WO2018047843A1 - 蓄電素子及び蓄電素子の製造方法 - Google Patents

蓄電素子及び蓄電素子の製造方法 Download PDF

Info

Publication number
WO2018047843A1
WO2018047843A1 PCT/JP2017/032039 JP2017032039W WO2018047843A1 WO 2018047843 A1 WO2018047843 A1 WO 2018047843A1 JP 2017032039 W JP2017032039 W JP 2017032039W WO 2018047843 A1 WO2018047843 A1 WO 2018047843A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
material layer
particles
peak
Prior art date
Application number
PCT/JP2017/032039
Other languages
English (en)
French (fr)
Inventor
亮介 下川
智典 加古
祥太 伊藤
和輝 川口
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to EP17848782.3A priority Critical patent/EP3509137B1/en
Priority to JP2018538430A priority patent/JP6947182B2/ja
Priority to CN201780054997.0A priority patent/CN109844999B/zh
Priority to US16/330,483 priority patent/US11239458B2/en
Publication of WO2018047843A1 publication Critical patent/WO2018047843A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a power storage device such as a lithium ion secondary battery, and a method for manufacturing the same.
  • Patent Document 1 a lithium ion secondary battery including an electrode having a current collector and an active material layer containing active material particles is known (for example, Patent Document 1).
  • the active material layer includes particles of monoclinic ⁇ -type titanium composite oxide and particles of lithium titanate having a spinel structure.
  • the first peak P1 appears in the range of 0.3 ⁇ m to 3 ⁇ m, and 5 ⁇ m.
  • the second peak P2 appears in the range of 20 ⁇ m or less, and the ratio FP1 / FP2 of the frequency FP1 of the first peak P1 to the frequency FP2 of the second peak P2 is 0.4 or more and 2.3 or less.
  • the output performance at low temperatures may not be sufficient, and there is a demand for a power storage device with improved output performance at low temperatures.
  • This embodiment makes it a subject to provide the electrical storage element with which the output performance in low temperature was improved. Another object is to provide a method for manufacturing the power storage element.
  • the electricity storage device of this embodiment includes an electrode having an active material layer, the active material layer includes at least active material particles, and the particle size frequency distribution based on volume of the particles contained in the active material layer has a first peak. And a second peak that appears on the larger particle diameter than the first peak, and the frequency is minimal between the first peak and the second peak in the particle size frequency distribution.
  • the particle size is Dx
  • the volume ratio of particles having a particle size of Dx or less is 49% or more and 62% or less with respect to the volume of all particles contained in the active material layer.
  • the active material layer includes secondary particles in which primary particles of the active material are aggregated, and the active material secondary particles have a particle diameter equal to or larger than the particle size of the primary particles constituting the secondary particles. Holes may be formed. With such a configuration, the specific surface area of the secondary particles increases as the inner surface is formed on the secondary particles, and the reaction on the active material surface during output proceeds efficiently.
  • the volume ratio of particles having a particle size of Dx or less may be 52% or more and 60% or less with respect to the volume of all particles contained in the active material layer. With such a configuration, the output performance at a low temperature is improved.
  • the method for manufacturing a power storage device of this embodiment includes preparing an electrode having an active material layer including at least active material particles, and the manufacturing of the electrode includes secondary particles in which primary particles of the active material are aggregated. Pressing the active material layer, and pressing the active material layer has a particle size frequency distribution based on the volume of the particles contained in the active material layer after pressing, the first peak, and the first peak A portion of the secondary particles is crushed so as to have a second peak that appears on the larger particle diameter than the peak, and in the particle size frequency distribution, the first peak and the second peak.
  • the particle diameter having a minimum frequency in between is Dx
  • the volume ratio of particles having a particle diameter of Dx or less is 49% or more and 62% or less with respect to the volume of all particles contained in the active material layer. A part of secondary particle is crushed so that it may become. With the manufacturing method having such a configuration, a power storage element with improved output performance at low temperatures can be provided.
  • FIG. 1 is a perspective view of a power storage device according to this embodiment.
  • 2 is a cross-sectional view taken along the line II-II in FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 4 is a view for explaining the configuration of the electrode body of the energy storage device according to the embodiment.
  • FIG. 5 is a cross-sectional view of the superimposed positive electrode, negative electrode, and separator (VV cross section of FIG. 4).
  • FIG. 6 is a flowchart showing the steps of the method for manufacturing the power storage element.
  • FIG. 7 is a perspective view of a power storage device including the power storage element according to the embodiment.
  • FIG. 8 is a particle size frequency distribution diagram based on the volume of particles contained in the active material layer.
  • FIG. 9 is a schematic view of positive electrode active material particles in the same embodiment.
  • FIG. 10 is an image processing diagram for determining the hollow ratio of the positive electrode active material particles in the embodiment.
  • each component (each component) of this embodiment is a thing in this embodiment, and may differ from the name of each component (each component) in background art.
  • the electricity storage device 1 of the present embodiment is a nonaqueous electrolyte secondary battery. More specifically, the electricity storage element 1 is a lithium ion secondary battery that utilizes electron movement that occurs in association with movement of lithium ions. This type of power storage element 1 supplies electric energy.
  • the electric storage element 1 is used singly or in plural. Specifically, the storage element 1 is used as a single unit when the required output and the required voltage are small.
  • power storage element 1 is used in power storage device 100 in combination with other power storage elements 1 when at least one of a required output and a required voltage is large. In the power storage device 100, the power storage element 1 used in the power storage device 100 supplies electric energy.
  • the storage element 1 includes an electrode body 2 including a positive electrode 11 and a negative electrode 12, a case 3 that houses the electrode body 2, and an external terminal 7 that is disposed outside the case 3. And an external terminal 7 that is electrically connected to the electrode body 2.
  • the power storage element 1 includes a current collector 5 that electrically connects the electrode body 2 and the external terminal 7.
  • the electrode body 2 is formed by winding a laminated body 22 in which the positive electrode 11 and the negative electrode 12 are laminated with the separator 4 being insulated from each other.
  • the positive electrode 11 includes a metal foil 111 (current collector foil) and an active material layer 112 that is stacked on the surface of the metal foil 111 and includes an active material. In the present embodiment, the active material layer 112 overlaps both surfaces of the metal foil 111.
  • the thickness of the positive electrode 11 is usually 40 ⁇ m or more and 150 ⁇ m or less.
  • the metal foil 111 has a strip shape.
  • the metal foil 111 of the positive electrode 11 of this embodiment is, for example, an aluminum foil.
  • the positive electrode 11 has an uncovered portion (a portion where the positive electrode active material layer is not formed) 115 of the positive electrode active material layer 112 at one edge portion in the width direction, which is the short direction of the band shape.
  • the positive electrode active material layer 112 includes a particulate active material (active material particles), a particulate conductive aid, and a binder.
  • the thickness of the positive electrode active material layer 112 (for one layer) is usually 12 ⁇ m or more and 70 ⁇ m or less.
  • the basis weight of the positive electrode active material layer 112 (for one layer) is usually 6 mg / cm 2 cm or more and 17 mg / cm 2 cm or less.
  • the density of the positive electrode active material layer 112 is usually 1.5 g / cm 3 to 3.0 g / cm 3.
  • the basis weight and density are for one layer arranged so as to cover one surface of the metal foil 111.
  • the particle size frequency distribution on the volume basis of the particles contained in the positive electrode active material layer 112 has a first peak and a second peak that appears on the larger particle diameter than the first peak.
  • the volume ratio of particles having a particle diameter of Dx or less is in the active material layer. It is 49% or more and 62% or less with respect to the volume of all the contained particles. Such a volume ratio may be 52% or more and 60% or less.
  • the first peak and the second peak are the largest peak and one peak adjacent to the largest peak.
  • the peak next to the largest peak is on the small particle diameter side and the large particle diameter side, the larger peak is adopted as the second peak.
  • the positive electrode active material layer 112 includes primary particles 1121 of active materials and secondary particles 1122 in which a plurality of primary particles 1121 are aggregated.
  • the positive electrode active material layer 112 includes primary particles 1121 that exist alone and secondary particles 1122 in which a plurality of primary particles are condensed.
  • the secondary particles 1122 the primary particles are fixed to each other.
  • Holes 1123 are formed in at least a part of the secondary particles 1122. The holes 1123 can be confirmed by binarizing an SEM image obtained by SEM observation of a cross section of the positive electrode active material layer cut in the thickness direction using an ion beam.
  • FIG. 10 is an image obtained by binarizing SEM images of three types of positive electrode active materials having different porosity.
  • the region surrounded by the outer periphery of the white region is defined as a secondary particle, and the black region existing inside the secondary particle is defined as a void.
  • hole) of a secondary particle is defined as a porosity.
  • the porosity of each particle shown in FIG. 11 is calculated as (a) 0%, (b) 9.9%, and (c) 11.4%.
  • the porosity of the positive electrode active material is preferably 5% or more, and more preferably 10% or more.
  • the size of the holes is an average value obtained by measuring 10 longest sizes of each black region in the above-mentioned image.
  • the measurement may be performed over a plurality of secondary particles.
  • hole beyond the particle diameter of the primary particle which comprises a secondary particle is formed in the inside of the secondary particle of a positive electrode active material.
  • the volume ratio can be increased by increasing the press pressure when producing the positive electrode 11. That is, by increasing the press pressure, more secondary particles in which primary particles are aggregated can be crushed, so that the proportion of particles having a smaller particle diameter in the positive electrode active material layer 112 can be increased.
  • the volume ratio can be adjusted by mixing secondary particles and primary particles prepared in advance.
  • the frequency with respect to the particle size of the active material and the conductive additive is represented.
  • the binder is not reflected in the result of the particle size frequency distribution.
  • the particle size frequency distribution is obtained by measurement using a laser diffraction / scattering type particle size distribution measuring apparatus.
  • the particle size frequency distribution is determined on the basis of the volume of the particles. The measurement conditions are explained in detail in the examples.
  • a constant voltage discharge is performed at 2.0 V for 5 hours.
  • the battery is disassembled in a dry atmosphere.
  • the active material layer is taken out, washed with dimethyl carbonate and crushed, and then vacuum-dried for 2 hours or more. Then, it measures using a particle size distribution measuring apparatus.
  • the volume-based particle size frequency distribution of the particles contained in the positive electrode active material layer 112 includes a first peak and a second peak that appears on the larger particle diameter than the first peak.
  • the average diameter Dp of the primary particles of the active material and the particle diameter D1 of the first peak may satisfy the relational expression of 0.5 ⁇ D1 / Dp ⁇ 2.
  • the value of D1 / Dp can be adjusted by changing the particle diameter of the active material particles for producing the positive electrode active material layer 112. For example, a secondary particle having a larger secondary particle diameter than that of the primary particle constituting the secondary particle of the active material is employed, and a positive electrode active material is obtained from a mixture (described later) containing such secondary particles. By forming the material layer 112, the value of D1 / Dp can be increased.
  • the average diameter Dp of the primary particles of the active material particles in the positive electrode active material layer 112 is usually 0.1 ⁇ m or more and 2.0 ⁇ m or less.
  • the average diameter Dp of the primary particles is the average diameter of the primary particles that exist independently (exist independently of each other) in the positive electrode active material layer 112.
  • the average primary particle diameter Dp is determined by measuring at least 100 primary particle diameters in the scanning electron microscope observation image of the cross section in the thickness direction of the positive electrode active material layer 112 and averaging the measured values. If the primary particles are not spherical, the longest diameter is measured as the diameter.
  • the particle diameter D1 of the first peak is usually 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • the particle diameter D2 of the second peak is usually 2 ⁇ m or more and 5 ⁇ m or less.
  • the particle diameter Dx that minimizes the frequency between the first peak and the second peak is usually 1.0 ⁇ m or more and 3.0 ⁇ m or less.
  • the ratio of the particle size D2 of the second peak to the particle size D1 of the first peak is usually 0.02 or more and 0.5 or less.
  • the porosity of the positive electrode active material layer 112 is usually 25% or more and 45% or less.
  • the porosity is calculated based on the measurement result by the mercury intrusion method.
  • the mercury intrusion method can be performed using a mercury intrusion porosimeter. Specifically, the mercury intrusion method is performed in accordance with Japanese Industrial Standard (JIS R1655: 2003).
  • the apparent volume V (cm 3 ) is obtained by multiplying the area (cm 2 ) when the active material layer is viewed in plan by the thickness (cm) of the active material layer.
  • the battery is disassembled in a dry atmosphere.
  • the positive electrode active material layer 112 is taken out and washed with dimethyl carbonate, followed by vacuum drying for 2 hours or more. Thereafter, the porosity of the positive electrode active material layer 112 can be calculated based on the measurement result using a mercury intrusion porosimeter.
  • the active material of the positive electrode 11 is a compound that can occlude and release lithium ions.
  • the active material of the positive electrode 11 is, for example, a lithium metal oxide.
  • the active material of the positive electrode for example, Li p MeO t (Me represents one or more transition metal) complex oxide represented by (Li p Co s O 2, Li p Ni q O 2, Li p Mn r O 4 , Li p Ni q Co s Mn r O 2 , etc.), or, Li p Me u (XO v ) w (Me represents one or more transition metals, X is e.g. P, Si, B, a polyanion compounds represented by the representative of the V) (Li p Fe u PO 4, Li p Mn u PO 4, Li p Mn u SiO 4, Li p Co u PO 4 F , etc.).
  • the active material of the positive electrode 11 may be a lithium metal composite oxide represented by a chemical composition of Li 1-x Ni a Mn b Co c M d O 2- ⁇ .
  • 0 ⁇ x ⁇ 1, a + b + c + d 1, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1, 0 ⁇ d ⁇ 1, 0 ⁇ ⁇ ⁇ 0.5
  • M is at least one selected from the group consisting of B, Mg, Al, Ti, V, Zn, Y, Zr, Mo, and W.
  • Li p Ni q Mn r Co s O lithium-metal composite oxide represented by the chemical composition of the t, for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2, LiNi 1/6 Co 1 / 6 Mn 2/3 O 2 , LiCoO 2 and the like.
  • binder used for the positive electrode active material layer 112 examples include polyvinylidene fluoride (PVdF), a copolymer of ethylene and vinyl alcohol, polymethyl methacrylate, polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyacrylic acid, and polymethacrylic acid. Acid, styrene butadiene rubber (SBR).
  • SBR styrene butadiene rubber
  • the conductive additive of the positive electrode active material layer 112 is a carbonaceous material containing 98% by mass or more of carbon.
  • Examples of the carbonaceous material include ketjen black (registered trademark), acetylene black, and graphite.
  • the positive electrode active material layer 112 of this embodiment has acetylene black as a conductive additive.
  • the negative electrode 12 includes a metal foil 121 (current collector foil) and a negative electrode active material layer 122 formed on the metal foil 121.
  • the negative electrode active material layer 122 is overlaid on both surfaces of the metal foil 121.
  • the metal foil 121 has a strip shape.
  • the metal foil 121 of the negative electrode of this embodiment is, for example, a copper foil.
  • the negative electrode 12 has a non-covered portion (a portion where the negative electrode active material layer is not formed) 125 of the negative electrode active material layer 122 at one edge portion in the width direction which is the short direction of the belt shape.
  • the thickness of the negative electrode 12 is usually 40 ⁇ m or more and 150 ⁇ m or less.
  • the negative electrode active material layer 122 includes a particulate active material (active material particles) and a binder.
  • the negative electrode active material layer 122 is disposed so as to face the positive electrode 11 with the separator 4 interposed therebetween.
  • the width of the negative electrode active material layer 122 is larger than the width of the positive electrode active material layer 112.
  • the active material of the negative electrode 12 can contribute to the electrode reaction of the charge reaction and the discharge reaction in the negative electrode 12.
  • the active material of the negative electrode 12 has an alloying reaction with carbon materials such as graphite and amorphous carbon (non-graphitizable carbon and graphitizable carbon), or lithium ions such as silicon (Si) and tin (Sn).
  • the resulting material is amorphous carbon. More specifically, the negative electrode active material is non-graphitizable carbon.
  • the thickness of the negative electrode active material layer 122 (for one layer) is usually 10 ⁇ m or more and 50 ⁇ m or less.
  • the basis weight (one layer) of the negative electrode active material layer 122 is usually 0.3 g / 100 cm 2 or more and 1.0 g / 100 cm 2 or less.
  • the density (one layer) of the negative electrode active material layer 122 is usually 0.9 g / cm 3 or more and 1.2 g / cm 3 or less.
  • the binder used for the negative electrode active material layer is the same as the binder used for the positive electrode active material layer.
  • the binder of this embodiment is styrene butadiene rubber (SBR).
  • the ratio of the binder may be 5% by mass or more and 10% by mass or less with respect to the total mass of the active material particles and the binder.
  • the negative electrode active material layer 122 may further include a conductive additive such as ketjen black (registered trademark), acetylene black, or graphite.
  • a conductive additive such as ketjen black (registered trademark), acetylene black, or graphite.
  • the negative electrode active material layer 122 of this embodiment does not have a conductive additive.
  • the positive electrode 11 and the negative electrode 12 configured as described above are wound in a state where they are insulated by the separator 4. That is, in the electrode body 2 of the present embodiment, the stacked body 22 of the positive electrode 11, the negative electrode 12, and the separator 4 is wound.
  • the separator 4 is a member having insulating properties.
  • the separator 4 is disposed between the positive electrode 11 and the negative electrode 12. Thereby, in the electrode body 2 (specifically, the laminated body 22), the positive electrode 11 and the negative electrode 12 are insulated from each other.
  • the separator 4 holds the electrolytic solution in the case 3. Thereby, at the time of charging / discharging of the electrical storage element 1, lithium ion moves between the positive electrode 11 and the negative electrode 12 which are laminated
  • the separator 4 has a strip shape.
  • the separator 4 has a porous separator base material.
  • the separator 4 is disposed between the positive electrode 11 and the negative electrode 12 in order to prevent a short circuit between the positive electrode 11 and the negative electrode 12.
  • the separator 4 of this embodiment has only the separator base material 41.
  • the separator base material 41 is configured to be porous.
  • the separator base material 41 is, for example, a woven fabric, a nonwoven fabric, or a porous film.
  • Examples of the material for the separator substrate include polymer compounds, glass, and ceramics.
  • Examples of the polymer compound include a group consisting of polyester such as polyacrylonitrile (PAN), polyamide (PA), polyethylene terephthalate (PET), polyolefin (PO) such as polypropylene (PP) and polyethylene (PE), and cellulose. The at least 1 sort selected from more is mentioned.
  • the width of the separator 4 (the dimension of the strip shape in the short direction) is slightly larger than the width of the negative electrode active material layer 122.
  • the separator 4 is disposed between the positive electrode 11 and the negative electrode 12 that are stacked in a state of being displaced in the width direction so that the positive electrode active material layer 112 and the negative electrode active material layer 122 overlap. At this time, as shown in FIG. 4, the non-covered portion 115 of the positive electrode 11 and the non-covered portion 125 of the negative electrode 12 do not overlap.
  • the uncovered portion 115 of the positive electrode 11 protrudes in the width direction from the region where the positive electrode 11 and the negative electrode 12 overlap, and the non-covered portion 125 of the negative electrode 12 extends from the region where the positive electrode 11 and the negative electrode 12 overlap in the width direction ( Projecting in the direction opposite to the protruding direction of the non-covered portion 115 of the positive electrode 11.
  • the electrode body 2 is formed by winding the stacked positive electrode 11, negative electrode 12, and separator 4, that is, the stacked body 22.
  • the portion where only the uncovered portion 115 of the positive electrode 11 or the uncovered portion 125 of the negative electrode 12 is stacked constitutes the uncoated stacked portion 26 in the electrode body 2.
  • the uncoated laminated portion 26 is a portion that is electrically connected to the current collector 5 in the electrode body 2.
  • the non-coated laminated portion 26 has two parts (halved uncoated laminated portions) across the hollow portion 27 (see FIG. 4) in the winding center direction view of the wound positive electrode 11, negative electrode 12, and separator 4. ) 261.
  • the uncoated laminated portion 26 configured as described above is provided on each electrode of the electrode body 2. That is, the non-coated laminated portion 26 in which only the non-coated portion 115 of the positive electrode 11 is laminated constitutes the non-coated laminated portion of the positive electrode 11 in the electrode body 2, and the non-coated laminated layer in which only the non-coated portion 125 of the negative electrode 12 is laminated. The portion 26 constitutes an uncoated laminated portion of the negative electrode 12 in the electrode body 2.
  • the case 3 includes a case main body 31 having an opening and a cover plate 32 that closes (closes) the opening of the case main body 31.
  • the case 3 houses the electrolytic solution in the internal space together with the electrode body 2 and the current collector 5.
  • Case 3 is formed of a metal having resistance to the electrolytic solution.
  • the case 3 is made of an aluminum-based metal material such as aluminum or an aluminum alloy, for example.
  • the case 3 may be formed of a metal material such as stainless steel and nickel, or a composite material obtained by bonding a resin such as nylon to aluminum.
  • the electrolytic solution is a non-aqueous electrolytic solution.
  • the electrolytic solution is obtained by dissolving an electrolyte salt in an organic solvent.
  • the organic solvent include cyclic carbonates such as propylene carbonate and ethylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
  • the electrolyte salt is LiClO 4 , LiBF 4 , LiPF 6 or the like.
  • the electrolytic solution of this embodiment is obtained by dissolving 0.5 to 1.5 mol / L of LiPF6 in a mixed solvent in which propylene carbonate, dimethyl carbonate, and ethyl methyl carbonate are mixed at a predetermined ratio.
  • the case 3 is formed by joining the peripheral edge of the opening of the case main body 31 and the peripheral edge of the rectangular lid plate 32 in an overlapping state.
  • the case 3 has an internal space defined by the case main body 31 and the lid plate 32.
  • the opening peripheral part of the case main body 31 and the peripheral part of the cover plate 32 are joined by welding.
  • the long side direction of the cover plate 32 is the X-axis direction
  • the short side direction of the cover plate 32 is the Y-axis direction
  • the normal direction of the cover plate 32 is the Z-axis direction.
  • the case body 31 has a rectangular tube shape (that is, a bottomed rectangular tube shape) in which one end in the opening direction (Z-axis direction) is closed.
  • the lid plate 32 is a plate-like member that closes the opening of the case body 31.
  • the cover plate 32 has a gas discharge valve 321 that can discharge the gas in the case 3 to the outside.
  • the gas discharge valve 321 discharges gas from the inside of the case 3 to the outside when the internal pressure of the case 3 rises to a predetermined pressure.
  • the gas discharge valve 321 is provided at the center of the lid plate 32 in the X-axis direction.
  • the case 3 is provided with a liquid injection hole for injecting an electrolytic solution.
  • the liquid injection hole communicates the inside and the outside of the case 3.
  • the liquid injection hole is provided in the lid plate 32.
  • the liquid injection hole is sealed (closed) by a liquid injection stopper 326.
  • the liquid filling tap 326 is fixed to the case 3 (the cover plate 32 in the example of the present embodiment) by welding.
  • the external terminal 7 is a part that is electrically connected to the external terminal 7 of another power storage element 1 or an external device.
  • the external terminal 7 is formed of a conductive member.
  • the external terminal 7 is formed of a highly weldable metal material such as an aluminum-based metal material such as aluminum or aluminum alloy, or a copper-based metal material such as copper or copper alloy.
  • the external terminal 7 has a surface 71 to which a bus bar or the like can be welded.
  • the surface 71 is a flat surface.
  • the external terminal 7 has a plate shape extending along the lid plate 32. Specifically, the external terminal 7 has a rectangular plate shape when viewed in the Z-axis direction.
  • the current collector 5 is disposed in the case 3 and is directly or indirectly connected to the electrode body 2 so as to be energized.
  • the current collector 5 of the present embodiment is connected to the electrode body 2 through the clip member 50 so as to be energized. That is, the electrical storage element 1 includes a clip member 50 that connects the electrode body 2 and the current collector 5 so as to allow energization.
  • the current collector 5 is formed of a conductive member. As shown in FIG. 2, the current collector 5 is disposed along the inner surface of the case 3. The current collector 5 is disposed on each of the positive electrode 11 and the negative electrode 12 of the power storage element 1. In the power storage device 1 of the present embodiment, the current collectors 5 are disposed in the case 3 on the uncoated stacked portion 26 of the positive electrode 11 and the uncoated stacked portion 26 of the negative electrode 12, respectively.
  • the current collector 5 of the positive electrode 11 and the current collector 5 of the negative electrode 12 are formed of different materials. Specifically, the current collector 5 of the positive electrode 11 is formed of, for example, aluminum or an aluminum alloy, and the current collector 5 of the negative electrode 12 is formed of, for example, copper or a copper alloy.
  • the electrode body 2 (specifically, the electrode body 2 and the current collector 5) housed in a bag-like insulating cover 6 that insulates the electrode body 2 and the case 3 is the case 3. Housed inside.
