WO2017199639A1 - Lds用熱硬化性樹脂組成物、樹脂成形品および三次元成形回路部品 - Google Patents

Lds用熱硬化性樹脂組成物、樹脂成形品および三次元成形回路部品 Download PDF

Info

Publication number
WO2017199639A1
WO2017199639A1 PCT/JP2017/014663 JP2017014663W WO2017199639A1 WO 2017199639 A1 WO2017199639 A1 WO 2017199639A1 JP 2017014663 W JP2017014663 W JP 2017014663W WO 2017199639 A1 WO2017199639 A1 WO 2017199639A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
resin composition
lds
group
inorganic filler
Prior art date
Application number
PCT/JP2017/014663
Other languages
English (en)
French (fr)
Inventor
和布浦 徹
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to EP17799071.0A priority Critical patent/EP3460005B1/en
Priority to MYPI2018001862A priority patent/MY173559A/en
Priority to CN202310032342.0A priority patent/CN116023762A/zh
Priority to CN201780030491.6A priority patent/CN109153858A/zh
Priority to JP2017536364A priority patent/JP6265308B1/ja
Priority to US16/302,299 priority patent/US11174402B2/en
Priority to KR1020187034762A priority patent/KR102040766B1/ko
Publication of WO2017199639A1 publication Critical patent/WO2017199639A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/04Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of vacuum tubes only, with positive feedback
    • H03K3/05Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of vacuum tubes only, with positive feedback using means other than a transformer for feedback
    • H03K3/06Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of vacuum tubes only, with positive feedback using means other than a transformer for feedback using at least two tubes so coupled that the input of one is derived from the output of another, e.g. multivibrator
    • H03K3/10Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of vacuum tubes only, with positive feedback using means other than a transformer for feedback using at least two tubes so coupled that the input of one is derived from the output of another, e.g. multivibrator monostable
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0236Plating catalyst as filler in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0239Coupling agent for particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light

Definitions

  • the present invention relates to a thermosetting resin composition for LDS, a resin molded product, and a three-dimensional molded circuit component.
  • Examples of the resin material used in LASER DIRECT STRUCTURING (LDS) include a fiber reinforced resin material in which fibers are impregnated with a thermoplastic resin composition containing an LDS additive.
  • a thermoplastic resin composition containing an LDS additive As this type of technology, there is one described in Patent Document 1. According to this document, a polyamide resin is used as the thermoplastic resin.
  • thermosetting resin composition for LDS using a thermosetting resin has room for improvement in the characteristic with plating.
  • thermosetting resin composition for LDS used for the formation of LASER DIRECT STRUCTURING (LDS), A thermosetting resin; An inorganic filler; A non-conductive metal compound that forms a metal nucleus upon irradiation with active energy rays; A coupling agent, The non-conductive metal compound is Spinel metal oxide, One or more selected from the group consisting of a metal oxide selected from Group 3 to Group 12 of the Periodic Table and the group having two or more adjacent transition metal elements, and a tin-containing oxide Including There is provided a thermosetting resin composition for LDS, wherein the coupling agent contains one or more selected from the group consisting of mercaptosilane, aminosilane, and epoxysilane.
  • thermosetting resin composition for LDS a resin molded article provided with a cured product of the above-described thermosetting resin composition for LDS is provided.
  • the resin molded product having a three-dimensional structure; There is provided a three-dimensional molded circuit component comprising a three-dimensional circuit formed on the surface of the resin molded product.
  • thermosetting resin composition for LDS excellent in properties with plating a resin molded product and a three-dimensional molded circuit component using the same.
  • thermosetting resin composition of the embodiment of the present invention is an LDS thermosetting resin composition used for LDS.
  • the LDS (LASER DIRECT STRUCTURING (Laser Direct Structuring)) is one of the manufacturing methods of three-dimensional molded circuit parts (MID), and is a resin molded product containing an LDS additive by irradiation with active energy rays.
  • a metal nucleus is generated on the surface of the metal, and a plating pattern (wiring) can be formed in the energy ray irradiation region by, for example, electroless plating using the metal nucleus as a seed.
