WO2018180548A1 - 感光性組成物、硬化膜および有機el表示装置 - Google Patents

感光性組成物、硬化膜および有機el表示装置 Download PDF

Info

Publication number
WO2018180548A1
WO2018180548A1 PCT/JP2018/010246 JP2018010246W WO2018180548A1 WO 2018180548 A1 WO2018180548 A1 WO 2018180548A1 JP 2018010246 W JP2018010246 W JP 2018010246W WO 2018180548 A1 WO2018180548 A1 WO 2018180548A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive composition
organic
pigment
group
cured film
Prior art date
Application number
PCT/JP2018/010246
Other languages
English (en)
French (fr)
Inventor
石川暁宏
三好一登
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US16/491,497 priority Critical patent/US11156918B2/en
Priority to JP2018515155A priority patent/JP6954273B2/ja
Priority to CN201880022140.5A priority patent/CN110446974B/zh
Priority to KR1020197025491A priority patent/KR102216990B1/ko
Publication of WO2018180548A1 publication Critical patent/WO2018180548A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photosensitive composition, a cured film, and an organic EL display device.
  • An organic EL display device is a self-luminous display device that emits light using energy generated by recombination of electrons injected from a cathode and holes injected from an anode. It is known that an organic light emitting material used for a light emitting pixel of an organic EL display device is weak against gas components and moisture, and the light emission reliability of the organic EL display device is lowered by exposure to these. In order to improve the light emission reliability, not only the durability of the organic light emitting material itself is improved, but also the peripheral material constituting the light emitting element such as a pixel dividing layer formed on the electrode and a planarizing layer covering the driving circuit is provided. Improvement of characteristics is indispensable.
  • a technique for preventing the reflection of the outside light is required.
  • a technique for preventing external light reflection for example, a technique of providing a polarizing plate on the light extraction side of the light emitting element is generally used, but the polarizing plate shields a part of the light amount output from the light emitting element. Therefore, there has been a problem that the display luminance is lowered.
  • a coloring material such as a pigment is dispersed in the pixel division layer for the purpose of reducing external light reflection and increasing display luminance without providing a polarizing plate in the display portion of the organic EL display device.
  • a technique for adding light shielding properties to light shielding is disclosed.
  • Patent Documents 1 and 2 Specific examples thereof include photosensitive compositions for forming a black pixel division layer (for example, Patent Documents 1 and 2).
  • Patent Documents 1 and 2 Specific examples thereof include photosensitive compositions for forming a black pixel division layer (for example, Patent Documents 1 and 2).
  • Patent Documents 1 and 2 Specific examples thereof include photosensitive compositions for forming a black pixel division layer (for example, Patent Documents 1 and 2).
  • International Publication No. 2017/057281 International Publication No. 2017/1616963
  • a pixel having a thickness of 1 ⁇ m When the dividing layer is formed to have a thickness of 2 ⁇ m, there is a problem that the flexibility and the light emission reliability are further deteriorated. From the above background, a photosensitive composition that enables formation of a pixel dividing layer having excellent flexibility and light emission reliability has been desired.
  • the photosensitive composition of the present invention has the following configuration in order to solve the above problems. That is, A photosensitive composition containing at least one compound selected from the following groups (a-1) to (a-3), and (b) a photosensitive agent.
  • R 1 represents a long-chain alkyl group having 9 to 19 carbon atoms
  • R 2 represents COOCH 2 or an oxymethylene group
  • * represents a bonding position.
  • the cured film of the present invention has the following configuration. That is, A cured film made of a cured product of the photosensitive composition.
  • the organic EL display device of the present invention has the following configuration. That is, An organic EL display device comprising a cured film of the photosensitive composition.
  • the photosensitive composition of the present invention preferably further contains (c) an inorganic pigment having near-infrared light shielding properties.
  • the inorganic pigment having the near-infrared light shielding property (c) is selected from the group consisting of an inorganic black pigment having a titanium atom, an inorganic black pigment having a zirconium atom, and amorphous carbon black. It is preferable to contain an inorganic pigment.
  • the long-chain alkyl group of the compound selected from the group (a-1) to (a-3) has a total of three tertiary carbons and / or quaternary carbons.
  • a branched alkyl group having the above is preferable.
  • the long chain alkyl group contained in the compound selected from the group (a-1) to (a-3) is a branched alkyl group represented by the following structural formula (50). It is preferable.
  • the photosensitive composition of the present invention contains at least one of the compounds (a-2) and (a-3), and a resin having a structure represented by the general formula (1) is a polyimide resin. It is preferable that the resin having the structure represented by the general formula (2) is a cardo resin.
  • the photosensitive composition of the present invention preferably further contains (d) an organic black pigment.
  • the (b) photosensitive agent preferably contains a compound having two or more radical polymerizable groups and a photopolymerization initiator, and has negative photosensitivity.
  • the (b) photosensitive agent contains a photoacid generator and has positive photosensitivity.
  • the photosensitive composition of the present invention preferably further contains (e) a vanadyl phthalocyanine-based near infrared absorbing dye.
  • the photosensitive composition of the present invention has a maximum light transmittance of 5.0% or less at a wavelength of 780 to 1,000 nm and a dielectric constant at a frequency of 1 kHz when a cured film having a thickness of 2.0 ⁇ m is formed. Is preferably less than 5.0.
  • the photosensitive composition of the present invention it is possible to obtain a patterned cured film having excellent flexibility and high linearity, and if the cured film is used for a pixel dividing layer of an organic EL display device, light emission reliability is obtained. Can be improved.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • Visible light means light in a wavelength range of 380 nm to 780 nm
  • near infrared means light in a wavelength range of 780 nm to 1,000 nm.
  • the light shielding property means a function of reducing the intensity of transmitted light as compared to the intensity of light incident in a direction perpendicular to the cured film.
  • CI used for the name of the colorant is an abbreviation of Color Index Generic Name. Based on the color index issued by The Society of Dyers and Colorists, the Color Index is registered for the color index registered in the color index. Generic Name represents the chemical structure or crystal form of the pigment or dye.
  • the alkaline developer refers to an organic alkaline aqueous solution unless otherwise specified.
  • the photosensitive composition in the present invention means an alkali development type composition having negative photosensitivity or positive photosensitivity described later. For example, even if it has a property of being cured by irradiating light, such as a UV curable paint or a UV curable adhesive, any of the above-mentioned negative photosensitive properties or positive photosensitive properties can be used.
  • a composition that does not have photosensitivity and is not an alkali development type does not correspond to the photosensitive composition of the present invention.
  • the weight average molecular weight (Mw) of the resin means a value obtained by analyzing by gel permeation chromatography using tetrahydrofuran as a carrier and using a standard polystyrene calibration curve.
  • Carbon black and amorphous carbon black are classified into organic black pigments from the viewpoint that the constituent element is carbon according to the customs of each technical field, and when classified into inorganic black pigments from the viewpoint of electrical and optical characteristics.
  • carbon black and amorphous carbon black are classified as inorganic pigments according to the latter.
  • the present inventors have verified the principle of the above-mentioned problem, and tend to decrease the flexibility as the content of the colorant component such as a pigment is increased.
  • the shading property imparted to the pixel division layer and the trade-off. It became clear that it became a relationship. Flexibility as used herein refers to the difficulty of cracking or breaking when the pixel division layer is bent with a constant radius of curvature. Therefore, the value as a display device is reduced.
  • an organic EL display device that does not include a polarizing plate requires higher light emission reliability than an organic EL display device that includes a polarizing plate.
  • the reduction in light emission reliability referred to here is a phenomenon in which when the organic EL display device continues to be lit continuously, the light emitting area of the light emitting element is reduced with the passage of lighting time on the basis of the initial lighting time, resulting in a decrease in luminance. The lower the light emission reliability, the lower the value as a display device.
  • the photosensitive composition containing at least one compound selected from the group (a-1) to (a-3) and (b) a photosensitive agent is excellent in flexibility and light emission reliability. It has been found that the pixel division layer can be formed while maintaining high pattern linearity, and the present invention has been completed.
  • the photosensitive composition of the present invention contains at least one compound selected from the following groups (a-1) to (a-3).
  • R 1 represents a long-chain alkyl group having 9 to 19 carbon atoms
  • R 2 represents COOCH 2 or an oxymethylene group
  • * represents a bonding position.
  • R 3 represents a long-chain alkyl group having 9 to 19 carbon atoms
  • R 4 represents COOCH 2 or an oxymethylene group
  • * represents a bonding position.
  • (A-1) an epoxy compound having a long-chain alkyl group having 9 to 19 carbon atoms
  • (a-2) a resin having a structure represented by the above general formula (1)
  • (a-3) the above general
  • the resins having a structure represented by the formula (2) can be used alone or in combination of two or more.
  • a resin having a structure represented by the above general formula (1) in (a-2) or a resin having a structure represented by the above general formula (2) in (a-3) may further contain an epoxy in the molecule. Even if it has a group, it is defined as not belonging to an epoxy compound having a long-chain alkyl group of 9 to 19 carbon atoms of (a-1).
  • the compound selected from the group (a-1) to (a-3) contained in the photosensitive composition of the present invention has high flexibility and high light resistance at the same time in the pixel division layer finally obtained. Can be given. Since the light resistance is improved, as a result, the organic EL display device having the pixel dividing layer is improved in light emission reliability.
  • the light resistance here means not the generally well-known resistance to discoloration of the cured film in the presence of oxygen but the deterioration resistance of the light-emitting element in the sealed space without oxygen.
  • the compound selected from the group (a-1) to (a-3) has an effect of lowering the dielectric constant of the finally obtained pixel division layer.
  • This effect does not impair the flexibility of the cured film as compared with the conventional method of reducing the dielectric constant by including, for example, hollow silica that does not have light-shielding properties and providing voids in the film.
  • an inorganic pigment having a near-infrared light-shielding property (c) described later which has a dielectric constant that is generally higher than that of all organic components constituting the pixel dividing layer, is included, Can be prevented, and adverse effects on driving such as luminance unevenness can be suppressed.
  • Examples of the long-chain alkyl group having 9 to 19 carbon atoms which the epoxy compound having a long-chain alkyl group having 9 to 19 carbon atoms of (a-1) includes a straight-chain alkyl group and a branched alkyl group.
  • n- represents a straight chain
  • iso represents a branched chain.
  • the long chain here means that the number of carbon atoms constituting one alkyl group is 9 or more, and the alkyl group having 8 or less carbon atoms does not correspond to this.
  • the long-chain alkyl group having 9 to 19 carbon atoms which the epoxy compound having a long-chain alkyl group having 9 to 19 carbon atoms in (a-1) does not include a cyclic alkyl group.
  • the epoxy group possessed by the epoxy compound having a long-chain alkyl group having 9 to 19 carbon atoms of (a-1) includes an alicyclic epoxy group and a glycidyl group. Further, the number of epoxy groups that the component (a-1) has in the molecule is not particularly limited.
  • the epoxy compound having a long-chain alkyl group having 9 to 19 carbon atoms of (a-1) is a compound having a monovalent long-chain alkyl group having 9 to 19 carbon atoms and a carboxyl group in the molecule, or a monovalent It can be synthesized as an epoxy-modified product derived from a compound having a long-chain alkyl group having 9 to 19 carbon atoms and a hydroxyl group. Examples include glycidyl esters, glycidyl ethers, glycidyl ethers / esters, and these compounds are reactive dilutions used to reduce the viscosity of non-photosensitive thermosetting epoxy resin paints and improve coatability.
  • the molecular weight per molecule of the epoxy compound having a long-chain alkyl group having 9 to 19 carbon atoms of (a-1) is preferably 200 to 3,000. 300 to 1,000 are more preferable.
  • epoxy compound having a long-chain alkyl group having 9 to 19 carbon atoms of (a-1) are represented by structural formula (3) or structural formula (4) having a branched alkyl group having 9 carbon atoms.
  • the long chain alkyl group possessed by the compound selected from the group (a-1) to (a-3) must have a carbon number in the range of 9 to 19. There is.
  • the carbon number of the long-chain alkyl group contained in the compound selected from the group (a-1) to (a-3) is less than 9, the flexibility and light emission reliability cannot be improved.
  • the number of carbon atoms exceeds 19, it becomes impossible to form a pixel division layer with high pattern linearity.
  • the pattern linearity is high, that is, the pattern edge is not distorted, a pixel division layer having a uniform opening area and a high resolution can be stably obtained, and defects in electrode layers formed on the surface of the pixel division layer can be obtained. It is possible to prevent disconnection and suppress the occurrence of non-lighted portions of the light emitting pixels.
  • the carbon number of the long-chain alkyl group having 9 to 19 carbon atoms is preferably 11 or more, and more preferably 13 or more from the viewpoints of flexibility and light emission reliability. Moreover, 18 or less is preferable and 17 or less is more preferable when making the solubility to the alkali developing solution in the image development process mentioned later suitable, and improving pattern linearity.
  • the long-chain alkyl group having 9 to 19 carbon atoms preferably has a branched structure from the viewpoint of excellent flexibility and light emission reliability.
  • a branched chain having a total of three or more tertiary carbons and / or quaternary carbons An alkyl group is more preferable, and a branched alkyl group having a total of 4 or more is more preferable.
  • the number of tertiary carbon and / or quaternary carbon represents the number of branch points of the alkyl group having 9 to 19 carbon atoms.
  • the long-chain alkyl group having a total number of tertiary carbon and / or quaternary carbon of 4 or more include a branched alkyl group represented by the following general formula (50).
  • Specific examples of the compound having such a long-chain alkyl group include compounds represented by structural formulas (11), (12), and (23).
  • a compound represented by the structural formula (11) having two or more epoxy groups in the molecule for increasing the thermal crosslinking density in the curing step described later and obtaining higher flexibility and light emission reliability is provided in the present invention. It can be particularly preferably used for the photosensitive composition.
  • a plurality of compounds having different carbon numbers and / or branched numbers can be used in combination.
  • the content of the epoxy compound having a long-chain alkyl group of 9 to 19 carbon atoms (a-1) in the photosensitive composition of the present invention is sufficient for sufficiently improving flexibility and light emission reliability.
  • the total solid content in the product is preferably 10.0% by weight or more, and more preferably 15.0% by weight or more. In order to make the solubility in an alkali developer suitable and obtain good pattern processability, it is preferably 25.0% by weight or less, more preferably 20.0% by weight or less.
  • the photosensitive composition of the present invention further contains an epoxy compound having no long-chain alkyl group having 9 to 19 carbon atoms, so that the dissolution rate in an alkaline developer, the crosslinking density in the curing step, and the like can be improved. Can be adjusted. *
  • Examples of the resin having the structure represented by the general formula (1) in (a-2) include a compound having a long-chain alkyl group having 9 to 19 carbon atoms and one epoxy group in a resin having a hydroxyl group.
  • the resin having a hydroxyl group an alkali-soluble resin having a hydroxyl group can be preferably used.
  • the hydroxyl group which alkali-soluble resin has is a phenolic hydroxyl group at the point with high reactivity with an epoxy group.
  • the resin having the structure represented by the general formula (2) in (a-3) for example, a resin having a carboxyl group, a long-chain alkyl group having 9 to 19 carbon atoms, one epoxy group, and And a resin obtained by subjecting an epoxy compound having a ring-opening addition reaction.
  • a resin having a carboxyl group an alkali-soluble resin having a carboxyl group can be preferably used.
  • an epoxy compound having a long-chain alkyl group having 9 to 19 carbon atoms for use in a ring-opening addition reaction for obtaining an alkali-soluble resin having a long-chain alkyl group having 9 to 19 carbon atoms introduced an excessive weight is required.
  • Mw average molecular weight
  • a compound having one epoxy group in the molecule can be used. From the viewpoint of flexibility and light emission reliability, the compound represented by the structural formula (12) or the compound represented by the structural formula (23) is preferable, and the structural formula is high because the reactivity of the epoxy group is high.
  • the compound represented by (12) is more preferable.
  • the resin include alkali-soluble cardo resin, alkali-soluble acrylic resin, alkali-soluble novolak resin, alkali-soluble polyimide resin, alkali-soluble polyimide precursor, alkali-soluble polybenzoxazole resin, alkali-soluble polybenzoxazole precursor, alkali-soluble polyamide resin, Alkali-soluble siloxane resins are mentioned, but from the viewpoint of excellent heat resistance and pigment dispersibility, alkali-soluble polyimide resins, alkali-soluble polyimide precursors, alkali-soluble cardo resins, and alkali-soluble acrylic resins are preferable, and from the viewpoint of excellent heat resistance, Alkali soluble More preferred are a imide resin, an alkali-soluble polyimide precursor, an alkali-soluble poly
  • the heat resistance required for the pixel division layer of the organic EL display device is preferably 230 ° C. or higher, more preferably 250 ° C. or higher. Since the amount of gas generation (outgas) from the pixel division layer under high temperature conditions can be suppressed and the deterioration of the light emitting element can be suppressed, the light emission reliability of the organic EL display device can be improved.
  • the alkali-soluble resin herein has a hydroxyl group and / or a carboxyl group as an alkali-soluble group in the structure thereof, an acid value of 30 mgKOH / g or more, and a weight average molecular weight (Mw) of 2,000 to 150, It means a resin of 000 or less.
  • the alkali-soluble polyimide resin an alkali-soluble polyimide resin having a structural unit represented by the general formula (24) is preferable.
  • R 5 represents a 4 to 10 valent organic group.
  • R 6 represents a 2 to 8 valent organic group.
  • R 7 and R 8 each independently represents a phenolic hydroxyl group. Represents a sulfonic acid group or a thiol group, and has a phenolic hydroxyl group in at least one of R 7 and R 8.
  • p and q each independently represents a range of 0 to 6.
  • R 5- (R 7 ) p represents an acid dianhydride residue.
  • R 5 is preferably an organic group having 5 to 40 carbon atoms having an aromatic ring or a cyclic aliphatic group.
  • Examples of the acid dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride Bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane Tetracarboxylic dianhydride having an aromatic ring such as anhydride, tetracarboxylic dianhydride having an aliphatic group such as butanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic acid Cyclic fats such as dianhydrides, bicyclo [2.2.2] oct-7-ene-tetracarboxylic dianhydrides, bicyclo
  • R 6- (R 8 ) q represents a diamine residue.
  • R 6 is preferably an organic group having 5 to 40 carbon atoms having an aromatic ring or a cyclic aliphatic group.
  • diamine examples include m-phenylenediamine, p-phenylenediamine, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3- Aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, bis [4- (3-aminophenoxy) phenyl] sulfone, 9,9-bis (4-aminophenyl) fluorene, diaminodiphenyl ether, diaminodiphenylsulfone, diaminodiphenylmethane, diaminodiphenylpropane, diaminodiphenylhexafluoropropane, di
  • the alkali-soluble polyimide resin having a structural unit represented by the general formula (24) preferably has a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group and / or a thiol group at the end of the main chain, and the carboxyl group and / or More preferably, it has a phenolic hydroxyl group. It is possible to introduce these groups at the end of the main chain by sealing the end of the alkali-soluble polyimide resin with an end-capping agent having a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group and / or a thiol group. it can.
  • the terminal blocking agent include monoamines, acid anhydrides, monocarboxylic acids, monoacid chloride compounds, and monoactive ester compounds.
  • the acid value of the alkali-soluble polyimide resin is preferably 30 mgKOH / g or more, more preferably 50 mgKOH / g or more, from the viewpoint of solubility in an alkali developer.
  • the acid value is preferably 300 mgKOH / g or less, and more preferably 250 mgKOH / g or less.
  • the weight average molecular weight of the alkali-soluble polyimide resin is preferably 5,000 or more, more preferably 10,000 or more, from the viewpoint of the hardness of the pixel dividing layer. On the other hand, from the viewpoint of solubility in an alkali developer, 100,000 or less is preferable, and 70,000 or less is more preferable.
  • resin having the structure represented by the general formula (1) in (a-2) include 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane which is a diamine and acid dianhydride.
  • a structure represented by the structural formula (25) obtained by ring-opening addition reaction of the epoxy compound represented by the structural formula (12) to the phenolic hydroxyl group of the alkali-soluble polyimide resin synthesized using the product A polyimide resin having a unit in the molecule can be preferably exemplified.
  • the alkali-soluble cardo resin means an alkali-soluble resin having a cardo skeleton, and the cardo skeleton is a quaternary carbon atom constituting a cyclic structure in which two aromatic groups are connected by a single bond.
  • the cardo skeleton examples include a fluorene skeleton, a 1-phenyl-2,3-dihydro-1H-indene skeleton, or a quaternary carbon atom of an N-phenylphenolphthalein skeleton, in which two phenyl groups are each a carbon- Examples include skeletons connected by carbon single bonds.
  • Such an alkali-soluble cardo resin includes a fluorene skeleton, a 1-phenyl-2,3-dihydro-1H-indene skeleton and / or an N-phenylphenolphthalein skeleton, and two aromatic groups having a hydroxyl group or an epoxy group. Can be derived from a compound having in the molecule.
  • the photosensitive composition of the present invention is a negative photosensitive composition, it is preferable to use an alkali-soluble cardo resin having a radical polymerizable group.
  • the alkali-soluble cardo resin include a cardo resin having a fluorene skeleton and having a structural unit represented by the following general formula (25) and a radical polymerizable group, 1-phenyl-2,3-dihydro- A cardo resin having a 1H-indene skeleton and a structural unit represented by the following general formula (26) and a radical polymerizable group, an N-phenylphenolphthalein skeleton, represented by the following general formula (27) And a cardo resin having a structural unit and a radical polymerizable group.
  • Q 1 to Q 8 represent atoms or substituents directly bonded to the benzene ring, and may be the same or different,
  • An atom, an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, and a to h represent the number of substituents of the alkyl group having 1 to 6 carbon atoms and / or the alkoxy group having 1 to 6 carbon atoms.
  • the acid value of the alkali-soluble cardo resin is preferably 30 mgKOH / g or more, and more preferably 50 mgKOH / g or more, from the viewpoint of solubility in an alkali developer.
  • the acid value is preferably 300 mgKOH / g or less, and more preferably 250 mgKOH / g or less.
  • the weight average molecular weight (Mw) of the alkali-soluble cardo resin is preferably 2,000 or more, more preferably 3,000 or more, from the viewpoint of suppressing peeling of the pattern edge. On the other hand, 40,000 or less is preferable and 20,000 or less is more preferable from the viewpoint of suppressing gelation during polymerization of the alkali-soluble cardo resin and suppressing development residue in the development step.
  • alkali-soluble cardo resin a commercially available product can be used.
  • CR-TR3, CR-TR4, CR-TR5, CR-TR6 (all of which are manufactured by Osaka Gas Chemical Co., Ltd.).
  • resin having the structure represented by the general formula (2) in (a-3) include an epoxy compound represented by the above structural formula (12) on the aromatic carboxyl group of the alkali-soluble cardo resin.
  • a cardo resin having a structural unit represented by the structural formula (29) in the molecule, obtained by ring-opening addition reaction, can be preferably exemplified.
  • Examples of a method for obtaining a resin having the structure represented by the above general formula (1) in (a-2) and a resin having the structure represented by the above general formula (2) in (a-3) include, for example, drying A compound having a long-chain alkyl group having 9 to 19 carbon atoms and one epoxy group and an alkali-soluble resin are mixed and stirred in an organic solvent in a nitrogen stream, and then heated under a heating condition of 80 to 200 ° C. for 30 minutes. A method of reacting for ⁇ 300 minutes can be mentioned.
  • Examples of the solvent used in the reaction include ethers, acetates, esters, ketones, aromatic hydrocarbons, and alcohols, and these can be used alone or in combination.
  • an addition catalyst may be used for sufficiently proceeding with the ring-opening addition reaction at a low heating temperature.
  • the addition catalyst used in the reaction include dimethylaniline, 2,4,6-tris (dimethylaminomethyl).
  • Amino-based catalysts such as phenol and dimethylbenzylamine
  • tin-based catalysts such as tin (II) 2-ethylhexanoate and dibutyltin laurate
  • titanium-based catalysts such as titanium (IV) 2-ethylhexanoate
  • triphenylphosphine Pixel division layer finally obtained including phosphorous catalysts, lithium catalysts such as lithium naphthenate, zirconium catalysts such as zirconium naphthenate, chromium catalysts such as chromium naphthenate, acetylacetonate chromium and chromium chloride
  • Use of the system catalyst is preferred.
  • the end point of the reaction can be appropriately set from the disappearance rate of the epoxy group in the system based on the reaction start.
  • the structure represented by the above general formula (1) and the long chain alkyl group and epoxy group which the component (a-1) has, and the component (a-2) The presence / absence of the structure represented by the above general formula (2) contained in the component (a-3) can be identified by analysis by a known method such as NMR or IR.
  • the photosensitive composition of the present invention has the above-mentioned (a-1) to (a-3) in order to appropriately adjust the dissolution rate in an alkali developer described later and to make the pixel division layer into a desired pattern shape.
  • An alkali-soluble resin not belonging to the above compound can be further contained.
  • Examples of the alkali-soluble resin that does not belong to the compounds (a-1) to (a-3) include a resin having a structure represented by the general formula (1) in (a-2), (a-3) It can select and use from the group of the above-mentioned various alkali-soluble resin illustrated as a raw material for obtaining resin which has a structure represented by the said General formula (2).
  • the photosensitive composition of the present invention has either a negative photosensitive property or a positive photosensitive property. It has negative photosensitivity, which forms the pattern by photocuring the exposed area film through an exposure mask to reduce the alkali solubility and removing the unexposed area film with an alkaline developer. May be. Alternatively, the exposed portion of the exposed portion film is removed with an alkali developer by making the alkali solubility of the exposed portion film relatively higher than that of the unexposed portion film by pattern exposure through an exposure mask. Then, it may have positive photosensitivity to form a pattern.
  • the minimum exposure amount necessary for obtaining the same pattern can be reduced. That is, it is preferable to have negative photosensitivity from the viewpoint that productivity can be improved by increasing sensitivity to exposure.
  • the photosensitive composition of the present invention contains (b) a photosensitive agent.
  • the photosensitive agent contains a compound having two or more radical polymerizable groups and a photopolymerization initiator.
  • a radical polymerization reaction is caused by light exposure, photocuring is performed, and unexposed portions are removed with an alkaline developer for patterning. can do.
  • the radical polymerizable group is preferably a (meth) acryl group from the viewpoint of improving sensitivity during exposure and improving the hardness of the cured film.
  • the (meth) acryl group here refers to a methacryl group or an acryl group.
  • Examples of the compound having two or more (meth) acryl groups include diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, Trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane di (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, ditri Methylolpropane tetra (meth) acrylate
  • a compound having three or more radically polymerizable groups In order to promote photocuring and improve pattern processability, it is preferable to contain at least a compound having three or more radically polymerizable groups. Among them, the reaction rate in the exposure step is high, and the flexibility is excellent.
  • a compound having a soft chain derived from caprolactone and an acrylic group in the molecule is more preferred. Specific examples of such a compound include ⁇ -caprolactone-added acrylate of dipentaerythritol represented by the following structural formula (41).
  • the content of the compound having two or more radically polymerizable groups is preferably 10% by weight or more, more preferably 15% by weight or more, based on the total solid content of the photosensitive composition, from the viewpoint of improving sensitivity to exposure. Further, from the viewpoint of making the taper shape of the pattern edge gentle and avoiding disconnection of the electrode formed on the surface of the pixel dividing layer, it is preferably 30% by weight or less, and more preferably 25% by weight or less.
  • the photopolymerization initiator refers to a compound that generates radicals by bond cleavage and / or reaction upon exposure.
  • a photopolymerization initiator By containing a photopolymerization initiator, a compound having two or more radically polymerizable groups is photocured by exposure, and the solubility of the exposed part in the alkaline developer is relatively lowered as compared with the unexposed part. It is possible to perform patterning by removing the unexposed portion with an alkali developer.
  • photopolymerization initiator examples include “Adekaoptomer” (registered trademark) N-1818, N-1919, “Adeka Cruz” (registered trademark) NCI-831 (all of which are manufactured by ADEKA Corporation).
  • Acylphosphine oxide photopolymerization initiators such as carbazole photopolymerization initiators, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (“IRGACURE” (registered trademark) TPO manufactured by BASF), 1,2- Octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)] (“Irgacure” (registered trademark) OXE01 manufactured by BASF), ethanone, 1- [9-ethyl-6- (2- Methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) (“Irgacure” manufactured by BASF) Oxime ester photoin
  • an oxime is highly sensitive to mixed lines including j-line (313 nm), i-line (365 nm), h-line (405 nm), and g-line (436 nm).
  • An ester photopolymerization initiator is preferred.
  • a photopolymerization initiator having both a carbazole structure and an oxime ester structure is more preferable in view of sensitivity in exposure and deep curability.
  • Specific examples of the photopolymerization initiator corresponding to this include N-1919, NCI-831 and OXE02 among the above.
  • the content of the photopolymerization initiator is preferably 5 parts by weight or more and more preferably 10 parts by weight or more with respect to 100 parts by weight of the compound having two or more radical polymerizable groups from the viewpoint of improving sensitivity to exposure.
  • the content of the photopolymerization initiator is preferably 60 parts by weight or less, and preferably 40 parts by weight or less with respect to 100 parts by weight of the compound having two or more radical polymerizable groups, from the viewpoint of deep part curability with respect to exposure. More preferred.
  • the photosensitive agent when the photosensitive composition of the present invention has positive photosensitivity, (b) the photosensitive agent contains a photoacid generator.
  • a photoacid generator By containing a photoacid generator, exposure in an exposure process described later can relatively increase the solubility of an exposed portion in an alkaline developer compared to an unexposed portion, and only the exposed portion can be formed with an alkaline developer. By removing, patterning can be performed.
  • a quinonediazide compound is preferable.
  • a reaction product obtained by esterifying a compound having a phenolic hydroxyl group with quinonediazidesulfonyl acid chloride is more preferable.
  • Compounds having a phenolic hydroxyl group include Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, TrisP-PHBA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP-IPZ, BisOCP -IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, Methylenetris-p-CR, Methylenetetra-p-CR, BisRS-26X, Bis-PFP-PC (all of which are Honshu Chemical Industries, Ltd.
  • BIR-OC BIP-PC
  • BIR-PC BIR-PC
  • BIR-PTBP BIR-PCHP
  • BIP-BIOC-F 4PC
  • BIR-BIPC-F TEP-BIP-A (all Asahi Organic Industries) Product).
  • Examples of the quinone diazide sulfonyl acid chloride include 4-naphthoquinone diazide sulfonyl acid chloride and 5-naphthoquinone diazide sulfonyl acid chloride.
  • Such a quinonediazide compound is preferable because it has high sensitivity to mixed lines including j-line (313 nm), i-line (365 nm), h-line (405 nm), and g-line (436 nm) in the exposure step described below.
  • the content of the photoacid generator is preferably 5 to 30% by weight in the total solid content of the photosensitive composition from the viewpoint of pattern processability and heat resistance of the finally obtained pixel dividing layer.
  • a part of the phenolic hydroxyl group of the compound having a phenolic hydroxyl group can be intentionally left without esterification. .
  • thermosetting accelerator refers to a compound that has an effect of promoting cross-linking between epoxy compounds and / or thermal cross-linking between an epoxy compound and an alkali-soluble resin.
  • the mechanical strength of the pixel dividing layer can be increased by using a thermosetting accelerator in combination. In some cases, the flexibility can be improved. In addition, the residual ratio of polar groups such as hydroxyl groups and carboxyl groups possessed by epoxy groups and alkali-soluble resins can be lowered, and as a result, the dielectric constant of the pixel dividing layer described later can be lowered.
  • the curing accelerator include imidazole-based curing accelerators, acid anhydride-based curing accelerators, and thiol-based curing accelerators, and these can be used alone or in combination.
  • the photosensitive composition of the present invention preferably further contains a colorant in order to impart a function of blackening the pixel division layer finally obtained and suppressing external light reflection.
