CN107068539A - 降低碳化硅外延基平面位错密度的方法 - Google Patents

降低碳化硅外延基平面位错密度的方法 Download PDF

Info

Publication number
CN107068539A
CN107068539A CN201611158953.6A CN201611158953A CN107068539A CN 107068539 A CN107068539 A CN 107068539A CN 201611158953 A CN201611158953 A CN 201611158953A CN 107068539 A CN107068539 A CN 107068539A
Authority
CN
China
Prior art keywords
source
hydrogen
growth
silicon carbide
passed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611158953.6A
Other languages
English (en)
Other versions
CN107068539B (zh
Inventor
李赟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN201611158953.6A priority Critical patent/CN107068539B/zh
Publication of CN107068539A publication Critical patent/CN107068539A/zh
Priority to KR1020197020265A priority patent/KR102193732B1/ko
Priority to EP17881721.9A priority patent/EP3547349B1/en
Priority to PCT/CN2017/114686 priority patent/WO2018108006A1/zh
Application granted granted Critical
Publication of CN107068539B publication Critical patent/CN107068539B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Abstract

本发明公开了一种降低碳化硅外延基平面位错密度的方法,主要通过在SiC衬底上外延生长多个周期的高‑低掺杂浓度的复合缓冲层,并对每个单层缓冲层进行界面高温氢气刻蚀处理,利用界面高温处理以及掺杂诱导引入多个界面,利用界面象力促进BPD缺陷向TED缺陷的转化。该方法极大减少了外延层中的BPD缺陷,可以有效降低外延层中的BPD缺陷密度,方法简单有利于外延工艺集成,同时避免了对SiC衬底进行复杂的前期处理,减少了对衬底表面的破坏。

Description

降低碳化硅外延基平面位错密度的方法
技术领域
本发明涉及一种碳化硅外延层的生长方法,尤其涉及一种降低碳化硅外延基平面位错密度的方法。
背景技术
碳化硅电力电子商业化主要受限于碳化硅外延层中的结构缺陷,结构缺陷会导致碳化硅器件性能的退化,会导致击穿电压下降,降低少数载流子寿命,增加正向导通电阻,增加漏电的量级等问题,碳化硅研究的长远目标就是消除这些缺陷。
目前研究碳化硅器件的主要问题是解决正向偏压下器件有源区内诱导复合引起的堆垛层错。堆垛层错导致器件性能随着时间退化,增加导通压降和开态能量损失。为了避免器件性能的退化,需要避免衬底中BPD缺陷进入外延层。
目前国际上常用的降低外延层中BPD缺陷的方法是对碳化硅衬底进行KOH或KOH–NaOH–MgO共融腐蚀形成BPD腐蚀坑,然后在腐蚀处理后的衬底上进行外延生长,利用BPD腐蚀坑附近的横向外延速率,闭合BPD缺陷的传播通道,使其转化为具有相同伯格斯矢量的刃位错(TED)缺陷,TED缺陷对器件危害比较低。但是碳化硅衬底的KOH熔融腐蚀或者KOH–NaOH–MgO共融腐蚀对碳化硅衬底表面破坏严重,而且工艺相对繁琐,并不适用于碳化硅外延工艺集成。
发明内容
发明目的:针对以上问题,本发明提出一种降低碳化硅外延基平面位错密度的方法。
技术方案:为实现本发明的目的,本发明所采用的技术方案是:一种降低碳化硅外延基平面位错密度的方法,包括以下步骤:
(1)将碳化硅衬底置于碳化硅外延系统反应室内的石墨基座上;
(2)采用氩气对反应室气体进行多次置换,然后向反应室通入氢气,逐渐加大氢气流量至60~120L/min,设置反应室的压力为80~200mbar,并将反应室逐渐升温至1550~1700℃,到达设定温度后,保持所有参数不变,对碳化硅衬底进行5~15分钟原位氢气刻蚀处理;
(3)原位氢气刻蚀处理完成后,向反应室通入小流量的硅源和碳源,控制硅源和氢气的流量比小于0.03%,并通入掺杂源,生长出厚度为0.2-0.5μm,掺杂浓度2~5E18cm-3的缓冲层1;
(4)关闭生长源及掺杂源,保持反应室压力、生长温度以及氢气流量不变,对缓冲层1进行原位氢气刻蚀处理,处理时间2-10分钟;
(5)向反应室通入小流量硅源和碳源,硅源的流量与步骤(3)相同,并通入掺杂源,生长出厚度为0.2-0.5μm,掺杂浓度5~8E18cm-3的缓冲层2;
(6)关闭生长源及掺杂源,保持反应室压力、生长温度以及氢气流量不变,对缓冲层2进行原位氢气刻蚀处理,处理时间2-10分钟;
(7)重复步骤(3)~(6),完成复合缓冲层的生长;
(8)通入生长源和掺杂源,采用线性缓变的方式将生长源和掺杂源的流量改变至生长外延结构所需的设定值,根据常规工艺程序生长外延结构;
(9)在完成外延结构生长后,关闭生长源和掺杂源,在氢气氛围中将反应室温度降至室温,然后将氢气排出,并通入氩气对反应室气体进行多次置换,并利用氩气将反应室压力提高至大气压,然后开腔取片。
有益效果:本发明与现有技术相比,在SiC衬底上外延生长多个周期的高-低掺杂结构的复合缓冲层,并在对每个单层缓冲层进行界面高温氢气刻蚀处理,利用界面高温处理以及掺杂诱导引入多个界面,利用界面象力促进BPD缺陷向TED缺陷的转化,极大减少了外延层中的BPD缺陷;该方法工艺简单有利于外延工艺集成,同时避免了对SiC衬底进行复杂的前期处理,减少了对衬底表面的破坏。
附图说明
图1是按照本发明生长出的外延片结构示意图;
图2是生长一个复合缓冲层的SiC外延片的PL成像BPD缺陷分析结果;
图3是生长两个复合缓冲层的SiC外延片的PL成像BPD缺陷分析结果。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明。
本发明所述的降低碳化硅外延基平面位错密度的方法,主要通过在SiC衬底上外延生长多个周期的高-低掺杂浓度的复合缓冲层,并对每个单层缓冲层进行界面高温氢气刻蚀处理,利用界面高温处理以及掺杂诱导引入多个界面,利用界面象力(image force)促进BPD缺陷向TED缺陷的转化,极大减少了外延层中的BPD缺陷,该方法工艺简单有利于外延工艺集成,同时避免了对SiC衬底进行复杂的前期处理,减少了对衬底表面的破坏,具体包括以下步骤:
(1)将碳化硅衬底置于SiC外延系统反应室内,放置于石墨基座上,石墨基座上具有碳化钽涂层,碳化硅衬底可以选取偏向<11-20>方向4°或者8°的硅面碳化硅衬底;
(2)采用氩气对反应室气体进行多次置换,然后向反应室通入氢气,逐渐加大氢气流量至60~120L/min,设置反应室的压力为80~200mbar,并将反应室逐渐升温至1550~1700℃,到达设定温度后,保持所有参数不变,对碳化硅衬底进行5~15分钟原位氢气刻蚀处理;
(3)向反应室通入小流量的硅源和碳源,其中,硅源可以是硅烷、二氯氢硅、三氯氢硅、四氯氢硅等,碳源可以是甲烷、乙烯、乙炔、丙烷等,控制硅源和氢气的流量比小于0.03%,调节碳源流量,控制进气端C/Si比为0.9,并通入n型掺杂源高纯氮气(N2),或者通入p型掺杂源三甲基铝(TMA),可以通入500sccm高纯氮气(N2),设定生长时间6分钟,生出长厚度为0.2-0.5μm,掺杂浓度2~5E18cm-3的缓冲层1;
(4)关闭生长源及掺杂源,保持反应室压力、生长温度以及H2流量不变,对缓冲层1进行原位氢气刻蚀处理,处理时间2-10分钟;
(5)向反应室通入小流量硅源和碳源,硅源流量与步骤(3)相同,加大碳源流量,控制进气端C/Si比为1.2,并通入n型掺杂源高纯氮气(N2),通入或者p型掺杂源三甲基铝(TMA),可以通入500sccm高纯氮气(N2),设定生长时间6分钟,生长出厚度为0.2-0.5μm,掺杂浓度由5~8E18cm-3的缓冲层2;
(6)关闭生长源及掺杂源,保持反应室压力、生长温度以及H2流量不变,对缓冲层1进行原位氢气刻蚀处理,处理时间2-10分钟;
(7)重复步骤3-6,完成复合缓冲层的生长,具体重复次数可以由工艺人员根据实验结果进行确认;
(8)采用线性缓变(ramping)的方式改变生长源及掺杂源的流量,控制SiH4/H2流量比为0.1%,进气端C/Si比为1.2,并通入氯化氢气体,设定进气端Cl/Si比为2.5,并通入10sccm的氮气,外延时间设定为15分钟,均设定为生长外延结构所需的设定值,根据常规工艺程序生长外延结构;
(9)在完成外延结构生长之后,关闭生长源和掺杂源,在氢气气氛中将反应室温度降温至室温,反应室温度达到室温后将氢气排外后,通过氩气对反应室内的气体进行多次置换,将反应室真空抽至0mbar,维持5分钟,向反应室充入氩气至大气压,开腔取片。
在进行氢气刻蚀过程中,可以引入适量的氯化氢气体、丙烷、硅烷或者三氯氢硅等工艺气体辅助氢气刻蚀,工艺人员可以根据实际情况进行选择判断。
步骤3和步骤5中缓冲层1和缓冲层2具有不同的掺杂浓度,可以通过改变进气端C/Si比或者掺杂源流量的方法实现。对于n型掺杂,掺杂浓度和进气端C/Si比成反比,对于p型掺杂,掺杂浓度和进气端C/Si比成正比。不论n型或者p型掺杂,掺杂浓度均和掺杂源流量成正比关系。
按照本发明生长出的外延片结构如图1所示,具有多个复合缓冲层。下面通过两个实施例说明生长一个周期和生长二个周期高-低掺杂结构的复合缓冲层的情况。
实施例一
生长一个周期高-低掺杂结构的复合缓冲层上生长SiC外延片,具体步骤如下:
(1)选取偏向<11-20>方向4°的硅面碳化硅衬底,衬底BPD缺陷密度为1000cm-2,,将衬底置于SiC外延系统反应室内,放置于石墨基座上,石墨基座上具有碳化钽涂层;
(2)采用氩气对反应室气体进行多次置换,向反应室通入氢气,逐渐加大H2流量至80L/min,设置反应室的压力为100mbar,将反应室逐渐升温至生长温度1600℃,达到生长温度后维持反应室温度10分钟,对衬底进行纯氢气刻蚀;
