CN116856052A - 一种提升P型4H-SiC同质外延薄膜生长质量的方法 - Google Patents

一种提升P型4H-SiC同质外延薄膜生长质量的方法 Download PDF

Info

Publication number
CN116856052A
CN116856052A CN202310887341.4A CN202310887341A CN116856052A CN 116856052 A CN116856052 A CN 116856052A CN 202310887341 A CN202310887341 A CN 202310887341A CN 116856052 A CN116856052 A CN 116856052A
Authority
CN
China
Prior art keywords
growth
sic
source
substrate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310887341.4A
Other languages
English (en)
Inventor
韩理想
刘志远
张梦龙
王小周
李京波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Xinke Semiconductor Co Ltd
Original Assignee
Zhejiang Xinke Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Xinke Semiconductor Co Ltd filed Critical Zhejiang Xinke Semiconductor Co Ltd
Priority to CN202310887341.4A priority Critical patent/CN116856052A/zh
Publication of CN116856052A publication Critical patent/CN116856052A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及功率器件技术领域,具体公开了一种提升P型4H‑SiC同质外延薄膜生长质量的方法,包括以下步骤:选用一种偏<11‑20>方向4°的6寸4H‑SiC衬底,对衬底进行标准清洗后放入托盘中;通入氢气,对反应腔内的碳化硅衬底进行10~15min刻蚀;升温;进行Buffer层生长;进行P‑SiC外延层生长;关闭反应源和掺杂源,降温至室温进行吹扫,获得P型掺杂的碳化硅外延片;本发明中4H‑SiC外延炉的进气管分为主路和副路,对样品生长质量影响较大,本发明通过确定腔体进气处的TMA流量,对主管路和副管路的TMA流量配比进行探究,确定最优配比,大大提升了样品掺杂浓度和厚度均匀性。