  • a colorant include pigments and dyes, and pigments are preferred in terms of high coloring power and excellent heat resistance.
  • the pigment as used herein refers to particles having a light absorbing ability in at least the visible light region and insoluble in the photosensitive composition of the present invention, and the coloring power is a unit occupied by the coloring material in the film.
  • the light shielding property per volume It is more preferable to contain at least an inorganic pigment from the viewpoint that the total amount of the coloring material necessary for imparting desired light shielding properties can be reduced and the flexibility of the pixel dividing layer can be improved.
  • the inorganic pigment it is preferable to contain (c) an inorganic pigment having a near-infrared light shielding property.
  • the pixel dividing layer can be provided with a function of suppressing reflection of near-infrared rays as well as the visible light region.
  • near-infrared sensors used for proximity sensors, iris authentication, face authentication, etc. which have been placed in the frame in the past, are incorporated inside the display unit, internal scattering of near-infrared light contained in external light such as sunlight is suppressed. And the detection sensitivity of the sensors can be increased.
  • an organic EL display device that has a high-sensitivity near-infrared sensor but has a narrow frame portion or no frame portion (bezelless) and a large display area in the panel area.
  • a polarizing plate mounted on a panel of an organic EL display device has a high maximum light transmittance of 80 to 95% and a minimum value of 50 to 70% in the near infrared region, and has a poor near infrared shielding property.
  • the above-mentioned effect by containing the inorganic pigment which has the near-infrared light-shielding property of (c) in the photosensitive composition of this invention has the organic EL display which comprises a polarizing plate, and the organic EL display which does not comprise a polarizing plate. It is useful in any case of the apparatus.
  • the inorganic pigment having a near-infrared light shielding property (c) here includes an inorganic black pigment having a titanium atom, an inorganic black pigment having a zirconium atom, amorphous carbon black, and carbon black, in addition to a photosensitive composition.
  • the content of the inorganic pigment is 35.0% by weight in the cured film
  • a group of inorganic pigments satisfying that the maximum value of the light transmittance in the thickness direction of the cured film in the near infrared region (wavelength 780 to 1,000 nm) is 70.0% or less is also included.
  • the content of the inorganic pigment in the cured film can be calculated from the calcined ash obtained by volatilizing all organic components using a small electric furnace.
  • the inorganic pigment having (c) near-infrared light shielding property contained in the photosensitive composition of the present invention or a cured film formed using the same is combined with known methods such as an X-ray diffraction pattern and STEM-EDX. Can be analyzed and identified.
  • an inorganic black pigment having a near-infrared light shielding property (c) an inorganic black pigment having a titanium atom in terms of high electrical insulation, low dielectric constant, and high driving stability of an organic EL display device.
  • Inorganic black pigments having zirconium atoms and amorphous carbon black are preferred.
  • amorphous carbon black refers to amorphous carbon black particles.
  • carbon black simply refers to carbon black particles having crystallinity, which is generally well known as a coloring material application, and is defined by completely distinguishing both from the presence or absence of crystallinity.
  • the inorganic black pigment having a titanium atom is represented by titanium nitride represented by TiN, titanium oxynitride represented by TiNxOy (0 ⁇ x ⁇ 2.0, 0.1 ⁇ y ⁇ 2.0), or TiC. Titanium carbide, a solid solution of titanium nitride and titanium carbide, a composite oxide of titanium and a metal other than titanium, or a composite nitride. Among them, in addition to high light shielding property in the visible light region, either titanium nitride or titanium oxynitride is preferable in terms of high exposure light transmittance in the exposure process, and titanium nitride is more preferable in terms of low dielectric constant. preferable.
  • titanium nitride synthesized by a thermal plasma method is preferable because particles having a small primary particle size and a sharp particle size distribution can be easily obtained.
  • the inorganic black pigment having a titanium atom is preferable as the content of titanium dioxide represented by TiO 2 which is an inorganic white pigment as an impurity is smaller, and more preferably not contained. .
  • the inorganic black pigment having a zirconium atom is zirconium nitride represented by Zr 3 N 4 , zirconium nitride represented by ZrN, ZrOxNy (0 ⁇ x ⁇ 2.0, 0.1 ⁇ y ⁇ 2.0). It represents at least one of zirconium oxynitride, a composite oxide of zirconium and a metal other than zirconium, or a composite nitride. Of these, zirconium nitride represented by ZrN is preferable because of its high exposure light transmittance in the exposure process and low dielectric constant.
  • the production method includes a gas phase reaction, and among them, zirconium nitride synthesized by a thermal plasma method is preferable because particles having a small primary particle size and a sharp particle size distribution can be easily obtained. Further, the inorganic black pigment having a zirconium atom is preferable as the content of zirconium dioxide represented by ZrO 2 which is an inorganic white pigment as an impurity is smaller, and more preferably not contained, in order to avoid an increase in dielectric constant. .
  • the inorganic black pigment having a titanium atom and the inorganic black pigment having a zirconium atom may be subjected to a surface treatment to modify the pigment surface as necessary.
  • a surface treatment method for example, a method of introducing an organic group containing a silicon atom as a surface modification group by treatment with a silane coupling agent, a part of the pigment surface with a coating material such as silica, metal oxide and / or organic resin Or the method of coat
  • the inorganic black pigment having a zirconium atom and the inorganic black pigment having a titanium atom may constitute one primary particle as a solid solution containing both.
  • Amorphous carbon black means amorphous carbon black consisting of a diamond structure (SP 3 structure) and a graphite structure (SP 2 structure). It corresponds to carbon classified as so-called diamond-like carbon (DLC).
  • Amorphous carbon black has higher insulating properties than carbon black having crystallinity described later, and can be suitably used as a colorant without being subjected to surface treatment.
  • a carbon source is vaporized, the vaporized carbon vapor is cooled and re-solidified, and then once flaked and then subjected to a dry pulverization treatment to make fine particles.
  • the structure of the amorphous carbon black includes a lot of SP 3 structures, the light shielding property of visible light and near infrared light is low, but the insulating property can be improved.
  • the insulating property is low, but the light shielding property of visible light and near infrared light can be improved.
  • these characteristics specific to the pigment can be controlled by the synthesis conditions.
  • amorphous carbon black having an SP 3 structure content of 30 to 70 atom% with respect to the total of the SP 3 structure and the SP 2 structure can be preferably used for the photosensitive composition of the present invention. Further, the ratio of the SP 3 structure and the SP 2 structure can be analyzed by X-ray photoelectron spectroscopy.
  • the total amount of the inorganic black pigment having a titanium atom, the inorganic black pigment having a zirconia atom, and amorphous carbon is preferable in the total solid content of the photosensitive composition of the present invention in order to further improve the near-infrared light shielding property. 0% by weight or more is preferable. Moreover, 35.0 weight% or less is preferable in the total solid content in a photosensitive composition, in order to avoid the excessive raise of a dielectric constant.
  • the total solid here means a component obtained by removing the solvent from the photosensitive composition.
  • Examples of carbon black include furnace black, thermal black, channel black, acetylene black, ketjen black, and lamp black, which are classified according to the manufacturing method. Among them, the dispersibility is excellent, and the acidity and particle size of the pigment surface are fine.
  • Furnace black manufactured by the furnace method is preferable from the viewpoint of industrial control. Among them, from the viewpoint of improving insulation, it is preferable that the structure length, in which particles are firmly connected in a bead shape, which is unique to carbon black, is shorter, and the surface is modified with an organic group or coated with a highly insulating coating material. More preferred is. As such a surface-modified carbon black, a commercially available product may be used.
  • TPK-1227 which is a carbon black whose surface is modified with an acidic functional group containing a sulfur atom, and the pigment surface is coated with silica.
  • carbon black “TPX-1409” all of which are manufactured by CABOT).
  • the total amount of carbon black is preferably 5.0% by weight or more in the total solid content of the photosensitive composition of the present invention in order to further improve the near-infrared light shielding property. Moreover, 10.0 weight% or less is preferable in the total solid content in a photosensitive composition, when avoiding the excessive raise of a dielectric constant.
  • the inorganic pigment having near-infrared light shielding properties may be used by mixing a plurality of types so that the pixel division layer has desired optical characteristics.
  • the color of the pixel division layer is neutral black with low saturation by adjusting the color using zirconium nitride, which has a strong purple color, and amorphous carbon, which has a strong yellow color. can do.
  • the average primary particle diameter of the inorganic pigment having near-infrared light shielding properties is preferably 5 nm or more, and more preferably 10 nm or more, from the viewpoint of improving dispersibility and storage stability after dispersion. On the other hand, 150 nm or less is preferable and 100 nm or less is more preferable from the viewpoint that high flexibility can be obtained.
  • the average primary particle diameter here means the number average value of primary particle diameters calculated by a particle size measuring method using an image analysis type particle size distribution measuring apparatus. An image can be taken with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the average primary particle size can be calculated.
  • the inorganic pigment having near-infrared light shielding property (c) is not spherical
  • the average value of the major axis and the minor axis is defined as the primary particle diameter.
  • image analysis type particle size distribution software Mac-View manufactured by Mountec is used.
  • dry pulverization may be performed.
  • a hammer mill, a ball mill, or the like can be used.
  • organic pigment various organic pigments can be used.
  • an organic black pigment is preferable in that it has excellent coloring power and can improve flexibility.
  • organic pigments are extremely poor in light-shielding properties in the near-infrared region, but have an advantage of low dielectric constant. Therefore, in the photosensitive composition of the present invention, visible light is avoided while avoiding an increase in dielectric constant. It can be effectively used as a component for imparting light shielding properties only to the region.
  • the organic black pigment (d) means a benzodifuranone black pigment, a perylene black pigment, an azo black pigment, and isomers thereof.
  • the isomers herein include tautomers.
  • the isomer may be included as a mixture of a plurality of pigment powders, or may be included as a mixed crystal in constituting one primary particle.
  • the benzodifuranone-based black pigment means a pigment represented by the following general formula (30) or (31).
  • the pigment represented by the following general formula (30) corresponds to a pigment classified as a so-called lactam black.
  • R 9 and R 14 each independently represent a hydrogen atom, CH 3 , CF 3 , a fluorine atom or a chlorine atom.
  • R 19 and R 20 each independently represents an alkyl group having 1 to 12 carbon atoms or a cycloalkyl having 1 to 12 carbon atoms.
  • R 9 to R 18 are hydrogen atoms are preferable, that is, a benzodifuranone-based black pigment represented by the following structural formula (32) can be preferably used.
  • benzodifuranone-based black pigment represented by the following structural formula (32), and examples thereof include “Irgaphor” (registered trademark) Black S0100 manufactured by BASF.
  • a benzodifuranone-based black pigment in which R 11 and R 16 are SO 3 H, SO 3 ⁇ , SO 2 NR 19 R 20 or COOH is partially mixed as a dispersion aid to be described later as a wet dispersion treatment.
  • the dispersibility can be increased by performing the above.
  • the perylene-based black pigment is a pigment represented by the following general formula (33) or (34), and C.I. I. Pigment Black 31 and 32 are meant. It corresponds to a pigment classified as so-called perylene black.
  • the pigment represented by the following general formula (33) or (34) is preferable at a point with high light-shielding property.
  • R 21 to R 28 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a hydroxyl group.
  • R 21 to R 28 are hydrogen atoms are preferable, that is, perylene-based black pigments represented by the following structural formulas (35) and / or (36) are preferable.
  • a commercially available product may be used as the perylene-based black pigment (cis-trans isomer mixture) represented by the following structural formulas (35) and (36), and examples thereof include FSF4280 manufactured by BASF.
  • the azo black pigment means a pigment represented by the following general formula (37). It corresponds to a pigment classified as so-called azomethine black.
  • X represents an organic group having an isoindolinone structure or an organic group having an isoindoline structure
  • Y represents an alkyl group having 1 to 3 carbon atoms and an alkoxy group having 1 to 3 carbon atoms.
  • Preferable specific examples from the viewpoint of light shielding properties and light emission reliability include azo black pigments represented by the following structural formula (38) and azo black pigments represented by the following structural formula (39).
  • organic pigments other than organic black pigments various organic pigments such as yellow, orange, blue, red, green, purple, and brown may be used, and the photosensitive composition of the present invention contains two or more organic pigments.
  • the pixel division layer can be made black by pseudo-blackening, and the optical characteristics can be controlled by adjusting the quantity ratio thereof.
  • a combination of yellow, blue, and red is preferable from the viewpoint of light shielding properties and light emission reliability.
  • organic yellow pigments examples include C.I. I. Pigment Yellow 12, 13, 17, 20, 24, 74, 83, 86, 93, 95, 109, 110, 117, 120, 125, 129, 138, 139, 150, 151, 175, 180, 181, 185, 192, 194, 199.
  • C.I. which is a benzimidazolone yellow pigment.
  • I. Pigment Yellow 120, 151, 175, 180, 181, 192, 194 are preferable.
  • organic blue pigments examples include C.I. I. Pigment blue 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 17, 60, 64, 65, 75, 79, 80.
  • C.I. which is a stable copper phthalocyanine.
  • I. Pigment Blue 15: 3, 15: 4, 15: 6, C.I. I. Pigment Blue 60 is preferable.
  • organic red pigments examples include C.I. I. Pigment Red 9, 48, 97, 122, 123, 144, 149, 166, 168, 177, 179, 180, 190, 192, 196, 202, 209, 215, 216, 217, 220, 223, 224, 226, 227, 228, 240, 254.
  • C.I. which is a perylene red pigment.
  • I. Pigment Red 177 is preferable.
  • the photosensitive composition of the present invention can further contain a dispersant.
  • the dispersant means a substance having both a pigment affinity group having a chemical bond or adsorption action to the pigment surface and a polymer chain or group having a solvophilic property.
  • As the action mechanism of the dispersant in addition to the acid-base interaction, hydrogen bond, Van der Waals force, etc. are involved in combination, and when the pigment dispersion described later is prepared.
  • wet media dispersion treatment the wettability of the organic pigment surface to the dispersion medium is enhanced, and the steric repulsion effect and / or electrostatic repulsion effect between organic pigments by the polymer chain is enhanced, thereby promoting the refinement of the pigment. And the effect which improves dispersion stability is produced. Flexibility can be further improved by promoting miniaturization and improving dispersion stability.
  • a dispersant having a basic adsorption group As the dispersant, a dispersant having a basic adsorption group, a dispersant having an acidic group, or a nonionic dispersant can be preferably used.
  • the dispersing agent having a basic adsorbing group include DisperBYK-142, 145, 164, 167, 182, 187, 2001, 2008, 2009, 2010, 2013, 2020, 2025, 9076, 9077, BYK-LP N6919, BYK-LP N21116, BYK-JET 9152 (all of which are manufactured by Big Chemie), “Solsperse” (registered trademark) 9000, 11200, 13650, 20000, 24000, 24000SC, 24000GR, 32000, 32500, 32550, 326000, 33000, 34750 35100, 35200, 37500, 39000, 56000, 76500 (all are manufactured by Lubrizol), Efka-PX4310, 4320, 4710 (herein
  • dispersant having an acidic group examples include “Tego dispers” (registered trademark) 655 (manufactured by Evonik), DisperBYK-102, 118, 174, and 2096 (all of which are manufactured by Big Chemie), and nonion.
  • system dispersant examples include “SOLSPERSE” (registered trademark) 54000 (manufactured by Lubrizol), “Tego dispers” (registered trademark) 650, 652, and 740 W (all of which are manufactured by Evonik).
  • these dispersants may be used alone or in admixture as appropriate so that the average dispersed particle size described later can be obtained.
  • the content of the dispersant is preferably 10 parts by weight or more with respect to 100 parts by weight of the total amount of the pigment in order to suppress sufficient deagglomeration in the wet media dispersion process described later and reaggregation after the dispersion process, 20 parts by weight or more is more preferable. On the other hand, 100 parts by weight or less is preferable and 60 parts by weight or less is more preferable in ensuring sufficient content of constituent components other than the dispersant.
  • the photosensitive composition of the present invention can contain a solvent. Viscosity, coating property, and storage stability can be adjusted by containing a solvent, and the film thickness uniformity of the pixel division layer finally obtained can be improved by selecting an appropriate solvent.
  • Examples of the solvent include ethers, acetates, esters, ketones, aromatic hydrocarbons, alcohols and the like. Two or more of these may be contained.
  • Examples of ethers include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-propyl.
  • Ether diethylene glycol mono-n-butyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono-n-butyl ether, Dipropylene glycol monomethyl ether Dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, dipropylene glycol mono-n-butyl ether, dipropylene glycol dimethyl ether, dipropylene glycol methyl-n-butyl ether, tripropylene glycol monomethyl ether, tripropylene glycol mono Examples include ethyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl ether, and tetrahydrofuran.
  • acetates examples include butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate (hereinafter “PGMEA”), 3-methoxybutyl acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monomethyl.
  • PGMEA propylene glycol monomethyl ether acetate
  • Ether acetate diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, cyclohexanol acetate, propylene glycol diacetate, dipropylene glycol methyl ether acetate, 3-methoxy-3-methyl-1-butyl acetate, 1,4-butanediol di Acetate, 1,3-butylene glyco Diacetate, 1,6-hexanediol diacetate.
  • the esters include alkyl lactates such as methyl 2-hydroxypropionate and ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, methyl 3-methoxypropionate, and 3-methoxypropionic acid.
  • ketones include methyl ethyl ketone, cyclohexanone, 2-heptanone, and 3-heptanone.
  • aromatic hydrocarbons include toluene and xylene.
  • alcohols include isopropyl alcohol, butyl alcohol, isobutyl alcohol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxybutanol, diacetone alcohol, etc. Is mentioned.
  • the content of acetates in the total solvent contained in the photosensitive composition is preferably 50% by weight or more, and 70% by weight or more in that the dispersion stability of the pigment can be improved and the flexibility can be improved. It is more preferable that
  • the photosensitive composition of the present invention can further contain an organic near-infrared absorbing dye (Near Infrared Dye).
  • Organic near-infrared absorbing dyes are generally inferior in light-shielding performance per unit volume as compared with the inorganic pigment having near-infrared light-shielding properties described in (c) above, but are excellent in terms of low dielectric constant. It is most useful to use the inorganic pigment in combination with the inorganic pigment having a near-infrared light shielding property of (c).
  • Organic near infrared absorbing dyes include cyanine dyes, phthalocyanine dyes, naphthalocyanine dyes, polymethine dyes, squarylium dyes, porphyrin dyes, diimonium dyes, indigo dyes, quaterylene dyes, perylene dyes And nickel dithiolene complex dyes.
  • phthalocyanine dyes, quaterylene dyes, and perylene dyes are preferred from the viewpoint of excellent solubility in organic solvents and light emission reliability.
  • phthalocyanine dyes examples include phthalocyanine dyes having oxovanadium, copper, aluminum, cobalt, or zinc as a central metal.
  • vanadyl phthalocyanine dyes having oxovanadium as a central metal and / or copper phthalocyanine dyes having copper as a central metal are more preferable, and (e) vanadyl phthalocyanine near infrared absorbing dye is preferable.
  • all the black pigments exemplified above as inorganic pigments having near-infrared light shielding properties (c) generally have lower light shielding properties on the longer wavelength side.
  • the maximum absorption wavelength in the case of a chloroform solution is in the wavelength range of 900 to 1,000 nm in the near-infrared region, and the acetate type exemplified above in order to achieve both the dispersion stability of the pigment component.
  • An organic dye having a solubility in a solvent alone of 2.0% by weight or more is more preferable.
  • organic dyes that satisfy both of these characteristics include (e) vanadyl phthalocyanine-based near-infrared absorbing dyes such as FDN-07 and FDN-08 (all of which are manufactured by Yamada Chemical Co., Ltd.), copper phthalocyanine-based dyes.
  • FDN-06 manufactured by Yamada Chemical Co., Ltd.
  • the near-infrared absorbing dyes are preferably used as substantially soluble dyes rather than disperse dyes in that the occurrence of irregularities on the surface of the pixel dividing layer can be suppressed.
  • the soluble dye as used herein means a dye for use in a completely dissolved state in the photosensitive composition.
  • the content of the organic near-infrared absorbing dye is preferably less than 2.0% by weight in the photosensitive composition of the present invention from the viewpoint of solubility in the solvent component and the resin component.
  • the sensitivity of the sensor using near infrared rays is improved with respect to the near infrared rays that the cured film has.
  • the photosensitive composition of the present invention is cured into a cured film having a thickness of 2.0 ⁇ m, the maximum value of light transmittance at a wavelength of 780 to 1,000 nm is 15.0% or less. Preferably, it is 10.0% or less, more preferably 5.0% or less.
  • the light shielding property of the cured film with respect to visible light is higher.
  • the light transmittance at a wavelength of 550 nm, which has the highest specific visual sensitivity in the visible light region is 10.0. % Or less, more preferably 5.0% or less, and even more preferably 1.0% or less.
  • the transmittance mentioned here can be measured with a spectrophotometer “U-4100 (manufactured by Hitachi High-Technologies Corporation)” by forming a cured film on a translucent substrate to a thickness of 2.0 ⁇ m.
  • the measurement wavelength is every 1.0 nm, and the light transmission of the cured film is determined from the ratio of the transmitted light intensity of the translucent substrate and the transmitted light intensity of the laminated substrate in which the cured film is formed on the translucent substrate. The rate (%) can be obtained.
  • “Tempax manufactured by AGC Techno Glass Co., Ltd.
  • the light transmittance means the light transmittance in the thickness direction of the cured film. In the measurement, light is incident from the film surface side and transmitted from the translucent substrate side.
  • the lower the dielectric constant of the cured film the better the display characteristics can be improved by suppressing luminance unevenness.
  • the frequency The dielectric constant at 1 kHz is preferably less than 5.0, more preferably less than 4.5, and even more preferably less than 4.0.
  • the dielectric constant is excessively low, it is theoretically difficult unless a large number of voids are intentionally provided inside the film, so that it is preferably 2.0 or more from the viewpoint of flexibility.
  • the dielectric constant referred to here was obtained by pattern-depositing an aluminum thin film to a thickness of 70 nm on the surface of the cured film after forming a cured film on the aluminum substrate to a thickness of 2.0 ⁇ m.
  • the dielectric constant K can be calculated from the following equation using the value of the capacitance C measured using a “LCR meter 4294A (manufactured by Agilent Technologies)”, which is a dielectric constant measuring device, for the laminated base material. .
  • the film thickness of the cured film when calculating the light transmittance and the dielectric constant can be measured using “Surfcom (manufactured by Tokyo Seimitsu Co., Ltd.)” which is a stylus type film thickness measuring device.
  • K C ⁇ d / ( ⁇ ⁇ S) here, C: Capacitance (F) d: Film thickness (m) ⁇ : dielectric constant of vacuum 8.854 ⁇ 10 ⁇ 12 (F / m) S: Electrode area (m 2 ).
  • a pigment dispersion is prepared.
  • the pigment dispersion can be obtained by mixing a pigment component, a solvent, and, if necessary, other components such as a dispersant and performing wet media dispersion treatment.
  • Dispersers for performing wet media dispersion treatment include horizontal or vertical bead mills, roll mills, and the like.
  • “DYNO-MILL” registered trademark
  • “spike mill” Registered trademark
  • “sand grinder” registered trademark
  • media for the disperser include zirconia beads, zircon beads (ZrSiO4), alumina beads, and alkali-free glass beads.
  • a component that becomes a metal and metal ion impurity source is used.
  • beads that do not contain.
  • a specific example of a preferred commercial product is “Traceram” (registered trademark) (manufactured by Toray Industries, Inc.).
  • the bead diameter is preferably 0.03 to 5 mm, and the higher the sphericity, the more preferable.
  • the operating conditions of the disperser may be appropriately set in consideration of bead hardness, handling properties, productivity, etc. so that the average particle size and viscosity after dispersion of the pigment are in a desired range.
  • the average dispersed particle size of the inorganic pigment having near-infrared light shielding properties is preferably 30 nm or more, more preferably 50 nm or more, in order to suppress reaggregation of the pigment.
  • 200 nm or less is preferable and 150 nm or less is more preferable in order to avoid a local increase in the dielectric constant of the pixel division layer and obtain good display characteristics.
  • the average dispersed particle size of the organic pigment is preferably 50 nm or more, more preferably 80 nm or more in order to suppress reaggregation of the pigment.
  • 300 nm or less is preferable, and 200 nm or less is more preferable.
  • the average dispersed particle diameter of the pigment means the total number average value of the particle diameter of the pigment contained in the pigment dispersion obtained by the above-described wet media dispersion treatment.
  • the average dispersed particle size can be measured using a dynamic light scattering particle size distribution analyzer “SZ-100 (manufactured by HORIBA)” or a laser diffraction / scattering particle size distribution analyzer “MT-3000 (manufactured by Microtrac)”. it can.
  • the present invention is carried out by mixing and stirring the pigment dispersion, a compound selected from the group (a-1) to (a-3), (b) a photosensitizer, and other components as required.
  • the photosensitive composition can be obtained.
  • the cured film of the present invention is a cured product of the photosensitive composition of the present invention, and can be suitably used as a pixel division layer of an organic EL display device.
  • the display portion can be made high definition, the display quality of an image or video can be improved, and the value as a display device can be increased.
  • the aperture ratio of the pixel division layer in the display area is preferably 20% or less.
  • the aperture ratio here means the area ratio of the opening of the pixel division layer with respect to the area of the pixel division layer. The lower the aperture ratio, the larger the area for forming the pixel division layer in the display portion, so the performance of the pixel division layer on the light emission reliability is greatly affected. That is, the organic EL display device having a low aperture ratio and a high-definition display portion contributes greatly to the effect of the present invention. For the same reason, as the thickness of the pixel division layer is increased, the effect of the present invention greatly contributes.
  • a cured film that is a cured product of the photosensitive composition of the present invention is used as a pixel dividing layer that also has a spacer function in the panel member configuration, a portion having a different thickness of the cured film, that is, a step shape is in-plane. You may have.
  • a method for obtaining a pixel dividing layer having a step difference in thickness of the cured film a negative type or a positive type in which a plurality of types of openings having different light transmittances in the exposure light region are formed in an exposure process described later. There is a method of pattern exposure through a halftone mask.
  • the photosensitive composition of the present invention When the photosensitive composition of the present invention has negative photosensitivity, a portion of the exposed portion where the light transmittance of the exposure light region is locally high has a lower solubility in an alkali developer, and finally It is formed as a convex portion in the plane of the obtained pixel division layer.
  • the photosensitive composition of the present invention has positive photosensitivity, the portion of the exposed portion where the light transmittance of the exposure light region is locally low has a lower solubility in an alkali developer, It is formed as a convex portion within the plane of the finally obtained pixel division layer.
  • a cured film that is a cured product of the photosensitive composition of the present invention can be obtained, for example, by photolithography including a coating process, a pre-baking process, an exposure process, a developing process, and a curing process in this order.
  • the photosensitive composition of the present invention is applied to a substrate to obtain a coating film.
  • a substrate a reflective layer made of a patterned silver / copper alloy or the like and an ITO electrode of the same pattern are sequentially formed on the surface of a glass substrate or a flexible substrate.
  • stacked is mentioned.
  • the flexible base material a laminated base material in which a flexible base material made of polyimide resin is fixed to the surface of a plate-like glass base material which is a temporary support can be preferably used.
  • the plate-like glass substrate here is peeled in the process, so that the organic EL display device finally obtained can be made flexible.
  • the photosensitive composition of the present invention is applied to obtain a coating film.
  • the coating apparatus used in the coating process include a slit coater, a spin coater, a gravure coater, a dip coater, a curtain flow coater, a roll coater, a spray coater, a screen printer, and an inkjet.
  • the pixel dividing layer is usually formed with a film thickness of about 0.5 to 3.0 ⁇ m, preferably about 1.0 to 2.0 ⁇ m, because of the member structure, and is suitable for thin film coating and hardly causes coating defects.
  • a slit coater or a spin coater is preferable because of excellent thickness uniformity and productivity, and a slit coater is more preferable from the viewpoint of liquid saving and production efficiency.
  • the pre-baked film is obtained by evaporating the solvent in the coating film by heating.
  • the heating device include a hot air oven, a hot plate, and a far infrared oven (IR oven). Pin gap pre-baking or contact pre-baking may be performed.
  • the prebake temperature is preferably 50 to 150 ° C.
  • the prebake time is preferably 30 seconds to several hours.
  • a pre-baking step by heating may be performed after volatilizing at least part of the solvent contained in the coating film by a vacuum / vacuum dryer after the coating step.
  • the exposure film is obtained by irradiating active chemical rays from the film surface side of the pre-baked film through a photomask.
  • the exposure apparatus used in the exposure process include a stepper, a mirror projection mask aligner (MPA), and a parallel light mask aligner (PLA).
  • the active actinic radiation to be irradiated during exposure include ultraviolet light, visible light, electron beam, X-ray, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like.
  • a j-line (wavelength 313 nm), i-line (wavelength 365 nm), h-line (wavelength 405 nm) or g-line (wavelength 436 nm) of a mercury lamp is preferable, and a mixed line containing them is more preferable.
  • the exposure dose is usually about 10 to 4,000 mJ / cm 2 (i-line conversion value).
  • a photomask for example, an exposure light shielding thin film made of a metal such as chromium or a black organic resin is patterned on one surface of a substrate having translucency at an exposure wavelength such as glass, quartz, or a film. And a mask formed into a film.
  • a negative type or a positive type photomask can be used, and pattern exposure is performed by transmitting active actinic radiation only at the opening. To obtain an exposed film.
  • the developing step when the photosensitive composition of the present invention has negative photosensitivity, the unexposed portion is removed by development to obtain a patterned development film.
  • the exposed portion is removed by development to obtain a patterned development film.
  • the developing method include a method of immersing the exposure film in an organic alkaline aqueous solution or an inorganic alkaline aqueous solution, which is an alkaline developer, by a method such as shower, dipping, paddle, etc. for 10 seconds to 10 minutes.
  • a pattern-like developed film can be obtained by utilizing the difference in solubility in the alkaline developer between the exposed and unexposed areas.
  • the exposure part means a part irradiated with the exposure light through the mask opening, while the unexposed part means a part not irradiated with the exposure light.
  • the photosensitive composition of the present invention When the photosensitive composition of the present invention has negative photosensitivity, the unexposed area becomes a pattern opening, whereas when it is positive type photosensitive, the exposed area becomes a pattern opening, and the opening is final. It becomes a light emitting pixel portion in the organic EL display device.
  • alkaline developer examples include a 2.38 wt% tetramethylammonium hydroxide (hereinafter “TMAH”) aqueous solution, a 0.4 wt% TMAH aqueous solution, and a 0.2 wt% TMAH aqueous solution. It is used at a constant liquid temperature in the range of atmospheric pressure and 15-35 ° C. After the development, it is possible to add a rinsing washing process with a shower of deionized water and / or a draining process with an air jet.
  • TMAH tetramethylammonium hydroxide
  • the developing film is thermally cured by heating, and at the same time, components such as moisture and remaining developer are volatilized to obtain a cured film.
  • the heating device include a hot air oven and an IR oven.
  • the heating temperature is (a-1) 200 to 300 in order to sufficiently heat cure the epoxy compound having a long-chain alkyl group having 9 to 19 carbon atoms and other thermosetting components to enhance the flexibility and light emission reliability. ° C is preferred.
  • the temperature is preferably 230 to 260 ° C. in order to suppress the generation of decomposition products and increase the light emission reliability.
  • the heating atmosphere is preferably a nitrogen atmosphere, and the pressure during heating is preferably atmospheric pressure.
  • FIG. 1 shows an embodiment of an organic EL display device comprising the cured film of the present invention obtained from the above steps.
  • the cured film of the present invention can be suitably used as the pixel division layer (8) in FIG.
  • the cured film of this invention can be used suitably also for the planarization layer (4) by which high flexibility and high light emission reliability are calculated
