WO2017201773A1 - 阵列基板测试电路、显示面板及平面显示装置 - Google Patents
阵列基板测试电路、显示面板及平面显示装置 Download PDFInfo
- Publication number
- WO2017201773A1 WO2017201773A1 PCT/CN2016/085462 CN2016085462W WO2017201773A1 WO 2017201773 A1 WO2017201773 A1 WO 2017201773A1 CN 2016085462 W CN2016085462 W CN 2016085462W WO 2017201773 A1 WO2017201773 A1 WO 2017201773A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- input end
- thin film
- film transistor
- inverter
- gate
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/006—Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
- G01R31/2607—Circuits therefor
- G01R31/2632—Circuits therefor for testing diodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
- G01R31/2607—Circuits therefor
- G01R31/2637—Circuits therefor for testing other individual devices
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1368—Active matrix addressed cells in which the switching element is a three-electrode device
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136254—Checking; Testing
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0243—Details of the generation of driving signals
- G09G2310/0251—Precharge or discharge of pixel before applying new pixel voltage
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0297—Special arrangements with multiplexing or demultiplexing of display data in the drivers for data electrodes, in a pre-processing circuitry delivering display data to said drivers or in the matrix panel, e.g. multiplexing plural data signals to one D/A converter or demultiplexing the D/A converter output to multiple columns
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/08—Details of timing specific for flat panels, other than clock recovery
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0209—Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0219—Reducing feedthrough effects in active matrix panels, i.e. voltage changes on the scan electrode influencing the pixel voltage due to capacitive coupling
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0223—Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2330/00—Aspects of power supply; Aspects of display protection and defect management
- G09G2330/12—Test circuits or failure detection circuits included in a display system, as permanent part thereof
Definitions
- the present invention relates to the field of display technologies, and in particular, to an array substrate test circuit, a display panel, and a flat display device.
- a scan driving circuit that is, an existing thin film transistor planar display array process is used to fabricate a scan driving circuit on an array substrate to realize a driving method for progressive scanning, and an array substrate test is set on the array substrate.
- the circuit performs electrical testing on the array substrate after the array substrate is completed.
- the controllable switch in the existing array substrate test circuit has a large influence on the potential on the data line, causing distortion of the data signal, so that the pixel cannot Charge to the desired potential.
- the technical problem to be solved by the present invention is to provide an array substrate test circuit, a display panel, and a flat display device, so as to solve the problem that the controllable switch in the array substrate test circuit has a large influence on the potential on the data line and causes data signal distortion.
- the problem is that the pixel can be charged to the desired potential.
- a technical solution adopted by the present invention is to provide an array substrate test circuit, the array substrate test circuit including at least one sub-circuit, the sub-circuit including a first input end, at least a second An input end, at least one third input end, at least one driving output end, a first switching unit and a second switching unit, wherein the first input end is configured to receive a data signal, and each second input end is configured to receive a first a clock signal, each of the third input terminals is configured to receive a second clock signal, and each of the driving outputs is connected to a pixel for outputting a driving signal for charging the pixel, the first switching unit includes a controllable switch having the same number of two inputs, the second switch unit comprising the same number of sub-units as the controllable switch and a first inverter of the same number as the third input, each sub-unit comprising a transmission gate having the same number as the third input end, a control end of each controllable switch is connected to a
- the transmission gate includes an N-type thin film transistor and a P-type thin film transistor, and a gate of the P-type thin film transistor serves as a second control terminal of the transfer gate, and a drain of the P-type thin film transistor a drain of the N-type thin film transistor is connected and serves as an input end of the transfer gate, a source of the P-type thin film transistor is connected to a source of the N-type thin film transistor, and serves as an output of the transfer gate
- the gate of the N-type thin film transistor serves as a first control terminal of the transmission gate.
- the controllable switch is an N-type MOS thin film transistor, and the control end, the first end and the second end of the controllable switch respectively correspond to a gate, a drain and a source of the MOS thin film transistor; or
- the controllable switch is a P-type MOS thin film transistor, and the control end, the first end and the second end of the controllable switch respectively correspond to a gate, a drain and a source of the MOS thin film transistor.
- the second switching unit further includes a second inverter having the same number as the first inverter, and the first inverter and the second inverter are respectively disposed in the subunit On both sides, the first control end of each transmission gate in each subunit is connected to a third input end, an input end of a first inverter, and an input end of a second inverter, each of each subunit A second control terminal of a transmission gate is coupled to the output of the respective first inverter and, correspondingly, the output of the second inverter.
- the display panel includes an array substrate test circuit
- the array substrate test circuit includes at least one sub-circuit
- the sub-circuit includes a a first input end, at least one second input end, at least one third input end, at least one driving output end, a first switching unit and a second switching unit, wherein the first input end is configured to receive a data signal, each The second input end is configured to receive a first clock signal, each third input end is configured to receive a second clock signal, and each of the driving output ends is connected to a pixel, and the output driving signal is used to charge the pixel,
- the first switching unit includes the same number of controllable switches as the second input end
- the second switching unit includes the same number of sub-units as the controllable switch and the first number of the same number as the third input end
- each subunit includes a transmission gate of the same number as the third input end
- a control end of each controllable switch is
- the transmission gate includes an N-type thin film transistor and a P-type thin film transistor, and a gate of the P-type thin film transistor serves as a second control terminal of the transfer gate, and a drain of the P-type thin film transistor a drain of the N-type thin film transistor is connected and serves as an input end of the transfer gate, a source of the P-type thin film transistor is connected to a source of the N-type thin film transistor, and serves as an output of the transfer gate
- the gate of the N-type thin film transistor serves as a first control terminal of the transmission gate.
- the controllable switch is an N-type MOS thin film transistor, and the control end, the first end and the second end of the controllable switch respectively correspond to a gate, a drain and a source of the MOS thin film transistor; or
- the controllable switch is a P-type MOS thin film transistor, and the control end, the first end and the second end of the controllable switch respectively correspond to a gate, a drain and a source of the MOS thin film transistor.
- the second switching unit further includes a second inverter having the same number as the first inverter, and the first inverter and the second inverter are respectively disposed in the subunit On both sides, the first control end of each transmission gate in each subunit is connected to a third input end, an input end of a first inverter, and an input end of a second inverter, each of each subunit A second control terminal of a transmission gate is coupled to the output of the respective first inverter and, correspondingly, the output of the second inverter.
- the flat display device includes a display panel, the display panel includes an array substrate test circuit, and the array substrate test circuit includes at least a sub-circuit, the sub-circuit includes a first input end, at least one second input end, at least one third input end, at least one driving output end, a first switching unit and a second switching unit, the first input
- the terminal is configured to receive a data signal
- each second input terminal is configured to receive a first clock signal
- each third input terminal is configured to receive a second clock signal
- each of the driving output ends is connected to a pixel for output a driving signal for charging the pixel
- the first switching unit includes a controllable switch having the same number as the second input terminal
- the second switching unit includes the same number of subunits and a plurality of the controllable switches a first inverter having the same number of third input terminals, each subunit including a transmission gate of the same number as the third input terminal, and
- the transmission gate includes an N-type thin film transistor and a P-type thin film transistor, and a gate of the P-type thin film transistor serves as a second control terminal of the transfer gate, and a drain of the P-type thin film transistor a drain of the N-type thin film transistor is connected and serves as an input end of the transfer gate, a source of the P-type thin film transistor is connected to a source of the N-type thin film transistor, and serves as an output of the transfer gate
- the gate of the N-type thin film transistor serves as a first control terminal of the transmission gate.
- the controllable switch is an N-type MOS thin film transistor, and the control end, the first end and the second end of the controllable switch respectively correspond to a gate, a drain and a source of the MOS thin film transistor; or
- the controllable switch is a P-type MOS thin film transistor, and the control end, the first end and the second end of the controllable switch respectively correspond to a gate, a drain and a source of the MOS thin film transistor.
- the second switching unit further includes a second inverter having the same number as the first inverter, and the first inverter and the second inverter are respectively disposed in the subunit On both sides, the first control end of each transmission gate in each subunit is connected to a third input end, an input end of a first inverter, and an input end of a second inverter, each of each subunit A second control terminal of a transmission gate is coupled to the output of the respective first inverter and, correspondingly, the output of the second inverter.
- the flat display device is an LCD or an OLED.
- the array substrate testing circuit of the present invention multiplexes one data signal into multiple data signals through the first switching unit and the second switching unit. Providing a plurality of pixels for charging, and canceling a capacitive coupling effect generated by the second switching unit through a transmission gate and an inverter in the second switching unit, and turning off after the second switching unit is turned off.
- the first switching unit prevents the first and second switching units from causing distortion of the data signal, so that the pixel can be charged to a desired potential.
- FIG. 1 is a schematic structural view of a prior art array substrate test circuit
- FIG. 2 is a waveform diagram of a prior art array substrate test circuit
- FIG. 3 is a schematic structural view of a first embodiment of an array substrate test circuit of the present invention.
- Figure 4 is a schematic structural view of the transmission door of Figure 3;
- FIG. 6 is a schematic structural view of a second embodiment of an array substrate test circuit of the present invention.
- Figure 7 is a schematic structural view of a display panel of the present invention.
- Figure 8 is a schematic structural view of a flat display device of the present invention
- FIG. 1 is a schematic diagram of a test circuit of an array substrate in the prior art. Because the number of data signal lines on the entire array substrate test circuit is limited, in order to test the entire array substrate using a limited data signal line, a two-stage switch is needed. The circuit, that is, the first switching unit 10 and the second switching unit 20.
- the data signal outputted by one data signal line Data on the array substrate test circuit is first multiplexed by the first switch unit 10 and the clock signals CK1, CK2, CK3 to convert one data signal into three data signals, and then, After the data signal processed by the first switching unit 10 enters the multiplexing process of the second switching unit 20 and the clock signals CK4, CK5, CK6, and CK7, the data signal of one channel is changed into four data signals, that is, from A data signal outputted by the data line Data becomes a three-way data signal after passing through the first switching unit 10, and the three-way data signal passes through the second switching unit 20 to become a twelve-way data signal. To achieve charging of twelve pixels. 2 is a waveform diagram of a test circuit of an array substrate in the prior art.
- the output data signal will occur. Distortion, the potential of the ideal output cannot be maintained, wherein the distortion of the data signal is caused by the moment when the clock signals CK4, CK5, CK6, and CK7 jump from the high level to the low level in the second switching unit 20, causing the data signal
- the distortion is caused by the parasitic capacitance of the thin film transistor TFT in the second switching unit 20.
- FIG. 3 is a structural diagram of a first embodiment of the array substrate test circuit of the present invention.
- FIG. 3 is a structural diagram of a first embodiment of the array substrate test circuit of the present invention.
- only one sub-circuit 1 of the array substrate test circuit connected by one data signal line will be described as an example. As shown in FIG.
- the array substrate test circuit of the present invention includes at least one sub-circuit 1 including a first input terminal, at least one second input terminal, at least one third input terminal, and at least one Driving the output terminal, the first switching unit 100 and the second switching unit 200, the first input terminal is configured to receive a data signal from a data line Data, and each of the second input terminals is configured to receive a first clock signal, each a third input end is configured to receive a second clock signal, each of the driving output ends is connected to a pixel, and the output driving signal is used to charge the pixel, and the first switching unit 100 includes the number of the second input end
- the second switch unit 200 includes the same number of sub-units 210 as the controllable switch T1 and the first inverter U1 of the same number as the third input end, each sub-unit The second end of the controllable switch T1 is connected to the first input end, and the first end of each controllable switch T1 is connected to the first input end.
- each controllable switch T1 is connected An input end of each transmission gate of each sub-unit 210, a first control end of each transmission gate TG1 of each sub-unit 210 is connected to a third input end and an input end of a first inverter U1, each sub- The second control end of each transmission gate TG1 in the unit 210 is connected to the output end of the corresponding first inverter U1, and the output end of each transmission gate TG1 is connected to a driving output end.
- controllable switch T1 is an N-type MOS thin film transistor, and the control end, the first end and the second end of the controllable switch T1 respectively correspond to the gate of the MOS thin film transistor, Drain and source.
- controllable switch can also be other types of switches as long as the objectives of the present invention are achieved.
- the second switching unit 210 further includes a second inverter U2 of the same number as the first inverter U1 (in the first embodiment, the number of the second inverters is also four
- the first inverter U1 and the second inverter U2 are respectively disposed on two sides of the subunit 210, and the first control end of each transmission gate TG1 in each subunit 210 is connected to a first a three-input terminal, an input end of a first inverter U1 and an input end of a second inverter U2, and a second control end of each transmission gate TG1 in each sub-unit 210 is connected to the corresponding first anti- The output of the phaser U1 and correspondingly the output of the second inverter U2.
- the second inverter U2 is provided to further drive and control the transmission gate TG1.
- the second inverter U2 may not be disposed as needed. Only the first inverter U1 can be provided.
- the transmission gate TG1 includes an N-type thin film transistor and a P-type thin film transistor, and the gate of the P-type thin film transistor serves as a second control terminal of the transmission gate TG1, and the P-type a drain of the thin film transistor is connected to a drain of the N-type thin film transistor, and serves as an input end of the transfer gate TG1, a source of the P-type thin film transistor is connected to a source of the N-type thin film transistor, and As an output terminal of the transfer gate TG1, a gate of the N-type thin film transistor serves as a first control terminal of the transfer gate.
- the number of the second input terminal, the third input terminal, the controllable switch, the transmission gate, and the first and second inverters may be set according to actual needs. It is not limited to the number in the embodiment as long as the object of the present invention can be achieved.
- the control end of the controllable switch T1 in the first switch unit 100 receives the high level signal output by the clock signal CK1 from the second input terminal, the controllable switch T1 is turned on, and the connection device is connected at this time.
- the data signal outputted by the data line Data of the first input terminal enters the input end of the transmission gate TG1 in the second switching unit 200 via the controllable switch T1, and the clock signal CK4 received by the third input terminal
- the first control end of the transmission gate TG1 receives the high level signal, and the high level signal simultaneously outputs a low level signal through the first inverter and is provided to the The second control end of the transmission gate TG1, at which time the transmission gate TG1 is turned on, and the data signal received at the input end of the transmission gate TG1 is supplied to the pixel through the output end of the transmission gate TG1 and the driving output end.
- the transfer gate is composed of an N-type thin film transistor and a P-type thin film transistor, and the N-type thin film transistor and the P-type thin film transistor have complementary characteristics, when the transfer gate is turned off, the N-type thin film transistor causes a data line.
- the controllable switch in the first switching unit 100 is turned off, because the transmission gate in the second switching unit 200 is already turned off,
- the level change of the clock signal outputted by the second input terminal does not cause a potential change on the data line, that is, the controllable switch in the first switching unit 100 does not cause a change in the potential of the drive output terminal
- the transfer gate in the two switch unit 200 also does not cause a change in the potential of the drive output, thereby avoiding distortion of the data signal so that the pixel can be charged to a desired potential.
- FIG. 5 is a waveform diagram of the substrate test circuit of the present invention.
- the data signal outputted to the pixel by the drive output terminal is not distorted.
- the transmission gate in the second switching unit 200 is turned off (closed), the conduction (on) or the off (off) of the controllable switch in the first switching unit 100 does not affect the output of the driving output. The change in the potential of the data signal.
- FIG. 6 is a schematic structural view of a second embodiment of the array substrate test circuit of the present invention.
- the second embodiment of the array substrate test circuit is different from the first embodiment in that the controllable switch in the first switch unit 100 is a P-type MOS thin film transistor, and the control end of the controllable switch The first end and the second end respectively correspond to the gate, the drain and the source of the MOS thin film transistor, and the connection relationship and working principle of the controllable switch and other components in the test circuit of the array substrate and the foregoing The same is true for an embodiment, and details are not described herein again.
- FIG. 7 is a structural diagram of a display panel of the present invention.
- the display panel includes the foregoing array substrate test circuit, and an Array disposed at an upper portion of the display panel In the test area, the display panel further includes an AA area, a GOA area, a Fanout area, a Demux area, a WOA area, an IC area, and an FPC area.
- the Test area is used to test the electrical properties of the array substrate after the array substrate is completed; the AA area is used for pixel display; and the GOA area is called Gate On Array, used to generate the gate drive signal of the thin film transistor TFT in the panel; the Fanout area is used for the trace connection of the chip and the AA area data line; and the Demox area is used for splitting the data line drawn from the chip into multiple pieces of data Line; WOA area, ie Wire On Array is used for the connection of the traces around the panel; the IC area is used for soldering the chip, the circuit inside the panel is driven by the chip and the TFT of the thin film transistor; the FPC area is used for soldering the flexible circuit board, and the mobile phone main board is connected through the flexible circuit board.
- FIG. 8 is a structural diagram of a flat display device according to the present invention.
- the flat display device includes the aforementioned display panel.
- the flat display device is an LCD or an OLED.
- the array substrate test circuit multiplexes one data signal into multiple data signals through the first switch unit and the second switch unit to provide charging to a plurality of pixels, and passes through the second switch unit. Transmitting the gate and the inverter to cancel the capacitive coupling effect generated by the second switching unit, and then turning off the first switching unit after turning off the second switching unit, thereby avoiding the first and second switching units The data signal is distorted so that the pixel can be charged to the desired potential.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Nonlinear Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
一种阵列基板测试电路、显示面板及平面显示装置。该电路包括至少一子电路(1),子电路(1)包括第一输入端接收数据信号、至少一第二输入端接收第一时钟信号(CK1、CK2、CK3)、至少一第三输入端接收第二时钟信号(CK4、CK5、CK6、CK7)、至少一驱动输出端(OUT1-OUT12)为像素充电、第一开关单元(100)包括与第二输入端数量相同的可控开关,第二开关单元(200)包括与可控开关数量相同的子单元及与第三输入端数量相同的第一反相器(U1),子单元包括与第三输入端数量相同的传输门(TG1),可控开关的控制端连接第二输入端,第一端连接第一输入端,第二端连接传输门(TG1)的输入端,传输门(TG1)的第一控制端连接第三输入端及第一反相器(U1)的输入端,第二控制端连接第一反相器(U1)的输出端,输出端连接驱动输出端(OUT1-OUT12),以此避免数据信号失真。
Description
【技术领域】
本发明涉及显示技术领域,特别是涉及一种阵列基板测试电路、显示面板及平面显示装置。
【背景技术】
目前的平面显示装置中采用扫描驱动电路,也就是利用现有薄膜晶体管平面显示器阵列制程将扫描驱动电路制作在阵列基板上,实现对逐行扫描的驱动方式,同时在阵列基板上设置阵列基板测试电路,以在阵列基板完成之后对阵列基板进行电性测试,然而,现有的阵列基板测试电路中的可控开关会对数据线上的电位产生较大影响而造成数据信号失真,使得像素不能充电至理想的电位。
【发明内容】
本发明主要解决的技术问题是提供一种阵列基板测试电路、显示面板及平面显示装置,以解决阵列基板测试电路中的可控开关对数据线上的电位产生较大影响而造成数据信号失真的问题,使得像素能充电至理想的电位。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种阵列基板测试电路,所述阵列基板测试电路包括至少一子电路,所述子电路包括一第一输入端、至少一第二输入端、至少一第三输入端、至少一驱动输出端、第一开关单元及第二开关单元,所述第一输入端用于接收一数据信号,每一第二输入端用于接收一第一时钟信号,每一第三输入端用于接收一第二时钟信号,每一驱动输出端连接一像素,用于输出驱动信号为所述像素充电,所述第一开关单元包括与所述第二输入端数量相同的可控开关,所述第二开关单元包括与所述可控开关数量相同的子单元及与所述第三输入端数量相同的第一反相器,每一子单元包括与所述第三输入端数量相同的传输门,每一可控开关的控制端连接一第二输入端,每一可控开关的第一端连接所述第一输入端,每一可控开关的第二端连接一子单元中每一传输门的输入端,每一子单元中每一传输门的第一控制端连接一第三输入端及一第一反相器的输入端,每一子单元中每一传输门的第二控制端连接所述相应地第一反相器的输出端,每一传输门的输出端连接一驱动输出端。
其中,所述传输门包括一N型薄膜晶体管及一P型薄膜晶体管,所述P型薄膜晶体管的栅极作为为所述传输门的第二控制端,所述P型薄膜晶体管的漏极与所述N型薄膜晶体管的漏极相连,并作为所述传输门的输入端,所述P型薄膜晶体管的源极与所述N型薄膜晶体管的源极相连,并作为所述传输门的输出端,所述N型薄膜晶体管的栅极作为所述传输门的第一控制端。
其中,所述可控开关为N型MOS薄膜晶体管,所述可控开关的控制端、第一端及第二端分别对应所述MOS薄膜晶体管的栅极、漏极及源极;或者所述可控开关为P型MOS薄膜晶体管,所述可控开关的控制端、第一端及第二端分别对应所述MOS薄膜晶体管的栅极、漏极及源极。
其中,所述第二开关单元还包括与所述第一反相器数量相同的第二反相器,所述第一反相器与所述第二反相器分别设置在所述子单元的两侧,每一子单元中每一传输门的第一控制端连接一第三输入端、一第一反相器的输入端及一第二反相器的输入端,每一子单元中每一传输门的第二控制端连接所述相应地第一反相器的输出端及相应地第二反向器的输出端。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种显示面板,所述显示面板包括阵列基板测试电路,所述阵列基板测试电路包括至少一子电路,所述子电路包括一第一输入端、至少一第二输入端、至少一第三输入端、至少一驱动输出端、第一开关单元及第二开关单元,所述第一输入端用于接收一数据信号,每一第二输入端用于接收一第一时钟信号,每一第三输入端用于接收一第二时钟信号,每一驱动输出端连接一像素,用于输出驱动信号为所述像素充电,所述第一开关单元包括与所述第二输入端数量相同的可控开关,所述第二开关单元包括与所述可控开关数量相同的子单元及与所述第三输入端数量相同的第一反相器,每一子单元包括与所述第三输入端数量相同的传输门,每一可控开关的控制端连接一第二输入端,每一可控开关的第一端连接所述第一输入端,每一可控开关的第二端连接一子单元中每一传输门的输入端,每一子单元中每一传输门的第一控制端连接一第三输入端及一第一反相器的输入端,每一子单元中每一传输门的第二控制端连接所述相应地第一反相器的输出端,每一传输门的输出端连接一驱动输出端。
其中,所述传输门包括一N型薄膜晶体管及一P型薄膜晶体管,所述P型薄膜晶体管的栅极作为为所述传输门的第二控制端,所述P型薄膜晶体管的漏极与所述N型薄膜晶体管的漏极相连,并作为所述传输门的输入端,所述P型薄膜晶体管的源极与所述N型薄膜晶体管的源极相连,并作为所述传输门的输出端,所述N型薄膜晶体管的栅极作为所述传输门的第一控制端。
其中,所述可控开关为N型MOS薄膜晶体管,所述可控开关的控制端、第一端及第二端分别对应所述MOS薄膜晶体管的栅极、漏极及源极;或者所述可控开关为P型MOS薄膜晶体管,所述可控开关的控制端、第一端及第二端分别对应所述MOS薄膜晶体管的栅极、漏极及源极。
其中,所述第二开关单元还包括与所述第一反相器数量相同的第二反相器,所述第一反相器与所述第二反相器分别设置在所述子单元的两侧,每一子单元中每一传输门的第一控制端连接一第三输入端、一第一反相器的输入端及一第二反相器的输入端,每一子单元中每一传输门的第二控制端连接所述相应地第一反相器的输出端及相应地第二反向器的输出端。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种平面显示装置,所述平面显示装置包括显示面板,所述显示面板包括阵列基板测试电路,所述阵列基板测试电路包括至少一子电路,所述子电路包括一第一输入端、至少一第二输入端、至少一第三输入端、至少一驱动输出端、第一开关单元及第二开关单元,所述第一输入端用于接收一数据信号,每一第二输入端用于接收一第一时钟信号,每一第三输入端用于接收一第二时钟信号,每一驱动输出端连接一像素,用于输出驱动信号为所述像素充电,所述第一开关单元包括与所述第二输入端数量相同的可控开关,所述第二开关单元包括与所述可控开关数量相同的子单元及与所述第三输入端数量相同的第一反相器,每一子单元包括与所述第三输入端数量相同的传输门,每一可控开关的控制端分别与每一第二输入端对应连接,每一可控开关的第一端分别连接所述第一输入端,每一可控开关的第二端分别连接一子单元中每一传输门的输入端,每一子单元中每一传输门的第一控制端分别与每一第三输入端及每一第一反相器的输入端对应连接,每一子单元中每一传输门的第二控制端连接相应的第一反相器的输出端,每一传输门的输出端连接一驱动输出端。
其中,所述传输门包括一N型薄膜晶体管及一P型薄膜晶体管,所述P型薄膜晶体管的栅极作为为所述传输门的第二控制端,所述P型薄膜晶体管的漏极与所述N型薄膜晶体管的漏极相连,并作为所述传输门的输入端,所述P型薄膜晶体管的源极与所述N型薄膜晶体管的源极相连,并作为所述传输门的输出端,所述N型薄膜晶体管的栅极作为所述传输门的第一控制端。
其中,所述可控开关为N型MOS薄膜晶体管,所述可控开关的控制端、第一端及第二端分别对应所述MOS薄膜晶体管的栅极、漏极及源极;或者所述可控开关为P型MOS薄膜晶体管,所述可控开关的控制端、第一端及第二端分别对应所述MOS薄膜晶体管的栅极、漏极及源极。
其中,所述第二开关单元还包括与所述第一反相器数量相同的第二反相器,所述第一反相器与所述第二反相器分别设置在所述子单元的两侧,每一子单元中每一传输门的第一控制端连接一第三输入端、一第一反相器的输入端及一第二反相器的输入端,每一子单元中每一传输门的第二控制端连接所述相应地第一反相器的输出端及相应地第二反向器的输出端。
其中,所述平面显示装置为LCD或OLED。
本发明的有益效果是:区别于现有技术的情况,本发明的所述阵列基板测试电路通过所述第一开关单元及所述第二开关单元将一路数据信号复用为多路数据信号以提供给多个像素进行充电,并通过所述第二开关单元中的传输门及反相器将所述第二开关单元产生的电容耦合效应抵消,并在关闭所述第二开关单元后再关闭所述第一开关单元,从而避免所述第一及第二开关单元造成数据信号失真,使得像素能充电至理想的电位。
【附图说明】
图1是现有技术的阵列基板测试电路的结构示意图;
图2是现有技术的阵列基板测试电路的波形图;
图3是本发明的阵列基板测试电路的第一实施例的结构示意图;
图4是图3中的传输门的结构示意图;
图5是本发明的阵列基板测试电路的波形图;
图6是本发明的阵列基板测试电路的第二实施例的结构示意图;
图7是本发明的显示面板的结构示意图;
图8是本发明的平面显示装置的结构示意图
【具体实施方式】
请参阅图1,是现有技术中阵列基板测试电路示意图,因为整个阵列基板测试电路上的数据信号线数量有限,为了使用有限的数据信号线对整个阵列基板进行测试,则需要使用两级开关电路,即第一开关单元10及第二开关单元20。阵列基板测试电路上的一条数据信号线Data输出的数据信号先经过第一开关单元10及时钟信号CK1、CK2、CK3的多路复用处理后将一路数据信号变为三路数据信号,之后,经由第一开关单元10处理后的数据信号进入第二开关单元20及时钟信号CK4、CK5、CK6、CK7的多路复用处理后将一路数据信号变为四路数据信号,也就是说,从所述数据线Data输出的一路数据信号经过所述第一开关单元10后变为三路数据信号,所述三路数据信号再经过所述第二开关单元20后变为十二路数据信号,以实现对十二个像素进行充电。请参阅图2,是现有技术中阵列基板测试电路的波形图,由图2可知,通过图1所示的阵列基板测试电路对数据信号进行复用输出的过程中,输出的数据信号会发生失真,不能保持理想输出的电位,其中,数据信号发生失真是在所述第二开关单元20中时钟信号CK4、CK5、CK6、CK7由高电平向低电平跳变的瞬间,造成数据信号失真是由于第二开关单元20中的薄膜晶体管TFT的寄生电容造成的。
请参阅图3,是本发明的阵列基板测试电路的第一实施例的结构示意图。在本实施方式中,仅以一个数据信号线连接的阵列基板测试电路的一个子电路1为例进行说明。如图3所示,本发明的所述阵列基板测试电路包括至少一子电路1,所述子电路1包括一第一输入端、至少一第二输入端、至少一第三输入端、至少一驱动输出端、第一开关单元100及第二开关单元200,所述第一输入端用于从一数据线Data接收一数据信号,每一第二输入端用于接收一第一时钟信号,每一第三输入端用于接收一第二时钟信号,每一驱动输出端连接一像素,用于输出驱动信号为所述像素充电,所述第一开关单元100包括与所述第二输入端数量相同的可控开关T1,所述第二开关单元200包括与所述可控开关T1数量相同的子单元210及与所述第三输入端数量相同的第一反相器U1,每一子单元210包括与所述第三输入端数量相同的传输门TG1,每一可控开关T1的控制端连接一第二输入端,每一可控开关T1的第一端连接所述第一输入端,每一可控开关T1的第二端连接一子单元210中每一传输门的输入端,每一子单元210中每一传输门TG1的第一控制端连接一第三输入端及一第一反相器U1的输入端,每一子单元210中每一传输门TG1的第二控制端连接所述相应地第一反相器U1的输出端,每一传输门TG1的输出端连接一驱动输出端。
在所述第一实施例中,所述可控开关T1为N型MOS薄膜晶体管,所述可控开关T1的控制端、第一端及第二端分别对应所述MOS薄膜晶体管的栅极、漏极及源极。在其他实施例中,所述可控开关也可为其他类型的开关,只要能实现本发明的目的即可。
所述第二开关单元210还包括与所述第一反相器U1数量相同的第二反相器U2(在所述第一实施例中,所述第二反相器的数量也为四个),所述第一反相器U1与所述第二反相器U2分别设置在所述子单元210的两侧,每一子单元210中每一传输门TG1的第一控制端连接一第三输入端、一第一反相器U1的输入端及一第二反相器U2的输入端,每一子单元210中每一传输门TG1的第二控制端连接所述相应地第一反相器U1的输出端及相应地第二反向器U2的输出端。在本实施例中,通过设置所述第二反相器U2来进一步更好的驱动控制所述传输门TG1,在其他实施例中,也可根据需要不设置所述第二反相器U2而仅设置所述第一反相器U1即可。
请参阅图4,是本发明的传输门的结构示意图。如图4所示,所述传输门TG1包括一N型薄膜晶体管及一P型薄膜晶体管,所述P型薄膜晶体管的栅极作为为所述传输门TG1的第二控制端,所述P型薄膜晶体管的漏极与所述N型薄膜晶体管的漏极相连,并作为所述传输门TG1的输入端,所述P型薄膜晶体管的源极与所述N型薄膜晶体管的源极相连,并作为所述传输门TG1的输出端,所述N型薄膜晶体管的栅极作为所述传输门的第一控制端。
在其他实施例中,所述第二输入端、所述第三输入端、所述可控开关、所述传输门及所述第一及第二反相器的数量可以根据实际需要进行设置而不限于本实施例中的数量,只要能实现本发明的目的即可。
在此以所述阵列基板测试电路中的一个子电路1为例对其工作原理描述如下(其中,仅以第一开关单元100中的一个可控开关T1及第二开关单元200中的一个传输门TG1及一个第一反相器U1为例):
当所述第一开关单元100中的可控开关T1的控制端从所述第二输入端接收到时钟信号CK1输出的高电平信号时,所述可控开关T1导通,此时连接所述第一输入端的数据线Data输出的数据信号经由所述可控开关T1进入到所述第二开关单元200中的传输门TG1的输入端,当所述第三输入端接收到的时钟信号CK4输出高电平信号时,所述传输门TG1的第一控制端接收所述高电平信号,所述高电平信号同时经所述第一反相器后输出低电平信号并提供给所述传输门TG1的第二控制端,此时所述传输门TG1导通,所述传输门TG1输入端接收到的数据信号经所述传输门TG1的输出端及所述驱动输出端提供给像素进行充电。由于传输门是由一个N型薄膜晶体管和一个P型薄膜晶体管构成,而N型薄膜晶体管和P型薄膜晶体管具有互补的特性,因此当传输门截止的瞬间,N型薄膜晶体管会造成数据线上电平降低的电容耦合效应,而同时P型薄膜晶体管会造成数据线上电平升高的电容耦合效应。如果N型薄膜晶体管和P型薄膜晶体管的尺寸一样,即具有相同的寄生电容,那么N型薄膜晶体管和P型薄膜晶体管对数据线造成的影响会相互抵消,因此,传输门的导通或截止不会造成数据线上电位的变化。当所述第三输入端输出的时钟信号复用完毕之后,所述第一开关单元100中的可控开关截止,由于此时所述第二开关单元200中的传输门已经截止,因此所述第二输入端输出的时钟信号的电平变化不会造成数据线上的电位变化,即所述第一开关单元100中的可控开关不会造成所述驱动输出端电位的变化,所述第二开关单元200中的传输门也不会造成所述驱动输出端电位的变化,以此避免造成数据信号失真,使得像素能充电至理想的电位。
请参阅图5,是本发明的基板测试电路的波形图。如图5所示,通过所述第二开关单元200中的传输门对所述阵列基板测试电路进行控制的过程中,所述驱动输出端输出给所述像素的数据信号不会发生失真,当所述第二开关单元200中的传输门截止(关闭)之后,所述第一开关单元100中的可控开关的导通(开启)或截止(关闭)不会影响所述驱动输出端输出的数据信号的电位的变化。
请参阅图6,是本发明的阵列基板测试电路的第二实施例的结构示意图。所述阵列基板测试电路的第二实施例与上述第一实施例的区别之处在于:所述第一开关单元100中的可控开关为P型MOS薄膜晶体管,所述可控开关的控制端、第一端及第二端分别对应所述MOS薄膜晶体管的栅极、漏极及源极,所述可控开关与所述阵列基板测试电路中的其他元件的连接关系及工作原理与上述第一实施例相同,在此不再赘述。
请参阅图7,是本发明一种显示面板的结构示意图。所述显示面板包括前述的阵列基板测试电路,设置在所述显示面板的上部的Array
Test区,所述显示面板还包括AA区,GOA区,Fanout区,Demux区,WOA区,IC区,FPC区。其中,Array
Test区用于在阵列基板完成之后,对阵列基板的电性进行测试;AA区用于像素的显示;GOA区,即Gate On
Array,用于产生面板内薄膜晶体管TFT的栅极驱动信号;Fanout区用于芯片与AA区数据线的走线连接;Demux区,用于将从芯片引出的数据线进行拆分为多条数据线;WOA区,即Wire
On
Array,用于面板周围走线的连接;IC区,用于芯片的焊接,通过芯片驱动面板内电路和薄膜晶体管TFT;FPC区,用于柔性电路板的焊接,通过柔性电路板连接手机主板。
请参阅图8,为本发明一种平面显示装置的结构示意图。所述平面显示装置包括前述的显示面板。其中,所述平面显示装置为LCD或OLED。
所述阵列基板测试电路通过所述第一开关单元及所述第二开关单元将一路数据信号复用为多路数据信号以提供给多个像素进行充电,并通过所述第二开关单元中的传输门及反相器将所述第二开关单元产生的电容耦合效应抵消,并在关闭所述第二开关单元后再关闭所述第一开关单元,从而避免所述第一及第二开关单元造成数据信号失真,使得像素能充电至理想的电位。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (13)
- 一种阵列基板测试电路,其中,所述阵列基板测试电路包括至少一子电路,所述子电路包括一第一输入端、至少一第二输入端、至少一第三输入端、至少一驱动输出端、第一开关单元及第二开关单元,所述第一输入端用于接收一数据信号,每一第二输入端用于接收一第一时钟信号,每一第三输入端用于接收一第二时钟信号,每一驱动输出端连接一像素,用于输出驱动信号为所述像素充电,所述第一开关单元包括与所述第二输入端数量相同的可控开关,所述第二开关单元包括与所述可控开关数量相同的子单元及与所述第三输入端数量相同的第一反相器,每一子单元包括与所述第三输入端数量相同的传输门,每一可控开关的控制端分别与每一第二输入端对应连接,每一可控开关的第一端分别连接所述第一输入端,每一可控开关的第二端分别连接一子单元中每一传输门的输入端,每一子单元中每一传输门的第一控制端分别与每一第三输入端及每一第一反相器的输入端对应连接,每一子单元中每一传输门的第二控制端连接相应的第一反相器的输出端,每一传输门的输出端连接一驱动输出端。
- 根据权利要求1所述的阵列基板测试电路,其中,所述传输门包括一N型薄膜晶体管及一P型薄膜晶体管,所述P型薄膜晶体管的栅极作为为所述传输门的第二控制端,所述P型薄膜晶体管的漏极与所述N型薄膜晶体管的漏极相连,并作为所述传输门的输入端,所述P型薄膜晶体管的源极与所述N型薄膜晶体管的源极相连,并作为所述传输门的输出端,所述N型薄膜晶体管的栅极作为所述传输门的第一控制端。
- 根据权利要求1所述的阵列基板测试电路,其中,所述可控开关为N型MOS薄膜晶体管,所述可控开关的控制端、第一端及第二端分别对应所述MOS薄膜晶体管的栅极、漏极及源极;或者所述可控开关为P型MOS薄膜晶体管,所述可控开关的控制端、第一端及第二端分别对应所述MOS薄膜晶体管的栅极、漏极及源极。
- 根据权利要求1所述的阵列基板测试电路,其中,所述第二开关单元还包括与所述第一反相器数量相同的第二反相器,所述第一反相器与所述第二反相器分别设置在所述子单元的两侧,每一子单元中每一传输门的第一控制端连接一第三输入端、一第一反相器的输入端及一第二反相器的输入端,每一子单元中每一传输门的第二控制端连接所述相应地第一反相器的输出端及相应地第二反向器的输出端。
- 一种显示面板,其中,所述显示面板包括阵列基板测试电路,所述阵列基板测试电路包括至少一子电路,所述子电路包括一第一输入端、至少一第二输入端、至少一第三输入端、至少一驱动输出端、第一开关单元及第二开关单元,所述第一输入端用于接收一数据信号,每一第二输入端用于接收一第一时钟信号,每一第三输入端用于接收一第二时钟信号,每一驱动输出端连接一像素,用于输出驱动信号为所述像素充电,所述第一开关单元包括与所述第二输入端数量相同的可控开关,所述第二开关单元包括与所述可控开关数量相同的子单元及与所述第三输入端数量相同的第一反相器,每一子单元包括与所述第三输入端数量相同的传输门,每一可控开关的控制端连接一第二输入端,每一可控开关的第一端连接所述第一输入端,每一可控开关的第二端连接一子单元中每一传输门的输入端,每一子单元中每一传输门的第一控制端连接一第三输入端及一第一反相器的输入端,每一子单元中每一传输门的第二控制端连接所述相应地第一反相器的输出端,每一传输门的输出端连接一驱动输出端。
- 根据权利要求5所述的显示面板,其中,所述传输门包括一N型薄膜晶体管及一P型薄膜晶体管,所述P型薄膜晶体管的栅极作为为所述传输门的第二控制端,所述P型薄膜晶体管的漏极与所述N型薄膜晶体管的漏极相连,并作为所述传输门的输入端,所述P型薄膜晶体管的源极与所述N型薄膜晶体管的源极相连,并作为所述传输门的输出端,所述N型薄膜晶体管的栅极作为所述传输门的第一控制端。
- 根据权利要求5所述的显示面板,其中,所述可控开关为N型MOS薄膜晶体管,所述可控开关的控制端、第一端及第二端分别对应所述MOS薄膜晶体管的栅极、漏极及源极;或者所述可控开关为P型MOS薄膜晶体管,所述可控开关的控制端、第一端及第二端分别对应所述MOS薄膜晶体管的栅极、漏极及源极。
- 根据权利要求5所述的显示面板,其中,所述第二开关单元还包括与所述第一反相器数量相同的第二反相器,所述第一反相器与所述第二反相器分别设置在所述子单元的两侧,每一子单元中每一传输门的第一控制端连接一第三输入端、一第一反相器的输入端及一第二反相器的输入端,每一子单元中每一传输门的第二控制端连接所述相应地第一反相器的输出端及相应地第二反向器的输出端。
- 一种平面显示装置,其中,所述平面显示装置包括显示面板,所述显示面板包括阵列基板测试电路,所述阵列基板测试电路包括至少一子电路,所述子电路包括一第一输入端、至少一第二输入端、至少一第三输入端、至少一驱动输出端、第一开关单元及第二开关单元,所述第一输入端用于接收一数据信号,每一第二输入端用于接收一第一时钟信号,每一第三输入端用于接收一第二时钟信号,每一驱动输出端连接一像素,用于输出驱动信号为所述像素充电,所述第一开关单元包括与所述第二输入端数量相同的可控开关,所述第二开关单元包括与所述可控开关数量相同的子单元及与所述第三输入端数量相同的第一反相器,每一子单元包括与所述第三输入端数量相同的传输门,每一可控开关的控制端分别与每一第二输入端对应连接,每一可控开关的第一端分别连接所述第一输入端,每一可控开关的第二端分别连接一子单元中每一传输门的输入端,每一子单元中每一传输门的第一控制端分别与每一第三输入端及每一第一反相器的输入端对应连接,每一子单元中每一传输门的第二控制端连接相应的第一反相器的输出端,每一传输门的输出端连接一驱动输出端。
- 根据权利要求9所述的平面显示装置,其中,所述传输门包括一N型薄膜晶体管及一P型薄膜晶体管,所述P型薄膜晶体管的栅极作为为所述传输门的第二控制端,所述P型薄膜晶体管的漏极与所述N型薄膜晶体管的漏极相连,并作为所述传输门的输入端,所述P型薄膜晶体管的源极与所述N型薄膜晶体管的源极相连,并作为所述传输门的输出端,所述N型薄膜晶体管的栅极作为所述传输门的第一控制端。
- 根据权利要求9所述的平面显示装置,其中,所述可控开关为N型MOS薄膜晶体管,所述可控开关的控制端、第一端及第二端分别对应所述MOS薄膜晶体管的栅极、漏极及源极;或者所述可控开关为P型MOS薄膜晶体管,所述可控开关的控制端、第一端及第二端分别对应所述MOS薄膜晶体管的栅极、漏极及源极。
- 根据权利要求9所述的平面显示装置,其中,所述第二开关单元还包括与所述第一反相器数量相同的第二反相器,所述第一反相器与所述第二反相器分别设置在所述子单元的两侧,每一子单元中每一传输门的第一控制端连接一第三输入端、一第一反相器的输入端及一第二反相器的输入端,每一子单元中每一传输门的第二控制端连接所述相应地第一反相器的输出端及相应地第二反向器的输出端。
- 根据权利要求9所述的平面显示装置,其中,所述平面显示装置为LCD或OLED。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/111,765 US10235913B2 (en) | 2016-05-23 | 2016-06-12 | Array substrates testing circuits, display panels, and flat display devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610345572.2A CN105810136B (zh) | 2016-05-23 | 2016-05-23 | 阵列基板测试电路、显示面板及平面显示装置 |
CN201610345572.2 | 2016-05-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017201773A1 true WO2017201773A1 (zh) | 2017-11-30 |
Family
ID=56452683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/085462 WO2017201773A1 (zh) | 2016-05-23 | 2016-06-12 | 阵列基板测试电路、显示面板及平面显示装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10235913B2 (zh) |
CN (1) | CN105810136B (zh) |
WO (1) | WO2017201773A1 (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106057111B (zh) * | 2016-08-09 | 2019-09-13 | 武汉华星光电技术有限公司 | 测试电路及液晶面板 |
CN107680521B (zh) * | 2017-09-28 | 2020-11-27 | 武汉华星光电技术有限公司 | 基于阵列基板的检测电路及显示装置 |
US10330996B2 (en) | 2017-11-07 | 2019-06-25 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Common structure of high vertical alignment pads |
CN107728393B (zh) * | 2017-11-07 | 2023-08-08 | 深圳市华星光电半导体显示技术有限公司 | Hva焊垫共用结构 |
CN107945721B (zh) | 2017-11-29 | 2021-09-28 | 武汉天马微电子有限公司 | 一种显示面板及其点屏测试方法、显示装置 |
CN109637405B (zh) * | 2018-12-05 | 2021-04-06 | 惠科股份有限公司 | 阵列基板的测试方法、装置及存储介质 |
CN110085183B (zh) * | 2019-04-23 | 2021-07-06 | 深圳市华星光电半导体显示技术有限公司 | 显示面板及其goa电路的测试方法 |
CN110379346B (zh) * | 2019-07-19 | 2022-11-15 | 武汉天马微电子有限公司 | 显示面板及其制作方法、测试方法和显示装置 |
CN110599974B (zh) * | 2019-08-28 | 2021-08-06 | 南京中电熊猫液晶显示科技有限公司 | 一种液晶显示装置 |
TWI711022B (zh) * | 2019-12-03 | 2020-11-21 | 友達光電股份有限公司 | 多工器電路及其顯示面板 |
TWI744928B (zh) * | 2020-06-02 | 2021-11-01 | 友達光電股份有限公司 | 接線檢測模組與檢測電路 |
CN111986608B (zh) * | 2020-08-20 | 2021-11-02 | 武汉华星光电技术有限公司 | 多路分配器及具有该多路分配器的显示面板 |
CN112270908B (zh) * | 2020-11-27 | 2023-07-28 | 武汉天马微电子有限公司 | 阵列基板、阵列基板母板、显示面板及其制备方法 |
CN112289243A (zh) * | 2020-11-30 | 2021-01-29 | 上海天马有机发光显示技术有限公司 | 显示面板及其制备方法、显示装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090048764A (ko) * | 2007-11-12 | 2009-05-15 | 엘지디스플레이 주식회사 | 액정표시장치 |
CN101950109A (zh) * | 2008-05-23 | 2011-01-19 | 友达光电股份有限公司 | 具测试架构的平面显示装置 |
CN102193223A (zh) * | 2011-05-30 | 2011-09-21 | 深圳市华星光电技术有限公司 | 阵列基板的检测方法及检测系统 |
CN104217671A (zh) * | 2013-06-03 | 2014-12-17 | 三星显示有限公司 | 有机发光显示面板 |
US20150008937A1 (en) * | 2013-07-05 | 2015-01-08 | Samsung Display Co., Ltd. | Testing device, and testing method for the line and one sheet using the testing device |
CN105096781A (zh) * | 2015-08-04 | 2015-11-25 | 武汉华星光电技术有限公司 | 一种面板检测电路及检测方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5733154B2 (ja) * | 2011-10-27 | 2015-06-10 | 株式会社Jvcケンウッド | 液晶表示装置 |
CN103268744B (zh) * | 2012-12-28 | 2016-12-28 | 厦门天马微电子有限公司 | 一种显示装置的测试电路 |
CN103927962B (zh) | 2013-12-31 | 2017-02-08 | 厦门天马微电子有限公司 | 一种显示装置的驱动电路及其驱动方法 |
CN104700764B (zh) * | 2014-12-03 | 2017-05-10 | 北京大学深圳研究生院 | 多路分配器、源极驱动电路和显示器 |
CN104599621A (zh) * | 2015-02-04 | 2015-05-06 | 京东方科技集团股份有限公司 | 多路复用转换器及显示装置 |
CN104835466B (zh) * | 2015-05-20 | 2017-05-17 | 京东方科技集团股份有限公司 | 扫描驱动电路、阵列基板、显示装置及驱动方法 |
CN104952420A (zh) * | 2015-07-29 | 2015-09-30 | 武汉华星光电技术有限公司 | 多路选择器及应用其的数据驱动电路和液晶显示面板 |
CN105047153A (zh) * | 2015-08-10 | 2015-11-11 | 深圳市华星光电技术有限公司 | 一种驱动电路及其显示装置 |
-
2016
- 2016-05-23 CN CN201610345572.2A patent/CN105810136B/zh active Active
- 2016-06-12 WO PCT/CN2016/085462 patent/WO2017201773A1/zh active Application Filing
- 2016-06-12 US US15/111,765 patent/US10235913B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090048764A (ko) * | 2007-11-12 | 2009-05-15 | 엘지디스플레이 주식회사 | 액정표시장치 |
CN101950109A (zh) * | 2008-05-23 | 2011-01-19 | 友达光电股份有限公司 | 具测试架构的平面显示装置 |
CN102193223A (zh) * | 2011-05-30 | 2011-09-21 | 深圳市华星光电技术有限公司 | 阵列基板的检测方法及检测系统 |
CN104217671A (zh) * | 2013-06-03 | 2014-12-17 | 三星显示有限公司 | 有机发光显示面板 |
US20150008937A1 (en) * | 2013-07-05 | 2015-01-08 | Samsung Display Co., Ltd. | Testing device, and testing method for the line and one sheet using the testing device |
CN105096781A (zh) * | 2015-08-04 | 2015-11-25 | 武汉华星光电技术有限公司 | 一种面板检测电路及检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105810136B (zh) | 2019-04-02 |
US10235913B2 (en) | 2019-03-19 |
US20180108285A1 (en) | 2018-04-19 |
CN105810136A (zh) | 2016-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017201773A1 (zh) | 阵列基板测试电路、显示面板及平面显示装置 | |
CN106066738B (zh) | 阵列基板及其驱动方法、显示面板和显示装置 | |
WO2018035995A1 (zh) | 扫描驱动电路 | |
WO2013155683A1 (zh) | 液晶显示装置及其驱动电路 | |
WO2017049661A1 (zh) | 扫描驱动电路及具有该电路的液晶显示装置 | |
WO2014019248A1 (zh) | 一种检测线路及液晶显示面板的制作方法 | |
WO2014056239A1 (zh) | 液晶显示装置及其驱动电路 | |
WO2018218718A1 (zh) | 双向移位寄存器单元、双向移位寄存器及显示面板 | |
WO2016101309A1 (zh) | 液晶面板的驱动电路及液晶显示装置 | |
US20060103620A1 (en) | Driver chip for a display device and display device having the same | |
WO2017041330A1 (zh) | 液晶显示面板及其驱动电路、制造方法 | |
WO2017028332A1 (zh) | 扫描驱动电路及具有该电路的液晶显示装置 | |
WO2018120286A1 (zh) | 一种驱动电路及显示面板 | |
TW200406613A (en) | Display device | |
WO2015043035A1 (zh) | 一种液晶显示装置、像素结构及其驱动方法 | |
WO2016095267A1 (zh) | 移位寄存器、级传栅极驱动电路及显示面板 | |
WO2018018724A1 (zh) | 扫描驱动电路及具有该电路的平面显示装置 | |
WO2017049660A1 (zh) | 扫描驱动电路及具有该电路的液晶显示装置 | |
WO2015043033A1 (zh) | 一种阵列基板及液晶显示面板 | |
WO2017028350A1 (zh) | 液晶显示装置及其goa扫描电路 | |
WO2017049662A1 (zh) | 扫描驱动电路及具有该电路的液晶显示装置 | |
WO2017015973A1 (zh) | 一种阵列基板、显示面板以及显示装置 | |
WO2013177790A1 (zh) | 阵列基板及其制备方法和液晶显示面板 | |
WO2020024530A1 (zh) | 驱动装置、显示装置及液晶显示器 | |
WO2020133646A1 (zh) | 显示装置驱动系统及显示装置驱动方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 15111765 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16902762 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16902762 Country of ref document: EP Kind code of ref document: A1 |