(3)向反应室通入小流量硅烷(SiH4)和丙烷(C3H8),控制SiH4/H2比为0.025%,控制C/Si比为0.9,并通入500sccm高纯氮气,生长时间设定为6分钟,生长出厚度为0.5μm,掺杂浓度为2E18cm-3的缓冲层1;
(4)关闭生长源及掺杂源,保持反应室压力、生长温度以及H2流量不变,对缓冲层1进行原位氢气刻蚀处理,处理时间5分钟;
(5)向反应室通入硅烷和丙烷,硅烷流量与步骤(3)相同,加大丙烷流量,控制C/Si比为1.2,通入500sccm高纯氮气,生长时间设定为6分钟,生长出厚度为0.5μm,掺杂浓度为5E17cm-3的缓冲层2;
(6)关闭生长源及掺杂源,保持反应室压力、生长温度以及氢气流量不变,对缓冲层2进行原位氢气刻蚀处理,处理时间5分钟;
(7)采用线性缓变(ramping)的方式改变硅烷、丙烷以及氮气流量,控制SiH4/H2流量比为0.1%,设定进气端C/Si比为1.2,并通入氯化氢气体,设定进气端Cl/Si比为2.5,并通入10sccm的氮气,外延时间设定为15分钟;
(8)关闭生长源和掺杂源,在氢气气氛中将反应室温度降温至室温,通入氩气置换反应室内的氢气,将反应室真空抽至0mbar,维持5分钟,向反应室充入氩气至大气压,打开反应室,取出外延片。采用PL成像BPD检测方法对外延片表面进行表征,结果如图2所示。
实施例二
生长两个周期高-低掺杂结构的复合缓冲层上生长SiC外延片,具体步骤如下:
(1)选取偏向<11-20>方向4°的硅面碳化硅衬底,衬底BPD缺陷密度为1000cm-2,,将衬底置于SiC外延系统反应室内,放置于石墨基座上,石墨基座上具有碳化钽涂层;
(2)采用氩气对反应室气体进行多次置换,向反应室通入氢气,逐渐加大H2流量至80L/min,设置反应室的压力为100mbar,将反应室逐渐升温至生长温度1600℃,达到生长温度后维持反应室温度10分钟,对衬底进行纯氢气刻蚀;
(3)向反应室通入小流量硅烷(SiH4)和丙烷(C3H8),控制SiH4/H2比为0.025%,控制C/Si比为0.9,并通入500sccm高纯氮气,生长时间设定为6分钟,生长出厚度为0.5μm,掺杂浓度为2E18cm-3的缓冲层1;
(4)关闭生长源及掺杂源,保持反应室压力、生长温度以及H2流量不变,对缓冲层1进行原位氢气刻蚀处理,处理时间5分钟;
(5)向反应室通入硅烷和丙烷,硅烷流量与步骤(3)相同,加大丙烷流量,控制C/Si比为1.2,通入500sccm高纯氮气,生长时间设定为6分钟,生长出厚度为0.5μm,掺杂浓度为5E17cm-3的缓冲层2;
(6)关闭生长源及掺杂源,保持反应室压力、生长温度以及氢气流量不变,对缓冲层2进行原位氢气刻蚀处理,处理时间5分钟;
(7)重复步骤3~6一次;
(8)用流量增加的方式改变硅烷、丙烷以及氮气流量,控制SiH4/H2流量比为0.1%,设定进气端C/Si比为1.2,并通入氯化氢气体,设定进气端Cl/Si比为2.5,通入10sccm的氮气,外延时间设定为15分钟;
(9)关闭生长源和掺杂源,在氢气气氛中将反应室温度降温至室温,通入氩气置换反应室内的氢气,将反应室真空抽至0mbar,维持5分钟,向反应室充入氩气至大气压,打开反应室,取出外延片。采用PL成像BPD检测方法对外延片表面进行表征,结果如图3所示。
通过图2和图3可以看出该工艺下,具有一个周期高-低掺杂结构的复合缓冲层上生长的外延片BPD缺陷密度已经降低至2.5cm-2,BPD转化率达到99.75%;具有二个周期高-低掺杂结构的复合缓冲层上生长的外延片BPD缺陷密度已经降低至0.5cm-2,BPD转化率达到99.95%。可以看出利用界面高温氢气处理结合掺杂诱导工艺可以有效降低外延层中的BPD缺陷密度,同时通过增加复合缓冲层中高-低掺杂结构的重复周期,可以进一步降低外延层中的BPD缺陷密度。

Claims (4)

1.一种降低碳化硅外延基平面位错密度的方法,其特征在于:包括以下步骤:
(1)将碳化硅衬底置于碳化硅外延系统反应室内的石墨基座上;
(2)采用氩气对反应室气体进行多次置换,然后向反应室通入氢气,逐渐加大氢气流量至60~120L/min,设置反应室的压力为80~200mbar,并将反应室逐渐升温至1550~1700℃,到达设定温度后,保持所有参数不变,对碳化硅衬底进行5~15分钟原位氢气刻蚀处理;
(3)原位氢气刻蚀处理完成后,向反应室通入小流量的硅源和碳源,控制硅源和氢气的流量比小于0.03%,并通入掺杂源,生长出厚度为0.2-0.5μm,掺杂浓度2~5E18cm-3的缓冲层1;
(4)关闭生长源及掺杂源,保持反应室压力、生长温度以及氢气流量不变,对缓冲层1进行原位氢气刻蚀处理,处理时间2-10分钟;
(5)向反应室通入小流量硅源和碳源,硅源的流量与步骤(3)相同,并通入掺杂源,生长出厚度为0.2-0.5μm,掺杂浓度5~8E18cm-3的缓冲层2;
(6)关闭生长源及掺杂源,保持反应室压力、生长温度以及氢气流量不变,对缓冲层2进行原位氢气刻蚀处理,处理时间2-10分钟;
(7)重复步骤(3)~(6),完成复合缓冲层的生长;
(8)通入生长源和掺杂源,采用线性缓变的方式将生长源和掺杂源的流量改变至生长外延结构所需的设定值,根据常规工艺程序生长外延结构;
(9)在完成外延结构生长后,关闭生长源和掺杂源,在氢气氛围中将反应室温度降至室温,然后将氢气排出,并通入氩气对反应室气体进行多次置换,并利用氩气将反应室压力提高至大气压,然后开腔取片。
2.根据权利要求1所述的降低碳化硅外延基平面位错密度的方法,其特征在于:掺杂源为n型掺杂源氮气或p型掺杂源三甲基铝。
3.根据权利要求1所述的降低碳化硅外延基平面位错密度的方法,其特征在于:硅源为硅烷、二氯氢硅、三氯氢硅或四氯氢硅,碳源为甲烷、乙烯、乙炔或丙烷。
4.根据权利要求1所述的降低碳化硅外延基平面位错密度的方法,其特征在于:步骤(3)和步骤(5)中缓冲层1和缓冲层2具有不同的掺杂浓度。
CN201611158953.6A 2016-12-15 2016-12-15 降低碳化硅外延基平面位错密度的方法 Active CN107068539B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201611158953.6A CN107068539B (zh) 2016-12-15 2016-12-15 降低碳化硅外延基平面位错密度的方法
KR1020197020265A KR102193732B1 (ko) 2016-12-15 2017-12-06 탄화규소 에피택셜 기저면 전위 밀도를 낮추는 방법
EP17881721.9A EP3547349B1 (en) 2016-12-15 2017-12-06 Method for reducing silicon carbide epitaxial basal plane dislocation density
PCT/CN2017/114686 WO2018108006A1 (zh) 2016-12-15 2017-12-06 降低碳化硅外延基平面位错密度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611158953.6A CN107068539B (zh) 2016-12-15 2016-12-15 降低碳化硅外延基平面位错密度的方法

Publications (2)

Publication Number Publication Date
CN107068539A true CN107068539A (zh) 2017-08-18
CN107068539B CN107068539B (zh) 2019-11-22

Family

ID=59618888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611158953.6A Active CN107068539B (zh) 2016-12-15 2016-12-15 降低碳化硅外延基平面位错密度的方法

Country Status (4)

Country Link
EP (1) EP3547349B1 (zh)
KR (1) KR102193732B1 (zh)
CN (1) CN107068539B (zh)
WO (1) WO2018108006A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107829135A (zh) * 2017-10-24 2018-03-23 瀚天天成电子科技(厦门)有限公司 一种高质量碳化硅外延生长工艺
WO2018108006A1 (zh) * 2016-12-15 2018-06-21 中国电子科技集团公司第五十五研究所 降低碳化硅外延基平面位错密度的方法
CN108648988A (zh) * 2018-05-11 2018-10-12 中国电子科技集团公司第五十五研究所 一种降低碳化硅多层结构中p型记忆效应的方法
CN108878257A (zh) * 2018-05-04 2018-11-23 中国电子科技集团公司第五十五研究所 一种降低碳化硅外延表面缺陷密度的方法
CN111005068A (zh) * 2019-12-09 2020-04-14 中国电子科技集团公司第五十五研究所 一种生长高表面质量超厚igbt结构碳化硅外延材料的方法
CN111029246A (zh) * 2019-12-09 2020-04-17 中国电子科技集团公司第五十五研究所 一种降低SiC外延层中三角形缺陷的方法
CN111180319A (zh) * 2018-11-09 2020-05-19 昭和电工株式会社 SiC外延晶片的制造方法
CN111681947A (zh) * 2020-05-22 2020-09-18 东莞市天域半导体科技有限公司 一种降低外延片堆垛层错缺陷的外延方法及其应用
CN112447498A (zh) * 2019-08-29 2021-03-05 中国科学院苏州纳米技术与纳米仿生研究所 降低双极型器件正向导通SFs拓展的SiC外延层生长方法、结构及生长方法供气管路
CN112466745A (zh) * 2020-11-26 2021-03-09 瀚天天成电子科技(厦门)有限公司 一种碳化硅外延生长的控制方法及碳化硅外延片
CN112522781A (zh) * 2021-02-18 2021-03-19 中芯集成电路制造(绍兴)有限公司 碳化硅衬底上的缓冲层及其形成方法
CN113897059A (zh) * 2021-09-28 2022-01-07 广州特种承压设备检测研究院 一种石墨烯@碳化硅核壳复合聚酰亚胺渗透膜及其制备方法
CN113913931A (zh) * 2021-09-30 2022-01-11 瀚天天成电子科技(厦门)有限公司 一种具有p型缓冲层的外延结构及其制备方法
CN113913930A (zh) * 2021-09-30 2022-01-11 瀚天天成电子科技(厦门)有限公司 一种具有n型缓冲层的外延结构及其制备方法
CN114775046A (zh) * 2022-06-22 2022-07-22 浙江大学杭州国际科创中心 一种碳化硅外延层生长方法
CN114892273A (zh) * 2022-04-29 2022-08-12 希科半导体科技(苏州)有限公司 一种碳化硅外延层生长方法
CN115287761A (zh) * 2022-08-04 2022-11-04 顾赢速科技(合肥)有限公司 碳化硅晶体生长的热应力工艺及其装置
CN116259534A (zh) * 2023-05-12 2023-06-13 比亚迪股份有限公司 碳化硅外延方法
CN116613056A (zh) * 2023-07-21 2023-08-18 瀚天天成电子科技(厦门)股份有限公司 一种降低碳化硅外延薄膜表面缺陷的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102270391B1 (ko) * 2019-07-30 2021-06-30 에스케이실트론 주식회사 웨이퍼의 에피택셜층의 성장 온도 설정 방법 및 에피택셜층의 성장 방법
CN111029250B (zh) * 2019-12-09 2022-07-22 中国电子科技集团公司第五十五研究所 一种实现SiC外延曲线形掺杂分布的方法
CN112366130B (zh) * 2020-10-09 2022-07-29 中国电子科技集团公司第五十五研究所 一种降低碳化硅外延材料缺陷密度的方法
CN112701031B (zh) * 2020-12-29 2022-07-29 中国电子科技集团公司第五十五研究所 一种碳化硅外延材料的缓冲层生长方法
CN112885709B (zh) * 2021-01-13 2024-03-22 中电化合物半导体有限公司 一种碳化硅外延结构的制备方法及半导体设备
CN114999900B (zh) * 2022-07-18 2023-08-08 浙江大学杭州国际科创中心 一种提高碳化硅晶圆中少数载流子寿命的方法
CN115584478A (zh) * 2022-09-27 2023-01-10 中国电子科技集团公司第五十五研究所 一种低缺陷密度外延薄膜的制备方法
CN115662881B (zh) * 2022-12-21 2023-03-17 青禾晶元(天津)半导体材料有限公司 一种复合碳化硅衬底及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844474A (zh) * 2010-05-11 2012-12-26 新日本制铁株式会社 外延碳化硅单晶基板及其制造方法
JP2013018659A (ja) * 2011-07-07 2013-01-31 Mitsubishi Electric Corp エピタキシャルウエハ及び半導体素子
CN101599428B (zh) * 2008-06-04 2013-05-29 日立电线株式会社 碳化硅半导体衬底及其制造方法
CN105826186A (zh) * 2015-11-12 2016-08-03 中国电子科技集团公司第五十五研究所 高表面质量碳化硅外延层的生长方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391058B2 (en) * 2005-06-27 2008-06-24 General Electric Company Semiconductor devices and methods of making same
CN100578737C (zh) 2008-11-07 2010-01-06 中国电子科技集团公司第五十五研究所 一种制作基本上没有台阶形貌的碳化硅外延层的方法
JP4719314B2 (ja) 2009-01-30 2011-07-06 新日本製鐵株式会社 エピタキシャル炭化珪素単結晶基板及びその製造方法
JP5717674B2 (ja) * 2012-03-02 2015-05-13 株式会社東芝 半導体装置の製造方法
US9017804B2 (en) 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
CN104851781B (zh) * 2015-06-08 2020-04-14 国网智能电网研究院 一种n型低偏角碳化硅外延片的制备方法
CN105244255B (zh) * 2015-08-27 2019-03-05 中国电子科技集团公司第十三研究所 一种碳化硅外延材料及其生产方法
CN107068539B (zh) * 2016-12-15 2019-11-22 中国电子科技集团公司第五十五研究所 降低碳化硅外延基平面位错密度的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599428B (zh) * 2008-06-04 2013-05-29 日立电线株式会社 碳化硅半导体衬底及其制造方法
CN102844474A (zh) * 2010-05-11 2012-12-26 新日本制铁株式会社 外延碳化硅单晶基板及其制造方法
JP2013018659A (ja) * 2011-07-07 2013-01-31 Mitsubishi Electric Corp エピタキシャルウエハ及び半導体素子
CN105826186A (zh) * 2015-11-12 2016-08-03 中国电子科技集团公司第五十五研究所 高表面质量碳化硅外延层的生长方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018108006A1 (zh) * 2016-12-15 2018-06-21 中国电子科技集团公司第五十五研究所 降低碳化硅外延基平面位错密度的方法
CN107829135A (zh) * 2017-10-24 2018-03-23 瀚天天成电子科技(厦门)有限公司 一种高质量碳化硅外延生长工艺
CN108878257B (zh) * 2018-05-04 2020-09-22 中国电子科技集团公司第五十五研究所 一种降低碳化硅外延表面缺陷密度的方法
CN108878257A (zh) * 2018-05-04 2018-11-23 中国电子科技集团公司第五十五研究所 一种降低碳化硅外延表面缺陷密度的方法
CN108648988B (zh) * 2018-05-11 2020-08-28 中国电子科技集团公司第五十五研究所 一种降低碳化硅多层结构中p型记忆效应的方法
CN108648988A (zh) * 2018-05-11 2018-10-12 中国电子科技集团公司第五十五研究所 一种降低碳化硅多层结构中p型记忆效应的方法
CN111180319A (zh) * 2018-11-09 2020-05-19 昭和电工株式会社 SiC外延晶片的制造方法
CN111180319B (zh) * 2018-11-09 2023-03-28 昭和电工株式会社 SiC外延晶片的制造方法
CN112447498A (zh) * 2019-08-29 2021-03-05 中国科学院苏州纳米技术与纳米仿生研究所 降低双极型器件正向导通SFs拓展的SiC外延层生长方法、结构及生长方法供气管路
CN111005068A (zh) * 2019-12-09 2020-04-14 中国电子科技集团公司第五十五研究所 一种生长高表面质量超厚igbt结构碳化硅外延材料的方法
CN111029246A (zh) * 2019-12-09 2020-04-17 中国电子科技集团公司第五十五研究所 一种降低SiC外延层中三角形缺陷的方法
CN111029246B (zh) * 2019-12-09 2022-07-29 中国电子科技集团公司第五十五研究所 一种降低SiC外延层中三角形缺陷的方法
CN111681947A (zh) * 2020-05-22 2020-09-18 东莞市天域半导体科技有限公司 一种降低外延片堆垛层错缺陷的外延方法及其应用
CN111681947B (zh) * 2020-05-22 2022-03-29 东莞市天域半导体科技有限公司 一种降低外延片堆垛层错缺陷的外延方法及其应用
CN112466745B (zh) * 2020-11-26 2021-10-08 瀚天天成电子科技(厦门)有限公司 一种碳化硅外延生长的控制方法及碳化硅外延片
CN112466745A (zh) * 2020-11-26 2021-03-09 瀚天天成电子科技(厦门)有限公司 一种碳化硅外延生长的控制方法及碳化硅外延片
CN112522781B (zh) * 2021-02-18 2021-04-23 中芯集成电路制造(绍兴)有限公司 碳化硅衬底上的缓冲层及其形成方法
CN112522781A (zh) * 2021-02-18 2021-03-19 中芯集成电路制造(绍兴)有限公司 碳化硅衬底上的缓冲层及其形成方法
WO2022174753A1 (zh) * 2021-02-18 2022-08-25 绍兴中芯集成电路制造股份有限公司 碳化硅衬底上的缓冲层及其形成方法
CN113897059B (zh) * 2021-09-28 2023-06-27 广州特种承压设备检测研究院 一种石墨烯@碳化硅核壳复合聚酰亚胺渗透膜及其制备方法
CN113897059A (zh) * 2021-09-28 2022-01-07 广州特种承压设备检测研究院 一种石墨烯@碳化硅核壳复合聚酰亚胺渗透膜及其制备方法
CN113913931A (zh) * 2021-09-30 2022-01-11 瀚天天成电子科技(厦门)有限公司 一种具有p型缓冲层的外延结构及其制备方法
CN113913930A (zh) * 2021-09-30 2022-01-11 瀚天天成电子科技(厦门)有限公司 一种具有n型缓冲层的外延结构及其制备方法
CN114892273A (zh) * 2022-04-29 2022-08-12 希科半导体科技(苏州)有限公司 一种碳化硅外延层生长方法
CN114775046B (zh) * 2022-06-22 2022-11-29 浙江大学杭州国际科创中心 一种碳化硅外延层生长方法
CN114775046A (zh) * 2022-06-22 2022-07-22 浙江大学杭州国际科创中心 一种碳化硅外延层生长方法
CN115287761A (zh) * 2022-08-04 2022-11-04 顾赢速科技(合肥)有限公司 碳化硅晶体生长的热应力工艺及其装置
CN116259534A (zh) * 2023-05-12 2023-06-13 比亚迪股份有限公司 碳化硅外延方法
CN116613056A (zh) * 2023-07-21 2023-08-18 瀚天天成电子科技(厦门)股份有限公司 一种降低碳化硅外延薄膜表面缺陷的方法
CN116613056B (zh) * 2023-07-21 2023-10-10 瀚天天成电子科技(厦门)股份有限公司 一种降低碳化硅外延薄膜表面缺陷的方法

Also Published As

Publication number Publication date
EP3547349A1 (en) 2019-10-02
EP3547349A4 (en) 2019-11-20
EP3547349B1 (en) 2020-10-21
KR20190102211A (ko) 2019-09-03
CN107068539B (zh) 2019-11-22
KR102193732B1 (ko) 2020-12-21
WO2018108006A1 (zh) 2018-06-21

Similar Documents

Publication Publication Date Title
CN107068539B (zh) 降低碳化硅外延基平面位错密度的方法
CN106711031B (zh) 降低基平面位错对碳化硅外延层影响的方法
CN106757324B (zh) 一种硅外延片的制造方法
CN111029246B (zh) 一种降低SiC外延层中三角形缺陷的方法
CN106783540B (zh) 减少外延片表面划痕的方法
CN103820849B (zh) 一种减压生产12寸单晶硅外延片的工艺
CN107492482A (zh) 一种提高碳化硅外延层载流子寿命的方法
CN103228827A (zh) 外延碳化硅单晶基板的制造方法
KR20120125315A (ko) 에피택셜 탄화규소 단결정 기판의 제조 방법 및 이 방법에 의하여 얻은 에피택셜 탄화규소 단결정 기판
CN112701031B (zh) 一种碳化硅外延材料的缓冲层生长方法
CN106803479B (zh) 一种提高有效面积的碳化硅外延片的制备方法
CN105244255B (zh) 一种碳化硅外延材料及其生产方法
CN103337506B (zh) 一种ccd器件用硅外延片制备工艺
CN112670165B (zh) 一种碳化硅外延底层的生长方法
JP2009277757A (ja) 半導体装置の製造方法
CN115832018A (zh) 一种控制TSD缺陷的4H-SiC外延结构及生长方法
CN114032616B (zh) 非平衡条件下化学势调控生长单体的SiC台阶流低速生长方法
CN105489478B (zh) 重掺磷衬底薄层外延过渡区的调控方法
CN112593293A (zh) 一种氮化铝晶片热处理方法
CN106653582B (zh) 提高碳化硅外延兼容性的方法
CN114883175B (zh) 碳化硅外延层的缺陷阻障结构及方法
CN102403202B (zh) 一种具有高Ge组分的应变SiGe层的制备方法
CN111029245A (zh) 一种SiC外延速率切换的方法
CN116856052A (zh) 一种提升P型4H-SiC同质外延薄膜生长质量的方法
CN108648988A (zh) 一种降低碳化硅多层结构中p型记忆效应的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant