JP2009277757A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2009277757A
JP2009277757A JP2008125683A JP2008125683A JP2009277757A JP 2009277757 A JP2009277757 A JP 2009277757A JP 2008125683 A JP2008125683 A JP 2008125683A JP 2008125683 A JP2008125683 A JP 2008125683A JP 2009277757 A JP2009277757 A JP 2009277757A
Authority
JP
Japan
Prior art keywords
impurity
type
layer
impurity layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008125683A
Other languages
English (en)
Inventor
Kumar Malhan Rajesh
丸汎ラジェシュクマール
Adolf Schoener
ショーン アドルフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008125683A priority Critical patent/JP2009277757A/ja
Priority to SE0900641A priority patent/SE533083C2/sv
Publication of JP2009277757A publication Critical patent/JP2009277757A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/40Alloying of impurity materials, e.g. doping materials, electrode materials, with a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】導電型が異なる不純物層を順に形成する場合に、先に形成した不純物層へのドーピング用の不純物が後に形成する不純物層に混入されることを抑制する。
【解決手段】p+型第2ゲート層8を形成してから次のロットでn-型チャネル層7を形成する工程に移行する前の工程として、n-型チャネル層7の成長温度よりも高い温度においてCVD装置内のSiCコーティングの表面をエッチングするエッチング処理と、エッチング処理後にCVD装置内をn-型チャネル層7の成長温度よりも高い温度で加熱する加熱処理とを行う第1の残留不純物除去工程と、n-型チャネル層7の成長レートよりも早い成長レートにて、後工程で成長させるn-型チャネル層7と同じ導電型の不純物層をカーボン容器の内壁面のSiCコーティングの表面にデポジションするデポジション工程を行う第2の残留不純物除去工程を行う。
【選択図】図1

Description

本発明は、導電型が異なる不純物層を順に形成するプロセスを有する半導体装置の製造方法に関するものである。
従来より、半導体製造プロセスでは、同じCVD装置内において導電型が異なる不純物層を続けてエピタキシャル成長させると、先に形成した不純物層へのドーピング用の不純物が後に形成する不純物層に混入されることから、先に形成した不純物層へのドーピング用の不純物を如何に除去するかが問題となっている。
例えば、図1に示す炭化珪素(以下、SiCという)を用いたトレンチ構造の縦型JFETの製造プロセスにおいて、同じCVD装置内において導電型が異なる不純物層を続けて成長させることがある。
具体的には、図1に示すように、縦型JFETは、n+型基板1上にn-型ドリフト層2とp+型第1ゲート層3とn-型またはp-型で構成されたn-型/p-型領域4およびn+型ソース領域5を積層したのち、n+型ソース領域5からn-型/p-型領域4およびp+型第1ゲート層3を貫通してn-型ドリフト層2に達するトレンチ6を形成し、さらにトレンチ6内にn-型チャネル層7とp+型第2ゲート層8を配置することにより構成される。このような縦型JFETでは、n-型チャネル層7を形成した後、同じCVD装置内においてp+型第2ゲート層8を形成することになり、更にp+型第2ゲート層8を形成した後に、別ロットのウェハに対してn-型チャネル層7およびp+型第2ゲート層8を形成することになる。このため、n-型チャネル層7を形成するときのドーピング用のN(窒素)がp+型第2ゲート層8に混入したり、p+型第2ゲート層8を形成するときのドーピング用のAl(アルミニウム)がn-型チャネル層7に混入する。
これは、CVD装置に備えられるカーボン容器の内壁のSiCコーティングの表面やカーボン容器内の雰囲気中に先に形成した不純物層のドーピング用の不純物が残留し、次の不純物層を形成する際に残留した不純物が混入されるためである。
これを防止するために、従来では、成長させる不純物層の導電型を変えるときに、CVD装置内の加熱処理(ベイキングプロセス)を行うことによりCVD装置内に残留している不純物を除去したり、原料ガスの供給を止めた状態で後工程で形成する不純物層の成長温度と同じ温度に昇温させることでSiCコーティング表面をエッチングして残留した不純物を除去している。(例えば、非特許文献1参照)。
"Nitrogen doping of epitaxial SiC: Experimental Evidence of the re-incorporation of etched nitrogen during growth", J. Meziere, P. Ferret, E. Blanquet, M. Pons, L. Di Cioccio, and T. Billon, Materials Science Forum, Vols 457-460 (2004) PP731-734.