Description

一种提升P型4H-SiC同质外延薄膜生长质量的方法
技术领域
本发明属于功率器件技术领域,具体涉及一种提升P型4H-SiC同质外延薄膜生长质量的方法。
背景技术
碳化硅作为极具潜力的第三代宽禁带半导体材料,在高功率和高频电力电子器件领域拥有较好的市场前景,其具有大的禁带宽度、高击穿电场、高热导率和高电子饱和漂移速率等优点是制备高端功率器件的关键材料,相对于传统的硅和砷化镓材料,碳化硅具有更好的热导率和临界击穿场强,但由于SiC材料不同堆垛层间形成能差距较小,已形成不同晶型的SiC材料,迄今为止,已报道250多种SiC单晶的同素异构体,其中较为常见的是3C、6H和4H等结构,相对于其他几种结构,4H-SiC具有更高的电子迁移率和更低的开关速度,所以,4H-SiC更适合功率器件的发展。
目前4H-SiC外延生长主要选择偏向<11-20>方向4°的碳化硅衬底,通过台阶流生长模式复制衬底晶格以进行外延生长,得到更高质量的碳化硅外延薄膜,在4H-SiC工艺生产中通常使用热壁水平式化学气相外延技术(HTCVD)。由于其相对较低的生长温度、良好的薄膜均匀性以及生长过程的易控等优点适用于大规模生产。在双极型器件中,碳化硅外延层包括P-SiC和N-SiC,其中P型碳化硅是必不可少的结构层,其工艺的研究对器件发展具有重要的意义。
例如,专利CN111005068A公开了一种生长高表面质量超厚IGBT结构碳化硅外延材料的方法。该方法在生长一层高掺P型外延层之后进行了机械抛光和原位刻蚀,在此之上沉积了超厚N型外延层。而专利CN112466745A通过使用惰性气体作为切换过程中的过渡气体,提供了一种多层P型掺杂外延层的生长方法。以上均未探究具体的工艺参数对P-SiC生长质量的影响。而专利CN103715069B公开了一种减少碳化硅薄膜中缺陷的生长方法,其通过降低缓冲层生长压力和速度,优化C/Si比等进一步改善外延薄膜的质量,缺少普适性,对生产经验的积累要求较高;专利CN112490117公开了一种结合缓冲层阶段多个线性缓变过程的工艺控制,降低外延薄膜的缺陷的方法。该方法从缓冲层角度进行了工艺探究,而未探究对P型外延层生长时的具体参数如掺杂源的温度和流量等影响。
对于Al源掺杂的过程中,杂质掺杂的位点竞争机制需要更加细致的工艺参数调整。这些工艺参数例如C/Si比和TMA流速等对外延片的微观形貌和结构具有重要的影响。虽然针对P型掺杂的碳化硅生长工艺有较多的研究,但是针对双极型器件的4H-SiC外延的生长,特别是用HTCVD技术,其中对于TMA源的主路和旁路的气体流量比例还未进行过系统的探索。反应室中的实际C/Si比值随TMA流量变化而发生一定程度的改变,这种重要的影响参数对于4H-SiC外延薄膜的表面粗糙度、厚度均匀性和掺杂均匀性具有关键作用,探究这方面的工艺对提升薄膜的质量,促进其商业化发展也是非常有意义的。
在HTCVD技术中,通常利用三甲基铝(TMA)作为P型SiC外延生长的掺杂剂,其拥有更低的电离能和更小的原子半径,可以大大降低因晶格常数变化而导致的外延缺陷。相对N型来说,Al具有更高的扩散系数,这也导致P型SiC进行的掺杂浓度更难以控制,使得外延厚度和掺杂浓度不均匀,表面平滑度难以控制,进而影响器件性能。
发明内容
本发明的目的在于提供一种提升P型4H-SiC同质外延薄膜生长质量的方法,在确定进入腔体TMA流量的情况下,通过对生长系统中TMA源蒸汽在进气端的主路和两条旁路的流量比调整,增大Al的掺杂效率,降低4H-SiC表面粗糙度,提升外延薄膜的厚度均匀性和掺杂均匀性,从而提升外延片的表面质量。
为实现上述目的,本发明提供如下技术方案:
一种提升P型4H-SiC同质外延薄膜生长质量的方法,包括以下步骤:
S1、选用一种偏<11-20>方向4°的6寸4H-SiC衬底,对衬底进行标准清洗后放入托盘中;
S2、通入氢气,对反应腔内的碳化硅衬底进行10~15min刻蚀;
S3、升温;
S4、进行Buffer层生长;
S5、进行P-SiC外延层生长;
S6、关闭反应源和掺杂源,降温至室温进行吹扫,获得P型掺杂的碳化硅外延片。
优选的,所述S3中从温度900~920℃逐渐升高至1630~1650℃,同时继续通入氢气,乙烯和氮气等源随载气进入Vent管路。
优选的,所述S4中通入氮气作为掺杂源,并通入三氯氢硅作为硅源,C2H4作为碳源在反应腔进行生长,温度维持在1630~1650℃,生长时间约5~7min,同时TMA源随载气进入Vent管路
优选的,所述S5中,生长温度维持在1630~1650℃,并从主路通入C2H4,流量保持70~80sccm,TMA主路流量设定为150~245sccm,旁路流量设定为75~105sccm,TCS源压力为1200~1500mbar,生长10~15min。
与现有技术相比,本发明的有益效果是:
1.本发明中4H-SiC外延炉的进气管分为主路和副路,对样品生长质量影响较大。本发明通过确定腔体进气处的TMA流量,对主管路和副管路的TMA流量配比进行探究,确定最优配比,大大提升了样品掺杂浓度和厚度均匀性。
2.在调整主/副管路的同时,对C/Si比进行了调整,多种参数结合实现腔体稳定的气体氛围,生长掺杂浓度较高,厚度和浓度不均匀性较低,表面粗糙度较低的P-SiC。
附图说明
图1为本发明P型掺杂气路示意图;
图2为本发明样品的厚度及掺杂浓度测试图;
图3为本发明的样品AFM形貌图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
请参阅图1-图3所示,一种提升P型4H-SiC同质外延薄膜生长质量的方法,包括以下步骤:
S1、选用一种偏<11-20>方向4°的6寸4H-SiC衬底,对衬底进行标准清洗后放入托盘中;
S2、通入氢气,对反应腔内的碳化硅衬底进行10~15min刻蚀;
S3、升温;
S4、进行Buffer层生长;
S5、进行P-SiC外延层生长;
S6、关闭反应源和掺杂源,降温至室温进行吹扫,获得P型掺杂的碳化硅外延片。
优先的,S3中从温度900~920℃逐渐升高至1630~1650℃,同时继续通入氢气,乙烯和氮气等源随载气进入Vent管路,S4中通入氮气作为掺杂源,并通入三氯氢硅作为硅源,C2H4作为碳源在反应腔进行生长,温度维持在1630~1650℃,生长时间约5~7min,同时TMA源随载气进入Vent管路,S5中,生长温度维持在1630~1650℃,并从主路通入C2H4,流量保持70~80sccm,TMA主路流量设定为150sccm,旁路流量设定为75sccm,TCS源压力为1200~1500mbar,生长10~15min。
实施例二:
参考图1-图3所示,
一种提升P型4H-SiC同质外延薄膜生长质量的方法,包括以下步骤:
S1、选用一种偏<11-20>方向4°的6寸4H-SiC衬底,对衬底进行标准清洗后放入托盘中;
