WO2018123177A1 - ポリイソチアナフテン系導電性重合体の製造方法 - Google Patents

ポリイソチアナフテン系導電性重合体の製造方法 Download PDF

Info

Publication number
WO2018123177A1
WO2018123177A1 PCT/JP2017/035429 JP2017035429W WO2018123177A1 WO 2018123177 A1 WO2018123177 A1 WO 2018123177A1 JP 2017035429 W JP2017035429 W JP 2017035429W WO 2018123177 A1 WO2018123177 A1 WO 2018123177A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
represented
conductive polymer
general formula
Prior art date
Application number
PCT/JP2017/035429
Other languages
English (en)
French (fr)
Inventor
健 川本
結加 新美
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN201780081132.3A priority Critical patent/CN110121516B/zh
Priority to KR1020197018436A priority patent/KR102214676B1/ko
Priority to US16/474,394 priority patent/US11136432B2/en
Priority to EP17886921.0A priority patent/EP3564290A4/en
Priority to CN202210774072.6A priority patent/CN114920911B/zh
Priority to JP2018558822A priority patent/JP7019602B2/ja
Publication of WO2018123177A1 publication Critical patent/WO2018123177A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • C08G2261/1452Side-chains containing sulfur containing sulfonyl or sulfonate-groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/72Derivatisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/792Post-treatment doping with low-molecular weight dopants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds

Definitions

  • the present invention relates to a method for producing a conductive polymer compound (conductive polymer). More specifically, the present invention relates to a method for producing a polyisothianaphthene-based conductive polymer having a simple polymerization and purification process.
  • ⁇ -conjugated polymers represented by polyacetylene, polythiophene, polyaniline, polypyrrole, polyphenylene, poly (p-phenylene-vinylene) and the like are doped with an electron-accepting compound as a dopant.
  • ⁇ -conjugated polymers represented by polyacetylene, polythiophene, polyaniline, polypyrrole, polyphenylene, poly (p-phenylene-vinylene) and the like are doped with an electron-accepting compound as a dopant.
  • ⁇ -conjugated polymers polythiophene is excellent in chemical stability and useful.
  • a conductive polymer is produced by mixing a monomer for obtaining a conductive polymer and an oxidizing agent such as a metal catalyst, and by chemical oxidative polymerization or electrolytic polymerization (Patent Document) 1-10).
  • JP 2013-539806 A (WO2012 / 048823) Japanese Patent Laying-Open No. 2015-117367 Japanese Patent Laid-Open No. 2015-21100 Special table 2011-510141 (US ⁇ 8,721,928) JP 2003-261654 A International Publication No. 2011/004833 (US (2012/104308) JP 2002-158144 A (US Pat. No. 6,614,063) JP 2009-130018 (US Pat. No. 8,027,151) JP 2005-158882 A JP 2008-214401 A
  • a treatment step is required for washing or removing the catalyst.
  • PSS PSS aqueous dispersion solution obtained by polymerizing 3,4-ethylenedioxythiophene (EDOT) in a water-soluble polymer aqueous solution such as polystyrene sulfonic acid (PSS) as a dopant
  • EDOT 3,4-ethylenedioxythiophene
  • PSS polystyrene sulfonic acid
  • the concentration is limited to a certain level, and it is necessary to add PSS more than the amount of dopant in order to form a dispersion liquid, and when the film is formed, a portion that does not contribute to conductivity appears (Patent Documents 1 to 4).
  • PSS concentration of dopant
  • an electrolysis apparatus is necessary and molding is possible only on the surface of the electrode having conductivity (Patent Documents 8 and 9).
  • polymerizing once in a water solvent, adding a solvent, and carrying out a layer transfer is taken (patent document 10).
  • the purpose of the present invention is to (1) Providing a conductive polymer film from a monomer solution without complicated polymerization and purification steps; (2) To provide a conductive polymer precursor liquid capable of easily adjusting performance according to the purpose such as solvent affinity and solubility of the conductive polymer; (3) To provide a one-pack type high-concentration conductive polymer solution capable of forming a conductive polymer film.
  • the present invention also provides: (4) Another object of the present invention is to provide a method for easily producing a non-aqueous conductive polymer dispersion from the conductive polymer of the present invention.
  • benzo [c] thiophene-- which is an isothianaphthene derivative in the presence of a compound having a sulfo group as a substituent having dopant ability and catalytic ability. It has been found that the intended conductive polymer (conductive polymer) can be obtained by homo- or copolymerizing a compound having a 1,3-dihydro-2-oxide skeleton, and has led to the completion of the present invention. .
  • the present invention relates to a method for producing a conductive polymer of the following [1] to [13], a conductive polymer of [14], and a dispersion of the conductive polymer of [15].
  • [1] General formula (1) [Wherein R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently (1) a hydrogen atom or (2) a linear or branched group having 1 to 20 carbon atoms.
  • the hydrocarbon chains in the substituents represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are bonded to each other at an arbitrary position, and at least 1 together with the carbon atom to which the substituent is bonded. At least one divalent chain that forms a cyclic structure of two saturated or unsaturated hydrocarbons of 3 to 7 members may be formed.
  • the alkyl group, alkoxy group, alkyl ester group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 , or the cyclic hydrocarbon chain formed by them include carbonyl, ether, ester, amide, It may contain at least one bond selected from sulfide, sulfinyl, sulfonyl and imino.
  • M is OH or O
  • - Na +, O - Li + and O - alkali metal alkoxide is selected from K +, O - NH 4 + in ammonium alkoxide represented, linear or branched having 1 to 20 carbon atoms
  • k represents the number of condensed rings surrounded by a heterocycle and a benzene ring having substituents R 1 to R 4 , and is an integer of 0 to 3.
  • a method for producing a polyisothianaphthene-based conductive polymer comprising polymerizing at least one compound (A1) represented by formula (B) in the presence of a compound (B) having a sulfo group.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 in the general formula (1) are each independently (1) a hydrogen atom or (2) a straight chain having 1 to 20 carbon atoms.
  • the hydrocarbon chains in the substituents represented by R 2 , R 3 , R 4 , R 5 and R 6 are bonded to each other at any position, and together with the carbon atom to which the substituent is bonded, at least one 3 to You may form at least 1 bivalent chain
  • the alkyl group, alkoxy group, alkyl ester group represented by R 2 , R 3 , R 4 , R 5 and R 6 , or the cyclic hydrocarbon chain formed by them include carbonyl, ether, ester, amide, sulfide, sulfinyl.
  • M is OH or O
  • - Na +, O - Li + and O - alkali metal alkoxide is selected from K +, O - NH 4 + in ammonium alkoxide represented, linear or branched having 1 to 20 carbon atoms
  • k represents the number of condensed rings surrounded by a heterocycle and a benzene ring having substituents R 2 to R 4 , and is an integer of 0 to 3.
  • R 2 , R 3 , R 4 , R 5 and R 6 in the general formula (2) are each independently (1) a hydrogen atom, (2) a straight chain having 1 to 20 carbon atoms or Selected from a branched alkyl group, a linear or branched alkoxy group having 1 to 20 carbon atoms, or a linear or branched alkyl ester group having 1 to 20 carbon atoms, and (3) a halogen atom 6.
  • Production method [11] The process for producing a conductive polymer as described in any one of 1 to 10 above, wherein the polymerization is carried out without using an oxidizing agent.
  • a conductive polymer film can be prepared from a monomer solution without complicated polymerization and purification steps.
  • a conductive polymer precursor liquid capable of easily adjusting the performance according to the purpose such as solvent affinity and solubility of the conductive polymer can be obtained.
  • a one-pack type high-concentration conductive polymer solution capable of forming a conductive polymer film can be obtained.
  • a non-aqueous conductive polymer dispersion can be easily produced from the conductive polymer according to the present invention.
  • Example 4 is a TG-DTA curve of the polymer (polyisothianaphthene) obtained in Example 4.
  • 6 is a TG-DTA curve of the polymer (polyisothianaphthene) obtained in Comparative Example 4.
  • 6 is a TG-DTA curve of the polymer (polyisothianaphthene) obtained in Example 8.
  • 6 is a TG-DTA curve of the polymer (polyisothianaphthene) obtained in Comparative Example 6.
  • the method for producing a conductive polymer of the present invention is any of the following methods (i) to (iii).
  • Method (iii): at least one compound (A1) and at least one compound (A2) are copolymerized.
  • a conductive polymer can be obtained by polymerizing at least one compound (A1) represented by the general formula (1) in the presence of a compound (B) having a sulfo group.
  • the compound (A1) used in the present invention is a compound represented by the general formula (1).
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently (1) a hydrogen atom or (2) linear or branched having 1 to 20 carbon atoms.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 examples include hydrogen atom, halogen atom, SO 2 M, alkyl group, alkoxy group, alkyl ester group, nitro group, cyano group. Groups and the like.
  • examples of the halogen atom include fluorine, chlorine, bromine and iodine
  • examples of the hydrocarbon chain of the alkyl group or alkyl ester group include methyl, ethyl, propyl, isopropyl, n -Butyl, isobutyl, t-butyl, pentyl, hexyl, octyl, dodecyl, tetradecyl, cyclopentyl, cyclohexyl and the like.
  • alkoxy group examples include groups such as methoxy, ethoxy, (2-methoxy) ethoxy, propoxy, isopropoxy, hexyloxy, octyloxy, dodecyloxy and the like.
  • the alkyl ester group includes an alkylcarbonyloxy group and an alkoxycarbonyl group.
  • a malonate group —OCOCH 2 CO 2 H
  • a fumarate group —OCOCH ⁇ CHCO 2 H, a double bond is Trans-type
  • maleate group —OCOCH ⁇ CHCO 2 H, double bond is cis-type
  • the alkylcarbonyloxy group and the alkyl of the alkoxycarbonyl group are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, pentyl, hexyl, octyl, dodecyl, tetradecyl, cyclopentyl, cyclohexyl, etc. Also mentioned. Furthermore, examples of substituents other than those described above include amino groups such as methylamino, ethylamino, diphenylamino, and anilino, and groups such as trifluoromethyl, chlorophenyl, and acetamide.
  • R 5 and R 6 are more preferably a hydrogen atom.
  • R 1 , R 2 , R 3 and R 4 are more preferably at least two of the four are hydrogen atoms, more preferably at least three are hydrogen atoms, and particularly preferably all hydrogen atoms.
  • the hydrocarbon chains in the substituents represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are bonded to each other at an arbitrary position, and at least 1 together with the carbon atom to which the substituent is bonded. At least one divalent chain that forms a cyclic structure of two saturated or unsaturated hydrocarbons of 3 to 7 members may be formed.
  • the alkyl group, alkoxy group, alkyl ester group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 , or the cyclic hydrocarbon chain formed by them include carbonyl, ether, ester, amide, It may contain at least one bond selected from sulfide, sulfinyl, sulfonyl and imino.
  • hydrocarbon chain of the substituent R 1 , R 2 , R 3 , R 4 , R 5 or R 6 in the general formula (1) is bonded to each other at an arbitrary position to form a saturated or unsaturated 3- to 7-member ring
  • Examples of forming a hydrocarbon cyclic structure include structures represented by the following formulas (3) to (5).
  • k represents the number of condensed rings surrounded by a 1,3-dihydrothiophene-S-oxide ring and a benzene ring having the substituents R 1 to R 4 (general formula (1)), and represents an integer of 0 to 3 . From the viewpoint of solubility in a solvent, k is preferably 0.
  • Specific examples of the basic skeleton portion excluding the substituents R 1 to R 6 of the compound represented by the general formula (1) include, for example, 1,3-dihydroisothianaphthene-S-oxide (a compound in which k is 0). Is mentioned.
  • Examples of the compound represented by the general formula (1) include benzo [c] thiophene-1,3-dihydro-2-oxide, naphtho [2,3-c] thiophene-1,3- At least one selected from dihydro-2-oxide is preferably used.
  • R 1A , R 2A , R 3A , R 4A , R 5A , R 6A and k are respectively R 1 , R 2 , R 3 , R in the general formula (1). 4 represents the same meaning as R 5 , R 6 and k.
  • R 5A and R 6A are more preferably hydrogen atoms.
  • R 1A , R 2A , R 3A and R 4A are more preferably at least two of the four are hydrogen atoms, more preferably at least three are hydrogen atoms, and particularly preferably all hydrogen atoms.
  • the compound (B) having a sulfo group is considered to have dopant ability and catalytic ability by coexisting with the compound (A1).
  • the compound (B) having a sulfo group is not particularly limited as long as it is a compound having one or more sulfo groups in the molecule.
  • a low molecular sulfonic acid and a sulfonic acid polymer having one or more sulfo groups in the molecule can be mentioned.
  • the sulfonate compound can be used after ion exchange.
  • Examples of the low molecular sulfonic acid include sulfuric acid, alkyl sulfonic acid, benzene sulfonic acid, naphthalene sulfonic acid, anthraquinone sulfonic acid, camphor sulfonic acid, and derivatives thereof. These low molecular sulfonic acids may be monosulfonic acid, disulfonic acid or trisulfonic acid. Examples of the alkylsulfonic acid derivatives include 2-acrylamido-2-methylpropanesulfonic acid.
  • Examples of the benzenesulfonic acid derivative include phenolsulfonic acid, styrenesulfonic acid, toluenesulfonic acid, dodecylbenzenesulfonic acid, and the like.
  • Examples of the naphthalenesulfonic acid derivatives include 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, 1,3-naphthalenesulfonic acid, 1,3,6-naphthalenetrisulfonic acid, 6-ethyl-1-naphthalenesulfonic acid, and the like. Can be mentioned.
  • anthraquinone sulfonic acid derivatives examples include anthraquinone-1-sulfonic acid, anthraquinone-2-sulfonic acid, anthraquinone-2,6-disulfonic acid, and 2-methylanthraquinone-6-sulfonic acid.
  • 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, 1,3,6-naphthalenetrisulfonic acid, anthraquinonesulfonic acid, anthraquinone disulfonic acid, p-toluenesulfonic acid, and camphorsulfonic acid are preferable.
  • polystyrene sulfonic acid examples include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly (2-acrylamide-2- Methyl propane sulfonic acid), polyisoprene sulfonic acid and the like. These may be homopolymers or two or more types of copolymers.
  • polystyrene sulfonic acid polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polyacrylic acid butyl sulfonic acid are preferable.
  • a thing with a weight average molecular weight of 1,000,000 or less is preferable, More preferably, it is 500,000, More preferably, it is 300,000. If the weight average molecular weight is 1,000,000 or less, the solubility in the system is good and the handling is easy.
  • the polymer having a sulfo group can alleviate the thermal decomposition of the conjugated conductive polymer, improve the dispersibility of the monomer for obtaining the conjugated conductive polymer in the dispersion medium, and further conjugated. It can function as a dopant for the conductive polymer. Only 1 type may be used for the compound (B) which has these sulfo groups, and 2 or more types may be used together.
  • a conductive polymer can be obtained by polymerizing at least one compound (A1) in the presence of a compound (B) having a sulfo group.
  • the amount of the compound (B) having a sulfo group is preferably 1 to 400 mol, more preferably 5 to 300 mol, and still more preferably 10 to 250 mol with respect to 100 mol of the compound (A1) in terms of sulfo group.
  • the amount of the compound (B) is preferably 1 to 400 mol in terms of sulfo group with respect to 100 mol of the compound (A1) from the viewpoint of reaction rate and reaction rate.
  • a conductive polymer is obtained by polymerizing at least one compound (A2) represented by the general formula (2).
  • the compound (A2) can be polymerized even if the compound (B) having a sulfo group is not present.
  • the compound (A2) is presumed to be because the compound (A2) is a structural unit of the conductive polymer, and itself has a sulfo group and also has a dopant ability and a catalytic ability.
  • the compound (B) having the sulfo group may be included in addition to the compound (A2).
  • the compound (A2) is a compound represented by the general formula (2).
  • R 7 is a sulfo group.
  • R 2 , R 3 , R 4 , R 5 , and R 6 are each independently (1) a hydrogen atom, (2) linear or branched alkyl having 1 to 20 carbon atoms, or 1 to 20 carbon atoms.
  • M is OH or O
  • - Na +, O - Li + and O - alkali metal alkoxide is selected from K +, O - NH 4 + in ammonium alkoxide represented, linear or branched having 1 to 20 carbon atoms
  • useful substituents R 2 , R 3 , R 4 , R 5 and R 6 include a hydrogen atom, a halogen atom, SO 2 M, an alkyl group, an alkoxy group, an alkyl ester group, a nitro group, and a cyano group. Can be mentioned.
  • examples of the halogen atom include fluorine, chlorine, bromine and iodine
  • examples of the hydrocarbon chain of the alkyl group or alkyl ester group include methyl, ethyl, propyl, isopropyl, n- Examples include butyl, isobutyl, t-butyl, pentyl, hexyl, octyl, dodecyl, tetradecyl, cyclopentyl, cyclohexyl and the like.
  • alkoxy group examples include groups such as methoxy, ethoxy, (2-methoxy) ethoxy, propoxy, isopropoxy, hexyloxy, octyloxy, dodecyloxy and the like.
  • the alkyl ester group includes an alkylcarbonyloxy group and an alkoxycarbonyl group.
  • a malonate group —OCOCH 2 CO 2 H
  • a fumarate group —OCOCH ⁇ CHCO 2 H, a double bond is Trans-type
  • maleate group —OCOCH ⁇ CHCO 2 H, double bond is cis-type
  • the alkylcarbonyloxy group and the alkyl of the alkoxycarbonyl group are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, pentyl, hexyl, octyl, dodecyl, tetradecyl, cyclopentyl, cyclohexyl, etc. Also mentioned. Furthermore, examples of substituents other than those described above include amino groups such as methylamino, ethylamino, diphenylamino, and anilino, and groups such as trifluoromethyl, chlorophenyl, and acetamide.
  • the hydrocarbon chains in the substituents represented by R 2 , R 3 , R 4 , R 5 and R 6 are bonded to each other at any position, and together with the carbon atom to which the substituent is bonded, at least one 3 to You may form at least 1 bivalent chain
  • the alkyl group, alkoxy group, alkyl ester group represented by R 2 , R 3 , R 4 , R 5 and R 6 , or the cyclic hydrocarbon chain formed by them include carbonyl, ether, ester, amide, sulfide, sulfinyl. , At least one bond selected from sulfonyl and imino.
  • the hydrocarbon chain of the substituent R 2 , R 3 , R 4 , R 5 or R 6 in the general formula (2) is bonded to each other at an arbitrary position to form a 3- to 7-membered saturated or unsaturated hydrocarbon.
  • Examples of forming a cyclic structure include structures represented by formulas (6) to (8).
  • R 7A is a sulfo group.
  • R 2A , R 3A , R 4A , R 5A , R 6A and k represent the same meaning as R 2 , R 3 , R 4 , R 5 , R 6 and k in the general formula (2), respectively.
  • R 5A and R 6A are more preferably hydrogen atoms.
  • R 2A , R 3A and R 4A are more preferably at least two of three hydrogen atoms, and particularly preferably all hydrogen atoms.
  • k represents the number of condensed rings surrounded by a heterocycle and a benzene ring having substituents R 2 to R 4 , and is an integer of 0 to 3. From the viewpoint of solubility in a solvent, k is preferably 0.
  • Specific examples of the basic skeleton part excluding the substituents R 2 to R 7 of the compound represented by the general formula (2) include, for example, 1,3-dihydroisothianaphthene-S-oxide (compound in which k is 0). Can be mentioned.
  • Examples of the compound represented by the general formula (2) include benzo [c] thiophene-1,3-dihydro-2-oxide-4-sulfonic acid, benzo [c] thiophene-1,3-dihydro-2-oxide.
  • R 5 and R 6 are more preferably a hydrogen atom.
  • R 2 , R 3 and R 4 are more preferably at least one of three is a hydrogen atom, more preferably at least two are hydrogen atoms, and particularly preferably all hydrogen atoms.
  • benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid benzo [c] thiophene-1,3-dihydro-2-oxide-5,6-disulfonic acid Is mentioned.
  • a compound (A2) can be used individually by 1 type or in combination of 2 or more types.
  • a conductive polymer is obtained by copolymerizing at least one compound (A1) and at least one compound (A2).
  • the compound (B) having the sulfo group may be included.
  • at least one compound represented by the general formula (1-2) can be used instead of the compound (A1).
  • at least one compound represented by the general formula (2-2) can be used instead of the compound (A2).
  • the amount of the compound (A2) is preferably 1 to 400 mol, more preferably 5 to 300 mol, and still more preferably 10 to 250 mol with respect to 100 parts by mass of the compound (A1) in terms of sulfo group.
  • the amount of the compound (B) is preferably 1 to 400 mol in terms of sulfo group with respect to 100 mol of the compound (A1) from the viewpoint of reaction rate and reaction rate.
  • the performance according to the purpose such as solvent affinity and solubility of the conductive polymer can be easily adjusted.
  • benzo [c] thiophene-1,3-dihydro-2-oxide as compound (A1) and benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid as compound (A2) Since these two have different degrees of water solubility, the higher the proportion of benzo [c] thiophene-1,3-dihydro-2-oxide, the higher the water solubility of the resulting conductive polymer. Decreases and becomes insoluble. Also, as the proportion of benzo [c] thiophene-1,3-dihydro-2-oxide increases, the crystallized region in the polyisothianaphthene skeleton increases and the conductivity tends to improve.
  • solvent (C) In the polymerization according to the present invention, it is preferable to use a solvent from the viewpoint of material diffusion.
  • the solvent to be used is not particularly limited as long as the monomer to be used is dissolved.
  • examples include glycerol (glycerin), diglycerol (diglycerin), and polyethylene glycol.
  • water, methanol, ethanol, isopropanol, dimethylformamide, ethylene glycol and dimethyl sulfoxide are preferable, and water, ethanol, isopropanol, ethylene glycol and dimethyl sulfoxide are more preferable.
  • a solvent having a boiling point higher than that of water As a part or all of the solvent, those having a boiling point of 105 ° C. or higher are preferable.
  • toluene (boiling point: 111 ° C.), butanol (boiling point: 118 ° C.), acetic acid (boiling point: 118 ° C.), acetic anhydride (boiling point: 140 ° C.), dimethylformamide (boiling point: 153 ° C.), dimethyl Sulfoxide (boiling point: 189 ° C), ⁇ -butyrolactone (boiling point: 203 ° C), propylene carbonate (boiling point: 240 ° C), sulfolane (boiling point: 285 ° C), N-methylpyrrolidone (boiling point: 202 ° C), dimethylsulfolane (boiling point) : 233 ° C), butanediol (boiling point: 230 ° C), ethylene glycol (boiling point: 198 ° C),
  • polyethylene glycol such as polyethylene glycol 400, polyethylene glycol 600, and polyethylene glycol 1500 (the number after polyethylene glycol represents the molecular weight), does not have a boiling point under normal pressure, but is volatile under reduced pressure. Include what you do. In addition, when the boiling point is indicated, the pressure not indicated in parentheses is the boiling point under normal pressure.
  • these solvents having a boiling point higher than that of water ethylene glycol or dimethyl sulfoxide which is miscible with water and does not azeotrope is preferable from the viewpoint of easy handling and drying and acid resistance. By using a solvent having a higher boiling point for a part or all of the solvent, it is presumed that the reaction rate is improved without hindering the diffusion of substances even when water generated in the polymerization reaction volatilizes.
  • the proportion of the solvent (C) in the reaction system is preferably 0.1 to 99.5% by mass, more preferably 5 to 99% by mass, and further preferably 30 to 95% by mass.
  • the reaction rate and reaction rate are good.
  • the concentration of the solution varies depending on the composition, but is preferably 0.01 to 60% by mass, more preferably 0.1 to 50% by mass, and further preferably 1 to 30% by mass in terms of solid content.
  • concentration of the solution is within this range, the polymerization can be performed at an appropriate reaction rate, and the conductive polymer can be produced stably and economically, and the storage stability of the solution is improved.
  • the upper limit of the concentration of each solution is not limited to this, and any solution is between 0.01 and 100% by mass.
  • the solvent having a boiling point higher than that of water is preferably 0.1 to 99.5% by mass, more preferably 1 to 80% by mass, and further preferably 5 to 70% by mass with respect to the total amount of the solvent (C). It is.
  • the ratio of the solvent (C) in the reaction system is 0.1 to 99.5% by mass, the reaction can be performed with high productivity.
  • the conductivity improver to be added at the time of polymerization it is preferable to use an agent that azeotropes with water when mixed with water but can be dehydrated using a Dean-Stark apparatus or the like.
  • These solvents may be used alone or in combination of two or more.
  • the compound (D) that can be copolymerized with the compounds (A1) and (A2) can be copolymerized.
  • the compound (A1) and the compound (D) can be copolymerized in the presence of the compound (B) having a sulfo group.
  • the compound (A2) and the compound (D) can be copolymerized.
  • the compounds (A1), (A2) and the compound (D) can be copolymerized.
  • Compounds (D) include isothianaphthene, isobenzofuran, isobenzoindoline, isobenzoselenaphene, isobenzoterenaphene, thiophene, pyrrole, furan, selenophene, tellurophene, aniline, benzene, naphtho [2,3-c] thiophene , Anthra [2,3-c] thiophene, naphthaceno [2,3-c] thiophene, pentaseno [2,3-c] thiophene, perilo [2,3-c] thiophene, acenaphtho [2,3-c] thiophene Aromatic compounds such as 1,3-dihydroisothianaphthene, 1,3-dihydronaphtho [2,3-c] thiophene, 1,3-dihydroanthra [2,3-c
  • the compound (D) that can be copolymerized with the compounds (A1) and (A2) is preferably used in an amount of 200 mol% or less, based on the total number of moles of the compound (A1) and the compound (A2), and is 100 mol%. More preferably, it is more preferably 50 mol% or less. If it is 200 mol% or less, the reaction rate and the reaction rate are appropriate.
  • Additives having other functions may be mixed during the reaction as long as the effects of the present invention are not impaired.
  • a surfactant, a thickener, a thixotropic agent, a rheology control agent, or the like may be added in order to impart functionality such as coating property, impregnation property, and permeability to the conductive polymer.
  • a binder or the like may be added. You may use the component which has the performance which relieve
  • These additives may have a substituent. Examples thereof include dodecylbenzenesulfonic acid, polyvinyl alcohol, poly (N-vinylacetamide), polyacrylamide, and polyacrylic acid.
  • An additive can be used individually by 1 type or in combination of 2 or more types.
  • an oxidizing agent is usually used as a catalyst.
  • the oxidizing agent include ferric chloride, ferric sulfate, ferric nitrate, ethylenediaminetetraacetic acid iron, cupric chloride, cuprous chloride, ethylenediaminetetraacetic acid copper, aluminum chloride, iodine, bromine, 2 , 3-dichloro-5,6-dicyano-1,4-benzoquinone, tetrachloro-1,2-benzoquinone, tetrachloro-1,4-benzoquinone, tetracyano-1,4-benzoquinone, sulfuric acid, fuming sulfuric acid, trioxide
  • polymerization can be carried out without using these oxidant catalysts. That is, in the present invention, polymerization is carried out in the presence of a compound (B) having a sulfo group having catalytic ability, or a compound having a substituent (sulfo group) having catalytic ability is polymerized, so that an oxidizing agent was used. In some cases, the purification step after the reaction can be omitted.
  • the method for producing a conductive polymer of the present invention is at least one of the methods (i) to (iii). It is also possible to carry out polymerization by appropriately combining the conditions of these methods.
  • the compound (A1), the compound (A2), the compound selected from the compound (B) having a sulfo group, and the optional solvent (C), compounds (A1) and (A2) There are no particular restrictions on the order and mode of addition of the copolymerizable compound (D) and additives to the reaction system.
  • the polymerization can be performed by immersing or coating each compound on a substrate in order.
  • the temperature at the time of polymerization in the above is not particularly limited, but is preferably 10 to 300 ° C, more preferably 20 to 180 ° C, still more preferably 60 to 180 ° C. If the temperature during polymerization is 10 to 300 ° C., the reaction rate, reaction rate, and viscosity are appropriate, side reactions can be suppressed, and the production of the conductive polymer is stable and industrially suitable. It can be carried out in time, and the conductivity of the resulting conductive polymer also tends to increase.
  • polymerization can be managed by using a well-known heater and a cooler. If necessary, the polymerization may be performed while changing the temperature within the above range. When the solvent is volatilized, the temperature may be lower than the polymerization temperature, or the solvent may be volatilized under reduced pressure or in a dry air stream, and then raised to the polymerization temperature.
  • the atmosphere in the above polymerization is not particularly limited, and may be in the air or an inert gas atmosphere such as nitrogen or argon.
  • the reaction pressure is not particularly limited, but normal pressure is preferred. There is no particular limitation on the reaction time, and since it varies depending on the chemical structure, reaction temperature, reaction pressure, etc. of the compound, it cannot be defined unconditionally, but is preferably 0.01 to 240 hours, more preferably 0.1 to 72 hours. More preferably, it is 0.1 to 24 hours.
  • the pH during the reaction is preferably 1 to 7, more preferably 1 to 5, and still more preferably 1 to 3. If the pH is 1 or more, the load on the substrate is small, and if the pH is 7 or less, the reaction rate and reaction rate are appropriate.
  • the method for producing a conductive polymer of the present invention it is preferable to carry out the reaction while removing by-products from the reaction system. Removal of by-products can be performed by a volatilization (evaporation) method, an adsorption method, or other separation methods.
  • a volatilization (evaporation) method for example, in the case where X 1 and X 2 in the general formula (1) or (2) are S ⁇ O or Se ⁇ O, water is generated as a by-product.
  • the polymerization rate increases and the reaction rate also increases.
  • a solution is obtained when the solvent (C) is contained, and a solid substance is obtained when the solvent (C) is not contained.
  • washing may be performed by dissolving in an arbitrary solvent, but high conductivity can be obtained without performing a purification step.
  • recovered as a solution it may be diluted with an arbitrary solvent, ultrafiltration or the like may be performed to remove residual monomers, and ultrasonic treatment is performed to control the particle size and aggregate structure. You may do.
  • the obtained base material may be used as it is, may be processed, or may be used as a dispersion by carrying out a dispersion treatment after adding the solid to a solvent. Good.
  • the property of the conductive polymer after volatilizing water varies depending on the degree of miscibility of the solvent (C) with water. If the solvent is miscible with water, it reacts uniformly during the reaction, and a uniform film is formed when all of the solvent is volatilized. On the other hand, when a solvent that is immiscible with water is used, a conductive polymer is produced in the form of particles when the water is volatilized.
  • the product can be easily confirmed using the UV spectrum. As the polymerization proceeds, the absorption maximum shifts to the long wavelength side in the wavelength region of about 300 to 800 nm. In addition, when doped with sulfonic acid, absorption at wavelengths from about 1000 nm to longer wavelengths increases.
  • the storage temperature of the solution before the polymerization is not particularly limited, but is usually ⁇ 30 to 50 ° C., preferably ⁇ 20 to 40 ° C., more preferably ⁇ 10 to 30 ° C. When the storage temperature of the solution is in this range, the rate at which polymerization proceeds due to the effect of a strong acid during storage can be moderated.
  • the atmosphere at the time of storage is not particularly limited, and may be in the air or an inert atmosphere such as nitrogen or argon. Of these, nitrogen and argon are preferred.
  • the temperature range when the monomer solution, the dopant, and the catalyst solution are separated and mixed and used during polymerization is not limited to this, and stable storage is possible in a wider temperature range.
  • the conductive polymer obtained by the production method of the present invention is a homopolymer or copolymer having a substituent (sulfo group) having a dopant ability and a catalyst ability represented by the general formula (1), and the resulting heavy polymer.
  • the structure of the union is too complex to be represented by a general formula (structure). Therefore, if the structure is not specified, the characteristics of the substance whose structure is determined cannot be easily understood, and a plurality of different When the monomers are reacted, the properties of the polymerization composition obtained vary greatly depending on their blending ratio and reaction conditions, so that the polymer cannot be specified by the properties. Therefore, the present invention (claims) is defined by a production method.
  • Example 1 Solubility test Benzo [c] thiophene-1,3-dihydro-2-oxide was dissolved little by little in 10 g of the solvent, and the amount of dissolution was examined visually. The results are shown in Table 2. 5% by mass or more is “soluble”, 0.5 to 5% by mass is “slightly soluble”, and 0.5% by mass or less is “insoluble”.
  • Comparative Example 1 Solubility test 1,3-Dihydroisothianaphthene was dissolved little by little in 10 g of the solvent. Evaluation was conducted in the same manner as in Example 1, and the results are shown in Table 2.
  • Example 2 Stability test after dissolution 1.0 g of benzo [c] thiophene-1,3-dihydro-2-oxide and 0.25 g of p-toluenesulfonic acid monohydrate (pTSA, molar ratio 5/1) Were dissolved in 11.0 g of each solvent (solid content: 10% by mass) under the atmosphere shown in Table 3 and observed visually (immediately), 24 hours later, and 1 week later. The results are shown in Table 3.
  • pTSA p-toluenesulfonic acid monohydrate
  • Comparative Example 2 Stability test after dissolution 1.03 g of 1,3-dihydroisothianaphthene and 0.28 g of p-toluenesulfonic acid monohydrate (pTSA, mol ratio 5/1) were added to 11.3 g of each solvent. (Solid content: 10% by mass) Each of the compositions shown in Table 4 was dissolved in the atmosphere, and was observed visually immediately (initially), 24 hours later, and 1 week later. The results are shown in Table 4.
  • Example 3 Polymerization of benzo [c] thiophene-1,3-dihydro-2-oxide and p-toluenesulfonic acid 1.64 mmol (250 mg) of benzo [c] thiophene-1,3-dihydro-2-oxide was ionized After dissolving in 9.44 g of exchange water, 1.64 mmol (312 mg) of p-toluenesulfonic acid monohydrate was added to prepare an aqueous solution. Then, a part of the prepared aqueous solution was dropped on a glass plate, and heated and dried at 150 ° C. for 1 hour. The produced solid was black. When the product was added to water and the UV spectrum was measured under conditions at room temperature, absorption was observed on the long wavelength side from about 700 nm to 1300 nm, confirming the formation of polyisothianaphthene.
  • Comparative Example 3 Polymerization of benzo [c] thiophene-1,3-dihydro-2-oxide and sodium p-toluenesulfonate 1.64 mmol (250 mg) of benzo [c] thiophene-1,3-dihydro-2-oxide It was dissolved in 9.44 g of ion-exchanged water, and 1.64 mmol (315 mg) of sodium p-toluenesulfonate was added to prepare an aqueous solution. Then, a part of the prepared aqueous solution was dropped on a glass plate, and heated and dried at 150 ° C. for 1 hour. The produced solid was white and the progress of polymerization was not confirmed.
  • Example 4 Polymerization of benzo [c] thiophene-1,3-dihydro-2-oxide and p-toluenesulfonic acid (in ethanol) In 11.0 g of ethanol, 6.57 mmol (1.0 g) of benzo [c] thiophene-1,3-dihydro-2-oxide and 1.31 mmol (0.25 g) of p-toluenesulfonic acid monohydrate were dissolved. A solution having a solid content of 10% by mass was obtained. The prepared solution was relatively stable and remained colorless and transparent even when left in an air at room temperature for one week. A part of the obtained solution was dropped on a glass plate and heated and dried at 120 ° C. for 1 hour.
  • the produced solid was black, and the production of polyisothianaphthene was confirmed from the UV spectrum measured by adding the product to water.
  • the solution was dried with TG-DTA (Thermo Plus TG-8120, manufactured by Rigaku Corporation) in a dry air at a heating rate of 5 ° C./min. After heating to 40 ° C., the temperature was maintained at a constant temperature for 2 hours so that ethanol was sufficiently volatilized. The behavior of the reaction was confirmed when the temperature was raised to 250 ° C.
  • the obtained TG-DTA curve is shown in FIG.
  • Comparative Example 4 Polymerization of 1,3-dihydroisothianaphthene and p-toluenesulfonic acid (Comparison with Example 4)
  • a solution having a solid content of 10% by mass was prepared by dissolving 7.34 mmol (1.0 g) of 1,3-dihydroisothianaphthene and 1.47 mmol (0.28 g) of p-toluenesulfonic acid monohydrate in 11.3 g of ethanol. It was.
  • the prepared solution was colored yellow immediately after preparation, and a black precipitate was formed after several hours. A part of the obtained solution was dropped on a glass plate and heated and dried at 120 ° C. for 1 hour.
  • the produced solid was black, and the production of polyisothianaphthene was confirmed from the UV spectrum measured by adding the product to water.
  • TG-DTA measurement was performed under the same measurement conditions as in Example 4. The obtained TG-DTA curve is shown in FIG.
  • Example 5 Polymerization of benzo [c] thiophene-1,3-dihydro-2-oxide and ⁇ -naphthalenesulfonic acid 3.30 mmol (755 mg) of ⁇ -naphthalenesulfonic acid sodium salt was dissolved in 18.75 g of water, Cation exchange resin. To 9.75 g of the obtained ⁇ -naphthalenesulfonic acid aqueous solution (1.64 mmol as ⁇ -naphthalenesulfonic acid in aqueous solution), 1.64 mmol (250 mg) of benzo [c] thiophene-1,3-dihydro-2-oxide was added, An aqueous solution was prepared. Then, it dried at 110 degreeC with the hotplate for 1 hour. The produced film was blue, and the production of polyisothianaphthene was confirmed from the UV spectrum measured by adding the product to water.
  • Example 6 Polymerization of benzo [c] thiophene-1,3-dihydro-2-oxide and polystyrene sulfonic acid 3.29 mmol (500 mg) of benzo [c] thiophene-1,3-dihydro-2-oxide was ion-exchanged water.
  • the aqueous solution was prepared by adding 5.95 g (6.82 mmol as a sulfo group) of a 21% by mass polystyrenesulfonic acid solution dissolved in 14.8 g and adjusted from a sodium salt by ion exchange. Then, a part of the prepared aqueous solution was dropped on a glass plate, and heated and dried at 120 ° C. for 1 hour. The produced solid was black, and the production of polyisothianaphthene was confirmed from the UV spectrum measured by adding the product to water.
  • Example 7 Preparation of ethylene glycol dispersion of benzo [c] thiophene-1,3-dihydro-2-oxide and polystyrene sulfonic acid complex Benzo [c] thiophene-1,3-dihydro-2-oxide 0.736 mmol (112 mg) was dissolved in ion-exchanged water (3.31 g), and 1.33 g (1.52 mmol as a sulfo group) of a 21% by mass polystyrene sulfonic acid aqueous solution prepared from a sodium salt by ion exchange and 12.6 g of ethylene glycol were added. . The prepared liquid was heated at 105 ° C. for 4 hours to obtain a dark blue liquid. The formation of polyisothianaphthene was confirmed from the UV spectrum measured by adding the obtained liquid to water.
  • Example 8 Homopolymerization of benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid Benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid sodium salt 94 .4 mmol (24.0 g) was added and dissolved in 459.6 g of ion-exchanged water, and then passed through a column packed with a cation exchange resin to remove sodium. A part of the obtained aqueous solution was dropped on a glass plate and heated and dried at 120 ° C. for 1 hour.
  • the produced solid was black, and the production of polyisothianaphthene was confirmed from the UV spectrum measured by adding the product to water.
  • the product is water soluble and dissolves 1 g or more in 10 mL. Further, a TG-DTA curve measured under the same conditions as in Example 4 is shown in FIG. A clear reaction peak was observed between 120-130 ° C. The conductivity of the produced film was measured and found to be 0.014 S / cm.
  • Comparative Example 6 Polymerization of 1,3-dihydroisothianaphthene-5-sulfonic acid 41.9 mmol (10.0 g) of 1,3-dihydroisothianaphthene-5-sulfonic acid sodium salt was added to 80.0 g of ion-exchanged water. After addition and dissolution, sodium was removed by passing through a column packed with a cation exchange resin. A part of the obtained aqueous solution was dropped on a glass plate and heated and dried at 120 ° C. for 1 hour. The produced solid was black, and the production of polyisothianaphthene was confirmed from the UV spectrum measured by adding the product to water. A TG-DTA curve measured under the same conditions as in Example 4 is shown in FIG.
  • Example 9 Homopolymerization of benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid (high concentration) Benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid sodium salt 94.4 mmol (24.0 g) was added to 78.3 g of ion-exchanged water, dissolved, and then packed with a cation exchange resin. The column was passed through to remove sodium. A part of the obtained aqueous solution was dropped on a glass plate and heated and dried at 120 ° C. for 1 hour. The produced solid was black, and the production of polyisothianaphthene was confirmed from the UV spectrum measured by adding the product to water. The product was water-soluble and dissolved in 1 mL or more in 10 mL.
  • Example 10 Copolymerization of benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid and benzo [c] thiophene-1,3-dihydro-2-oxide (molar ratio 7: 3) Benzo [c] thiophene-1,3-dihydro-2-oxide 38.1 mmol (5.8 g) was dissolved in 94 g of ion-exchanged water to prepare an aqueous benzo [c] thiophene-1,3-dihydro-2-oxide solution. did.
  • a part of the obtained aqueous solution was dropped on a glass plate and heated and dried at 120 ° C. for 1 hour.
  • the produced solid was black, and the production of polyisothianaphthene was confirmed from the UV spectrum measured by adding the product to water.
  • the product was water insoluble.
  • the conductivity of the produced film was measured with a conductivity meter manufactured by Mitsubishi Analytech Co., Ltd. using a PSP probe at 25 ° C., and it was 0.97 S / cm.
  • Example 11 Copolymerization of benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid and benzo [c] thiophene-1,3-dihydro-2-oxide (molar ratio 5: 5) 10 g of the benzo [c] thiophene-1,3-dihydro-2-oxide aqueous solution prepared in Example 10 above (3.82 mmol of benzo [c] thiophene-1,3-dihydro-2-oxide in aqueous solution) and the above Example 19.5 g of an aqueous solution of benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid prepared in Step 8 (benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid 3.82 mmol) to prepare a solution.
  • the molar ratio of the prepared aqueous solution was confirmed by NMR measured in heavy water (D 2 O). A part of the obtained aqueous solution was dropped on a glass plate and heated and dried at 120 ° C. for 1 hour. The produced solid was black, and the production of polyisothianaphthene was confirmed from the UV spectrum measured by adding the product to water. The product was water insoluble. The conductivity of the produced film was measured by the same method as in Example 10 and found to be 0.98 S / cm.
  • Example 12 Copolymerization of benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid and benzo [c] thiophene-1,3-dihydro-2-oxide (molar ratio 3: 7) 10 g of the benzo [c] thiophene-1,3-dihydro-2-oxide aqueous solution prepared in Example 10 above (3.82 mmol of benzo [c] thiophene-1,3-dihydro-2-oxide in aqueous solution) and the above Example 8.37 g of an aqueous solution of benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid prepared in Step 8 (benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid 1.64 mmol) to prepare a solution.
  • the molar ratio of the prepared aqueous solution was confirmed by NMR measured in heavy water (D 2 O). A part of the obtained aqueous solution was dropped on a glass plate and heated and dried at 120 ° C. for 1 hour. The produced solid was black, and the production of polyisothianaphthene was confirmed from the UV spectrum measured by adding the product to water. The product was water insoluble. The conductivity of the produced film was measured by the same method as in Example 10 and found to be 0.13 S / cm.
  • Example 13 Homopolymerization of benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid (addition of ethylene glycol) 10 parts by mass of ethylene glycol was added to the solution prepared in Example 8 to prepare a solution (1.0 g of ethylene glycol was added to 10 g of the solution of Example 8). A part of the obtained solution was dropped on a glass plate and heated and dried at 120 ° C. for 1 hour. The produced solid was black, and the production of polyisothianaphthene was confirmed from the UV spectrum measured by adding the product to water. The product is water-soluble, and after film formation, it is possible to wash away with water and to prepare an aqueous solution. The conductivity of the produced film was measured by the same method as in Example 10 and found to be 0.35 S / cm.
  • Example 14 Copolymerization of benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid and benzo [c] thiophene-1,3-dihydro-2-oxide (molar ratio 7: 3,
  • ethylene glycol 10 parts by mass of ethylene glycol was added to the mixture of the two compounds prepared in Example 10 to prepare a solution (1.0 g of ethylene glycol was added to 10 g of the mixture of Example 10).
  • a part of the obtained solution was dropped on a glass plate and heated and dried at 120 ° C. for 1 hour.
  • the produced solid was black, and the production of polyisothianaphthene was confirmed from the UV spectrum measured by adding the product to water.
  • the product was water insoluble.
  • the conductivity of the produced film was measured by the same method as in Example 10 and found to be 0.43 S / cm.
  • Example 15 Copolymerization of benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid and benzo [c] thiophene-1,3-dihydro-2-oxide (molar ratio 5: 5, Addition of ethylene glycol) 10 parts by mass of ethylene glycol was added to the mixture of the two compounds prepared in Example 11 to prepare a solution (1.0 g of ethylene glycol was added to 10 g of the mixture of Example 11). A part of the obtained solution was dropped on a glass plate and heated and dried at 120 ° C. for 1 hour. The produced solid was black, and the production of polyisothianaphthene was confirmed from the UV spectrum measured by adding the product to water. The product was water insoluble. The electric conductivity of the produced film was measured by the same method as in Example 10 and found to be 2.4 S / cm.
  • Example 16 Copolymerization of benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid and benzo [c] thiophene-1,3-dihydro-2-oxide (molar ratio 3: 7, Addition of ethylene glycol) 10 parts by mass of ethylene glycol was added to the mixture of the two compounds prepared in Example 12 to prepare a solution (1.0 g of ethylene glycol was added to 10 g of the mixture of Example 12). A part of the obtained solution was dropped on a glass plate and heated and dried at 120 ° C. for 1 hour. The produced solid was black, and the production of polyisothianaphthene was confirmed from the UV spectrum measured by adding the product to water. The product was water insoluble. It was 9.4 S / cm when the electric conductivity of the produced
  • Example 17 Preparation of ethylene glycol dispersion of benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid and benzo [c] thiophene-2-oxide copolymer
  • 4.1 g of a mixed solution of the two prepared compounds (molar ratio of benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid and benzo [c] thiophene-2-oxide is 5/5) was added to and mixed with 6.7 g of ethylene glycol.
  • the prepared liquid was heated at 105 ° C. for 4 hours to obtain a dark blue liquid.
  • polyisothianaphthene was confirmed from the UV spectrum measured by adding the obtained liquid to water. A part of the produced dispersion was dropped on a glass plate, and heated and dried at 120 ° C. for 1 hour. After film formation, the electrical conductivity was measured and found to be 3.0 S / cm.
  • Example 18 Preparation of dimethyl sulfoxide dispersion of benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid and benzo [c] thiophene-2-oxide copolymer
  • Example 11 5.1 g of a mixed solution of the two prepared compounds (molar ratio of benzo [c] thiophene-1,3-dihydro-2-oxide-5-sulfonic acid and benzo [c] thiophene-2-oxide is 5/5) was added to and mixed with 8.1 g of dimethyl sulfoxide.
  • the prepared liquid was heated at 120 ° C. for 6 hours to obtain a dark blue liquid.
  • the formation of polyisothianaphthene was confirmed from the UV spectrum measured by adding the obtained liquid to water.
  • the present invention provides a method for facilitating the production process of a conductive polymer, and includes an antistatic agent, a solid electrolyte of a capacitor, a conductive paint, a conductive fiber, an electrochromic element, an electrode material, a thermoelectric conversion material, and a transparent material.
  • an antistatic agent e.g., an antistatic agent, a solid electrolyte of a capacitor, a conductive paint, a conductive fiber, an electrochromic element, an electrode material, a thermoelectric conversion material, and a transparent material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、(i)明細書に開示した一般式(1)の化合物(A1)の少なくとも1種を、スルホ基を有する化合物(B)存在下で重合させる導電性重合体の製造方法、(ii)一般式(2)で示される化合物(A2)の少なくとも1種からなる群より選ばれる少なくとも1種の化合物を重合させる導電性重合体の製造方法、及び(iii)化合物(A1)の少なくとも1種)と、化合物(A2)の少なくとも1種からなる群より選ばれる少なくとも1種の化合物を共重合させる導電性重合体の製造方法に関する。 本発明の方法は、溶剤親和性、溶解性等の目的に応じた性能に容易に調節できる一液型の導電性重合体の製造方法である。

Description

ポリイソチアナフテン系導電性重合体の製造方法
 本発明は、導電性高分子化合物(導電性重合体)の製造方法に関する。さらに詳しく言えば、重合及び精製工程が簡易なポリイソチアナフテン系導電性重合体の製造方法に関する。
 近年、ポリアセチレン、ポリチオフェン、ポリアニリン、ポリピロール、ポリフェニレン、ポリ(p-フェニレン-ビニレン)等に代表されるπ共役系高分子に、電子受容性化合物をドーパントとしてドープした導電性高分子材料が開発され、例えば、帯電防止剤、コンデンサの固体電解質、導電性塗料、エレクトロクロミック素子、電極材料、熱電変換材料、透明導電膜、化学センサ、アクチュエータ等への応用が検討されている。前記π共役系高分子の中でも、ポリチオフェンが化学的安定性に優れ、有用である。
 一般的に導電性高分子は、導電性高分子重合体を得るための単量体と金属触媒等の酸化剤とを混合し、化学酸化重合法により、もしくは電解重合によって製造される(特許文献1~10)。
特表2013-539806号公報(WO2012/048823) 特開2015-117367号公報 特開2015-21100号公報 特表2011-510141号公報(US 8,721,928) 特開2003-261654号公報 国際公開第2011/004833号パンフレット(US 2012/104308 ) 特開2002-158144号公報(US 6,614,063) 特開2009-130018号公報(US 8,027,151) 特開2005-158882号公報 特開2008-214401号公報
 しかし、金属触媒等を用いる手法においては、触媒の洗浄または除去のために処理工程が必要である。ドーパントとなるポリスチレンスルホン酸(PSS)等の水溶性高分子水溶液中で、3,4-エチレンジオキシチオフェン(EDOT)を重合させることで得られるPEDOT:PSS水分散体溶液を製造する際、触媒として使用される物質を除去するためイオン交換樹脂等が用いられ工程を煩雑化しており、粘度や粒径、分散液の安定性等、目的に合わせた液を作製するため、固形分で数%程度の濃度に限られ、また、分散液化するためにPSSをドーパント量以上に添加する必要があり、成膜化した際には導電に寄与しない部分が出てくる(特許文献1~4)。また、結晶性高く、不溶化してしまうPEDOT構造の溶剤親和性を向上させるため、EDOTに置換基を導入したり、ドーパントを設計したりする必要がある(特許文献5、6)。
 電解重合法を用いる手法においては、電解装置が必要であること、導電性を有する電極表面上にのみ成形可能であるといった制約がある(特許文献8、9)。
 また、水以外の溶剤の分散液を作製する際には一度水溶媒中で重合を行い、溶剤を添加、転層する手法がとられている(特許文献10)。
 本発明の目的は、
(1)導電性高分子膜を煩雑な重合・精製工程なく単量体液から提供すること、
(2)導電性高分子の溶剤親和性、溶解性等の目的に応じた性能を容易に調節できる導電性高分子前駆体液を提供すること、
(3)導電性高分子を製膜することができる一液型で高濃度の導電性高分子溶液を提供することにある。
 また、本発明は、
(4)前記本発明の導電性高分子から非水溶液導電性高分子分散液の容易に製造する方法を提供することをも目的とする。
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、ドーパント能と触媒能を有する置換基としてスルホ基を有する化合物の存在下、イソチアナフテン誘導体であるベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド骨格を有する化合物を単独または共重合させることにより目的とする導電性高分子(導電性重合体)を得ることができることを見出し、本発明を完成させるに至った。
 本発明は、下記[1]~[13]の導電性重合体の製造方法、[14]の導電性重合体、及び[15]の導電性重合体の分散液に関する。
[1]一般式(1)
Figure JPOXMLDOC01-appb-C000003
[式中、R1、R2、R3、R4、R5、及びR6は、それぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル、炭素数1~20の直鎖状または分岐状のアルコキシ、または炭素数1~20の直鎖状または分岐状のアルキルエステル基(アルキルカルボニルオキシ基またはアルコキシカルボニル基)、(3)SO2M、(4)ハロゲン原子、(5)カルボキシ基、(6)ホスホニル基、(7)ニトロ基、(8)シアノ基、(9)1級、2級または3級アミノ基、(10)トリハロメチル基、(11)フェニル基、及び(12)アルキル基、ヒドロキシ基、アルコキシ基、アルキルエステル基、カルボニル基、及びハロゲン原子から選択される少なくとも1つで置換されたフェニル基からなる群から選択される1価の置換基を表す。R1、R2、R3、R4、R5及びR6が表す置換基中の炭化水素鎖は互いに任意の位置で結合して、当該置換基が結合している炭素原子と共に、少なくとも1つの3~7員環の飽和、または不飽和炭化水素の環状構造を形成する2価鎖を少なくとも1つ形成してもよい。R1、R2、R3、R4、R5及びR6が表すアルキル基、アルコキシ基、アルキルエステル基、またはそれらによって形成される環状炭化水素鎖には、カルボニル、エーテル、エステル、アミド、スルフィド、スルフィニル、スルホニル及びイミノから選択される少なくとも1つの結合を含んでもよい。MはOH、またはO-Na+、O-Li+及びO-+から選択されるアルカリ金属アルコキシド、O-NH4 +で表されるアンモニウムアルコキシド、炭素数1~20の直鎖状または分岐状のアルコキシ基、塩素、フッ素、臭素、及びヨウ素から選択されるハロゲン原子を表す。kはヘテロ環と置換基R1~R4を有するベンゼン環に囲まれた縮合環の数を表し、0~3の整数である。]
で示される化合物(A1)の少なくとも1種を、スルホ基を有する化合物(B)の存在下で重合させることを特徴とするポリイソチアナフテン系導電性重合体の製造方法。
[2]前記化合物(A1)が、式(1)中のkが0である化合物である前項1に記載の導電性重合体の製造方法。
[3]一般式(1)中のR1、R2、R3、R4、R5及びR6が、それぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル基、炭素数1~20の直鎖状または分岐状のアルコキシ基、または炭素数1~20の直鎖状または分岐状のアルキルエステル基、及び(3)ハロゲン原子から選択される1価の置換基である前項1または2に記載の導電性重合体の製造方法。
[4]一般式(2)
Figure JPOXMLDOC01-appb-C000004
[式中、R7はスルホ基である。R2、R3、R4、R5、及びR6はそれぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル、炭素数1~20の直鎖状または分岐状のアルコキシ、または炭素数1~20の直鎖状または分岐状のアルキルエステル基(アルキルカルボニルオキシ基またはアルコキシカルボニル基)、(3)SO2M、(4)ハロゲン原子、(5)カルボキシ基、(6)ホスホニル基、(7)ニトロ基、(8)シアノ基、(9)1級、2級または3級アミノ基、(10)トリハロメチル基、(11)フェニル基、及び(12)アルキル基、ヒドロキシ基、アルコキシ基、アルキルエステル基、カルボニル基、スルホ基、及びハロゲン原子から選択される少なくとも1つで置換されたフェニル基からなる群から選ばれる1価の置換基を表す。R2、R3、R4、R5及びR6が表す置換基中の炭化水素鎖は互いに任意の位置で結合して、当該置換基が結合している炭素原子と共に、少なくとも1つの3~7員環の飽和、または不飽和炭化水素の環状構造を形成する2価鎖を少なくとも1つ形成してもよい。R2、R3、R4、R5及びR6が表すアルキル基、アルコキシ基、アルキルエステル基、またはそれらによって形成される環状炭化水素鎖には、カルボニル、エーテル、エステル、アミド、スルフィド、スルフィニル、スルホニル及びイミノから選択される少なくとも1つの結合を含んでもよい。MはOH、またはO-Na+、O-Li+及びO-+から選択されるアルカリ金属アルコキシド、O-NH4 +で表されるアンモニウムアルコキシド、炭素数1~20の直鎖状または分岐状のアルコキシ基、塩素、フッ素、臭素、及びヨウ素から選択されるハロゲンを表す。kはヘテロ環と置換基R2~R4を有するベンゼン環に囲まれた縮合環の数を表し、0~3の整数である。]
で示される化合物(A2)の少なくとも1種を重合させるポリイソチアナフテン系導電性重合体の製造方法。
[5]前記化合物(A2)が、一般式(2)中のkが0である化合物である前項4に記載の導電性重合体の製造方法。
[6]一般式(2)中のR2、R3、R4、R5及びR6が、それぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル基、炭素数1~20の直鎖状または分岐状のアルコキシ基、または炭素数1~20の直鎖状または分岐状のアルキルエステル基、及び(3)ハロゲン原子から選択される1価の置換基である前項4または5に記載の導電性重合体の製造方法。
[7]前項1に記載の一般式(1)で示される化合物(A1)の少なくとも1種と、前項4に記載の一般式(2)で示される化合物(A2)の少なくとも1種の化合物とを共重合させる導電性重合体の製造方法。
[8]前項1に記載の一般式(1)で示される化合物(A1)及び前項4に記載の一般式(2)で示される化合物(A2)と共重合し得る化合物(D)と、前記一般式(1)で示される化合物(A1)の少なくとも1種とをスルホ基を有する化合物(B)の存在下で共重合させるポリイソチアナフテン系導電性重合体の製造方法。
[9]前項1に記載の一般式(1)で示される化合物(A1)及び前項4に記載の一般式(2)で示される化合物(A2)と共重合し得る化合物(D)と、前記一般式(2)で示される化合物(A2)の少なくとも1種を共重合させるポリイソチアナフテン系導電性重合体の製造方法。
[10]前項1に記載の一般式(1)で示される化合物(A1)及び前項4に記載の一般式(2)で示される化合物(A2)と共重合し得る化合物(D)と、前記一般式(1)で示される化合物(A1)の少なくとも1種と、前記一般式(2)で示される化合物(A2)の少なくとも1種とを共重合させるポリイソチアナフテン系導電性重合体の製造方法。
[11]酸化剤を使用せずに重合させる前項1~10のいずれかに記載の導電性重合体の製造方法。
[12]生成する水を除去しながら重合させる前項1~11のいずれかに記載の導電性重合体高分子の製造方法。
[13]水よりも蒸気圧の高い溶媒を含む前項1~12のいずれかに記載の導電性重合体の製造方法。
[14]前項1~13のいずれかに記載の方法で得られるポリイソチアナフテン系導電性重合体。
[15]前項14に記載のポリイソチアナフテン系導電性重合体の分散液。
 本発明によれば、
(1)導電性高分子膜を煩雑な重合・精製工程なく単量体液から調製することができる。
(2)導電性高分子の溶剤親和性、溶解性等の目的に応じた性能を容易に調節できる導電性高分子前駆体液を得ることができる。
(3)導電性高分子を製膜することができる一液型で高濃度の導電性高分子溶液を得ることができる。さらに、(4)本発明による導電性高分子から非水溶液導電性高分子分散液を容易に製造することができる。
実施例4で得られた重合体(ポリイソチアナフテン)のTG-DTA曲線である。 比較例4で得られた重合体(ポリイソチアナフテン)のTG-DTA曲線である。 実施例8で得られた重合体(ポリイソチアナフテン)のTG-DTA曲線である。 比較例6で得られた重合体(ポリイソチアナフテン)のTG-DTA曲線である。
 以下、本発明を詳細に説明する。
 本発明の導電性重合体の製造方法は、以下の(i)~(iii)のいずれかの方法である。
方法(i):一般式(1)で示される化合物(A1)の少なくとも1種を、スルホ基を有する化合物(B)存在下で重合させる。
方法(ii):一般式(2)で示される化合物(A2)の少なくとも1種を重合させる。
方法(iii):化合物(A1)の少なくとも1種と化合物(A2)の少なくとも1種とを共重合させる。
<方法(i)>
 一般式(1)で示される化合物(A1)の少なくとも1種を、スルホ基を有する化合物(B)存在下で重合させることで、導電性高分子を得ることができる。
[化合物(A1)]
 本発明に用いられる化合物(A1)は、一般式(1)で示される化合物である。
Figure JPOXMLDOC01-appb-C000005
 一般式(1)中、R1、R2、R3、R4、R5及びR6はそれぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル、炭素数1~20の直鎖状または分岐状のアルコキシ、または炭素数1~20の直鎖状または分岐状のアルキルエステル基(アルキルカルボニルオキシ基またはアルコキシカルボニル基)、(3)SO2M、(4)ハロゲン原子、(5)カルボキシ基、(6)ホスホニル基、(7)ニトロ基、(8)シアノ基、(9)1級、2級または3級アミノ基、(10)トリハロメチル基、(11)フェニル基、及び(12)アルキル基、ヒドロキシ基、アルコキシ基、アルキルエステル基、カルボニル基、及びハロゲン原子から選択される少なくとも1つで置換されたフェニル基からなる群から選択される1価の置換基を表し、MはOH、またはO-Na+、O-Li+及びO-+から選択されるアルカリ金属アルコキシド、O-NH4 +で表されるアンモニウムアルコキシド、炭素数1~20の直鎖状または分岐状のアルコキシ基、塩素、フッ素、臭素、及びヨウ素から選択されるハロゲン原子を表す。
 置換基R1、R2、R3、R4、R5及びR6として有用な例としては、水素原子、ハロゲン原子、SO2M、アルキル基、アルコキシ基、アルキルエステル基、ニトロ基、シアノ基等が挙げられる。
 これらの置換基をさらに詳しく例示すれば、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等が挙げられ、アルキル基またはアルキルエステル基の炭化水素鎖としては、メチル、エチル、プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、ペンチル、ヘキシル、オクチル、ドデシル、テトラデシル、シクロペンチル、シクロヘキシル等が挙げられる。アルコキシ基としては、メトキシ、エトキシ、(2-メトキシ)エトキシ、プロポキシ、イソプロポキシ、ヘキシルオキシ、オクチルオキシ、ドデシルオキシ等の基が挙げられる。アルキルエステル基は具体的には、アルキルカルボニルオキシ基及びアルコキシカルボニル基であり、例えばマロン酸エステル基(-OCOCH2CO2H)、フマル酸エステル基(-OCOCH=CHCO2H、二重結合がトランス型)、マレイン酸エステル基(-OCOCH=CHCO2H、二重結合がシス型)等が挙げられる。また、アルキルカルボニルオキシ基及びアルコキシカルボニル基のアルキルがメチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、ペンチル、ヘキシル、オクチル、ドデシル、テトラデシル、シクロペンチル、シクロヘキシル等であるものも挙げられる。
 さらに、前記以外の置換基の例として、メチルアミノ、エチルアミノ、ジフェニルアミノ、アニリノ等のアミノ基、トリフルオロメチル、クロロフェニル、アセトアミド等の基が挙げられる。
 R5及びR6は水素原子であることがより好ましい。R1、R2、R3、R4は4つのうち少なくとも2つは水素原子であることがより好ましく、少なくとも3つが水素原子であることがさらに好ましく、全て水素原子であることが特に好ましい。
 R1、R2、R3、R4、R5及びR6が表す置換基中の炭化水素鎖は互いに任意の位置で結合して、当該置換基が結合している炭素原子と共に、少なくとも1つの3~7員環の飽和、または不飽和炭化水素の環状構造を形成する2価鎖を少なくとも1つ形成してもよい。
 R1、R2、R3、R4、R5及びR6が表すアルキル基、アルコキシ基、アルキルエステル基、またはそれらによって形成される環状炭化水素鎖には、カルボニル、エーテル、エステル、アミド、スルフィド、スルフィニル、スルホニル及びイミノから選択される少なくとも1つの結合を含んでもよい。
 前記一般式(1)中の置換基R1、R2、R3、R4、R5またはR6の炭化水素鎖が互いに任意の位置で結合して3~7員環の飽和または不飽和炭化水素の環状構造を形成する例としては、下記式(3)~(5)に示す構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 kは1,3-ジヒドロチオフェン-S-オキシド環と置換基R1~R4を有するベンゼン環(一般式(1))に囲まれた縮合環の数を表し、0~3の整数を表す。溶剤への溶解性の観点から、kは好ましくは0である。
 一般式(1)で示される化合物の置換基R1~R6を除いた基本骨格部分の具体例としては、例えば1,3-ジヒドロイソチアナフテン-S-オキシド(kが0である化合物)が挙げられる。
 一般式(1)で示される化合物としては、置換基を有してもよいベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド、ナフト[2,3-c]チオフェン-1,3―ジヒドロ-2-オキシドから選ばれる少なくとも1つが好ましく用いられる。
 具体例としては、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド、ベンゾ[c]チオフェン-1,3-ジヒドロ-5-メチル-2-オキシド、ベンゾ[c]チオフェン-1,3-ジヒドロ-5,6-ジメチル-2-オキシド、ベンゾ[c]チオフェン-1,3-ジヒドロ-5-メタノール-2-オキシド、ベンゾ[c]チオフェン-1,3-ジヒドロ-5-ヒドロキシ-2-オキシド、ベンゾ[c]チオフェン-1,3-ジヒドロ-5-フルオロ-2-オキシド、ベンゾ[c]チオフェン-1,3-ジヒドロ-5-クロロ-2-オキシド、ベンゾ[c]チオフェン-1,3-ジヒドロ-5-ブロモ-2-オキシド、ベンゾ[c]チオフェン-1,3-ジヒドロ-5-オール-2-オキシド、ナフト[2,3-c]チオフェン-1,3―ジヒドロ-2-オキシド、ナフト[2,3-c]チオフェン-1,3―ジヒドロ-4-フェニル-2-オキシドが挙げられるが、これに限定されるものではない。
 化合物(A1)は、1種単独でまたは2種以上を組み合わせて用いることができる。
 化合物(A1)の代わりに、一般式(1-2)で示される化合物の少なくとも1種を使用することも可能である。
Figure JPOXMLDOC01-appb-C000007
 上記一般式(1-2)中、R1A、R2A、R3A、R4A、R5A、R6A及びkは、それぞれ前記一般式(1)中のR1、R2、R3、R4、R5、R6及びkと同じ意味を表す。
 R5A及びR6Aは水素原子であることがより好ましい。R1A、R2A、R3A、R4Aは4つのうち少なくとも2つは水素原子であることがより好ましく、少なくとも3つが水素原子であることがさらに好ましく、全て水素原子であることが特に好ましい。
[スルホ基を有する化合物(B)]
 スルホ基を有する化合物(B)は、化合物(A1)と共存させることで、ドーパント能や触媒能を持つと考えられる。スルホ基を有する化合物(B)としては、分子内に1つ以上のスルホ基を有する化合物であれば特に限定されない。例えば、低分子スルホン酸、分子内に一つ以上のスルホ基を有するスルホン酸ポリマーが挙げられる。スルホン酸塩の化合物は、イオン交換して用いることができる。
 低分子スルホン酸としては、硫酸、アルキルスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、アントラキノンスルホン酸、カンファースルホン酸及びそれらの誘導体等が挙げられる。これらの低分子スルホン酸は、モノスルホン酸でもジスルホン酸でもトリスルホン酸でもよい。アルキルスルホン酸の誘導体としては、2-アクリルアミド-2-メチルプロパンスルホン酸等が挙げられる。ベンゼンスルホン酸の誘導体としては、フェノールスルホン酸、スチレンスルホン酸、トルエンスルホン酸、ドデシルベンゼンスルホン酸等が挙げられる。ナフタレンスルホン酸の誘導体としては、1-ナフタレンスルホン酸、2-ナフタレンスルホン酸、1,3-ナフタレンジスルホン酸、1,3,6-ナフタレントリスルホン酸、6-エチル-1-ナフタレンスルホン酸等が挙げられる。アントラキノンスルホン酸の誘導体としては、アントラキノン-1-スルホン酸、アントラキノン-2-スルホン酸、アントラキノン-2,6-ジスルホン酸、2-メチルアントラキノン-6-スルホン酸等が挙げられる。これらの中でも、1-ナフタレンスルホン酸、2-ナフタレンスルホン酸、1,3,6-ナフタレントリスルホン酸、アントラキノンスルホン酸、アントラキノンジスルホン酸、p-トルエンスルホン酸、カンファースルホン酸が好ましい。
 分子内に1つ以上のスルホ基を有するポリマーとしては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸等が挙げられる。これらは単独重合体であってもよいし、2種以上の共重合体であってもよい。これらのうち、導電性付与の点から、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸が好ましい。
 スルホ基を有するポリマーの分子量に特に制限はないが、重量平均分子量が1,000,000以下のものが好ましく、より好ましくは500,000であり、さらに好ましくは300,000である。重量平均分子量が1,000,000以下であれば、系への溶解性が良好であるため取扱いが容易である。
 スルホ基を有するポリマーは、共役系導電性重合体の熱分解を緩和することができ、共役系導電性重合体を得るための単量体の分散媒中での分散性を向上させ、さらに共役系導電性重合体のドーパントとして機能することが可能である。
 これらのスルホ基を有する化合物(B)は1種のみを用いてもよく、2種以上を併用してもよい。
 前記方法(i)においては、前記化合物(A1)の少なくとも1種を、スルホ基を有する化合物(B)存在下で重合させることで、導電性高分子を得ることができる。スルホ基を有する化合物(B)の量は、スルホ基換算で前記化合物(A1)100モルに対して好ましくは1~400モル、より好ましくは5~300モル、さらに好ましくは10~250モルである。化合物(B)の量が、スルホ基換算で前記化合物(A1)100モルに対して1~400モルであれば、反応率、反応速度の面から好ましい。
<方法(ii)>
 一般式(2)で示される化合物(A2)の少なくとも1種を重合させることで、導電性高分子が得られる。化合物(A2)はスルホ基を有する化合物(B)が存在しなくとも重合が可能である。化合物(A2)は導電性高分子の構成単位である他、それ自体がスルホ基を有し、ドーパント能や触媒能も併せ持つためであると推測される。なお、方法(ii)においても、前記化合物(A2)の他に前記スルホ基を有する化合物(B)を含んでいてもよい。
[化合物(A2)]
 化合物(A2)は、一般式(2)で示される化合物である。
Figure JPOXMLDOC01-appb-C000008
 式中、R7はスルホ基である。R2、R3、R4、R5、及びR6はそれぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル、炭素数1~20の直鎖状または分岐状のアルコキシ、または炭素数1~20の直鎖状または分岐状のアルキルエステル基(アルキルカルボニルオキシ基またはアルコキシカルボニル基)、(3)SO2M、(4)ハロゲン原子、(5)カルボキシ基、(6)ホスホニル基、(7)ニトロ基、(8)シアノ基、(9)1級、2級または3級アミノ基、(10)トリハロメチル基、(11)フェニル基、及び(12)アルキル基、ヒドロキシ基、アルコキシ基、アルキルエステル基、カルボニル基、スルホ基、及びハロゲン原子から選択される少なくとも1つで置換されたフェニル基からなる群から選ばれる1価の置換基、(13)スルホ基を表す。MはOH、またはO-Na+、O-Li+及びO-+から選択されるアルカリ金属アルコキシド、O-NH4 +で表されるアンモニウムアルコキシド、炭素数1~20の直鎖状または分岐状のアルコキシ基、塩素、フッ素、臭素、及びヨウ素から選択されるハロゲンを表す。
 置換基R2、R3、R4、R5及びR6として有用な例としては、水素原子、ハロゲン原子、SO2M、アルキル基、アルコキシ基、アルキルエステル基、ニトロ基、シアノ基等が挙げられる。
 これらの置換基をさらに詳しく例示すれば、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられ、アルキル基またはアルキルエステル基の炭化水素鎖としては、メチル、エチル、プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、ペンチル、ヘキシル、オクチル、ドデシル、テトラデシル、シクロペンチル、シクロヘキシル等が挙げられる。アルコキシ基としては、メトキシ、エトキシ、(2-メトキシ)エトキシ、プロポキシ、イソプロポキシ、ヘキシルオキシ、オクチルオキシ、ドデシルオキシ等の基が挙げられる。アルキルエステル基は具体的には、アルキルカルボニルオキシ基及びアルコキシカルボニル基であり、例えばマロン酸エステル基(-OCOCH2CO2H)、フマル酸エステル基(-OCOCH=CHCO2H、二重結合がトランス型)、マレイン酸エステル基(-OCOCH=CHCO2H、二重結合がシス型)等が挙げられる。また、アルキルカルボニルオキシ基及びアルコキシカルボニル基のアルキルがメチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、ペンチル、ヘキシル、オクチル、ドデシル、テトラデシル、シクロペンチル、シクロヘキシル等であるものも挙げられる。
 さらに、前記以外の置換基の例として、メチルアミノ、エチルアミノ、ジフェニルアミノ、アニリノ等のアミノ基、トリフルオロメチル、クロロフェニル、アセトアミド等の基が挙げられる。
 R2、R3、R4、R5及びR6が表す置換基中の炭化水素鎖は互いに任意の位置で結合して、当該置換基が結合している炭素原子と共に、少なくとも1つの3~7員環の飽和、または不飽和炭化水素の環状構造を形成する2価鎖を少なくとも1つ形成してもよい。R2、R3、R4、R5及びR6が表すアルキル基、アルコキシ基、アルキルエステル基、またはそれらによって形成される環状炭化水素鎖には、カルボニル、エーテル、エステル、アミド、スルフィド、スルフィニル、スルホニル及びイミノから選択される少なくとも1つの結合を含んでもよい。
 前記一般式(2)中の置換基R2、R3、R4、R5またはR6の炭化水素鎖が互いに任意の位置で結合して3~7員環の飽和または不飽和炭化水素の環状構造を形成する例としては、式(6)~(8)に示す構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 化合物(A2)以外に、一般式(2-2)で示される化合物群から選ばれる少なくとも1種の化合物を使用することも可能である。
Figure JPOXMLDOC01-appb-C000010
 上記一般式(2-2)中、R7Aはスルホ基である。R2A、R3A、R4A、R5A、R6A及びkは、それぞれ前記一般式(2)中のR2、R3、R4、R5、R6及びkと同じ意味を表す。
 R5A及びR6Aは水素原子であることがより好ましい。R2A、R3A、R4Aは3つのうち少なくとも2つは水素原子であることがより好ましく、全て水素原子であることが特に好ましい。
 kはヘテロ環と置換基R2~R4を有するベンゼン環に囲まれた縮合環の数を表し、0~3の整数である。溶剤への溶解性の観点から、kは好ましくは0である。
 一般式(2)で示される化合物の置換基R2~R7を除いた基本骨格部分の具体例としては、例えば1,3-ジヒドロイソチアナフテン-S-オキシド(kが0である化合物)挙げられる。
 一般式(2)で示される化合物としては、例えば、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-4-スルホン酸、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5,6-ジスルホン酸、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-4,5-ジスルホン酸、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-4,6-ジスルホン酸、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-4,7-ジスルホン酸等が挙げられる。
 R5及びR6は水素原子であることがより好ましい。R2、R3、R4は3つのうち少なくとも1つは水素原子であることがより好ましく、少なくとも2つが水素原子であることがさらに好ましく、全て水素原子であることが特に好ましい。
 具体的には、例えば、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5,6-ジスルホン酸が挙げられる。
 化合物(A2)は、1種単独でまたは2種以上を組み合わせて用いることができる。
<方法(iii)>
 前記化合物(A1)の少なくとも1種及び前記化合物(A2)の少なくとも1種を共重合させることで、導電性高分子が得られる。なお、方法(iii)においても、前記スルホ基を有する化合物(B)を含んでいてもよい。また、方法(iii)においても、化合物(A1)の代わりに、一般式(1-2)で示される化合物の少なくとも1種を使用することも可能である。同様に、化合物(A2)の代わりに、一般式(2-2)で示される化合物の少なくとも1種を使用することも可能である。
 化合物(A2)の量は、スルホ基換算で前記化合物(A1)100質量部に対して好ましくは1~400モル、より好ましくは5~300モル、さらに好ましくは10~250モルである。化合物(B)の量が、スルホ基換算で前記化合物(A1)100モルに対して1~400モルであれば、反応率、反応速度の面から好ましい。
 化合物(A1)及び化合物(A2)を任意の比率で共重合させることで、導電性高分子の溶剤親和性、溶解性等、目的に応じた性能が容易に調節可能となる。
 例えば、化合物(A1)としてベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドと、化合物(A2)としてベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸との共重合を行うと、これら2つは水溶性の程度が異なるため、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドの割合が高くなるにつれ、生成する導電性高分子の水溶性が低下し、不溶化する。
 また、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドの割合が高くなるにつれ、ポリイソチアナフテン骨格中の結晶化領域が大きくなり、電導度が向上する傾向がある。
 以下は方法(i)~(iii)に共通の内容である。
[溶媒(C)]
 本発明による重合において、物質拡散の観点では溶媒を使用することが好ましい。使用される溶媒は用いるモノマーが溶解する溶媒であればよく、特に限定されない。例えば、水、メタノール、エタノール、イソプロパノール、トルエン、ブタノール、酢酸、無水酢酸、ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、プロピレンカーボネート、スルホラン、N-メチルピロリドン、ジメチルスルホラン、ブタンジオール、エチレングリコール、ジエチレングリコール、グリセロール(グリセリン)、ジグリセロール(ジグリセリン)、ポリエチレングリコールなどが挙げられる。
 工業的な取扱いの容易さの観点では、水、メタノール、エタノール、イソプロパノール、ジメチルホルムアミド、エチレングリコール、ジメチルスルホキシドが好ましく、さらに水、エタノール、イソプロパノール、エチレングリコール、ジメチルスルホキシドがより好ましい。
 後述のように水を揮発させながら反応させる場合、水よりも高沸点の溶媒を、溶媒の一部または全部に使用することが好ましい。
 水よりも高沸点の溶媒としては、沸点が105℃以上のものが好ましい。具体的には、例えば、トルエン(沸点:111℃)、ブタノール(沸点:118℃)、酢酸(沸点:118℃)、無水酢酸(沸点:140℃)、ジメチルホルムアミド(沸点:153℃)、ジメチルスルホキシド(沸点:189℃)、γ-ブチロラクトン(沸点:203℃)、プロピレンカーボネート(沸点:240℃)、スルホラン(沸点:285℃)、N-メチルピロリドン(沸点:202℃)、ジメチルスルホラン(沸点:233℃)、ブタンジオール(沸点:230℃)、エチレングリコール(沸点:198℃)、ジエチレングリコール(沸点:244℃)、グリセロール(グリセリン、沸点:290℃)、ジグリセロール(ジグリセリン、沸点:265℃(15mmHg))、ポリエチレングリコールなどが挙げられる。なお、ポリエチレングリコールは、ポリエチレグリコール400、ポリエチレングリコール600、ポリエチレングリコール1500(ポリエチレングリコールの後の数字は分子量を表す。)などのように常圧下では沸点が存在しないものもあるが、減圧下で揮発するものも含めるものとする。また、沸点を示す際に、圧力を括弧書きで付記していないものは常圧下での沸点である。これらの水よりも高沸点の溶媒のうち、取扱いや乾燥の容易さ、耐酸性という観点から、水と混和し、共沸しないエチレングリコールまたはジメチルスルホキシドが好ましい。
 より高沸点の溶媒を溶媒の一部または全部に使用することにより、重合反応で発生する水が揮発する際も物質の拡散が妨げられることなく、反応率が改善すると推測される。
 反応系における溶媒(C)の割合は0.1~99.5質量%が好ましく、より好ましくは5~99質量%であり、さらに好ましくは30~95質量%である。反応系における溶媒(C)の割合が0.1~99.5質量%であれば、反応率や反応速度が良好である。
 溶液の濃度は組成によっても異なるが、固形分で0.01~60質量%が好ましく、より好ましくは0.1~50質量%であり、さらに好ましくは1~30質量%である。溶液の濃度をこの範囲にすると、適切な反応速度で重合を行うことができ、導電性重合体の製造を安定的にかつ経済的な時間で行うことができ、溶液の保存安定性が向上する。
 また、後述のようにモノマー溶液とドーパント、触媒溶液を分け、重合時に混合して使用する場合の各溶液の濃度上限値はこの限りではなく、いずれの溶液も0.01~100質量%の間で使用することができる。
 また、水よりも高沸点の溶媒は、溶媒(C)全量に対して0.1~99.5質量%が好ましく、より好ましくは1~80質量%であり、さらに好ましくは5~70質量%である。反応系における溶媒(C)の割合が0.1~99.5質量%であれば、生産性良く反応が可能である。
 重合時に添加する電導度向上剤は水と混合した際、水と共沸するがディーン・シュターク装置などを用いて脱水可能なもの等を用いるとよい。
 これらの溶媒は1種単独でまたは2種以上を組み合わせてもよい。
[化合物(A1)及び(A2)と共重合し得る化合物(D)]
 本発明においては、化合物(A1)及び(A2)と共重合し得る化合物(D)を共重合させることができる。方法(i)においてはスルホ基を有する化合物(B)存在下で化合物(A1)と化合物(D)を共重合できる。方法(ii)においては化合物(A2)と化合物(D)を共重合できる。方法(iii)においては化合物(A1)と(A2)と化合物(D)を共重合できる。
 化合物(D)としてはイソチアナフテン、イソベンゾフラン、イソベンゾインドリン、イソベンゾセレナフェン、イソベンゾテレナフェン、チオフェン、ピロール、フラン、セレノフェン、テルロフェン、アニリン、ベンゼン、ナフト[2,3-c]チオフェン、アントラ[2,3-c]チオフェン、ナフタセノ[2,3-c]チオフェン、ペンタセノ[2,3-c]チオフェン、ペリロ[2,3-c]チオフェン、アセナフト[2,3-c]チオフェン等の芳香族化合物、1,3-ジヒドロイソチアナフテン、1,3-ジヒドロナフト[2,3-c]チオフェン、1,3-ジヒドロアントラ[2,3-c]チオフェン、1,3-ジヒドロナフタセノ[2,3-c]チオフェン、1,3-ジヒドロペンタセノ[2,3-c]チオフェン、1,3-ジヒドロペリロ[2,3-c]チオフェン、1,3-ジヒドロアセナフト[2,3-c]チオフェン等の共重合時にπ共役系を形成し得る化合物、チエノ[c]ピリジン、チエノ[c]ピラジン、チエノ[c]ピリダジン、チエノ[c]キノキサリン、1,3-ジヒドロチエノ[c]ピリジン、1,3-ジヒドロチエノ[c]ピラジン、1,3-ジヒドロチエノ[c]ピリダジン、1,3-ジヒドロチエノ[c]キノキサリン等縮合環に窒素を含んだ化合物、及びそれらの各種置換基、例えば(2)炭素数1~20の直鎖状または分岐状のアルキル、炭素数1~20の直鎖状または分岐状のアルコキシ、または炭素数1~20の直鎖状または分岐状のアルキルエステル基、(3)SO2M、(4)ハロゲン原子、(5)カルボキシ基、(6)ホスホニル基、(7)ニトロ基、(8)シアノ基、(9)1級、2級または3級アミノ基、(10)トリハロメチル基、(11)フェニル基、及び(12)アルキル基、ヒドロキシ基、アルコキシ基、アルキルエステル基、カルボニル基、スルホ基、ハロゲンから選択される少なくとも1つで置換されたフェニル基からなる群から選ばれる1価の置換基を有する誘導体が挙げられる。ここで好ましい置換基としては、前記置換基R2、R3、R4、R5及びR6において示したものと同じものが挙げられる。
 例えば、1,3-ジヒドロイソチアナフテン、4-メチル-1,3-ジヒドロイソチアナフテン、5-メチル-1,3-ジヒドロイソチアナフテン、4,5-ジメチル-1,3-ジヒドロイソチアナフテン、5,6-ジメチル-1,3-ジヒドロイソチアナフテン、4,7-ジメチル-1,3-ジヒドロイソチアナフテン、5-フルオロ-1,3-ジヒドロイソチアナフテン、5-クロロ-1,3-ジヒドロイソチアナフテン、5-ブロモ-1,3-ジヒドロイソチアナフテン、5-ヒドロキシ-1,3-ジヒドロイソチアナフテン、5-カルボキシ-1,3-ジヒドロイソチアナフテン、ピロール、3-メチルピロール、3,4-ジメチルピロール、3-フルオロピロール、3-クロロピロール、3-ブロモピロール、N-メチルピロール、3-ヒドロキシピロール、3-カルボキシピロール、イソインドール、4-メチルイソインドール、5-メチルイソインドール、4,5-ジメチルイソインドール、5,6-ジメチルイソインドール、4,7-ジメチルイソインドール、5-フルオロイソインドール、5-クロロイソインドール、5-ブロモイソインドール、5-ヒドロキシイソインドール、5-カルボキシイソインドール2,3-ジヒドロイソインドール、4-メチル-2,3-ジヒドロイソインドール、5-メチル-2,3-ジヒドロイソインドール、4,5-ジメチル-2,3-ジヒドロイソインドール、5,6-ジメチル-2,3-ジヒドロイソインドール、4,7-ジメチル-2,3-ジヒドロイソインドール、5-フルオロ-2,3-ジヒドロイソインドール、5-クロロ-2,3-ジヒドロイソインドール、5-ブロモ-2,3-ジヒドロイソインドール、5-ヒドロキシ-2,3-ジヒドロイソインドール、5-カルボキシ-2,3-ジヒドロイソインドールフラン、3-メチルフラン、3,4-ジメチルフラン、3-フルオロフラン、3-クロロフラン、3-ブロモフラン、イソベンゾフラン、4-メチルイソベンゾフラン、5-メチルイソベンゾフラン、4,5-ジメチルイソベンゾフラン、5,6-ジメチルイソベンゾフラン、4,7-ジメチルイソベンゾフラン、5-フルオロイソベンゾフラン、5-ヒドロキシイソベンゾフラン、5-カルボキシイソベンゾフラン1,3-ジヒドロベンゾ[c]セレノフェン、4-メチル-1,3-ジヒドロベンゾ[c]セレノフェン、5-メチル-1,3-ジヒドロベンゾ[c]セレノフェン、4,5-ジメチル-1,3-ジヒドロベンゾ[c]セレノフェン、5,6-ジメチル-1,3-ジヒドロベンゾ[c]セレノフェン、4,7-ジメチル-1,3-ジヒドロベンゾ[c]セレノフェン、5-フルオロ-1,3-ジヒドロベンゾ[c]セレノフェン、5-クロロ-1,3-ジヒドロベンゾ[c]セレノフェン、5-ブロモ-1,3-ジヒドロベンゾ[c]セレノフェン、5-ヒドロキシ-1,3-ジヒドロベンゾ[c]セレノフェン、5-カルボキシ-1,3-ジヒドロベンゾ[c]セレノフェン1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、4-メチル-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、5-メチル-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、4,5-ジメチル-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、5,6-ジメチル-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、4,7-ジメチル-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、5-フルオロ-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、5-クロロ-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、5-ブロモ-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、5-ヒドロキシ-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、5-カルボキシ-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、ベンゾ[c]セレノフェン、4-メチル-ベンゾ[c]セレノフェン、5-メチル-ベンゾ[c]セレノフェン、4,5-ジメチル-ベンゾ[c]セレノフェン、5,6-ジメチル-ベンゾ[c]セレノフェン、4,7-ジメチル-ベンゾ[c]セレノフェン、5-フルオロ-ベンゾ[c]セレノフェン、5-クロロ-ベンゾ[c]セレノフェン、5-ブロモ-ベンゾ[c]セレノフェン、5-ヒドロキシ-ベンゾ[c]セレノフェン、5-カルボキシ-ベンゾ[c]セレノフェン等が挙げられる。
 化合物(A1)及び(A2)と共重合し得る化合物(D)は、化合物(A1)及び化合物(A2)のモル数の合計に対して、200モル%以下を用いることが好ましく、100モル%以下であることがより好ましく、50モル%以下であることがさらに好ましい。200モル%以下であれば、反応率、及び反応速度が適切である。
[添加剤]
 本発明による効果を阻害しない範囲内で、反応時にその他の機能を有する添加剤を混合してもよい。例えば、導電性高分子に塗工性や含浸性、浸透性等の機能性を付与するため、界面活性剤、増粘剤、チクソ剤、レオロジーコントロール剤等を添加してもよい。製膜時の結着性や耐熱性を向上させるため、結着剤等を添加してもよい。製膜した際の応力を緩和する性能を有する成分を使用してもよい。
 これら添加剤は置換基を有していてもよい。例えば、ドデシルベンゼンスルホン酸、ポリビニルアルコール、ポリ(N-ビニルアセトアミド)、ポリアクリルアミド、ポリアクリル酸などが挙げられる。添加剤は1種単独でまたは2種以上を組み合わせて用いることができる。
[酸化剤]
 導電性高分子の重合反応を起こさせるために、通常、触媒として酸化剤が用いられる。酸化剤としては、例えば、塩化第二鉄、硫酸第二鉄、硝酸第二鉄、エチレンジアミン四酢酸鉄、塩化第二銅、塩化第一銅、エチレンジアミン四酢酸銅、塩化アルミニウム、ヨウ素、臭素、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン、テトラクロロ-1,2-ベンゾキノン、テトラクロロ-1,4-ベンゾキノン、テトラシアノ-1,4-ベンゾキノン、硫酸、発煙硫酸、三酸化硫黄、クロロ硫酸、フルオロ硫酸、アミド硫酸、過硫酸、過硫酸アンモニウム、過硫酸ナトリウム、過酸化水素、及びこれら複数の酸化剤の組み合わせが挙げられる。
 本発明では、これら酸化剤触媒を用いずに重合を行うことができる。すなわち、本発明では触媒能を有するスルホ基を有する化合物(B)の存在下で重合を行うか、あるいは触媒能を有する置換基(スルホ基)を有する化合物を重合させるので、酸化剤を用いた場合に必要な反応後の精製工程を省略することができる。
[製造方法]
 本発明の導電性高分子の製造方法は、前記方法(i)~(iii)の少なくともいずれかの方法である。また、これら方法の条件を適宜組み合わせて重合を行うことも可能である。
 方法に応じて前記化合物(A1)、前記化合物(A2)、前記スルホ基を有する化合物(B)から選択された化合物、並びに任意成分である溶媒(C)、化合物(A1)及び(A2)と共重合し得る化合物(D)、及び添加剤の、反応系への添加の順序及び態様に特に制限はない。例えば、反応容器に各化合物を添加して混合する方法の他、基材に各化合物を順番に浸漬または塗布することによっても重合は可能である。
 上記における重合時の温度は特に限定はないが、10~300℃が好ましく、より好ましくは20~180℃であり、さらに好ましくは60~180℃である。重合時の温度が10~300℃であれば、反応速度、反応率、及び粘度が適切であり、副反応を抑制することができ、導電性高分子の製造を安定的かつ工業的に適した時間で行うことができ、さらに得られる導電性重合体の導電率も高くなる傾向がある。重合時の温度は、公知のヒータやクーラを用いることにより管理することができる。必要に応じ、上記範囲内で温度を変化させながら重合を行ってもよい。また、溶媒を揮発させる場合は重合温度以下でもよく、減圧下や乾燥気流中で溶剤を揮発させ、その後重合温度に上げてもよい。
 上記重合における雰囲気は特に限定はなく、大気下でもよく、窒素、アルゴン等の不活性ガス雰囲気でもよい。また、反応圧力に特に限定はないが、常圧が好ましい。
 反応時間に特に制限はなく、化合物の化学構造や反応温度、反応圧力などによって異なるため一概には規定できないが、0.01~240時間が好ましく、より好ましくは0.1~72時間であり、さらに好ましくは0.1~24時間である。
 反応時のpHは1~7が好ましく、より好ましくは1~5であり、さらに好ましくは1~3である。pHが1以上であれば基材等への負荷が少なく、pHが7以下であれば反応率及び反応速度が適切である。
 本発明の導電性高分子の製造方法では、反応系内から副生成物を除去しながら反応させることが好ましい。副生成物の除去は、揮発(留去)法、吸着法、その他の分離法により行うことができる。例えば、一般式(1)または(2)中のX1及びX2がS=OまたはSe=Oの化合物の場合、副生成物として水が発生するので、この水を留去しながら反応を行うと、重合速度が上がり、反応率も高くなる。また、反応系を均一に保持できる観点から、水よりも沸点の高い溶媒を使用しても良い。 
 導電性高分子生成後、溶媒(C)を含む場合は溶液が、溶媒(C)を含まない場合は固形物が、それぞれ得られる。精製を行う場合は任意の溶媒に溶解させて洗浄を行ってもよいが、精製工程を行わなくとも高い導電性が得られる。溶液のまま回収する場合、任意の溶剤で希釈してもよいし、残存モノマーを除去するために限外ろ過等を実施しても良いし、粒径や凝集構造を制御するために超音波処理をしてもよい。また、固体で得られた場合、得られた基材をそのまま使用してもよいし、加工してもよいし、固体を溶剤に添加後、分散処理を実施して分散液として使用してもよい。
 また、溶媒(C)を含む場合、溶媒(C)の水との混和の程度により、水を揮発させた後の導電性高分子の性状は変化する。水と混和する溶媒であれば反応時に均一に反応し、溶媒を全て揮発させた際に均一な膜が生成する。一方、水と非混和となる溶媒を用いた際には水を揮発させた時点で導電性高分子が粒子状に生成する。
 生成物はUVスペクトルを用いて容易に確認が可能である。重合が進行することにより、300~800nm程度の波長領域において長波長側に吸収極大がシフトしていく。また、スルホン酸によりドープすると1000nm程度から長波長側の波長の吸収が増大する。
[重合前の溶液の保管方法]
 上記重合前の溶液の保管温度は特に限定はしないが、通常、-30~50℃であり、好ましくは-20~40℃であり、より好ましくは-10~30℃である。溶液の保管温度をこの範囲にすると、保管中に強酸の効果によって重合が進行する速度を和らげることができる。保管時の雰囲気は特に限定はなく、大気下でもよく、窒素、アルゴン等の不活性雰囲気でも良い。これらの中で、窒素、アルゴンが好ましい。
 また、モノマー溶液とドーパント、触媒溶液を分け、重合時に混合して使用する場合の温度範囲はこの限りではなく、より広い温度範囲で安定的な保管が可能である。
[本発明の方法で得られる導電性重合体]
 本発明の製造方法で得られる導電性重合体は、一般式(1)で示されるドーパント能と触媒能を有する置換基(スルホ基)を有する単独重合体あるいは共重合体であり、得られる重合体の構造は複雑になりすぎて一般式(構造)で示すことができないのが現状であり、したがって構造が特定されなければ、構造出決まる物質の特性も容易にはわからないこと、また異なる複数のモノマーを反応させる場合はそれらの配合比、反応条件により得られる重合組成物の特性が大きく変化することから特性で重合体を特定することもできない。そこで本発明(請求項)導電性重合体を製造方法にて規定した。
 以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<材料>
Figure JPOXMLDOC01-appb-T000011
実施例1:溶解性試験
 溶媒10gにベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドを少しずつ溶解させ、目視で溶解量を調べた。5質量%以上を「可溶」、0.5~5質量%を「微溶」、0.5質量%以下を「不溶」とし、結果を表2に示す。
比較例1:溶解性試験
 溶媒10gに1,3-ジヒドロイソチアナフテンを少しずつ溶解させた。実施例1と同様に評価し、結果を表2に示す。
Figure JPOXMLDOC01-appb-T000012
実施例2:溶解後の安定性試験
 ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド1.0g及びp-トルエンスルホン酸一水和物0.25g(pTSA、mol比5/1)を各溶媒11.0g(固形分10質量%)に表3に示される組成で大気下でそれぞれ溶解させ、直後(初期)、24時間後、1週間後に目視で観察を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000013
比較例2:溶解後の安定性試験
 1,3-ジヒドロイソチアナフテン1.0g、及びp-トルエンスルホン酸一水和物0.28g(pTSA、mol比5/1)を各溶媒11.3g(固形分10質量%)に表4に示される組成で大気下でそれぞれ溶解させ、直後(初期)、24時間後、1週間後に目視で観察を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000014
<方法(i)の重合>
実施例3:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドとp-トルエンスルホン酸の重合
 ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド1.64mmol(250mg)をイオン交換水9.44gに溶解させ、p-トルエンスルホン酸一水和物1.64mmol(312mg)を加え、水溶液を調整した。その後、調整した水溶液の一部をガラスプレート上に滴下し、150℃において1時間加熱・乾燥を実施した。生成した固体は黒色であった。生成物を水に添加し、室温の条件でUVスペクトルを測定したところ、700nm付近から1300nmの長波長側に吸収が見られたことからポリイソチアナフテンの生成を確認した。
比較例3:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドとp-トルエンスルホン酸ナトリウムの重合
 ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド1.64mmol(250mg)をイオン交換水9.44gに溶解させ、p-トルエンスルホン酸ナトリウム1.64mmol(315mg)を加え、水溶液を調整した。その後、調整した水溶液の一部をガラスプレート上に滴下し、150℃において1時間加熱・乾燥を実施した。生成した固体は白色であり、重合の進行が確認されなかった。
実施例4:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドとp-トルエンスルホン酸の重合(エタノール中)
 エタノール11.0gにベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド6.57mmol(1.0g)、p-トルエンスルホン酸一水和物1.31mmol(0.25g)を溶解させ、固形分10質量%の溶液とした。
 調製した溶液は比較的安定であり、一週間、室温大気下に放置しても無色透明のままであった。
 得られた溶液の一部をガラスプレート上に滴下し、120℃において1時間加熱・乾燥を実施した。生成した固体は黒色であり、生成物を水に添加して測定したUVスペクトルからポリイソチアナフテンの生成を確認した。
 また、溶液をTG-DTA(Thermo Plus TG-8120、株式会社リガク製)で乾燥空気中、昇温速度5℃/min.において40℃まで加熱後、エタノールが十分揮発するよう、2時間一定温度を保ち、再度、昇温速度5℃/min.にて250℃まで昇温した際に反応の挙動を確認した。
 得られたTG-DTA曲線を図1に示す。
比較例4:1,3-ジヒドロイソチアナフテンとp-トルエンスルホン酸の重合(実施例4との比較)
 エタノール11.3gに1,3-ジヒドロイソチアナフテン7.34mmol(1.0g)、p-トルエンスルホン酸一水和物1.47mmol(0.28g)を溶解させ、固形分10質量%の溶液とした。
 調製した溶液は調整後直ちに黄色に着色し、数時間後には黒色の沈殿が生成した。得られた溶液の一部をガラスプレート上に滴下し、120℃において1時間加熱・乾燥を実施した。生成した固体は黒色であり、生成物を水に添加して測定したUVスペクトルからポリイソチアナフテンの生成を確認した。
 実施例4と同様の測定条件でTG-DTA測定を実施した。得られたTG-DTA曲線を図2に示す。
実施例5:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドとβ-ナフタレンスルホン酸の重合
 β-ナフタレンスルホン酸ナトリウム塩3.30mmol(755mg)を18.75gの水に溶解させ、陽イオン交換樹脂した。得られたβ-ナフタレンスルホン酸水溶液9.75g(水溶液中β-ナフタレンスルホン酸として1.64mmol)にベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド1.64mmol(250mg)を加え、水溶液を調整した。その後、ホットプレートで110℃、1時間乾燥した。生成した膜は青色であり、生成物を水に添加して測定したUVスペクトルからポリイソチアナフテンの生成を確認した。
実施例6:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドとポリスチレンスルホン酸の重合
 ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド3.29mmol(500mg)をイオン交換水14.8gに溶解させ、イオン交換によりナトリウム塩から調整した21質量%ポリスチレンスルホン酸水溶液を5.95g(スルホ基として6.82mmol)添加し、水溶液を調整した。その後、調整した水溶液の一部をガラスプレート上に滴下し、120℃において1時間加熱・乾燥を実施した。生成した固体は黒色であり、生成物を水に添加して測定したUVスペクトルからポリイソチアナフテンの生成を確認した。
実施例7:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドとポリスチレンスルホン酸複合体のエチレングリコール分散液の製造
 ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド0.736mmol(112mg)をイオン交換水3.31gに溶解させ、イオン交換によりナトリウム塩から調整した21質量%ポリスチレンスルホン酸水溶液を1.33g(スルホ基として1.52mmol)、エチレングリコール12.6gを添加した。調製した液を105℃、4時間加熱することにより、濃青色の液が得られた。得られた液を水に添加して測定したUVスペクトルからポリイソチアナフテンの生成を確認した。
<方法(ii)の重合>
実施例8:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸の単独重合
 ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸ナトリウム塩94.4mmol(24.0g)をイオン交換水459.6gに添加、溶解後、陽イオン交換樹脂を詰めたカラムに通し、ナトリウムを除去した。得られた水溶液の一部をガラスプレート上に滴下し、120℃において1時間加熱・乾燥を実施した。生成した固体は黒色であり、生成物を水に添加して測定したUVスペクトルからポリイソチアナフテンの生成を確認した。生成物は水溶性であり、10mLに1g以上溶解する。
 また、実施例4と同様の条件で測定したTG-DTA曲線を図3に示す。120~130℃の間に明確な反応ピークが観測された。
 生成した膜の電導度を測定したところ0.014S/cmであった。
比較例5:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸ナトリウムの重合
 ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸ナトリウム塩94.4mmol(24.0g)をイオン交換水459.6gに添加、溶解した。得られた溶液を120℃で1時間乾燥後、白色の固体が得られた。
比較例6:1,3-ジヒドロイソチアナフテン-5-スルホン酸の重合
 1,3-ジヒドロイソチアナフテン-5-スルホン酸ナトリウム塩41.9mmol(10.0g)をイオン交換水80.0gに添加、溶解後、陽イオン交換樹脂を詰めたカラムに通し、ナトリウムを除去した。得られた水溶液の一部をガラスプレート上に滴下し、120℃において1時間加熱・乾燥を実施した。生成した固体は黒色であり、生成物を水に添加して測定したUVスペクトルからポリイソチアナフテンの生成を確認した。
 また、実施例4と同様の条件で測定したTG-DTA曲線を図4に示す。
実施例9:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸の単独重合(高濃度)
 ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸ナトリウム塩94.4mmol(24.0g)をイオン交換水78.3gに添加、溶解後、陽イオン交換樹脂を詰めたカラムに通し、ナトリウムを除去した。得られた水溶液の一部をガラスプレート上に滴下し、120℃において1時間加熱・乾燥を実施した。生成した固体は黒色であり、生成物を水に添加して測定したUVスペクトルからポリイソチアナフテンの生成を確認した。生成物は水溶性であり、10mLに1g以上溶解した。
<方法(iii)の重合>
実施例10:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸とベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドの共重合(モル比7:3)
 ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド38.1mmol(5.8g)をイオン交換水94gに溶解させ、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド水溶液を調整した。ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド水溶液10g(水溶液中ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド3.82mmol)と上記実施例8で作製したベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸の水溶液45.5g(ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸8.91mmol)と混合し、溶液を準備した。作製した水溶液のモル比は重水中(D2O)で測定したNMRで確認した。得られた水溶液の一部をガラスプレート上に滴下し、120℃において1時間加熱・乾燥を実施した。生成した固体は黒色であり、生成物を水に添加して測定したUVスペクトルからポリイソチアナフテンの生成を確認した。生成物は非水溶性であった。
 生成した膜の電導度を株式会社三菱アナリテック製電導度計でPSPプローブを用いて25℃の条件で測定したところ0.97S/cmであった。
実施例11:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸とベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドの共重合(モル比5:5)
 上記実施例10で作製したベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド水溶液10g(水溶液中ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド3.82mmol)と上記実施例8で作製したベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸の水溶液19.5g(ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸3.82mmol)と混合し、溶液を準備した。作製した水溶液のモル比は重水中(D2O)で測定したNMRで確認した。得られた水溶液の一部をガラスプレート上に滴下し、120℃において1時間加熱・乾燥を実施した。生成した固体は黒色であり、生成物を水に添加して測定したUVスペクトルからポリイソチアナフテンの生成を確認した。生成物は非水溶性であった。
 生成した膜の電導度を実施例10と同様の方法で測定したところ0.98S/cmであった。
実施例12:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸とベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドの共重合(モル比3:7)
 上記実施例10で作製したベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド水溶液10g(水溶液中ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド3.82mmol)と上記実施例8で作製したベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸の水溶液8.37g(ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸1.64mmol)と混合し、溶液を準備した。作製した水溶液のモル比は重水中(D2O)で測定したNMRで確認した。得られた水溶液の一部をガラスプレート上に滴下し、120℃において1時間加熱・乾燥を実施した。生成した固体は黒色であり、生成物を水に添加して測定したUVスペクトルからポリイソチアナフテンの生成を確認した。生成物は非水溶性であった。
 生成した膜の電導度を実施例10と同様の方法で測定したところ0.13S/cmであった。
実施例13:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸の単独重合(エチレングリコールの添加)
 上記実施例8で調製した溶液に10質量部エチレングリコールを添加し、溶液を調整した(実施例8の溶液10gにエチレングリコール1.0g添加)。得られた溶液の一部をガラスプレート上に滴下し、120℃において1時間加熱・乾燥を実施した。生成した固体は黒色であり、生成物を水に添加して測定したUVスペクトルからポリイソチアナフテンの生成を確認した。生成物は水溶性であり、製膜後、水で洗い流すこと、水溶液を調整することが可能である。
 生成した膜の電導度を実施例10と同様の方法で測定したところ0.35S/cmであった。
実施例14:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸とベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドの共重合(モル比7:3、エチレングリコールの添加)
 上記実施例10で調製した2つの化合物の混合液に10質量部エチレングリコールを添加し、溶液を調整した(実施例10の混合液10gにエチレングリコール1.0g添加)。得られた溶液の一部をガラスプレート上に滴下し、120℃において1時間加熱・乾燥を実施した。生成した固体は黒色であり、生成物を水に添加して測定したUVスペクトルからポリイソチアナフテンの生成を確認した。生成物は非水溶性であった。
 生成した膜の電導度を実施例10と同様の方法で測定したところ0.43S/cmであった。
実施例15:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸とベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドの共重合(モル比5:5、エチレングリコールの添加)
 上記実施例11で調製した2つの化合物の混合液に10質量部エチレングリコールを添加し、溶液を調整した(実施例11の混合液10gにエチレングリコール1.0g添加)。得られた溶液の一部をガラスプレート上に滴下し、120℃において1時間加熱・乾燥を実施した。生成した固体は黒色であり、生成物を水に添加して測定したUVスペクトルからポリイソチアナフテンの生成を確認した。生成物は非水溶性であった。
 生成した膜の電導度を実施例10と同様の方法で測定したところ2.4S/cmであった。
実施例16:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸とベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドの共重合(モル比3:7、エチレングリコールの添加)
 上記実施例12で調製した2つの化合物の混合液に10質量部エチレングリコールを添加し、溶液を調整した(実施例12の混合液10gにエチレングリコール1.0g添加)。得られた溶液の一部をガラスプレート上に滴下し、120℃において1時間加熱・乾燥を実施した。生成した固体は黒色であり、生成物を水に添加して測定したUVスペクトルからポリイソチアナフテンの生成を確認した。生成物は非水溶性であった。
 生成した膜の電導度を実施例10と同様の方法で測定したところ9.4S/cmであった。
実施例17:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸とベンゾ[c]チオフェン-2-オキシド共重合体のエチレングリコール分散液の製造
 上記実施例11にて調整した2つの化合物の混合溶液4.1g(ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸とベンゾ[c]チオフェン-2-オキシドのモル比は5/5)をエチレングリコール6.7gに添加、混合した。調製した液を105℃、4時間加熱することにより、濃青色の液が得られた。得られた液を水に添加して測定したUVスペクトルからポリイソチアナフテンの生成を確認した。
 生成した分散液の一部をガラスプレート上に滴下し、120℃において1時間加熱・乾燥を実施した。製膜後、電導度を測定したところ3.0S/cmであった。
実施例18:ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸とベンゾ[c]チオフェン-2-オキシド共重合体のジメチルスルホキシド分散液の製造
 上記実施例11にて調整した2つの化合物の混合溶液5.1g(ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸とベンゾ[c]チオフェン-2-オキシドのモル比は5/5)をジメチルスルホキシド8.1gに添加、混合した。調製した液を120℃、6時間加熱することにより、濃青色の液が得られた。得られた液を水に添加して測定したUVスペクトルからポリイソチアナフテンの生成を確認した。
 実施例1、2及び比較例1、2より、化合物(A1)であるベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドは、1,3-ジヒドロイソチアナフテンと比較して広範囲の極性の溶媒に溶解し、溶解後も液は安定であることが示された。また、図1及び図3は、図2及び図4と比較して、反応熱が明らかに確認でき、実施例の反応性が良好であることが示された。
 また、実施例3~18により、方法(i)~(iii)において各種導電性高分子を製造することが可能であることが示された。
 本発明は導電性高分子の製造工程を容易にする方法を提供するものであり、帯電防止剤、コンデンサの固体電解質、導電性塗料、導電繊維、エレクトロクロミック素子、電極材料、熱電変換材料、透明導電膜、化学センサ、アクチュエータ等への応用が考えられる。

Claims (15)

  1.  一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1、R2、R3、R4、R5、及びR6は、それぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル、炭素数1~20の直鎖状または分岐状のアルコキシ、または炭素数1~20の直鎖状または分岐状のアルキルエステル基(アルキルカルボニルオキシ基またはアルコキシカルボニル基)、(3)SO2M、(4)ハロゲン原子、(5)カルボキシ基、(6)ホスホニル基、(7)ニトロ基、(8)シアノ基、(9)1級、2級または3級アミノ基、(10)トリハロメチル基、(11)フェニル基、及び(12)アルキル基、ヒドロキシ基、アルコキシ基、アルキルエステル基、カルボニル基、及びハロゲン原子から選択される少なくとも1つで置換されたフェニル基からなる群から選択される1価の置換基を表す。R1、R2、R3、R4、R5及びR6が表す置換基中の炭化水素鎖は互いに任意の位置で結合して、当該置換基が結合している炭素原子と共に、少なくとも1つの3~7員環の飽和、または不飽和炭化水素の環状構造を形成する2価鎖を少なくとも1つ形成してもよい。R1、R2、R3、R4、R5及びR6が表すアルキル基、アルコキシ基、アルキルエステル基、またはそれらによって形成される環状炭化水素鎖には、カルボニル、エーテル、エステル、アミド、スルフィド、スルフィニル、スルホニル及びイミノから選択される少なくとも1つの結合を含んでもよい。MはOH、またはO-Na+、O-Li+及びO-+から選択されるアルカリ金属アルコキシド、O-NH4 +で表されるアンモニウムアルコキシド、炭素数1~20の直鎖状または分岐状のアルコキシ基、塩素、フッ素、臭素、及びヨウ素から選択されるハロゲン原子を表す。kはヘテロ環と置換基R1~R4を有するベンゼン環に囲まれた縮合環の数を表し、0~3の整数である。]
    で示される化合物(A1)の少なくとも1種を、スルホ基を有する化合物(B)の存在下で重合させることを特徴とするポリイソチアナフテン系導電性重合体の製造方法。
  2.  前記化合物(A1)が、式(1)中のkが0である化合物である請求項1に記載の導電性重合体の製造方法。
  3.  一般式(1)中のR1、R2、R3、R4、R5及びR6が、それぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル基、炭素数1~20の直鎖状または分岐状のアルコキシ基、または炭素数1~20の直鎖状または分岐状のアルキルエステル基、及び(3)ハロゲン原子から選択される1価の置換基である請求項1または2に記載の導電性重合体の製造方法。
  4.  一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    [式中、R7はスルホ基である。R2、R3、R4、R5、及びR6はそれぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル、炭素数1~20の直鎖状または分岐状のアルコキシ、または炭素数1~20の直鎖状または分岐状のアルキルエステル基(アルキルカルボニルオキシ基またはアルコキシカルボニル基)、(3)SO2M、(4)ハロゲン原子、(5)カルボキシ基、(6)ホスホニル基、(7)ニトロ基、(8)シアノ基、(9)1級、2級または3級アミノ基、(10)トリハロメチル基、(11)フェニル基、及び(12)アルキル基、ヒドロキシ基、アルコキシ基、アルキルエステル基、カルボニル基、スルホ基、及びハロゲン原子から選択される少なくとも1つで置換されたフェニル基からなる群から選ばれる1価の置換基を表す。R2、R3、R4、R5及びR6が表す置換基中の炭化水素鎖は互いに任意の位置で結合して、当該置換基が結合している炭素原子と共に、少なくとも1つの3~7員環の飽和、または不飽和炭化水素の環状構造を形成する2価鎖を少なくとも1つ形成してもよい。R2、R3、R4、R5及びR6が表すアルキル基、アルコキシ基、アルキルエステル基、またはそれらによって形成される環状炭化水素鎖には、カルボニル、エーテル、エステル、アミド、スルフィド、スルフィニル、スルホニル及びイミノから選択される少なくとも1つの結合を含んでもよい。MはOH、またはO-Na+、O-Li+及びO-+から選択されるアルカリ金属アルコキシド、O-NH4 +で表されるアンモニウムアルコキシド、炭素数1~20の直鎖状または分岐状のアルコキシ基、塩素、フッ素、臭素、及びヨウ素から選択されるハロゲンを表す。kはヘテロ環と置換基R2~R4を有するベンゼン環に囲まれた縮合環の数を表し、0~3の整数である。]
    で示される化合物(A2)の少なくとも1種を重合させるポリイソチアナフテン系導電性重合体の製造方法。
  5.  前記化合物(A2)が、一般式(2)中のkが0である化合物である請求項4に記載の導電性重合体の製造方法。
  6.  一般式(2)中のR2、R3、R4、R5及びR6が、それぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル基、炭素数1~20の直鎖状または分岐状のアルコキシ基、または炭素数1~20の直鎖状または分岐状のアルキルエステル基、及び(3)ハロゲン原子から選択される1価の置換基である請求項4または5に記載の導電性重合体の製造方法。
  7.  請求項1に記載の一般式(1)で示される化合物(A1)の少なくとも1種と、請求項4に記載の一般式(2)で示される化合物(A2)の少なくとも1種の化合物とを共重合させる導電性重合体の製造方法。
  8.  請求項1に記載の一般式(1)で示される化合物(A1)及び請求項4に記載の一般式(2)で示される化合物(A2)と共重合し得る化合物(D)と、前記一般式(1)で示される化合物(A1)の少なくとも1種とをスルホ基を有する化合物(B)の存在下で共重合させるポリイソチアナフテン系導電性重合体の製造方法。
  9.  請求項1に記載の一般式(1)で示される化合物(A1)及び請求項4に記載の一般式(2)で示される化合物(A2)と共重合し得る化合物(D)と、前記一般式(2)で示される化合物(A2)の少なくとも1種を共重合させるポリイソチアナフテン系導電性重合体の製造方法。
  10.  請求項1に記載の一般式(1)で示される化合物(A1)及び請求項4に記載の一般式(2)で示される化合物(A2)と共重合し得る化合物(D)と、前記一般式(1)で示される化合物(A1)の少なくとも1種と、前記一般式(2)で示される化合物(A2)の少なくとも1種とを共重合させるポリイソチアナフテン系導電性重合体の製造方法。
  11.  酸化剤を使用せずに重合させる請求項1~10のいずれかに記載の導電性重合体の製造方法。
  12.  生成する水を除去しながら重合させる請求項1~11のいずれかに記載の導電性重合体高分子の製造方法。
  13.  水よりも蒸気圧の高い溶媒を含む請求項1~12のいずれかに記載の導電性重合体の製造方法。
  14.  請求項1~13のいずれかに記載の方法で得られるポリイソチアナフテン系導電性重合体。
  15.  請求項14に記載のポリイソチアナフテン系導電性重合体の分散液。
PCT/JP2017/035429 2016-12-28 2017-09-29 ポリイソチアナフテン系導電性重合体の製造方法 WO2018123177A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780081132.3A CN110121516B (zh) 2016-12-28 2017-09-29 聚异硫茚系导电性聚合物的制造方法
KR1020197018436A KR102214676B1 (ko) 2016-12-28 2017-09-29 폴리이소티아나프텐계 도전성 중합체의 제조 방법
US16/474,394 US11136432B2 (en) 2016-12-28 2017-09-29 Method for producing polyisothianaphthene-based electroconductive polymer
EP17886921.0A EP3564290A4 (en) 2016-12-28 2017-09-29 PROCESS FOR THE MANUFACTURING OF A CONDUCTIVE POLYMER BASED ON POLYISOTHIANAPHTHENE
CN202210774072.6A CN114920911B (zh) 2016-12-28 2017-09-29 聚异硫茚系导电性聚合物的制造方法
JP2018558822A JP7019602B2 (ja) 2016-12-28 2017-09-29 ポリイソチアナフテン系導電性重合体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-254977 2016-12-28
JP2016254977 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123177A1 true WO2018123177A1 (ja) 2018-07-05

Family

ID=62708112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035429 WO2018123177A1 (ja) 2016-12-28 2017-09-29 ポリイソチアナフテン系導電性重合体の製造方法

Country Status (6)

Country Link
US (1) US11136432B2 (ja)
EP (1) EP3564290A4 (ja)
JP (1) JP7019602B2 (ja)
KR (1) KR102214676B1 (ja)
CN (2) CN114920911B (ja)
WO (1) WO2018123177A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114736216A (zh) * 2022-04-02 2022-07-12 武汉工程大学 一种含异硫茚的二酰亚胺衍生物及其制备方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117581A (ja) * 1984-05-31 1986-01-25 Showa Denko Kk イソチアナフテン構造を有する重合体
JPS61254620A (ja) * 1985-05-04 1986-11-12 Showa Denko Kk ナフト〔2,3―c〕チオフェン構造を有する重合体の製造方法
JPH0649183A (ja) * 1991-12-04 1994-02-22 Showa Denko Kk 新規水溶性導電性重合体及びその製造方法
JPH08259673A (ja) * 1995-03-24 1996-10-08 Showa Denko Kk 導電性高分子化合物水溶液およびその製造方法、保存方法
JPH10120769A (ja) * 1996-10-24 1998-05-12 Showa Denko Kk 導電性ミクロゲル分散体、及びその製造方法
JPH10140141A (ja) * 1996-11-08 1998-05-26 Showa Denko Kk 帯電防止処理材の製造方法
JP2002158144A (ja) 2000-01-17 2002-05-31 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法および固体電解コンデンサ
US6614063B2 (en) 1999-12-03 2003-09-02 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
JP2003261654A (ja) 2002-03-07 2003-09-19 Mitsubishi Chemicals Corp 導電性高分子及びその製造方法,並びに導電性高分子を含有する電気−光変換素子,電気・電子素子,光−電気変換素子及び電気配線板
JP2005158882A (ja) 2003-11-21 2005-06-16 Tdk Corp 電気化学キャパシタ
JP2008214401A (ja) 2007-02-28 2008-09-18 Achilles Corp 有機溶媒中にナノ分散したポリピロール微粒子の製造方法
JP2009130018A (ja) 2007-11-21 2009-06-11 Sanyo Electric Co Ltd 固体電解コンデンサ
WO2011004833A1 (ja) 2009-07-08 2011-01-13 綜研化学株式会社 固体電解質用組成物およびそれを用いた太陽電池
JP2011510141A (ja) 2008-01-22 2011-03-31 エイチ・シー・スタルク・クレビオス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 導電性ポリマーの製造方法
WO2012048823A1 (en) 2010-10-12 2012-04-19 Heraeus Precious Metals Gmbh & Co. Kg Dispersions comprising polythiophenes with a defined content of thiophene monomer
JP2015021100A (ja) 2013-07-22 2015-02-02 富山薬品工業株式会社 導電性ポリマー分散液、導電性ポリマー材料及び固体電解コンデンサ
JP2015117367A (ja) 2013-11-13 2015-06-25 ナガセケムテックス株式会社 導電性樹脂組成物及び透明導電積層体

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3577860D1 (de) 1984-05-31 1990-06-28 Univ California Polymere mit isothianaphthen-struktur und elektrochromische anzeigevorrichtung.
US4640748A (en) 1984-05-31 1987-02-03 The Regents Of The University Of California Polyisothianaphtene, a new conducting polymer
US4795242A (en) * 1985-05-22 1989-01-03 University Of California Conducting substituted polyisothianaphthenes
CN1018874B (zh) 1985-08-07 1992-10-28 加利福尼亚大学 电致变色显示器
JP2703039B2 (ja) * 1989-03-16 1998-01-26 昭和電工株式会社 イソチアナフテン構造を有する重合体およびその製造方法
JPH02252727A (ja) 1989-03-27 1990-10-11 Fuji Photo Film Co Ltd ポリイソチアナフテン系重合体及び導電性材料
US5688873A (en) * 1991-12-04 1997-11-18 Showa Denko K.K. Electroconductive polymer and process for producing the polymer
US5648453A (en) 1991-12-04 1997-07-15 Showa Denko K.K. Electroconductive polymer and process for producing the polymer
US5530139A (en) * 1993-05-31 1996-06-25 Showa Denko Kabushiki Kaisha Condensed heterocyclic compound with a sulfonic acid group and process for producing the same
JP3825001B2 (ja) * 1993-05-31 2006-09-20 昭和電工株式会社 導電性重合体を含む水溶液及び有機溶液並びに当該溶液から得られた導電性重合体を含む支持体
JP3541429B2 (ja) * 1993-05-31 2004-07-14 昭和電工株式会社 スルホン酸基を有する縮合ヘテロ環式化合物及びその製造方法
WO1999028932A1 (fr) 1997-11-28 1999-06-10 Showa Denko K.K. Condensateur electrolytique solide et son procede de production
US6351370B1 (en) * 1998-03-19 2002-02-26 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
CN1193057C (zh) * 1998-07-06 2005-03-16 昭和电工株式会社 导电性聚合物,固体电解电容器及其制造方法
JP2003272874A (ja) 2002-03-15 2003-09-26 Mitsumi Electric Co Ltd 電界発光素子及びエレクトロルミネッセンスディスプレイ
CN1957040B (zh) * 2004-05-21 2010-05-12 昭和电工株式会社 导电组合物及其应用
WO2007001076A1 (en) * 2005-06-27 2007-01-04 Showa Denko K.K. Solid electrolytic capacitor and production method thereof
KR102122105B1 (ko) * 2012-07-03 2020-06-11 토소가부시키가이샤 폴리티오펜류, 그것을 이용한 수용성 도전성 폴리머, 및 그 제조 방법
CN106661335B (zh) * 2014-05-14 2020-11-27 三菱化学株式会社 导电性组合物、抗静电膜、层叠体及其制造方法以及光掩膜的制造方法
JP6407107B2 (ja) * 2014-09-05 2018-10-17 信越化学工業株式会社 導電性ポリマー複合体及び基板

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117581A (ja) * 1984-05-31 1986-01-25 Showa Denko Kk イソチアナフテン構造を有する重合体
JPS61254620A (ja) * 1985-05-04 1986-11-12 Showa Denko Kk ナフト〔2,3―c〕チオフェン構造を有する重合体の製造方法
JPH0649183A (ja) * 1991-12-04 1994-02-22 Showa Denko Kk 新規水溶性導電性重合体及びその製造方法
JPH08259673A (ja) * 1995-03-24 1996-10-08 Showa Denko Kk 導電性高分子化合物水溶液およびその製造方法、保存方法
JPH10120769A (ja) * 1996-10-24 1998-05-12 Showa Denko Kk 導電性ミクロゲル分散体、及びその製造方法
JPH10140141A (ja) * 1996-11-08 1998-05-26 Showa Denko Kk 帯電防止処理材の製造方法
US6614063B2 (en) 1999-12-03 2003-09-02 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
JP2002158144A (ja) 2000-01-17 2002-05-31 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法および固体電解コンデンサ
JP2003261654A (ja) 2002-03-07 2003-09-19 Mitsubishi Chemicals Corp 導電性高分子及びその製造方法,並びに導電性高分子を含有する電気−光変換素子,電気・電子素子,光−電気変換素子及び電気配線板
JP2005158882A (ja) 2003-11-21 2005-06-16 Tdk Corp 電気化学キャパシタ
JP2008214401A (ja) 2007-02-28 2008-09-18 Achilles Corp 有機溶媒中にナノ分散したポリピロール微粒子の製造方法
JP2009130018A (ja) 2007-11-21 2009-06-11 Sanyo Electric Co Ltd 固体電解コンデンサ
US8027151B2 (en) 2007-11-21 2011-09-27 Sanyo Electric Co., Ltd. Solid electrolytic capacitor
JP2011510141A (ja) 2008-01-22 2011-03-31 エイチ・シー・スタルク・クレビオス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 導電性ポリマーの製造方法
US8721928B2 (en) 2008-01-22 2014-05-13 Heraeus Precious Metals Gmbh & Co. Kg Method for the production of conductive polymers
WO2011004833A1 (ja) 2009-07-08 2011-01-13 綜研化学株式会社 固体電解質用組成物およびそれを用いた太陽電池
US20120104308A1 (en) 2009-07-08 2012-05-03 Soken Chemical & Engineering Co., Ltd. Composition for Solid Electrolyte and Solar Cell Using the Same
WO2012048823A1 (en) 2010-10-12 2012-04-19 Heraeus Precious Metals Gmbh & Co. Kg Dispersions comprising polythiophenes with a defined content of thiophene monomer
JP2013539806A (ja) 2010-10-12 2013-10-28 ヘレウス プレシャス メタルズ ゲーエムベーハー ウント コンパニー カーゲー 明確なチオフェン単量体含有量を持つポリチオフェンを含む分散液
JP2015021100A (ja) 2013-07-22 2015-02-02 富山薬品工業株式会社 導電性ポリマー分散液、導電性ポリマー材料及び固体電解コンデンサ
JP2015117367A (ja) 2013-11-13 2015-06-25 ナガセケムテックス株式会社 導電性樹脂組成物及び透明導電積層体

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HOOGMARTENS, I. ET AL.: "A 13C CP/MAS NMR INVESTIGATION OF POLY (ISOTHIANAPHTHENE)", SYNTHETIC METALS, vol. 41, no. 1-2, 30 April 1991 (1991-04-30), pages 513 - 517, XP022892528, ISSN: 0379-6779 *
HOOGMARTENS, I. ET AL.: "Novel chemical syntheses of poly(isothianaphthene)", SYNTHETIC METALS, vol. 47, no. 3, 1 June 1992 (1992-06-01), pages 367 - 371, XP024172253, ISSN: 0379-6779 *
SANCHEZ, C. 0. ET AL.: "Oligo(benzo[c]thiophene-2-oxide) a poly(isothianaphthene) derivative with good photovoltaic properties", SYNTHETIC METALS, vol. 161, no. 21, 29 August 2011 (2011-08-29), pages 2335 - 2338, XP028331841, ISSN: 0379-6779 *
See also references of EP3564290A4

Also Published As

Publication number Publication date
EP3564290A4 (en) 2020-09-09
CN114920911B (zh) 2024-05-03
US20190345287A1 (en) 2019-11-14
CN110121516B (zh) 2022-07-01
CN110121516A (zh) 2019-08-13
EP3564290A1 (en) 2019-11-06
US11136432B2 (en) 2021-10-05
JP7019602B2 (ja) 2022-02-15
CN114920911A (zh) 2022-08-19
KR102214676B1 (ko) 2021-02-10
KR20190084124A (ko) 2019-07-15
JPWO2018123177A1 (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
JP6427887B2 (ja) 導電性高分子水溶液、及び導電性高分子膜
JP6311355B2 (ja) 導電性高分子水溶液、及び導電性高分子膜
JP5323302B2 (ja) 導電性高分子塗料の製造方法および導電性塗膜の製造方法
TW202043361A (zh) 導電性聚合物複合體及導電性聚合物組成物
JP6040615B2 (ja) チオフェン化合物、水溶性導電性ポリマー及びその水溶液、並びにそれらの製造法
US11183340B2 (en) Method for manufacturing solid electrolytic capacitor
JP6146096B2 (ja) チオフェン化合物、水溶性導電性ポリマー及びその水溶液、並びにそれらの製造方法
WO2018123177A1 (ja) ポリイソチアナフテン系導電性重合体の製造方法
JP7160685B2 (ja) 縮合ヘテロ多環式化合物、及びその化合物を用いた導電性ポリマーの製造方法
JP2010248487A (ja) 導電性コーティング組成物及び導電性コーティング膜の製造方法
KR101853180B1 (ko) 장치 및 이를 이용한 전도성 고분자 용액의 제조방법
JP7003671B2 (ja) 導電性高分子水溶液、及び導電性高分子膜
KR101656991B1 (ko) 점도 제어를 통한 전도성 고분자 용액의 제조방법 및 이를 통해 제조된 경화 도막
JP2017197659A (ja) 水溶性導電性高分子、その製造方法、その導電性高分子水溶液、及びその用途
KR101789920B1 (ko) 안정성이 향상된 전도성 고분자 용액 및 이의 경화 도막
JP2007077401A (ja) 導電性重合体の溶液
KR101523751B1 (ko) 유기 용매 분산성을 보유한 불소화합물을 포함하는 전도성 고분자 조성물
KR20120135690A (ko) 전도성 수분산성 나노입자의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558822

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197018436

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017886921

Country of ref document: EP

Effective date: 20190729