  • the organic EL display device including the cured film of the present invention is also included in the present invention.
  • a bottom gate type or top gate type TFT (1) (thin film transistor) is provided in a matrix on the surface of the substrate (6), and the TFT (1) and the wiring (2) connected to the TFT (1)
  • the TFT insulating layer (3) is formed in a state of covering.
  • a planarizing layer (4) is formed on the surface of the TFT insulating layer (3), and a contact hole (7) for opening the wiring (2) is provided in the planarizing layer (4).
  • the second electrode (5) is patterned and connected to the wiring (2).
  • a pixel division layer (8) is formed so as to surround the pattern periphery of the second electrode (5).
  • the pixel dividing layer (8) is provided with an opening, and the light emitting pixel (9) containing an organic EL light emitting material is formed in the opening, and the first electrode (10) is provided with the pixel dividing layer ( 8) and the light emitting pixel (9) are deposited. If a voltage is directly applied to the light emitting pixel portion after sealing the TFT substrate having the above laminated structure under vacuum, the organic EL display device can emit light.
  • the light emitting pixel (9) is prepared by arranging different types of pixels having emission peak wavelengths in the red, blue, and green regions, which are the three primary colors of light, or a light emitting pixel that emits white light emission on the entire surface.
  • a separate laminated member may be a combination of red, blue, and green color filters.
  • the peak wavelength of the red region that is normally displayed is 560 to 700 nm
  • the peak wavelength of the blue region is 420 to 500 nm
  • the peak wavelength of the green region is 500 to 550 nm.
  • the type of is not particularly limited, and the emitted light may have any peak wavelength.
  • the second electrode (5) for example, a transparent film made of ITO (indium tin oxide) can be suitably used, and as the first electrode (10), for example, an alloy film such as silver / magnesium is suitable. However, it may be made of any substance as long as it can function as an electrode. Moreover, as an organic EL light-emitting material constituting the light-emitting pixel, a material in which a hole transport layer and / or an electron transport layer are combined in addition to the light-emitting layer can be suitably used.
  • the light extraction direction may be a bottom emission type organic EL display device that extracts emitted light emitted from the light emitting pixels to the substrate side through the substrate (6), or emits light through the first electrode. It may be a top emission type organic EL display device that extracts light to the opposite side of the substrate (6), and is not particularly limited.
  • a metal reflection layer may be further provided in order to increase the light extraction efficiency in one direction. If a hard plate-like substrate represented by glass or the like is used as the substrate (6), a rigid organic EL display device is obtained. On the other hand, if a flexible substrate is used, a flexible organic EL display device is obtained.
  • Examples of the resin solution for obtaining a flexible base material made of a polyimide resin having excellent mechanical strength include a solution containing polyamic acid.
  • the solution containing the polyamic acid is applied to the surface of the support, and then heated to imidize the polyamic acid and convert it into a polyimide resin, whereby a flexible substrate can be obtained.
  • the polyamic acid can be synthesized by reacting a tetracarboxylic dianhydride and a diamine compound in an amide solvent such as N-methyl-2-pyrrolidone.
  • a polyamic acid having a residue of an aromatic tetracarboxylic dianhydride and a residue of an aromatic diamine compound is preferable because it has a small coefficient of thermal expansion and excellent dimensional stability.
  • Specific examples include polyamic acid having a residue of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and a residue of p-phenylenediamine.
  • ⁇ Calculation method of required minimum exposure amount> A 10 nm thick silver / copper alloy thin film (volume ratio 10: 1) is formed on the entire surface of a 100 mm ⁇ 100 mm non-alkali glass substrate by sputtering, and etched to form a patterned metal reflective layer. Then, an ITO transparent conductive film having a thickness of 10 nm was formed on the entire surface by sputtering to obtain a substrate for evaluating the necessary minimum exposure dose.
  • the photosensitive composition is applied to the surface of the obtained substrate for evaluation of the minimum required exposure amount with a spin coater while adjusting the rotation speed so that the thickness of the finally obtained cured film becomes 2.0 ⁇ m.
  • a coating film was obtained, and the coating film was pre-baked at 100 ° C. for 120 seconds under atmospheric pressure using a hot plate (SCW-636; manufactured by Dainippon Screen Mfg. Co., Ltd.) to obtain a pre-baked film.
  • SCW-636 hot plate
  • SCW-636 hot plate
  • the resolution pattern of the produced developed film was observed at a magnification of 50 times, and the pattern line width (20 0.0 ⁇ m) and the pitch width (20.0 ⁇ m) are formed in a one-to-one relationship, that is, the exposure amount (mJ / cm 2 : i-line illuminometer value) at which a pattern-like development film having the same dimensions as the photomask is formed.
  • the required minimum exposure amount (sensitivity to exposure) of the photosensitive composition It should be noted that cases where the required minimum exposure amount exceeds 150 mJ (mJ / cm 2 ) or where the pattern-like development film could not be formed due to peeling of the development film were excluded from the evaluation targets.
  • the light transmittance of the cured film was used.
  • a cured film having a lower maximum value of light transmittance at a wavelength of 780 to 1,000 nm is evaluated as being excellent in light-shielding properties in the near infrared region, and a cured film having a lower light transmittance at a wavelength of 550 nm is more visible in the visible light region. It was evaluated that the light-shielding property was excellent.
  • the thickness of the cured film is measured at three in-plane positions using a stylus type film thickness measuring device (Tokyo Seimitsu Co., Ltd .; Surfcom), and the average value is rounded off to the second decimal place. The numbers up to the first decimal place were obtained.
  • the dielectric constant measuring apparatus obtained by Examples 1 to 29 and Comparative Examples 1 to 20 is provided with an aluminum base material, a cured film, and an aluminum thin film in this order.
  • the dielectric constant at a frequency of 1 kHz was measured using an “LCR meter 4294A (manufactured by Agilent Technologies)”.
  • the thickness of the cured film was measured at four locations within the surface using a stylus type film thickness measuring device (Tokyo Seimitsu Co., Ltd .; Surfcom), and the average value was rounded off to the second decimal place. The numbers up to the first decimal place were obtained.
  • FIG. 2 is a schematic diagram showing undulations at the pattern edge portion of the cured film.
  • the part shown in white represents the opening (11), and the part shown in black represents the patterned cured film (12).
  • the arrows a and b in FIG. 2 are straight lines parallel to the lateral edges of the patterned cured film forming substrate, while the c and d arrows are the vertical direction of the patterned cured film forming substrate.
  • the edge portion in the horizontal direction or the vertical direction of the patterned cured film forming substrate used as a reference here is a non-alkali glass substrate in FIG. 3 showing a method for manufacturing an organic EL display device having a pixel dividing layer described later. This is the horizontal or vertical edge portion of (15).
  • the maximum width is less than 1.0 ⁇ m
  • B The maximum width is 1.0 ⁇ m or more and less than 1.5 ⁇ m
  • C The maximum width is 1.5 ⁇ m or more and less than 2.0 ⁇ m
  • D The maximum width is 2.0 ⁇ m or more 3. Less than 0 ⁇ m
  • E The maximum width is 3.0 ⁇ m or more.
  • the iron wires (0.10 mm, 0.30 mm, 0.50 mm, 0.80 mm, 1.00 mm, and 2.00 mm in total, which are different in diameter only in stages) were prepared.
  • the flexible substrate (13) is wound inside along the surface of the wire so that the cured film (14) is on the outside, and the flexibility is evaluated so as to have a certain radius of curvature.
  • the substrate was curved. Subsequently, the substrate for evaluating flexibility was returned to the flat state again, and the surface of the cured film (14) was observed at a magnification of 20 times using an FPD inspection microscope to confirm the presence or absence of cracks or peeling.
  • the flexible evaluation substrate alone was completely bent (diameter: 0.00 mm) without being wrapped around the wire, and then returned to the flat state again, and the same observation was performed.
  • the above operation is repeated 5 times in total by changing the portion of the cured film to be bent or bent, and the value obtained by dividing the minimum groove depth at which no cracks or peeling were observed by 2 is the minimum radius of curvature that can be bent (mm).
  • the smaller the value the better the flexibility among the seven steps of minimum curvature radius of 0.00mm, 0.05mm, 0.15mm, 0.25mm, 0.40mm, 0.50mm, 1.00mm.
  • the cured film having a thickness of 0.40 mm or less was accepted, and the cured films having 0.50 mm and 1.00 mm were rejected. Moreover, when the minimum curvature radius exceeded 1.00 mm, it was determined as “out of measurement range” and was rejected.
  • the result of separately evaluating the flexibility of a flexible substrate alone having a thickness of 7 ⁇ m was 0.00 mm, and it was confirmed separately that the substrate was excellent in flexibility and could be bent. In Examples 1 to 29 and Comparative Examples 1 to 20, no peeling of the cured film was observed, and the evaluation was made only from the presence or absence of cracks.
  • the display unit was continuously irradiated with light having an illuminance of 3.0 W / cm 2 at a wavelength of 420 nm using a xenon lamp as a pseudo-sunlight as a light source.
  • light was emitted again, and the pixel light emission area ratio was measured for 10 light emitting pixel portions located in the center, and the average value was calculated. Based on the pixel emission area ratio after 1 hour, the light emission reliability is excellent enough to maintain a high pixel emission area ratio. Evaluation is based on the following criteria. It was rejected.
  • An alkali-soluble polyimide resin having a weight average molecular weight (Mw) of 25,000 and an acid value of 160 (mgKOH / g) is synthesized and dissolved in PGMEA to obtain a solid content of 30% by weight.
  • a polyimide resin solution A was obtained.
  • R in the general formula (2) 3 is a branched alkyl group having 17 carbon atoms derived from the compound represented by the structural formula (12), R 4 is COOCH 2 , and the structure represented by the structural formula (29).
  • a PGMEA solution containing a cardo resin having a building unit was obtained and diluted with PGMEA so as to have a solid content of 15% by weight to obtain a cardo resin solution A.
  • Pigment dispersion 2 was prepared in the same procedure as in Preparation Example 1, using titanium oxynitride (average primary particle diameter 35 nm; “TiON” in the table) instead of titanium nitride.
  • Table 1 shows the blending amount (g) of each raw material.
  • the average dispersed particle size of titanium oxynitride contained in Pigment Dispersion Liquid 2 was 95 nm.
  • Preparation Example 4 Preparation of pigment dispersion 4
  • 30.00 g of “Solsperse” (registered trademark) 20000 is mixed with 850.00 g of PGMEA and stirred for 10 minutes, and then 120.00 g of benzodifuranone represented by the above structural formula (32), which is an organic black pigment System pigment (average primary particle size 50 nm; “Irgaphor” (registered trademark) Black S0100; from the table, “S0100” in the table) manufactured by BASF) was stirred for 30 minutes, and then the same as in Preparation Example 1 using a horizontal bead mill Pigment dispersion 4 was prepared according to the procedure.
  • Table 1 shows the blending amount (g) of each raw material.
  • the average dispersed particle size of the benzodifuranone pigment contained in the pigment dispersion 4 was 120 nm.
  • Preparation Examples 5 to 7 Preparation of pigment dispersions 5 to 7
  • C.I. I. Pigment Blue 60 (average primary particle diameter 60 nm)
  • an organic red pigment such as C.I. I. Pigment Red 190 (average primary particle diameter 55 nm)
  • C.I. I. Pigment dispersions 5 to 7 were prepared in the same manner as in Preparation Example 1 using Pigment Yellow 192 (average primary particle size 40 nm).
  • Table 1 shows the blending amount (g) of each raw material.
  • C.I. contained in the pigment dispersion 5 I. Pigment Blue 60 has an average dispersed particle size of 162 nm
  • C.I. I. Pigment Red 190 has an average dispersed particle size of 110 nm
  • C.I. I. Pigment Yellow 192 had an average dispersed particle size of 90 nm.
  • Preparation Example 8 Preparation of pigment dispersion 8
  • “Solsperse” registered trademark 20000
  • “Tego dispers” registered trademark 655 (an ethylene oxide / styrene oxide polymer dispersant having a phosphate group as an acidic adsorption group at the molecular end) is used as a dispersant.
  • a pigment dispersion 8 was prepared in the same procedure as in Preparation Example 1. Table 1 shows the blending amount (g) of each raw material. The average dispersed particle size of titanium nitride contained in the pigment dispersion 8 was 137 nm.
  • Preparation Examples 9 to 11 Preparation of pigment dispersions 9 to 11
  • Pigment Blue 60 has an average dispersed particle size of 170 nm
  • C.I. I. Pigment Red 190 has an average dispersed particle size of 134 nm
  • C.I. I. Pigment Yellow 192 had an average dispersed particle size of 105 nm.
  • Preparation Example 12 Preparation of pigment dispersion 12
  • 400.00 g of pigment dispersion 5 containing an organic blue pigment, 300.00 g of pigment dispersion 6 containing an organic red pigment, and 300.00 g of pigment dispersion 7 containing an organic yellow pigment Were mixed and stirred for 10 minutes to prepare a pigment dispersion 12 which was a pseudo black dispersion.
  • Table 1 shows the blending amount (g) of each raw material.
  • Preparation Example 13 Preparation of pigment dispersion 13
  • 400.00 g of pigment dispersion 9 containing an organic blue pigment, 300.00 g of pigment dispersion 10 containing an organic red pigment, and 300.00 g of pigment dispersion 11 containing an organic yellow pigment Were mixed and stirred for 10 minutes to prepare pigment dispersion 13 which was a pseudo black dispersion.
  • Table 2 shows the blending amount (g) of each raw material.
  • Preparation Examples 14 and 15 Preparation of pigment dispersions 14 and 15
  • Preparation Example 1 using zirconium nitride (average primary particle diameter 55 nm; “ZrN” in the table) and amorphous carbon black (average primary particle diameter 86 nm; “a-CB” in the table) instead of titanium nitride, respectively.
  • Pigment dispersions 14 and 15 were prepared in the same procedure as described above.
  • Table 3 shows the blending amount (g) and average dispersed particle size (nm) of each raw material.
  • Amorphous carbon black, based on the sum of SP 3 structure and SP 2 structure was used as the content of SP 3 structure is 45atom%.
  • Preparation Example 16 Preparation of pigment dispersion 16
  • a pigment dispersion 16 was prepared in the same procedure as in Preparation Example 1 except that the wet dispersion treatment was performed so that the average dispersed particle size of titanium nitride was 312 nm.
  • Table 3 shows the blending amount (g) of each raw material.
  • Preparation Example 17 Preparation of pigment dispersion 17
  • a pigment dispersion 17 was prepared in the same procedure as in Preparation Example 4 except that the wet dispersion treatment was performed so that the average dispersed particle size of the benzodifuranone pigment was 356 nm.
  • Table 3 shows the blending amount (g) of each raw material.
  • Example 1 2.18 g of the pigment dispersion 1, 2.97 g of the pigment dispersion 12, 0.45 g of the compound represented by the structural formula (3), 2.50 g of the polyimide resin solution A, and the following structural formula ( 41) 0.69 g of dipentaerythritol ⁇ -caprolactone-added acrylate (KAYARAD DPCA-60; manufactured by Nippon Kayaku Co., Ltd.), which is a compound having two or more radical polymerizable groups; “DPCA-60”), 0.12 g of “Adeka Cruz” (registered trademark) NCI-831 (manufactured by ADEKA), which is a photopolymerization initiator, and 11.09 g of PGMEA are mixed and sealed. The mixture was stirred on a shaker for 30 minutes to prepare a photosensitive composition 1 having negative photosensitivity and having a solid content of 15% by weight. Table 4 shows the blending amount (g) of each raw material.
  • KAYARAD DPCA-60 dipentaery
  • the exposure film was obtained by irradiating the entire surface of the pre-baked film with the minimum exposure amount obtained by the above-described method using a 436 nm mixed line.
  • the photosensitive composition 1 is applied to the surface of an aluminum base (70 mm ⁇ 70 mm) by applying a spin coater with the rotational speed adjusted so that the final thickness of the cured film is 2.0 ⁇ m.
  • a film was obtained, and using a hot plate, the coating film was pre-baked at 100 ° C. under atmospheric pressure for 120 seconds to obtain a pre-baked film.
  • a mixed line of j-line (313 nm), i-line (wavelength 365 nm), h-line (wavelength 405 nm) and g-line (wavelength 436 nm) of an ultra-high pressure mercury lamp was obtained by the above-described method using a double-sided alignment single-side exposure apparatus.
  • An exposure film was obtained by irradiating the entire surface of the pre-baked film with the necessary minimum exposure amount.
  • the exposed film was heated at 250 ° C. for 60 minutes in a nitrogen atmosphere using a high-temperature inert gas oven to obtain a cured film having a thickness of 2.0 ⁇ m.
  • an aluminum thin film was pattern-deposited on the surface of the cured film so as to have a film thickness of 70 nm to obtain a dielectric constant evaluation substrate.
  • Table 5 shows the results of evaluating the dielectric constant of the cured film by the method described above. Note that the same hot plate, double-sided alignment single-side exposure apparatus, and high-temperature inert gas oven were used as in the production of the optical property evaluation substrate.
  • the coated film was obtained by coating with a coater, and dried at 110 ° C. for 10 minutes using a hot plate. Next, using a high-temperature inert gas oven, the temperature is raised from 50 ° C. at 4 ° C. per minute in a nitrogen atmosphere, heated at 350 ° C. for 30 minutes, then heated at 10 ° C. per minute and heated at 500 ° C. for 30 minutes.
  • the polyamic acid was imidized, it was naturally cooled to room temperature to obtain a laminated base material having a flexible base material made of a polyimide resin on the surface of the glass base material. Further, the photosensitive composition 1 is applied to the surface of the flexible base material under the same conditions as those for preparing the optical property evaluation substrate, so that the finally obtained cured film has a thickness of 2.0 ⁇ m. Pre-baking, exposure, development and curing were performed to obtain a cured film. Excimer laser is irradiated from the translucent glass substrate side, the adhesiveness of the flexible substrate is lowered, only the translucent glass substrate is peeled off, and the thickness of the flexible substrate having a thickness of 7.0 ⁇ m is increased. A flexible evaluation substrate on which a 2.0 ⁇ m thick cured film was formed was obtained. Table 5 shows the results of evaluating the flexibility of the cured film by the method described above.
  • a patterned cured film forming substrate having a cured film obtained by curing the photosensitive composition 1 by the following method, and an organic for evaluating luminance unevenness comprising the patterned cured film as a pixel division layer An EL display device was produced.
  • FIG. 4 shows a manufacturing process of an organic EL display device including a pixel dividing layer forming process.
  • a 10 nm-thick silver / copper alloy thin film (volume ratio 10: 1) is formed on the entire surface of an alkali-free glass substrate (15) (square of 46 mm ⁇ 46 mm) by sputtering and etched. A patterned metal reflective layer (16) was formed. Next, an ITO transparent conductive film having a thickness of 10 nm is formed on the entire surface by sputtering and etched to form the second electrode 17 having the same pattern and an auxiliary electrode (18) as an extraction electrode.
  • (Registered trademark) 56 manufactured by Furuuchi Chemical Co., Ltd. was subjected to ultrasonic cleaning for 10 minutes, and then washed with ultrapure water to obtain an electrode-formed substrate.
  • the photosensitive composition 1 is applied to the surface of the electrode forming substrate by adjusting the rotation speed so that the finally obtained pixel division layer has a thickness of 2.0 ⁇ m. Obtained.
  • the coating film was pre-baked at 100 ° C. under atmospheric pressure for 120 seconds to obtain a pre-baked film.
  • Edges in the vertical / horizontal direction of the pattern-shaped light-shielding portion of the negative exposure mask in which openings (rectangular 30 ⁇ m / rectangular of 165 ⁇ m) are arranged at a pitch of 50 ⁇ m between the openings are vertical in the alkali-free glass substrate (15).
  • a negative exposure mask is set on the coating film so as to be parallel to the edge portions in the direction / lateral direction, and an ultra-high pressure mercury lamp is passed through the negative exposure mask using a double-sided alignment single-side exposure device.
  • the exposure film is irradiated with a pattern of exposure light on the pre-baked film with a minimum exposure amount of a mixed line of j-line (313 nm), i-line (wavelength 365 nm), h-line (wavelength 405 nm) and g-line (wavelength 436 nm).
  • j-line 313 nm
  • i-line wavelength 365 nm
  • h-line wavelength 405 nm
  • g-line wavelength 436 nm
  • the developing film is heated at 250 ° C. for 60 minutes in a nitrogen atmosphere to form a cured film, and an opening (30 ⁇ m / width) is formed in an area of 16 mm length / 16 mm width at the center of the electrode forming substrate.
  • the opening here is a portion that finally becomes the light emitting pixel portion
  • the patterned cured film is a portion corresponding to the pixel division layer. Note that the same hot plate, double-sided alignment single-sided exposure apparatus, small photolithographic development apparatus, and high-temperature inert gas oven were used when the optical characteristic evaluation substrate was produced.
  • an organic EL display device was produced using the patterned cured film forming substrate.
  • the patterned cured film forming substrate is rotated with respect to the deposition source under the deposition conditions with a vacuum degree of 1 ⁇ 10 ⁇ 3 Pa or less.
  • the compound (HT-1) was formed to a thickness of 10 nm
  • the compound (HT-2) was formed to a thickness of 50 nm.
  • a compound (GH-1) as a host material and a compound (GD-1) as a dopant material were deposited to a thickness of 40 nm on the light-emitting layer.
  • the compound (ET-1) and the compound (LiQ) were laminated in a volume ratio of 1: 1 with a thickness of 40 nm as an electron transport material.
  • a silver / magnesium alloy (volume ratio 10: 1) was deposited with a thickness of 10 nm to obtain a first electrode (21). Then, it sealed by adhere
  • Table 6 shows the results of evaluating the luminance unevenness of the organic EL display device by the method described above.
  • the thickness referred to here is a display value of a crystal oscillation type film thickness monitor.
  • a flexible organic EL display device for evaluating light emission reliability comprising a cured film obtained by curing the photosensitive composition 1 as a pixel division layer was prepared by the following method.
  • a non-alkali glass substrate (15) shown in FIG. 4 showing a process for producing an organic EL display device including a pixel dividing layer forming step is a flexible base material made of a polyimide resin on the surface of a glass base material as a support.
  • the photosensitive composition 1 is applied, and pre-baking, exposure, development, and curing are performed.
  • a 2.0 ⁇ m thick cured film having the same pattern as the previous patterned cured film (19) was obtained.
  • the organic EL layer and the first electrode were formed and sealed in the same procedure.
  • the glass substrate was peeled off to complete a flexible organic EL display device for evaluating the light emission reliability, and the light emission reliability was evaluated by the previous method.
  • the evaluation results are shown in Table 6.
  • the laminated base material which comprises the flexible base material which consists of a polyimide resin on the surface of a glass base material used what was obtained in the same procedure as the time of preparation of said board
  • Examples 2 to 8 instead of the compound represented by the structural formula (3), the compounds represented by the structural formulas (5), (7), (9), (11), (13), (15), and (17) Using the same procedures as in Example 1, the photosensitive compositions 2 to 8 having a solid content of 15% by weight and having negative photosensitivity in the types and blending amounts (g) of the respective raw materials shown in Table 4 were used. The cured film and the organic EL display device were prepared and evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 5-6.
  • Example 9 to 11 Using the pigment dispersion 4 instead of the pigment dispersion 12, using the compounds represented by the structural formulas (11), (3), and (17), respectively, in the same procedure as in Example 1, Photosensitive compositions 9 to 11 having a negative photosensitivity and a solid content of 15% by weight were prepared with the types and blending amounts (g) of the raw materials shown, and cured films and organic EL were produced in the same manner as in Example 1. A display device was fabricated and evaluated. The evaluation results are shown in Tables 8-9.
  • Example 12 In the same procedure as in Example 9, except that dipentaerythritol hexaacrylate (in the table, “DPHA”) was used instead of ⁇ -caprolactone-added acrylate of dipentaerythritol, solid content 15 A photosensitive composition 12 of% by weight was prepared, and a cured film and an organic EL display device were produced and evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 8-9.
  • DPHA dipentaerythritol hexaacrylate
  • Example 13 The types and blending amounts of the respective raw materials shown in Table 7 were the same as in Example 1 except that the pigment dispersion 16 was used instead of the pigment dispersion 1, and the pigment dispersion 17 was used instead of the pigment dispersion 4.
  • a photosensitive composition 13 having a negative photosensitive property and having a solid content of 15% by weight was prepared, and a cured film and an organic EL display device were produced and evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 8-9.
  • Example 14 to 15 Without using the pigment dispersion 1, each of the pigment dispersions 4 and 12 was used in the same procedure as in Example 1, and the type and blending amount (g) of each raw material shown in Table 7 had negative photosensitivity. Photosensitive compositions 14 to 15 having a solid content of 15% by weight were prepared, and cured films and organic EL display devices were produced and evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 8-9.
  • Example 16 to 18 Except that the ratio of the compound represented by the structural formula (11) and the polyimide resin solution A was changed, the procedure was the same as in Example 9, and the type and blending amount (g) of each raw material shown in Table 7 were negative. Photosensitive compositions 16 to 18 having a solid content of 15% by weight were prepared, and cured films and organic EL display devices were produced and evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 8-9.
  • Example 19 to 21 Using the pigment dispersions 2, 4, 12, 14, and 15, the photosensitive composition 19 having a solid content of 15% by weight and having negative photosensitivity at each raw material type and blending amount (g) shown in Table 10 To 21 were prepared, and cured films and organic EL display devices were produced and evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 11-12.
  • Example 22 to 23 0.20 g of FDN-08 (“VO-Pc” in the table), which is a vanadyl phthalocyanine-based near-infrared absorbing dye having a maximum absorption wavelength at a wavelength of 992 nm, was added to 9.80 g of PGMEA and stirred for 3 hours. Further using the near-infrared absorbing dye solution A obtained in the same manner as in Example 9, the photosensitive composition having a solid content of 15% by weight with the type and blending amount (g) of each raw material shown in Table 10 22 to 23 were prepared, and cured films and organic EL display devices were produced and evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 11-12.
  • Example 24 In the same procedure as in Example 5 except that pigment dispersions 3 and 4 were used in place of pigment dispersions 1 and 12, the negative type photosensitivity was determined according to the type and blending amount (g) of each raw material shown in Table 10.
  • a photosensitive composition 24 having a solid content of 15% by weight was prepared, and a cured film and an organic EL display device were produced and evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 11-12.
  • Example 25 2.18 g of pigment dispersion 1, 2.97 g of pigment dispersion 12, 2.10 g of polyimide resin solution A, 5.00 g of polyimide resin solution B, and two or more radical polymerizable groups Compound 0.51 g of dipentaerythritol ⁇ -caprolactone-added acrylate (KAYARAD DPCA-60), 0.12 g of “Adeka Cruz” (registered trademark) NCI-831 as a photopolymerization initiator, and 7.12 g PGMEA was mixed, sealed, and stirred on a shaker for 30 minutes to prepare a photosensitive composition 25 having a negative photosensitive property and having a solid content of 15% by weight.
  • a cured film and an organic EL display device were produced and evaluated in the same manner as in Example 1.
  • Table 13 shows the type and blending amount (g) of each raw material, and Tables 14 to 15 show the evaluation results.
  • Example 26 A solid content having negative photosensitivity in the same manner as in Example 25 except that the polyimide resin solution B was replaced with the cardo resin solution A, with the types and blending amounts (g) of each raw material shown in Table 7. 15% by weight of the photosensitive composition 26 was prepared, and a cured film and an organic EL display device were produced and evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 14-15.
  • the negative photosensitive material can be used with the types and blending amounts (g) of each raw material shown in Table 16.
  • Photosensitive compositions 27 to 33 having a solid content of 15% by weight were prepared, and cured films and organic EL display devices were produced and evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 17-18.
  • Example 27 2.18 g of the pigment dispersion 8, 0.67 g of the pigment dispersion 13, 0.45 g of the compound represented by the structural formula (11), 4.35 g of the polyimide resin solution A, and 0.60 g
  • the quinonediazide compound a and 11.75 g of PGMEA were mixed, sealed, and stirred on a shaker for 30 minutes to prepare a photosensitive composition 44 having a positive photosensitive property and having a solid content of 15% by weight.
  • the pattern exposure was not performed in the production of the optical property evaluation substrate, the dielectric constant evaluation substrate, and the flexibility evaluation substrate, and in the production of the patterned cured film formation substrate, the opening of the negative exposure mask and the light shielding portion were A cured film and an organic EL display device were produced and evaluated in the same manner as in Example 1 except that an inverted positive exposure mask was used.
  • Table 22 shows the blending amount (g) of each raw material, and Tables 23 to 24 show the evaluation results.
  • Example 28 Each of the raw materials shown in Table 25 was used instead of the compound represented by the structural formula (11) instead of the compound represented by the structural formula (3), and the polybenzoxazole precursor solution A instead of the polyimide resin solution A.
  • a photosensitive composition 46 having a negative photosensitivity and a solid content of 15% by weight was prepared in the same manner as in Example 1, and a cured film and an organic EL display device were prepared in the same manner as in Example 1. And evaluated. The evaluation results are shown in Tables 26 to 27.
  • Example 29 A polybenzoxazole precursor solution A is used in place of the polyimide resin solution A, and the photosensitive composition having a solid content of 15% by weight having positive photosensitivity with the types and blending amounts (g) of each raw material shown in Table 28. 48 was prepared.
  • the pattern exposure was not performed in the production of the optical property evaluation substrate, the dielectric constant evaluation substrate, and the flexibility evaluation substrate, and in the production of the patterned cured film formation substrate, the opening of the negative exposure mask and the light shielding portion were A cured film and an organic EL display device were produced and evaluated in the same manner as in Example 1 except that an inverted positive exposure mask was used.
  • the evaluation results are shown in Tables 29-30.
  • Example 25 containing the component (a-2) and Example 26 containing the component (a-3) the flexibility and light emission reliability were higher than those in Comparative Example 1 having equivalent optical characteristics. It can be seen that it has improved.
  • Comparative Example 8 containing a compound having an alkyl group with 8 carbon atoms, no improvement in flexibility and light emission reliability is observed.
  • Comparative Example 9 containing a compound having 20 carbon atoms in the long-chain alkyl group, although the emission reliability was improved, the pattern linearity was greatly deteriorated, and the content was further reduced. It can be seen that the linearity of the pattern is similarly deteriorated in the adjusted comparative example 10.
  • the carbon number of the long-chain alkyl group of the above components (a-1) to (a-3) contained in the photosensitive composition is within the range of 9 to 19. It turns out that it is essential.
  • Comparative Example 11 containing a compound represented by structural formulas (44) and (48) to (49) having a long-chain alkyl group having 9 to 19 carbon atoms but no epoxy group is equivalent Compared with the comparative example 2 which has these optical characteristics, no improvement is observed. On the contrary, in Comparative Examples 12 to 15 containing the compounds represented by the structural formulas (45) to (47) having an epoxy group but not having a long-chain alkyl group having 9 to 19 carbon atoms, the same optical properties are obtained. Compared with Comparative Example 2 having characteristics, no improvement is observed.
  • Comparative Example 13 containing a compound having an epoxy group but not having a long-chain alkyl group having 9 to 19 carbon atoms, there is no improvement compared to Comparative Example 2 having equivalent optical characteristics. I can't watch it.
  • Example 14 to 15 containing only an organic pigment as a coloring material the light transmittance in the near infrared region is as high as 90% or more, which indicates that the organic pigment is a coloring material that is extremely poor in near infrared light shielding properties. Yes.
  • Example 5 containing titanium nitride in addition to the organic pigments of blue, yellow, and red compared to Example 15, a high light shielding property in the near infrared and visible light regions can be obtained with a lower pigment concentration. It can be seen that high flexibility is also obtained.
  • Example 9 containing an organic black pigment having a high coloring power in the visible light region, it is necessary to obtain the same optical characteristics as in Example 5 containing a mixture of blue, yellow and red organic pigments. As a result, the flexibility is improved.
  • Example 28 has improved flexibility and light emission reliability compared to Comparative Example 19 and Example 29 compared to Comparative Example 20. These tendencies are in common with Example 5 being superior to Comparative Example 1 and Example 27 being superior to Comparative Example 18. That is, even if the alkali-soluble resin contained in the photosensitive composition of the present invention is either an alkali-soluble polyimide resin or an alkali-soluble polybenzoxazole precursor, the effects of the present invention are obtained. In addition, the effect of the present invention is obtained regardless of whether the photosensitive composition has a negative photosensitive property or a positive photosensitive property.
  • the photosensitive composition of the present invention can be used as a material for forming a planarization layer of a TFT in addition to a pixel dividing layer of an organic EL display device, and particularly, a smartphone that can be bent or folded. Useful in electronic equipment applications.
  • TFT 2 Wiring 3: TFT insulating film 4: Planarization layer 5: Second electrode (ITO electrode) 6: base material 7: contact hole 8: pixel division layer 9: light emitting pixel 10: first electrode 11: opening 12: patterned cured film 13: cured film 14: flexible base material 15: alkali-free glass substrate 16: metal Reflective layer 17: second electrode 18: auxiliary electrode 19: patterned cured film 20: organic EL layer 21: first electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Materials For Photolithography (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

下記(a-1)~(a-3)の群から選ばれる化合物を少なくとも1種含有し、かつ(b)感光剤を含有する感光性組成物。 (a-1)炭素数9~19の長鎖アルキル基を有するエポキシ化合物 (a-2)下記一般式(1)で表される構造を有する樹脂 (a-3)下記一般式(2)で表される構造を有する樹脂 屈曲性が高く、有機EL表示装置の発光信頼性に優れた画素分割層の形成を可能とする感光性組成物を提供する。

Description

感光性組成物、硬化膜および有機EL表示装置
 本発明は、感光性組成物、硬化膜および有機EL表示装置に関する。
 有機EL表示装置は、陰極から注入された電子と、陽極から注入された正孔との再結合によるエネルギーを用いて発光する自発光型の表示装置である。有機EL表示装置の発光画素に用いられる有機発光材料はガス成分や水分に弱く、これらに曝されることで有機EL表示装置の発光信頼性が低下することが知られている。発光信頼性を向上するためには、有機発光材料自身の耐久性を高めるだけでなく、電極上に形成された画素分割層や、駆動回路を覆う平坦化層といった発光素子を構成する周辺材料の特性向上が必要不可欠である。また、有機EL表示装置は屋外における太陽光などの外光が入射した場合、外光反射により視認性が低下するため、外光反射を防止する技術が必要とされる。外光反射を防止する技術としては、例えば、発光素子の光取り出し側に偏光板を具備する技術が一般的であるが、偏光板は発光素子から出力された光量の一部を遮蔽してしまうため、表示輝度が低下する問題があった。この問題を解決するため、有機EL表示装置の表示部に偏光板を具備させることなく外光反射を低減して表示輝度を高めることを目的とし、画素分割層中に顔料などの着色材を分散し含有させて、遮光性を付与する技術が開示されている。
 その具体例として、黒色の画素分割層を形成するための感光性組成物が挙げられる(例えば、特許文献1および2)。
国際公開第2017/057281号公報 国際公開第2017/169763号公報
 近年、表示装置のデザインの多様化に伴い、パネル表示部ごと曲げることができ、使用者が折り畳むことができるフレキシブル有機EL表示装置が開発されている。表示輝度の向上とは別に、厚く屈曲性に乏しい偏光板を具備することなく外光反射を抑制できることから、フレキシブル有機EL表示装置の屈曲性を向上することができることができる点から画素分割層を黒色化する技術がより注目されてきている。ところが、特許文献1および2に記載の感光性組成物を用いて黒色の画素分割層を形成すると、画素分割層の屈曲性と発光信頼性が不十分であるという課題が生じた。これら課題は表示部における単位面積あたりの画素分割層の体積に依存性が大きく、例えば、良好なパターン加工性を得ながら、さらに高い外光反射抑制機能を得るため、厚さ1μmであった画素分割層を、厚さ2μmに変更して形成すると、屈曲性と発光信頼性がさらに悪化してしまうという課題があった。以上の背景から、屈曲性と発光信頼性に優れた画素分割層の形成を可能とする感光性組成物が切望されていた。
 本発明の感光性組成物は、上記課題を解決するため、次の構成を有する。すなわち、
 下記(a-1)~(a-3)の群から選ばれる化合物を少なくとも1種含有し、かつ(b)感光剤を含有する感光性組成物、である。
 (a-1)炭素数9~19の長鎖アルキル基を有するエポキシ化合物
 (a-2)下記一般式(1)で表される構造を有する樹脂
 (a-3)下記一般式(2)で表される構造を有する樹脂
Figure JPOXMLDOC01-appb-C000004
(上記一般式(1)中、Rは炭素数9~19の長鎖アルキル基を表し、RはCOOCHまたはオキシメチレン基を表し、*は結合位置を表す。)
Figure JPOXMLDOC01-appb-C000005
(上記一般式(2)中、Rは炭素数9~19の長鎖アルキル基を表し、RはCOOCHまたはオキシメチレン基を表し、*は結合位置を表す。)
 本発明の硬化膜は、次の構成を有する。すなわち、
 上記感光性組成物の硬化物からなる硬化膜、である。
 本発明の有機EL表示装置は、次の構成を有する。すなわち、
 上記感光性組成物の硬化膜を具備する有機EL表示装置、である。
 本発明の感光性組成物は、さらに、(c)近赤外線遮光性を有する無機顔料を含有することが好ましい。
 本発明の感光性組成物は、前記(c)近赤外線遮光性を有する無機顔料が、チタン原子を有する無機黒色顔料、ジルコニウム原子を有する無機黒色顔料およびアモルファスカーボンブラックの群から少なくとも1種選ばれる無機顔料を含有することが好ましい。
 本発明の感光性組成物は、前記(a-1)~(a-3)の群から選ばれる化合物が有する長鎖アルキル基が、第三級炭素および/または第四級炭素を合計3つ以上有する分岐アルキル基であることが好ましい。
 本発明の感光性組成物は、前記(a-1)~(a-3)の群から選ばれる化合物が有する長鎖アルキル基が、下記構造式(50)で表される分岐アルキル基であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
(上記一般式(50)中、*は結合位置を表す。)
 本発明の感光性組成物は、前記(a-2)、前記(a-3)のうち少なくともいずれかの化合物を含有し、上記一般式(1)で表される構造を有する樹脂がポリイミド樹脂であり、上記一般式(2)で表される構造を有する樹脂がカルド樹脂であることが好ましい。
 本発明の感光性組成物は、さらに、(d)有機黒色顔料を含有することが好ましい。
 本発明の感光性組成物は、前記(b)感光剤が、ラジカル重合性基を2つ以上有する化合物および光重合開始剤を含有し、ネガ型感光性を有することが好ましい。
 本発明の感光性組成物は、前記(b)感光剤が、光酸発生剤を含有し、ポジ型感光性を有することが好ましい。
 本発明の感光性組成物は、さらに、(e)バナジルフタロシアニン系近赤外線吸収染料を含有することが好ましい。
 本発明の感光性組成物は、膜厚2.0μmの硬化膜にしたときの、波長780~1,000nmにおける光透過率の最大値が5.0%以下であり、かつ周波数1kHzにおける誘電率が5.0未満であることが好ましい。
 本発明の感光性組成物によれば、屈曲性に優れた直線性の高いパターン状の硬化膜を得ることができ、該硬化膜を有機EL表示装置の画素分割層に用いれば、発光信頼性を向上することができる。
本発明の実施形態を示す、有機EL表示装置のTFT基板の断面図である。 実施例における、硬化膜のパターンエッジの波打ちを示す概略図である。 実施例における、硬化膜の屈曲性を評価する際の試験方法を示す概略図である。 実施例における、画素分割層を備えた有機EL表示装置の作製方法を示す概略図である。
 以下、本発明について詳細に説明する。
 本明細書中において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 可視光線とは、波長380nm以上780nm未満の領域の光を意味し、近赤外線とは、波長780nm以上1,000nm以下の領域の光を意味する。
 遮光性とは、硬化膜に対して垂直方向に入射した光の強度と比べて、透過した光の強度を低下させる機能を意味する。
 着色材の呼称に用いた「C.I.」とは、Colour Index Generic Nameの略であり、The Society of Dyers and Colourists発行のカラーインデックスに基づき、カラーインデックスに登録済の着色材に関して、Colour Index Generic Nameが、顔料または染料の化学構造や結晶形を表す。本明細書中において、アルカリ現像液とは、特に断りがない限り、有機系アルカリ水溶液を指す。
 本発明における感光性組成物とは、後述するネガ型感光性またはポジ型感光性のうち、いずれか一方の感光性を有する、アルカリ現像型の組成物を意味する。例えば、UV硬化型塗料やUV硬化型接着剤などのように、光を照射することにより硬化する特性を有していたとしても、上述のネガ型感光性またはポジ型感光性のうち、いずれの感光性も有さず、かつアルカリ現像型ではない組成物は、本発明の感光性組成物には該当しない。
 樹脂の重量平均分子量(Mw)とは、テトラヒドロフランをキャリヤーとするゲルパーミエーションクロマトグラフィーで分析し、標準ポリスチレンによる検量線を用いて換算した値を意味する。
 カーボンブラックおよびアモルファスカーボンブラックについては、対象技術分野ごとの慣習により、構成元素が炭素である点から、有機黒色顔料に分類する場合と、電気特性および光学特性の観点から無機黒色顔料に分類する場合とがあるが、本明細書中においては後者に準じ、カーボンブラックおよびアモルファスカーボンブラックを無機顔料に分類する。
 本発明者らは上述の課題について原理検証を行い、顔料などの着色材成分の含有量を多くするほど屈曲性が低下する傾向があり、概して、画素分割層に付与する遮光性とトレードオフの関係となることを明らかとした。ここでいう屈曲性とは、画素分割層を一定の曲率半径で湾曲させた際に生ずる亀裂(クラック)や破断の起こりづらさをいい、屈曲性が低いほど非点灯などの発光異常の原因となるため、表示装置としての価値が下がってしまう。また、屋外で太陽光などの外光が表示部に照射され続けることは、発光素子の劣化が速まり、発光信頼性が低下しやすいことが判った。すなわち、偏光板を具備しない有機EL表示装置では、偏光板を具備する有機EL表示装置と比べて、より高い発光信頼性が必要となることを明らかとした。ここでいう発光信頼性の低下とは、有機EL表示装置を連続で点灯し続けた際、発光素子における発光面積が点灯初期を基準として点灯時間の経過とともに縮小し、結果として輝度が低下する現象をいい、発光信頼性が低いほど表示装置としての価値が下がってしまう。
 以上を鑑みて本発明者らが鋭意検討を行なった結果、特定範囲の炭素数の長鎖アルキル基とエポキシ基とを併せ持つ化合物、または該化合物が有するエポキシ基を開環付加させた特定構造を有する樹脂に、本課題の解決にあたり格別顕著な効果があることを発見した。すなわち、上記(a-1)~(a-3)の群から選ばれる化合物を少なくとも1種含有し、かつ(b)感光剤を含有する感光性組成物により、屈曲性と発光信頼性に優れた画素分割層を、高いパターン直線性を維持しつつ形成することが可能となることを見出し、本発明を完成させた。
本発明の感光性組成物は、下記(a-1)~(a-3)の群から選ばれる化合物を少なくとも1種含有する。
 (a-1)炭素数9~19の長鎖アルキル基を有するエポキシ化合物
 (a-2)下記一般式(1)で表される構造を有する樹脂
 (a-3)下記一般式(2)で表される構造を有する樹脂。
Figure JPOXMLDOC01-appb-C000007
(上記一般式(1)中、Rは炭素数9~19の長鎖アルキル基を表し、RはCOOCHまたはオキシメチレン基を表し、*は結合位置を表す。)
Figure JPOXMLDOC01-appb-C000008
(上記一般式(2)中、Rは炭素数9~19の長鎖アルキル基を表し、RはCOOCHまたはオキシメチレン基を表し、*は結合位置を表す。)
 (a-1)の炭素数9~19の長鎖アルキル基を有するエポキシ化合物、(a-2)の上記一般式(1)で表される構造を有する樹脂、(a-3)の上記一般式(2)で表される構造を有する樹脂は、それぞれ単独であるいは複数種を混合して用いることができる。また、(a-2)の上記一般式(1)で表される構造を有する樹脂または(a-3)の上記一般式(2)で表される構造を有する樹脂が、さらに分子内にエポキシ基を有する場合であっても、(a-1)の炭素数9~19の長鎖アルキル基を有するエポキシ化合物には属さないものと定義する。
 本発明の感光性組成物が含有する上記(a-1)~(a-3)の群から選ばれる化合物は、最終的に得られる画素分割層に、高い屈曲性と高い耐光性とを同時に与えることができる。耐光性が改善されるため、結果として、該画素分割層を具備した有機EL表示装置に発光信頼性の向上をもたらす。ここでいう耐光性とは、一般的によく知られた酸素存在下における硬化膜の耐変色性ではなく、無酸素下の封止空間内における発光素子の耐劣化性を意味する。
 さらに、第三の効果として、上記(a-1)~(a-3)の群から選ばれる化合物は、最終的に得られる画素分割層の誘電率を下げる効果を奏する。この効果は、例えば、遮光性を有さない中空シリカなどを含有させて膜の中に空隙を設けることによる従来の低誘電率化の方法と比べて、硬化膜の屈曲性を損なうことが無い点で大きな優位性がある。また、概して画素分割層を構成する全ての有機成分と比べて誘電率が高い、後述の(c)近赤外線遮光性を有する無機顔料を含有させた場合であっても、画素分割層の誘電率の過度な上昇を抑制し、輝度ムラなどの駆動上の弊害を抑制することができる。すなわち、誘電率の上昇を低く抑えていながら、有機顔料や染料と比べて屈折率が高く、体積あたりの遮光性が高い無機顔料を含有させることができるようになることから、所望の遮光性を発現させるために必要となる画素分割層中に占める粒子成分の体積を少なく設定することができ、結果として、高い遮光性を発現していながら、高い屈曲性を得ることができる。
 (a-1)の炭素数9~19の長鎖アルキル基を有するエポキシ化合物が有する炭素数9~19の長鎖アルキル基としては、直鎖アルキル基、分岐アルキル基が挙げられ、例えば、n-(またはイソ)ノニル基、n-(またはイソ)デシル基、n-(またはイソ)ドデシル基、n-(またはイソ)トリデシル基、n-(またはイソ)テトラデシル基、n-(またはイソ)ペンタデシル基、n-(またはイソ)パルミチル基、n-(またはイソ)ヘキサデシル基、n-(またはイソ)ヘプタデシル基、n-(またはイソ)オクタデシル基、n-(またはイソ)ステアリル基、n-(またはイソ)ノナデシル基が挙げられる。ここでいう、n-とは直鎖状を示し、イソとは分岐状を示す。ここでいう長鎖とは、1つのアルキル基を構成する炭素数が9以上であることをいい、炭素数が8以下であるアルキル基はこれに該当しない。また、(a-1)の炭素数9~19の長鎖アルキル基を有するエポキシ化合物が有する炭素数9~19の長鎖アルキル基は、環状アルキル基を含まない。
 (a-1)の炭素数9~19の長鎖アルキル基を有するエポキシ化合物が有するエポキシ基とは、脂環式エポキシ基およびグリシジル基をも包括する。また、(a-1)成分が分子内に有するエポキシ基の数は特に限定されない。
 (a-1)の炭素数9~19の長鎖アルキル基を有するエポキシ化合物は、一価の炭素数9~19の長鎖アルキル基とカルボキシル基とを分子内に有する化合物、または一価の炭素数9~19の長鎖アルキル基と水酸基とを有する化合物を由来するエポキシ変性物として合成することができる。例えば、グリシジルエステル類、グリシジルエーテル類、グリシジルエーテル/エステル類が挙げられ、これら化合物は、非感光性の熱硬化型エポキシ樹脂塗料を低粘度化し、塗布性を向上するために用いられる反応性希釈剤として一般に入手することができ、市販品を用いても良い。本発明においては、屈曲性と発光信頼性の観点から、(a-1)の炭素数9~19の長鎖アルキル基を有するエポキシ化合物の1分子あたりの分子量は、200~3,000が好ましく、300~1,000がより好ましい。
 (a-1)の炭素数9~19の長鎖アルキル基を有するエポキシ化合物の具体例としては、炭素数9の分岐アルキル基を有する構造式(3)または構造式(4)で表される化合物、炭素数10の分岐アルキル基を有する構造式(5)または構造式(6)で表される化合物、炭素数12の直鎖アルキル基を有する構造式(7)または構造式(8)で表される化合物、炭素数15の分岐アルキル基を有する構造式(9)または構造式(10)で表される化合物、炭素数17の分岐アルキル基を有する構造式(11)、(12)、(13)および(14)のいずれかで表される化合物、炭素数17の直鎖アルキル基を有する構造式(15)または構造式(16)で表される化合物、炭素数19の分岐アルキル基を有する構造式(17)または構造式(18)で表される化合物、炭素数9の分岐アルキル基を有する構造式(19)で表される化合物、炭素数12の直鎖アルキル基を有する構造式(20)で表される化合物、炭素数14の直鎖アルキル基を有する構造式(21)で表される化合物、炭素数16の分岐アルキル基を有する構造式(22)で表される化合物、炭素数18の分岐アルキル基を有する構造式(23)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 本発明の効果を得るためには、本発明において、上記(a-1)~(a-3)の群から選ばれる化合物が有する長鎖アルキル基の炭素数が9~19の範囲にある必要がある。上記(a-1)~(a-3)の群から選ばれる化合物が有する長鎖アルキル基の炭素数が、9に満たない場合には、屈曲性と発光信頼性を向上することができず、炭素数が19を超える場合には、パターン直線性の高い画素分割層を形成することができなくなる。パターン直線性が高い、すなわちパターンエッジがいびつでないほど、開口部の面積が均一で解像度の高い画素分割層を安定的に得ることができ、画素分割層の表面に形成される電極層の欠陥や断線を防ぎ、発光画素の非点灯箇所の発生を抑制することができる。
 炭素数9~19の長鎖アルキル基の炭素数は、屈曲性と発光信頼性の観点から11以上が好ましく、13以上がより好ましい。また、後述する現像工程におけるアルカリ現像液への溶解性を好適なものとし、パターン直線性を向上する上で、18以下が好ましく、17以下がより好ましい。
 炭素数9~19の長鎖アルキル基は、屈曲性と発光信頼性に優れる点から分岐構造を有することが好ましく、中でも、第三級炭素および/または第四級炭素を合計3つ以上有する分岐アルキル基がより好ましく、合計4つ以上有する分岐アルキル基がさらに好ましい。ここでいう、第三級炭素および/または第四級炭素の数は、炭素数9~19のアルキル基が有する分岐点の数を表す。第三級炭素および/または第四級炭素の合計数が4つ以上である長鎖アルキル基の具体例としては、下記一般式(50)で表される分岐アルキル基を好ましく挙げることができる。このような長鎖アルキル基を有する化合物の具体例としては、構造式(11)、(12)および(23)のいずれかで表される化合物が挙げられる。中でも、後述するキュア工程において熱架橋密度を高め、より高い屈曲性と発光信頼性を得る上で、エポキシ基を分子内に2つ以上有する、構造式(11)で表される化合物を本発明の感光性組成物に特に好ましく用いることができる。また、長鎖アルキル基の炭素数が9~19の範囲にあるエポキシ化合物の群において、炭素数および/または分岐数の異なる化合物を複数種混合して用いることができる。
 本発明の感光性組成物中における(a-1)の炭素数9~19の長鎖アルキル基を有するエポキシ化合物の含有量は、屈曲性と発光信頼性を十分に高める上で、感光性組成物中の全固形分中10.0重量%以上が好ましく、15.0重量%以上がより好ましい。アルカリ現像液への溶解性を好適なものとし良好なパターン加工性を得る上で、25.0重量%以下が好ましく、20.0重量%以下がより好ましい。
 また、本発明の感光性組成物は、さらに、炭素数9~19の長鎖アルキル基を有さないエポキシ化合物を含有させることで、アルカリ現像液に対する溶解速度や、キュア工程における架橋密度などを調整することができる。 
 (a-2)の上記一般式(1)で表される構造を有する樹脂としては、例えば、水酸基を有する樹脂に、炭素数9~19の長鎖アルキル基と1つのエポキシ基とを有する化合物を開環付加反応させることで得られる樹脂が挙げられる。水酸基を有する樹脂としては、水酸基を有するアルカリ可溶性樹脂を好ましく用いることができる。
 アルカリ可溶性樹脂が有する水酸基の少なくとも一部が残存するように付加させ、加えて、エポキシ基が開環することで生ずる水酸基の効果により、良好なパターン加工性を得ながら、屈曲性と発光信頼性とを向上させることができる。また、エポキシ基との反応性が高い点で、アルカリ可溶性樹脂が有する水酸基は、フェノール性水酸基であることが好ましい。
 一方、(a-3)の上記一般式(2)で表される構造を有する樹脂としては、例えば、カルボキシル基を有する樹脂に、炭素数9~19の長鎖アルキル基と1つのエポキシ基とを有するエポキシ化合物を開環付加反応させることで得られる樹脂が挙げられる。カルボキシル基を有する樹脂としては、カルボキシル基を有するアルカリ可溶性樹脂を好ましく用いることができる。
 アルカリ可溶性樹脂が有するカルボキシル基の少なくとも一部が残存するように付加させ、加えて、エポキシ基が開環することで生ずる水酸基により、良好なパターン加工性を得ながら、屈曲性と発光信頼性とを向上させることができる。
 炭素数9~19の長鎖アルキル基が導入されたアルカリ可溶性樹脂を得るための開環付加反応に用いるための、炭素数9~19の長鎖アルキル基を有するエポキシ化合物としては、過度な重量平均分子量(Mw)の上昇またはゲル化成分の発生を回避するため、単官能エポキシ化合物のみを用いることが好ましい。具体例としては、構造式(3)~(23)で表される化合物のうち、エポキシ基を分子内に1つ有する化合物を用いることができ、中でも、長鎖アルキル基の炭素数と分岐構造による、屈曲性と発光信頼性の観点から、上記構造式(12)で表される化合物または上記構造式(23)で表される化合物が好ましく、エポキシ基の反応性が高い点から、構造式(12)で表される化合物がさらに好ましい。
 一方、(a-2)の上記一般式(1)で表される構造を有する樹脂、(a-3)の上記一般式(2)で表される構造を有する樹脂を得るために用いるアルカリ可溶性樹脂としては、アルカリ可溶性カルド樹脂、アルカリ可溶性アクリル樹脂、アルカリ可溶性ノボラック樹脂、アルカリ可溶性ポリイミド樹脂、アルカリ可溶性ポリイミド前駆体、アルカリ可溶性ポリベンゾオキサゾール樹脂、アルカリ可溶性ポリベンゾオキサゾール前駆体、アルカリ可溶性ポリアミド樹脂、アルカリ可溶性シロキサン樹脂が挙げられるが、耐熱性と顔料分散性に優れる点から、アルカリ可溶性ポリイミド樹脂、アルカリ可溶性ポリイミド前駆体、アルカリ可溶性カルド樹脂、アルカリ可溶性アクリル樹脂が好ましく、耐熱性に優れる点から、アルカリ可溶性ポリイミド樹脂、アルカリ可溶性ポリイミド前駆体、アルカリ可溶性ポリベンゾオキサゾール樹脂、アルカリ可溶性ポリベンゾオキサゾール前駆体、アルカリ可溶性カルド樹脂がより好ましく、中でも、耐熱性と顔料分散性に優れる点から、後述するアセテート系有機溶剤単独に易溶のアルカリ可溶性ポリイミド樹脂がさらに好ましい。
 有機EL表示装置の画素分割層に求められる耐熱性は、好ましくは230℃以上、より好ましくは250℃以上である。高温条件下における画素分割層からのガス発生量(アウトガス)を抑制でき、発光素子の劣化を抑制することができることから、有機EL表示装置の発光信頼性を向上させることができる。ここでいう、アルカリ可溶性樹脂とは、その構造中にアルカリ可溶性基として水酸基および/またはカルボキシル基を有し、かつ酸価が30mgKOH/g以上かつ重量平均分子量(Mw)が2,000以上150,000以下の樹脂のことをいう。 アルカリ可溶性ポリイミド樹脂としては、一般式(24)で表される構造単位を有するアルカリ可溶性ポリイミド樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000019
(上記一般式(24)中、Rは4~10価の有機基を表す。Rは2~8価の有機基を表す。RおよびRは、それぞれ独立して、フェノール性水酸基、スルホン酸基またはチオール基を表し、RまたはRの少なくともいずれかにフェノール性水酸基を有する。pおよびqは、それぞれ独立して、0~6の範囲を表す。)
 一般式(24)中、R-(Rは、酸二無水物の残基を表す。Rは、芳香族環または環状脂肪族基を有する、炭素原子数5~40の有機基が好ましい。
 酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物等の芳香族環を有するテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物などの脂肪族基を有するテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタンテトラカルボン酸二無水物などの環状脂肪族基を有するテトラカルボン酸二無水物が挙げられる。
 一般式(24)中、R-(Rはジアミンの残基を表す。Rは、芳香族環または環状脂肪族基を有する、炭素原子数5~40の有機基が好ましい。
 ジアミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、9,9-ビス(4-アミノフェニル)フルオレン、ジアミノジフェニルエーテル、ジアミノジフェニルスルホン、ジアミノジフェニルメタン、ジアミノジフェニルプロパン、ジアミノジフェニルヘキサフルオロプロパン、ジアミノジフェニルチオエーテル、ベンジジン、2,2’-ビストリフルオロベンジジン、2,2’-ビストリフルオロベンジジン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンなどの芳香族環を有するジアミン、2,5-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、2,6-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタンなどの環状脂肪族基を有するジアミンが挙げられる。
 一般式(24)で表される構造単位を有するアルカリ可溶性ポリイミド樹脂は、主鎖末端に、カルボキシル基、フェノール性水酸基、スルホン酸基および/またはチオール基を有することが好ましく、カルボキシル基および/またはフェノール性水酸基を有することがより好ましい。アルカリ可溶性ポリイミド樹脂の末端を、カルボキシル基、フェノール性水酸基、スルホン酸基および/またはチオール基を有する末端封止剤を用いて封止することにより、主鎖末端にこれらの基を導入することができる。末端封止剤としては、例えば、モノアミン、酸無水物、モノカルボン酸、モノ酸クロリド化合物、またはモノ活性エステル化合物が挙げられる。
 アルカリ可溶性ポリイミド樹脂の酸価は、アルカリ現像液への溶解性の観点から、30mgKOH/g以上が好ましく、50mgKOH/g以上がより好ましい。一方、画素分割層のパターンエッジ剥離を抑制する観点から、酸価は300mgKOH/g以下が好ましく、250mgKOH/g以下がより好ましい。
 アルカリ可溶性ポリイミド樹脂の重量平均分子量は、画素分割層の硬度の観点から、5,000以上が好ましく、10,000以上がより好ましい。一方、アルカリ現像液への溶解性の観点から、100,000以下が好ましく、70,000以下がより好ましい。
 (a-2)の一般式(1)で表される構造を有する樹脂の具体例としては、ジアミンである2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンと酸二無水物を用いて合成したアルカリ可溶性ポリイミド樹脂が有するフェノール性水酸基に、上記構造式(12)で表されるエポキシ化合物を開環付加反応させることで得られる、構造式(25)で表される構造単位を分子内に有するポリイミド樹脂を好ましく挙げることができる。
Figure JPOXMLDOC01-appb-C000020
 アルカリ可溶性カルド樹脂とは、カルド骨格を有するアルカリ可溶性樹脂のことをいい、カルド骨格とは、環状構造を構成する環炭素原子である4級炭素原子に、2つの芳香族基が単結合で繋がった骨格をいう。カルド骨格としては、例えば、フルオレン骨格、1-フェニル-2,3-ジヒドロ-1H-インデン骨格、またはN-フェニルフェノールフタレイン骨格が有する4級炭素原子に、2つのフェニル基が、それぞれ炭素-炭素の単結合で繋がった骨格が挙げられる。このようなアルカリ可溶性カルド樹脂は、フルオレン骨格、1-フェニル-2,3-ジヒドロ-1H-インデン骨格および/またはN-フェニルフェノールフタレイン骨格と、水酸基またはエポキシ基を有する2つの芳香族基とを分子内に有する化合物を由来して合成することができる。本発明の感光性組成物がネガ型感光性組成物である場合、さらにラジカル重合性基を有するアルカリ可溶性カルド樹脂を用いることが好ましい。
 アルカリ可溶性カルド樹脂の好ましい具体例としては、フルオレン骨格を有し、下記一般式(25)で表される構造単位とラジカル重合性基とを有するカルド樹脂、1-フェニル-2,3-ジヒドロ-1H-インデン骨格を有し、下記一般式(26)で表される構造単位とラジカル重合性基とを有するカルド樹脂、N-フェニルフェノールフタレイン骨格を有し、下記一般式(27)で表される構造単位とラジカル重合性基とを有するカルド樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000021
(上記一般式(26)、(27)および(28)中、Q~Qは、ベンゼン環に直接結合する原子または置換基を示し、それぞれ同一であっても異なっていてもよく、水素原子、炭素数1~6のアルキル基または炭素数1~6のアルコキシ基であり、a~hは、炭素数1~6のアルキル基および/または炭素数1~6のアルコキシ基の置換基数を示し、1または2である。)
 アルカリ可溶性カルド樹脂の酸価は、アルカリ現像液への溶解性の観点から、30mgKOH/g以上が好ましく、50mgKOH/g以上がより好ましい。一方、画素分割層のパターンエッジ剥離を抑制する観点から、酸価は300mgKOH/g以下が好ましく、250mgKOH/g以下がより好ましい。
 アルカリ可溶性カルド樹脂の重量平均分子量(Mw)は、パターンエッジの剥がれを抑制する観点から、2,000以上が好ましく、3,000以上がより好ましい。一方、アルカリ可溶性カルド樹脂の重合時のゲル化抑制と、現像工程における現像残渣を抑制する観点から、40,000以下が好ましく、20,000以下がより好ましい。
 アルカリ可溶性カルド樹脂としては、市販品を用いることもでき、例えば、“ADEKA ARKLS”(登録商標)WR-301((株)ADEKA製)、“オグゾール”(登録商標)CR-TR1、CR-TR2、CR-TR3、CR-TR4、CR-TR5、CR-TR6(以上、いずれも大阪ガスケミカル(株)製)が挙げられる。
 (a-3)の一般式(2)で表される構造を有する樹脂の具体例としては、アルカリ可溶性カルド樹脂が有する芳香族カルボキシル基に、上記構造式(12)で表されるエポキシ化合物を開環付加反応させることで得られる、構造式(29)で表される構造単位を分子内に有するカルド樹脂を好ましく挙げることができる。
Figure JPOXMLDOC01-appb-C000022
 (a-2)の上記一般式(1)で表される構造を有する樹脂、(a-3)の上記一般式(2)で表される構造を有する樹脂を得る方法としては、例えば、乾燥窒素気流下、有機溶剤中、炭素数9~19の長鎖アルキル基と1つのエポキシ基とを有する化合物と、アルカリ可溶性樹脂とを混合し撹拌した後、80~200℃の加熱条件下で30~300分間反応させる方法が挙げられる。反応に用いる溶媒としては、例えば、エーテル類、アセテート類、エステル類、ケトン類、芳香族炭化水素類、アルコール類が挙げられ、これらを単独であるいは複数種含有させて用いることができる。また、低い加熱温度で開環付加反応を十分に進行させる上では付加触媒を用いてもよく、反応に用いる付加触媒としては、例えば、ジメチルアニリン、2,4,6-トリス(ジメチルアミノメチル)フェノール、ジメチルベンジルアミンなどのアミノ系触媒、2-エチルヘキサン酸スズ(II)、ラウリン酸ジブチルスズなどのスズ系触媒、2-エチルヘキサン酸チタン(IV)などのチタン系触媒、トリフェニルホスフィンなどのリン系触媒、ナフテン酸リチウムなどのリチウム系触媒、ナフテン酸ジルコニウムなどのジルコニウム系触媒、ナフテン酸クロム、アセチルアセトネートクロム、塩化クロムなどのクロム系触媒が挙げられ、最終的に得られる画素分割層中の残存する触媒による誘電率の上昇を抑制する上で、リン系触媒、アミノ系触媒の使用が好ましい。反応の終点は、反応開始を基準とする系内のエポキシ基の消失率から適宜設定することができる。また、感光性組成物中または画素分割層中の、(a-1)成分が有する長鎖アルキル基とエポキシ基、(a-2)成分が有する上記一般式(1)で表される構造および/または(a-3)成分が有する上記一般式(2)で表される構造の有無は、NMRやIRなど公知の手法で分析して同定することができる。
 本発明の感光性組成物は、後述するアルカリ現像液に対する溶解速度を適度に調整し、また、画素分割層を所望のパターン形状とするために、上記(a-1)~(a-3)の化合物に属さないアルカリ可溶性樹脂をさらに含有させることができる。上記(a-1)~(a-3)の化合物に属さないアルカリ可溶性樹脂としては、(a-2)の上記一般式(1)で表される構造を有する樹脂、(a-3)の上記一般式(2)で表される構造を有する樹脂を得るための原料として例示した上述の各種アルカリ可溶性樹脂の群から選択して用いることができる。