  • the thermosetting resin composition of the present embodiment includes a thermosetting resin, an inorganic filler, a non-conductive metal compound that forms a metal nucleus by irradiation with active energy rays, and a coupling agent. it can.
  • the non-conductive metal compound acts as the LDS additive and is selected from (i) spinel type metal oxide and (ii) groups 3 to 12 of the periodic table. And one or more selected from the group consisting of (iii) a tin-containing oxide and a metal oxide having two or more transition metal elements adjacent to the group.
  • the coupling agent may contain one or more selected from the group consisting of mercaptosilane, aminosilane, and epoxysilane.
  • the non-conductive metal compound is not particularly limited as long as it can form a metal nucleus by irradiation with active energy rays.
  • active energy rays such as a YAG laser having an absorbable wavelength region
  • the metal nucleus is activated (for example, reduced) )
  • Metal nuclei capable of metal plating are considered to be generated.
  • a seed region having a metal nucleus capable of metal plating is formed on the irradiated surface. It is formed. By using the obtained seed region, it is possible to form a plating pattern such as a circuit on the surface of the cured product of the thermosetting resin composition.
  • thermosetting resin composition by selecting an appropriate coupling agent in the thermosetting resin composition, it is possible to improve the properties with plating in the cured product of the thermosetting resin composition.
  • thermosetting resin composition of the present embodiment will be described.
  • thermosetting resin composition of the present embodiment contains a thermosetting resin.
  • thermosetting resin include one or two selected from the group consisting of, for example, epoxy resins, phenol resins, oxetane resins, (meth) acrylate resins, unsaturated polyester resins, diallyl phthalate resins, and maleimide resins.
  • epoxy resins for example, epoxy resins, phenol resins, oxetane resins, (meth) acrylate resins, unsaturated polyester resins, diallyl phthalate resins, and maleimide resins.
  • an epoxy resin from the viewpoint of improving curability, storage stability, heat resistance, moisture resistance, and chemical resistance.
  • the epoxy resin contained in the thermosetting resin monomers, oligomers and polymers generally having two or more epoxy groups in one molecule can be used, and the molecular weight and molecular structure are not particularly limited.
  • the epoxy resin is, for example, a biphenyl type epoxy resin; a bisphenol type epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, or a tetramethylbisphenol F type epoxy resin; a stilbene type epoxy resin; a phenol novolac type epoxy.
  • novolak type epoxy resin such as cresol novolak type epoxy resin
  • polyfunctional epoxy resin such as trisphenol type epoxy resin exemplified by triphenolmethane type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, etc .
  • having phenylene skeleton Phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin having phenylene skeleton, phenol aralkyl type epoxy resin having biphenylene skeleton, bif Phenol aralkyl type epoxy resins such as naphthol aralkyl type epoxy resins having a nylene skeleton
  • naphthol type epoxy resins such as dihydroxynaphthalene type epoxy resins and epoxy resins obtained by glycidyl etherification of dihydroxynaphthalene dimers; triglycidyl isocyanurate; Triazine nucleus-containing epoxy resins such as monoallyl diglycidyl isocyan
  • the epoxy resin may include one or more selected from the group consisting of orthocresol novolac type epoxy resins, phenol aralkyl resin type epoxy resins having a biphenylene skeleton, and triphenylmethane type epoxy resins.
  • the lower limit of the content of the thermosetting resin is preferably 1% by mass or more, more preferably 2% by mass or more, based on the entire thermosetting resin composition. It is particularly preferably 5% by mass or more. Thereby, the fluidity
  • the upper limit of the content of the thermosetting resin is, for example, preferably 15% by mass or less, more preferably 14% by mass or less, with respect to the entire thermosetting resin composition. It is particularly preferable that the content is not more than mass%. Thereby, moisture resistance reliability and reflow resistance can be improved.
  • thermosetting resin in such a range.