  • an electrode having an active material layer containing at least active material particles is produced (step 1 S1). Further, in the manufacturing method described above, a power storage element is usually assembled using the produced electrode, electrolytic solution, and case (step 2).
  • Step 1 in order to produce an active material layer of at least one of a positive electrode and a negative electrode, a part of the secondary particles is formed by pressing an active material layer including secondary particles in which primary particles of the active material are aggregated. Crush.
  • the particle size frequency distribution on a volume basis of the particles contained in the active material layer after pressing has a first peak and a second peak that appears on the larger particle diameter than the first peak,
  • the volume ratio of particles having a particle diameter of Dx or less is in the active material layer. It is 49% or more and 62% or less with respect to the volume of all the contained particles.
  • Step 1 a positive electrode mixture in which active material particles, a particulate conductive additive, a binder, and an organic solvent are mixed is prepared.
  • the positive electrode active material layer 112 is formed by applying a positive electrode mixture on both surfaces of the positive electrode metal foil 111.
  • a coating method for forming the positive electrode active material layer 112 a general method is employed.
  • the positive electrode active material layer 112 is pressed by a roll press or the like. By changing the pressing pressure, the volume ratio of the particles having the above particle diameter of Dx or less can be adjusted. Specifically, by increasing the press pressure, more secondary particles can be crushed, and thus the volume ratio of particles having a particle diameter of Dx or less can be increased.
  • the negative electrode active material layer 122 can be formed in a similar manner.
  • the electrode body 2 is formed by winding the laminate 22 in which the separator 4 is sandwiched between the positive electrode 11 and the negative electrode 12.
  • the positive electrode 11, the separator 4, and the negative electrode 12 are overlapped so that the positive electrode active material layer 112 and the negative electrode active material layer 122 face each other through the separator 4, thereby forming a laminate 22.
  • the laminated body 22 is wound to form the electrode body 2.
  • step 2 the electrode body 2 is put into the case main body 31 of the case 3, the opening of the case main body 31 is closed with the cover plate 32, and the electrolytic solution is injected into the case 3.
  • the electrode body 2 is inserted into the case main body 31, the positive electrode 11 and the one external terminal 7 are electrically connected, and the negative electrode 12 and the other external terminal 7 are connected to each other.
  • the opening of the case body 31 is closed with the lid plate 32.
  • the electricity storage device 1 of the present embodiment configured as described above includes the positive electrode 11 having the positive electrode active material layer 112 as an electrode.
  • the positive electrode active material layer 112 includes at least active material particles and a particulate conductive additive.
  • the particle size frequency distribution on the volume basis of the particles contained in the positive electrode active material layer 112 has a first peak and a second peak that appears on the larger particle diameter than the first peak.
  • the volume ratio of particles having a particle diameter of Dx or less is in the active material layer. It is 49% or more and 62% or less with respect to the volume of all the contained particles. With such a configuration, a power storage device with improved output performance at a low temperature can be provided.
  • the positive electrode active material layer 112 includes secondary particles in which primary particles of the active material are aggregated, and the particles of primary particles constituting the secondary particles are disposed inside the secondary particles of the active material. Holes larger than the diameter may be formed. With such a configuration, the specific surface area of the secondary particles increases as the inner surface is formed on the secondary particles, and the reaction on the active material surface during output proceeds efficiently.
  • the positive electrode active material layer 112 containing secondary particles is pressed to produce the positive electrode 11, the secondary particles in which voids are formed are pressed, and the secondary particles are relatively easily crushed. Thus, the secondary particles can be disintegrated to primary particles relatively easily.
  • the volume ratio of particles having a particle size of Dx or less may be 52% or more and 60% or less with respect to the volume of all particles contained in the positive electrode active material layer 112. With such a configuration, the output performance at a low temperature is further improved.
  • the electrical storage element of this invention is not limited to the said embodiment, Of course, a various change can be added in the range which does not deviate from the summary of this invention.
  • the configuration of another embodiment can be added to the configuration of a certain embodiment, and a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment.
  • a part of the configuration of an embodiment can be deleted.
  • the positive electrode in which the active material layer containing the active material is in direct contact with the metal foil has been described in detail.
  • the positive electrode is a conductive layer containing a binder and a conductive auxiliary agent, and the active material layer And a conductive layer disposed between the metal foil and the metal foil.
  • the electrodes in which the active material layers are disposed on both sides of the metal foil of each electrode have been described.
  • the positive electrode 11 or the negative electrode 12 has the active material layer on one side of the metal foil. It may be provided only on the side.
  • the electrical storage element 1 provided with the electrode body 2 by which the laminated body 22 was wound was demonstrated in detail, the electrical storage element of this invention may be provided with the laminated body 22 which is not wound.
  • the storage element may include an electrode body in which a positive electrode, a separator, a negative electrode, and a separator each formed in a rectangular shape are stacked a plurality of times in this order.
  • the power storage element 1 is used as a chargeable / dischargeable non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery) has been described.
  • the type and size (capacity) of the power storage element 1 are arbitrary. is there.
  • the lithium ion secondary battery was demonstrated as an example of the electrical storage element 1 in the said embodiment, it is not limited to this.
  • the present invention can be applied to various secondary batteries, other primary batteries, and power storage elements of capacitors such as electric double layer capacitors.
  • the power storage element 1 (for example, a battery) may be used in a power storage device 100 as shown in FIG. 7 (a battery module when the power storage element is a battery).
  • the power storage device 100 includes at least two power storage elements 1 and a bus bar member 91 that electrically connects two (different) power storage elements 1 to each other.
  • the technique of the present invention may be applied to at least one power storage element.
  • a nonaqueous electrolyte secondary battery (lithium ion secondary battery) was produced as shown below.
  • Test Example 1 A composition for a conductive layer by mixing and kneading N-methyl-2-pyrrolidone (NMP), a conductive additive (acetylene black), and a binder (PVdF) as a solvent for producing a positive electrode was prepared.
  • NMP N-methyl-2-pyrrolidone
  • acetylene black a conductive additive
  • PVdF a binder
  • the blending amounts of the conductive assistant and the binder were 50% by mass and 50% by mass, respectively.
  • the prepared composition for a conductive layer was applied to both sides of an aluminum foil (15 ⁇ m thickness) so that the application amount (weight per unit area) after drying was 0.1 mg / cm 2 and dried.
  • NMP N-methyl-2-pyrrolidone
  • a conductive additive acetylene black
  • PVdF binder
  • an active material LiNi 1/3 Co 1/3 Mn 1/3 O 2
  • the prepared positive electrode mixture was applied to the conductive layer so that the coating amount (weight per unit area) after drying was 10 mg / cm 2 . After drying, roll pressing was performed at a linear pressure of 350 kgf ⁇ mm ⁇ 1 . Thereafter, it was vacuum dried to remove moisture and the like.
  • the thickness of the active material layer (for one layer) after pressing was 30 ⁇ m.
  • the density of the active material layer was 2.6 g / cm 3 .
  • the porosity of the active material layer was 38%.
  • the thickness of the conductive layer after pressing was 1 ⁇ m.
  • the density of the conductive layer was 1.0 g / cm 3 .
  • Such an average particle diameter was determined by measuring the diameters of 100 primary particle diameters in a scanning electron microscope observation image and averaging the measured values. When the primary particles were not spherical, the longest diameter was measured as the diameter.
  • the average particle diameter D50 (volume basis) of the particles of the active material measured by a laser diffraction particle size distribution measuring apparatus described later was 5 ⁇ m.
  • the average particle diameter D50 (volume basis) of the conductive auxiliary agent particles was 40 nm.
  • a negative electrode active material particulate amorphous carbon (non-graphitizable carbon) was used. Moreover, PVdF was used as the binder.
  • the negative electrode mixture was prepared by mixing and kneading NMP as a solvent, a binder, and an active material. The binder was blended so as to be 7% by mass, and the active material was blended so as to be 93% by mass.
  • the prepared negative electrode mixture was applied to both surfaces of a copper foil (thickness: 10 ⁇ m) so that the coating amount (weight per unit area) after drying was 4.0 mg / cm 2 . After drying, roll pressing was performed and vacuum drying was performed to remove moisture and the like.
  • the thickness of the active material layer (for one layer) was 35 ⁇ m.
  • the density of the active material layer was 1.2 g / cm 3 .
  • a polyethylene microporous film having a thickness of 22 ⁇ m was used as a separator separator.
  • the air resistance of the polyethylene microporous membrane was 100 seconds / 100 cc.
  • electrolytic solution one prepared by the following method was used.
  • a non-aqueous solvent propylene carbonate, dimethyl carbonate, and ethyl methyl carbonate were mixed in a volume of 1 part by volume, and LiPF 6 was dissolved in this non-aqueous solvent so that the salt concentration was 1 mol / L.
  • An electrolyte solution was prepared.
  • the positive electrode was taken out from the once manufactured battery.
  • the taken out positive electrode was immersed in NMP having a mass of 50 times or more, and pretreated by ultrasonic dispersion for 15 minutes. Further, the metal foil was removed from the positive electrode, and an ultrasonic dispersion treatment was performed for 15 minutes in a state where the positive electrode active material layer was immersed in NMP.
  • a dispersion containing a measurement sample (active material and conductive aid) was prepared.
  • a laser diffraction particle size distribution measurement device (“SALD2300” manufactured by Shimadzu Corporation) was used as the measurement device, and dedicated application software DMS ver2 was used as the measurement control software.
  • SALD2300 a laser diffraction particle size distribution measurement device
  • dedicated application software DMS ver2 was used as the measurement control software.
  • a scattering type measurement mode is adopted, and the wet cell in which the dispersion liquid circulates is placed in an ultrasonic environment for 2 minutes, and then irradiated with laser light, and the scattered light distribution from the measurement sample. Got. Then, the scattered light distribution was approximated by a lognormal distribution, and measurement was performed in a range in which the minimum was set to 0.021 ⁇ m and the maximum was set to 2000 ⁇ m in the particle size frequency distribution (horizontal axis, ⁇ ).
  • -Particle diameter D1 of the first peak, particle diameter D2 of the second peak There were two peaks in the particle size frequency distribution.
  • the particle diameter at the maximum point of the peak with the smaller particle diameter was defined as the particle diameter D1 of the first peak.
  • the particle diameter at the maximum point of the peak having the larger particle diameter was defined as the particle diameter D2 of the second peak.
  • the particle diameter at the minimum point was defined as Dx.
  • the volume ratio of particles having a particle size of Dx or less was calculated by the above-described dedicated application software.
  • Test Examples 2 to 7 A lithium ion secondary battery was produced in the same manner as in Test Example 1 except that the battery was changed to the configuration shown in Table 1 by changing the press pressure shown in Table 1 when producing the positive electrode.
  • FIG. 8 shows the particle size frequency distribution on the volume basis of the particles contained in the positive electrode active material layer for the batteries manufactured in Test Examples 4 to 7.
  • W1 calculated in each test example
  • the ratio of test example 7 to W1 (minus 10 ° C. SOC 15% output ratio) was calculated.
  • the battery after the above operation was discharged at 25 ° C. with a constant current of 5 A and a final voltage of 2.4 V.
  • the battery was charged with a constant current of 5 A at 25 ° C. to a voltage corresponding to 85% of the initial capacity, and further charged for 2 hours at that voltage. For temperature adjustment, it was stored for 4 hours in a minus 10 ° C. environment. 200 A constant current discharge was performed at minus 10 ° C.
  • W2 calculated in each test example, the ratio of test example 7 to W2 (minus 10 ° C SOC 85% input ratio) was calculated.
  • Table 1 shows the evaluation results of the output performance at low temperatures. As can be seen from Table 1, in the batteries of Test Examples 2 to 6, the output performance at a low temperature was sufficiently improved.
  • 1 Power storage element (non-aqueous electrolyte secondary battery), 2: Electrode body, 26: Uncoated laminated part, 3: Case, 31: Case body, 32: Cover plate, 4: Separator, 5: current collector, 50: clip member, 6: Insulation cover 7: External terminal, 71: Surface, 11: positive electrode, 111: positive electrode metal foil (current collector foil), 112: positive electrode active material layer, 12: negative electrode, 121: negative electrode metal foil (current collector foil), 122: negative electrode active material layer, 91: Bus bar member, 100: Power storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

低温での出力性能が向上された蓄電素子を提供する。本実施形態では、活物質層を有する電極を備え、活物質層は、少なくとも活物質粒子を含み、活物質層に含まれる粒子の体積基準による粒径頻度分布は、第1のピークと、該第1のピークよりも粒子径が大きい方に現れる第2のピークとを有し、粒径頻度分布にて、第1のピークと第2のピークとの間で頻度が極小となる粒子径をDxとしたときに、粒子径がDx以下の粒子の体積割合は、活物質層に含まれる全粒子の体積に対して、49%以上62%以下である、蓄電素子を提供する。

Description

蓄電素子及び蓄電素子の製造方法
本発明は、リチウムイオン二次電池などの蓄電素子、及びその製造方法に関する。
従来、集電体と、活物質の粒子を含む活物質層と、を有する電極を備えたリチウムイオン二次電池が知られている(例えば、特許文献1)。
特許文献1に記載の電池では、活物質層は、単斜晶系β型チタン複合酸化物の粒子と、スピネル構造のチタン酸リチウムの粒子を含む。特許文献1に記載の電池では、活物質層に含まれる粒子の粒径の頻度分布をレーザー回折散乱方式により測定したとき、0.3μm以上3μm以下の範囲に第1のピークP1が表れ、5μm以上20μm以下の範囲に第2のピークP2が表れ、第1のピークP1の頻度FP1の第2のピークP2の頻度FP2に対する比FP1/FP2は、0.4以上2.3以下である。
特許文献1に記載の電池では、低温での出力性能が十分でない場合があり、低温での出力性能が向上された蓄電素子が要望されている。
特開2013-105703号公報
本実施形態は、低温での出力性能が向上された蓄電素子を提供することを課題とする。また、該蓄電素子の製造方法を提供することを課題とする。
本実施形態の蓄電素子は、活物質層を有する電極を備え、活物質層は、少なくとも活物質粒子を含み、活物質層に含まれる粒子の体積基準による粒径頻度分布は、第1のピークと、該第1のピークよりも粒子径が大きい方に現れる第2のピークとを有し、粒径頻度分布にて、第1のピークと第2のピークとの間で頻度が極小となる粒子径をDxとしたときに、粒子径がDx以下の粒子の体積割合は、活物質層に含まれる全粒子の体積に対して、49%以上62%以下である。斯かる構成により、低温での出力性能が向上された蓄電素子を提供できる。
上記の蓄電素子では、活物質層は、活物質の一次粒子が凝集した二次粒子を含み、活物質の二次粒子の内部には、該二次粒子を構成する一次粒子の粒子径以上の空孔が形成されていてもよい。斯かる構成により、二次粒子に内表面が形成される分、二次粒子の比表面積が大きくなり、出力時の活物質表面での反応が効率良く進む。
上記の蓄電素子では、粒子径が上記Dx以下の粒子の体積割合は、活物質層に含まれる全粒子の体積に対して、52%以上60%以下であってもよい。斯かる構成により、低温での出力性能が向上される。
本実施形態の蓄電素子の製造方法は、少なくとも活物質粒子を含む活物質層を有する電極を作製することを備え、電極を作製することは、活物質の一次粒子が凝集した二次粒子を含む活物質層をプレスすることを有し、活物質層をプレスすることでは、プレス後の活物質層に含まれる粒子の体積基準による粒径頻度分布が、第1のピークと、該第1のピークよりも粒子径が大きい方に現れる第2のピークとを有するように、二次粒子の一部を解砕させ、且つ、粒径頻度分布にて、第1のピークと第2のピークとの間で頻度が極小となる粒子径をDxとしたときに、粒子径がDx以下の粒子の体積割合が、活物質層に含まれる全粒子の体積に対して、49%以上62%以下となるように、二次粒子の一部を解砕させる。斯かる構成の製造方法により、低温での出力性能が向上された蓄電素子を提供できる。
本実施形態によれば、低温での出力性能が向上された蓄電素子、及び、該蓄電素子の製造方法を提供できる。
図1は、本実施形態に係る蓄電素子の斜視図である。 図2は、図1のII-II線位置の断面図である。 図3は、図1のIII-III線位置の断面図である。 図4は、同実施形態に係る蓄電素子の電極体の構成を説明するための図である。 図5は、重ね合わされた正極、負極、及びセパレータの断面図(図4のV-V断面)である。 図6は、蓄電素子の製造方法の工程を表したフローチャート図である。 図7は、同実施形態に係る蓄電素子を含む蓄電装置の斜視図である。 図8は、活物質層に含まれる粒子の体積基準による粒径頻度分布図である。 図9は、同実施形態における正極活物質粒子の模式図である。 図10は、同実施形態における正極活物質粒子の中空率の定量における画像処理図である。
以下、本発明に係る蓄電素子の一実施形態について、図1~図5を参照しつつ説明する。蓄電素子には、一次電池、二次電池、キャパシタ等がある。本実施形態では、蓄電素子の一例として、充放電可能な二次電池について説明する。尚、本実施形態の各構成部材(各構成要素)の名称は、本実施形態におけるものであり、背景技術における各構成部材(各構成要素)の名称と異なる場合がある。
本実施形態の蓄電素子1は、非水電解質二次電池である。より詳しくは、蓄電素子1は、リチウムイオンの移動に伴って生じる電子移動を利用したリチウムイオン二次電池である。この種の蓄電素子1は、電気エネルギーを供給する。蓄電素子1は、単一又は複数で使用される。具体的に、蓄電素子1は、要求される出力及び要求される電圧が小さいときには、単一で使用される。一方、蓄電素子1は、要求される出力及び要求される電圧の少なくとも一方が大きいときには、他の蓄電素子1と組み合わされて蓄電装置100に用いられる。前記蓄電装置100では、該蓄電装置100に用いられる蓄電素子1が電気エネルギーを供給する。
蓄電素子1は、図1~図5に示すように、正極11と負極12とを含む電極体2と、電極体2を収容するケース3と、ケース3の外側に配置される外部端子7であって電極体2と導通する外部端子7と、を備える。また、蓄電素子1は、電極体2、ケース3、及び外部端子7の他に、電極体2と外部端子7とを導通させる集電体5等を有する。
電極体2は、正極11と負極12とがセパレータ4によって互いに絶縁された状態で積層された積層体22が巻回されることによって形成される。
正極11は、金属箔111(集電箔)と、金属箔111の表面に重ねられ且つ活物質を含む活物質層112と、を有する。本実施形態では、活物質層112は、金属箔111の両面にそれぞれ重なる。なお、正極11の厚みは、通常、40μm以上150μm以下である。
金属箔111は帯状である。本実施形態の正極11の金属箔111は、例えば、アルミニウム箔である。正極11は、帯形状の短手方向である幅方向の一方の端縁部に、正極活物質層112の非被覆部(正極活物質層が形成されていない部位)115を有する。
正極活物質層112は、粒子状の活物質(活物質粒子)と、粒子状の導電助剤と、バインダとを含む。正極活物質層112(1層分)の厚みは、通常、12μm以上70μm以下である。正極活物質層112(1層分)の目付量は、通常、6mg/cm2 以上17mg/cm2 以下である。正極活物質層112の密度は、通常、1.5g/cm3 以上3.0g/cm3以下である。目付量及び密度は、金属箔111の一方の面を覆うように配置された1層分におけるものである。
正極活物質層112に含まれる粒子の体積基準による粒径頻度分布は、第1のピークと、該第1のピークよりも粒子径が大きい方に現れる第2のピークとを有する。粒径頻度分布にて、第1のピークと第2のピークとの間で頻度が極小となる粒子径をDxとしたときに、粒子径がDx以下の粒子の体積割合は、活物質層に含まれる全粒子の体積に対して、49%以上62%以下である。斯かる体積割合は、52%以上60%以下であってもよい。なお、粒径頻度分布が3以上のピークを有する場合、第1のピーク及び第2のピークは、最も大きいピークと、最も大きいピークの隣りの1つのピークと、である。最も大きいピークの隣りのピークが小粒子径側と大粒子径側とにある場合、より大きい方のピークを第2のピークとして採用する。
正極活物質層112は図9に示すように、活物質の一次粒子1121と、複数の一次粒子1121が凝集した二次粒子1122とを含む。詳しくは、正極活物質層112は、単独で存在する一次粒子1121と、複数の一次粒子同士が凝結した二次粒子1122とを含む。二次粒子1122では、一次粒子同士が互いに固着している。二次粒子1122の少なくとも一部には、空孔1123が形成されている。なお、空孔1123は、イオンビームを用いて、正極活物資層を厚み方向に裁断した断面をSEM観察したSEM画像を二値化処理することで確認することができる。図10は、空孔率の異なる3種類の正極活物質のSEM画像を二値化処理した画像である。ここで、白色領域の外周で囲まれる領域を二次粒子と定義し、当該二次粒子の内側に存在する黒色領域を空孔であると定義する。また、当該空孔の面積を二次粒子の面積(空孔の面積も含む)で除した値の百分率を、空孔率と定義する。図11に示された各粒子の空孔率は、(a)0%、(b)9.9%、(c)11.4%と算出される。なお、正極活物質の空孔率は好ましくは5%以上であり、より好ましくは10%以上である。また、空孔の大きさは、前述の画像における各黒色領域の最長の大きさを10点測定し、平均した値とする。同一の二次粒子内で10点の測定が可能でない場合は、複数の二次粒子に亘って測定してもよい。なお、正極活物質の二次粒子の内部には、二次粒子を構成する一次粒子の粒子径以上の空孔が形成されていることが好ましい。
上記の体積割合は、正極11を作製するときのプレス圧を上げることにより、大きくすることができる。即ち、プレス圧を上げることにより、一次粒子が凝集した二次粒子をより多く解砕することができるため、正極活物質層112における、より粒径が小さい粒子の割合を大きくすることができる。また、あらかじめ準備した二次粒子と一次粒子とを混合することでも、上記の体積割合を調整することができる。
粒径頻度分布では、活物質及び導電助剤の粒径に対する頻度が表される。一方、バインダは、粒径頻度分布の結果に反映されない。粒径頻度分布は、レーザ回折・散乱式の粒度分布測定装置を用いた測定によって求められる。粒径頻度分布は、粒子の体積基準によって求められる。測定条件は、実施例において詳しく説明されている。なお、製造された電池の活物質層に含まれる粒子の粒径頻度分布を測定する場合、例えば、1.0Cレートで4.2Vに達するまで電池を充電した後、さらに4.2Vの定電圧で電池を3時間放電し、その後、1.0Cレートで2.0Vまで定電流放電する。続いて、2.0Vで5時間の定電圧放電を行う。そして、電池を乾燥雰囲気下で解体する。活物質層を取り出してジメチルカーボネートで洗浄して砕いた後、2時間以上真空乾燥する。その後、粒度分布測定装置を用いて測定する。
上述したように、正極活物質層112に含まれる粒子の体積基準の粒径頻度分布は、第1のピークと、該第1のピークよりも粒子径が大きい方に現れる第2のピークとを有する。活物質の一次粒子の平均径Dpと、第1のピークの粒子径D1とは、0.5≦D1/Dp≦2の関係式を満たしてもよい。D1/Dpの値は、正極活物質層112を作製するための、活物質粒子の粒子径を変えることによって調整することができる。例えば、活物質の二次粒子を構成する一次粒子の粒子径に対する、二次粒子の粒子径がより大きい二次粒子を採用し、斯かる二次粒子を配合した合剤(後述)から正極活物質層112を作製することによって、D1/Dpの値を大きくすることができる。
正極活物質層112における活物質粒子の一次粒子の平均径Dpは、通常、0.1μm以上2.0μm以下である。一次粒子の平均径Dpは、正極活物質層112にて単独で存在する(互いに独立して存在する)一次粒子の平均径である。一次粒子の平均径Dpは、正極活物質層112の厚み方向断面の走査型電子顕微鏡観察像において、少なくとも100個の一次粒子径の直径を測定し、測定値を平均することによって求められる。一次粒子が真球状でない場合、最も長い径を直径として測定する。
上記の粒径頻度分布において、第1のピークの粒子径D1は、通常、0.1μm以上1.0μm以下である。第2のピークの粒子径D2は、通常、2μm以上5μm以下である。第1のピークと第2のピークとの間で頻度が極小となる粒子径Dxは、通常、1.0μm以上3.0μm以下である。第1のピークの粒子径D1に対する、第2のピークの粒子径D2の比は、通常、0.02以上0.5以下である。
正極活物質層112の多孔度は、通常、25%以上45%以下である。多孔度は、水銀圧入法による測定結果を基にして算出される。水銀圧入法は、水銀圧入ポロシメーターを用いて実施できる。具体的に、水銀圧入法は、日本工業規格(JIS R1655:2003)に準じて実施する。多孔度P(%)は、水銀圧入法によって測定された水銀圧入量A(cm)と、正極活物質層のみかけ体積V(cm)とから、P=(A/V)×100により算出される。ここで、みかけ体積V(cm)とは、活物質層を平面視したときの面積(cm)に活物質層の厚み(cm)を乗じたものである。なお、製造された電池における正極活物質層112の多孔度を測定する場合、例えば、電池を放電した後、該電池を乾燥雰囲気下で解体する。次に、正極活物質層112を取り出してジメチルカーボネートで洗浄した後、2時間以上真空乾燥する。その後、水銀圧入ポロシメーターを用いた測定結果を基にして、正極活物質層112の多孔度を算出することができる。
正極11の活物質は、リチウムイオンを吸蔵放出可能な化合物である。正極11の活物質は、例えば、リチウム金属酸化物である。具体的に、正極の活物質は、例えば、LiMeO(Meは、1又は2以上の遷移金属を表す)によって表される複合酸化物(LiCo、LiNi、LiMn、LiNiCoMn等)、又は、LiMe(XO(Meは、1又は2以上の遷移金属を表し、Xは例えばP、Si、B、Vを表す)によって表されるポリアニオン化合物(LiFePO、LiMnPO、LiMnSiO、LiCoPOF等)である。
正極11の活物質は、Li1-xNiMnCo2-δの化学組成で表されるリチウム金属複合酸化物であってもよい。ただし、0<x<1であり、a+b+c+d=1であり、0≦a≦1であり、0≦b≦1であり、0≦c≦1であり、0≦d≦1であり、0≦δ≦0.5であり、Mは、B、Mg、Al、Ti、V、Zn、Y、Zr、Mo、Wからなる群より選択された少なくとも1種である。
本実施形態では、正極11の活物質は、LiNiMnCoの化学組成で表されるリチウム金属複合酸化物(ただし、0<p≦1.3であり、q+r+s=1であり、0≦q≦1であり、0≦r≦1であり、0≦s≦1であり、1.7≦t≦2.3である)である。なお、0<q<1であり、0<r<1であり、0<s<1であってもよい。
上記のごときLiNiMnCoの化学組成で表されるリチウム金属複合酸化物は、例えば、LiNi1/3Co1/3Mn1/3、LiNi1/6Co1/6Mn2/3、LiCoOなどである。
正極活物質層112に用いられるバインダは、例えば、ポリフッ化ビニリデン(PVdF)、エチレンとビニルアルコールとの共重合体、ポリメタクリル酸メチル、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、スチレンブタジエンゴム(SBR)である。本実施形態のバインダは、ポリフッ化ビニリデンである。
正極活物質層112の導電助剤は、炭素を98質量%以上含む炭素質材料である。炭素質材料は、例えば、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等である。本実施形態の正極活物質層112は、導電助剤としてアセチレンブラックを有する。
負極12は、金属箔121(集電箔)と、金属箔121の上に形成された負極活物質層122と、を有する。本実施形態では、負極活物質層122は、金属箔121の両面にそれぞれ重ねられる。金属箔121は帯状である。本実施形態の負極の金属箔121は、例えば、銅箔である。負極12は、帯形状の短手方向である幅方向の一方の端縁部に、負極活物質層122の非被覆部(負極活物質層が形成されていない部位)125を有する。負極12の厚みは、通常、40μm以上150μm以下である。
負極活物質層122は、粒子状の活物質(活物質粒子)と、バインダと、を含む。負極活物質層122は、セパレータ4を介して正極11と向き合うように配置される。負極活物質層122の幅は、正極活物質層112の幅よりも大きい。
負極12の活物質は、負極12において充電反応及び放電反応の電極反応に寄与し得るものである。例えば、負極12の活物質は、グラファイト、非晶質炭素(難黒鉛化炭素、易黒鉛化炭素)などの炭素材料、又は、ケイ素(Si)及び錫(Sn)などリチウムイオンと合金化反応を生じる材料である。本実施形態の負極の活物質は、非晶質炭素である。より具体的には、負極の活物質は、難黒鉛化炭素である。
負極活物質層122(1層分)の厚みは、通常、10μm以上50μm以下である。負極活物質層122の目付量(1層分)は、通常、0.3g/100cm2以上1.0g/100cm2以下である。負極活物質層122の密度(1層分)は、通常、0.9g/cm3以上1.2g/cm3以下である。
負極活物質層に用いられるバインダは、正極活物質層に用いられるバインダと同様のものである。本実施形態のバインダは、スチレンブタジエンゴム(SBR)である。
負極活物質層122では、バインダの割合は、活物質粒子とバインダとの合計質量に対して、5質量%以上10質量%以下であってもよい。
負極活物質層122は、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等の導電助剤をさらに有してもよい。本実施形態の負極活物質層122は、導電助剤を有していない。
本実施形態の電極体2では、以上のように構成される正極11と負極12とがセパレータ4によって絶縁された状態で巻回される。即ち、本実施形態の電極体2では、正極11、負極12、及びセパレータ4の積層体22が巻回される。セパレータ4は、絶縁性を有する部材である。セパレータ4は、正極11と負極12との間に配置される。これにより、電極体2(詳しくは、積層体22)において、正極11と負極12とが互いに絶縁される。また、セパレータ4は、ケース3内において、電解液を保持する。これにより、蓄電素子1の充放電時において、リチウムイオンが、セパレータ4を挟んで交互に積層される正極11と負極12との間を移動する。
セパレータ4は、帯状である。セパレータ4は、多孔質なセパレータ基材を有する。セパレータ4は、正極11及び負極12間の短絡を防ぐために正極11及び負極12の間に配置されている。本実施形態のセパレータ4は、セパレータ基材41のみを有する。
セパレータ基材41は、多孔質に構成される。セパレータ基材41は、例えば、織物、不織布、又は多孔膜である。セパレータ基材の材質としては、高分子化合物、ガラス、セラミックなどが挙げられる。高分子化合物としては、例えば、ポリアクリロニトリル(PAN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)などのポリエステル、ポリプロピレン(PP)、ポリエチレン(PE)などのポリオレフィン(PO)、及び、セルロースからなる群より選択された少なくとも1種が挙げられる。
セパレータ4の幅(帯形状の短手方向の寸法)は、負極活物質層122の幅より僅かに大きい。セパレータ4は、正極活物質層112及び負極活物質層122が重なるように幅方向に位置ずれした状態で重ね合わされた正極11と負極12との間に配置される。このとき、図4に示すように、正極11の非被覆部115と負極12の非被覆部125とは重なっていない。即ち、正極11の非被覆部115が、正極11と負極12との重なる領域から幅方向に突出し、且つ、負極12の非被覆部125が、正極11と負極12との重なる領域から幅方向(正極11の非被覆部115の突出方向と反対の方向)に突出する。積層された状態の正極11、負極12、及びセパレータ4、即ち、積層体22が巻回されることによって、電極体2が形成される。正極11の非被覆部115又は負極12の非被覆部125のみが積層された部位によって、電極体2における非被覆積層部26が構成される。
非被覆積層部26は、電極体2における集電体5と導通される部位である。非被覆積層部26は、巻回された正極11、負極12、及びセパレータ4の巻回中心方向視において、中空部27(図4参照)を挟んで二つの部位(二分された非被覆積層部)261に区分けされる。
以上のように構成される非被覆積層部26は、電極体2の各極に設けられる。即ち、正極11の非被覆部115のみが積層された非被覆積層部26が電極体2における正極11の非被覆積層部を構成し、負極12の非被覆部125のみが積層された非被覆積層部26が電極体2における負極12の非被覆積層部を構成する。
ケース3は、開口を有するケース本体31と、ケース本体31の開口を塞ぐ(閉じる)蓋板32と、を有する。ケース3は、電極体2及び集電体5等と共に、電解液を内部空間に収容する。ケース3は、電解液に耐性を有する金属によって形成される。ケース3は、例えば、アルミニウム、又は、アルミニウム合金等のアルミニウム系金属材料によって形成される。ケース3は、ステンレス鋼及びニッケル等の金属材料、又は、アルミニウムにナイロン等の樹脂を接着した複合材料等によって形成されてもよい。
電解液は、非水溶液系電解液である。電解液は、有機溶媒に電解質塩を溶解させることによって得られる。有機溶媒は、例えば、プロピレンカーボネート及びエチレンカーボネートなどの環状炭酸エステル類、ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネートなどの鎖状カーボネート類である。電解質塩は、LiClO、LiBF、及びLiPF等である。本実施形態の電解液は、プロピレンカーボネート、ジメチルカーボネート、及びエチルメチルカーボネートを所定の割合で混合した混合溶媒に、0.5~1.5mol/LのLiPF6を溶解させたものである。
ケース3は、ケース本体31の開口周縁部と、長方形状の蓋板32の周縁部とを重ね合わせた状態で接合することによって形成される。また、ケース3は、ケース本体31と蓋板32とによって画定される内部空間を有する。本実施形態では、ケース本体31の開口周縁部と蓋板32の周縁部とは、溶接によって接合される。
以下では、図1に示すように、蓋板32の長辺方向をX軸方向とし、蓋板32の短辺方向をY軸方向とし、蓋板32の法線方向をZ軸方向とする。ケース本体31は、開口方向(Z軸方向)における一方の端部が塞がれた角筒形状(即ち、有底角筒形状)を有する。蓋板32は、ケース本体31の開口を塞ぐ板状の部材である。
蓋板32は、ケース3内のガスを外部に排出可能なガス排出弁321を有する。ガス排出弁321は、ケース3の内部圧力が所定の圧力まで上昇したときに、該ケース3内から外部にガスを排出する。ガス排出弁321は、X軸方向における蓋板32の中央部に設けられる。
ケース3には、電解液を注入するための注液孔が設けられる。注液孔は、ケース3の内部と外部とを連通する。注液孔は、蓋板32に設けられる。注液孔は、注液栓326によって密閉される(塞がれる)。注液栓326は、溶接によってケース3(本実施形態の例では蓋板32)に固定される。
外部端子7は、他の蓄電素子1の外部端子7又は外部機器等と電気的に接続される部位である。外部端子7は、導電性を有する部材によって形成される。例えば、外部端子7は、アルミニウム又はアルミニウム合金等のアルミニウム系金属材料、銅又は銅合金等の銅系金属材料等の溶接性の高い金属材料によって形成される。
外部端子7は、バスバ等が溶接可能な面71を有する。面71は、平面である。外部端子7は、蓋板32に沿って拡がる板状である。詳しくは、外部端子7は、Z軸方向視において矩形状の板状である。
集電体5は、ケース3内に配置され、電極体2と通電可能に直接又は間接に接続される。本実施形態の集電体5は、クリップ部材50を介して電極体2と通電可能に接続される。即ち、蓄電素子1は、電極体2と集電体5とを通電可能に接続するクリップ部材50を備える。
集電体5は、導電性を有する部材によって形成される。図2に示すように、集電体5は、ケース3の内面に沿って配置される。集電体5は、蓄電素子1の正極11と負極12とにそれぞれ配置される。本実施形態の蓄電素子1では、集電体5は、ケース3内において、電極体2の正極11の非被覆積層部26と、負極12の非被覆積層部26とにそれぞれ配置される。
正極11の集電体5と負極12の集電体5とは、異なる材料によって形成される。具体的に、正極11の集電体5は、例えば、アルミニウム又はアルミニウム合金によって形成され、負極12の集電体5は、例えば、銅又は銅合金によって形成される。
本実施形態の蓄電素子1では、電極体2とケース3とを絶縁する袋状の絶縁カバー6に収容された状態の電極体2(詳しくは、電極体2及び集電体5)がケース3内に収容される。
次に、上記実施形態の蓄電素子の製造方法について、図6を参照しつつ説明する。
上記の製造方法では、少なくとも活物質粒子を含む活物質層を有する電極を作製する(ステップ1 S1)。さらに、上記の製造方法では、通常、作製した電極と、電解液と、ケースとを用いて蓄電素子を組み立てる(ステップ2)。
ステップ1では、正極及び負極の少なくともいずれか一方の活物質層を作製するために、活物質の一次粒子が凝集した二次粒子を含む活物質層をプレスすることによって二次粒子の一部を解砕させる。プレス後の前記活物質層に含まれる粒子の体積基準による粒径頻度分布は、第1のピークと、該第1のピークよりも粒子径が大きい方に現れる第2のピークとを有し、粒径頻度分布にて、第1のピークと第2のピークとの間で頻度が極小となる粒子径をDxとしたときに、粒子径がDx以下の粒子の体積割合は、活物質層に含まれる全粒子の体積に対して、49%以上62%以下である。
例えば、ステップ1では、活物質粒子と粒子状の導電助剤とバインダと有機溶媒とを混合した正極用の合剤を調製する。正極用の金属箔111の両方の面に、正極用の合剤をそれぞれ塗布することによって正極活物質層112を形成する。正極活物質層112を形成するための塗布方法としては、一般的な方法が採用される。さらに、正極活物質層112をロールプレス等によってプレスする。プレス圧を変えることによって、上記の粒子径がDx以下の粒子の体積割合を調整できる。具体的には、プレス圧を大きくすることによって、二次粒子をより多く解砕させることができ、よって、粒子径がDx以下の粒子の体積割合を多くすることができる。なお、負極活物質層122も同様にして形成することができる。
ステップ2では、正極11と負極12との間にセパレータ4を挟み込んだ積層体22を巻回することにより、電極体2を形成する。電極体2の形成では、正極活物質層112と負極活物質層122とがセパレータ4を介して互いに向き合うように、正極11とセパレータ4と負極12とを重ね合わせ、積層体22を作る。次に、積層体22を巻回して、電極体2を形成する。
ステップ2では、ケース3のケース本体31に電極体2を入れ、ケース本体31の開口を蓋板32で塞ぎ、電解液をケース3内に注入する。ケース本体31の開口を蓋板32で塞ぐときには、ケース本体31の内部に電極体2を入れ、正極11と一方の外部端子7とを導通させ、且つ、負極12と他方の外部端子7とを導通させた状態で、ケース本体31の開口を蓋板32で塞ぐ。電解液をケース3内へ注入するときには、ケース3の蓋板32の注入孔から電解液をケース3内に注入する。
上記のように構成された本実施形態の蓄電素子1は、正極活物質層112を有する正極11を電極として備える。正極活物質層112は、少なくとも活物質粒子と粒子状の導電助剤とを含む。正極活物質層112に含まれる粒子の体積基準による粒径頻度分布は、第1のピークと、該第1のピークよりも粒子径が大きい方に現れる第2のピークとを有する。粒径頻度分布にて、第1のピークと第2のピークとの間で頻度が極小となる粒子径をDxとしたときに、粒子径がDx以下の粒子の体積割合は、活物質層に含まれる全粒子の体積に対して、49%以上62%以下である。斯かる構成により、低温での出力性能が向上された蓄電素子を提供できる。
上記の蓄電素子1では、正極活物質層112は、活物質の一次粒子が凝集した二次粒子を含み、活物質の二次粒子の内部には、該二次粒子を構成する一次粒子の粒子径以上の空孔が形成されていてもよい。斯かる構成により、二次粒子に内表面が形成される分、二次粒子の比表面積が大きくなり、出力時の活物質表面での反応が効率良く進む。また、二次粒子を含む正極活物質層112をプレスして正極11を作製するときに、内部に空孔が形成された二次粒子がプレスされて、二次粒子が比較的容易に解砕され、二次粒子を比較的簡便に一次粒子にまで解砕させることができる。
上記の蓄電素子1では、粒子径が上記Dx以下の粒子の体積割合は、正極活物質層112に含まれる全粒子の体積に対して、52%以上60%以下であってもよい。斯かる構成により、低温での出力性能がより向上される。
尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。
上記の実施形態では、活物質を含む活物質層が金属箔に直接接した正極について詳しく説明したが、本発明では、正極が、バインダと導電助剤とを含む導電層であって活物質層と金属箔との間に配置された導電層を有してもよい。
上記実施形態では、活物質層が各電極の金属箔の両面側にそれぞれ配置された電極について説明したが、本発明の蓄電素子では、正極11又は負極12は、活物質層を金属箔の片面側にのみ備えてもよい。
上記実施形態では、積層体22が巻回されてなる電極体2を備えた蓄電素子1について詳しく説明したが、本発明の蓄電素子は、巻回されない積層体22を備えてもよい。詳しくは、それぞれ矩形状に形成された正極、セパレータ、負極、及びセパレータが、この順序で複数回積み重ねられてなる電極体を蓄電素子が備えてもよい。
上記実施形態では、蓄電素子1が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子1の種類や大きさ(容量)は任意である。また、上記実施形態では、蓄電素子1の一例として、リチウムイオン二次電池について説明したが、これに限定されるものではない。例えば、本発明は、種々の二次電池、その他、一次電池や、電気二重層キャパシタ等のキャパシタの蓄電素子にも適用可能である。
蓄電素子1(例えば電池)は、図7に示すような蓄電装置100(蓄電素子が電池の場合は電池モジュール)に用いられてもよい。蓄電装置100は、少なくとも二つの蓄電素子1と、二つの(異なる)蓄電素子1同士を電気的に接続するバスバ部材91と、を有する。この場合、本発明の技術が少なくとも一つの蓄電素子に適用されていればよい。
以下に示すようにして、非水電解質二次電池(リチウムイオン二次電池)を製造した。
(試験例1)
(1)正極の作製
溶剤としてN-メチル-2-ピロリドン(NMP)と、導電助剤(アセチレンブラック)と、バインダ(PVdF)とを、混合し、混練することで、導電層用の組成物を調製した。導電助剤、バインダの配合量は、それぞれ50質量%、50質量%とした。調製した導電層用の組成物を、アルミニウム箔(15μm厚み)の両面に、乾燥後の塗布量(目付量)が0.1mg/cm2となるようにそれぞれ塗布し、乾燥させた。
次に、溶剤としてN-メチル-2-ピロリドン(NMP)と、導電助剤(アセチレンブラック)と、バインダ(PVdF)と、活物質(LiNi1/3Co1/3Mn1/3)の粒子とを、混合し、混練することで、正極用の合剤を調製した。導電助剤、バインダ、活物質の配合量は、それぞれ4.5質量%、4.5質量%、91質量%とした。調製した正極用の合剤を、導電層に、乾燥後の塗布量(目付量)が10mg/cmとなるようにそれぞれ塗布した。乾燥後、350kgf・mm-1の線圧でロールプレスを行った。その後、真空乾燥して、水分等を除去した。プレス後の活物質層(1層分)の厚みは、30μmであった。活物質層の密度は、2.6g/cmであった。活物質層の多孔度は、38%であった。プレス後の導電層の厚みは、1μmであった。導電層の密度は、1.0g/cmであった。
・活物質粒子について
合剤に配合する活物質として、一次粒子が凝結した二次粒子(凝結粒子)を用いた。二次粒子を構成する一次粒子の平均粒子径は、0.8μmであった。斯かる平均粒子径は、上述した平均径Dpである。斯かる平均粒子径は、走査型電子顕微鏡観察像において、100個の一次粒子径の直径を測定し、測定値を平均することによって求めた。一次粒子が真球状でない場合、最も長い径を直径として測定した。なお、後述するレーザー回折式粒度分布測定装置によって測定した活物質の粒子の平均粒子径D50(体積基準)は、5μmであった。導電助剤の粒子の平均粒子径D50(体積基準)は、40nmであった。
(2)負極の作製
活物質としては、粒子状の非晶質炭素(難黒鉛化炭素)を用いた。また、バインダとしては、PVdFを用いた。負極用の合剤は、溶剤としてNMPと、バインダと、活物質とを混合、混練することで調製した。バインダは、7質量%となるように配合し、活物質は、93質量%となるように配合した。調製した負極用の合剤を、乾燥後の塗布量(目付量)が4.0mg/cmとなるように、銅箔(10μm厚み)の両面にそれぞれ塗布した。乾燥後、ロールプレスを行い、真空乾燥して、水分等を除去した。活物質層(1層分)の厚みは、35μmであった。活物質層の密度は、1.2g/cmであった。
(3)セパレータ
セパレータとして厚みが22μmのポリエチレン製微多孔膜を用いた。ポリエチレン製微多孔膜の透気抵抗度は、100秒/100ccであった。
(4)電解液の調製
電解液としては、以下の方法で調製したものを用いた。非水溶媒として、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートを、いずれも1容量部ずつ混合した溶媒を用い、この非水溶媒に、塩濃度が1mol/LとなるようにLiPFを溶解させ、電解液を調製した。
(5)ケース内への電極体の配置
上記の正極、上記の負極、上記の電解液、セパレータ、及びケースを用いて、一般的な方法によって電池を製造した。
まず、セパレータが上記の正極および負極の間に配されて積層されてなるシート状物を巻回した。次に、巻回されてなる電極体を、ケースとしてのアルミニウム製の角形電槽缶のケース本体内に配置した。続いて、正極及び負極を2つの外部端子それぞれに電気的に接続させた。さらに、ケース本体に蓋板を取り付けた。上記の電解液を、ケースの蓋板に形成された注液口からケース内に注入した。最後に、ケースの注液口を封止することにより、ケースを密閉した。
・正極活物質層に含まれる粒子の粒径頻度分布について
いったん製造した電池から正極を取り出した。取り出した正極を50倍以上の質量のNMPに浸漬し、15分間の超音波分散によって前処理を施した。さらに、正極から金属箔を取り除き、正極活物質層をNMPに浸漬した状態で15分間の超音波分散処理を施した。測定試料(活物質及び導電助剤)を含む分散液を調製した。測定試料の粒径頻度分布の測定では、測定装置としてレーザー回折式粒度分布測定装置(島津製作所社製「SALD2300」)、測定制御ソフトとして専用アプリケーションソフトフェアDMS ver2を用いた。具体的な測定手法としては、散乱式の測定モードを採用し、上記分散液が循環する湿式セルを、2分間超音波環境下に置いた後に、レーザー光を照射し、測定試料から散乱光分布を得た。そして、散乱光分布を対数正規分布により近似し、その粒径頻度分布(横軸、σ)において最小を0.021μm、最大を2000μmに設定した範囲で測定を行った。
・第1のピークの粒子径D1、第2のピークの粒子径D2
粒径頻度分布において、2つのピークが存在した。粒子径が小さい方のピークの極大点における粒子径を第1のピークの粒子径D1とした。粒子径が大きい方のピークの極大点における粒子径を第2のピークの粒子径D2とした。
・粒子径がDx(2つのピーク間の極小点の粒子径)以下の粒子の体積割合
上記粒径頻度分布において、D1とD2との間に極小点が存在した。極小点における粒子径をDxとした。粒子径がDx以下の粒子の体積割合を、上記の専用アプリケーションソフトフェアによって算出した。
(試験例2~7)
正極を作製するときの表1に示すプレス圧に変えることによって、電池を表1に示す構成に変更した点以外は、試験例1と同様にしてリチウムイオン二次電池を製造した。
試験例4~7で製造した各電池について、正極活物質層に含まれる粒子の体積基準による粒径頻度分布を図8に示す。
Figure JPOXMLDOC01-appb-T000001
<低温での出力性能及び入力性能の評価>
1.初期容量
25℃において5A定電流で4.2Vまで充電し、さらに4.2V定電圧で合計3時間充電した。その後、5A定電流で、終止電圧2.4Vの条件で放電することにより、初期放電容量を測定した。
2.電池出力(W1)
25℃において5A定電流で初期容量の15%相当の電気量になる電圧まで充電し、さらに当該電圧で合計2時間充電した。温度調整のため、マイナス10℃環境下で4時間保管した。マイナス10℃において200A定電流放電を、電圧が2.5Vになるまで行った。放電開始後1秒目の電流値A1と、電圧値V1と、から、出力W1(W1=A1×V1)を算出した。各試験例において算出されたW1について、試験例7のW1に対する比率(マイナス10℃SOC15%出力比)を算出した。
3.電池入力(W2)
上記1.の操作を行った後の電池を25℃において、5A定電流で、終止電圧2.4Vの条件で放電した。25℃において5A定電流で初期容量の85%相当の電気量になる電圧まで充電し、さらに当該電圧で合計2時間充電した。温度調整のため、マイナス10℃環境下で4時間保管した。マイナス10℃において200A定電流放電を、電圧が4.3Vになるまで行った。放電開始後1秒目の電流値A2と、電圧値V2と、から、入力W2(W2=A2×V2)を算出した。各試験例において算出されたW2について、試験例7のW2に対する比率(マイナス10℃SOC85%入力比)を算出した。
上記の低温での出力性能の評価結果を表1に示す。表1から認識されるように、試験例2~6の電池では、低温での出力性能が十分に向上されていた。
1:蓄電素子(非水電解質二次電池)、
2:電極体、
26:非被覆積層部、
3:ケース、 31:ケース本体、 32:蓋板、
4:セパレータ、
5:集電体、 50:クリップ部材、
6:絶縁カバー、
7:外部端子、 71:面、
11:正極、
111:正極の金属箔(集電箔)、 112:正極活物質層、
12:負極、
   121:負極の金属箔(集電箔)、 122:負極活物質層、
91:バスバ部材、
100:蓄電装置。

 

Claims (6)

  1. 正極活物質層を有する正極を備え、
    前記正極活物質層は、少なくとも正極活物質粒子を含み、
    前記正極活物質層に含まれる粒子の体積基準による粒径頻度分布は、第1のピークと、該第1のピークよりも粒子径が大きい方に現れる第2のピークとを有し、
    前記粒径頻度分布にて、前記第1のピークと前記第2のピークとの間で頻度が極小となる粒子径をDxとしたときに、粒子径がDx以下の粒子の体積割合は、前記正極活物質層に含まれる全粒子の体積に対して、49%以上62%以下である、蓄電素子。
  2. 前記正極活物質層は、正極活物質の一次粒子が凝集した二次粒子を含む、請求項1に記載の蓄電素子。
  3. 前記正極活物質の二次粒子の内部には、該二次粒子を構成する一次粒子の粒子径以上の空孔が形成されている、請求項1又は2に記載の蓄電素子。
  4. 前記一次粒子の平均径Dpと、前記第1のピークの粒子径D1とは、0.5≦D1/Dp≦2の関係式を満たす、請求項2又は3に記載の蓄電素子。
  5. 前記第2のピークの粒子径D2は、2μm以上5μm以下である、請求項1~4に記載の蓄電素子。
  6. 少なくとも正極活物質粒子を含む正極活物質層を有する正極を作製することを備え、
    前記正極を作製することは、正極活物質の一次粒子が凝集した二次粒子を含む正極活物質層をプレスすることを有し、
    前記正極活物質層をプレスすることでは、前記プレス後の前記正極活物質層に含まれる粒子の体積基準による粒径頻度分布が、第1のピークと、該第1のピークよりも粒子径が大きい方に現れる第2のピークとを有するように、前記二次粒子の一部を解砕させ、且つ、
    前記粒径頻度分布にて、前記第1のピークと前記第2のピークとの間で頻度が極小となる粒子径をDxとしたときに、粒子径がDx以下の粒子の体積割合が、前記正極活物質層に含まれる全粒子の体積に対して、49%以上62%以下となるように、前記二次粒子の一部を解砕させる、蓄電素子の製造方法。

     
PCT/JP2017/032039 2016-09-07 2017-09-06 蓄電素子及び蓄電素子の製造方法 WO2018047843A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17848782.3A EP3509137B1 (en) 2016-09-07 2017-09-06 Electricity storage element and method for producing electricity storage element
JP2018538430A JP6947182B2 (ja) 2016-09-07 2017-09-06 蓄電素子及び蓄電素子の製造方法
CN201780054997.0A CN109844999B (zh) 2016-09-07 2017-09-06 蓄电元件和蓄电元件的制造方法
US16/330,483 US11239458B2 (en) 2016-09-07 2017-09-06 Energy storage device and method for manufacturing energy storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-174499 2016-09-07
JP2016174499 2016-09-07

Publications (1)

Publication Number Publication Date
WO2018047843A1 true WO2018047843A1 (ja) 2018-03-15

Family

ID=61562826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032039 WO2018047843A1 (ja) 2016-09-07 2017-09-06 蓄電素子及び蓄電素子の製造方法

Country Status (5)

Country Link
US (1) US11239458B2 (ja)
EP (1) EP3509137B1 (ja)
JP (1) JP6947182B2 (ja)
CN (1) CN109844999B (ja)
WO (1) WO2018047843A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7562473B2 (ja) 2021-04-28 2024-10-07 株式会社東芝 スラリー組成物、電極、電極の製造方法、二次電池、電池パック及び車両

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7228548B2 (ja) * 2020-09-08 2023-02-24 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池および組電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009141991A1 (ja) * 2008-05-23 2009-11-26 パナソニック株式会社 非水電解質二次電池用電極およびその製造方法ならびに非水電解質二次電池
JP2012243710A (ja) * 2011-05-24 2012-12-10 Sumitomo Electric Ind Ltd 非水電解質電池用正極およびその製造方法と非水電解質電池
JP2013055000A (ja) * 2011-09-06 2013-03-21 Mitsubishi Chemicals Corp リチウム二次電池正極材料用リチウム遷移金属系化合物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2013105703A (ja) 2011-11-16 2013-05-30 Toshiba Corp 電池用電極、非水電解質電池及び電池パック
JP2015222696A (ja) * 2014-05-23 2015-12-10 日立金属株式会社 リチウムイオン二次電池用正極活物質及びその製造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2751458C2 (de) 1977-11-18 1984-08-09 Gewerkschaft Eisenhütte Westfalia, 4670 Lünen Rinnenschußverbindung für Kettenkratzförderer mit abbaustoßseitig hieran befestigten Hobelführungsschüssen
JP4940530B2 (ja) 2003-02-05 2012-05-30 日亜化学工業株式会社 非水電解液二次電池用正極活物質
KR100727332B1 (ko) * 2003-09-26 2007-06-12 미쓰비시 가가꾸 가부시키가이샤 리튬 2차 전지의 포지티브 전극 재료용 리튬 복합 산화물입자, 및 이를 이용한 리튬 2차 전지용 포지티브 전극 및리튬 2차 전지
JP5228292B2 (ja) * 2006-07-06 2013-07-03 東ソー株式会社 リチウム−ニッケル−マンガン−コバルト複合酸化物の製造方法。
EP2065887A1 (en) * 2007-11-30 2009-06-03 Hitachi Global Storage Technologies Netherlands B.V. Method for manufacturing magnetic disk unit
JP5292885B2 (ja) 2008-03-27 2013-09-18 住友化学株式会社 正極活物質粉末
WO2010086910A1 (ja) * 2009-02-02 2010-08-05 パナソニック株式会社 非水電解質二次電池及び非水電解質二次電池の製造方法
JP5522844B2 (ja) 2010-09-02 2014-06-18 日立マクセル株式会社 電気化学素子用電極およびリチウムイオン二次電池
KR101513821B1 (ko) * 2010-10-21 2015-04-20 도요타지도샤가부시키가이샤 전지용 전극 및 그 이용
EP2672560B1 (en) * 2011-01-31 2019-10-02 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same
JP5128018B1 (ja) * 2011-03-11 2013-01-23 三洋電機株式会社 非水電解質二次電池
WO2012137535A1 (ja) * 2011-04-07 2012-10-11 日本碍子株式会社 正極活物質前駆体粒子、リチウム二次電池の正極活物質粒子、及びリチウム二次電池
WO2012137391A1 (ja) * 2011-04-07 2012-10-11 日本碍子株式会社 リチウム二次電池の正極活物質及びリチウム二次電池
JP5772197B2 (ja) * 2011-05-09 2015-09-02 ソニー株式会社 リチウムイオン二次電池用活物質、リチウムイオン二次電池用電極、リチウムイオン二次電池、電子機器、電動工具、電動車両および電力貯蔵システム
JP5877349B2 (ja) 2011-09-28 2016-03-08 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極および非水電解質二次電池
JP5626183B2 (ja) * 2011-11-17 2014-11-19 トヨタ自動車株式会社 非水電解液二次電池用の正極導電材ペースト、及び、非水電解液二次電池
JP5630669B2 (ja) 2012-06-29 2014-11-26 トヨタ自動車株式会社 リチウム二次電池
US20140087265A1 (en) * 2012-09-25 2014-03-27 Ngk Insulators, Ltd. Cathode active material for a lithium ion secondary battery and a lithium ion secondary battery
JP5830179B2 (ja) 2012-10-15 2015-12-09 日本碍子株式会社 リチウム二次電池用正極活物質の製造方法及びそれに用いられる活物質前駆体粉末
JP6230540B2 (ja) * 2012-10-15 2017-11-15 日本碍子株式会社 リチウム二次電池用正極活物質及びそれを用いた正極
JPWO2014104234A1 (ja) 2012-12-28 2017-01-19 旭硝子株式会社 表面修飾リチウム含有複合酸化物粒子、該粒子を用いた正極及び非水電解質二次電池
JP6361955B2 (ja) * 2013-01-11 2018-07-25 株式会社Gsユアサ 蓄電素子及びその製造方法
KR102217704B1 (ko) 2013-01-25 2021-02-18 데이진 가부시키가이샤 비수 전해질 2 차 전지용의 초극세 섬유상 탄소, 초극세 섬유상 탄소 집합체, 복합체, 및 전극 활물질층
US9306212B2 (en) * 2013-07-19 2016-04-05 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, and positive electrode and rechargeable lithium battery including the same
JP6377983B2 (ja) * 2014-07-23 2018-08-22 住友化学株式会社 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6475064B2 (ja) 2015-04-08 2019-02-27 帝人株式会社 正極活物質、その製造方法、正極活物質を用いた正極合材、非水電解質二次電池用正極及び非水電解質二次電池
JP6119796B2 (ja) 2015-05-14 2017-04-26 信越化学工業株式会社 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP6720488B2 (ja) 2015-09-08 2020-07-08 株式会社豊田自動織機 複数の正極活物質、導電助剤、結着剤及び溶剤を含む組成物の製造方法
JP2017068939A (ja) 2015-09-29 2017-04-06 株式会社日立製作所 リチウム二次電池
WO2017098716A1 (ja) * 2015-12-08 2017-06-15 株式会社Gsユアサ 蓄電素子
JP6907223B2 (ja) 2016-10-07 2021-07-21 株式会社Moresco 接着剤組成物およびこれを含有する接着剤層、支持接合体、およびこの支持接合体を備えるガスバリア性評価装置
JP2017063040A (ja) 2016-11-01 2017-03-30 昭和電工株式会社 リチウムイオン電池用負極材及びその用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009141991A1 (ja) * 2008-05-23 2009-11-26 パナソニック株式会社 非水電解質二次電池用電極およびその製造方法ならびに非水電解質二次電池
JP2012243710A (ja) * 2011-05-24 2012-12-10 Sumitomo Electric Ind Ltd 非水電解質電池用正極およびその製造方法と非水電解質電池
JP2013055000A (ja) * 2011-09-06 2013-03-21 Mitsubishi Chemicals Corp リチウム二次電池正極材料用リチウム遷移金属系化合物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2013105703A (ja) 2011-11-16 2013-05-30 Toshiba Corp 電池用電極、非水電解質電池及び電池パック
JP2015222696A (ja) * 2014-05-23 2015-12-10 日立金属株式会社 リチウムイオン二次電池用正極活物質及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3509137A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7562473B2 (ja) 2021-04-28 2024-10-07 株式会社東芝 スラリー組成物、電極、電極の製造方法、二次電池、電池パック及び車両

Also Published As

Publication number Publication date
US11239458B2 (en) 2022-02-01
EP3509137B1 (en) 2022-03-30
EP3509137A4 (en) 2020-05-06
US20190221833A1 (en) 2019-07-18
CN109844999A (zh) 2019-06-04
EP3509137A1 (en) 2019-07-10
CN109844999B (zh) 2022-02-18
JP6947182B2 (ja) 2021-10-13
JPWO2018047843A1 (ja) 2019-06-24

Similar Documents

Publication Publication Date Title
US11114665B2 (en) Energy storage device and method for producing same
CN109075317B (zh) 蓄电元件及其制造方法
CN106025169B (zh) 蓄电元件
JP2018055801A (ja) 蓄電素子
WO2017098716A1 (ja) 蓄電素子
WO2018047843A1 (ja) 蓄電素子及び蓄電素子の製造方法
JP2016186886A (ja) 蓄電素子
JP6880488B2 (ja) リチウムイオン二次電池
CN109075310B (zh) 蓄电元件
JP2017195158A (ja) 蓄電素子
JP2017183082A (ja) 蓄電素子
JP6770716B2 (ja) リチウムイオン二次電池
JP6853950B2 (ja) リチウムイオン二次電池
WO2017098715A1 (ja) 蓄電素子
JP2017201588A (ja) 蓄電素子
JP2018098140A (ja) 蓄電素子
JP7008275B2 (ja) 蓄電素子
JP6853944B2 (ja) 蓄電素子
JP2018055802A (ja) 蓄電素子
JP2017174738A (ja) 蓄電素子
JP2016186904A (ja) 蓄電素子
JP2016189305A (ja) 蓄電素子
JP2017183151A (ja) 蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018538430

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017848782

Country of ref document: EP

Effective date: 20190404