しかしながら、上記のように加熱処理を行っても十分に残留した不純物を除去することができないということが確認された。特に、p+型第2ゲート層8を形成した後に別ロットでn-型チャネル層7を形成しようとする場合、高不純物濃度のp型層の形成後に低不純物濃度のn型層を形成することになるため、残留したp型不純物を除去することは困難であるということが判った。
具体的には、本発明者らが上記縦型JFETに対してp+型第2ゲート層8とn-型チャネル層7およびn-型ドリフト層2を通過する線上においてキャリア濃度を確認したところ、n-型チャネル層7における成長初期に残留したAlが混入し、キャリア濃度が低下し、場合によってはn-型チャネル層7がp型に反転してしまうこともあった。
これを明確にすべく、p+型第2ゲート層8を形成してから加熱処理を行った後、基板取出しを行い、さらにCVD装置内に例えば1×1017cm-3の不純物濃度のn+型基板を配置し、そのn+型基板の表面にn-型チャネル層7と同じ濃度、具体的には4×1016cm-3となるようにn-型層を成長させ、ウェハ内の複数箇所において、n+型基板の裏面に電極を配置すると共にn-型層の表面にショットキー電極を配置することでショットキーダイオードを作成した。このとき、CVD装置内にトリメチルアルミニウム(Trimethylaluminum、以下、TMAという)ガスを流速100sccmとして2時間20分導入し、C/Siガス比を0.7とした。そして、ショットキーダイオードにおけるn-型層表面からの濃度分布を調べると共に、ショットキーダイオードの両電極間のキャパシタンスおよびコンダクタンスについて調べた。その結果、それぞれ、図6と図7および図8のような結果が得られた。
図6に示されるように、n+型基板近傍においてn-型層のキャリア濃度が狙い値よりも低下している。つまり、n-型層の不純物濃度を4〜6×1016cm-3となるようにしているが、キャリア濃度がその濃度になっているのはn-型層の表層部(0.5〜1.0μmの深さ)のみであり、n-型層の成長初期時にはキャリア濃度が5×1015cm-3以下まで低下している。これは、残留したAlと相殺された為であり、この結果からも残留したAlが影響していることが判る。なお、本図において、n-型層の表面からn+型基板までの距離が異なっているのはn-型層の膜厚バラツキである。
また、図7に示されるように、p型不純物が混入されていないn-型層とn+型基板のみであればショットキーダイオードのキャパシタンスCpは図中太線で示したように負の印加電圧Vbが大きくなるほど単純に減少するだけのはずであるが、途中から急激に大きな値になっている。これも、残留したAlが混入されたために生じたものである。同様に、図8に示されるコンダクタンスGpに関しても、n-型層とn+型基板のみであれば1μS以下になるはずであるが、1μSを超えて大きな値となっている。これも、残留したAlが混入されているためである。これらの結果からも、残留したAlが影響していると言える。なお、図7および図8においてキャパシタンスやコンダクタンスにバラツキがあるのは、上述したn-型層の膜厚バラツキによるものである。
このように、残留したAlの影響があることが判る。実際に、p+型第1ゲート層8の表面から基板法線方向においてp型不純物の濃度をSIMS解析したところ、図9のような結果が得られた。この結果から、n-型ドリフト層2ではp型不純物濃度が1.0×1015cm-3程度であるのに対し、n-型チャネル層7ではp型不純物濃度が1.0×1016cm-3以上と一桁ほど高くなっていることが確認された。このため、p型不純物の影響を受けてn-型チャネル層7のチャネル抵抗が不必要に高くなり、所望するJFET特性が得られなくなる。
一方、SiCコーティングの表面をエッチングする方法によって深くまでエッチングすれば、残留したp型不純物を少なくできるかもしれないが、エッチング量が多いほどSiCコーティングを早く消失させることになり、カーボン容器のライフサイクルの短命化の要因になってしまうため、好ましくない。
なお、ここでは高不純物濃度となるp型層を形成した後に低不純物濃度となるn型層を形成する場合にp型不純物がn型層に与える影響について述べたが、高不純物濃度となるn型層を形成した後に低不純物濃度となるp型層を形成する場合にn型不純物が与える影響に関しても、前者と比べて影響が低いながらも同様のことが言える。また、ここではSiCを例に挙げて説明したが、SiC以外のワイドバンドギャップ半導体材料、例えばII-V GaNやダイヤモンドなどを用いる場合についても、同様のことが言える。
本発明は上記点に鑑みて、導電型が異なる不純物層を順に形成する場合に、先に形成した不純物層へのドーピング用の不純物が後に形成する不純物層に混入されることを抑制できる半導体装置の製造方法を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、第1不純物濃度よりも第2不純物濃度の方が高くなるようにする場合における第2不純物層(8)を形成してから第1不純物層(9)を形成する工程に移行する前の工程、もしくは、第1不純物濃度よりも第2不純物濃度の方が低くなるようにする場合における第1ロットの第1不純物層(7)を形成してから第2ロットの第2不純物層(8)を形成する工程に移行する前の工程として、第1、第2不純物層(7、8)の成長温度よりも高い温度において成長材料のコーティング表面をエッチングするエッチング処理と、エッチング処理後に結晶成長装置(20)内を第1、第2不純物層(7、8)の成長温度よりも高い温度で加熱する加熱処理とを行う第1の残留不純物除去工程と、第1、第2不純物層(7、8)の成長レートよりも早い成長レートにて、後工程で成長させる第1不純物層(7)もしくは第2不純物層(8)と同じ導電型の不純物層を内部容器(21)の成長材料のコーティング表面にデポジションするデポジション工程を行う第2の残留不純物除去工程のいずれか1つ、もしくは、両方を残留不純物除去工程として行うことを特徴としている。
このような残留不純物除去処理を行うことにより、成長材料のコーティング(24)の表面および結晶成長装置(20)内に残留した不純物を除去もしくはデポジションされた不純物層にて閉じ込めることが可能となる。このため、この後に第2不純物層(8)を形成したり、次のロットの半導体基板(1〜5)を結晶成長装置(20)に搬入して第1不純物層(7)を成長させたとしても、前に用いた不純物の影響を十分に抑制して成長させることが可能となる。したがって、導電型が異なる不純物層を順に形成する場合に、先に形成した不純物層へのドーピング用の不純物が後に形成する不純物層に混入されることを抑制できる。
例えば、請求項2に示すように、第1の残留不純物除去工程におけるエッチング処理では、HClと共にキャリアガスを結晶成長装置(20)内に導入することにより、エッチング処理を行うことができる。
また、請求項3に示すように、第1の残留不純物除去工程におけるエッチング処理では、温度を1600〜1700℃とし、かつ、5分以下でエッチングを行うようにすると好ましい。このようにすれば、エッチング処理を短時間で行えるため、容器のライフサイクルの短命化を抑制しつつスループット向上を図ることが可能となる。
また、請求項4に示すように、第1の残留不純物除去工程における加熱工程では、結晶成長装置(20)内への第1もしくは第2不純物層(7、8)の成長ガスの導入を停止した状態とすることができる。
また、請求項5に示すように、第1の残留不純物除去工程における加熱工程では、温度を1600〜1700℃とし、かつ、30分以下で加熱工程を行うようにすると好ましい。このようにすれば、加熱処理を短時間で行えるため、容器のライフサイクルの短命化を抑制しつつスループット向上を図ることが可能となる。
請求項6に記載の発明では、第2の残留不純物除去工程におけるデポジション工程では、デポジションする不純物層を後工程で成長させる第1不純物層(7)もしくは第2不純物層(8)と同じ濃度で形成することを特徴としている。
このように、後工程で成長させる第1不純物層(7)もしくは第2不純物層(8)と同じ濃度でデポジションする不純物層を形成すれば、後工程での第1不純物層(7)もしくは第2不純物層(8)の形成時にデポジションした不純物層からの不純物の供給によって第1不純物層(7)もしくは第2不純物層(8)の不純物濃度に影響を与えないようにすることもできる。
請求項7に記載の発明では、第2の残留不純物除去工程におけるデポジション工程では、デポジションする不純物層を後工程で成長させる第1不純物層(7)もしくは第2不純物層(8)よりも成長初期時には高い濃度で形成し徐々に濃度を低下させて形成することを特徴としている。
このように、成長初期時にデポジションする不純物層を後工程で成長させる第1不純物層(7)もしくは第2不純物層(8)よりも高くすることにより、混入される不純物の影響を早く無くすことが可能となる。そして、その後濃度を徐々に低下させることにより、請求項6と同様の効果を得ることができる。
このような第2の残留不純物除去工程におけるデポジション工程では、例えば請求項8に記載したように、デポジションする不純物層を5〜10μm/hの成長レートで形成すると好ましい。このようにすれば、不純物層のデポジションによる時間が長時間化することを防止できる。例えば、請求項9に記載したように、デポジションする不純物層の形成時間を30分以下にすると好ましい。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
以下、本発明の実施形態について図に基づいて説明する。
(第1実施形態)
本発明の第1実施形態について説明する。本実施形態では、縦型JFETに対して本発明の一実施形態における半導体装置の製造方法を適用した場合について説明する。
図1は、本実施形態における半導体装置の製造方法により製造された縦型JFETの断面図である。この図に示すように、縦型JFETは、SiCからなるn+型基板1を用いて形成されている。n+型基板1の主表面は例えば8°のオフ角が付けられたSi面とされており、この主表面には、SiCからなるn-型ドリフト層2がエピタキシャル成長され、さらにn-型ドリフト層2の表面にp+型第1ゲート層3が形成されている。p+型第1ゲート層3は、例えば1×1019cm-3〜1×1020cm-3の不純物濃度とされている。
また、p+型第1ゲート層3の表面には、例えば1×1015cm-3〜1×1016cm-3の不純物濃度とされたn-型またはp-型のn-型/p-型領域4が形成されていると共に、このn-型/p-型領域4の表面にn-型/p-型領域4よりも高い、1×1019cm-3〜1×1020cm-3の不純物濃度とされたn+型ソース領域5が形成されている。n-型/p-型領域4は、例えば0.2μm程度の薄い層として形成されている。このn-型/p-型領域4は必ずしも必要なものではないが、縦型JFETをオフする際に、マイナス電圧を掛けるとn+型ソース領域5とp+型第1ゲート層3が直接接続された状態だと不純物濃度が濃いPNジャンクションにマイナス電圧が掛けられることになり、高い耐圧を得られないことから、PNジャンクション間に不純物濃度の薄いn-型/p-型領域4を配置することで仮想的なNIP構造を形成し、耐圧を向上させるために備えてある。
また、n+型基板1上に上記各不純物層2〜4が形成された半導体基板に対して、n+型ソース領域5からn-型/p-型領域4およびp+型第1ゲート層3を貫通してn-型ドリフト層2に達するトレンチ6が形成されている。トレンチ6は、底面が主表面と同じSi面とされ、側壁がa面とされており、このトレンチ6内にn-型チャネル層7とp+型第2ゲート層8が順に配置されている。n-型チャネル層7は、例えば1×1015cm-3〜1×1016cm-3の不純物濃度とされており、p+型第2ゲート層8は、例えば1×1018cm-3〜1×1019cm-3の不純物濃度とされている。
そして、n+型ソース領域5と電気的に接続されるソース電極9、p+型第1ゲート層3と電気的に接続される第1ゲート電極10およびp+型第2ゲート層8と電気的に接続される第2ゲート電極11が基板表面側に備えられ、n+型基板1と電気的に接続されるドレイン電極12が基板裏面側に備えられている。なお、ソース電極9と第1ゲート電極10および第2ゲート電極11の間は図示しないが層間絶縁膜にて電気的に分離されており、第1ゲート電極10と第2ゲート電極11の電位を独立して制御できるようになっている。また、図1中では第1ゲート電極10をp+型第1ゲート層3の側面に配置したように記載してあるが、実際には図1とは別断面においてn+型ソース領域5およびn-型/p-型領域4を貫通してp+型第1ゲート層3に達するトレンチなどが形成されることにより、第1ゲート電極10がp+型第1ゲート層3と電気的に接続される構造となっている。
以上のような構造により、本実施形態にかかる半導体装置の製造方法が適用されたJFETが構成されている。この縦型JFETでは、製造プロセスにおいて、後述するように導電型が異なるn-型チャネル層7とp+型第2ゲート層8を同じCVD装置(結晶成長装置)内で続けて成長させたのち、更に別ロットに対して同じCVD装置にて繰り返しn-型チャネル層7とp+型第2ゲート層8を成長させるというプロセスが用いられている。しかしながら、n-型チャネル層7に対するp+型第2ゲート層8を形成する際のp型不純物の影響やp+型第2ゲート層8に対するn-型チャネル層7を形成する際のp型不純物の影響が抑制され、所望するJFET特性の縦型JFETになっている。このような構造にできる理由について、以下に図1に示す縦型JFETの製造方法と共に説明する。
図2は、縦型JFETにおける各種SiC層を成長させるためのCVD装置20の断面図である。このCVD装置20は、n-型ドリフト層2、p+型第1ゲート層3、n-型/p-型領域4およびn+型ソース領域5の形成にも用いることができるが、本実施形態では、n-型チャネル層7とp+型第2ゲート層8を複数のロットに対して繰り返し形成する装置として用いている。
CVD装置20としては、石英容器もしくはステンレス容器の周囲に水冷もしくは空冷装置が備えられたような冷壁型反応炉を用いても、容器の側壁がグラファイトにてコーティングされ、誘導加熱によってSiC基板と同等の1500〜1700℃という高温度になる高温壁型反応炉を用いても構わないが、高温壁型反応炉の方が冷壁型反応炉よりも導電型を代えた不純物層を成長させる際に残留した不純物の影響の問題が厳しく発生する。このため、ここではより厳しい条件となる高温壁型反応炉を用いている。
図2に示すように、CVD装置20は、内部容器としてのカーボン容器21の周囲を囲むように誘導コイル22を配置し、カーボン容器21内に配置されたサセプタ23の表面にエピタキシャル成長させる基板を配置させられる構造とされている。サセプタ23の表面に基板を配置したときにSi面を成長表面とする場合の温度(1500〜1600℃)よりも僅かに高くできるように誘導コイル22による温度調整が行えるようになっている。カーボン容器21の内壁面には成長原料となるSiCコーティング24が施され、成長雰囲気がカーボンリッチにならないようにされている。
なお、図示しないが、カーボン容器21にはSiC原料の前駆体となるシランやプロパン等の原料ガスおよびキャリアガスとなるH2(水素)やHe(ヘリウム)の導入に加え、n型不純物のドーパントとなるN(窒素)やp型不純物のドーパントとなるTMAの導入、さらには後述する残留した不純物の影響を無くすためのエッチングに用いるエッチングガス(例えばHCl)の導入を行うことができる導入管25が備えられている。また、図示しないが、CVD装置20には雰囲気圧力調整装置(真空引き装置)も備えられ、カーボン容器21内の圧力を100〜500hPaの範囲で調整できる。
そして、一般的なエピタキシャル成長により、n+型基板1に対してn-型ドリフト層2、p+型第1ゲート層3、n-型/p-型領域4およびn+型ソース領域5を形成したのち、さらにフォトリソグラフィ・エッチング工程を経てトレンチ6を形成した半導体基板を図2に示すCVD装置20のサセプタ23内に配置し、SiC原料の前駆体となるガスおよびキャリアガスやn型もしくはp型不純物のドーパントを導入することにより、n-型チャネル層7とp+型第2ゲート層8を形成する。
まず、n-型チャネル層7の形成の際には、誘導コイル22を調整することにより、成膜時のマイグレーション効果を高めるために温度を1600℃以上、例えば1650℃にすると共に、雰囲気圧力調整装置により雰囲気圧力を200hPaに調整する。そして、SiC原料の前駆体となるガスおよびキャリアガスと共にn型不純物のドーパントとしてN2を導入する。これにより、n-型チャネル層7を0.1〜0.5μm程度の厚さで形成する。このとき、C/Si比が0.7となるようにし、N2の流速に関しては、要求されるn-型チャネル層7の不純物濃度に応じて図3に示す特性に基づいて調整している。
図3は、4H−SiCの8°のオフ角が付けられたSi面およびa面に対してn型層を成長させたときのN2の流速(sccm)に対する不純物濃度を示した特性図である。
本実施形態の縦型JFETでは、チャネルとして機能するのはn-型チャネル層7のうちトレンチ6の側面、つまりa面上に成長する部分である。このため、この図に示すように、n-型チャネル層7のうちトレンチ6の側面上に形成される部分の濃度が1×1015cm-3〜1×1016cm-3となるように、N2の流速を設定している。
なお、図3に示されるように、a面上に成長するn型層はSi面に成長するn型層の不純物濃度に対して1.5倍の濃度となる。本実施形態の縦型JFETでは、n-型チャネル層7のうちトレンチ6の側面に成長する部分を正確に測定できるのが好ましいが、トレンチ6の側面の成長する部分の不純物濃度を正確に測ることは難しい。このため、n-型チャネル層7のうちトレンチ6の側面に成長する部分を測定する場合には、n-型チャネル層7のうちSi面である底面上に形成される部分の濃度を測定したのち、その濃度を1.5倍にすることにより、n-型チャネル層7のうちチャネルとして機能する部分の不純物濃度を推定することができる。
続いて、p+型第2ゲート層8を形成する。このとき、先にn-型チャネル層7の形成の際に残留したN2を除去する処理を行っても良い。しかしながら、n-型チャネル層7の不純物濃度はp+型第2ゲート層8の不純物濃度と比べて十分に低く(1/10程度)、残留したN2がp+型第2ゲート層8に混入したとしても、p+型第2ゲート層8のキャリア濃度を大きく変動させたり、p+型第2ゲート層8をn型層に反転させるという問題は生じない。このため、ここでは残留したN2を除去する処理を行うことなく、そのままp+型第2ゲート層8の形成工程を行っている。
具体的には、p+型第2ゲート層8の形成の際にも、誘導コイル22を調整することにより、成膜時のマイグレーション効果を高めるために温度を1600℃以上、例えば1650℃にする。また、雰囲気圧力調整装置により雰囲気圧力を500hPaに調整する。そして、SiC原料の前駆体となるガスおよびキャリアガスと共にp型不純物のドーパントとしてTMAを導入する。このとき、C/Si比が1.0となるようにし、TMAの流速に関しては100sccmとなるようにしている。これにより、図4に示すp+型第2ゲート層8を形成した後の断面図に示されるように、トレンチ6内がn-型チャネル層7およびp+型第2ゲート層8にて埋め込まれる。
この後、CVD装置20から半導体基板を取り出し、n-型チャネル層7およびp+型第2ゲート層8のうちトレンチ6の外に形成されている部分をCMP(Chemical Mechanical Polishing)にて除去して平坦化することで、n+型ソース領域5の表面を露出させる。そして、周知の手法により、図示しないが層間絶縁膜形成工程やソース電極9、第1ゲート電極10および第2ゲート電極11の形成工程およびドレイン電極12の形成工程等を行うことにより、図1に示す縦型JFETが完成する。
一方、p+型第2ゲート層8が形成されてCVD装置20から半導体基板が外に出されると、次のロットの半導体基板がCVD装置20に搬入され、前のロットと同様にn-型チャネル層7およびp+型第2ゲート層8の形成工程が行われることになる。
このとき、前のロットにおいてp+型第2ゲート層8を形成してから何ら処理することなく次のロットのn-型チャネル層7の形成工程に移行すると、高いp型不純物濃度となるp+型第2ゲート層8を形成時に残留したp型不純物が低いn型不純物濃度となるn-型チャネル層7に混入され、所望のJFET特性が得られなくなる。このため、以下のような残留不純物除去処理を行うようにしている。
まず、第1の残留不純物除去処理として、エッチング処理および加熱(ベイキング)処理を行う。ここでいうエッチング処理とは、CVD装置20に備えられたカーボン容器21の内壁面のSiCコーティング24の表面を短時間除去するためのものであり、HCl等のエッチングガスとH2またはHe等のキャリアガスを導入しながらSiCエピタキシャル成長温度以上に加熱する処理である。また、加熱処理とは、シランやTMAなどのSiC原料の先駆体となるガスおよび不純物ガスの導入を停止した状態でSiCエピタキシャル成長温度以上に加熱する処理である。
具体的には、図5に示すエッチング処理および加熱処理のプロファイルに示すように、エッチング処理前にまず例えばAr雰囲気などの不活性ガス雰囲気においてCVD装置20内を1600〜1700℃(例えば1650℃)まで昇温させる。そして、エッチングガスHClと共にH2またはHe等のガスを導入することでSiCコーティング24のエッチングを行い、これを5分以下、具体的には1〜5分の短時間行う。
引き続き、同じ温度のままAr雰囲気などの不活性ガス雰囲気において30分以下の加熱処理を行う。このとき、SiC原料の先駆体となるガスおよび不純物ガスの導入を停止した状態とされているため、SiCコーティング24の表面に不純物が混入しないようにできる。このような第1の残留不純物除去処理では、エッチング処理により主にSiCコーティング24の表面に残留したp型不純物を除去することが可能となり、加熱処理によりカーボン容器21内の雰囲気中に残留したp型不純物を除去することが可能となる。
そして、第2の残留不純物除去処理として、サセプタ23にダミーウェハ(図示せず)を搭載してサセプタ23を保護しておき、次に成膜したい不純物層と同じ導電型の不純物をドーピングした不純物層、すなわちn型不純物層をSiCコーティング24表面およびダミーウェハの表面にデポジションする。例えば、通常の不純物層の成長レートよりも早い5〜10μm/h(好ましくは5〜7μm/h)の成長レートにて30分以内、すなわち約2〜3μm程度の厚みで、かつ、n-型チャネル層7と同程度の不純物濃度となるようにデポジションする。この処理は、不純物をドーピングして行うため、所謂空デポジションと違う処理となる。このように不純物がドーピングされたn型不純物層を形成すると、n型不純物層の成長初期には残留したp型不純物が混入し得るが、徐々にp型不純物の混入する量が低下し、最終的にはp型不純物の影響が無い状態のn型層にてSiCコーティング24の表面をキャップしたと同様の状態となる。
なお、このような第2の残留不純物除去処理は、すべて同じ濃度でn型不純物を導入するようにしても良いが、デポジション初期時に混入されるp型不純物の影響を早く無くすために初期時にはn型不純物の導入量を大きくし、徐々にn型不純物の導入量を減らすような手法を採用することもできる。また、n型層の成膜時間に関しては任意であるが、成膜時間の長時間化を防ぐこと、および、あまり結晶性は求められないものの通常のエピタキシャル成長よりも早い成長レートとしていることから、厚くしすぎると粒子欠陥のリスクが増えることを考慮すると、上述したように30分以内とするのが好ましい。
このような残留不純物除去処理を行うことにより、SiCコーティング24の表面およびCVD装置20内に残留したp型不純物を除去もしくはn型層にて閉じ込めることが可能となる。このため、この後にダミーウェハを取り除き、次のロットの半導体基板をCVD装置20に搬入し、前のロットと同様にn-型チャネル層7を成長させたとしても、前のロットにおいてp+型第2ゲート層8を形成した際に用いたp型不純物の影響を十分に抑制してn-型チャネル層7を成長させることが可能となる。
特に、カーボン容器21の表面のSiCコーティング24をキャップするようにn型層が形成されており、さらにSiCでは熱拡散距離が短いし、外部拡散が生じ難いため、SiCコーティング24にp型不純物が残留していたとしても、それがn-型チャネル層7に混入されることは殆どない。また、SiCコーティング24をキャップする層をn-型チャネル層7と同程度の不純物濃度としたn型層としてあるため、n-型チャネル層7の形成時にn型層からのn型不純物の供給によってn-型チャネル層7の不純物濃度に影響を与えないようにすることもできる。
そして、このような第1の残留不純物除去工程を高温かつ低時間のエッチング処理および加熱処理によって行っているため、容器のライフサイクルの短命化を抑制しつつスループットを高めることが可能となる。同様に、第2の残留不純物除去工程に関しても、n型層の結晶性が良好であることなどがあまり求められないことから、通常のエピタキシャル成長時よりも成長レートを高めているため、これに関してもスループットを高めることが可能となる。
(他の実施形態)
上記実施形態では、残留不純物除去工程として、第1、第2の残留不純物除去工程の両方を実施する場合について説明したが、これらのうちの少なくとも一方を行うことにより、上記効果を得ることができる。
勿論、第1、第2の残留不純物除去工程の両方を実施すれば、より効果的に残留した不純物を除去することが可能とあるが、先に行われる不純物層の不純物濃度と後で行われる異なる導電型の不純物層の不純物濃度との関係により、いずれか一方のみを選択するか、もしくは両方を実施するかを決めるのが好ましい。すなわち、先に行われる不純物層の不純物濃度と後で行われる導電型の不純物層の不純物濃度の差が大きいほど、残留した不純物による影響を受け易いため、その差が大きければ第1、第2の残留不純物除去工程の両方を実施し、少なければそのうちの一方のみを実施すれば良い。
また、上述した実施形態では、p+型第2ゲート層8の形成後にn-型チャネル層7を形成する場合、つまり高濃度のp型不純物層の後にそれよりも低濃度のn型不純物層を形成する場合について説明したが、高濃度のn型不純物層の後にそれよりも低濃度のp型不純物層を形成する場合についても本発明を適用することができる。
また、上記実施形態で説明した第1、第2の残留不純物除去工程の時間に関してはp+型第2ゲート層8やn-型チャネル層7を上記濃度とする場合の例として説明したが、これについても先に形成する高濃度の不純物層の不純物濃度と後で形成する低濃度の不純物層の不純物濃度との関係に基づいて適宜調整すれば良い。すなわち、先に行われる不純物層の不純物濃度と後で行われる導電型の不純物層の不純物濃度の差が大きいほど、第1、第2の残留不純物除去工程の時間を長くすれば良い。
なお、第2の残留不純物除去処理の際にサセプタ23をダミーウェハで覆うようにしているが、サセプタ23上に何も設置されないような工程が行われる際には、常にダミーウェハを設置することで、サセプタ23にダメージが入ることを防止できる。
本発明の第1実施形態にかかる半導体装置の製造方法にて製造される縦型JFETの断面構成を示す図である。 縦型JFETにおける各種SiC層を成長させるためのCVD装置20の断面図である。 4H−SiCの8°のオフ角が付けられたSi面およびa面に対してn型層を成長させたときのN2の流速(sccm)に対する不純物濃度を示した特性図である。 +型第2ゲート層8を形成したあとの断面図である。 エッチング処理および加熱処理のプロファイルである。 ショットキーダイオードにおけるn-型層表面からの濃度分布図である。 ショットキーダイオードの両電極間のキャパシタンスを示すグラフである。 ショットキーダイオードの両電極間のコンダクタンスを示すグラフである。 +型第1ゲート層8の表面から基板法線方向においてp型不純物の濃度をSIMS解析した結果を示す図である。
符号の説明
1 n+型基板
2 n-型ドリフト層
3 p+型第1ゲート層
4 n-型/p-型領域
5 n+型ソース領域
6 トレンチ
7 n-型チャネル層
8 p+型第2ゲート層
9 ソース電極
10 第1ゲート電極
11 第2ゲート電極
12 ドレイン電極
20 CVD装置
21 カーボン容器
22 誘導コイル
23 サセプタ
24 コーティング
25 導入管

Claims (9)

  1. 内壁面に成長材料のコーティング(24)がなされた内部容器(21)と、半導体基板(1〜5)を搭載するサセプタ(23)とを有する結晶成長装置(20)を用意し、第1ロットの前記半導体基板(1〜5)を前記結晶成長装置(20)内に配置した後、該結晶成長装置(20)を用いて前記半導体基板(1〜5)に対して第1不純物濃度となる第1導電型の第1不純物層(7)と第2不純物濃度となる第2導電型の第2不純物層(8)とを順に形成したのち、第1ロットとは別ロットとなる第2ロットの前記半導体基板(1〜5)を前記結晶成長装置(20)内に配置し、繰り返し前記第1不純物層(7)および前記第2不純物層(8)を形成する半導体装置の製造方法において、
    前記第1不純物濃度よりも前記第2不純物濃度の方が高くなるようにする場合における前記第2不純物層(8)を形成してから前記第1不純物層(9)を形成する工程に移行する前の工程、もしくは、前記第1不純物濃度よりも前記第2不純物濃度の方が低くなるようにする場合における前記第1ロットの前記第1不純物層(7)を形成してから前記第2ロットの前記第2不純物層(8)を形成する工程に移行する前の工程として、
    前記第1、第2不純物層(7、8)の成長温度よりも高い温度において前記成長材料のコーティング(24)の表面をエッチングするエッチング処理と、前記エッチング処理後に前記結晶成長装置(20)内を前記第1、第2不純物層(7、8)の成長温度よりも高い温度で加熱する加熱処理とを行う第1の残留不純物除去工程と、
    前記第1、第2不純物層(7、8)の成長レートよりも早い成長レートにて、後工程で成長させる前記第1不純物層(7)もしくは前記第2不純物層(8)と同じ導電型の不純物層を前記内部容器(21)の前記成長材料のコーティング(24)の表面にデポジションするデポジション工程を行う第2の残留不純物除去工程のいずれか1つ、もしくは、両方を残留不純物除去工程として行うことを特徴とする半導体装置の製造方法。
  2. 前記第1の残留不純物除去工程における前記エッチング処理では、HClと共にキャリアガスを前記結晶成長装置(20)内に導入することを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記第1の残留不純物除去工程における前記エッチング処理では、温度を1600〜1700℃とし、かつ、5分以下で前記エッチングを行うことを特徴とする請求項1または2に記載の半導体装置の製造方法。
  4. 前記第1の残留不純物除去工程における前記加熱工程では、前記結晶成長装置(20)内への前記第1もしくは第2不純物層(7、8)の成長ガスの導入を停止した状態とすることを特徴とする請求項1ないし3のいずれか1つに記載の半導体装置の製造方法。
  5. 前記第1の残留不純物除去工程における前記加熱工程では、温度を1600〜1700℃とし、かつ、30分以下で前記加熱工程を行うことを特徴とする請求項1ないし4のいずれか1つに記載の半導体装置の製造方法。
  6. 前記第2の残留不純物除去工程における前記デポジション工程では、デポジションする前記不純物層を後工程で成長させる前記第1不純物層(7)もしくは前記第2不純物層(8)と同じ濃度で形成することを特徴とする請求項1ないし5のいずれか1つに記載の半導体装置の製造方法。
  7. 前記第2の残留不純物除去工程における前記デポジション工程では、デポジションする前記不純物層を後工程で成長させる前記第1不純物層(7)もしくは前記第2不純物層(8)よりも成長初期時には高い濃度で形成し徐々に濃度を低下させて形成することを特徴とする請求項1ないし5のいずれか1つに記載の半導体装置の製造方法。
  8. 前記第2の残留不純物除去工程における前記デポジション工程では、デポジションする前記不純物層を5〜10μm/hの成長レートで形成することを特徴とする請求項1ないし7のいずれか1つに記載の半導体装置の製造方法。
  9. 前記第2の残留不純物除去工程における前記デポジション工程では、デポジションする前記不純物層を30分以下の時間形成することを特徴とする請求項9に記載の半導体装置の製造方法。
JP2008125683A 2008-05-13 2008-05-13 半導体装置の製造方法 Pending JP2009277757A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008125683A JP2009277757A (ja) 2008-05-13 2008-05-13 半導体装置の製造方法
SE0900641A SE533083C2 (sv) 2008-05-13 2009-05-12 Förfarande för framställning av halvledaranordning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008125683A JP2009277757A (ja) 2008-05-13 2008-05-13 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2009277757A true JP2009277757A (ja) 2009-11-26

Family

ID=41416046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008125683A Pending JP2009277757A (ja) 2008-05-13 2008-05-13 半導体装置の製造方法

Country Status (2)

Country Link
JP (1) JP2009277757A (ja)
SE (1) SE533083C2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523214A (ja) * 2008-06-04 2011-08-04 ダウ・コーニング・コーポレイション 半導体エピタキシーにおけるメモリ効果の低減方法
JP2012054528A (ja) * 2010-08-04 2012-03-15 Nuflare Technology Inc 半導体製造装置
US8735949B2 (en) 2012-03-23 2014-05-27 Kabushiki Kaisha Toshiba Junction type field effect transistor and manufacturing method thereof
JP2017011102A (ja) * 2015-06-22 2017-01-12 昭和電工株式会社 炭化珪素膜の成膜装置のクリーニング方法
JP2017011184A (ja) * 2015-06-24 2017-01-12 株式会社デンソー 炭化珪素半導体のエピタキシャル成長装置
JP2017165615A (ja) * 2016-03-16 2017-09-21 住友電気工業株式会社 炭化珪素のエピタキシャル成長装置
JP2018022853A (ja) * 2016-08-05 2018-02-08 富士電機株式会社 炭化珪素半導体基板および炭化珪素半導体基板の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258325A (ja) * 1988-08-24 1990-02-27 Matsushita Electric Ind Co Ltd 半導体薄膜気相成長装置
JPH06177409A (ja) * 1992-12-07 1994-06-24 Fuji Electric Co Ltd 薄膜太陽電池の製造方法
JPH08199361A (ja) * 1995-01-27 1996-08-06 Kawasaki Steel Corp 成膜装置のクリーニング方法
JPH08241869A (ja) * 1996-02-23 1996-09-17 Semiconductor Energy Lab Co Ltd プラズマ処理方法
JPH11112030A (ja) * 1997-08-04 1999-04-23 Sumitomo Chem Co Ltd 3−5族化合物半導体の製造方法
JP2005328013A (ja) * 2004-04-14 2005-11-24 Denso Corp 半導体装置の製造方法
JP2008511753A (ja) * 2004-08-30 2008-04-17 エルピーイー ソシエタ ペル アチオニ Cvd反応炉の洗浄プロセスおよび操作プロセス

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258325A (ja) * 1988-08-24 1990-02-27 Matsushita Electric Ind Co Ltd 半導体薄膜気相成長装置
JPH06177409A (ja) * 1992-12-07 1994-06-24 Fuji Electric Co Ltd 薄膜太陽電池の製造方法
JPH08199361A (ja) * 1995-01-27 1996-08-06 Kawasaki Steel Corp 成膜装置のクリーニング方法
JPH08241869A (ja) * 1996-02-23 1996-09-17 Semiconductor Energy Lab Co Ltd プラズマ処理方法
JPH11112030A (ja) * 1997-08-04 1999-04-23 Sumitomo Chem Co Ltd 3−5族化合物半導体の製造方法
JP2005328013A (ja) * 2004-04-14 2005-11-24 Denso Corp 半導体装置の製造方法
JP2008511753A (ja) * 2004-08-30 2008-04-17 エルピーイー ソシエタ ペル アチオニ Cvd反応炉の洗浄プロセスおよび操作プロセス

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523214A (ja) * 2008-06-04 2011-08-04 ダウ・コーニング・コーポレイション 半導体エピタキシーにおけるメモリ効果の低減方法
JP2012054528A (ja) * 2010-08-04 2012-03-15 Nuflare Technology Inc 半導体製造装置
US8735949B2 (en) 2012-03-23 2014-05-27 Kabushiki Kaisha Toshiba Junction type field effect transistor and manufacturing method thereof
JP2017011102A (ja) * 2015-06-22 2017-01-12 昭和電工株式会社 炭化珪素膜の成膜装置のクリーニング方法
JP2017011184A (ja) * 2015-06-24 2017-01-12 株式会社デンソー 炭化珪素半導体のエピタキシャル成長装置
JP2017165615A (ja) * 2016-03-16 2017-09-21 住友電気工業株式会社 炭化珪素のエピタキシャル成長装置
JP2018022853A (ja) * 2016-08-05 2018-02-08 富士電機株式会社 炭化珪素半導体基板および炭化珪素半導体基板の製造方法

Also Published As

Publication number Publication date
SE533083C2 (sv) 2010-06-22
SE0900641L (sv) 2009-11-14

Similar Documents

Publication Publication Date Title
KR101430217B1 (ko) 에피택셜 탄화규소 단결정 기판 및 그 제조 방법
KR101160930B1 (ko) 카본-함유 실리콘 에피택셜 층을 형성하는 방법
US20080318359A1 (en) Method of manufacturing silicon carbide semiconductor substrate
JP5637086B2 (ja) エピタキシャルウエハ及び半導体素子
US10697086B2 (en) Method for manufacturing silicon carbide epitaxial substrate, method for manufacturing silicon carbide semiconductor device, and apparatus for manufacturing silicon carbide epitaxial substrate
US20190013198A1 (en) Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
US9633840B2 (en) Method of manufacturing silicon carbide semiconductor substrate and method of manufacturing silicon carbide semiconductor device
JP2009277757A (ja) 半導体装置の製造方法
JP2018522412A (ja) 単結晶シリコン上でのエピタキシャル3C−SiCの成長
KR102482578B1 (ko) 에피택셜 웨이퍼의 제조방법
JP7127283B2 (ja) 炭化珪素半導体基板および炭化珪素半導体基板の製造方法
US11094539B2 (en) Method for manufacturing nitride semiconductor substrate and nitride semiconductor substrate
JP2014058411A (ja) エピタキシャル炭化珪素ウエハの製造方法
JP6786939B2 (ja) 炭化珪素半導体基板および炭化珪素半導体基板の製造方法
US12020927B2 (en) Method for manufacturing silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
US7947552B2 (en) Process for the simultaneous deposition of crystalline and amorphous layers with doping
EP4098783B1 (en) Buffer layer on silicon carbide substrate, and method for forming buffer layer
JP7009147B2 (ja) 炭化珪素半導体基板、炭化珪素半導体基板の製造方法および炭化珪素半導体装置
KR20130044789A (ko) 에피 웨이퍼 제조 장치, 에피 웨이퍼 제조 방법 및 에피 웨이퍼
JP2004343133A (ja) 炭化珪素製造方法、炭化珪素及び半導体装置
US11735415B2 (en) Method for manufacturing silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
KR20090017074A (ko) 에피층 성장방법
JP7501303B2 (ja) 加工ウェハ、加工ウェハの製造方法、および、炭化珪素半導体装置の製造方法
CN108699726B (zh) 由碳化硅构成的半导体基板及其制造方法
KR100234230B1 (ko) 다층 에피텍셜 구조 및 그 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823