 本発明の感光性組成物は、ネガ型感光性またはポジ型感光性のいずれかを有する。露光マスクを介したパターン露光により露光部の膜を光硬化させ、アルカリ溶解性を低下させて、アルカリ現像液により未露光部の膜を除去してパターンを形成する、ネガ型感光性を有していても良い。または、露光マスクを介したパターン露光により露光部の膜のアルカリ溶解性を、未露光部の膜のアルカリ溶解性と比べて相対的に高くすることで、アルカリ現像液により露光部の膜を除去してパターン形成する、ポジ型感光性を有していても良い。画素分割層に付与する遮光性をより高く設定する場合、すなわち、本発明の感光性組成物に含有させる着色材量が多い場合、同パターンを得るための必要最低露光量を少なくすることができ、すなわち露光に対する感度を高めて生産性を向上できる点から、ネガ感光性を有することが好ましい。
 本発明の感光性組成物は、(b)感光剤を含有する。本発明の感光性組成物が、ネガ型感光性を有する場合には、(b)感光剤が、2つ以上のラジカル重合性基を有する化合物と、光重合開始剤とを含有する。2つ以上のラジカル重合性基を有する化合物を、後述する光重合開始剤と併用することで、露光によりラジカル重合反応を起こして光硬化させ、未露光部をアルカリ現像液により除去することでパターニングすることができる。
 ラジカル重合性基としては、露光時の感度向上および硬化膜の硬度向上の観点から、(メタ)アクリル基が好ましい。ここでいう(メタ)アクリル基とは、メタクリル基またはアクリル基を指す。2つ以上の(メタ)アクリル基を有する化合物としては、例えば、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパンジ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、エトキシ化グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールノナ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート、ジペンタエリスリトールのε-カプロラクトン付加(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)フェニル]プロパン、1,3,5-トリス((メタ)アクリロキシエチル)イソシアヌル酸、1,3-ビス((メタ)アクリロキシエチル)イソシアヌル酸、9,9-ビス[4-(2-(メタ)アクリロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(3-(メタ)アクリロキシプロポキシ)フェニル]フルオレン、9,9-ビス(4-(メタ)アクリロキシフェニル)フルオレンまたはそれらの酸変性体、エチレンオキシド変性体もしくはプロピレンオキシド変性体などが挙げられ、これらを単独であるいは複数種含有して用いても良い。光硬化を促進しパターン加工性を向上させるため、3つ以上のラジカル重合性基を有する化合物を少なくとも含有させることが好ましく、中でも、露光工程における反応率が高く、かつ屈曲性に優れる点で、カプロラクトン由来の柔軟鎖とアクリル基とを分子内に有する化合物がより好ましい。このような化合物の具体例としては、下記構造式(41)で表される、ジペンタエリスリトールのε-カプロラクトン付加アクリレートが挙げられる。
 2つ以上のラジカル重合性基を有する化合物の含有量は、露光に対する感度向上の観点から、感光性組成物の全固形分中10重量%以上が好ましく、15重量%以上がより好ましい。また、パターンエッジのテーパー形状を緩やかなものとし、画素分割層の表面に形成される電極の断線を回避する観点から、30重量%以下が好ましく、25重量%以下がより好ましい。
 光重合開始剤とは、露光によって結合開裂および/または反応してラジカルを発生する化合物をいう。光重合開始剤を含有させることにより、露光により、2つ以上のラジカル重合性基を有する化合物を光硬化させ、未露光部と比べて露光部のアルカリ現像液に対する溶解性を相対的に低下させることができ、未露光部をアルカリ現像液により除去することでパターニングすることができる。
 光重合開始剤としては、例えば、“アデカオプトマー”(登録商標)N-1818、N-1919、“アデカクルーズ”(登録商標)NCI-831(以上、いずれも(株)ADEKA製)などのカルバゾール系光重合開始剤、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(BASF社製“イルガキュア”(登録商標)TPO)などのアシルフォスフィンオキサイド系光重合開始剤、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)](BASF社製“イルガキュア”(登録商標)OXE01)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)(BASF社製“イルガキュア”(登録商標)OXE02)などのオキシムエステル系光重合開始剤、2-メチル-1-(4-メチルチオフェニルフェニル)-2-モルフォリノプロパン-1-オン(BASF社製“イルガキュア”(登録商標)907)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(BASF社製“イルガキュア”(登録商標)369)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(BASF社製“イルガキュア”(登録商標)379EG)などのα-アミノアルキルフェノン系光重合開始剤などが挙げられ、これらを単独であるいは複数種含有させて用いても良い。中でも、後述する露光工程において、j線(313nm)、i線(365nm)、h線(405nm)、g線(436nm)を含む混合線に対する感度が高い点で、カルバゾール系光重合開始剤、オキシムエステル系光重合開始剤が好ましい。中でも、カルバゾール構造とオキシムエステル構造を併せ持つ光重合開始剤が、露光における感度と深部硬化性の点でより好ましい。これに該当する光重合開始剤の具体例としては、上記のうち、N-1919、NCI-831、OXE02が挙げられる。
 光重合開始剤の含有量は、露光に対する感度向上の観点から、2つ以上のラジカル重合性基を有する化合物100重量部に対して、5重量部以上が好ましく、10重量部以上がより好ましい。一方、光重合開始剤の含有量は、露光に対する深部硬化性の観点から、2つ以上のラジカル重合性基を有する化合物100重量部に対して、60重量部以下が好ましく、40重量部以下がより好ましい。
 一方で、本発明の感光性組成物が、ポジ型感光性を有する場合は、(b)感光剤が、光酸発生剤を含有する。光酸発生剤を含有することで、後述する露光工程において露光により、未露光部と比べて露光部のアルカリ現像液に対する溶解性を相対的に高めることができ、露光部のみをアルカリ現像液により除去することでパターニングすることができる。
 光酸発生剤としては、キノンジアジド化合物が好ましい。キノンジアジド化合物としては、フェノール性水酸基を有する化合物を、キノンジアジドスルホニル酸クロリドでエステル化した反応物がより好ましい。
 フェノール性水酸基を有する化合物としては、Bis-Z、BisP-EZ、TekP-4HBPA、TrisP-HAP、TrisP-PA、TrisP-PHBA、BisOCHP-Z、BisP-MZ、BisP-PZ、BisP-IPZ、BisOCP-IPZ、BisP-CP、BisRS-2P、BisRS-3P、BisP-OCHP、メチレントリス-p-CR、メチレンテトラ-p-CR、BisRS-26X、Bis-PFP-PC(いずれも本州化学工業(株)製)、BIR-OC、BIP-PC、BIR-PC、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A(いずれも旭有機材工業(株)製)が挙げられる。
 キノンジアジドスルホニル酸クロリドとしては、4-ナフトキノンジアジドスルホニル酸クロリド、5-ナフトキノンジアジドスルホニル酸クロリドが挙げられる。このようなキノンジアジド化合物は、後述する露光工程において、j線(313nm)、i線(365nm)、h線(405nm)、g線(436nm)を含む混合線に対する感度が高いため好ましい。
 光酸発生剤の含有量は、パターン加工性と、最終的に得られる画素分割層の耐熱性の観点から、感光性組成物の全固形分中5~30重量%が好ましい。本発明の感光性組成物のアルカリ現像液に対するアルカリ溶解性を向上させる必要がある場合、上記フェノール性水酸基を有する化合物のフェノール性水酸基の一部をエステル化せず意図的に残存させることができる。
 本発明の感光性組成物は、熱硬化促進剤を含有することができる。ここでいう熱硬化促進剤とは、エポキシ化合物間の架橋および/またはエポキシ化合物とアルカリ可溶性樹脂との熱架橋を促進する効果を奏する化合物である。
 本発明の感光性組成物が、(a-1)の炭素数9~19の長鎖アルキル基を有するエポキシ化合物を含有する場合、熱硬化促進剤の併用により、画素分割層の機械的強度を高め、屈曲性を向上できる場合がある。また、エポキシ基やアルカリ可溶性樹脂が有する水酸基やカルボキシル基などの極性基の残存率をより低くすることができ、結果として、後述する画素分割層の誘電率を低くすることができる。硬化促進剤としては、例えば、イミダゾール系硬化促進剤、酸無水物系硬化促進剤、チオール系硬化促進剤が挙げられ、これらを単独であるいは複数種を含有させて用いることができる。
 本発明の感光性組成物は、最終的に得られる画素分割層を黒色化し、外光反射を抑制する機能を付与するため、さらに着色材を含有することが好ましい。着色材としては、顔料および染料を挙げることができるが、着色力が高く耐熱性に優れる点で顔料が好ましい。
 ここでいう顔料とは、少なくとも可視光領域に光吸収能を有し、かつ本発明の感光性組成物中で不溶の粒子のことをいい、着色力とは、着色材が膜中に占める単位体積あたりの遮光性をいう。所望の遮光性を付与するために必要となる着色材の総量を少なくすることができ、画素分割層の屈曲性を向上させることができる点で、少なくとも無機顔料を含有することがより好ましい。画素分割層に可視光領域から近赤外線領域まで全域に遮光性を付与する上では、誘電率の過度な上昇を回避するため、無機顔料と有機顔料とを併用することが好ましい。
 無機顔料としては、(c)近赤外線遮光性を有する無機顔料を含有することが好ましい。
 (c)の近赤外線遮光性を有する無機顔料を含有することにより、可視光領域だけでなく、近赤外線の反射を抑制する機能を画素分割層に付与することができる。従来は額縁部に配置されていた近接センサーや虹彩認証、顔面認証などに用いられる近赤外線センサーが表示部の内部に組み込まれる場合、太陽光などの外光に含まれる近赤外線の内部散乱を抑えることができ、該センサー類の検出感度を高めることができる。結果として、高感度の近赤外線センサーを具備していながら、額縁部が狭い、または額縁部が無い(ベゼルレス)、パネル面積に占める表示部の面積が広い有機EL表示装置を製造することができる。有機EL表示装置のパネルに搭載される偏光板は、近赤外線領域における光透過率の最大値が通常80~95%、最小値が50~70%と高く、近赤外線遮光性に乏しい。したがって、本発明の感光性組成物が(c)の近赤外線遮光性を有する無機顔料を含有することによる上述の効果は、偏光板を具備する有機EL表示装置、偏光板を具備しない有機EL表示装置のいずれの場合においても有用なものとなる。
 ここでいう(c)の近赤外線遮光性を有する無機顔料とは、チタン原子を有する無機黒色顔料、ジルコニウム原子を有する無機黒色顔料、アモルファスカーボンブラック、カーボンブラックを包括し、加えて、感光性組成物を塗布した後に熱処理(大気圧下/窒素雰囲気下/250℃1時間)して得られる膜厚2.0μmの硬化膜において、無機顔料の含有量が硬化膜中35.0重量%であるとき、近赤外線領域(波長780~1,000nm)における硬化膜の厚み方向の光透過率の最大値が70.0%以下であることを満たす無機顔料の群もまた包括する。硬化膜中の無機顔料の含有量は、小型電気炉を用いて全有機成分を揮散させた焼成灰分から算出することができる。
 本発明の感光性組成物中またはそれを用いて形成した硬化膜中に含有する(c)近赤外線遮光性を有する無機顔料は、X線回折パターン、STEM-EDXなどの公知の手法を組み合わせて分析し、同定することができる。
 (c)の近赤外線遮光性を有する無機顔料としては、中でも、電気絶縁性が高く、誘電率が低く有機EL表示装置の駆動安定性を高めることができる点で、チタン原子を有する無機黒色顔料、ジルコニウム原子を有する無機黒色顔料、アモルファスカーボンブラックが好ましい。ここでいうアモルファスカーボンブラックとは、非晶性カーボンブラック粒子のことをいう。一方で、単にカーボンブラックとは、一般的に着色材用途としてよく知られた、結晶性を有するカーボンブラック粒子のことをいい、結晶性の有無から両者を完全に区別して定義する。
 チタン原子を有する無機黒色顔料とは、TiNで表される窒化チタン、TiNxOy(0<x<2.0、0.1<y<2.0)で表される酸窒化チタン、TiCで表される炭化チタン、窒化チタンと炭化チタンの固溶体、チタンとチタン以外の金属との複合酸化物または複合窒化物のいずれか一種以上を意味する。中でも、可視光領域の遮光性が高いことに加えて、露光工程における露光光透過率が高い点で、窒化チタンおよび酸窒化チタンのいずれかが好ましく、誘電率が低い点から、窒化チタンがより好ましい。窒化チタンの製法としては気相反応が挙げられ、中でも、一次粒子径が小さく粒度分布がシャープな粒子を得やすいことから、熱プラズマ法で合成された窒化チタンが好ましい。また、チタン原子を有する無機黒色顔料は、誘電率の上昇を回避するため、不純物として無機白色顔料である、TiOで表される二酸化チタンの含有量は少ないほど好ましく、含有しないことがより好ましい。
 ジルコニウム原子を有する無機黒色顔料とは、Zrで表される窒化ジルコニウム、ZrNで表される窒化ジルコニウム、ZrOxNy(0<x<2.0,0.1<y<2.0)で表される酸窒化ジルコニウム、ジルコニウムとジルコニウム以外の金属との複合酸化物または複合窒化物のいずれか一種以上を意味する。中でも、露光工程における露光光透過率が高く、誘電率が低いことから、ZrNで表される窒化ジルコニウムが好ましい。製法としては気相反応が挙げられ、中でも、一次粒子径が小さく粒度分布がシャープな粒子を得やすいことから、熱プラズマ法で合成された窒化ジルコニウムが好ましい。また、ジルコニウム原子を有する無機黒色顔料は、誘電率の上昇を回避するため、不純物として無機白色顔料である、ZrOで表される二酸化ジルコニウムの含有量は少ないほど好ましく、含有しないことがより好ましい。
 チタン原子を有する無機黒色顔料およびジルコニウム原子を有する無機黒色顔料は、必要に応じて顔料表面を改質するため表面処理を施しても良い。表面処理の方法としては、例えば、シランカップリング剤処理によりケイ素原子を含む有機基を表面修飾基として導入する方法、シリカ、金属酸化物および/または有機樹脂などの被覆材で顔料表面の一部または全てを被覆する方法などが挙げられ、複数の表面処理を組み合わせても良い。これら表面処理を施すことにより、感光性組成物の長期貯蔵安定性を向上できる場合がある。なお、ジルコニウム原子を有する無機黒色顔料と、チタン原子を有する無機黒色顔料は、両方を含む固溶体として1つの一次粒子を構成していても良い。
 アモルファスカーボンブラックとは、ダイヤモンド構造(SP構造)とグラファイト構造(SP構造)とから成る非晶性カーボンブラックを意味する。いわゆる、ダイヤモンドライクカーボン(DLC)に分類される炭素に相当する。アモルファスカーボンブラックは、後述する結晶性を有するカーボンブラックと比べて、絶縁性が高く、表面処理を施すことなく着色材として好適に用いることができる。製法としては、炭素源を気化させ、気化させた炭素蒸気を冷却し再凝固させた後に一旦フレーク状とし、乾式粉砕処理を施して微粒化したものが好ましい。アモルファスカーボンブラックの構造は、SP構造を多く含む場合、可視光線および近赤外線の遮光性が低い反面、絶縁性を向上できる。一方、SP構造多く含む場合は、絶縁性が低い反面、可視光線および近赤外線の遮光性を向上できる。すなわち、合成条件により顔料固有のそれら特性を制御することができる。中でも、本発明の感光性組成物には、SP構造およびSP構造の合計に対して、SP構造の含有量が30~70atom%であるアモルファスカーボンブラックを好ましく用いることができる。また、SP構造およびSP構造の割合は、X線光電子分光法により解析することができる。
 以上のチタン原子を有する無機黒色顔料、ジルコニア原子を有する無機黒色顔料およびアモルファスカーボンの合計量は、近赤外線遮光性をより向上させる上で、本発明の感光性組成物の全固形分中5.0重量%以上が好ましい。また、誘電率の過度な上昇を回避する上で、感光性組成物中の全固形分中35.0重量%以下が好ましい。ここでいう全固形分とは、感光性組成物から溶剤分を除いた成分を意味する。
 カーボンブラックとしては、その製法から分類されるファーネスブラック、サーマルブラック、チャンネルブラック、アセチレンブラック、ケッチェンブラック、ランプブラックが挙げられ、中でも、分散性に優れ、顔料表面の酸性度や粒子径の微細化の制御が工業的に容易である点から、ファーネス法で製造されたファーネスブラックが好ましい。中でも、絶縁性向上の観点から、カーボンブラック特有の強固に粒子が数珠状に連結したストラクチャー長が短いほど好ましく、さらに、有機基が表面修飾されたものや、または高絶縁性の被覆材で被覆されたものがより好ましい。そのような表面改質型カーボンブラックとしては、市販品を用いてもよく、例えば、硫黄原子を含む酸性官能基が表面修飾されたカーボンブラックである“TPK-1227”、顔料表面がシリカで被覆されたカーボンブラックである“TPX-1409”(以上、いずれもCABOT社製)が挙げられる。
 カーボンブラックの合計量は、近赤外線遮光性をより向上させる上で、本発明の感光性組成物の全固形分中5.0重量%以上が好ましい。また、誘電率の過度な上昇を回避する上で、感光性組成物中の全固形分中10.0重量%以下が好ましい。
 以上の(c)近赤外線遮光性を有する無機顔料は、画素分割層が所望の光学特性を有するよう複数種を混合して用いても良い。例えば、紫味の強い黒色を呈する窒化ジルコニウムと、黄味の強い黒色を呈するアモルファスカーボンとを用いて調色することにより、画素分割層の反射色を、彩度が低く抑えられたニュートラルブラックとすることができる。
 (c)の近赤外線遮光性を有する無機顔料の平均一次粒子径は、分散性および分散後の貯蔵安定性を向上する観点から、5nm以上が好ましく、10nm以上がより好ましい。一方で、高い屈曲性を得ることができる点から、150nm以下が好ましく、100nm以下がより好ましい。ここでいう平均一次粒子径とは、画像解析式粒度分布測定装置を用いた粒度測定法により算出した、一次粒子径の数平均値を意味する。画像の撮影には、透過型電子顕微鏡(TEM)を用いることができ、倍率50,000倍の条件で、(c)近赤外線遮光性を有する無機顔料の一次粒子が100個以上撮影された画像から、平均一次粒子径を算出することができる。(c)の近赤外線遮光性を有する無機顔料が球状でない場合は、その長径と短径の平均値を一次粒子径とする。画像解析には、マウンテック社製画像解析式粒度分布ソフトウェアMac-Viewを用いる。平均一次粒子径を小径化させる、あるいは粗大分を摩砕して粒度分布をシャープなものとする必要がある場合、乾式粉砕処理を行っても良い。乾式粉砕処理には、例えば、ハンマーミル、ボールミルなどを用いることができる。また、顔料の硬度が過度に高いなどの理由から乾式粉砕処理で限界がある場合は、解砕することなく粗大分を分級処理で除去することが望ましい。
 有機顔料としては、種々の有機顔料を用いることができるが、中でも、着色力に優れ、屈曲性を向上することができる点で、(d)有機黒色顔料が好ましい。なお、概して有機顔料は、近赤外領域における遮光性には極めて乏しい反面、誘電率が低い利点があるため、本発明の感光性組成物においては、誘電率の上昇を回避していながら可視光領域のみに遮光性を付与するための成分として効果的に用いることができる。
 本明細書における(d)の有機黒色顔料とは、ベンゾジフラノン系黒色顔料、ペリレン系黒色顔料、アゾ系黒色顔料およびそれらの異性体のことをいう。ここでいう異性体とは、互変異性体をも含む。異性体は、複数の顔料粉末の混合物として含まれていてもよく、1つの一次粒子を構成する上で混晶として含まれていても良い。
 ベンゾジフラノン系黒色顔料とは、下記一般式(30)または(31)で表される顔料を意味する。下記一般式(30)で表される顔料は、いわゆる、ラクタムブラックに分類される顔料に相当する。
Figure JPOXMLDOC01-appb-C000023
(一般式(30)および(31)中、RおよびR14は、それぞれ独立して、水素原子、CH、CF、フッ素原子または塩素原子を表す。R10、R11、R12、R13、R15、R16、R17、R18は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~12のアルキル基、炭素数1~12のシクロアルキル基、炭素数1~12のアルケニル基、炭素数1~12のシクロアルケニル基、炭素数1~12のアルキニル基、COOH、COOR19、COO、CONH、CONHR19、CONR1920、CN、OH、OR19、OCOR19、OCONH、OCONHR19、OCONR1920、NO、NH、NHR19、NR1920、NHCOR19、NR19COR20、N=CH、N=CHR19、N=CR1920、SH、SR19、SOR19、SO19、SO19、SOH、SO 、SONH、SONHR19またはSONR1920を表す。R10およびR11、R11およびR12、R12およびR13、R15およびR16、R16およびR17、R17およびR18は直接結合またはO、S、NHもしくはNR19によって結合しても良い。R19およびR20は、それぞれ独立して、炭素数1~12のアルキル基、炭素数1~12のシクロアルキル基、炭素数1~12のアルケニル基、炭素数1~12のシクロアルケニル基または炭素数1~12のアルキニル基を表す。)
 中でも、遮光性と発光信頼性の観点から、R~R18が水素原子であるものが好ましく、すなわち、下記構造式(32)で表されるベンゾジフラノン系黒色顔料を好ましく用いることができる。下記構造式(32)で表されるベンゾジフラノン系黒色顔料としては市販品を用いてもよく、例えば、BASF製“Irgaphor”(登録商標)Black S0100が挙げられる。また、これに加えて、R11およびR16がSOH、SO 、SONR1920またはCOOHであるベンゾジフラノン系黒色顔料を分散助剤として一部混合して後述の湿式分散処理を行うことで分散性を高めることができる。
Figure JPOXMLDOC01-appb-C000024
 ペリレン系黒色顔料とは、下記一般式(33)または(34)で表される顔料、およびC.I.ピグメントブラック31、32を意味する。いわゆる、ペリレンブラックに分類される顔料に相当する。中でも、遮光性が高い点で、下記一般式(33)または(34)で表される顔料が好ましい。
Figure JPOXMLDOC01-appb-C000025
(一般式(33)および(34)中、R21~R28は、それぞれ独立して、水素原子、炭素数1~12のアルキル基、炭素数1~6のアルコキシ基、または水酸基を表す。)
 中でも、遮光性と発光信頼性の観点から、R21~R28が水素原子であるものが好ましく、すなわち、下記構造式(35)および/または(36)で表されるペリレン系黒色顔料を好ましく用いることができる。下記構造式(35)および(36)で表されるペリレン系黒色顔料(シス-トランス異性体混合物)としては市販品を用いてもよく、例えば、BASF製FK4280が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 アゾ系黒色顔料とは、下記一般式(37)で表される顔料を意味する。いわゆる、アゾメチンブラックに分類される顔料に相当する。
Figure JPOXMLDOC01-appb-C000027
(一般式(37)中、Xは、イソインドリノン構造を有する有機基またはイソインドリン構造を有する有機基を示し、Yは、炭素数1~3のアルキル基および炭素数1~3のアルコキシ基からなる群から選ばれる少なくとも1種の有機基を示し、nは1~5の整数を示す。)
 遮光性と発光信頼性の観点から好ましい具体例として、下記構造式(38)で表されるアゾ系黒色顔料、下記構造式(39)で表されるアゾ系黒色顔料が挙げられる。
Figure JPOXMLDOC01-appb-C000028
 有機黒色顔料以外の有機顔料としては、黄色、橙色、青色、赤色、緑色、紫色、茶色など種々の有機顔料を用いても良く、本発明の感光性組成物に2色以上の有機顔料を含有させて擬似黒色化することで画素分割層を黒色とすることができ、それらの量比を調整することで光学特性を制御することができる。中でも、遮光性と発光信頼性の観点から、黄色、青色、赤色の組み合わせが好ましい。
 有機黄色顔料としては、例えば、C.I.ピグメントイエロー12、13、17、20、24、74、83、86、93、95、109、110、117、120、125、129、138、139、150、151、175、180、181、185、192、194、199が挙げられる。中でも、発光信頼性の観点から、ベンズイミダゾロン系黄色顔料であるC.I.ピグメントイエロー120、151、175、180、181、192、194が好ましい。
 有機青色顔料としては、例えば、C.I.ピグメントブルー15、15:1、15:2、15:3、15:4、15:6、16、17、60、64、65、75、79、80が挙げられる。中でも、発光信頼性の観点から、安定型銅フタロシアニンであるC.I.ピグメントブルー15:3、15:4、15:6、インダントロンブルーであるC.I.ピグメントブルー60が好ましい。
 有機赤色顔料としては、例えば、C.I.ピグメントレッド9、48、97、122、123、144、149、166、168、177、179、180、190、192、196、202、209、215、216、217、220、223、224、226、227、228、240、254が挙げられる。中でも、発光信頼性の観点から、ペリレン系赤色顔料であるC.I.ピグメントレッド123、149、179、190またはアントラキノン系赤色顔料であるC.I.ピグメントレッド177が好ましい。
 本発明の感光性組成物は、さらに、分散剤を含有することができる。分散剤とは、顔料表面への化学的結合または吸着作用を有する顔料親和性基と、親溶媒性を有する高分子鎖または基とを併せ持つものを意味する。分散剤の作用機構としては、酸-塩基相互作用の他、水素結合、ファン・デル・ワールス(Van-der-Waals)力などが複合的に関与し、後述する顔料分散液を作製する際に行う湿式メディア分散処理において、有機顔料表面の分散媒への湿潤性を高め、高分子鎖による有機顔料同士の立体反発効果および/または静電反発効果を高めることにより、顔料の微細化を促進し、かつ分散安定性を高める効果を奏する。微細化の促進および分散安定性の向上により、屈曲性をさらに向上することができる。
 分散剤としては、塩基性吸着基を有する分散剤、酸性基を有する分散剤、ノニオン系分散剤を好ましく用いることができる。塩基性吸着基を有する分散剤としては、例えば、DisperBYK-142、145、164、167、182、187、2001、2008、2009、2010、2013、2020、2025、9076、9077、BYK-LP N6919、BYK-LP N21116、BYK-JET9152(以上、いずれもビックケミー社製)、“Solsperse”(登録商標)9000、11200、13650、20000、24000、24000SC、24000GR、32000、32500、32550、326000、33000、34750、35100、35200、37500、39000、56000、76500(以上、いずれもルーブリゾール社製)、Efka-PX4310、4320、4710(以上、いずれもBASF社製)が挙げられる。酸性基を有する分散剤としては、例えば、“Tego dispers”(登録商標)655(エボニック社製)、DisperBYK-102、118、174、2096(以上、いずれもビックケミー社製)、が挙げられ、ノニオン系分散剤としては、例えば、“SOLSPERSE”(登録商標)54000(ルーブリゾール社製)、“Tego dispers”(登録商標)650、652、740W(以上、いずれもエボニック社製)が挙げられる。顔料固有の表面特性や平均一次粒子径を考慮して、後述の平均分散粒子径が得られるよう、適宜これらの分散剤を単独であるいは複数種を混合して用いても良い。
 分散剤の含有量は、後述の湿式メディア分散処理における十分な解凝集性と、分散処理後の再凝集を抑制する上で、顔料の合計量100重量部に対して10重量部以上が好ましく、20重量部以上がより好ましい。一方、分散剤以外の構成成分の含有量を十分に確保する上で、100重量部以下が好ましく、60重量部以下がより好ましい。
 本発明の感光性組成物は、溶剤を含有することができる。溶剤を含有することで粘度、塗布性、貯蔵安定性を調整することができ、適切な溶剤を選択することで、最終的に得られる画素分割層の膜厚均一性を向上することができる。
 溶剤としては、例えば、エーテル類、アセテート類、エステル類、ケトン類、芳香族炭化水素類、アルコール類などが挙げられる。これらを2種以上含有しても良い。エーテル類としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-プロピルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-n-ブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールメチル-n-ブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル、テトラヒドロフランなどが挙げられる。アセテート類としては、例えば、ブチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」)、3-メトキシブチルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、シクロヘキサノールアセテート、プロピレングリコールジアセテート、ジプロピレングリコールメチルエーテルアセテート、3―メトキシ-3-メチル-1-ブチルアセテート、1,4-ブタンジオールジアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサンジオールジアセテートなどが挙げられる。エステル類としては、例えば、2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチルなどの乳酸アルキルエステル類、2-ヒドロキシ-2-メチルプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、酢酸エチル、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、蟻酸n-ペンチル、酢酸i-ペンチル、プロピオン酸n-ブチル、酪酸エチル、酪酸n-プロピル、酪酸i-プロピル、酪酸n-ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸n-プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸エチルなどが挙げられる。ケトン類としては、例えば、メチルエチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノンなどが挙げられる。芳香族炭化水素類としては、例えば、トルエン、キシレンなどが挙げられる。アルコール類としては、例えば、イソプロピルアルコール、ブチルアルコール、イソブチルアルコール、ペンタノ-ル、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシブタノール、ジアセトンアルコールなどが挙げられる。中でも、顔料の分散安定性を向上し、屈曲性を向上できる点で、感光性組成物が含有する全溶剤中にアセテート類の含有量が50重量%以上であることが好ましく、70重量%以上であることがより好ましい。
 本発明の感光性組成物は、さらに、有機系の近赤外線吸収染料(Near Infrared Dye)を含有することができる。有機系の近赤外線吸収染料は、概して上記(c)の近赤外線遮光性を有する無機顔料と比べて単位体積あたりの遮光性には大きく劣るものの、誘電率が低い点では優れるため、染料の溶解度が許容される含有量で用いることができ、(c)の近赤外線遮光性を有する無機顔料と併用することが最も有用である。有機系の近赤外線吸収染料としては、シアニン系染料、フタロシアニン系染料、ナフタロシアニン系染料、ポリメチン系染料、スクアリリウム系染料、ポルフィリン系染料、ジイモニウム系染料、インディゴ系染料、クアテリレン系染料、ペリレン系染料、ニッケルジチオレン錯体系染料が挙げられる。中でも、有機溶剤への溶解度と発光信頼性に優れる点から、フタロシアニン系染料、クアテリレン系染料、ペリレン系染料が好ましい。
 フタロシアニン系染料としては、オキソバナジウム、銅、アルミニウム、コバルトまたは亜鉛を中心金属に有するフタロシアニン系染料が挙げられる。中でも、中心金属としてオキソバナジウムを有するバナジルフタロシアニン系染料および/または中心金属として銅を有する銅フタロシアニン系染料がより好ましく、発光信頼性に優れる点から、(e)バナジルフタロシアニン系近赤外線吸収染料がさらに好ましい。また、少なくとも(c)の近赤外線遮光性を有する無機顔料として上記に例示した全ての黒色顔料は、概して、長波長側ほど遮光性が低い。そのため、クロロホルム溶液としたときの極大吸収波長が、近赤外線領域のうち波長900~1,000nmの領域にあり、かつ、顔料成分の分散安定性との両立を図る上で上記に例示したアセテート系溶剤単独への溶解度が2.0重量%以上である有機系染料がより好ましい。これら両特性を満たす有機系染料としては、例えば、(e)バナジルフタロシアニン系近赤外線吸収染料である、FDN-07、FDN-08(以上、いずれも山田化学工業(株)製)、銅フタロシアニン系近赤外線吸収染料である、FDN-06(山田化学工業(株)製)が挙げられる。
 これら近赤外線吸収染料は、画素分割層の表面における凹凸欠陥の発生を抑制できる点で、分散染料ではなく、実質的に可溶性染料として用いることが好ましい。ここでいう可溶性染料とは、感光性組成物中で完全に溶解させた状態で用いるための染料を意味する。有機系の近赤外線吸収染料の含有量としては、溶剤成分および樹脂成分への溶解度の観点から、本発明の感光性組成物中2.0重量%未満が好ましい。
 本発明の感光性組成物を硬化して得られる硬化膜を、有機EL表示装置の画素分割層に用いる場合、近赤外線を用いたセンサーの感度を向上させる上で、硬化膜が有する近赤外線に対する遮光性は高いほど良い。具体的には、本発明の感光性組成物を硬化して、膜厚2.0μmの硬化膜にしたとき、波長780~1,000nmにおける光透過率の最大値が15.0%以下であることが好ましく、10.0%以下であることがより好ましく、5.0%以下であることがさらに好ましい。
 また、外光反射を低減して有機EL表示装置の表示部の視認性を向上する上で、硬化膜が有する可視光線に対する遮光性は高いほど好ましい。具体的には、本発明の感光性組成物を硬化して、膜厚2.0μmの硬化膜にしたとき、可視光領域のうち最も比視感度が高い波長550nmにおける光透過率が10.0%以下であることが好ましく、5.0%以下であることがより好ましく、1.0%以下であることがさらに好ましい。
 ここでいう透過率は、透光性基材上に膜厚2.0μmとなるよう硬化膜を形成して、分光光度計「U-4100(日立ハイテクノロジーズ社製)」で測定することができ、測定波長は1.0nmごととし、透光性基材の透過光強度と、透光性基材上に硬化膜を形成した積層基材の透過光強度との比から、硬化膜の光透過率(%)を求めることができる。透光性基材としては、透光性ガラス基材である「テンパックス(AGCテクノグラス(株)製)」を好ましく用いることができる。なお、光透過率は、硬化膜の厚み方向の光透過率を意味し、測定にあたっては光を膜面側から入射させ、透光性基材側から透過させる。
 一方、輝度ムラを抑制して表示特性を向上できる点から硬化膜の誘電率は低いほど良く、本発明の感光性組成物を硬化して、膜厚2.0μmの硬化膜にしたとき、周波数1kHzにおける誘電率が5.0未満であることが好ましく、4.5未満であることがより好ましく、4.0未満であることがより好ましい。一方で、誘電率を過度に低くする場合は膜内部に意図的に空隙を多く設けない限り原理的に困難であるため、屈曲性の観点から2.0以上であることが好ましい。
 ここでいう、誘電率は、アルミニウム基材上に膜厚2.0μmとなるよう硬化膜を形成した後、硬化膜の表面にアルミニウム薄膜を70nmの膜厚となるようパターン蒸着して得られた積層基材を、誘電率測定装置である「LCRメーター4294A(Agilent Technologies社製)」を用いて測定された静電容量Cの値を用いて以下の式から誘電率Kを算出することができる。また、光透過率および誘電率を算出する際の硬化膜の膜厚は、触針式膜厚測定装置である「サーフコム(東京精密(株)製)」を用いて測定することができる。
 K=C×d/(ε×S)
 ここで、
 C:静電容量(F)
 d:膜厚(m)
 ε:真空の誘電率8.854×10-12(F/m)
 S:電極面積(m)。
 本発明の感光性組成物を製造する方法を説明する。例えば、第一段階として、顔料分散液を作製する。顔料分散液は、顔料成分、溶剤および必要に応じて分散剤など他の成分を混合して湿式メディア分散処理をして得ることができる。
 湿式メディア分散処理を行なうための分散機としては、横型または縦型ビーズミル、ロールミルなどが挙げられ、例えば、“DYNO-MILL”(登録商標)(Willy A.Bachofen社製)、“スパイクミル”(登録商標)((株)井上製作所製)、“サンドグラインダー”(登録商標)(デュポン社製)が挙げられる。分散機用のメディアとしては、ジルコニアビーズ、ジルコンビーズ(ZrSiO4)、アルミナビーズ、無アルカリガラスビーズが挙げられ、欠けや摩砕によるコンタミネーションを回避するため、金属および金属イオン不純物源となる成分を含まないビーズを用いることが好ましい。好ましい市販品の具体例としては、“トレセラム”(登録商標)(東レ(株)製)が挙げられる。また、ビーズの直径は0.03~5mmが好ましく、真球度が高いほど好ましい。分散機の運転条件は、顔料の分散後平均粒度や粘度が所望の範囲となるように、ビーズ硬度、ハンドリング性、生産性などを考慮して適宜設定すれば良い。
 (c)の近赤外線遮光性を有する無機顔料の平均分散粒子径は、顔料の再凝集を抑制する上で30nm以上が好ましく、50nm以上がより好ましい。一方で、画素分割層の誘電率が局所的に高くなることを回避して良好な表示特性を得る上で、200nm以下が好ましく、150nm以下がより好ましい。また、有機顔料の平均分散粒子径は、顔料の再凝集を抑制する上で50nm以上が好ましく、80nm以上がより好ましい。一方で、パターン直線性を向上させる上で300nm以下が好ましく、200nm以下がより好ましい。
 ここでいう顔料の平均分散粒子径とは、上述の湿式メディア分散処理により得られた顔料分散液中に含有する顔料の粒子径について全体の数平均値を意味する。平均分散粒子径は、動的光散乱法粒度分布測定装置「SZ-100(HORIBA製)」またはレーザー回折・散乱法粒度分布測定装置「MT-3000(Microtrac製)」を用いて測定することができる。
 第二段階として、顔料分散液と、上記(a-1)~(a-3)の群から選ばれる化合物、(b)感光剤、必要に応じてその他成分を混合、撹拌することで本発明の感光性組成物を得ることができる。
 次に、本発明の硬化膜について説明する。本発明の硬化膜は、本発明の感光性組成物の硬化物であり、有機EL表示装置の画素分割層として好適に用いることができる。
 本発明の硬化物である硬化膜を有機EL表示装置の画素分割層に用いる場合、表示部を高精細化でき、画像あるいは映像の表示品位を高め、表示装置としての価値を高められる点から、表示エリアにおける画素分割層の開口率が20%以下であることが好ましい。ここでいう開口率とは、画素分割層の面積に対する画素分割層の開口部の面積率を意味する。開口率が低くなるほど、表示部における画素分割層の形成面積が大きくなるため、画素分割層の発光信頼性にかかる性能が大きく影響する。すなわち、開口率が低く、高精細な表示部を有する有機EL表示装置であるほど、本発明の効果により大きく寄与することとなる。また、同様の理由から、画素分割層の膜厚を厚くするほど、本発明の効果により大きく寄与することとなる。
 また、本発明の感光性組成物の硬化物である硬化膜を、パネル部材構成におけるスペーサー機能を兼ね備えた画素分割層として用いる場合は、硬化膜の膜厚が異なる部位、すなわち段差形状を面内に有していても良い。硬化膜の膜厚が異なる段差を有する画素分割層を得る方法としては、後述する露光工程において、露光光領域の光透過率が異なる複数種の開口部が形成された、ネガ型またはポジ型のハーフトーンマスクを介してパターン露光する方法が挙げられる。本発明の感光性組成物がネガ感光性を有する場合、露光部のうち、局所的に露光光領域の光透過率が高い部位が、アルカリ現像液への溶解性がより低下し、最終的に得られる画素分割層の面内において凸部として形成される。一方、本発明の感光性組成物がポジ型感光性を有する場合、露光部のうち、局所的に露光光領域の光透過率が低い部位が、アルカリ現像液への溶解性がより低下し、最終的に得られる画素分割層の面内において凸部として形成される。
 本発明の感光性組成物の硬化物である硬化膜は、例えば、塗布工程、プリベーク工程、露光工程、現像工程、キュア工程をこの順に含むフォトリソグラフィにより得ることができる。
 塗布工程においては、本発明の感光性組成物を基板に塗布して塗布膜を得る。例えば、トップエミッション型の有機EL表示装置の場合、基板としては、ガラス基材またはフレキシブル基材の表面に、パターン状の銀/銅合金などからなる反射層と、同パターン状のITO電極が順に積層されたものが挙げられる。フレキシブル基材としては、ポリイミド樹脂からなるフレキシブル基材が、仮支持体である板状ガラス基材の表面に固定された積層基材を好ましく用いることができる。ここでいう板状ガラス基材は工程中で剥離されることで、最終的に得られる有機EL表示装置をフレキシブル化することができる。
 塗布工程においては、本発明の感光性組成物を塗布して塗布膜を得る。塗布工程に用いる塗布装置としては、例えば、スリットコーター、スピンコーター、グラビアコーター、ディップコーター、カーテンフローコーター、ロールコーター、スプレーコーター、スクリーン印刷機、インクジェットが挙げられる。画素分割層は部材構成上、通常0.5~3.0μm程度、好ましくは1.0~2.0μm程度の膜厚で形成されるため、薄膜塗布に好適で塗布欠陥が発生しにくく、膜厚均一性と生産性に優れることから、スリットコーターまたはスピンコーターが好ましく、省液と生産効率の観点からスリットコーターがより好ましい。
 プリベーク工程においては、加熱により塗布膜中の溶剤を揮散させることによりプリベーク膜を得る。加熱装置としては、例えば、熱風オーブン、ホットプレート、遠赤外線オーブン(IRオーブン)などが挙げられる。ピンギャッププリベークあるいはコンタクトプリベークを行っても良い。プリベーク温度は、50~150℃が好ましく、プリベーク時間は、30秒間~数時間が好ましい。膜厚均一性をより向上させるため、塗布工程の後に真空/減圧乾燥機により塗布膜が含む溶剤の少なくとも一部を揮散させた後に、加熱によるプリベーク工程を行っても良い。
 露光工程においては、プリベーク膜の膜面側から、フォトマスクを介して活性化学線を照射して露光膜を得る。露光工程に用いる露光装置としては、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)などが挙げられる。露光時に照射する活性化学線としては、例えば、紫外線、可視光線、電子線、X線、KrF(波長248nm)レーザー、ArF(波長193nm)レーザーなどが挙げられる。中でも、水銀灯のj線(波長313nm)、i線(波長365nm)、h線(波長405nm)またはg線(波長436nm)が好ましく、それらを含む混合線がより好ましい。露光量は通常10~4,000mJ/cm程度(i線換算値)である。フォトマスクとしては、例えば、ガラス、石英またはフィルムなどの露光波長における透光性を有する基材の片側の表面に、クロムなどの金属や黒色有機樹脂からなる露光光遮蔽性を有する薄膜がパターン状に成膜されたマスクが挙げられる。本発明の感光性組成物を用いた画素分割層の形成においては、ネガ型あるいはポジ型のいずれかのフォトマスクを用いることができ、開口部のみ活性化学線を透過させてパターン露光することにより、露光膜を得る。
 現像工程においては、本発明の感光性組成物がネガ型感光性を有する場合は、現像により未露光部を除去して、パターン状の現像膜を得る。一方、ポジ型感光性を有する場合は、現像により露光部を除去して、パターン状の現像膜を得る。現像方法としては、例えば、アルカリ現像液である有機系アルカリ水溶液または無機系アルカリ水溶液に、シャワー、ディッピング、パドルなどの方法により、露光膜を10秒~10分間浸漬する方法が挙げられる。
 露光膜において、露光部/未露光部のアルカリ現像液に対する溶解性の差を利用して、パターン状の現像膜を得ることができる。ここで、露光部とは、マスク開口部を介して露光光が照射された部位を意味し、一方で未露光部とは露光光が照射されない部位を意味する。
 本発明の感光性組成物がネガ型感光性を有する場合は、未露光部がパターン開口部となり、一方、ポジ型感光性である場合は、露光部がパターン開口部となり、開口部は最終的に有機EL表示装置における発光画素部となる。
 アルカリ現像液としては、例えば、2.38重量%テトラメチルアンモニウムヒドロキシド(以下、「TMAH」)水溶液、0.4重量%TMAH水溶液、0.2重量%TMAH水溶液を挙げることができ、通常は大気圧、15~35℃の範囲で一定の液温で使用する。現像後は脱イオン水のシャワーによるリンス洗浄処理および/またはエアー噴射による水切り処理を加えることができる。
 キュア工程においては、加熱により現像膜を熱硬化させると同時に、水分、残留した現像液などの成分を揮散させて、硬化膜を得る。加熱装置としては、例えば、熱風オーブン、IRオーブンなどが挙げられる。加熱温度は、(a-1)炭素数9~19の長鎖アルキル基を有するエポキシ化合物や、その他の熱硬化成分を十分に熱硬化させて屈曲性と発光信頼性を高めるため、200~300℃が好ましい。本発明の感光性組成物が有機顔料を含有する場合、分解物の発生を抑えて発光信頼性を高めるため、230~260℃が好ましい。加熱雰囲気は窒素雰囲気下が好ましく、加熱時の圧力は大気圧が好ましい。
 以上の工程から得られる本発明の硬化膜を具備する、有機EL表示装置の実施形態を図1に示す。本発明の硬化膜は図1における画素分割層(8)として好適に用いることができる。また、本発明の硬化膜は、画素分割層(8)と同様に高い屈曲性と高い発光信頼性とが求められる平坦化層(4)にも好適に用いることができる。なお、本発明の硬化膜を具備する有機EL表示装置も、本発明に包括されるものである。
 基材(6)の表面に、ボトムゲート型またはトップゲート型のTFT(1)(薄膜トランジスタ)が行列状に設けられており、TFT(1)と、TFT(1)に接続された配線(2)とを覆う状態でTFT絶縁層(3)が形成されている。さらに、TFT絶縁層(3)の表面には、平坦化層(4)が形成されており、平坦化層(4)には配線(2)を開口するコンタクトホール(7)が設けられている。平坦化層(4)の表面には、第二電極(5)がパターン形成されており、配線(2)に接続されている。第二電極(5)のパターン周縁を囲むようにして、画素分割層(8)が形成されている。画素分割層(8)には開口部が設けられており、開口部には有機EL発光材料を含む、発光画素(9)が形成されており、第一電極(10)が、画素分割層(8)と発光画素(9)とを覆う状態で成膜されている。以上の積層構成からなるTFT基板を真空下で封止した後に発光画素部に直接電圧を印加すれば、有機EL表示装置として発光させることできる。
 発光画素(9)は、光の3原色である赤、青、緑領域それぞれの発光ピーク波長を有する異なる種類の画素が配列したもの、もしくは白色の発光光を放つ発光画素を全面に作製し、別途の積層部材として赤、青、緑のカラーフィルタを組み合わせたものであっても良い。通常表示される赤色領域のピーク波長は、560~700nm、青色領域のピーク波長は420~500nm、緑領域のピーク波長は、500~550nmであるが、本発明の有機EL表示装置においては発光画素の種類は特に限定されず、発光光がいかなるピーク波長を有していても良い。第二電極(5)としては、例えば、ITO(インジウム錫酸化物)からなる透明膜を好適に用いることができ、第一電極(10)としては、例えば、銀/マグネシウムなどの合金膜を好適に用いることができるが、電極として機能させることができる層であれば、いかなる物質からなっていても良い。また、発光画素を構成する有機EL発光材料としては、発光層に加え、さらに正孔輸送層および/または電子輸送層を組み合わせた材料を好適に用いることができる。
 光取り出し方向は、発光画素から放たれる発光光を、基材(6)を介して基材側へ取り出す、ボトムエミッション型有機EL表示装置であっても良いし、第一電極を介して発光光を基材(6)の反対側へ取り出す、トップエミッション型有機EL表示装置であってもよく、特に限定されない。平坦化層(4)と第二電極(5)の間には、1方向への光取り出し効率を高めるため、金属反射層をさらに設けるなどしても良い。基材(6)にガラスなどに代表される硬質の板状基材を用いれば、リジッドタイプの有機EL表示装置となる。一方で、フレキシブル基材を用いれば、フレキシブル有機EL表示装置となる。機械的強度に優れたポリイミド樹脂からなるフレキシブル基材を得るための樹脂溶液としては、例えば、ポリアミド酸を含む溶液が挙げられる。ポリアミド酸を含む溶液を支持体の表面に塗布し、次いで加熱することでポリアミド酸をイミド化してポリイミド樹脂に変換し、フレキシブル基材とすることができる。ポリアミド酸は、テトラカルボン酸二無水物とジアミン化合物とを、N-メチル-2-ピロリドンなどのアミド系溶剤中で反応させて合成することができる。中でも、熱線膨張係数が小さく寸法安定性に優れる点で、芳香族テトラカルボン酸二無水物の残基と、芳香族ジアミン化合物の残基とを有するポリアミド酸が好ましい。具体例としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物の残基と、p-フェニレンジアミンの残基とを有するポリアミド酸を挙げることができる。
 以下に本発明を、その実施例および比較例を挙げて詳細に説明するが、本発明の態様はこれらに限定されるものではない。
 まず、各実施例および比較例における評価方法について説明する。
<必要最低露光量の算出方法>
 100mm×100mmの無アルカリガラス基板の表面に、スパッタ法により、厚さ10nmの銀/銅合金の薄膜(体積比10:1)を全面成膜し、エッチングしてパターン状の金属反射層を形成し、次いでスパッタ法により、厚さ10nmのITO透明導電膜を全面成膜し、必要最低露光量評価用基板を得た。
 得られた必要最低露光量評価用基板の表面に、感光性組成物を、最終的に得られる硬化膜の厚さが2.0μmとなるように回転数を調節してスピンコーターで塗布して塗布膜を得て、ホットプレート(SCW-636;大日本スクリーン製造(株)製)を用いて、塗布膜を大気圧下100℃で120秒間プリベークして、プリベーク膜を得た。両面アライメント片面露光装置(マスクアライナーPEM-6M;ユニオン光学(株)製)を用いて、開口部の幅と遮光層の幅が1対1であるライン・アンド・スペースパターンを有する、感度測定用のグレースケールマスク(MDRM MODEL 4000-5-FS;Opto-Line International社製)を介して、超高圧水銀灯のj線(313nm)、i線(波長365nm)、h線(波長405nm)およびg線(波長436nm)の混合線をパターニング露光した後、フォトリソグラフィ用小型現像装置(AD-2000;滝沢産業(株)製)を用いて2.38重量%TMAH水溶液で60秒間現像し、脱イオン水で30秒間リンスし、現像膜を得た。次いで、FPD検査顕微鏡(MX-61L;オリンパス(株)製)を用いて、作製した現像膜の解像パターンを50倍の倍率で観察し、ライン・アンド・スペースパターンにおいて、パターン線幅(20.0μm)とピッチ幅(20.0μm)が1対1に形成する、すなわちフォトマスクと同一寸法のパターン状現像膜が形成される露光量(mJ/cm:i線照度計の値)を、感光性組成物の必要最低露光量(露光に対する感度)とした。なお、必要最低露光量が150mJ(mJ/cm)を超えるものや、現像膜が剥がれるなどしてパターン状現像膜が形成できなかったものは、評価対象から除外することとした。
 (1)硬化膜の評価
 (i)近赤外領域の遮光性および(ii)可視光領域の遮光性の評価
 実施例1~29および比較例1~20により得られた、テンパックスの表面に硬化膜を具備する光学特性評価用基板について、分光光度計「U-4100(日立ハイテクノロジーズ社製)」を用いて、波長380nmから1,000nmまでの光透過率を、測定波長1.0nmごと測定し、透光性基材の透過光強度と、光学特性評価用基板の透過光強度との比から求めた光透過率の小数点第二位を四捨五入して小数点第一位までの数値を求め、硬化膜の光透過率とした。波長780~1,000nmにおける光透過率の最大値が低い硬化膜ほど、近赤外領域の遮光性に優れていると評価し、波長550nmにおける光透過率が低い硬化膜ほど、可視光領域の遮光性に優れていると評価した。なお、硬化膜の厚さは、触針式膜厚測定装置(東京精密(株);サーフコム)を用いて、面内3箇所において測定し、その平均値の小数点第二位を四捨五入して、小数点第一位までの数値を求めた。
 (iii)誘電率の評価
 実施例1~29および比較例1~20により得られた、アルミニウム基材、硬化膜、アルミニウム薄膜を順に具備する誘電率評価用基板について、誘電率測定装置である「LCRメーター4294A(Agilent Technologies社製)」を用いて周波数1kHzにおける誘電率を測定した。なお、硬化膜の厚さは、触針式膜厚測定装置(東京精密(株);サーフコム)を用いて、面内4箇所において測定し、その平均値の小数点第二位を四捨五入して、小数点第一位までの数値を求めた。
 (iv)パターン直線性の評価
 実施例1~29および比較例1~20により得られたパターン状硬化膜形成基板の中央部に位置する開口部10箇所を、光学顕微鏡を用いて倍率50倍に拡大して観察し、硬化膜のパターンエッジ部における波打ちの最大幅W(μm)を以下の方法で算出した。パターン状硬化膜において、横方向において最小の線幅aおよび最大の線幅b、縦方向において最小の線幅cおよび最大の線幅dをそれぞれ測長して、以下の式からW(μm)およびW(μm)をそれぞれ算出し、W(μm)とW(μm)のうち大きいほうの値を、波打ちの最大幅W(μm)とした。なお、線幅a~dの測長時の測長角度は、パターン状硬化膜形成基板のエッジ部を基準として平行となるように行った。
 (b-a)/2=W
 (d-c)/2=W
 硬化膜のパターンエッジ部における波打ちを示す概略図を、図2に示す。白色で示した箇所が開口部(11)を表し、黒色で示した箇所がパターン状硬化膜(12)を表す。図2におけるaおよびbの矢印は、パターン状硬化膜形成基板の横方向のエッジ部に対して平行な直線であり、一方、cおよびdの矢印は、パターン状硬化膜形成基板の縦方向のエッジ部に対して平行な直線である。なお、ここで基準とした、パターン状硬化膜形成基板の横方向または縦方向のエッジ部とは、後述する画素分割層を備えた有機EL表示装置の作製方法を示す図3において無アルカリガラス基板(15)の横方向または縦方向のエッジ部のことである。
 最大幅Wが小さいほどパターン直線性が高く、有機EL表示装置の視認性に優れる。最大幅Wから、以下の判定基準に基づいてパターン直線性を評価し、A~Cを合格、D~Eを不合格とした。ただし、パターンエッジ部そのもののパターン形状に加えて、現像残渣起因による波打ちも最大幅Wの算出に含み、測長した。
 A:最大幅が、1.0μm未満
 B:最大幅が、1.0μm以上1.5μm未満
 C:最大幅が、1.5μm以上2.0μm未満
 D:最大幅が、2.0μm以上3.0μm未満
 E:最大幅が、3.0μm以上。
(v)屈曲性の評価
 実施例1~29および比較例1~20により得られた、フレキシブル基材の表面に硬化膜が形成された屈曲性評価用基板について、以下の方法で屈曲性を評価した。
 直径のみが段階的に異なる鉄製の針金(0.10mm、0.30mm、0.50mm、0.80mm、1.00mm、2.00mmの計6段階)を用意した。図3に示す試験片構成で、フレキシブル基材(13)が内側に、硬化膜(14)が外側となるように針金の表面に沿って巻き付け、一定の曲率半径を有するように屈曲性評価用基板を湾曲させた。次いで、屈曲性評価用基板を再度平らに戻し、FPD検査顕微鏡を用いて20倍の倍率で硬化膜(14)の表面を観察し、亀裂や剥がれの有無を確認した。さらに別途、上記針金に巻き付けることなく、屈曲性評価用基板単独を完全に折り曲げ(直径:0.00mm)、再度平らに戻した後、同様の観測を行なった。以上の操作を、湾曲または折り曲げる硬化膜の箇所を替えて計5回繰り返し、亀裂や剥がれが観られなかった最小の溝深さを2で除した値を、湾曲可能な最小曲率半径(mm)と見なした。0.00mm、0.05mm、0.15mm、0.25mm、0.40mm、0.50mm、1.00mmの7段階の最小曲率半径のうち、その値が小さいほど屈曲性に優れていると評価し、0.40mm以下である硬化膜を合格とし、0.50mmおよび1.00mmである硬化膜を不合格とした。また、最小曲率半径が1.00mmを超える場合は「測定範囲外」と判定し、不合格とした。なお、厚さ7μmのフレキシブル基材単独の屈曲性を別途評価した結果は0.00mmであり、屈曲性に優れ、折り曲げることができる基材であることを別途確認した。なお、実施例1~29および比較例1~20において硬化膜の剥がれは観られず、亀裂の有無のみから評価を行なった。
 (2)有機EL表示装置の輝度ムラの評価
 実施例1~29および比較例1~20により得られた有機EL表示装置を、10mA/cmの直流駆動により、オン/オフ切り替え操作で30秒間ごとに10回繰り返し発光させて、縦16mm/横16mmのエリア内に形成した画素部において、中央部に位置する発光画素部10箇所を、倍率50倍でモニター上に拡大表示させて観察し、点灯時の輝度ムラの程度を、以下の判定基準に基づいて評価し、A~Cを合格、D~Eを不合格とした。
 A:輝度ムラが観られない
 B:輝度ムラが僅かに観られる
 C:輝度ムラが観られる
 D:輝度ムラが顕著に観られる
 E:非点灯の画素部が1箇所以上あり、評価不能。
 (3)フレキシブル有機EL表示装置の発光信頼性の評価
 実施例1~29および比較例1~20により得られたフレキシブル有機EL表示装置を、表示部(発光面)を上にして80℃に加熱したホットプレート上に置き、10mA/cmで直流駆動にて発光させてから1時間後の画素発光面積率(発光画素の面積に対する発光部の面積率)を評価した後に電源を一旦オフとして消灯させた。次いで、擬似太陽光としてキセノンランプを光源とする、波長420nmにおける照度3.0W/cmの光を絶えず表示部に照射し続けた。照射を開始してから50時間後、100時間後、500時間後に再び発光させ、中央部に位置する発光画素部10箇所について画素発光面積率を測定し、その平均値を算出した。1時間後の画素発光面積率を基準として、高い画素発光面積率を維持できるほど発光信頼性が優れているとし、以下の判定基準に基づいて評価し、A~Cを合格、D~Fを不合格とした。
 A:95%以上
 B:90%以上95%未満
 C:85%以上90%未満
 D:60%以上85%未満
 E:60%未満
 F:駆動直後の時点で非点灯の発光画素部が1箇所以上有り。
 (合成例:ポリイミド樹脂溶液Aの合成)
 乾燥窒素気流下、150.15gの2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(0.41mol)、6.20gの1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(0.02mol)、および、末端封止剤である13.65gの3-アミノフェノール(0.13mol)を、溶剤である500.00gのN-メチル-2-ピロリドン(以下、「NMP」)に溶解し、そこに155.10gのビス(3,4-ジカルボキシフェニル)エーテル二無水物(0.50mol)および150.00gのNMPを加えて20℃で1時間撹拌し、さらに水を除去しながら180℃で4時間撹拌した。反応終了後、反応液を10Lの水に投入し、生成した沈殿物を濾過して集め、水で5回洗浄し、80℃の真空乾燥機で20時間乾燥して、上記一般式(24)で表される構造単位を有する、重量平均分子量(Mw)が25,000、酸価160(mgKOH/g)のアルカリ可溶性ポリイミド樹脂を合成し、これをPGMEAに溶解して、固形分30重量%のポリイミド樹脂溶液Aを得た。
 (合成例:ポリイミド樹脂溶液Bの合成)
 180.00gのPGMEAと、107.14gのポリイミド樹脂溶液Aと、12.86gの上記構造式(12)で表される化合物とを、乾燥窒素気流下、130℃の加熱条件下で30分間反応させることで、上記一般式(1)におけるRが構造式(12)で表される化合物を由来する炭素数17の分岐アルキル基であり、RがCOOCHである構造を有し、かつ上記構造式(25)で表される構造単位を有するポリイミド樹脂を含有するPGMEA溶液を得て、固形分15重量%となるよう、さらにPGMEAで希釈して、ポリイミド樹脂溶液Bを得た。
 (合成例:ポリアミド酸溶液Aの合成)
 容積300mLの4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。乾燥窒素気流下、アミド系溶剤である、90.00gのN-メチル-2-ピロリドン(以下、「NMP」という)をフラスコ内に添加して昇温を開始し、液温を40℃で維持した。ジアミン化合物である、10.81g(100mmol)のp-フェニレンジアミンを、NMP中に添加し、撹拌して溶解させた。次いで、酸二無水物である、26.48g(90mmol)の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を添加し、撹拌して溶解させた。4時間撹拌し続けた後、末端封止剤である、3.27g(15mmol)の二炭酸ジ-tert-ブチルを加えて1時間撹拌した後、2.94g(10mmol)の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と、10.00gのNMPを加え、さらに2時間撹拌を続けた後に加温を停止して自然冷却した。液温が20℃であることを確認し、固形分40.0重量%となるよう、さらにNMPで希釈して、ポリアミド酸溶液Aを得た。
 (合成例:カルド樹脂溶液Aの合成)
 214.09gのPGMEAと、73.05gの“ADEKA ARKLS”(登録商標)WR-301((株)ADEKA製;エポキシ基を有する芳香族化合物および不飽和カルボン酸を開環付加反応させて得られる樹脂に、カルボン酸無水物を反応させて得られるアルカリ可溶性カルド樹脂を44重量%、PGMEAを56重量%の割合で含む樹脂溶液;重量平均分子量(Mw)5,700;酸価98(mgKOH/g))と、12.86gの上記構造式(12)で表される化合物とを、乾燥窒素気流下、130℃の加熱条件下で30分間反応させることで、上記一般式(2)におけるRが構造式(12)で表される化合物を由来する炭素数17の分岐アルキル基であり、RがCOOCHであり、上記構造式(29)で表される構造単位を有するカルド樹脂を含有するPGMEA溶液を得て、固形分15重量%となるよう、PGMEAで希釈して、カルド樹脂溶液Aを得た。
 (合成例:キノンジアジド化合物aの合成)
 乾燥窒素気流下、フェノール性水酸基を有する化合物である21.23g(0.05mol)のTrisP-PA(本州化学工業(株)製)と、33.58g(0.125mol)の5-ナフトキノンジアジドスルホニル酸クロリドを、450.00gの1,4-ジオキサンに溶解させ、室温にした。ここに、50.00gの1,4-ジオキサンと混合させた12.65g(0.125mol)のトリエチルアミンを系内が25~35℃となるよう維持しつつ滴下した。滴下後30℃で2時間攪拌した。次いで、トリエチルアミン塩を濾過し、濾液を水に投入し、析出した沈殿を濾過し回収した。この沈殿物を真空乾燥機で乾燥させ、感光剤である、構造式(40)で表されるキノンジアジド化合物aを得た。
Figure JPOXMLDOC01-appb-C000029
 (調製例1:顔料分散液1の調製)
 57.69gの“Solsperse”(登録商標) 20000(三級アミノ基を分子末端に有するポリエーテル系高分子樹脂分散剤)を、溶剤である750.00gのPGMEAに混合して10分間撹拌した後、192.31gの窒化チタン(平均一次粒子径25nm;表中、「TiN」)を投入して30分間撹拌した後に、横型ビーズミルを用いて湿式メディア分散処理および濾過(PPフィルタ孔径0.8μm)を行い、顔料分散液1を調製した。各原料の配合量(g)を表1に示す。なお、顔料分散液1に含有する窒化チタンの平均分散粒子径は85nmであった。
Figure JPOXMLDOC01-appb-T000030
 (調製例2:顔料分散液2の調製)
 窒化チタンに替えて、酸窒化チタン(平均一次粒子径35nm;表中、「TiON」)を用いて、調製例1と同様の手順で顔料分散液2を調製した。各原料の配合量(g)を表1に示す。なお、顔料分散液2に含有する酸窒化チタンの平均分散粒子径は95nmであった。
 (調製例3:顔料分散液3の調製)
 46.15gのSolsperse20000を、800.00gのPGMEAに混合して10分間撹拌した後、153.85gのカーボンブラック(フェニルスルホン酸基が表面に修飾された高抵抗カーボンブラック;CABOT製“TPK-1227”;平均一次粒子径40nm)を投入した後に30分間撹拌して、横型ビーズミルで調製例1と同様の手順で顔料分散液3を調製した。各原料の配合量(g)を表1に示す。なお、顔料分散液3に含有するカーボンブラックの平均分散粒子径は120nmであった。
 (調製例4:顔料分散液4の調製)
 30.00gの“Solsperse”(登録商標) 20000を、850.00gのPGMEAに混合して10分間撹拌した後、有機黒色顔料である、120.00gの上記構造式(32)で表されるベンゾジフラノン系顔料(平均一次粒子径50nm;BASF製“Irgaphor”(登録商標)Black S0100;表中、「S0100」)を投入して30分間撹拌した後に、横型ビーズミルを用いて、調製例1と同様の手順で顔料分散液4を調製した。各原料の配合量(g)を表1に示す。なお、顔料分散液4に含有するベンゾジフラノン系顔料の平均分散粒子径は120nmであった。
 (調製例5~7:顔料分散液5~7の調製)
 上記構造式(32)で表されるベンゾジフラノン系顔料に替えて、有機青色顔料であるC.I.ピグメントブルー60(平均一次粒子径60nm)、有機赤色顔料であるC.I.ピグメントレッド190(平均一次粒子径55nm)、有機黄色顔料であるC.I.ピグメントイエロー192(平均一次粒子径40nm)を用いて、調製例1と同様の手順で顔料分散液5~7をそれぞれ調製した。各原料の配合量(g)を表1に示す。なお、顔料分散液5に含有するC.I.ピグメントブルー60の平均分散粒子径は、162nm、顔料分散液6に含有するC.I.ピグメントレッド190の平均分散粒子径は、110nm、顔料分散液7に含有するC.I.ピグメントイエロー192の平均分散粒子径は90nmであった。
 (調製例8:顔料分散液8の調製)
 “Solsperse”(登録商標) 20000に替えて、分散剤として“Tego dispers”(登録商標)655(分子末端に酸性吸着基としてリン酸基を有するエチレンオキサイド/スチレンオキサイド系高分子分散剤)を用いて、調製例1と同様の手順で、顔料分散液8を調製した。各原料の配合量(g)を表1に示す。なお、顔料分散液8に含有する窒化チタンの平均分散粒子径は137nmであった。
 (調製例9~11:顔料分散液9~11の調製)
 “Solsperse”(登録商標) 20000に替えて、分散剤として“Tego dispers”(登録商標)655を用いて、調製例5~7と同様の手順で顔料分散液9~11をそれぞれ調製した。各原料の配合量(g)を表1に示す。なお、顔料分散液9に含有するC.I.ピグメントブルー60の平均分散粒子径は170nm、顔料分散液10に含有するC.I.ピグメントレッド190の平均分散粒子径は134nm、顔料分散液7に含有するC.I.ピグメントイエロー192の平均分散粒子径は105nmであった。
 (調製例12:顔料分散液12の調製)
 有機青色顔料を含有する、400.00gの顔料分散液5と、有機赤色顔料を含有する、300.00gの顔料分散液6と、有機黄色顔料を含有する、300.00gの顔料分散液7とを混合し10分間撹拌して、擬似黒色分散液である、顔料分散液12を調製した。各原料の配合量(g)を表1に示す。
 (調製例13:顔料分散液13の調製)
 有機青色顔料を含有する、400.00gの顔料分散液9と、有機赤色顔料を含有する、300.00gの顔料分散液10と、有機黄色顔料を含有する、300.00gの顔料分散液11とを混合し10分間撹拌して、擬似黒色分散液である顔料分散液13を調製した。各原料の配合量(g)を表2に示す。
Figure JPOXMLDOC01-appb-T000031
 (調製例14、15:顔料分散液14、15の調製)
 窒化チタンに替えて、窒化ジルコニウム(平均一次粒子径55nm;表中、「ZrN」)、アモルファスカーボンブラック(平均一次粒子径86nm;表中、「a-CB」)をそれぞれ用いて、調製例1と同様の手順で顔料分散液14、15を調製した。各原料の配合量(g)および平均分散粒子径(nm)を表3に示す。アモルファスカーボンブラックは、SP構造およびSP構造の合計に対して、SP構造の含有量が45atom%であるものを用いた。また、窒化ジルコニウムは、ZrNで表されるものを用いた。なお、顔料分散液8に含有する窒化チタンの平均分散粒子径は137nm、顔料分散液15に含有するアモルファスカーボンブラックの平均分散粒子径は165nmであった。
Figure JPOXMLDOC01-appb-T000032
 (調製例16:顔料分散液16の調製)
 窒化チタンの平均分散粒子径が312nmとなるように湿式分散処理を行った以外は、調製例1と同様の手順で、顔料分散液16を作製した。各原料の配合量(g)を表3に示す。
 (調製例17:顔料分散液17の調製)
 ベンゾジフラノン系顔料の平均分散粒子径が356nmとなるように湿式分散処理を行った以外は、調製例4と同様の手順で、顔料分散液17を作製した。各原料の配合量(g)を表3に示す。
 (実施例1)
 2.18gの顔料分散液1と、2.97gの顔料分散液12と、0.45gの構造式(3)で表される化合物と、2.50gのポリイミド樹脂溶液Aと、下記構造式(41)で表される、2つ以上のラジカル重合性基を有する化合物である0.69gのジペンタエリスリトールのε-カプロラクトン付加アクリレート(KAYARAD DPCA-60;日本化薬(株)製;表中、「DPCA-60」)と、光重合開始剤である0.12gの“アデカクルーズ”(登録商標)NCI-831((株)ADEKA製)と、11.09gのPGMEAを混合し、密栓して30分間シェーカー上で撹拌し、ネガ型感光性を有する、固形分15重量%の感光性組成物1を調製した。各原料の配合量(g)を表4に示す。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-T000034
 テンパックス(50mm×50mmの透光性ガラス基材)の表面に、感光性組成物1を、最終的に得られる硬化膜の厚さが2.0μmとなるように回転数を調節してスピンコーターで塗布して塗布膜を得て、ホットプレート(SCW-636;大日本スクリーン製造(株)製)を用いて、塗布膜を大気圧下100℃で120秒間プリベークして、プリベーク膜を得た。両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学(株)製)を用いて超高圧水銀灯のj線(313nm)、i線(波長365nm)、h線(波長405nm)およびg線(波長436nm)の混合線を、前述の方法で得られた必要最低露光量でプリベーク膜全面に露光光を照射して、露光膜を得た。次いで、フォトリソグラフィ用小型現像装置(AD-2000;滝沢産業(株)製)を用いて、液温23℃の2.38重量%TMAH水溶液で60秒間現像し、液温23℃の脱イオン水で30秒間リンスして現像膜を得て、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム(株)製)を用いて、窒素雰囲気下、現像膜を250℃で60分間加熱して、厚さ2.0μmの硬化膜を具備する光学特性評価用基板を得た。前述の方法で、硬化膜の光学特性を評価した結果を表5に示す。
 アルミニウム基材(70mm×70mm)の表面に、感光性組成物1を、最終的に得られる硬化膜の厚さが2.0μmとなるように回転数を調節してスピンコーターで塗布して塗布膜を得て、ホットプレートを用いて、塗布膜を大気圧下100℃で120秒間プリベークして、プリベーク膜を得た。両面アライメント片面露光装置を用いて超高圧水銀灯のj線(313nm)、i線(波長365nm)、h線(波長405nm)およびg線(波長436nm)の混合線を、前述の方法で得られた必要最低露光量でプリベーク膜全面に露光光を照射して、露光膜を得た。露光膜を高温イナートガスオーブンを用いて、窒素雰囲気下、露光膜を250℃で60分間加熱して、厚さ2.0μmの硬化膜を得た。さらに、硬化膜の表面に、アルミニウム薄膜を70nmの膜厚となるようパターン蒸着し、誘電率評価用基板を得た。前述の方法で、硬化膜の誘電率を評価した結果を表5に示す。なお、ホットプレート、両面アライメント片面露光装置、高温イナートガスオーブンは、光学特性評価用基板作製時と同一のものを用いた。
 支持体である透光性ガラス基材(10cm×10cm)の表面に、ポリアミド酸溶液Aを、最終的に得られるフレキシブル基材の厚さが7.0μmとなるよう回転数を調節してスピンコーターで塗布して塗布膜を得て、ホットプレートを用いて、110℃で10分間乾燥した。次いで、高温イナートガスオーブンを用いて、窒素雰囲気下で50℃から毎分4℃で昇温して350℃で30分間加熱した後に毎分10℃で昇温して500℃で30分間加熱することでポリアミド酸をイミド化した後に、自然冷却して常温とし、ガラス基材の表面にポリイミド樹脂からなるフレキシブル基材を具備する積層基材を得た。さらに、フレキシブル基材の表面に、感光性組成物1を、最終的に得られる硬化膜の厚さが2.0μmとなるように、上記の光学特性評価用基板作製時と同一の条件で塗布、プリベーク、露光、現像、キュアを行ない、硬化膜を得た。透光性ガラス基材側からエキシマレーザーを照射し、フレキシブル基材の密着性を低下させて透光性ガラス基材のみを剥離して、厚さ7.0μmのフレキシブル基材の表面に、厚さ2.0μmの硬化膜が形成された屈曲性評価用基板を得た。前述の方法で、硬化膜の屈曲性を評価した結果を表5に示す。
Figure JPOXMLDOC01-appb-T000035
 次いで、以下の方法で、感光性組成物1を硬化して得られる硬化膜を具備するパターン状硬化膜形成基板、および該パターン状硬化膜を画素分割層として具備する、輝度ムラ評価用の有機EL表示装置を作製した。
 図4に、画素分割層の形成工程を含む有機EL表示装置の作製工程を示す。
 無アルカリガラス基板(15)(横46mm×縦46mmの正方形)の表面に、スパッタ法により、厚さ10nmの銀/銅合金の薄膜(体積比10:1)を全面成膜し、エッチングしてパターン状の金属反射層(16)を形成した。次いで、スパッタ法により、厚さ10nmのITO透明導電膜を全面成膜し、エッチングして同パターン状の第二電極17と、引き出し電極として補助電極(18)を形成した後、“セミコクリーン”(登録商標)56(フルウチ化学(株)製)で10分間超音波洗浄し、超純水で洗浄して、電極形成基板を得た。
 電極形成基板の表面に、スピンコーターを用いて、最終的に得られる画素分割層の厚さが2.0μmとなるように回転数を調節して感光性組成物1を塗布し、塗布膜を得た。ホットプレートを用いて、塗布膜を大気圧下100℃で120秒間プリベークして、プリベーク膜を得た。
 開口部(横30μm/縦165μmの長方形)が、開口部間ピッチ50μmで配列したネガ型露光マスクのパターン状遮光部における縦方向/横方向のエッジ部が、無アルカリガラス基板(15)の縦方向/横方向のエッジ部に対して、それぞれ平行になるようにネガ型露光マスクを塗布膜上にセッティングして、両面アライメント片面露光装置を用いて、ネガ型露光マスクを介して、超高圧水銀灯のj線(313nm)、i線(波長365nm)、h線(波長405nm)およびg線(波長436nm)の混合線を、必要最低露光量でプリベーク膜に露光光をパターン照射して、露光膜を得た。次いで、フォトリソグラフィ用小型現像装置を用いて、2.38重量%TMAH水溶液で60秒間現像し、脱イオン水で30秒間リンスして、現像膜を得た。なお、ネガ型露光マスクとしては、ソーダガラス基板の表面にクロム製のパターン状遮光部が形成されたマスクを用いた。
 さらに、高温イナートガスオーブンを用いて、窒素雰囲気下、現像膜を250℃で60分間加熱して硬化膜とし、電極形成基板中央部の縦16mm/横16mmのエリア内に、開口部(横30μm/縦165μmの長方形)が開口部間ピッチ50μmで配列した、厚さ2.0μmのパターン状硬化膜(19)を具備する、開口率18%のパターン状硬化膜形成基板を得て、前途の方法でパターン直線性を評価した。後述のプロセスを経た後に得られる有機EL表示装置において、ここでいう開口部が最終的に発光画素部となる部分であり、パターン状硬化膜が画素分割層に相当する部分である。なお、ホットプレート、両面アライメント片面露光装置、フォトリソグラフィ用小型現像装置、高温イナートガスオーブンは、光学特性評価用基板作製時と同一のものを用いた。
 次に、パターン状硬化膜形成基板を用いて、有機EL表示装置の作製を行った。真空蒸着法により発光層を含む有機EL層(20)を形成するため、真空度1×10-3Pa以下の蒸着条件下で、蒸着源に対してパターン状硬化膜形成基板を回転させ、まず、正孔注入層として、化合物(HT-1)を10nm、正孔輸送層として、化合物(HT-2)を50nmの厚さで成膜した。次に、発光層上に、ホスト材料として、化合物(GH-1)とドーパント材料として、化合物(GD-1)を40nmの厚さで蒸着した。その後、電子輸送材料として、化合物(ET-1)と化合物(LiQ)を、体積比1:1で40nmの厚さで積層した。
 次に、化合物(LiQ)を2nm蒸着した後、銀/マグネシウム合金(体積比10:1)で10nm蒸着して第一電極(21)とした。その後、低湿/窒素雰囲気下、エポキシ樹脂系接着剤を用いて、キャップ状ガラス板を接着することにより封止し、有機EL表示装置を得た。前述の方法で、有機EL表示装置の輝度ムラを評価した結果を表6に示す。なお、ここでいう厚さは、水晶発振式膜厚モニターの表示値である。
 有機EL層の形成に用いた化合物群(HT-1、HT-2、GH-1、GD-1、ET-1、LiQ)の化学構造を、それぞれ以下に示す。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 次いで、以下の方法で、感光性組成物1を硬化して得られる硬化膜を画素分割層として具備する発光信頼性評価用のフレキシブル有機EL表示装置を作製した。
 画素分割層の形成工程を含む、前途の有機EL表示装置の作製工程を示した図4における無アルカリガラス基板(15)を、支持体であるガラス基材の表面にポリイミド樹脂からなるフレキシブル基材を具備する積層基材に替えた以外は同様の手順で、金属反射層、第二電極、補助電極を形成した後に、感光性組成物1を塗布し、プリベーク、露光、現像、キュアまでを行なって、前途のパターン状硬化膜(19)と同パターン状の、厚さ2.0μmの硬化膜を得た。次いで同様の手順で有機EL層、第一電極を形成して封止した。最後に、ガラス基材を剥離して、発光信頼性評価用のフレキシブル有機EL表示装置を完成させ、前途の方法で発光信頼性を評価した。評価結果を表6に示す。なお、ガラス基材の表面にポリイミド樹脂からなるフレキシブル基材を具備する積層基材は、上記の屈曲性評価用基板の作製時と同様の手順で得たものを使用した。
Figure JPOXMLDOC01-appb-T000039
 (実施例2~8)
 構造式(3)で表される化合物に替えて上記構造式(5)、(7)、(9)、(11)、(13)、(15)、(17)で表される化合物をそれぞれ用いて、実施例1と同様の手順で、表4に示す各原料の種類および配合量(g)で、ネガ型感光性を有する、固形分15重量%の感光性組成物2~8をそれぞれ調製し、実施例1と同様の方法で硬化膜および有機EL表示装置を作製して評価した。評価結果を表5~6に示す。
 (実施例9~11)
 顔料分散液12に替えて顔料分散液4を用い、上記構造式(11)、(3)、(17)で表される化合物をそれぞれ用いて、実施例1と同様の手順で、表7に示す各原料の種類および配合量(g)で、ネガ型感光性を有する、固形分15重量%の感光性組成物9~11を調製し、実施例1と同様の方法で硬化膜および有機EL表示装置を作製して評価した。評価結果を表8~9に示す。
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
 (実施例12)
 ジペンタエリスリトールのε-カプロラクトン付加アクリレートに替えて、ジペンタエリスリトールヘキサアクリレート(表中、「DPHA」)を用いた以外は実施例9と同様の手順で、ネガ型感光性を有する、固形分15重量%の感光性組成物12を調製し、実施例1と同様の方法で硬化膜および有機EL表示装置を作製して評価した。評価結果を表8~9に示す。
 (実施例13)
 顔料分散液1に替えて顔料分散液16を用い、顔料分散液4に替えて顔料分散液17を用いた以外は実施例1と同様の手順で、表7に示す各原料の種類および配合量(g)で、ネガ型感光性を有する、固形分15重量%の感光性組成物13を調製し、実施例1と同様の方法で硬化膜および有機EL表示装置を作製して評価した。評価結果を表8~9に示す。
 (実施例14~15)
 顔料分散液1を用いることなく、顔料分散液4、12をそれぞれ用いて実施例1と同様の手順で、表7に示す各原料の種類および配合量(g)で、ネガ型感光性を有する、固形分15重量%の感光性組成物14~15を調製し、実施例1と同様の方法で硬化膜および有機EL表示装置を作製して評価した。評価結果を表8~9に示す。
 (実施例16~18)
 上記構造式(11)で表される化合物とポリイミド樹脂溶液Aの割合を替えた以外は実施例9と同様の手順で、表7に示す各原料の種類および配合量(g)で、ネガ型感光性を有する、固形分15重量%の感光性組成物16~18を調製し、実施例1と同様の方法で硬化膜および有機EL表示装置を作製して評価した。評価結果を表8~9に示す。
 (実施例19~21)
 顔料分散液2、4、12、14、15を用いて、表10に示す各原料の種類および配合量(g)で、ネガ型感光性を有する、固形分15重量%の感光性組成物19~21を調製し、実施例1と同様の方法で硬化膜および有機EL表示装置を作製して評価した。評価結果を表11~12に示す。
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
 (実施例22~23)
 波長992nmに極大吸収波長を有するバナジルフタロシアニン系近赤外線吸収染料である、0.20gのFDN-08(表中、「VO-Pc」)を、9.80gのPGMEAに添加して3時間撹拌して得られた近赤外線吸収染料溶液Aをさらに用いて、実施例9と同様の手順で、表10に示す各原料の種類および配合量(g)で、固形分15重量%の感光性組成物22~23を調製し、実施例1と同様の方法で硬化膜および有機EL表示装置を作製して評価した。評価結果を表11~12に示す。
 (実施例24)
 顔料分散液1および12に替えて、顔料分散液3および4を用いた以外は、実施例5と同様の手順で、表10に示す各原料の種類および配合量(g)で、ネガ型感光性を有する、固形分15重量%の感光性組成物24を調製し、実施例1と同様の方法で硬化膜および有機EL表示装置を作製して評価した。評価結果を表11~12に示す。
 (実施例25)
 2.18gの顔料分散液1と、2.97gの顔料分散液12と、2.10gのポリイミド樹脂溶液Aと、5.00gのポリイミド樹脂溶液Bと、2つ以上のラジカル重合性基を有する化合物である0.51gのジペンタエリスリトールのε-カプロラクトン付加アクリレート(KAYARAD DPCA-60)と、光重合開始剤である0.12gの“アデカクルーズ”(登録商標)NCI-831と、7.12gのPGMEAを混合し、密栓して30分間シェーカー上で撹拌し、ネガ型感光性を有する、固形分15重量%の感光性組成物25を調製した。
実施例1と同様の方法で硬化膜および有機EL表示装置を作製して評価した。各原料の種類および配合量(g)を表13に、評価結果を表14~15に示す。
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
 (実施例26)
 ポリイミド樹脂溶液Bを、カルド樹脂溶液Aに替えた以外は、実施例25と同様の手順で、表7に示す各原料の種類および配合量(g)で、ネガ型感光性を有する、固形分15重量%の感光性組成物26を調製し、実施例1と同様の方法で硬化膜および有機EL表示装置を作製して評価した。評価結果を表14~15に示す。
 (比較例1~7)
 本発明の感光性組成物中の必須成分である上記(a-1)~(a-3)成分を用いることなく、表16に示す各原料の種類および配合量(g)で、ネガ型感光性を有する、固形分15重量%の感光性組成物27~33を調製し、実施例1と同様の方法で硬化膜および有機EL表示装置を作製して評価した。評価結果を表17~18に示す。
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
 (比較例8~10)
 上記構造式(3)で表される化合物に替えて、下記構造式(42)、(43)で表される化合物を用い、表16に示す各原料の種類および配合量(g)で、ネガ型感光性を有する、固形分15重量%の感光性組成物34~36を調製し、実施例1と同様の方法で硬化膜および有機EL表示装置を作製して評価した。評価結果を表17~18に示す。なお、下記構造式(42)、(43)で表される化合物は、上記(a-1)~(a-3)成分に該当する化合物ではない。
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
 (比較例11~17)
 上記構造式(3)で表される化合物に替えて、下記構造式(44)~(49)で表される化合物を用い、表19に示す各原料の種類および配合量(g)で、ネガ型感光性を有する、固形分15重量%の感光性組成物27~33を調製し、実施例1と同様の方法で硬化膜および有機EL表示装置を作製して評価した。評価結果を表20~21に示す。なお、下記構造式(44)~(49)で表される化合物は、上記(a-1)~(a-3)成分に該当する化合物ではない。
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
 (実施例27)
 2.18gの顔料分散液8と、0.67gの顔料分散液13と、0.45gの上記構造式(11)で表される化合物と、4.35gのポリイミド樹脂溶液Aと、0.60gのキノンジアジド化合物aと、11.75gのPGMEAを混合し、密栓して30分間シェーカー上で撹拌し、ポジ型感光性を有する、固形分15重量%の感光性組成物44を調製した。光学特性評価用基板、誘電率評価用基板および屈曲性評価用基板の作製においてパターン露光を行なわなかったことと、パターン状硬化膜形成基板の作製においてネガ型露光マスクの開口部と遮光部とが反転したポジ型露光マスクを用いたこと以外は実施例1と同様の方法で、硬化膜および有機EL表示装置を作製して評価した。各原料の配合量(g)を表22に、評価結果を表23~24に示す。
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
 (比較例18)
 上記構造式(11)で表される化合物を用いなかった以外は、実施例27と同様の手順で、表22に示す各原料の種類および配合量(g)で、ポジ型感光性を有する、固形分15重量%の感光性組成物45を調製し、実施例27と同様の方法で硬化膜および有機EL表示装置を作製して評価した。評価結果を表23~24に示す。
 (合成例:ポリベンゾオキサゾール前駆体溶液Aの合成)
 乾燥窒素気流下、41.32g(0.16mol)のジフェニルエーテル-4,4'-ジカルボン酸と、43.24g(0.32mol)の1-ヒドロキシ-1,2,3-ベンゾトリアゾールとを反応させて得られたジカルボン酸誘導体の混合物(0.16mol)と、73.25g(0.20mol)の2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンを、570.00gのNMPに溶解させた後、75℃で12時間反応させた。次いで、13.13g(0.08mol)の5-ノルボルネン-2,3-ジカルボン酸無水物を、70.00gのNMPに予め溶解させた溶液を加え、さらに12時間攪拌して反応させた。反応混合物を濾過した後、反応混合物を水/メタノール=3/1(容積比)の溶液に投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、アルカリ可溶性ポリベンゾオキサゾール前駆体を得た。これをPGMEAに溶解して、固形分30重量%のポリベンゾオキサゾール前駆体溶液Aを得た。
 (実施例28)
 構造式(3)で表される化合物に替えて上記構造式(11)で表される化合物を用い、ポリイミド樹脂溶液Aに替えてポリベンゾオキサゾール前駆体溶液Aを用い、表25に示す各原料の種類および配合量(g)で、ネガ型感光性を有する、固形分15重量%の感光性組成物46を調製し、実施例1と同様の方法で硬化膜および有機EL表示装置を作製して評価した。評価結果を表26~27に示す。
 (比較例19)
 上記構造式(11)で表される化合物を用いることなく、表25に示す各原料の種類および配合量(g)で、ネガ型感光性を有する、固形分15重量%の感光性組成物47を調製し、実施例1と同様の方法で硬化膜および有機EL表示装置を作製して評価した。評価結果を表26~27に示す。
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
 (実施例29)
 ポリイミド樹脂溶液Aに替えて、ポリベンゾオキサゾール前駆体溶液Aを用い、表28に示す各原料の種類および配合量(g)で、ポジ型感光性を有する、固形分15重量%の感光性組成物48を調製した。光学特性評価用基板、誘電率評価用基板および屈曲性評価用基板の作製においてパターン露光を行なわなかったことと、パターン状硬化膜形成基板の作製においてネガ型露光マスクの開口部と遮光部とが反転したポジ型露光マスクを用いたこと以外は実施例1と同様の方法で、硬化膜および有機EL表示装置を作製して評価した。評価結果を表29~30に示す。
 (比較例20)
 上記構造式(11)で表される化合物を用いることなく、表28に示す各原料の種類および配合量(g)で、ポジ型感光性を有する、固形分15重量%の感光性組成物49を調製し、実施例29と同様の方法で硬化膜および有機EL表示装置を作製して評価した。評価結果を表29~30に示す。
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
 実施例および比較例について以下に説明をする。
 実施例14~15においては、同等の光学特性を有する比較例3~6と比べて、良好なパターン直線性を得ながら、屈曲性および発光信頼性が向上していることがわかる。
 上記(a-1)成分が有する長鎖アルキル基の炭素数が9~19である化合物を含有する実施例1~8では、同等の光学特性を有する比較例1と比べて、屈曲性および発光信頼性が向上していることがわかる。
 また、上記(a-2)成分を含有する実施例25、(a-3)成分を含有する実施例26では、同等の光学特性を有する比較例1と比べて、屈曲性および発光信頼性が向上していることがわかる。
 アルキル基の炭素数が8である化合物を含有する比較例8においては、屈曲性および発光信頼性の向上は観られない。一方、長鎖アルキル基の炭素数が20である化合物を含有する比較例9においては、発光信頼性の向上が観られているものの、パターン直線性が大きく悪化しており、さらに含有量を低く調整した比較例10においても同様にパターン直線性が悪化していることがわかる。
 以上より、本発明の効果を得るためには、感光性組成物が含有する上記(a-1)~(a-3)成分の長鎖アルキル基の炭素数が、9~19の範囲内にあることが必須であることがわかる。
 一方で、炭素数9~19の長鎖アルキル基を有するがエポキシ基を有さない、構造式(44)、(48)~(49)で表される化合物を含有する比較例11では、同等の光学特性を有する比較例2と比べて、何ら改善が観られない。逆に、エポキシ基を有するが炭素数9~19の長鎖アルキル基を有さない、構造式(45)~(47)で表される化合物を含有する比較例12~15では、同等の光学特性を有する比較例2と比べて、何ら改善が観られない。炭素数9~19の長鎖アルキル基を有するが、エポキシ基を有さない化合物と、
エポキシ基を有するが、炭素数9~19の長鎖アルキル基を有さない化合物とを混合して含有する比較例13においても、同等の光学特性を有する比較例2と比べて、何ら改善が観られない。
 以上から、上記(a-1)成分である、炭素数9~19の長鎖アルキル基とエポキシ基とを分子内に併せ持つ化合物との効果の違いは明らかである。
 着色材として有機顔料のみを含有する実施例14~15では、近赤外線領域の光透過率が90%以上と高いことから、有機顔料は近赤外線遮光性に極めて乏しい着色材であることを表している。一方、青色、黄色、赤色の有機顔料に加えて、窒化チタンを含有する実施例5においては、実施例15と比べて、より少ない顔料濃度で近赤外線および可視光領域における高い遮光性が得られているだけでなく、高い屈曲性をも得られていることがわかる。この効果は、有機顔料の比重が1.4~1.6の範囲であるのに対して、窒化チタンの比重が5.3と高比重であり、顔料成分の含有量を同程度とした場合、顔料の体積あたりの遮光性が高いことから、膜中の粒子の占有体積を少なくすることができ、結果として屈曲性の向上が得られたものと考えられる。
 可視光領域における着色力が高い、有機黒色顔料を含有する実施例9では、青色、黄色、赤色の有機顔料を混合して含有する実施例5と比べて、同等の光学特性を得るために必要となる着色材量を少なくすることができ、結果として、屈曲性の向上が得られている。
 また、比較例1~2、7~8、18では、(c)近赤外線遮光性を有する無機顔料により高い近赤外線遮光性が付与された反面、弊害として輝度ムラの問題が観られたが、実施例1~13、16~24においては高い近赤外線遮光性と、輝度ムラの抑制を両立できたことがわかる。この違いは、(c)近赤外線遮光性を有する無機顔料による誘電率の上昇を、上記(a-1)成分の含有により回避したことによる効果であるものと考えられる。
 (c)近赤外線遮光性を有する無機顔料に加えて、バナジルフタロシアニン系近赤外線吸収染料を併用した実施例22~23においては、誘電率、屈曲性および発光信頼性をいずれも損なうことなく、実施例9と比べて、さらに高い近赤外線遮光性が得られている。
 実施例28は比較例19と比べて、実施例29は比較例20と比べて、いずれも屈曲性および発光信頼性が向上している。これらの傾向は、実施例5が比較例1と比べて、実施例27が比較例18と比べて優れる点と共通している。すなわち、本発明の感光性組成物が含有するアルカリ可溶性樹脂が、アルカリ可溶性ポリイミド樹脂、アルカリ可溶性ポリベンゾオキサゾール前駆体のいずれであっても本発明の効果が得られている。また、感光性組成物が有する感光性が、ネガ型感光性、ポジ型感光性のいずれであっても本発明の効果が得られている。
 以上、全ての実施例および比較例により、本発明の感光性組成物が有用であることがわかる。
 本発明の感光性組成物は、有機EL表示装置の画素分割層の他、TFTの平坦化層を形成するための材料として利用することができ、特に、曲げたり、折り畳むことができるスマートフォンなどの電子機器の用途において有用である。
1:TFT
2:配線
3:TFT絶縁膜
4:平坦化層
5:第二電極(ITO電極)
6:基材
7:コンタクトホール
8:画素分割層
9:発光画素
10:第一電極
11:開口部
12:パターン状硬化膜
13:硬化膜
14:フレキシブル基材
15:無アルカリガラス基板
16:金属反射層
17:第二電極
18:補助電極
19:パターン状硬化膜
20:有機EL層
21:第一電極

Claims (16)

  1. 下記(a-1)~(a-3)の群から選ばれる化合物を少なくとも1種含有し、
    かつ(b)感光剤を含有する感光性組成物。
     (a-1)炭素数9~19の長鎖アルキル基を有するエポキシ化合物
     (a-2)下記一般式(1)で表される構造を有する樹脂
     (a-3)下記一般式(2)で表される構造を有する樹脂
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)中、Rは炭素数9~19の長鎖アルキル基を表し、RはCOOCHまたはオキシメチレン基を表し、*は結合位置を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (上記一般式(2)中、Rは炭素数9~19の長鎖アルキル基を表し、RはCOOCHまたはオキシメチレン基を表し、*は結合位置を表す。)
  2. さらに、(c)近赤外線遮光性を有する無機顔料を含有する請求項1に記載の感光性組成物。
  3. 前記(c)近赤外線遮光性を有する無機顔料が、チタン原子を有する無機黒色顔料、ジルコニウム原子を有する無機黒色顔料およびアモルファスカーボンブラックの群から少なくとも1種選ばれる無機顔料を含有する請求項2に記載の感光性組成物。
  4. 前記(a-1)~(a-3)の群から選ばれる化合物が有する長鎖アルキル基が、第三級炭素および/または第四級炭素を合計3つ以上有する分岐アルキル基である請求項1~3のいずれかに記載の感光性組成物。
  5. 前記(a-1)~(a-3)の群から選ばれる化合物が有する長鎖アルキル基が、下記構造式(50)で表される分岐アルキル基である請求項1~4のいずれかに記載の感光性組成物。
    Figure JPOXMLDOC01-appb-C000003
    (上記一般式(50)中、*は結合位置を表す。)
  6. 前記(a-2)、前記(a-3)のうち少なくともいずれかの化合物を含有し、上記一般式(1)で表される構造を有する樹脂がポリイミド樹脂であり、上記一般式(2)で表される構造を有する樹脂がカルド樹脂である請求項1~5のいずれかに記載の感光性組成物。
  7. さらに、(d)有機黒色顔料を含有する請求項1~6のいずれかに記載の感光性組成物。
  8. 前記(b)感光剤が、ラジカル重合性基を2つ以上有する化合物および光重合開始剤を含有し、ネガ型感光性を有する請求項1~7のいずれかに記載の感光性組成物。
  9. 前記(b)感光剤が、光酸発生剤を含有し、ポジ型感光性を有する請求項1~7のいずれかに記載の感光性組成物。
  10. さらに、(e)バナジルフタロシアニン系近赤外線吸収染料を含有する請求項1~9のいずれかに記載の感光性組成物。
  11. 膜厚2.0μmの硬化膜にしたときの、波長780~1,000nmにおける光透過率の最大値が5.0%以下であり、かつ周波数1kHzにおける誘電率が5.0未満である請求項1~10のいずれかに記載の感光性組成物。
  12. 請求項1~11のいずれかに記載の感光性組成物の硬化物からなる硬化膜。
  13. 請求項1~11のいずれかに記載の感光性組成物の硬化膜を具備する有機EL表示装置。
  14. ポリイミド樹脂からなるフレキシブル基材と、請求項1~11のいずれかに記載の感光性組成物の硬化膜とを具備する有機EL表示装置。
  15. 請求項12に記載の硬化膜からなる画素分割層を具備する有機EL表示装置。
  16. 表示エリアにおける前記画素分割層の開口率が20%以下である請求項15に記載の有機EL表示装置。
PCT/JP2018/010246 2017-03-29 2018-03-15 感光性組成物、硬化膜および有機el表示装置 WO2018180548A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/491,497 US11156918B2 (en) 2017-03-29 2018-03-15 Photosensitive composition, cured film and organic el display device
JP2018515155A JP6954273B2 (ja) 2017-03-29 2018-03-15 感光性組成物、硬化膜および有機el表示装置
CN201880022140.5A CN110446974B (zh) 2017-03-29 2018-03-15 感光性组合物、固化膜和有机el显示装置
KR1020197025491A KR102216990B1 (ko) 2017-03-29 2018-03-15 감광성 조성물, 경화막 및 유기 el 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017065228 2017-03-29
JP2017-065228 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018180548A1 true WO2018180548A1 (ja) 2018-10-04

Family

ID=63675484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010246 WO2018180548A1 (ja) 2017-03-29 2018-03-15 感光性組成物、硬化膜および有機el表示装置

Country Status (6)

Country Link
US (1) US11156918B2 (ja)
JP (1) JP6954273B2 (ja)
KR (1) KR102216990B1 (ja)
CN (1) CN110446974B (ja)
TW (1) TWI753139B (ja)
WO (1) WO2018180548A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084103A (ja) * 2018-11-29 2020-06-04 東レ株式会社 樹脂組成物、接着シートおよび多層基板
JP2020154247A (ja) * 2019-03-22 2020-09-24 太陽ホールディングス株式会社 感光性樹脂組成物、ドライフィルム、硬化物、及び、電子部品
WO2020196829A1 (ja) * 2019-03-27 2020-10-01 積水化学工業株式会社 樹脂材料及び多層プリント配線板
JP2021006842A (ja) * 2019-06-27 2021-01-21 東京応化工業株式会社 感光性組成物、硬化物、ブラックマトリクス、ブラックバンク、カラーフィルター、画像表示装置、及びパターン化された硬化膜の製造方法
WO2021149410A1 (ja) * 2020-01-21 2021-07-29 東レ株式会社 ポジ型感光性樹脂組成物、硬化膜、積層体、導電パターン付き基板、積層体の製造方法、タッチパネル及び有機el表示装置
WO2021182499A1 (ja) * 2020-03-13 2021-09-16 東レ株式会社 有機el表示装置および感光性樹脂組成物
TWI809340B (zh) * 2019-12-27 2023-07-21 日商索馬龍股份有限公司 黑色遮光部件
JP7464493B2 (ja) 2020-10-02 2024-04-09 東京応化工業株式会社 黒色感光性樹脂組成物、パターン化された硬化物の製造方法、パターン化された硬化物、及びブラックマトリクス
JP7464494B2 (ja) 2020-10-02 2024-04-09 東京応化工業株式会社 黒色感光性樹脂組成物、パターン化された硬化物の製造方法、パターン化された硬化物、及びブラックマトリクス
JP7479189B2 (ja) 2020-05-07 2024-05-08 サカタインクス株式会社 ブラックマトリックス用顔料分散組成物、およびブラックマトリックス用顔料分散レジスト組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09319076A (ja) * 1996-05-29 1997-12-12 Konica Corp 感光性平版印刷版
JP2009155547A (ja) * 2007-12-27 2009-07-16 New Japan Chem Co Ltd 金属加工用潤滑油組成物
JP2011138116A (ja) * 2009-12-04 2011-07-14 Jsr Corp 感放射線性樹脂組成物、層間絶縁膜並びにそれらの形成方法
JP2013091676A (ja) * 2011-10-24 2013-05-16 Panasonic Corp 新規uv硬化性樹脂組成物
KR20160115149A (ko) * 2015-03-26 2016-10-06 동우 화인켐 주식회사 흑색 감광성 수지 조성물, 이를 사용하여 제조된 블랙 매트릭스 및/또는 칼럼스페이서를 포함하는 칼라필터, 및 상기 칼라필터를 포함하는 액정표시장치

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008077859A (ja) * 2006-09-19 2008-04-03 Seiko Epson Corp 電気光学装置及び電子機器
JP5190602B2 (ja) * 2007-07-25 2013-04-24 公立大学法人大阪府立大学 感光性樹脂組成物、それを使用したスクリーン印刷用版及びスクリーン印刷用版の製造方法
KR101153787B1 (ko) * 2009-12-18 2012-06-13 에스케이케미칼주식회사 바나딜 프탈로시아닌 화합물 및 이를 이용한 근적외선 흡수 필터
JP5966278B2 (ja) * 2010-08-26 2016-08-10 住友大阪セメント株式会社 黒色膜、黒色膜付き基材及び画像表示装置、並びに黒色樹脂組成物及び黒色材料分散液
JP6304026B2 (ja) * 2012-04-26 2018-04-04 三菱ケミカル株式会社 感光性樹脂組成物、硬化物、層間絶縁膜、tftアクティブマトリックス基板及び液晶表示装置
KR101658374B1 (ko) * 2013-01-25 2016-09-22 롬엔드하스전자재료코리아유한회사 컬럼 스페이서 및 블랙 매트릭스를 동시에 구현할 수 있는 착색 감광성 수지 조성물
CN105074804B (zh) * 2013-02-19 2018-02-13 东丽株式会社 树脂黑底基板及触摸面板
TWI529490B (zh) * 2014-08-01 2016-04-11 奇美實業股份有限公司 彩色濾光片用之感光性樹脂組成物及其應用
WO2016038508A1 (en) * 2014-09-12 2016-03-17 Semiconductor Energy Laboratory Co., Ltd. Display device
CN104483775A (zh) * 2014-12-22 2015-04-01 京东方科技集团股份有限公司 一种显示面板及显示装置
KR20160079319A (ko) * 2014-12-26 2016-07-06 동우 화인켐 주식회사 네가티브형 포토레지스트 조성물
KR102314734B1 (ko) * 2015-06-12 2021-10-20 삼성디스플레이 주식회사 점착제 조성물 및 표시장치
CN108027561B (zh) 2015-09-30 2021-10-08 东丽株式会社 负型感光性树脂组合物、固化膜、具备固化膜的元件及显示装置、以及其制造方法
WO2017169763A1 (ja) 2016-03-30 2017-10-05 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する表示装置、並びにその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09319076A (ja) * 1996-05-29 1997-12-12 Konica Corp 感光性平版印刷版
JP2009155547A (ja) * 2007-12-27 2009-07-16 New Japan Chem Co Ltd 金属加工用潤滑油組成物
JP2011138116A (ja) * 2009-12-04 2011-07-14 Jsr Corp 感放射線性樹脂組成物、層間絶縁膜並びにそれらの形成方法
JP2013091676A (ja) * 2011-10-24 2013-05-16 Panasonic Corp 新規uv硬化性樹脂組成物
KR20160115149A (ko) * 2015-03-26 2016-10-06 동우 화인켐 주식회사 흑색 감광성 수지 조성물, 이를 사용하여 제조된 블랙 매트릭스 및/또는 칼럼스페이서를 포함하는 칼라필터, 및 상기 칼라필터를 포함하는 액정표시장치

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084103A (ja) * 2018-11-29 2020-06-04 東レ株式会社 樹脂組成物、接着シートおよび多層基板
JP7180324B2 (ja) 2018-11-29 2022-11-30 東レ株式会社 樹脂組成物、接着シートおよび多層基板
JP2020154247A (ja) * 2019-03-22 2020-09-24 太陽ホールディングス株式会社 感光性樹脂組成物、ドライフィルム、硬化物、及び、電子部品
WO2020195804A1 (ja) * 2019-03-22 2020-10-01 太陽ホールディングス株式会社 感光性樹脂組成物、ドライフィルム、硬化物、及び、電子部品
JP7329344B2 (ja) 2019-03-22 2023-08-18 太陽ホールディングス株式会社 感光性樹脂組成物、ドライフィルム、硬化物、及び、電子部品
CN113677761A (zh) * 2019-03-27 2021-11-19 积水化学工业株式会社 树脂材料以及多层印刷线路板
WO2020196829A1 (ja) * 2019-03-27 2020-10-01 積水化学工業株式会社 樹脂材料及び多層プリント配線板
JPWO2020196829A1 (ja) * 2019-03-27 2020-10-01
JP7411544B2 (ja) 2019-03-27 2024-01-11 積水化学工業株式会社 樹脂材料及び多層プリント配線板
JP2021006842A (ja) * 2019-06-27 2021-01-21 東京応化工業株式会社 感光性組成物、硬化物、ブラックマトリクス、ブラックバンク、カラーフィルター、画像表示装置、及びパターン化された硬化膜の製造方法
JP7263153B2 (ja) 2019-06-27 2023-04-24 東京応化工業株式会社 感光性組成物、硬化物、ブラックマトリクス、ブラックバンク、カラーフィルター、画像表示装置、及びパターン化された硬化膜の製造方法
TWI809340B (zh) * 2019-12-27 2023-07-21 日商索馬龍股份有限公司 黑色遮光部件
JP7081696B2 (ja) 2020-01-21 2022-06-07 東レ株式会社 ポジ型感光性樹脂組成物、硬化膜、積層体、導電パターン付き基板、積層体の製造方法、タッチパネル及び有機el表示装置
CN114945867A (zh) * 2020-01-21 2022-08-26 东丽株式会社 正型感光性树脂组合物、固化膜、层叠体、带导电图案的基板、层叠体的制造方法、触控面板及有机el显示装置
JPWO2021149410A1 (ja) * 2020-01-21 2021-07-29
WO2021149410A1 (ja) * 2020-01-21 2021-07-29 東レ株式会社 ポジ型感光性樹脂組成物、硬化膜、積層体、導電パターン付き基板、積層体の製造方法、タッチパネル及び有機el表示装置
WO2021182499A1 (ja) * 2020-03-13 2021-09-16 東レ株式会社 有機el表示装置および感光性樹脂組成物
JP7479189B2 (ja) 2020-05-07 2024-05-08 サカタインクス株式会社 ブラックマトリックス用顔料分散組成物、およびブラックマトリックス用顔料分散レジスト組成物
JP7464493B2 (ja) 2020-10-02 2024-04-09 東京応化工業株式会社 黒色感光性樹脂組成物、パターン化された硬化物の製造方法、パターン化された硬化物、及びブラックマトリクス
JP7464494B2 (ja) 2020-10-02 2024-04-09 東京応化工業株式会社 黒色感光性樹脂組成物、パターン化された硬化物の製造方法、パターン化された硬化物、及びブラックマトリクス

Also Published As

Publication number Publication date
TW201841057A (zh) 2018-11-16
US20200033728A1 (en) 2020-01-30
TWI753139B (zh) 2022-01-21
JPWO2018180548A1 (ja) 2020-02-06
KR20190130127A (ko) 2019-11-21
JP6954273B2 (ja) 2021-10-27
CN110446974B (zh) 2023-09-12
US11156918B2 (en) 2021-10-26
KR102216990B1 (ko) 2021-02-22
CN110446974A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2018180548A1 (ja) 感光性組成物、硬化膜および有機el表示装置
TWI782907B (zh) 負型感光性樹脂組成物、硬化膜、具備硬化膜之顯示裝置、及其製造方法
JP6172395B2 (ja) 着色樹脂組成物、着色膜、加飾基板及びタッチパネル
JP6503674B2 (ja) 樹脂積層体、それを用いた有機el素子基板、カラーフィルター基板及びそれらの製造方法ならびにフレキシブル有機elディスプレイ
WO2016052323A1 (ja) ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ
JPWO2018181311A1 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機elディスプレイ、並びにその製造方法
CN111051982B (zh) 有机el显示装置以及像素分割层和平坦化层的形成方法
JP6746888B2 (ja) ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ
US10723884B2 (en) Black pigment, method for producing same, pigment dispersion liquid, photosensitive composition and cured product of said photosensitive composition
US11360386B2 (en) Organic EL display device
JP2015001654A (ja) 積層樹脂ブラックマトリクス基板の製造方法
JP6331314B2 (ja) フレキシブルカラーフィルター、その製造方法ならびにそれを用いたフレキシブル発光デバイス
JP2023041121A (ja) 着色樹脂組成物、着色膜および有機el表示装置
KR20230157944A (ko) 유기 el 표시장치
CN116965154A (zh) 有机el显示装置
WO2018025417A1 (ja) 着色樹脂組成物、着色膜、加飾基板及びタッチパネル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018515155

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197025491

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18778106

Country of ref document: EP

Kind code of ref document: A1