  • content with respect to the whole thermosetting resin composition refers to content with respect to the whole solid content except the solvent of a thermosetting resin composition, when a solvent is included.
  • the solid content of the thermosetting resin composition refers to the non-volatile content in the thermosetting resin composition and refers to the remainder excluding volatile components such as water and solvent.
  • the thermosetting resin composition of the present embodiment can contain a curing agent.
  • the curing agent can be roughly classified into three types, for example, a polyaddition type curing agent, a catalyst type curing agent, and a condensation type curing agent. These may be used alone or in combination of two or more.
  • polyaddition type curing agent used as the curing agent examples include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylenediamine (MXDA), diaminodiphenylmethane (DDM), and m-phenylene.
  • aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylenediamine (MXDA), diaminodiphenylmethane (DDM), and m-phenylene.
  • aromatic polyamines such as diamine (MPDA) and diaminodiphenylsulfone (DDS)
  • polyamine compounds including dicyandiamide (DICY) and organic acid dihydrazide hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride (MTHPA), etc.
  • Acid anhydrides including aromatic acid anhydrides such as alicyclic acid anhydrides, trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenone tetracarboxylic acid (BTDA); Phenolic resin-based curing agents such as polyethylene resins, polyvinylphenols, aralkyl-type phenolic resins; polymercaptan compounds such as polysulfides, thioesters, and thioethers; isocyanate compounds such as isocyanate prepolymers and blocked isocyanates; organic acids such as carboxylic acid-containing polyester resins One type or two or more types selected from the group consisting of:
  • BDMA benzyldimethylamine
  • DMP-30 2,4,6-trisdimethylaminomethylphenol
  • 2-methylimidazole, 2 Imidazole compounds such as ethyl-4-methylimidazole (EMI24)
  • EMI24 ethyl-4-methylimidazole
  • Lewis acids such as BF3 complexes.
  • the condensation type curing agent used as the curing agent is, for example, one or two types selected from the group consisting of a resol type phenol resin; a urea resin such as a methylol group-containing urea resin; and a melamine resin such as a methylol group-containing melamine resin. The above can be included.
  • a phenol resin-based curing agent from the viewpoint of improving the balance of flame resistance, moisture resistance, electrical characteristics, curability, storage stability, and the like.
  • the phenol resin-based curing agent for example, monomers, oligomers and polymers generally having two or more phenolic hydroxyl groups in one molecule can be used, and the molecular weight and molecular structure are not particularly limited.
  • the phenol resin-based curing agent used as the curing agent of the present embodiment include novolak-type phenol resins such as phenol novolak resin, cresol novolak resin, and bisphenol novolak; and polyfunctional phenols such as polyvinylphenol and triphenolmethane-type phenol resin.
  • Modified phenol resin such as terpene modified phenol resin and dicyclopentadiene modified phenol resin
  • Phenol aralkyl type phenol resin such as phenol aralkyl resin having phenylene skeleton and / or biphenylene skeleton, naphthol aralkyl resin having phenylene and / or biphenylene skeleton
  • One or more selected from the group consisting of bisphenol compounds such as bisphenol A and bisphenol F may be included.
  • a novolak type phenol resin, a polyfunctional type phenol resin, and a phenol aralkyl type phenol resin are included from a viewpoint of suppressing the curvature of a molded object.
  • a phenol novolak resin, a phenol aralkyl resin having a biphenylene skeleton, and a triphenylmethane type phenol resin modified with formaldehyde can be preferably used.
  • the lower limit of the content of the curing agent is, for example, preferably 0.5% by mass or more, and more preferably 1% by mass or more, with respect to the entire thermosetting resin composition. It is particularly preferably 1.5% by mass or more.
  • liquidity can be implement
  • the upper limit of the content of the curing agent is preferably 9% by mass or less, more preferably 8% by mass or less, and more preferably 7% by mass with respect to the entire thermosetting resin composition. The following is particularly preferable. Thereby, the moisture resistance reliability and reflow resistance of an electronic component can be improved. Moreover, it is possible to contribute to suppression of the curvature of the molded object obtained by controlling content of a hardening
  • the thermosetting resin composition of the present embodiment contains a nonconductive metal compound.
  • the non-conductive metal compound include, for example, a spinel metal oxide, selected from Group 3 to Group 12 of the periodic table, and two or more transition metal elements adjacent to the group.
  • One or more selected from the group consisting of metal oxides and tin-containing oxides can be included.
  • the spinel type structure is one of the typical crystal structure types found in the compound of AB 2 O 4 type (A and B are metal elements) as a double oxide. is there.
  • a and B are metal elements
  • Either a forward spinel structure or a reverse spinel structure (B (AB) O 4 ) in which A and B are partially exchanged may be used, but a forward spinel structure can be more preferably used.
  • a in the forward spinel structure may be copper.
  • the metal atom constituting the spinel metal oxide for example, copper or chromium can be used. That is, the nonconductive metal compound can contain a spinel type metal oxide containing copper or chromium. For example, from the viewpoint of adhesion with a copper plating pattern, copper can be used as the metal atom.
  • the above metal atoms include trace amounts of metal atoms such as antimony, tin, lead, indium, iron, cobalt, nickel, zinc, cadmium, silver, bismuth, arsenic, manganese, magnesium, and calcium. You may contain. These trace metal atoms may exist as oxides. Moreover, content of a trace metal atom can be 0.001 mass% or less with respect to the whole metal atom in a metal oxide, respectively.
  • the spinel type metal oxide has high thermal stability and can have durability in an acidic or alkaline aqueous metallization bath.
  • the spinel-type metal oxide is an unirradiated region on the surface of the cured product of the thermosetting resin composition in a high oxide state, for example, by appropriately controlling the dispersibility of the thermosetting resin composition.
  • An example of the above spinel type metal oxide is described in, for example, Japanese Patent No. 3881338.
  • the metal oxide having a transition metal element is a metal oxide selected from Group 3 to Group 12 of the periodic table and having two or more transition metal elements adjacent to the group.
  • the metal belonging to the transition metal element can be expressed as containing an n-group metal and an n + 1 group metal in the periodic table.
  • these metal oxides may be used alone or in combination of two or more.
  • Examples of metals belonging to Group n of the periodic table include Group 3 (scandium, yttrium), Group 4 (titanium, zirconium, etc.), Group 5 (vanadium, niobium, etc.), Group 6 (chromium, molybdenum, etc.), 7 Group (such as manganese), Group 8 (such as iron and ruthenium), Group 9 (such as cobalt, rhodium, and iridium), Group 10 (nickel, palladium, platinum), Group 11 (such as copper, silver, and gold), Group 12 ( Zinc, cadmium, etc.) and group 13 (aluminum, gallium, indium, etc.).
  • Examples of the metal of group n + 1 of the periodic table include group 4 (titanium, zirconium, etc.), group 5 (vanadium, niobium, etc.), group 6 (chromium, molybdenum, etc.), group 7 (manganese, etc.), group 8 (iron). , Ruthenium, etc.), group 9 (cobalt, rhodium, iridium, etc.), group 10 (nickel, palladium, platinum), group 11 (copper, silver, gold, etc.), group 12 (zinc, cadmium, etc.), group 13 (aluminum) , Gallium, indium, etc.).
  • An example of the metal oxide having the transition metal element as described above is described in, for example, Japanese Patent No. 3881338.
  • the tin-containing oxide is a metal oxide containing at least tin.
  • Antimony may be used as the metal atom constituting the tin-containing oxide in addition to tin.
  • Such a tin-containing oxide can contain tin oxide and antimony oxide.
  • 90% by mass or more of the metal component contained in the tin-containing oxide may be tin, and 5% by mass or more may be antimony.
  • This tin-containing oxide may further contain lead and / or copper as a metal component.
  • 90% by mass or more is tin, 5 to 9% by mass is antimony, and in the range of 0.01 to 0.1% by mass.
  • Such tin-containing oxides can contain, for example, tin oxide, antimony oxide, lead oxide and / or copper oxide.
  • the said tin containing oxide may contain the trace metal atom illustrated by the spinel type metal oxide.
  • the tin-containing oxide may be used in combination with the spinel metal oxide or the metal oxide having the transition metal element.
  • the lower limit of the content of the nonconductive metal compound is, for example, 3% by mass or more, preferably 5% by mass or more, and more preferably 8% by mass or more, with respect to the entire thermosetting resin composition. It is. Thereby, in the hardened
  • the upper limit of content of the said nonelectroconductive metal compound is 20 mass% or less with respect to the whole thermosetting resin composition, for example, Preferably it is 18 mass% or less, More preferably, it is 15 mass % Or less.
  • thermosetting resin composition in the hardened
  • thermosetting resin composition of the present embodiment may contain at least one organic heat-stable metal chelate complex salt in addition to the above non-conductive metal compound.
  • the thermosetting resin composition of the present embodiment can contain an inorganic filler.
  • the inorganic filler include one or two selected from the group consisting of fused silica such as fused crushed silica and fused spherical silica, silica such as crystalline silica, alumina, aluminum hydroxide, silicon nitride, and aluminum nitride. More than one type of inorganic filler can be included. Among these, as the inorganic filler, silica such as fused crushed silica, fused spherical silica, and crystalline silica is preferably used, and fused spherical silica is more preferably used. By using a spherical inorganic filler, the dispersibility of the thermosetting resin composition can be improved.
  • the upper limit of the average particle diameter D50 of the inorganic filler is, for example, 30 ⁇ m or less, preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the lower limit value of the average particle diameter D50 of the inorganic filler is not particularly limited, but is, for example, 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the upper limit value of D90 of the inorganic filler is, for example, 80 ⁇ m or less, preferably 70 ⁇ m or less, and more preferably 60 ⁇ m or less.
  • the lower limit value of D90 of the inorganic filler is not particularly limited, but may be, for example, 1 ⁇ m or more, 3 ⁇ m or more, 10 ⁇ m or more, or 20 ⁇ m or more.
  • liquidity of a thermosetting resin composition can be made favorable, and it becomes possible to improve a moldability more effectively.
  • the upper limit of the particle size distribution width (D90 / D50) of the inorganic filler is, for example, 10 or less, preferably 9 or less, and more preferably 8 or less. Thereby, since the variation in the surface roughness of the hardened
  • D50 and D90 of the inorganic filler can be measured by measuring the particle size distribution on a volume basis using a commercially available laser diffraction particle size distribution measuring device (for example, SALD-7000, manufactured by Shimadzu Corporation). it can.
  • the obtained median diameter (D50) can be an average particle diameter.
  • thermosetting resin composition of the present embodiment can contain a curing accelerator.
  • a curing accelerator what is necessary is just to accelerate
  • the curing accelerator is a phosphorus atom-containing compound such as an organic phosphine, a tetra-substituted phosphonium compound, a phosphobetaine compound, an adduct of a phosphine compound and a quinone compound, an adduct of a phosphonium compound and a silane compound; , 8-diazabicyclo [5.4.0] undecene-7, benzyldimethylamine, 2-methylimidazole and the like, and selected from nitrogen-containing compounds such as amidine and tertiary amine, and quaternary salts of the amidine and amine One type or two or more types can be included.
  • a phosphorus atom-containing compound such as an organic phosphine, a tetra-substituted phosphonium compound, a phosphobetaine compound, an adduct of a phosphine compound and a quinone compound, an adduct of
  • a phosphorus atom containing compound is included from a viewpoint of improving curability.
  • it has latent properties such as tetra-substituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, and adducts of phosphonium compounds and silane compounds. It is more preferable to include those.
  • Examples of the organic phosphine that can be used in the thermosetting resin composition of the present embodiment include a first phosphine such as ethylphosphine and phenylphosphine; a second phosphine such as dimethylphosphine and diphenylphosphine; trimethylphosphine, triethylphosphine, and tributyl. Third phosphine such as phosphine and triphenylphosphine can be used.