S2、通入氢气,对反应腔内的碳化硅衬底进行10~15min刻蚀;
S3、升温;
S4、进行Buffer层生长;
S5、进行P-SiC外延层生长;
S6、关闭反应源和掺杂源,降温至室温进行吹扫,获得P型掺杂的碳化硅外延片。
优先的,S3中从温度900~920℃逐渐升高至1630~1650℃,同时继续通入氢气,乙烯和氮气等源随载气进入Vent管路,S4中通入氮气作为掺杂源,并通入三氯氢硅作为硅源,C2H4作为碳源在反应腔进行生长,温度维持在1630~1650℃,生长时间约5~7min,同时TMA源随载气进入Vent管路,S5中,生长温度维持在1630~1650℃,并从主路通入C2H4,流量保持70~80sccm,TMA主路流量设定为195sccm,旁路流量设定为105sccm,TCS源压力为1200~1500mbar,生长10~15min。
实施例三:
一种提升P型4H-SiC同质外延薄膜生长质量的方法,包括以下步骤:
S1、选用一种偏<11-20>方向4°的6寸4H-SiC衬底,对衬底进行标准清洗后放入托盘中;
S2、通入氢气,对反应腔内的碳化硅衬底进行10~15min刻蚀;
S3、升温;
S4、进行Buffer层生长;
S5、进行P-SiC外延层生长;
S6、关闭反应源和掺杂源,降温至室温进行吹扫,获得P型掺杂的碳化硅外延片。
优先的,S3中从温度900~920℃逐渐升高至1630~1650℃,同时继续通入氢气,乙烯和氮气等源随载气进入Vent管路,S4中通入氮气作为掺杂源,并通入三氯氢硅作为硅源,C2H4作为碳源在反应腔进行生长,温度维持在1630~1650℃,生长时间约5~7min,同时TMA源随载气进入Vent管路,S5中,生长温度维持在1630~1650℃,并从主路通入C2H4,流量保持70~80sccm,TMA主路流量设定为215sccm,旁路流量设定为105sccm,TCS源压力为1200~1500mbar,生长10~15min。
实施例四:
一种提升P型4H-SiC同质外延薄膜生长质量的方法,包括以下步骤:
S1、选用一种偏<11-20>方向4°的6寸4H-SiC衬底,对衬底进行标准清洗后放入托盘中;
S2、通入氢气,对反应腔内的碳化硅衬底进行10~15min刻蚀;
S3、升温;
S4、进行Buffer层生长;
S5、进行P-SiC外延层生长;
S6、关闭反应源和掺杂源,降温至室温进行吹扫,获得P型掺杂的碳化硅外延片。
优先的,S3中从温度900~920℃逐渐升高至1630~1650℃,同时继续通入氢气,乙烯和氮气等源随载气进入Vent管路,S4中通入氮气作为掺杂源,并通入三氯氢硅作为硅源,C2H4作为碳源在反应腔进行生长,温度维持在1630~1650℃,生长时间约5~7min,同时TMA源随载气进入Vent管路,S5中,生长温度维持在1630~1650℃,并从主路通入C2H4,流量保持70~80sccm,TMA主路流量设定为245sccm,旁路流量设定为100sccm,TCS源压力为1200~1500mbar,生长10~15min。
其中通过改进AlGaN层的生长温度、预热时间和气体流量三个方面,制备实施例一、实施例二、实施例三和实施例四种样品,其生长参数对比如下表1所示:
表1
表1中的TMA流量为中央与两侧边气路掺杂气体流量配比,为了确定从管路进入腔体内的TMA流量,通过公式1计算得到将fTMA值。其表示通进反应腔体内的TMA流量。PTMA为TMA的饱和蒸汽压,P为出口处压力计(EPC)的设定压力,单位Torr。氢气作为载气,稀释氢气的流量为fdilute,finput为通入TMA鼓泡瓶中的氢气流量,finject为通入反应腔内混合气体的流量。
经过计算得出,本发明中的fTMA为0.162sccm,生长厚度约5.5μm。表1中的实施例一到实施例四的样品分别是在主侧边路流量为150/75、195/105、215/105以及245/100sccm的条件下生长得到的。平均厚度均在5.5μm左右,但是样品的掺杂浓度随着主路的TMA源流量的增加而增加,但在将其调到245sccm时,其掺杂浓度明显降低。
除此之外,其表面粗糙度也随着主管路TMA流量的增加慢慢降低。这是由于TMA的流量增加,其对Al元素的掺杂效率随之增大,导致其掺杂浓度增加。而主路流量对薄膜的均匀性有着较大影响,在主路/副路中,主路占比增大,薄膜表面的中心区域均匀度较好。调整好副路与主路的配比,对于降低薄膜边缘的缺陷密度也有着重要的作用。
本发明通过汞C-V探针技术和傅里叶红外光谱分别测试了实施例一到实施例四的样品的外延样品的掺杂浓度和厚度。由于实施例四的样品的不均匀性高达37%左右(图2c),可能是主路流量过高而副路流量较低导致的。因此我们主要对比实施例一到实施例三的样品,如图2(a),能够较为明显的观察到中心区域的掺杂浓度高于边缘区域。越远离中心区域,Al的掺杂浓度越低,实施例三的样品的掺杂浓度均匀性最优,能够到10%。而从图2(b)可以看到,三种样品的厚度也是呈现中间区域高,边缘区域低的情况。实施例三的样品的厚度不均匀性最低,为1.32%。这反映出在确定fTMA的情况下,调控TMA主路及副路的配比对P-SiC薄膜的掺杂浓度及厚度均匀性有着较大影响。
由此我们对实施例一到实施例四的样品进行了AFM的轻敲模式测试,对其局部区域5×5μm及2×2μm进行形貌测试。见图3,(a1)-(a3)分别是样品1的5×5μm、2×2μm和其三维形貌图,由此类推(b)、(c)和(d)分别是实施例二样品,实施例三样品,实施例四样品的AFM形貌图。其中实施例一、实施例二和实施例四的样品其2×2μm形貌图中均有生长不均匀情况,其表面粗糙度较高。并且可以清晰观察到样品的台阶流生长取向,实施例三样品的表面相对均匀,较为平整。随着TMA流量增大,其Al离子掺杂效率增强,使得材料表面合金化严重,加剧表面粗糙度。但是在增大TMA流量的同时,其提供了(CH3),对腔体内的C/Si比有着一定的影响,对于腔体处于富碳还是富硅气氛,还需继续探究。值得注意的是,本发明中的C/Si比为1.2,由此可知,目前在主路TMA流量为215sccm,副路流量为105sccm时,其掺杂浓度相对最高,不均匀性最低,表面形貌最好。
综上可知,本发明中采用的P型掺杂剂包括但不限于TMA,针对本发明中的HTCVD外延炉中的一条主路和两条旁路设计,对二者的TMA流量比例进行调控,探究了4种配比对p-SiC薄膜掺杂浓度、厚度均匀性以及表面形貌的影响作用,确定最佳配比。
通过台阶竞位原理,调控不同C/Si比,对P型掺杂效率和掺杂浓度进行探究,并获得掺杂效率好,厚度均匀性和浓度均匀性较优的P-SiC外延薄膜。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (4)

1.一种提升P型4H-SiC同质外延薄膜生长质量的方法,其特征在于,包括以下步骤:
S1、选用一种偏<11-20>方向4°的6寸4H-SiC衬底,对衬底进行标准清洗后放入托盘中;
S2、通入氢气,对反应腔内的碳化硅衬底进行10~15min刻蚀;
S3、升温;
S4、进行Buffer层生长;
S5、进行P-SiC外延层生长;
S6、关闭反应源和掺杂源,降温至室温进行吹扫,获得P型掺杂的碳化硅外延片。
2.根据权利要求1所述的一种提升P型4H-SiC同质外延薄膜生长质量的方法,其特征在于:所述S3中从温度900~920℃逐渐升高至1630~1650℃,同时继续通入氢气,乙烯和氮气等源随载气进入Vent管路。
3.根据权利要求1所述的一种提升P型4H-SiC同质外延薄膜生长质量的方法,其特征在于:所述S4中通入氮气作为掺杂源,并通入三氯氢硅作为硅源,C2H4作为碳源在反应腔进行生长,温度维持在1630~1650℃,生长时间约5~7min,同时TMA源随载气进入Vent管路。
4.根据权利要求1所述的一种提升P型4H-SiC同质外延薄膜生长质量的方法,其特征在于:所述S5中,生长温度维持在1630~1650℃,并从主路通入C2H4,流量保持70~80sccm,TMA主路流量设定为150~245sccm,旁路流量设定为75~105sccm,TCS源压力为1200~1500mbar,生长10~15min。
CN202310887341.4A 2023-07-19 2023-07-19 一种提升P型4H-SiC同质外延薄膜生长质量的方法 Pending CN116856052A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310887341.4A CN116856052A (zh) 2023-07-19 2023-07-19 一种提升P型4H-SiC同质外延薄膜生长质量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310887341.4A CN116856052A (zh) 2023-07-19 2023-07-19 一种提升P型4H-SiC同质外延薄膜生长质量的方法

Publications (1)

Publication Number Publication Date
CN116856052A true CN116856052A (zh) 2023-10-10

Family

ID=88221354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310887341.4A Pending CN116856052A (zh) 2023-07-19 2023-07-19 一种提升P型4H-SiC同质外延薄膜生长质量的方法

Country Status (1)

Country Link
CN (1) CN116856052A (zh)

Similar Documents

Publication Publication Date Title
US4855254A (en) Method of growing a single crystalline β-SiC layer on a silicon substrate
US4912063A (en) Growth of beta-sic thin films and semiconductor devices fabricated thereon
CN111029246B (zh) 一种降低SiC外延层中三角形缺陷的方法
KR101027485B1 (ko) 반도체 박막 증착을 위한 개선된 공정
Kong et al. Epitaxial growth of β‐SiC thin films on 6H α‐SiC substrates via chemical vapor deposition
US9337027B2 (en) Method of manufacturing substrates having improved carrier lifetimes
US10907273B2 (en) Growing epitaxial 3C-SiC on single-crystal silicon
JPH07176485A (ja) 基板上にGeを堆積させる方法および半導体デバイスの製造方法
US8343854B2 (en) Method of reducing memory effects in semiconductor epitaxy
CN105244255B (zh) 一种碳化硅外延材料及其生产方法
CN112466745B (zh) 一种碳化硅外延生长的控制方法及碳化硅外延片
WO2023016158A1 (zh) 非平衡条件下化学势调控生长单体的SiC台阶流快速生长方法
CN116844940A (zh) 一种改善SiC外延片浓度均匀性的制备方法
CN109119327A (zh) 在纳米图形化蓝宝石衬底上外延生长氮化铝的方法
CN112885709A (zh) 一种碳化硅外延结构的制备方法及半导体设备
JP6786939B2 (ja) 炭化珪素半導体基板および炭化珪素半導体基板の製造方法
CN116259534A (zh) 碳化硅外延方法
CN116856052A (zh) 一种提升P型4H-SiC同质外延薄膜生长质量的方法
JP2014232799A (ja) 炭化珪素半導体基板の製造方法
Ohshita Low Temperature P‐Doped SiC Growth by Chemical Vapor Deposition Using CH 3SiH3/PH 3 Gas
CN117448955B (zh) 一种碳化硅外延结构的制备方法
CN111029245B (zh) 一种SiC外延速率切换的方法
JPH0722330A (ja) 歪ヘテロエピタキシャル層の形成方法
Leone et al. Chloride-based CVD of 4H-SiC at high growth rates on substrates with different off-angles
Järrendahl et al. Growth of highly (0001)-oriented aluminum nitride thin films with smooth surfaces on silicon carbide by gas-source molecular beam epitaxy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination