WO2018108006A1 - 降低碳化硅外延基平面位错密度的方法 - Google Patents

降低碳化硅外延基平面位错密度的方法 Download PDF

Info

Publication number
WO2018108006A1
WO2018108006A1 PCT/CN2017/114686 CN2017114686W WO2018108006A1 WO 2018108006 A1 WO2018108006 A1 WO 2018108006A1 CN 2017114686 W CN2017114686 W CN 2017114686W WO 2018108006 A1 WO2018108006 A1 WO 2018108006A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
reaction chamber
growth
buffer layer
doping
Prior art date
Application number
PCT/CN2017/114686
Other languages
English (en)
French (fr)
Inventor
李赟
Original Assignee
中国电子科技集团公司第五十五研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第五十五研究所 filed Critical 中国电子科技集团公司第五十五研究所
Priority to EP17881721.9A priority Critical patent/EP3547349B1/en
Priority to KR1020197020265A priority patent/KR102193732B1/ko
Publication of WO2018108006A1 publication Critical patent/WO2018108006A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the invention relates to a method for growing a silicon carbide epitaxial layer, in particular to a method for reducing planar dislocation density of silicon carbide epitaxial base.
  • the commercialization of silicon carbide power electronics is mainly limited by structural defects in the silicon carbide epitaxial layer. Structural defects can lead to degradation of the performance of silicon carbide devices, which will lead to a decrease in breakdown voltage, a decrease in minority carrier lifetime, and an increase in forward conduction resistance. To increase the magnitude of leakage, the long-term goal of silicon carbide research is to eliminate these defects.
  • the main problem in the research of silicon carbide devices is to solve the stacking fault caused by induced recombination in the active region of the device under forward bias.
  • Stacking faults cause device performance to degrade over time, increasing conduction voltage drop and on-state energy loss.
  • BPD defects in the substrate In order to avoid degradation of device performance, it is necessary to avoid BPD defects in the substrate from entering the epitaxial layer.
  • the commonly used method for reducing BPD defects in epitaxial layers is to form a BPD etching pit by KOH or KOH-NaOH-MgO co-melting corrosion on a silicon carbide substrate, and then performing epitaxial growth on the etched substrate, using BPD.
  • the lateral epitaxy rate near the etch pit closes the propagation path of the BPD defect, transforming it into a blade dislocation (TED) defect with the same Burgers vector, and the TED defect is less harmful to the device.
  • KOH melt corrosion of SiC substrate or KOH–NaOH–MgO co-melting corrosion seriously damages the surface of SiC substrate, and the process is relatively cumbersome, which is not suitable for silicon carbide epitaxial process integration.
  • the present invention proposes a method of reducing the planar dislocation density of silicon carbide epitaxial base.
  • the technical solution adopted by the present invention is: a method for reducing planar dislocation density of silicon carbide epitaxial base, comprising the following steps:
  • a small flow of silicon source and carbon source are introduced into the reaction chamber, and the flow ratio of the silicon source and the hydrogen gas is controlled to be less than 0.03%, and the doping source is introduced to grow a thickness of 0.2.
  • a small flow source of silicon and a carbon source are introduced into the reaction chamber, and the flow rate of the silicon source is the same as that of step (3), and a doping source is introduced to grow to a thickness of 0.2-0.5 ⁇ m and a doping concentration of 5-8E18 cm . 3 buffer layer 2;
  • the present invention epitaxially grows a plurality of periodic high-low doped composite buffer layers on a SiC substrate, and performs interfacial high-temperature hydrogen etching treatment on each single-layer buffer layer.
  • interface high temperature processing and doping induction to introduce multiple interfaces
  • interface image force to promote the conversion of BPD defects to TED defects
  • greatly reducing BPD defects in the epitaxial layer the method is simple to facilitate epitaxial process integration, while avoiding The complex pre-treatment of the SiC substrate reduces the damage to the surface of the substrate.
  • Figure 1 is a schematic view showing the structure of an epitaxial wafer grown in accordance with the present invention
  • the method for reducing planar dislocation density of silicon carbide epitaxial base mainly comprises epitaxially growing a plurality of periodic high-low doping concentration composite buffer layers on a SiC substrate, and performing a single buffer layer for each single layer buffer layer.
  • Interface high-temperature hydrogen etching treatment using interface high temperature processing and doping induction to introduce multiple interfaces, using interface image force to promote the conversion of BPD defects to TED defects, greatly reducing BPD defects in the epitaxial layer
  • the simple process facilitates the integration of the epitaxial process, and avoids complicated pre-processing of the SiC substrate and reduces damage to the surface of the substrate, including the following steps:
  • the silicon carbide substrate can be selected to be 4° or 8 in the direction of ⁇ 11-20>.
  • silicon source may be silane, dichlorosilane, trichlorosilane, tetrachlorosilane, etc.
  • carbon source may be methane, ethylene or acetylene.
  • Source high purity nitrogen (N 2 ), pass or p-type dopant source trimethyl aluminum (TMA), can pass 500sccm high purity nitrogen (N 2 ), set growth time 6 minutes, grow thickness 0.2- 0.5 ⁇ m, doping concentration of 5 ⁇ 8E18cm -3 buffer layer 2;
  • the flow rate of the growth source and the doping source is changed by linear ramping, the flow ratio of SiH 4 /H 2 is controlled to 0.1%, the C/Si ratio of the inlet end is 1.2, and hydrogen chloride gas is introduced.
  • the inlet end Cl/Si ratio is set to 2.5, and 10 sccm of nitrogen gas is introduced, and the epitaxial time is set to 15 minutes, which are set to the set values required for growing the epitaxial structure, and the epitaxial structure is grown according to a conventional process procedure;
  • an appropriate amount of hydrogen chloride gas, propane, silane or trichlorosilane can be introduced to assist the hydrogen etching, and the process personnel can select and judge according to the actual situation.
  • the buffer layer 1 and the buffer layer 2 in steps 3 and 5 have different doping concentrations, which can be achieved by changing the C/Si ratio of the inlet end or the doping source flow rate.
  • the doping concentration is inversely proportional to the C/Si ratio at the inlet end
  • the doping concentration is proportional to the C/Si ratio at the inlet end.
  • the doping concentration is proportional to the doping source flow rate.
  • the epitaxial wafer structure grown in accordance with the present invention has a plurality of composite buffer layers as shown in FIG.
  • the case of growing a composite buffer layer of one cycle and two cycles of high-low doping structure will be described below by means of two embodiments.
  • the SiC epitaxial wafer is grown on a composite buffer layer of a high-low doped structure, and the specific steps are as follows:
  • reaction chamber gas is replaced by argon gas several times, hydrogen gas is introduced into the reaction chamber, the H 2 flow rate is gradually increased to 80 L/min, the pressure in the reaction chamber is set to 100 mbar, and the reaction chamber is gradually heated to a growth temperature of 1600. °C, after the growth temperature is reached, the temperature of the reaction chamber is maintained for 10 minutes, and the substrate is subjected to pure hydrogen etching;
  • step (3) Pass silane and propane into the reaction chamber, the flow rate of silane is the same as in step (3), increase the flow rate of propane, control the C/Si ratio to 1.2, pass 500 sccm of high-purity nitrogen, and set the growth time to 6 minutes.
  • a buffer layer 2 having a thickness of 0.5 ⁇ m and a doping concentration of 5E17 cm -3 ;
  • a SiC epitaxial wafer is grown on a composite buffer layer of two cycles of high-low doping structure, and the specific steps are as follows:
  • reaction chamber gas is replaced by argon gas several times, hydrogen gas is introduced into the reaction chamber, the H 2 flow rate is gradually increased to 80 L/min, the pressure in the reaction chamber is set to 100 mbar, and the reaction chamber is gradually heated to a growth temperature of 1600. °C, after the growth temperature is reached, the temperature of the reaction chamber is maintained for 10 minutes, and the substrate is subjected to pure hydrogen etching;
  • step (3) Pass silane and propane into the reaction chamber, the flow rate of silane is the same as in step (3), increase the flow rate of propane, control the C/Si ratio to 1.2, pass 500 sccm of high-purity nitrogen, and set the growth time to 6 minutes.
  • a buffer layer 2 having a thickness of 0.5 ⁇ m and a doping concentration of 5E17 cm -3 ;
  • the defect density of the epitaxial wafer BPD grown on the composite buffer layer having a period of high-low doping structure has been reduced to 2.5 cm -2 , and the BPD conversion rate is 99.75%;
  • the epitaxial wafer BPD defect density grown on the composite buffer layer of the two-cycle high-low doping structure has been reduced to 0.5 cm -2 and the BPD conversion rate is 99.95%.
  • the high temperature hydrogen treatment combined with the doping induction process can effectively reduce the BPD defect density in the epitaxial layer, and the BPD defect density in the epitaxial layer can be further reduced by increasing the repetition period of the high-low doped structure in the composite buffer layer. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

提供一种降低碳化硅外延基平面位错密度的方法,主要通过在SiC衬底上外延生长多个周期的高-低掺杂浓度的复合缓冲层,并对每个单层缓冲层进行界面高温氢气刻蚀处理,利用界面高温处理以及掺杂诱导引入多个界面,利用界面象力促进BPD缺陷向TED缺陷的转化。该方法极大减少了外延层中的BPD缺陷,可以有效降低外延层中的BPD缺陷密度,方法简单,有利于外延工艺集成,同时避免了对SiC衬底进行复杂的前期处理,减少了对衬底表面的破坏。

Description

降低碳化硅外延基平面位错密度的方法 技术领域
本发明涉及一种碳化硅外延层的生长方法,尤其涉及一种降低碳化硅外延基平面位错密度的方法。
背景技术
碳化硅电力电子商业化主要受限于碳化硅外延层中的结构缺陷,结构缺陷会导致碳化硅器件性能的退化,会导致击穿电压下降,降低少数载流子寿命,增加正向导通电阻,增加漏电的量级等问题,碳化硅研究的长远目标就是消除这些缺陷。
目前研究碳化硅器件的主要问题是解决正向偏压下器件有源区内诱导复合引起的堆垛层错。堆垛层错导致器件性能随着时间退化,增加导通压降和开态能量损失。为了避免器件性能的退化,需要避免衬底中BPD缺陷进入外延层。
目前国际上常用的降低外延层中BPD缺陷的方法是对碳化硅衬底进行KOH或KOH–NaOH–MgO共融腐蚀形成BPD腐蚀坑,然后在腐蚀处理后的衬底上进行外延生长,利用BPD腐蚀坑附近的横向外延速率,闭合BPD缺陷的传播通道,使其转化为具有相同伯格斯矢量的刃位错(TED)缺陷,TED缺陷对器件危害比较低。但是碳化硅衬底的KOH熔融腐蚀或者KOH–NaOH–MgO共融腐蚀对碳化硅衬底表面破坏严重,而且工艺相对繁琐,并不适用于碳化硅外延工艺集成。
发明内容
发明目的:针对以上问题,本发明提出一种降低碳化硅外延基平面位错密度的方法。
技术方案:为实现本发明的目的,本发明所采用的技术方案是:一种降低碳化硅外延基平面位错密度的方法,包括以下步骤:
(1)将碳化硅衬底置于碳化硅外延系统反应室内的石墨基座上;
(2)采用氩气对反应室气体进行多次置换,然后向反应室通入氢气,逐渐加大氢气流量至60~120L/min,设置反应室的压力为80~200mbar,并将反应室逐渐升温至1550~1700℃,到达设定温度后,保持所有参数不变,对碳化硅衬底进行5~15分钟原位氢气刻蚀处理;
(3)原位氢气刻蚀处理完成后,向反应室通入小流量的硅源和碳源,控制硅源和氢气的流量比小于0.03%,并通入掺杂源,生长出厚度为0.2-0.5μm,掺杂浓度2~5E18cm-3的缓冲层1;
(4)关闭生长源及掺杂源,保持反应室压力、生长温度以及氢气流量不变,对缓冲层1进行原位氢气刻蚀处理,处理时间2-10分钟;
(5)向反应室通入小流量硅源和碳源,硅源的流量与步骤(3)相同,并通入掺杂 源,生长出厚度为0.2-0.5μm,掺杂浓度5~8E18cm-3的缓冲层2;
(6)关闭生长源及掺杂源,保持反应室压力、生长温度以及氢气流量不变,对缓冲层2进行原位氢气刻蚀处理,处理时间2-10分钟;
(7)重复步骤(3)~(6),完成复合缓冲层的生长;
(8)通入生长源和掺杂源,采用线性缓变的方式将生长源和掺杂源的流量改变至生长外延结构所需的设定值,根据常规工艺程序生长外延结构;
(9)在完成外延结构生长后,关闭生长源和掺杂源,在氢气氛围中将反应室温度降至室温,然后将氢气排出,并通入氩气对反应室气体进行多次置换,并利用氩气将反应室压力提高至大气压,然后开腔取片。
有益效果:本发明与现有技术相比,在SiC衬底上外延生长多个周期的高-低掺杂结构的复合缓冲层,并在对每个单层缓冲层进行界面高温氢气刻蚀处理,利用界面高温处理以及掺杂诱导引入多个界面,利用界面象力促进BPD缺陷向TED缺陷的转化,极大减少了外延层中的BPD缺陷;该方法工艺简单有利于外延工艺集成,同时避免了对SiC衬底进行复杂的前期处理,减少了对衬底表面的破坏。
附图说明
图1是按照本发明生长出的外延片结构示意图;
图2是生长一个复合缓冲层的SiC外延片的PL成像BPD缺陷分析结果;
图3是生长两个复合缓冲层的SiC外延片的PL成像BPD缺陷分析结果。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明。
本发明所述的降低碳化硅外延基平面位错密度的方法,主要通过在SiC衬底上外延生长多个周期的高-低掺杂浓度的复合缓冲层,并对每个单层缓冲层进行界面高温氢气刻蚀处理,利用界面高温处理以及掺杂诱导引入多个界面,利用界面象力(image force)促进BPD缺陷向TED缺陷的转化,极大减少了外延层中的BPD缺陷,该方法工艺简单有利于外延工艺集成,同时避免了对SiC衬底进行复杂的前期处理,减少了对衬底表面的破坏,具体包括以下步骤:
(1)将碳化硅衬底置于SiC外延系统反应室内,放置于石墨基座上,石墨基座上具有碳化钽涂层,碳化硅衬底可以选取偏向<11-20>方向4°或者8°的硅面碳化硅衬底;
(2)采用氩气对反应室气体进行多次置换,然后向反应室通入氢气,逐渐加大氢气流量至60~120L/min,设置反应室的压力为80~200mbar,并将反应室逐渐升温至1550~1700℃,到达设定温度后,保持所有参数不变,对碳化硅衬底进行5~15分钟原位氢气刻蚀处理;
(3)向反应室通入小流量的硅源和碳源,其中,硅源可以是硅烷、二氯氢硅、三 氯氢硅、四氯氢硅等,碳源可以是甲烷、乙烯、乙炔、丙烷等,控制硅源和氢气的流量比小于0.03%,调节碳源流量,控制进气端C/Si比为0.9,并通入n型掺杂源高纯氮气(N2),或者通入p型掺杂源三甲基铝(TMA),可以通入500sccm高纯氮气(N2),设定生长时间6分钟,生出长厚度为0.2-0.5μm,掺杂浓度2~5E18cm-3的缓冲层1;
(4)关闭生长源及掺杂源,保持反应室压力、生长温度以及H2流量不变,对缓冲层1进行原位氢气刻蚀处理,处理时间2-10分钟;
(5)向反应室通入小流量硅源和碳源,硅源流量与步骤(3)相同,加大碳源流量,控制进气端C/Si比为1.2,并通入n型掺杂源高纯氮气(N2),通入或者p型掺杂源三甲基铝(TMA),可以通入500sccm高纯氮气(N2),设定生长时间6分钟,生长出厚度为0.2-0.5μm,掺杂浓度由5~8E18cm-3的缓冲层2;
(6)关闭生长源及掺杂源,保持反应室压力、生长温度以及H2流量不变,对缓冲层1进行原位氢气刻蚀处理,处理时间2-10分钟;
(7)重复步骤3-6,完成复合缓冲层的生长,具体重复次数可以由工艺人员根据实验结果进行确认;
(8)采用线性缓变(ramping)的方式改变生长源及掺杂源的流量,控制SiH4/H2流量比为0.1%,进气端C/Si比为1.2,并通入氯化氢气体,设定进气端Cl/Si比为2.5,并通入10sccm的氮气,外延时间设定为15分钟,均设定为生长外延结构所需的设定值,根据常规工艺程序生长外延结构;
(9)在完成外延结构生长之后,关闭生长源和掺杂源,在氢气气氛中将反应室温度降温至室温,反应室温度达到室温后将氢气排外后,通过氩气对反应室内的气体进行多次置换,将反应室真空抽至0mbar,维持5分钟,向反应室充入氩气至大气压,开腔取片。
在进行氢气刻蚀过程中,可以引入适量的氯化氢气体、丙烷、硅烷或者三氯氢硅等工艺气体辅助氢气刻蚀,工艺人员可以根据实际情况进行选择判断。
步骤3和步骤5中缓冲层1和缓冲层2具有不同的掺杂浓度,可以通过改变进气端C/Si比或者掺杂源流量的方法实现。对于n型掺杂,掺杂浓度和进气端C/Si比成反比,对于p型掺杂,掺杂浓度和进气端C/Si比成正比。不论n型或者p型掺杂,掺杂浓度均和掺杂源流量成正比关系。
按照本发明生长出的外延片结构如图1所示,具有多个复合缓冲层。下面通过两个实施例说明生长一个周期和生长二个周期高-低掺杂结构的复合缓冲层的情况。
实施例一
生长一个周期高-低掺杂结构的复合缓冲层上生长SiC外延片,具体步骤如下:
(1)选取偏向<11-20>方向4°的硅面碳化硅衬底,衬底BPD缺陷密度为1000cm-2,, 将衬底置于SiC外延系统反应室内,放置于石墨基座上,石墨基座上具有碳化钽涂层;
(2)采用氩气对反应室气体进行多次置换,向反应室通入氢气,逐渐加大H2流量至80L/min,设置反应室的压力为100mbar,将反应室逐渐升温至生长温度1600℃,达到生长温度后维持反应室温度10分钟,对衬底进行纯氢气刻蚀;
(3)向反应室通入小流量硅烷(SiH4)和丙烷(C3H8),控制SiH4/H2比为0.025%,控制C/Si比为0.9,并通入500sccm高纯氮气,生长时间设定为6分钟,生长出厚度为0.5μm,掺杂浓度为2E18cm-3的缓冲层1;
(4)关闭生长源及掺杂源,保持反应室压力、生长温度以及H2流量不变,对缓冲层1进行原位氢气刻蚀处理,处理时间5分钟;
(5)向反应室通入硅烷和丙烷,硅烷流量与步骤(3)相同,加大丙烷流量,控制C/Si比为1.2,通入500sccm高纯氮气,生长时间设定为6分钟,生长出厚度为0.5μm,掺杂浓度为5E17cm-3的缓冲层2;
(6)关闭生长源及掺杂源,保持反应室压力、生长温度以及氢气流量不变,对缓冲层2进行原位氢气刻蚀处理,处理时间5分钟;
(7)采用线性缓变(ramping)的方式改变硅烷、丙烷以及氮气流量,控制SiH4/H2流量比为0.1%,设定进气端C/Si比为1.2,并通入氯化氢气体,设定进气端Cl/Si比为2.5,并通入10sccm的氮气,外延时间设定为15分钟;
(8)关闭生长源和掺杂源,在氢气气氛中将反应室温度降温至室温,通入氩气置换反应室内的氢气,将反应室真空抽至0mbar,维持5分钟,向反应室充入氩气至大气压,打开反应室,取出外延片。采用PL成像BPD检测方法对外延片表面进行表征,结果如图2所示。
实施例二
生长两个周期高-低掺杂结构的复合缓冲层上生长SiC外延片,具体步骤如下:
(1)选取偏向<11-20>方向4°的硅面碳化硅衬底,衬底BPD缺陷密度为1000cm-2,,将衬底置于SiC外延系统反应室内,放置于石墨基座上,石墨基座上具有碳化钽涂层;
(2)采用氩气对反应室气体进行多次置换,向反应室通入氢气,逐渐加大H2流量至80L/min,设置反应室的压力为100mbar,将反应室逐渐升温至生长温度1600℃,达到生长温度后维持反应室温度10分钟,对衬底进行纯氢气刻蚀;
(3)向反应室通入小流量硅烷(SiH4)和丙烷(C3H8),控制SiH4/H2比为0.025%,控制C/Si比为0.9,并通入500sccm高纯氮气,生长时间设定为6分钟,生长出厚度为0.5μm,掺杂浓度为2E18cm-3的缓冲层1;
(4)关闭生长源及掺杂源,保持反应室压力、生长温度以及H2流量不变,对缓冲层1进行原位氢气刻蚀处理,处理时间5分钟;
(5)向反应室通入硅烷和丙烷,硅烷流量与步骤(3)相同,加大丙烷流量,控制C/Si比为1.2,通入500sccm高纯氮气,生长时间设定为6分钟,生长出厚度为0.5μm,掺杂浓度为5E17cm-3的缓冲层2;
(6)关闭生长源及掺杂源,保持反应室压力、生长温度以及氢气流量不变,对缓冲层2进行原位氢气刻蚀处理,处理时间5分钟;
(7)重复步骤3~6一次;
(8)用流量增加的方式改变硅烷、丙烷以及氮气流量,控制SiH4/H2流量比为0.1%,设定进气端C/Si比为1.2,并通入氯化氢气体,设定进气端Cl/Si比为2.5,通入10sccm的氮气,外延时间设定为15分钟;
(9)关闭生长源和掺杂源,在氢气气氛中将反应室温度降温至室温,通入氩气置换反应室内的氢气,将反应室真空抽至0mbar,维持5分钟,向反应室充入氩气至大气压,打开反应室,取出外延片。采用PL成像BPD检测方法对外延片表面进行表征,结果如图3所示。
通过图2和图3可以看出该工艺下,具有一个周期高-低掺杂结构的复合缓冲层上生长的外延片BPD缺陷密度已经降低至2.5cm-2,BPD转化率达到99.75%;具有二个周期高-低掺杂结构的复合缓冲层上生长的外延片BPD缺陷密度已经降低至0.5cm-2,BPD转化率达到99.95%。可以看出利用界面高温氢气处理结合掺杂诱导工艺可以有效降低外延层中的BPD缺陷密度,同时通过增加复合缓冲层中高-低掺杂结构的重复周期,可以进一步降低外延层中的BPD缺陷密度。

Claims (4)

  1. 一种降低碳化硅外延基平面位错密度的方法,其特征在于:包括以下步骤:
    (1)将碳化硅衬底置于碳化硅外延系统反应室内的石墨基座上;
    (2)采用氩气对反应室气体进行多次置换,然后向反应室通入氢气,逐渐加大氢气流量至60~120L/min,设置反应室的压力为80~200mbar,并将反应室逐渐升温至1550~1700℃,到达设定温度后,保持所有参数不变,对碳化硅衬底进行5~15分钟原位氢气刻蚀处理;
    (3)原位氢气刻蚀处理完成后,向反应室通入小流量的硅源和碳源,控制硅源和氢气的流量比小于0.03%,并通入掺杂源,生长出厚度为0.2-0.5μm,掺杂浓度2~5E18cm-3的缓冲层1;
    (4)关闭生长源及掺杂源,保持反应室压力、生长温度以及氢气流量不变,对缓冲层1进行原位氢气刻蚀处理,处理时间2-10分钟;
    (5)向反应室通入小流量硅源和碳源,硅源的流量与步骤(3)相同,并通入掺杂源,生长出厚度为0.2-0.5μm,掺杂浓度5~8E18cm-3的缓冲层2;
    (6)关闭生长源及掺杂源,保持反应室压力、生长温度以及氢气流量不变,对缓冲层2进行原位氢气刻蚀处理,处理时间2-10分钟;
    (7)重复步骤(3)~(6),完成复合缓冲层的生长;
    (8)通入生长源和掺杂源,采用线性缓变的方式将生长源和掺杂源的流量改变至生长外延结构所需的设定值,根据常规工艺程序生长外延结构;
    (9)在完成外延结构生长后,关闭生长源和掺杂源,在氢气氛围中将反应室温度降至室温,然后将氢气排出,并通入氩气对反应室气体进行多次置换,并利用氩气将反应室压力提高至大气压,然后开腔取片。
  2. 根据权利要求1所述的降低碳化硅外延基平面位错密度的方法,其特征在于:掺杂源为n型掺杂源氮气或p型掺杂源三甲基铝。
  3. 根据权利要求1所述的降低碳化硅外延基平面位错密度的方法,其特征在于:硅源为硅烷、二氯氢硅、三氯氢硅或四氯氢硅,碳源为甲烷、乙烯、乙炔或丙烷。
  4. 根据权利要求1所述的降低碳化硅外延基平面位错密度的方法,其特征在于:步骤(3)和步骤(5)中缓冲层1和缓冲层2具有不同的掺杂浓度。
PCT/CN2017/114686 2016-12-15 2017-12-06 降低碳化硅外延基平面位错密度的方法 WO2018108006A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17881721.9A EP3547349B1 (en) 2016-12-15 2017-12-06 Method for reducing silicon carbide epitaxial basal plane dislocation density
KR1020197020265A KR102193732B1 (ko) 2016-12-15 2017-12-06 탄화규소 에피택셜 기저면 전위 밀도를 낮추는 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611158953.6A CN107068539B (zh) 2016-12-15 2016-12-15 降低碳化硅外延基平面位错密度的方法
CN201611158953.6 2016-12-15

Publications (1)

Publication Number Publication Date
WO2018108006A1 true WO2018108006A1 (zh) 2018-06-21

Family

ID=59618888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114686 WO2018108006A1 (zh) 2016-12-15 2017-12-06 降低碳化硅外延基平面位错密度的方法

Country Status (4)

Country Link
EP (1) EP3547349B1 (zh)
KR (1) KR102193732B1 (zh)
CN (1) CN107068539B (zh)
WO (1) WO2018108006A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029250A (zh) * 2019-12-09 2020-04-17 中国电子科技集团公司第五十五研究所 一种实现SiC外延曲线形掺杂分布的方法
CN112366130A (zh) * 2020-10-09 2021-02-12 中国电子科技集团公司第五十五研究所 一种降低碳化硅外延材料缺陷密度的方法
CN112701031A (zh) * 2020-12-29 2021-04-23 中国电子科技集团公司第五十五研究所 一种碳化硅外延材料的缓冲层生长方法
CN112885709A (zh) * 2021-01-13 2021-06-01 中电化合物半导体有限公司 一种碳化硅外延结构的制备方法及半导体设备
CN113897059A (zh) * 2021-09-28 2022-01-07 广州特种承压设备检测研究院 一种石墨烯@碳化硅核壳复合聚酰亚胺渗透膜及其制备方法
CN114999900A (zh) * 2022-07-18 2022-09-02 浙江大学杭州国际科创中心 一种提高碳化硅晶圆中少数载流子寿命的方法
CN115584478A (zh) * 2022-09-27 2023-01-10 中国电子科技集团公司第五十五研究所 一种低缺陷密度外延薄膜的制备方法
CN115662881A (zh) * 2022-12-21 2023-01-31 青禾晶元(天津)半导体材料有限公司 一种复合碳化硅衬底及其制备方法
CN116613056A (zh) * 2023-07-21 2023-08-18 瀚天天成电子科技(厦门)股份有限公司 一种降低碳化硅外延薄膜表面缺陷的方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107068539B (zh) * 2016-12-15 2019-11-22 中国电子科技集团公司第五十五研究所 降低碳化硅外延基平面位错密度的方法
CN107829135A (zh) * 2017-10-24 2018-03-23 瀚天天成电子科技(厦门)有限公司 一种高质量碳化硅外延生长工艺
CN108878257B (zh) * 2018-05-04 2020-09-22 中国电子科技集团公司第五十五研究所 一种降低碳化硅外延表面缺陷密度的方法
CN108648988B (zh) * 2018-05-11 2020-08-28 中国电子科技集团公司第五十五研究所 一种降低碳化硅多层结构中p型记忆效应的方法
JP7129889B2 (ja) * 2018-11-09 2022-09-02 昭和電工株式会社 SiCエピタキシャルウェハの製造方法
KR102270391B1 (ko) * 2019-07-30 2021-06-30 에스케이실트론 주식회사 웨이퍼의 에피택셜층의 성장 온도 설정 방법 및 에피택셜층의 성장 방법
CN112447498A (zh) * 2019-08-29 2021-03-05 中国科学院苏州纳米技术与纳米仿生研究所 降低双极型器件正向导通SFs拓展的SiC外延层生长方法、结构及生长方法供气管路
CN111005068A (zh) * 2019-12-09 2020-04-14 中国电子科技集团公司第五十五研究所 一种生长高表面质量超厚igbt结构碳化硅外延材料的方法
CN111029246B (zh) * 2019-12-09 2022-07-29 中国电子科技集团公司第五十五研究所 一种降低SiC外延层中三角形缺陷的方法
CN111681947B (zh) * 2020-05-22 2022-03-29 东莞市天域半导体科技有限公司 一种降低外延片堆垛层错缺陷的外延方法及其应用
CN112466745B (zh) * 2020-11-26 2021-10-08 瀚天天成电子科技(厦门)有限公司 一种碳化硅外延生长的控制方法及碳化硅外延片
CN112522781B (zh) * 2021-02-18 2021-04-23 中芯集成电路制造(绍兴)有限公司 碳化硅衬底上的缓冲层及其形成方法
CN113913930A (zh) * 2021-09-30 2022-01-11 瀚天天成电子科技(厦门)有限公司 一种具有n型缓冲层的外延结构及其制备方法
CN113913931A (zh) * 2021-09-30 2022-01-11 瀚天天成电子科技(厦门)有限公司 一种具有p型缓冲层的外延结构及其制备方法
CN114892273A (zh) * 2022-04-29 2022-08-12 希科半导体科技(苏州)有限公司 一种碳化硅外延层生长方法
CN114775046B (zh) * 2022-06-22 2022-11-29 浙江大学杭州国际科创中心 一种碳化硅外延层生长方法
CN115287761A (zh) * 2022-08-04 2022-11-04 顾赢速科技(合肥)有限公司 碳化硅晶体生长的热应力工艺及其装置
CN116259534A (zh) * 2023-05-12 2023-06-13 比亚迪股份有限公司 碳化硅外延方法
CN117672815A (zh) * 2023-11-29 2024-03-08 中环领先半导体科技股份有限公司 一种SiC外延片及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103295884A (zh) * 2012-03-02 2013-09-11 株式会社东芝 半导体装置的制造方法
CN104851781A (zh) * 2015-06-08 2015-08-19 国网智能电网研究院 一种n型低偏角碳化硅外延片的制备方法
CN105244255A (zh) * 2015-08-27 2016-01-13 中国电子科技集团公司第十三研究所 一种碳化硅外延材料及其生产方法
CN107068539A (zh) * 2016-12-15 2017-08-18 中国电子科技集团公司第五十五研究所 降低碳化硅外延基平面位错密度的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391058B2 (en) * 2005-06-27 2008-06-24 General Electric Company Semiconductor devices and methods of making same
JP5458509B2 (ja) * 2008-06-04 2014-04-02 日立金属株式会社 炭化珪素半導体基板
CN100578737C (zh) * 2008-11-07 2010-01-06 中国电子科技集团公司第五十五研究所 一种制作基本上没有台阶形貌的碳化硅外延层的方法
JP4719314B2 (ja) * 2009-01-30 2011-07-06 新日本製鐵株式会社 エピタキシャル炭化珪素単結晶基板及びその製造方法
JP4880052B2 (ja) * 2010-05-11 2012-02-22 新日本製鐵株式会社 エピタキシャル炭化珪素単結晶基板及びその製造方法
JP5637086B2 (ja) * 2011-07-07 2014-12-10 三菱電機株式会社 エピタキシャルウエハ及び半導体素子
US9017804B2 (en) * 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
CN105826186B (zh) * 2015-11-12 2018-07-10 中国电子科技集团公司第五十五研究所 高表面质量碳化硅外延层的生长方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103295884A (zh) * 2012-03-02 2013-09-11 株式会社东芝 半导体装置的制造方法
CN104851781A (zh) * 2015-06-08 2015-08-19 国网智能电网研究院 一种n型低偏角碳化硅外延片的制备方法
CN105244255A (zh) * 2015-08-27 2016-01-13 中国电子科技集团公司第十三研究所 一种碳化硅外延材料及其生产方法
CN107068539A (zh) * 2016-12-15 2017-08-18 中国电子科技集团公司第五十五研究所 降低碳化硅外延基平面位错密度的方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029250B (zh) * 2019-12-09 2022-07-22 中国电子科技集团公司第五十五研究所 一种实现SiC外延曲线形掺杂分布的方法
CN111029250A (zh) * 2019-12-09 2020-04-17 中国电子科技集团公司第五十五研究所 一种实现SiC外延曲线形掺杂分布的方法
CN112366130A (zh) * 2020-10-09 2021-02-12 中国电子科技集团公司第五十五研究所 一种降低碳化硅外延材料缺陷密度的方法
CN112366130B (zh) * 2020-10-09 2022-07-29 中国电子科技集团公司第五十五研究所 一种降低碳化硅外延材料缺陷密度的方法
CN112701031A (zh) * 2020-12-29 2021-04-23 中国电子科技集团公司第五十五研究所 一种碳化硅外延材料的缓冲层生长方法
CN112885709A (zh) * 2021-01-13 2021-06-01 中电化合物半导体有限公司 一种碳化硅外延结构的制备方法及半导体设备
CN112885709B (zh) * 2021-01-13 2024-03-22 中电化合物半导体有限公司 一种碳化硅外延结构的制备方法及半导体设备
CN113897059B (zh) * 2021-09-28 2023-06-27 广州特种承压设备检测研究院 一种石墨烯@碳化硅核壳复合聚酰亚胺渗透膜及其制备方法
CN113897059A (zh) * 2021-09-28 2022-01-07 广州特种承压设备检测研究院 一种石墨烯@碳化硅核壳复合聚酰亚胺渗透膜及其制备方法
CN114999900B (zh) * 2022-07-18 2023-08-08 浙江大学杭州国际科创中心 一种提高碳化硅晶圆中少数载流子寿命的方法
CN114999900A (zh) * 2022-07-18 2022-09-02 浙江大学杭州国际科创中心 一种提高碳化硅晶圆中少数载流子寿命的方法
CN115584478A (zh) * 2022-09-27 2023-01-10 中国电子科技集团公司第五十五研究所 一种低缺陷密度外延薄膜的制备方法
CN115662881B (zh) * 2022-12-21 2023-03-17 青禾晶元(天津)半导体材料有限公司 一种复合碳化硅衬底及其制备方法
CN115662881A (zh) * 2022-12-21 2023-01-31 青禾晶元(天津)半导体材料有限公司 一种复合碳化硅衬底及其制备方法
CN116613056A (zh) * 2023-07-21 2023-08-18 瀚天天成电子科技(厦门)股份有限公司 一种降低碳化硅外延薄膜表面缺陷的方法
CN116613056B (zh) * 2023-07-21 2023-10-10 瀚天天成电子科技(厦门)股份有限公司 一种降低碳化硅外延薄膜表面缺陷的方法

Also Published As

Publication number Publication date
EP3547349A4 (en) 2019-11-20
CN107068539A (zh) 2017-08-18
EP3547349B1 (en) 2020-10-21
KR102193732B1 (ko) 2020-12-21
KR20190102211A (ko) 2019-09-03
EP3547349A1 (en) 2019-10-02
CN107068539B (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2018108006A1 (zh) 降低碳化硅外延基平面位错密度的方法
WO2018108005A1 (zh) 降低基平面位错对碳化硅外延层影响的方法
CN111029246B (zh) 一种降低SiC外延层中三角形缺陷的方法
WO2012144614A1 (ja) エピタキシャル炭化珪素単結晶基板及びその製造方法
CN106711022B (zh) 一种生长掺杂界面清晰的碳化硅外延薄膜的制备方法
CN105655238A (zh) 基于石墨烯与磁控溅射氮化铝的硅基氮化镓生长方法
CN111725072B (zh) 一种电子浓度稳定的高质量氧化镓薄膜及其制备方法
CN102610500A (zh) N型重掺杂碳化硅薄膜外延制备方法
CN112701031B (zh) 一种碳化硅外延材料的缓冲层生长方法
CN104867818B (zh) 一种减少碳化硅外延材料缺陷的方法
CN103422164A (zh) 一种N型4H-SiC同质外延掺杂控制方法
CN104779141A (zh) 低偏角碳化硅同质外延材料的制作方法
JP6758491B2 (ja) SiCエピタキシャルウエハおよびその製造方法
CN115832018A (zh) 一种控制TSD缺陷的4H-SiC外延结构及生长方法
CN112366130A (zh) 一种降低碳化硅外延材料缺陷密度的方法
JP2015044727A (ja) SiCエピタキシャルウエハの製造方法
CN108511322B (zh) 一种在二维石墨衬底上制备GaN薄膜的方法
US11183385B2 (en) Method for passivating silicon carbide epitaxial layer
CN116825620A (zh) 一种降低碳化硅外延片表面缺陷的方法
JP2014027028A (ja) SiCエピタキシャル基板製造装置、SiCエピタキシャル基板の製造方法、SiCエピタキシャル基板
JP6108609B2 (ja) 窒化物半導体基板
CN113089091A (zh) 氮化硼模板及其制备方法
CN114883175B (zh) 碳化硅外延层的缺陷阻障结构及方法
CN103779397A (zh) InAlN/InGaN异质结材料结构及其生长方法
CN111029245B (zh) 一种SiC外延速率切换的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017881721

Country of ref document: EP

Effective date: 20190625

ENP Entry into the national phase

Ref document number: 20197020265

Country of ref document: KR

Kind code of ref document: A