。
組成物が導電助剤や粘度調整剤等を含んだ場合であっても、導電助剤や粘度調整剤等によって活物質同士が結着することはないため、これらを用いて調製された組成物を成形したリチウムイオン電池用電極活物質成形体もまた、リチウムイオン電池用電極活物質と電解液との混合物の非結着体である。
組成物の電解液含有量は、組成物の重量を基準として0.1~40重量%である。組成物の電解液含有量が組成物の重量を基準として0.1重量%未満であると、液架橋力が不足して成形体の形状保持性が不充分となる。一方、組成物の電解液含有量が40重量%を超えると液流れが生じ、成形体の形状保持性が不充分となる。
組成物の電解液含有量は、活物質に添加する電解液の量を調整することで上記範囲内とすることができる。組成物の電解液含有量は、組成物の重量を基準として5~35重量%であることが好ましく、10~30重量%であることがより好ましい。電解液含有量がこの範囲であると、小さな圧力でも高密度かつ形状保持性の高い成形体を得ることができるうえ、工程補助材として有機溶媒ではなく、電解液を用いることで、成形体の成型後に有機溶媒を留去する必要が無く、工程数を大幅に短縮することができる。
なお、上記電解液量は、組成物を成形する際の形状保持においては上記組成物の電解液量で充分であるが、リチウムイオン電池の電池性能を満たすためには不充分な場合がある。そのような場合には、成形体にさらに電解液を添加することによって成形体の電解液量を調整することができる。このとき、成形体中には既に電解液が存在するため、減圧操作などを経なくても、添加した電解液が容易に組成物中に浸透することができ、電解液を吸液させるために係る時間を短縮することができる。
組成物に含まれる活物質の重量割合は、形状保持と電池性能の両立の観点から、組成物の固形分重量の合計に基づいて、80~100重量%であることが望ましい。
リチウムイオン電池用電極活物質が、表面の少なくとも一部が被覆用樹脂を含む被覆剤で被覆された被覆活物質である場合、被覆剤の重量は、活物質の重量に含めないこととする。
本発明のリチウムイオン電池の製造方法において、組成物が活物質と電解液との混合物の非結着体であるとは、組成物を構成する活物質同士が結着剤(バインダともいう)により互いの位置を固定されていないこと、及び、組成物中の活物質は全て、互いに結着していないことを意味する。
従来のリチウムイオン電池における活物質層(本発明のリチウムイオン電池の製造方法における電極活物質成形体に相当する)は、活物質及び結着剤を溶媒中に分散させたスラリーを集電体等の表面に塗布し、加熱・乾燥させることにより製造されるため、活物質層は結着剤により固められた状態となっている。このとき、活物質は結着剤により互いに結着されており、活物質同士の位置が不可逆的に固定されている。
一方、本発明のリチウムイオン電池用電極活物質成形体の製造方法により製造される電極活物質成形体中のリチウムイオン電池用電極活物質は互いに結着されておらず、リチウムイオン電池用電極活物質同士の位置も固定されていない。そのため、互いに結着されていないリチウムイオン電池用電極活物質を含む組成物を取り出した場合、組成物に含まれるリチウムイオン電池用電極活物質は容易に手でほぐすことができ、その状態を確認することができる。
なお、結着剤としては、デンプン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレン-ブタジエンゴム、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン(PVdF)及びスチレン-ブタジエンゴム(SBR)等の公知のリチウムイオン電池用結着剤が挙げられるが、本発明のリチウムイオン電池用電極活物質成形体の製造方法においては、これらの化合物は結着剤として組成物に添加しないことが望ましく、後述する被覆剤を構成する化合物としてもこれらの化合物を用いないことがより望ましい。
電極活物質成形体を構成するリチウムイオン電池用電極活物質は、正極活物質であっても負極活物質であってもよい。
リチウムイオン電池用電極活物質として正極活物質を用いた組成物を正極組成物ともいい、リチウムイオン電池用電極活物質として負極活物質を用いた組成物を負極組成物ともいう。リチウムイオン電池用電極活物質が正極活物質である場合の被覆剤は正極被覆剤ともいい、リチウムイオン電池用電極活物質が負極活物質である場合の被覆剤を負極被覆剤ともいう。また、組成物として正極組成物を用いた電極活物質成形体を正極活物質成形体ともいい、組成物として負極組成物を用いた電極活物質成形体を負極活物質成形体ともいう。さらに、組成物として正極組成物を用いた電極活物質成形体ユニットを正極活物質成形体ユニットともいい、組成物として負極組成物を用いた電極活物質成形体ユニットを負極活物質成形体ユニットともいう。
正極活物質成形体と負極活物質成形体を、組成物同士がセパレータを介して配置されるように組み合わせ、電池外装体等により周囲を覆うことで、リチウムイオン電池が製造される。
正極組成物を構成する正極活物質としては、従来公知のものを好適に使用することができ、ある電位を与えることでリチウムイオンの挿入と脱離が可能な化合物であって、対極に用いる負極活物質よりも高い電位でリチウムイオンの挿入と脱離が可能な化合物を用いることができる。
正極活物質としては、リチウムと遷移金属との複合酸化物{遷移金属が1種である複合酸化物(LiCoO、LiNiO、LiAlMnO、LiMnO及びLiMn等)、遷移金属元素が2種である複合酸化物(例えばLiFeMnO、LiNi1-xCo、LiMn1-yCo、LiNi1/3Co1/3Al1/3及びLiNi0.8Co0.15Al0.05)及び遷移金属元素が3種類以上である複合酸化物[例えばLiMM’M’’(M、M’及びM’’はそれぞれ異なる遷移金属元素であり、a+b+c=1を満たす。例えばLiNi1/3Mn1/3Co1/3)等]等}、リチウム含有遷移金属リン酸塩(例えばLiFePO、LiCoPO、LiMnPO及びLiNiPO)、遷移金属酸化物(例えばMnO及びV)、遷移金属硫化物(例えばMoS及びTiS)及び導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ-p-フェニレン及びポリビニルカルバゾール)等が挙げられ、2種以上を併用してもよい。
なお、リチウム含有遷移金属リン酸塩は、遷移金属サイトの一部を他の遷移金属で置換したものであってもよい。
正極活物質の体積平均粒子径は、リチウムイオン電池の電気特性の観点から、0.01~100μmであることが好ましく、0.1~35μmであることがより好ましく、1~30μmであることがさらに好ましい。
続いて、負極活物質について説明する。
負極活物質としては、炭素系材料[例えば黒鉛、難黒鉛化性炭素、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)、炭化ケイ素及び炭素繊維等]、導電性高分子(例えばポリアセチレン及びポリピロール等)、金属(スズ、シリコン、アルミニウム、ジルコニウム及びチタン等)、金属酸化物(チタン酸化物、リチウム・チタン酸化物及びケイ素酸化物等)及び金属合金(例えばリチウム-スズ合金、リチウム-シリコン合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)等及びこれらと炭素系材料との混合物等が挙げられる。
上記負極活物質のうち、内部にリチウム又はリチウムイオンを含まないものについては、予め活物質の一部又は全部にリチウム又はリチウムイオンを含ませるプレドープ処理を施してもよい。
負極活物質の体積平均粒子径は、リチウムイオン電池の電気特性の観点から、0.01~100μmが好ましく、0.1~40μmであることがより好ましく、2~35μmであることがさらに好ましい。
本明細書において、正極活物質及び負極活物質の体積平均粒子径は、マイクロトラック法(レーザー回折・散乱法)によって求めた粒度分布における積算値50%での粒径(Dv50)を意味する。マイクロトラック法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法である。なお、体積平均粒子径の測定には、日機装(株)製のマイクロトラック等を用いることができる。
続いて、活物質の構成について説明する。
本発明のリチウムイオン電池用電極活物質成形体の製造方法において、リチウムイオン電池用電極活物質は、表面の少なくとも一部が被覆用樹脂を含む被覆剤で被覆された被覆活物質であることが望ましい。リチウムイオン電池用電極活物質が被覆活物質であると、電解液を含んだ被覆剤が膨潤して粘着性を示すため、成形がより簡便な条件で行える。
被覆活物質は、リチウムイオン電池用電極活物質の表面の少なくとも一部が被覆用樹脂を含む被覆剤で被覆されたものである。
被覆剤は、被覆用樹脂を含んでなり、必要に応じてさらに導電材料を含んでいてもよい。
なお、被覆活物質は、リチウムイオン電池用電極活物質の表面の少なくとも一部が、被覆用樹脂を含む被覆剤で被覆されたものであるが、組成物中において、例え被覆活物質同士が接触したとしても、接触面においてリチウムイオン電池用電極活物質同士が不可逆的に接着されることはなく、接着は一時的なもので、容易に手でほぐすことができるものであるから、リチウムイオン電池用電極活物質同士が被覆剤によって固定されることはない。従って、被覆活物質を含んでなる組成物は、リチウムイオン電池用電極活物質が互いに結着されているものではない。
被覆用樹脂としては、熱可塑性樹脂や熱硬化性樹脂などが挙げられ、例えば、フッ素樹脂、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、ポリカーボネート、ポリサッカロイド(アルギン酸ナトリウム等)及びこれらの混合物等が挙げられる。これらの中ではアクリル樹脂、ウレタン樹脂、ポリエステル樹脂又はポリアミド樹脂が好ましく、アクリル樹脂がより好ましい。
これらの中では、電解液に浸漬した際の吸液率が10%以上であり、飽和吸液状態での引張破断伸び率が10%以上である被覆用樹脂がより好ましい。
電解液に浸漬した際の吸液率は、電解液に浸漬する前、浸漬した後の被覆用樹脂の重量を測定して、以下の式で求められる。
吸液率(%)=[(電解液浸漬後の被覆用樹脂の重量-電解液浸漬前の被覆用樹脂の重量)/電解液浸漬前の被覆用樹脂の重量]×100
吸液率を求めるための電解液としては、好ましくはエチレンカーボネート(EC)、ジエチルカーボネート(DEC)を体積割合でEC:DEC=1:1で混合した混合溶媒に、電解質としてLiPFを1mol/Lの濃度になるように溶解した電解液を用いる。
吸液率を求める際の電解液への浸漬は、50℃、3日間行う。50℃、3日間の浸漬を行うことにより被覆用樹脂が飽和吸液状態となる。なお、飽和吸液状態とは、それ以上電解液に浸漬しても被覆用樹脂の重量が増えない状態をいう。
なお、リチウムイオン電池を製造する際に使用する電解液は、上記電解液に限定されるものではなく、他の電解液を使用してもよい。
吸液率が10%以上であると、リチウムイオンが被覆用樹脂を容易に透過することができるため、組成物内でのイオン抵抗を低く保つことができる。吸液率が10%未満であると、リチウムイオンの伝導性が低くなり、リチウムイオン電池としての性能が充分に発揮されないことがある。
吸液率は20%以上であることがより好ましく、30%以上であることがさらに好ましい。
また、吸液率の好ましい上限値としては、400%であり、より好ましい上限値としては300%である。
飽和吸液状態での引張破断伸び率は、被覆用樹脂をダンベル状に打ち抜き、上記吸液率の測定と同様に電解液への浸漬を50℃、3日間行って被覆用樹脂を飽和吸液状態として、ASTM D683(試験片形状TypeII)に準拠して測定することができる。引張破断伸び率は、引張試験において試験片が破断するまでの伸び率を下記式によって算出した値である。
引張破断伸び率(%)=[(破断時試験片長さ-試験前試験片長さ)/試験前試験片長さ]×100
被覆用樹脂の飽和吸液状態での引張破断伸び率が10%以上であると、被覆用樹脂が適度な柔軟性を有するため、充放電時のリチウムイオン電池用電極活物質の体積変化によって被覆剤が剥離することを抑制しやすくなる。
引張破断伸び率は20%以上であることがより好ましく、30%以上であることがさらに好ましい。
また、引張破断伸び率の好ましい上限値としては、400%であり、より好ましい上限値としては300%である。
上述した被覆用樹脂のなかでも、国際公開第2015/005117号公報に被覆用樹脂として記載されているものは、本発明のリチウムイオン電池用電極活物質成形体の製造方法において、被覆剤を構成する被覆用樹脂として特に好適に用いることができる。
導電材料は、導電性を有する材料から選択される。
具体的には、金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。
これらの導電材料は1種単独で用いてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物を用いてもよい。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、銅、チタン及びこれらの混合物であり、より好ましくは銀、アルミニウム、ステンレス及びカーボンであり、さらに好ましくはカーボンである。またこれらの導電材料としては、粒子系セラミック材料や樹脂材料の周りに導電性の材料(上記した導電材料の材料のうち金属のもの)をめっき等でコーティングしたものでもよい。
導電材料の平均粒子径は、特に限定されるものではないが、リチウムイオン電池の電気特性の観点から、0.01~10μmであることが好ましく、0.02~5μmであることがより好ましく、0.03~1μmであることがさらに好ましい。
なお、「粒子径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)等の観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。
導電材料の形状(形態)は、粒子形態に限られず、粒子形態以外の形態であってもよく、カーボンナノチューブ等、いわゆるフィラー系導電性材料として実用化されている形態であってもよい。
導電材料は、その形状が繊維状である導電性繊維であってもよい。
導電性繊維としては、PAN系炭素繊維、ピッチ系炭素繊維等の炭素繊維、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を導電性物質を含む樹脂で被覆した導電性繊維等が挙げられる。これらの導電性繊維の中では炭素繊維が好ましい。また、グラフェンを練りこんだポリプロピレン樹脂も好ましい。
導電材料が導電性繊維である場合、その平均繊維径は0.1~20μmであることが好ましい。
以下、リチウムイオン電池用電極活物質が正極活物質の場合について説明する。
正極活物質の重量に対する被覆用樹脂と導電材料との合計重量の割合は、特に限定されるものではないが、2~25重量%であることが好ましい。
正極活物質の重量に対する被覆用樹脂の重量の割合は、特に限定されるものではないが、0.1~10重量%であることが好ましい。正極活物質の重量に対する導電材料の重量の割合は、特に限定されるものではないが、2~15重量%であることが好ましい。
正極被覆剤の導電率は、0.001~10mS/cmであることが好ましく、0.01~5mS/cmであることがより好ましい。
正極被覆剤の導電率は、四端子法によって求めることができる。
正極被覆剤の導電率が0.001mS/cm以上であると、正極活物質成形体の電気抵抗が高くなりにくい。
続いて、リチウムイオン電池用電極活物質が負極活物質の場合について説明する。
負極被覆剤が含有する被覆用樹脂と導電材料との合計重量の割合は、特に限定されるものではないが、負極活物質の重量に対して25重量%以下であることが好ましい。
負極活物質の重量に対する被覆用樹脂の重量の割合は、特に限定されないが、0.1~20重量%であることが好ましい。
負極活物質の重量に対する導電材料の重量の割合は、特に限定されないが、10重量%以下であることが好ましい。
組成物を構成していてもよい導電助剤としては、被覆剤に含まれていてもよい導電材料と同様のものを好適に用いることができる。
続いて、電解液について説明する。
電解液としては、リチウムイオン電池の製造に用いられる、電解質及び非水溶媒を含有するものを使用することができる。
電解質としては、公知の電解液に用いられているもの等が使用でき、例えば、LiPF、LiBF、LiSbF、LiAsF及びLiClO等の無機酸のリチウム塩系電解質、LiN(SOCF及びLiN(SO等のイミド系電解質、LiC(SOCF等のアルキルリチウム系電解質等が挙げられる。これらの内、高濃度時のイオン伝導性及び熱分解温度の観点から好ましいのはLiPFである。LiPFは、他の電解質と併用してもよいが、単独で使用することがより好ましい。
電解液の電解質濃度としては、特に限定されないが、0.5~5mol/Lであることが好ましく、0.8~4mol/Lであることがより好ましく、1~2mol/Lであることがさらに好ましい。
非水溶媒としては、公知の電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン等及びこれらの混合物を用いることができる。
ラクトン化合物としては、5員環(γ-ブチロラクトン及びγ-バレロラクトン等)及び6員環のラクトン化合物(δ-バレロラクトン等)等を挙げることができる。
環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート及びブチレンカーボネート等が挙げられる。
鎖状炭酸エステルとしては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート及びジ-n-プロピルカーボネート等が挙げられる。
鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル及びプロピオン酸メチル等が挙げられる。
環状エーテルとしては、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン及び1,4-ジオキサン等が挙げられる。
鎖状エーテルとしては、ジメトキシメタン及び1,2-ジメトキシエタン等が挙げられる。
リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリ(トリフルオロメチル)、リン酸トリ(トリクロロメチル)、リン酸トリ(トリフルオロエチル)、リン酸トリ(トリパーフルオロエチル)、2-エトキシ-1,3,2-ジオキサホスホラン-2-オン、2-トリフルオロエトキシ-1,3,2-ジオキサホスホラン-2-オン及び2-メトキシエトキシ-1,3,2-ジオキサホスホラン-2-オン等が挙げられる。
ニトリル化合物としては、アセトニトリル等が挙げられる。アミド化合物としては、DMF等が挙げられる。スルホンとしては、ジメチルスルホン及びジエチルスルホン等の鎖状スルホン及びスルホラン等の環状スルホン等が挙げられる。
非水溶媒は1種を単独で用いてもよいし、2種以上を併用してもよい。
非水溶媒の内、リチウムイオン電池の出力及び充放電サイクル特性の観点から好ましいのは、ラクトン化合物、環状炭酸エステル、鎖状炭酸エステル及びリン酸エステルである。更に好ましいのはラクトン化合物、環状炭酸エステル及び鎖状炭酸エステルであり、特に好ましいのは環状炭酸エステル又は環状炭酸エステルと鎖状炭酸エステルの混合液である。最も好ましいのはエチレンカーボネート(EC)とプロピレンカーボネート(PC)との混合液、エチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合液、又は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合液である。
続いて、本発明のリチウムイオン電池の製造方法の一の態様について説明する。
本発明のリチウムイオン電池の製造方法の一の態様は、本発明のリチウムイオン電池用電極活物質成形体の製造方法により製造されたリチウムイオン電池用電極活物質成形体を、少なくとも一部に収容部が形成された電池外装体の上記収容部内に配置し、上記電極活物質成形体を上記電池外装体と一体化させて電極構造体を準備する組み合わせ工程と、を少なくとも含むことを特徴とする。
本発明のリチウムイオン電池の製造方法の一の態様において、リチウムイオン電池用電極活物質は、表面の少なくとも一部が被覆用樹脂を含む被覆剤で被覆された被覆活物質であることが望ましい。リチウムイオン電池用電極活物質が被覆活物質であると、電解液を含んだ被覆剤が膨潤して粘着性を示すため、成形がより簡便な条件で行える。
本発明のリチウムイオン電池の製造方法の一の態様について、図5(a)~図5(c)を用いて説明する。なお、本発明のリチウムイオン電池の製造方法の一の態様における成形工程は、本発明のリチウムイオン電池用電極活物質成形体の製造方法を構成する成形工程と同様であるため説明を省略する。
図5(a)~図5(c)は、本発明のリチウムイオン電池の製造方法の一例を示す模式図である。図5(a)は、組み合わせ工程の一例を模式的に示す説明図であり、図5(b)及び図5(c)は、組み合わせ工程によって準備された電極構造体を用いてリチウムイオン電池を製造する方法の一例を示す模式図である。
図5(a)に示すように、組み合わせ工程では、少なくとも一部に正極収容部55aが形成された正極外装体50aの収容部内に正極活物質成形体10aを配置し、正極活物質成形体10aと正極外装体50aとを一体化し、正極構造体12aを得る。
このとき、正極外装体50aの内面(正極活物質成形体10aと接する面)が正極集電体として充分に機能するものではない場合、図5(a)に示すように、正極活物質成形体10aと接触するように、別途正極集電体40aを配置してもよい。
続いて、組み合わせ工程により得られた電極構造体を用いてリチウムイオン電池を製造する方法を、図5(b)及び図5(c)を用いて説明する。なお、組み合わせ工程により得られた電極構造体を用いてリチウムイオン電池を製造するためには、活物質の種類が異なる2種類の電極が必要となる。
図5(b)及び図5(c)では、電極活物質として正極活物質を用いた正極構造体と、電極活物質として負極活物質を用いた負極構造体と、を用いてリチウムイオン電池を製造する方法を説明する。
図5(b)に示すように、電極活物質成形体が正極活物質成形体10aである正極構造体12aと、電極活物質成形体が負極活物質成形体10bである負極構造体12bを、セパレータ21を介して対向するように配置する。負極構造体12bの構成は正極構造体12aとほぼ同様であり、負極活物質成形体10bと負極外装体50bとの間には負極集電体40bが配置されている。
負極外装体50bと対向する正極外装体50aの面のうち、収容部が形成されていない部分には、絶縁性の接着樹脂層60aが設けられている。また正極外装体50aと対向する負極外装体50bの面のうち、収容部が形成されていない部分には、絶縁性の接着樹脂層60bが設けられている。そのため、正極外装体50aと負極外装体50bとが直接接触せず、短絡することはない。従って、正極外装体50aと負極外装体50bとを、接着樹脂層60a、60bにより接着して封止する封止工程を行うことで、図5(c)に示すように、正極外装体50a及び負極外装体50bが接着樹脂層60により封止されたリチウムイオン電池1が得られる。
本発明のリチウムイオン電池の製造方法においては、上記図5(a)~図5(c)で説明した電極活物質成形体に代わって、電極活物質成形体とセパレータとが一体化した電極活物質成形体ユニットを用いてもよい。
電極活物質成形体ユニットを用いたリチウムイオン電池の製造方法について、図6(a)~図6(c)を用いて説明する。
図6(a)~図6(c)は、本発明のリチウムイオン電池の製造方法の別の一例を示す模式図である。
図6(a)は、組み合わせ工程の別の一例を模式的に示す説明図であり、図6(b)及び図6(c)は、組み合わせ工程によって得られた電極構造体を用いてリチウムイオン電池を製造する方法の別の一例を模式的に示す説明図である。
図6(a)に示すように、組み合わせ工程において、正極外装体51aの正極収容部56aに、正極活物質成形体11aとセパレータ20aとが一体化した正極活物質成形体ユニット30aが収容される。セパレータ20aは正極活物質成形体11aの正極外装体51aとは反対側に向かうよう配置されており、正極外装体51aと正極活物質成形体11aとの間には、正極集電体41aが配置されている。
図6(b)に示すように、正極外装体51aの正極収容部56aに、正極活物質成形体ユニット30aが収容されている正極構造体13aと、負極外装体51bの収容部に、負極活物質成形体11bとセパレータ20bとが一体化した負極活物質成形体ユニット30bが収容され、負極活物質成形体ユニット30bと負極外装体51bとの間に負極集電体41bが配置されている負極構造体13bとが、接着樹脂層61(61a、61b)によって接着されることにより、図6(c)に示すリチウムイオン電池2が得られる。
電極活物質成形体とセパレータとが一体化したものを用いることによって、図5(b)におけるセパレータを配置する工程を省略することができ、製造工程を簡略化することができる。また、セパレータを配置する際には、正極活物質と負極活物質とが接触しないよう、正極活物質と負極活物質の接触面積よりも大きな面積を覆うようにセパレータを配置する必要があるが、この場合、正極活物質と負極活物質との接触面積からセパレータがはみ出した分だけ、電池外装体を封止できる最小面積が大きくなってしまう。従って、電極活物質成形体ユニットを用いることによって、リチウムイオン電池全体の体積に占める正極活物質及び負極活物質の体積の割合を増加させることができる。
本発明のリチウムイオン電池の製造方法においては、上記組み合わせ工程において準備される電極活物質成形体ユニットは、電池外装体の収容部から電極活物質成形体がはみ出したものであってもよい。
このような場合には、電池外装体を封止する際に、電極活物質成形体を圧縮することによって、リチウムイオン電池を製造することができる。
このような場合について、図7(a)~図7(c)を用いて説明する。
図7(a)~図7(c)は、本発明のリチウムイオン電池の製造方法のさらに別の一例を示す模式図である。図7(a)は、本発明のリチウムイオン電池の製造方法における組み合わせ工程のさらに別の一例を模式的に説明する説明図であり、図7(b)及び図7(c)は、組み合わせ工程において準備される電極構造体を用いてリチウムイオン電池を製造する方法を模式的に示す説明図である。
図7(a)に示すように、組み合わせ工程において、正極外装体51aの正極収容部56aに正極活物質成形体15aとセパレータ20aとが一体化した正極活物質成形体ユニット35aが収容されることにより、正極構造体14aが準備される。
なお、正極活物質成形体ユニット35aは、図4(d)に示す成形工程まで加圧を行い、図4(e)に示す成形工程まで加圧しなかった場合に得られる電極活物質成形体ユニットに相当する。
正極収容部56aの体積は正極活物質成形体15a及びセパレータ20aの合計体積よりも小さいため、図7(b)に示すように、正極活物質成形体ユニット35aは、その一部が正極外装体51aの正極収容部56aからはみ出している。
図7(b)では、負極構造体14bも、正極構造体14aと同様に、負極活物質成形体ユニット35bが負極外装体51bの負極収容部からはみ出している。そして、図7(b)に示すように、治具105、106を用いて正極活物質成形体15a及び負極活物質成形体15bを圧縮しながら、正極外装体51a及び負極外装体51bとを、接着樹脂層61(61a、61b)により接着して封止する封止工程を行うことにより、図7(c)に示すようなリチウムイオン電池2が得られる。
なお、図7(b)及び図7(c)に示すように、正極活物質成形体15a及び負極活物質成形体15bを、図4(e)に示す成形工程と同じ密度になるまで圧縮することにより、正極活物質成形体15a及び負極活物質成形体15bはそれぞれ、正極活物質成形体11a及び負極活物質成形体11bとなり、図7(c)に示すリチウムイオン電池2は、図6(c)に示すリチウムイオン電池2と同じものとなる。
組み合わせ工程では、成形工程により得られた電極活物質成形体を、少なくとも一部に収容部が形成された電池外装体の収容部内に配置し、電極活物質成形体を電池外装体と一体化させて電極構造体を準備する。
電極活物質成形体を電池外装体の収容部内に配置する方法は、特に限定されないが、平滑面上に静置された電極活物質成形体に対して電池外装体を被せるように配置する方法や、平滑面上に静置された電池外装体に対して、電極活物質成形体が該電池外装体の収容部内に収まるように載置する方法等が挙げられる。
電池外装体は集電体としての機能を兼ねるものであってもよく、電池外装体の内面(電極活物質成形体と接触する面)に集電体が配置されていてもよい。
集電体として機能する材料としては、金属集電体や導電剤と樹脂からなる樹脂集電体と同様の材料を好適に用いることができる。金属集電体としては、例えば、銅、アルミニウム、チタン、ニッケル、タンタル、ニオブ、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン、及びこれら1種以上を含む合金、ならびにステンレス合金からなる群から選択される1種以上の金属材料を薄板や金属箔等の形態で用いてもよく、基材表面にスパッタリング、電着、塗布などの手段により上記金属材料を形成したものであってもよい。
電池外装体として、集電体の表面の一部又は全体に絶縁性樹脂からなる樹脂層を設けたものを用いてもよい。表面に樹脂層を設けた集電体としては、ラミネート加工を施したアルミニウム箔(アルミラミネートフィルム)等が挙げられる。
樹脂層は単層であってもよく積層されていてもよいが、電池外装体のうち、対極を構成する電池外装体と接触する部分には、電池外装体同士を熱圧着等により接着できる接着性樹脂で構成された層が設けられていることが望ましい。樹脂層のうち、上記接着性樹脂で構成された層を接着樹脂層ともいう。
接着樹脂層は、電池外装材に対する接着性と電解液に対する耐久性を有する材料であれば特に限定されず、高分子材料、特に熱硬化性樹脂又は熱可塑性樹脂が好ましい。具体的には、エポキシ系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリフッ化ビニリデン樹脂等が挙げられ、耐久性が高く取り扱いが容易であることからエポキシ系樹脂が好ましい。樹脂接着層としては、上記の材料を両面テープ状にしたもの(平面状の基材の両面に上述の熱硬化性樹脂又は熱可塑性樹脂を塗布して形成したもの)等を用いることができ、三層構造のシールフィルム(ポリエチレンナフタレートフィルムの上下に変性ポリプロピレンフィルム又はエポキシ樹脂を積層したフィルム等)等の公知のものを用いることができる。
樹脂集電体を構成する導電剤としては、被覆剤に含まれていてもよい導電材料と同様のものを好適に用いることができる。
電池外装体は少なくとも一部に収容部を有し、収容部の体積は収容される電極活物質成形体の全体又は一部が収まる体積であればよく、電極活物質成形体の体積と同一又は電極活物質成形体の体積よりも小さいことが望ましい。
収容部の体積を収容される電極活物質成形体の体積よりも小さくすると、正極外装体と負極外装体を向かい合わせに配置しただけでは、正極外装体と負極外装体とが接触しないため封止することができない。そこで、正極活物質成形体及び負極活物質成形体を圧縮しながら正極外装体と負極外装体とを封止する必要が生じ、電極活物質成形体が圧縮される。
電極活物質成形体が圧縮されると、電極活物質成形体を構成する活物質には膨張方向の力が働くので、電極活物質成形体と集電体との接触性、及び、電極活物質成形体を構成する活物質同士の接触性を良好に保つことができる。収容部の大きさ及び形状は特に限定されないが、収容部の体積は、収容される電極活物質成形体の体積の50~96体積%であることが望ましい。
収容部の形状は特に限定されないが、電極活物質成形体を圧縮することを考慮すると、あまり複雑な形状でないことが望ましく、例えば、平面視略円形かつ断面図において略矩形形状、又は、平面視多角形かつ断面図において略矩形形状であることが望ましい。また、収容部の形状が平面視多角形等の角部を有する形状の場合、角部に丸みを持たせてもよい。
また、電池外装体として、複数の収容部が一定間隔で規則的に配置された電池外装体を用いてもよい。このような電池外装体を用いると、各収容部内に電極活物質成形体が配置された電極構造体を得ることができる。得られた電極構造体は、必要に応じて、組み合わせ工程の前、又は組み合わせ工程の後に各収容部ごとに切断してもよい。
また、隣り合う収容部にそれぞれ異なる種類の電極活物質成形体を配置することにより、正極構造体と負極構造体とが繋がった電極構造体の連続体を準備することができる。このような電極構造体の連続体は、電池外装体を折り曲げることによって正極活物質成形体と負極活物質成形体を相対向させることができるため、製造工程を簡易化することができ好ましい。
なお、本発明のリチウムイオン電池の製造方法においては、成形工程と組み合わせ工程とを同時に行ってもよい。成形工程と組み合わせ工程とを同時に行う方法としては、例えば、少なくとも一部に収容部が形成された電池外装体を、所定形状の型の内部に該収容部の形状と型の形状とが対応するように配置し、該収容部に組成物を充填した後、治具等により加圧成形する方法が挙げられる。このような方法を用いると、成形工程と組み合わせ工程とを同時に行うことができる。
また、成形工程と組み合わせ工程とを同じ場所で連続して行っても、成形工程を行った後に別の場所で組み合わせ工程を行ってもよい。
なお、本発明のリチウムイオン電池の製造方法の一の態様においては、正極構造体及び負極構造体のいずれか一方が、成形工程により製造されたものであればよいが、正極構造体及び負極構造体の両方が、成形工程により製造されたものであることが好ましい。
また、本発明のリチウムイオン電池の製造方法では、下記に示すように、電池外装体内に3つ以上の電極活物質成形体を収容してもよい。
本発明のリチウムイオン電池の製造方法の別の態様は、本発明のリチウムイオン電池用電極活物質成形体の製造方法により製造されたリチウムイオン電池用電極活物質成形体を電池外装体内に収容する収容工程を備えるリチウムイオン電池の製造方法であって、上記成形工程において、上記リチウムイオン電池用電極活物質が正極活物質である正極活物質成形体と、上記リチウムイオン電池用電極活物質が負極活物質である負極活物質成形体とを準備し、上記収容工程において、上記正極活物質成形体と上記負極活物質成形体とがセパレータを介して配置された電池単位構成体が、複数個、並列又は直列に接続されるように上記正極活物質成形体及び上記負極活物質成形体を上記電池外装体内に収容する、ことを特徴とする。
本発明のリチウムイオン電池の製造方法の別の態様を構成する成形工程は、既に説明した本発明のリチウムイオン電池用電極活物質成形体の製造方法、及び、本発明のリチウムイオン電池の製造方法の一の態様を構成する成形工程と同様である。
ただし、リチウムイオン電池用電極活物質が正極活物質である正極活物質成形体と、リチウムイオン電池用電極活物質が負極活物質である負極活物質成形体の2種類の成形体を準備する。
本発明のリチウムイオン電池の製造方法の別の態様において、リチウムイオン電池用電極活物質は、表面の少なくとも一部が被覆用樹脂を含む被覆剤で被覆された被覆活物質であることが望ましい。リチウムイオン電池用電極活物質が被覆活物質であると、電解液を含んだ被覆剤が膨潤して粘着性を示すため、成形がより簡便な条件で行える。
本発明のリチウムイオン電池の製造方法の別の態様を構成する収容工程について説明する。
収容工程では、電池外装体内に、正極活物質成形体及び負極活物質成形体並びに集電体、セパレータを適宜収容する。このとき、正極活物質成形体、負極活物質成形体、集電体及びセパレータの配置としては、正極活物質成形体と負極活物質成形体とがセパレータを介して配置された電池単位構成体を仮定したときに、該電池単位構成体が並列又は直列に接続されるように収容する。
具体例を挙げて、図8、図9及び図10で説明する。
まず、説明のために、正極活物質成形体と負極活物質成形体とがセパレータを介して配置された電池単位構成体について、図8を用いて説明する。
図8は、本発明のリチウムイオン電池の製造方法において正極活物質成形体及び負極活物質成形体の配置を説明するための、電池単位構成体を示す模式図である。
図8に示すように、電池単位構成体70は、セパレータ20a及び20bを介して正極活物質成形体11aと負極活物質成形体11bが配置されてなる。電池単位構成体70では、正極活物質と負極活物質とがセパレータを介して対向するよう配置されているから、両端部に集電体が配置されることによってリチウムイオン電池として機能する。
なお、電池単位構成体70は、正極活物質成形体、負極活物質成形体、セパレータ及び集電体の配置を説明するための便宜的な単位であり、実際に電池単位構成体70を準備する必要はない。
本発明のリチウムイオン電池の製造方法においては、収容工程において、電池外装体内に、集電体、セパレータ、並びに、成形工程によって準備された正極活物質成形体及び/又は負極活物質成形体を適宜収容することによってリチウムイオン電池を製造することができる。すなわち、本発明のリチウムイオン電池の製造方法は、電池単位構成体70を準備して、電池単位構成体70及び集電体を電池外装体内に適宜収容する方法であってもよく、電池外装体内に、正極活物質成形体、負極活物質成形体、セパレータ及び集電体をそれぞれ適宜配置する方法であってもよい。
また、図8に示す電池単位構成体70は、2つのセパレータ(20a、20b)を含むが、セパレータの数は2つに限定されず、1つのセパレータであってもよく、3つ以上のセパレータが配置されていてもよい。セパレータの配置も、正極活物質成形体と負極活物質成形体とが直接接触することのないように配置されていればよく、図8に示す態様に限定されるものではない。
まず、電池単位構成体が直列に接続されている場合を図9を用いて説明する。
図9は、本発明のリチウムイオン電池の製造方法によって製造されるリチウムイオン電池の一例を示す模式図であり、電池単位構成体が直列に接続されている場合の例である。
図9に示すように、複数の電池単位構成体70を直列に配置した状態で内面が絶縁性の電池外装体52に密閉封止して収容することで、リチウムイオン電池3を得ることができる。リチウムイオン電池3では、最下段に配置された電池単位構成体71の底部が負極集電体42bと電気的に接続されており、最上段に配置された電池単位構成体73の上面が正極集電体42aと電気的に接続されており、中段に配置された電池単位構成体72と最下段及び最上段に配置された電池単位構成体71、73との間には、正極集電体及び負極集電体の両方の性質を有する両極集電体42cが配置されている。
なお図9では、正極集電体42aと負極集電体42bとが電池外装体52から露出することで電流を取り出す端子として機能する態様を説明しているが、電流を取り出すための端子の態様は図9の態様に限定されず、正極集電体42aと負極集電体42bとが電池外装体52から露出せずに、正極集電体42aと負極集電体42bが電池外装体52内で電流を取り出すための端子とそれぞれ接続され、該端子が電池外装体52の外部に露出する態様であってもよい。
両極集電体とは、正極活物質と接する面において正極集電体として機能し、負極活物質と接する面において負極集電体として機能する集電体であればよい。
両極集電体としては、正極集電体と負極集電体を導電性接着剤や溶接等で接合したものや、正極集電体及び負極集電体のいずれにも使用できる樹脂集電体等が挙げられる。
続いて、電池単位構成体が並列に接続されている場合を図10を用いて説明する。
図10は、本発明のリチウムイオン電池の製造方法によって製造されるリチウムイオン電池の別の一例を示す模式図であり、電池単位構成体が並列に接続されている場合の例である。
図10に示すリチウムイオン電池4は、内面が絶縁性の電池外装体53内に、電池単位構成体70が並列に接続された状態で収容されている。
図10に示す電池単位構成体70の側面は絶縁性のシール材80で覆われており、正極集電体43a及び負極集電体43bは、シール材80を貫通して正極端子44及び負極端子45にそれぞれ接続している。
下から数えて1段目に配置された電池単位構成体74と2段目に配置された電池単位構成体75はそれぞれ、正極活物質成形体11aを向けて正極集電体43aを介して対向している。また、3段目に配置された電池単位構成体76と4段目に配置された電池単位構成体77も、1段目及び2段目と同様に、正極活物質成形体11aを向けて正極43aを介して対向している。そして2つの正極集電体43aは、電池外装体53外に露出する正極端子44に接続されている。一方、1段目に配置された電池単位構成体74と4段目に配置された電池単位構成体77は、それぞれ、底面側及び上面側に負極活物質成形体11bが配置されており、それぞれ、負極集電体43bと接触している。また、2段目に配置された電池単位構成体75と3段目に配置された電池単位構成体76は、負極活物質成形体11bを向けて負極集電体43bを介して対向している。そして3つの負極集電体43bは、電池外装体53外に露出する負極端子45に接続されている。
リチウムイオン電池4を構成する全ての正極活物質成形体11aは正極集電体43aを介して正極端子44と接続されており、全ての負極活物質成形体11bは、負極集電体43bを介して負極端子45と接続されているから、4つの電池単位構成体70(74、75、76、77)は、電池外装体53内で並列に接続されているといえる。
シール材80は、正極部材(正極集電体及び正極活物質成形体)と負極部材(負極集電体及び負極活物質成形体)との接触を防止するものであるから、他の絶縁材を配置してこれらの接触を防ぐ方法、セパレータで電極活物質成形体の全体を覆って接触を防ぐ方法等、正極部材と負極部材との接触を防止する他の方法を採用する場合には、シール材80を使用しなくてもよい。
なお、図9に示すリチウムイオン電池3では、電池外装体52内で電池単位構成体70が3つ直列に接続されており、図10に示すリチウムイオン電池4では、電池外装体53内で電池単位構成体70が4つ並列に接続されているが、本発明のリチウムイオン電池の製造方法の別の態様において、電池単位構成体の数は2個以上であれば特に限定されない。
また、本発明のリチウムイオン電池が2つ以上の正極活物質成形体及び負極活物質成形体をそれぞれ備える場合に、リチウムイオン電池を構成する最小単位(電池単位)の構成は、図8に示す電池単位構成体70の構成に限定されるものではない。
本発明のリチウムイオン電池の構成としては、図9~図10に説明したような、電池単位構成体70が電池外装体内に積層されたもののほかに、セパレータを介して積層された正極活物質成形体及び負極活物質成形体、正極集電体と負極集電体の間に封止して得られる電池単位構成体を適宜積層したもの、図5(c)図6(c)及び図7(c)に記載のリチウムイオン電池1、2を複数個、さらに電池外装体内に積層して配置したもの、及び図5(c)、図6(c)及び図7(c)において、電池外装材50及び51として集電体の機能を兼ねるものを採用して電池単位(単電池)となるリチウムイオン電池を準備し、この電池単位を電池外装体内に積層して配置したもの等が挙げられる。
なお、図5(c)、図6(c)及び図7(c)において電池外装材50(50a、50b)及び電池外装体51(51a、51b)として、集電体の機能を兼ねるものを用いた場合には、集電体40(40a、40b)及び集電体41(41a、41b)を別途配置してもよく、配置しなくてもよい。
なお、シール材(シール部材ともいう)としては、上述の樹脂接着層と同様のものを用いることができる。
電池単位構成体が直列又は並列に接続されるように、複数の電極活物質成形体を電池外装体内に収容することによって、蓄電デバイスの容量、電圧等の設計が容易となる。
なお、本発明のリチウムイオン電池の製造方法により得られるリチウムイオン電池はさらに、ラミネートパックや電池缶等に収納されていてもよい。本発明のリチウムイオン電池の製造方法により得られるリチウムイオン電池がラミネートパックや電池缶等に収容されている場合、電池外装体に電流取り出し用の端子を設置してもよい。
次に本発明の実施態様の一例を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は重量部、%は重量%を意味する。
<製造例1:被覆用高分子化合物とその溶液の作製>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF407.9部を仕込み75℃に昇温した。次いで、メタクリル酸242.8部、メチルメタクリレート97.1部、2-エチルヘキシルメタクリレート242.8部、及びDMF116.5部を配合したモノマー配合液と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)1.7部及び2,2’-アゾビス(2-メチルブチロニトリル)4.7部をDMF58.3部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで80℃に昇温し反応を3時間継続し樹脂濃度50%の共重合体溶液を得た。これにDMFを789.8部加えて、樹脂固形分濃度30重量%である被覆用高分子化合物溶液を得た。
<製造例2:被覆正極活物質粒子(CA-1)の作製>
正極活物質粉末(LiNi0.8Co0.15Al0.05粉末、体積平均粒子径4μm)100部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、製造例1で得られた被覆用高分子化合物溶液20.3部を2分かけて滴下し、さらに5分撹拌した。
次いで、撹拌した状態で導電材料であるアセチレンブラック[デンカ(株)製 デンカブラック(登録商標)]6.1部を分割しながら6分間で投入し、30分撹拌を継続した。その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。得られた粉体を目開き212μmの篩いで分級し、被覆正極活物質粒子(CA-1)を得た。
<製造例3:被覆正極活物質粒子(CA-2)の作製>
製造例2と同様に正極活物質粉末(LiNi0.5Mn0.3Co0.2粉末、体積平均粒子径5μm)100部を万能混合機に入れ、室温、720rpmで撹拌した状態で、製造例1で得られた被覆用高分子化合物溶液9.3部を3分かけて滴下し、さらに5分撹拌した。
次いで、撹拌した状態で導電材料であるアセチレンブラック10部を分割しながら2分間で投入し、30分撹拌を継続した。その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。得られた粉体を目開き212μmの篩いで分級し、被覆正極活物質粒子(CA-2)を得た。
<製造例4:被覆正極活物質粒子(CA-3)の作製>
製造例2と同様に正極活物質粉末(LiNi0.8Co0.15Al0.05粉末、体積平均粒子径4μm)100部を万能混合機に入れ、室温、720rpmで撹拌した状態で、製造例1で得られた被覆用高分子化合物溶液86.7部を25分かけて滴下し、さらに5分撹拌した。
次いで、撹拌した状態で導電材料であるアセチレンブラック7.2部を分割しながら2分間で投入し、30分撹拌を継続した。その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。得られた粉体を目開き212μmの篩いで分級し、被覆正極活物質粒子(CA-3)を得た。
<製造例5:被覆負極活物質粒子(AA-1)の作製>
製造例2と同様に負極活物質粉末(難黒鉛活性炭素粉末、体積平均粒子径7μm)100部を万能混合機に入れ、室温、720rpmで撹拌した状態で、製造例1で得られた被覆用高分子化合物溶液11.3部を3分かけて滴下し、さらに5分撹拌した。
次いで、撹拌した状態で導電材料であるアセチレンブラック1.0部を分割しながら2分間で投入し、30分撹拌を継続した。その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。得られた粉体を目開き212μmの篩いで分級し、被覆負極活物質粒子(AA-1)を得た。
<製造例6:被覆負極活物質粒子(AA-2)の作製>
製造例2と同様に負極活物質粉末(人造黒鉛粉末、体積平均粒子径12μm)100部を万能混合機に入れ、室温、720rpmで撹拌した状態で、製造例1で得られた被覆用高分子化合物溶液1.3部を30秒かけて滴下し、さらに5分撹拌した。
次いで、撹拌した状態で導電材料であるアセチレンブラック0.6部を分割しながら2分間で投入し、30分撹拌を継続した。その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。得られた粉体を目開き212μmの篩いで分級し、被覆負極活物質粒子(AA-2)を得た。
<製造例7:被覆負極活物質粒子(AA-3)の作製>
製造例2と同様に負極活物質粉末(難黒鉛活性炭素粉末、体積平均粒子径7μm)100部を万能混合機に入れ、室温、720rpmで撹拌した状態で、製造例1で得られた被覆用高分子化合物溶液104部を30分かけて滴下し、さらに5分撹拌した。
次いで、撹拌した状態で導電材料であるアセチレンブラック3.3部を分割しながら2分間で投入し、30分撹拌を継続した。その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。得られた粉体を目開き212μmの篩いで分級し、被覆負極活物質粒子(AA-3)を得た。
<製造例8:電解液の作製>
エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比率1:1)にLiPFを1mol/Lの割合で溶解させ、リチウムイオン電池用電解液を作製した。
(実施例1)正極活物質成形体(CE-1)の製造
製造例2で得た被覆正極活物質粒子(CA-1)5gと導電助剤である炭素繊維[大阪ガスケミカル(株)製 ドナカーボ・ミルド S-242]0.1gとを遊星撹拌型混合混練装置{あわとり練太郎[(株)シンキー製]}を用いて1500rpmで3分間混合した。
さらに、製造例8で作製した電解液0.02gを加えて1500rpmで1分間混合する工程を2回繰り返し、合計0.04gの電解液を加えた。
上記混合物0.217gを秤量し、内径15mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された正極活物質成形体(CE-1)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
(実施例2)正極活物質成形体(CE-2)の製造
製造例2で得た被覆正極活物質粒子(CA-1)5gと導電助剤である炭素繊維[大阪ガスケミカル(株)製 ドナカーボ・ミルド S-242]0.05gとを遊星撹拌型混合混練装置を用いて1500rpmで3分間混合した。
さらに、製造例8で作製した電解液0.1gを加えて1500rpmで1分間混合する工程を3回繰り返し、合計0.3gの電解液を加えた。
上記混合物0.227gを秤量し、内径15mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された正極活物質成形体(CE-2)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
(実施例3)正極活物質成形体(CE-3)の製造
製造例2で得た被覆正極活物質粒子(CA-1)5gと導電助剤である炭素繊維[大阪ガスケミカル(株)製 ドナカーボ・ミルド S-243]0.1gとを遊星撹拌型混合混練装置を用いて2000rpmで3分間混合した。
さらに、製造例8で作製した電解液0.2gを加えて1500rpmで1分間混合する工程を3回繰り返し、合計0.6gの電解液を加えた。
上記混合物0.241gを秤量し、内径15mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された正極活物質成形体(CE-3)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
(実施例4)正極活物質成形体(CE-4)の製造
製造例3で得た被覆正極活物質粒子(CA-2)5gと導電助剤である炭素繊維[日本ポリマー産業(株)製 ミルドファイバー CFMP-300X]0.25gとを遊星撹拌型混合混練装置を用いて1500rpmで3分間混合した。
さらに、製造例8で作製した電解液0.5gを加えて1500rpmで1分間混合する工程を3回繰り返し、合計1.5gの電解液を加えた。
上記混合物0.298gを秤量し、内径15mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された正極活物質成形体(CE-4)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
(実施例5)正極活物質成形体(CE-5)の製造
製造例3で得た被覆正極活物質粒子(CA-2)5gに製造例8で作製した電解液0.6gを加えて1500rpmで1分間混合する工程を3回繰り返し、合計1.8gの電解液を加えた。
上記混合物0.305gを秤量し、内径15mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された正極活物質成形体(CE-5)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
(実施例6)正極活物質成形体(CE-6)の製造
製造例2で得た被覆正極活物質粒子(CA-1)5gと導電助剤である炭素繊維[大阪ガスケミカル(株)製 ドナカーボ・ミルド S-243]0.15g及び炭素繊維[日本ポリマー産業(株)製 ミルドファイバー CFMP-300X]0.6gを遊星撹拌型混合混練装置を用いて1500rpmで3分間混合した。
さらに、製造例8で作製した電解液0.3gを加えて1500rpmで1分間混合する工程を3回繰り返し、合計0.9gの電解液を加えた。
上記混合物0.244gを秤量し、内径15mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された正極活物質成形体(CE-6)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
(実施例7)正極活物質成形体(CE-7)の製造
製造例4で得た被覆正極活物質粒子(CA-3)5gと導電助剤である炭素繊維[日本ポリマー産業(株)製 ミルドファイバー CFMP-300X]0.4gとを遊星撹拌型混合混練装置を用いて1500rpmで3分間混合した。
さらに、製造例8で作製した電解液0.4gを加えて1500rpmで1分間混合する工程を3回繰り返し、合計1.2gの電解液を加えた。
上記混合物0.271gを秤量し、内径15mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された正極活物質成形体(CE-7)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
(比較例1)正極活物質成形体(CE-8)の製造
製造例2で得た被覆正極活物質粒子(CA-1)5gと導電助剤である炭素繊維[大阪ガスケミカル(株)製 ドナカーボ・ミルド S-243]0.1gとを遊星撹拌型混合混練装置を用いて1500rpmで3分間混合した。
さらに、上記混合物0.216gを秤量し、内径15mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された正極活物質成形体(CE-8)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
(比較例2)正極活物質成形体(CE-9)の製造
製造例3で得た被覆正極活物質粒子(CA-2)5gと導電助剤である炭素繊維[大阪ガスケミカル(株)製 ドナカーボ・ミルド S-243]0.1gとを遊星撹拌型混合混練装置を用いて1500rpmで3分間混合した。
さらに、製造例8で作製した電解液0.9gを加えて1500rpmで1分間混合する工程を6回繰り返し、合計5.4gの電解液を加えた。
上記混合物0.458gを秤量し、内径15mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された正極活物質成形体(CE-9)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
(実施例8)負極活物質成形体(AE-1)の製造
製造例5で得た被覆負極活物質粒子(AA-1)5gと導電助剤である炭素繊維[日本ポリマー産業(株)製 ミルドファイバー CFMP-300X]0.05gとを遊星撹拌型混合混練装置を用いて1500rpmで3分間混合した。
さらに、製造例8で作製した電解液0.02gを加えて1500rpmで1分間混合する工程を3回繰り返し、合計0.06gの電解液を加えた。
上記混合物0.107gを秤量し、内径16mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された負極活物質成形体(AE-1)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
(実施例9)負極活物質成形体(AE-2)の製造
製造例5で得た被覆負極活物質粒子(AA-1)5gと導電助剤である炭素繊維[大阪ガスケミカル(株)製 ドナカーボ・ミルド S-243]0.05gとを遊星撹拌型混合混練装置を用いて1500rpmで3分間混合した。
さらに、製造例8で作製した電解液0.13gを加えて1500rpmで1分間混合する工程を3回繰り返し、合計0.39gの電解液を加えた。
上記混合物0.115gを秤量し、内径16mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された負極活物質成形体(AE-2)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
(実施例10)負極活物質成形体(AE-3)の製造
製造例5で得た被覆負極活物質粒子(AA-1)5gに対して製造例8で作製した電解液0.3gを加えて1500rpmで1分間混合する工程を3回繰り返し、合計0.9gの電解液を加えた。
上記混合物0.121gを秤量し、内径16mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された負極活物質成形体(AE-3)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
(実施例11)負極活物質成形体(AE-4)の製造
製造例6で得た被覆負極活物質粒子(AA-2)5gに対して製造例8で作製した電解液0.6gを加えて1500rpmで1分間混合する工程を3回繰り返し、合計1.8gの電解液を加えた。
上記混合物0.169gを秤量し、内径16mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された負極活物質成形体(AE-4)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
(実施例12)負極活物質成形体(AE-5)の製造
製造例6で得た被覆負極活物質粒子(AA-2)5gと導電助剤である炭素繊維[日本ポリマー産業(株)製 ミルドファイバー CFMP-300X]0.05gとを遊星撹拌型混合混練装置を用いて1500rpmで3分間混合した。
さらに、製造例8で作製した電解液0.94gを加えて1500rpmで1分間混合する工程を3回繰り返し、合計2.82gの電解液を加えた。
上記混合物0.192gを秤量し、内径16mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された負極活物質成形体(AE-5)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
(実施例13)負極活物質成形体(AE-6)の製造
製造例5で得た被覆負極活物質粒子(AA-1)5gと導電助剤である炭素繊維[大阪ガスケミカル(株)製 ドナカーボ・ミルド S-243]0.3g及び炭素繊維[日本ポリマー産業(株)製 ミルドファイバー CFMP-300X]0.95gとを遊星撹拌型混合混練装置を用いて1500rpmで3分間混合した。
さらに、製造例8で作製した電解液0.4gを加えて1500rpmで1分間混合する工程を3回繰り返し、合計1.2gの電解液を加えた。
上記混合物0.155gを秤量し、内径16mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された負極活物質成形体(AE-6)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
(実施例14)負極活物質成形体(AE-7)の製造
製造例7で得た被覆負極活物質粒子(AA-3)5gと導電助剤である炭素繊維[大阪ガスケミカル(株)製 ドナカーボ・ミルド S-242]0.05gとを遊星撹拌型混合混練装置を用いて1500rpmで3分間混合した。
さらに、製造例8で作製した電解液0.4gを加えて1500rpmで1分間混合する工程を3回繰り返し、合計1.2gの電解液を加えた。
上記混合物0.169gを秤量し、内径16mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された負極活物質成形体(AE-7)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
(比較例3)負極活物質成形体(AE-8)の製造
製造例5で得た被覆負極活物質粒子(AA-1)5gと導電助剤である炭素繊維[大阪ガスケミカル(株)製 ドナカーボ・ミルド S-242]0.05gとを遊星撹拌型混合混練装置を用いて1500rpmで3分間混合した。
さらに、上記混合物0.105gを秤量し、内径16mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された負極活物質成形体(AE-8)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
(比較例4)負極活物質成形体(AE-9)の製造
製造例6で得た被覆負極活物質粒子(AA-2)5gに対して製造例8で作製した電解液2.9gを加えて1500rpmで1分間混合する工程を3回繰り返し、合計8.7gの電解液を加えた。
上記混合物0.331gを秤量し、内径16mmの円筒形状の有底容器内に混合物を入れて加圧装置により圧縮することで円柱形状に成形された負極活物質成形体(AE-9)を得た。
加圧条件は、加圧圧力150MPa、加圧時間5秒であり、加圧装置(加圧治具)の温度は加圧時の室温と等しく20℃であった。
<製造例9:電池外装材の製造>
幅5mm、長さ3cmのニッケル箔端子が超音波溶接された銅箔(3cm×3cm、厚さ17μm)と幅5mm、長さ3cmのアルミ箔端子が超音波溶接されたカーボンコートアルミ箔(3cm×3cm、厚さ21μm)を、同じ方向に2つの端子が出る向きで順に積層し、それを2枚の市販の熱融着型アルミラミネートフィルム(10cm×8cm)に挟み、端子の出ている1辺を熱融着し、電池外装材を作製した。
(実施例15)リチウムイオン電池(L-1)の製造
電池外装材の銅箔上に実施例10で得られた負極活物質成形体(AE-3)を配置し、電解液を40μL添加した。次いで、セパレータ(5cm×5cm、厚さ23μm、セルガード2500 ポリプロピレン製)を負極活物質成形体(AE-3)上に配置し、さらに電解液を20μL添加した。さらに実施例1で得られた正極活物質成形体(CE-1)をセパレータを介して負極活物質成形体(AE-3)に対向するように積層し、電解液を50μL添加した。さらに正極活物質成形体上にカーボンコートアルミ箔が重なるように電池外装材を被せた。電池外装材内を真空にしながら熱融着されていない3辺をヒートシールすることで電池外装材を密封してリチウムイオン電池(L-1)を得た。
(実施例16)リチウムイオン電池(L-2)の製造
電池外装材の銅箔上に実施例10で得られた負極組活物質形体(AE-3)を配置し、電解液を40μL添加した。次いで、セパレータを負極活物質成形体(AE-3)上に配置し、さらに電解液を20μL添加した。さらに実施例2で得られた正極活物質成形体(CE-2)をセパレータを介して負極活物質成形体(AE-3)に対向するように積層し、電解液を40μL添加した。さらに正極活物質成形体上にカーボンコートアルミ箔が重なるように電池外装材を被せた。電池外装材内を真空にしながら熱融着されていない3辺をヒートシールすることで電池外装材を密封してリチウムイオン電池(L-2)を得た。
(実施例17)リチウムイオン電池(L-3)の製造
電池外装材の銅箔上に実施例10で得られた負極活物質成形体(AE-3)を配置し、電解液を40μL添加した。次いで、セパレータを負極活物質成形体(AE-3)上に配置し、さらに電解液を20μL添加した。さらに実施例3で得られた正極活物質成形体(CE-3)をセパレータを介して負極活物質成形体(AE-3)に対向するように積層し、電解液を40μL添加した。さらに正極活物質成形体上にカーボンコートアルミ箔が重なるように電池外装材を被せた。電池外装材内を真空にしながら熱融着されていない3辺をヒートシールすることで電池外装材を密封してリチウムイオン電池(L-3)を得た。
(実施例18)リチウムイオン電池(L-4)の製造
電池外装材の銅箔上に実施例10で得られた負極活物質成形体(AE-3)を配置し、電解液を40μL添加した。次いで、セパレータを負極活物質成形体(AE-3)上に配置し、さらに電解液を20μL添加した。さらに実施例4で得られた正極活物質成形体(CE-4)をセパレータを介して負極活物質成形体(AE-3)に対向するように積層し、電解液を40μL添加した。さらに正極活物質成形体上にカーボンコートアルミ箔が重なるように電池外装材を被せた。電池外装材内を真空にしながら熱融着されていない3辺をヒートシールすることで電池外装材を密封してリチウムイオン電池(L-4)を得た。
(実施例19)リチウムイオン電池(L-5)の製造
電池外装材の銅箔上に実施例10で得られた負極活物質成形体(AE-3)を配置し、電解液を40μL添加した。次いで、セパレータを負極活物質成形体(AE-3)上に配置し、さらに電解液を20μL添加した。さらに実施例5で得られた正極活物質成形体(CE-5)をセパレータを介して負極活物質成形体(AE-3)に対向するように積層し、電解液を30μL添加した。さらに正極活物質成形体上にカーボンコートアルミ箔が重なるように電池外装材を被せた。電池外装材内を真空にしながら熱融着されていない3辺をヒートシールすることで電池外装材を密封してリチウムイオン電池(L-5)を得た。
(実施例20)リチウムイオン電池(L-6)の製造
電池外装材の銅箔上に実施例10で得られた負極活物質成形体(AE-3)を配置し、電解液を40μL添加した。次いで、セパレータを負極活物質成形体(AE-3)上に配置し、さらに電解液を20μL添加した。さらに実施例6で得られた正極活物質成形体(CE―6)をセパレータを介して負極活物質成形体(AE-3)に対向するように積層し、電解液を40μL添加した。さらに正極活物質成形体上にカーボンコートアルミ箔が重なるように電池外装材を被せた。電池外装材内を真空にしながら熱融着されていない3辺をヒートシールすることで電池外装材を密封してリチウムイオン電池(L-6)を得た。
(実施例21)リチウムイオン電池(L-7)の製造
電池外装材の銅箔上に実施例10で得られた負極活物質成形体(AE-3)を配置し、電解液を40μL添加した。次いで、セパレータを負極活物質成形体(AE-3)上に配置し、さらに電解液を20μL添加した。さらに実施例7で得られた正極活物質成形体(CE―7)をセパレータを介して負極活物質成形体(AE-3)に対向するように積層し、電解液を40μL添加した。さらに正極活物質成形体上にカーボンコートアルミ箔が重なるように電池外装材を被せた。電池外装材内を真空にしながら熱融着されていない3辺をヒートシールすることで電池外装材を密封してリチウムイオン電池(L-7)を得た。
(比較例5)リチウムイオン電池(L-8)の製造
電池外装材の銅箔上に実施例10で得られた負極活物質成形体(AE-3)を配置し、電解液を40μL添加した。次いで、セパレータを負極活物質成形体(AE-3)上に配置し、さらに電解液を20μL添加した。さらに比較例1で得られた正極活物質成形体(CE-8)をセパレータを介して負極活物質成形体(AE-3)に対向するように積層し、電解液を50μL添加した。さらに正極活物質成形体上にカーボンコートアルミ箔が重なるように電池外装材を被せた。電池外装材内を真空にしながら熱融着されていない3辺をヒートシールすることで電池外装材を密封してリチウムイオン電池(L-8)を得た。
(比較例6)リチウムイオン電池(L-9)の製造
電池外装材の銅箔上に実施例10で得られた負極活物質成形体(AE-3)を配置し、電解液を40μL添加した。次いで、セパレータを負極活物質成形体(AE-3)上に配置し、さらに電解液を20μL添加した。さらに比較例2で得られた正極活物質成形体(CE-9)をセパレータを介して負極活物質成形体(AE-3)に対向するように積層し、電解液を10μL添加した。さらに正極活物質成形体上にカーボンコートアルミ箔が重なるように電池外装材を被せた。電池外装材内を真空にしながら熱融着されていない3辺をヒートシールすることで電池外装材を密封してリチウムイオン電池(L-9)を得た。
(実施例22)リチウムイオン電池(L-10)の製造
電池外装材の銅箔上に実施例8で得られた負極活物質成形体(AE-1)を配置し、電解液を50μL添加した。次いで、セパレータを負極活物質成形体(AE-1)上に配置し、さらに電解液を20μL添加した。さらに実施例3で得られた正極活物質成形体(CE-3)をセパレータを介して負極活物質成形体(AE-1)に対向するように積層し、電解液を40μL添加した。さらに正極活物質成形体上にカーボンコートアルミ箔が重なるように電池外装材を被せた。電池外装材内を真空にしながら熱融着されていない3辺をヒートシールすることで電池外装材を密封してリチウムイオン電池(L-10)を得た。
(実施例23)リチウムイオン電池(L-11)の製造
電池外装材の銅箔上に実施例9で得られた負極活物質成形体(AE-2)を配置し、電解液を40μL添加した。次いで、セパレータを負極活物質成形体(AE-2)上に配置し、さらに電解液を20μL添加した。さらに実施例3で得られた正極活物質成形体(CE-3)をセパレータを介して負極活物質成形体(AE-2)に対向するように積層し、電解液を40μL添加した。さらに正極活物質成形体上にカーボンコートアルミ箔が重なるように電池外装材を被せた。電池外装材内を真空にしながら熱融着されていない3辺をヒートシールすることで電池外装材を密封してリチウムイオン電池(L-11)を得た。
(実施例24)リチウムイオン電池(L-12)の製造
電池外装材の銅箔上に実施例11で得られた負極活物質成形体(AE-4)を配置し、電解液を40μL添加した。次いで、セパレータを負極活物質成形体(AE-4)上に配置し、さらに電解液を20μL添加した。さらに実施例3で得られた正極活物質成形体(CE-3)をセパレータを介して負極活物質成形体(AE-4)に対向するように積層し、電解液を40μL添加した。さらに正極活物質成形体上にカーボンコートアルミ箔が重なるように電池外装材を被せた。電池外装材内を真空にしながら熱融着されていない3辺をヒートシールすることで電池外装材を密封してリチウムイオン電池(L-12)を得た。
(実施例25)リチウムイオン電池(L-13)の製造
電池外装材の銅箔上に実施例12で得られた負極活物質成形体(AE-5)を配置し、電解液を30μL添加した。次いで、セパレータを負極活物質成形体(AE-5)上に配置し、さらに電解液を20μL添加した。さらに実施例3で得られた正極活物質成形体(CE-3)をセパレータを介して負極活物質成形体(AE-5)に対向するように積層し、電解液を40μL添加した。さらに正極活物質成形体上にカーボンコートアルミ箔が重なるように電池外装材を被せた。電池外装材内を真空にしながら熱融着されていない3辺をヒートシールすることで電池外装材を密封してリチウムイオン電池(L-13)を得た。
(実施例26)リチウムイオン電池(L-14)の製造
電池外装材の銅箔上に実施例13で得られた負極活物質成形体(AE-6)を配置し、電解液を40μL添加した。次いで、セパレータを負極活物質成形体(AE-6)上に配置し、さらに電解液を20μL添加した。さらに実施例3で得られた正極活物質成形体(CE-3)をセパレータを介して負極活物質成形体(AE-6)に対向するように積層し、電解液を40μL添加した。さらに正極活物質成形体上にカーボンコートアルミ箔が重なるように電池外装材を被せた。電池外装材内を真空にしながら熱融着されていない3辺をヒートシールすることで電池外装材を密封してリチウムイオン電池(L-14)を得た。
(実施例27)リチウムイオン電池(L-15)の製造
電池外装材の銅箔上に実施例14で得られた負極活物質成形体(AE-7)を配置し、電解液を40μL添加した。次いで、セパレータを負極活物質成形体(AE-7)上に配置し、さらに電解液を20μL添加した。さらに実施例3で得られた正極活物質成形体(CE-3)をセパレータを介して負極活物質成形体(AE-7)に対向するように積層し、電解液を40μL添加した。さらに正極活物質成形体上にカーボンコートアルミ箔が重なるように電池外装材を被せた。電池外装材内を真空にしながら熱融着されていない3辺をヒートシールすることで電池外装材を密封してリチウムイオン電池(L-15)を得た。
(比較例7)リチウムイオン電池(L-16)の製造
電池外装材の銅箔上に比較例3で得られた負極活物質成形体(AE-8)を配置し、電解液を50μL添加した。次いで、セパレータを負極活物質成形体(AE-8)上に配置し、さらに電解液を20μL添加した。さらに実施例3で得られた正極活物質成形体(CE-3)をセパレータを介して負極活物質成形体(AE-8)に対向するように積層し、電解液を40μL添加した。さらに正極活物質成形体上にカーボンコートアルミ箔が重なるように電池外装材を被せた。電池外装材内を真空にしながら熱融着されていない3辺をヒートシールすることで電池外装材を密封してリチウムイオン電池(L-16)を得た。
(比較例8)リチウムイオン電池(L-17)の製造
電池外装材の銅箔上に比較例4で得られた負極活物質成形体(AE-9)を配置し、電解液を10μL添加した。次いで、セパレータを負極活物質成形体(AE-9)上に配置し、さらに電解液を20μL添加した。さらに実施例3で得られた正極活物質成形体(CE-3)をセパレータを介して負極活物質成形体(AE-9)に対向するように積層し、電解液を40μL添加した。さらに正極活物質成形体上にカーボンコートアルミ箔が重なるように電池外装材を被せた。電池外装材内を真空にしながら熱融着されていない3辺をヒートシールすることで電池外装材を密封してリチウムイオン電池(L-17)を得た。
<電極活物質成形体の成型性評価>
実施例1~14、及び比較例1~4の電極活物質成形体の成型性について以下の基準で目視での外観評価を実施した。
◎:ひび割れや脱落、流れが生じておらず、形状を維持している。
○:ひび割れや脱落、流れがやや生じているが、ある程度形状を維持している。
×:ひび割れや脱落、流れが生じ、形状を維持していない。
<電極活物質成形体の形状維持性評価>
実施例15~27及び比較例5~8において、実施例1~14及び比較例1~4で作製された電極活物質成形体に電解液を注液した後の形状維持性について以下の基準で目視評価した。ただし、実施例3で作製された正極活物質成形体(CE-3)は実施例17においてその形状維持性を評価し、実施例10で作製された負極活物質成形体(AE-3)は実施例15においてその形状維持性を評価した。
◎:ひび割れや脱落、流れが生じておらず、形状を維持している。
○:ひび割れや脱落、流れがやや生じているが、形状を維持している。
△:ひび割れや脱落、流れがやや生じ、形状が崩れかけているが、実用上問題ない。
×:ひび割れや脱落、流れが生じ、形状を維持していない。
-:電解液を注液する前から形状が維持されておらず、評価不能。
Figure JPOXMLDOC01-appb-T000001
<リチウムイオン電池の初回放電評価>
25℃下、充放電測定装置「HJ-SD8」[北斗電工(株)製]を用いて以下の方法によりリチウムイオン電池の初回性能の評価を行った。
定電流定電圧充電方式(CCCVモードともいう)で0.1Cの電流で4.2Vまで充電した後4.2Vを維持した状態で電流値が0.01Cになるまで充電した。10分間の休止後、0.1Cの電流で2.5Vまで放電した。
このとき充電した容量を[初回充電容量(mAh)]、放電した容量を[初回放電容量(mAh)]とした。
<リチウムイオン電池の初回クーロン効率の評価>
上記の測定で得られた初回充電容量と初回放電容量を用い、以下の式で初回クーロン効率を算出した。
[クーロン効率(%)]=[初回放電容量]÷[初回充電容量]×100
<リチウムイオン電池の20サイクル容量維持率の評価>
25℃下、充放電測定装置を用いて以下の方法によりリチウムイオン電池の20サイクル目の評価を行った。
定電流定電圧充電方式で0.1Cの電流で4.2Vまで充電した後4.2Vを維持した状態で電流値が0.01Cになるまで充電した。10分間の休止後、0.1Cの電流で2.5Vまで放電し、10分間休止した。
この操作を1サイクルとし、合計20サイクル完了まで測定を実施した。20サイクル目の放電容量を[20サイクル放電容量(mAh)]とした時、初回放電容量と20サイクル放電容量を用い、以下の式で20サイクル容量維持率を算出した。
[20サイクル容量維持率(%)]=[20サイクル放電容量]÷[初回放電容量]×100
Figure JPOXMLDOC01-appb-T000002
実施例1~14で作製した電極活物質成形体は、実施例15~27で行ったリチウムイオン電池の製造中においても形状維持ができ、取り扱い性が良好であったため、簡便な工程でリチウムイオン電池を製造することができた。
本発明のリチウムイオン電池用電極活物質成形体の製造方法により得られるリチウムイオン電池は、特に、携帯電話、パーソナルコンピューター、ハイブリッド自動車及び電気自動車用として有用である。
1、2、3、4         リチウムイオン電池
10、11、15        電極活物質成形体
10a、11a、15a     正極活物質成形体
10b、11b、15b     負極活物質成形体
12a、13a、14a     正極構造体
12b、13b、14b     負極構造体
20、20a、20b、21   セパレータ
20c、20d         セパレータの端部
30              電極活物質成形体ユニット
30a、35a         正極活物質成形体ユニット
30b、35b         負極活物質成形体ユニット
40a、41a、42a、43a 正極集電体
40b、41a、42b、43b 負極集電体
42c             両極集電体
44              正極端子
45              負極端子
50a、51a         正極外装体
50b、51b         負極外装体
52、53           電池外装体
55              収容部
55a、56a         正極収容部
60、60a、60b      接着樹脂層
61、61a、61b      接着樹脂層
70~77           電池単位構成体
80              シール材
100、200         型
101、201         側面を構成する型
101a            側面を構成する型101の内壁面
103、203         底面を構成する型
103a            底面を構成する型103の上底面
201a            側面を構成する型201の内壁面
202             角部を構成する型
203a            底面を構成する型203の上底面
104、204         圧縮用治具
105、106         治具
110             組成物

Claims (8)

  1. リチウムイオン電池用電極活物質と電解液とを含む組成物を成形してリチウムイオン電池用電極活物質の非結着体であるリチウムイオン電池用電極活物質成形体を得る成形工程を含み、
    前記組成物の電解液含有量が前記組成物の重量を基準として0.1~40重量%であることを特徴とするリチウムイオン電池用電極活物質成形体の製造方法。
  2. 前記成形工程では、底面及び側面を有する型内に前記組成物を充填して加圧成形する請求項1に記載のリチウムイオン電池用電極活物質成形体の製造方法。
  3. 前記リチウムイオン電池用電極活物質は、表面の少なくとも一部が被覆用樹脂を含む被覆剤で被覆された被覆活物質である請求項1又は2に記載のリチウムイオン電池用電極活物質成形体の製造方法。
  4. 前記組成物に含まれる前記リチウムイオン電池用電極活物質の重量割合が、組成物の固形分重量の合計に基づいて、80~100重量%である請求項1~3のいずれかに記載のリチウムイオン電池用電極活物質成形体の製造方法。
  5. 前記成形工程では、底面及び側面を有する型内に、前記型の底面全体と前記型の側面の少なくとも一部を覆うようにセパレータを配置し、前記組成物をセパレータが配置された前記型内に充填して成形することによって、前記組成物を成形するとともに、前記組成物のうち前記型の底面に対応する面の全部と前記型の側面に対応する面の少なくとも一部を前記セパレータにより連続的に覆う請求項1~4のいずれかに記載のリチウムイオン電池用電極活物質成形体の製造方法。
  6. 請求項1~5のいずれかに記載のリチウムイオン電池用電極活物質成形体の製造方法により製造されたリチウムイオン電池用電極活物質成形体を、少なくとも一部に収容部が形成された電池外装体の前記収容部内に配置し、前記電極活物質成形体を前記電池外装体と一体化させて電極構造体を準備する組み合わせ工程を含むことを特徴とするリチウムイオン電池の製造方法。
  7. 前記成形工程において、前記リチウムイオン電池用電極活物質が正極活物質である正極活物質成形体及び前記リチウムイオン電池用電極活物質が負極活物質である負極活物質成形体をそれぞれ得て、
    前記組み合わせ工程において、前記正極活物質成形体を正極外装体と一体化させた正極構造体と、前記負極活物質成形体を負極外装体と一体化させた負極構造体を準備し、
    さらに、前記正極構造体と、前記負極構造体とを、前記正極活物質成形体と前記負極活物質成形体とがセパレータを介して対向するよう配置し、前記正極外装体と前記負極外装体とを封止する封止工程を行う請求項6に記載のリチウムイオン電池の製造方法。
  8. 請求項1~5のいずれかに記載のリチウムイオン電池用電極活物質成形体の製造方法により製造されたリチウムイオン電池用電極活物質成形体を電池外装体内に収容する収容工程を備えるリチウムイオン電池の製造方法であって、
    前記成形工程において、前記リチウムイオン電池用電極活物質が正極活物質である正極活物質成形体と、前記リチウムイオン電池用電極活物質が負極活物質である負極活物質成形体とを準備し、
    前記収容工程において、前記正極活物質成形体と前記負極活物質成形体とがセパレータを介して配置された電池単位構成体が、複数個、並列又は直列に接続されるように前記正極活物質成形体及び前記負極活物質成形体を前記電池外装体内に収容することを特徴とするリチウムイオン電池の製造方法。
PCT/JP2018/016338 2017-04-21 2018-04-20 リチウムイオン電池用電極活物質成形体の製造方法及びリチウムイオン電池の製造方法 WO2018194163A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197028340A KR102600726B1 (ko) 2017-04-21 2018-04-20 리튬 이온 전지용 전극 활물질 성형체의 제조 방법 및 리튬 이온 전지의 제조 방법
US16/606,858 US11211596B2 (en) 2017-04-21 2018-04-20 Method for manufacturing electrode active material molding for lithium-ion battery and method for manufacturing lithium-ion battery
EP18788333.5A EP3614464A4 (en) 2017-04-21 2018-04-20 LITHIUM-ION BATTERY ELECTRODE ACTIVE MATERIAL MOLDING MANUFACTURING PROCESS AND LITHIUM-ION BATTERY MANUFACTURING PROCESS
JP2019513704A JP7104028B2 (ja) 2017-04-21 2018-04-20 リチウムイオン電池用電極活物質成形体の製造方法及びリチウムイオン電池の製造方法
CN201880025665.4A CN110521032B (zh) 2017-04-21 2018-04-20 锂离子电池用电极活性物质成型体的制造方法和锂离子电池的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-084620 2017-04-21
JP2017084620 2017-04-21

Publications (1)

Publication Number Publication Date
WO2018194163A1 true WO2018194163A1 (ja) 2018-10-25

Family

ID=63856141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016338 WO2018194163A1 (ja) 2017-04-21 2018-04-20 リチウムイオン電池用電極活物質成形体の製造方法及びリチウムイオン電池の製造方法

Country Status (6)

Country Link
US (1) US11211596B2 (ja)
EP (1) EP3614464A4 (ja)
JP (1) JP7104028B2 (ja)
KR (1) KR102600726B1 (ja)
CN (1) CN110521032B (ja)
WO (1) WO2018194163A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020262649A1 (ja) * 2019-06-28 2020-12-30
CN113748538A (zh) * 2019-03-28 2021-12-03 Apb株式会社 锂离子电池用部件的制造方法
US11211596B2 (en) 2017-04-21 2021-12-28 Sanyo Chemical Industries, Ltd. Method for manufacturing electrode active material molding for lithium-ion battery and method for manufacturing lithium-ion battery
US11401208B2 (en) * 2019-04-05 2022-08-02 Tdk Corporation Substrate and multilayer substrate
JP2022115019A (ja) * 2021-01-27 2022-08-08 プライムプラネットエナジー&ソリューションズ株式会社 湿潤粉体からなる電極材料および電極とその製造方法ならびに該電極を備える二次電池
JP7510749B2 (ja) 2019-09-11 2024-07-04 三洋化成工業株式会社 リチウムイオン電池の製造方法
JP7572525B2 (ja) 2019-06-28 2024-10-23 富士フイルム株式会社 電極用成形体の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102296660B1 (ko) * 2020-12-10 2021-09-02 김일도 이차전지 셀 구조 및 제조방법
JP7320010B2 (ja) * 2021-03-12 2023-08-02 プライムプラネットエナジー&ソリューションズ株式会社 二次電池用電極の製造方法および電極ならびに該電極を備える二次電池
JP7229289B2 (ja) 2021-03-12 2023-02-27 プライムプラネットエナジー&ソリューションズ株式会社 二次電池用電極の製造方法
CN113410422B (zh) * 2021-06-18 2022-09-09 山西贝特瑞新能源科技有限公司 多孔型锂电负极材料的压制装置及其压制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164217A (ja) * 1998-11-27 2000-06-16 Kyocera Corp リチウム電池
JP2002260739A (ja) 2001-03-05 2002-09-13 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその製造法
JP2012243710A (ja) * 2011-05-24 2012-12-10 Sumitomo Electric Ind Ltd 非水電解質電池用正極およびその製造方法と非水電解質電池
WO2015005117A1 (ja) 2013-07-08 2015-01-15 三洋化成工業株式会社 リチウムイオン電池活物質被覆用樹脂、リチウムイオン電池活物質被覆用樹脂組成物及びリチウムイオン電池用被覆活物質
JP2015115103A (ja) * 2013-12-09 2015-06-22 トヨタ自動車株式会社 全固体電池用の電極の製造方法
JP2017098235A (ja) * 2015-11-12 2017-06-01 三洋化成工業株式会社 リチウムイオン電池
JP2017147222A (ja) * 2016-02-12 2017-08-24 三洋化成工業株式会社 リチウムイオン電池
JP2018045902A (ja) * 2016-09-15 2018-03-22 三洋化成工業株式会社 リチウムイオン電池及びその製造方法
JP2018067508A (ja) * 2016-10-21 2018-04-26 三洋化成工業株式会社 リチウムイオン電池の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294290A (ja) 1999-04-12 2000-10-20 Mitsubishi Chemicals Corp 二次電池の製造方法
KR100416321B1 (ko) * 2001-08-20 2004-01-31 제노에너지(주) Li 분말을 이용한 Li 전지용 음극의 성형방법
JP5293383B2 (ja) 2008-12-25 2013-09-18 日本ゼオン株式会社 支持体付電極組成物層及び電気化学素子用電極の製造方法
JP6071171B2 (ja) * 2010-09-01 2017-02-01 出光興産株式会社 電極材料及びそれを用いたリチウムイオン電池
KR101924989B1 (ko) 2011-01-07 2018-12-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치의 제작 방법
JP5891884B2 (ja) 2012-03-21 2016-03-23 凸版印刷株式会社 非水電解液二次電池用電極の製造方法
WO2015068268A1 (ja) * 2013-11-08 2015-05-14 株式会社日立製作所 全固体電池、全固体電池用電極及びその製造方法
KR20160086923A (ko) * 2013-12-20 2016-07-20 산요가세이고교 가부시키가이샤 리튬 이온 전지용 전극, 리튬 이온 전지 및 리튬 이온 전지용 전극의 제조 방법
JP6410442B2 (ja) * 2014-03-12 2018-10-24 三洋化成工業株式会社 リチウムイオン電池用負極の製造方法、及び、リチウムイオン電池の製造方法
TWI560143B (en) * 2014-03-20 2016-12-01 Kureha Corp Carbonaceous product for anode electrode and method for manufacturing the same
JP2016207019A (ja) * 2015-04-24 2016-12-08 株式会社リコー 画像形成装置、情報処理方法、およびプログラム
JP6571406B2 (ja) * 2015-06-23 2019-09-04 三洋化成工業株式会社 リチウムイオン電池およびその製造方法
JP6323405B2 (ja) * 2015-07-13 2018-05-16 トヨタ自動車株式会社 電極シートの製造方法および電極シート
JP6585964B2 (ja) * 2015-08-24 2019-10-02 三洋化成工業株式会社 リチウムイオン電池の製造方法
JP6944773B2 (ja) 2016-09-26 2021-10-06 日産自動車株式会社 非水電解質二次電池用負極
JP7104028B2 (ja) 2017-04-21 2022-07-20 三洋化成工業株式会社 リチウムイオン電池用電極活物質成形体の製造方法及びリチウムイオン電池の製造方法
JP7525984B2 (ja) 2018-05-30 2024-07-31 三洋化成工業株式会社 電極活物質層の製造方法、リチウムイオン電池用電極の製造方法及びリチウムイオン電池の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164217A (ja) * 1998-11-27 2000-06-16 Kyocera Corp リチウム電池
JP2002260739A (ja) 2001-03-05 2002-09-13 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその製造法
JP2012243710A (ja) * 2011-05-24 2012-12-10 Sumitomo Electric Ind Ltd 非水電解質電池用正極およびその製造方法と非水電解質電池
WO2015005117A1 (ja) 2013-07-08 2015-01-15 三洋化成工業株式会社 リチウムイオン電池活物質被覆用樹脂、リチウムイオン電池活物質被覆用樹脂組成物及びリチウムイオン電池用被覆活物質
JP2015115103A (ja) * 2013-12-09 2015-06-22 トヨタ自動車株式会社 全固体電池用の電極の製造方法
JP2017098235A (ja) * 2015-11-12 2017-06-01 三洋化成工業株式会社 リチウムイオン電池
JP2017147222A (ja) * 2016-02-12 2017-08-24 三洋化成工業株式会社 リチウムイオン電池
JP2018045902A (ja) * 2016-09-15 2018-03-22 三洋化成工業株式会社 リチウムイオン電池及びその製造方法
JP2018067508A (ja) * 2016-10-21 2018-04-26 三洋化成工業株式会社 リチウムイオン電池の製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211596B2 (en) 2017-04-21 2021-12-28 Sanyo Chemical Industries, Ltd. Method for manufacturing electrode active material molding for lithium-ion battery and method for manufacturing lithium-ion battery
US11309537B2 (en) * 2019-03-28 2022-04-19 Apb Corporation Production method for lithium-ion battery member
CN113748538A (zh) * 2019-03-28 2021-12-03 Apb株式会社 锂离子电池用部件的制造方法
EP3951936A4 (en) * 2019-03-28 2024-01-03 APB Corporation METHOD FOR MANUFACTURING ELEMENT FOR LITHIUM-ION BATTERY
US11401208B2 (en) * 2019-04-05 2022-08-02 Tdk Corporation Substrate and multilayer substrate
CN114008817A (zh) * 2019-06-28 2022-02-01 富士胶片株式会社 电极用成型体的制造方法
US20220077447A1 (en) * 2019-06-28 2022-03-10 Fujifilm Corporation Method of manufacturing formed body for electrode
EP3993085A4 (en) * 2019-06-28 2022-09-14 FUJIFILM Corporation PROCESS FOR MAKING A MOLDING FOR AN ELECTRODE
JP7344964B2 (ja) 2019-06-28 2023-09-14 富士フイルム株式会社 電極用成形体の製造方法
JPWO2020262649A1 (ja) * 2019-06-28 2020-12-30
CN114008817B (zh) * 2019-06-28 2024-08-09 富士胶片株式会社 电极用成型体的制造方法
JP7572525B2 (ja) 2019-06-28 2024-10-23 富士フイルム株式会社 電極用成形体の製造方法
JP7510749B2 (ja) 2019-09-11 2024-07-04 三洋化成工業株式会社 リチウムイオン電池の製造方法
JP2022115019A (ja) * 2021-01-27 2022-08-08 プライムプラネットエナジー&ソリューションズ株式会社 湿潤粉体からなる電極材料および電極とその製造方法ならびに該電極を備える二次電池
JP7385611B2 (ja) 2021-01-27 2023-11-22 プライムプラネットエナジー&ソリューションズ株式会社 湿潤粉体からなる電極材料および電極とその製造方法ならびに該電極を備える二次電池

Also Published As

Publication number Publication date
EP3614464A4 (en) 2020-12-23
JPWO2018194163A1 (ja) 2020-02-27
CN110521032A (zh) 2019-11-29
EP3614464A1 (en) 2020-02-26
KR102600726B1 (ko) 2023-11-09
JP7104028B2 (ja) 2022-07-20
KR20190139855A (ko) 2019-12-18
US11211596B2 (en) 2021-12-28
CN110521032B (zh) 2023-08-25
US20200136125A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
WO2018194163A1 (ja) リチウムイオン電池用電極活物質成形体の製造方法及びリチウムイオン電池の製造方法
KR100999168B1 (ko) 비수전해질 전지
KR101647910B1 (ko) 쌍극형 전극 및 이를 사용한 쌍극형 리튬 이온 이차 전지
CN105322153B (zh) 非水电解质电池、电池模块、以及电池组
KR20090050001A (ko) 비수전해질 전지
JP6408137B2 (ja) 電極、電極群及び非水電解質電池
CN114530589A (zh) 锂金属负极、其制备方法及其相关的锂金属电池和装置
KR20110088373A (ko) 리튬 이온 중합체 전지
KR102206590B1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
CN112582621A (zh) 非水电解质二次电池
KR20130126583A (ko) 비수 전해질 이차 전지
CN111183537A (zh) 负极活性物质的预掺杂方法、以及电气设备用电极及电气设备的制造方法
JP5927823B2 (ja) リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP6597021B2 (ja) 電池の製造方法
JP6375842B2 (ja) 安定化リチウム粉末及びそれを用いたリチウムイオン二次電池
CN111799441B (zh) 非水电解质二次电池
JP2019160724A (ja) 負極及びリチウムイオン二次電池
EP3940872A1 (en) Method for recycling electrode scraps, and method for manufacturing electrode by using same
JP6839028B2 (ja) リチウムイオン電池の製造方法
JP2004186035A (ja) 非水電解質電池
US10290866B2 (en) Stabilized lithium powder
JP2021096901A (ja) リチウムイオン二次電池
JP6631363B2 (ja) 負極活物質、負極活物質を含む負極及び負極を含むリチウムイオン二次電池
JP6596877B2 (ja) 安定化リチウム粉及びそれを用いたリチウムイオン二次電池
JP7523539B2 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513704

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197028340

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018788333

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018788333

Country of ref document: EP

Effective date: 20191121