  • thermosetting resin composition of the present embodiment examples include compounds represented by the following general formula (6).
  • P represents a phosphorus atom.
  • R 4 , R 5 , R 6 and R 7 represent an aromatic group or an alkyl group.
  • A is selected from a hydroxyl group, a carboxyl group, and a thiol group.
  • An anion of an aromatic organic acid having at least one functional group in the aromatic ring, AH is an aromatic having at least one functional group selected from a hydroxyl group, a carboxyl group, and a thiol group in the aromatic ring.
  • Represents an organic acid, where x and y are numbers from 1 to 3, z is a number from 0 to 3, and x y.
  • the compound represented by General formula (6) is obtained as follows, for example, it is not limited to this. First, a tetra-substituted phosphonium halide, an aromatic organic acid and a base are mixed in an organic solvent and mixed uniformly to generate an aromatic organic acid anion in the solution system. Then, when water is added, the compound represented by the general formula (6) can be precipitated.
  • R 4 , R 5 , R 6 and R 7 bonded to the phosphorus atom are phenyl groups
  • AH is a compound having a hydroxyl group in an aromatic ring, that is, phenols.
  • A is preferably an anion of the phenol.
  • phenols examples include monocyclic phenols such as phenol, cresol, resorcin, and catechol, condensed polycyclic phenols such as naphthol, dihydroxynaphthalene, and anthraquinol, bisphenols such as bisphenol A, bisphenol F, and bisphenol S, Examples include polycyclic phenols such as phenylphenol and biphenol.
  • thermosetting resin composition of the present embodiment examples include compounds represented by the following general formula (7).
  • P represents a phosphorus atom
  • R 8 represents an alkyl group having 1 to 3 carbon atoms
  • R 9 represents a hydroxyl group
  • f represents a number of 0 to 5
  • g represents 0 to A number of 3.
  • the compound represented by the general formula (7) is obtained, for example, as follows. First, it is obtained through a step of bringing a triaromatic substituted phosphine, which is a third phosphine, into contact with a diazonium salt and replacing the triaromatic substituted phosphine with a diazonium group of the diazonium salt.
  • a triaromatic substituted phosphine which is a third phosphine
  • the present invention is not limited to this.
  • thermosetting resin composition of the present embodiment examples include compounds represented by the following general formula (8).
  • P represents a phosphorus atom.
  • R 10 , R 11 and R 12 represent an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms, and are the same as each other.
  • R 13 , R 14 and R 15 each represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms and may be the same or different from each other, and R 14 and R 15 are bonded to each other. And may have a circular structure.
  • Examples of the phosphine compound used as an adduct of a phosphine compound and a quinone compound include an aromatic ring such as triphenylphosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, trinaphthylphosphine, and tris (benzyl) phosphine.
  • aromatic ring such as triphenylphosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, trinaphthylphosphine, and tris (benzyl) phosphine.
  • Those having a substituent or a substituent such as an alkyl group and an alkoxyl group are preferred, and examples of the substituent such as an alkyl group and an alkoxyl group include those having 1 to 6 carbon atoms. From the viewpoint of availability, triphenyl
  • examples of the quinone compound used for the adduct of the phosphine compound and the quinone compound include benzoquinone and anthraquinones, and among them, p-benzoquinone is preferable from the viewpoint of storage stability.
  • the adduct can be obtained by contacting and mixing in a solvent capable of dissolving both organic tertiary phosphine and benzoquinone.
  • the solvent is preferably a ketone such as acetone or methyl ethyl ketone, which has low solubility in the adduct.
  • the present invention is not limited to this.
  • R 10 , R 11 and R 12 bonded to the phosphorus atom are phenyl groups, and R 13 , R 14 and R 15 are hydrogen atoms, ie, 1,
  • a compound in which 4-benzoquinone and triphenylphosphine are added is preferable in that it reduces the thermal elastic modulus of the cured product of the thermosetting resin composition.
  • thermosetting resin composition of the present embodiment examples include compounds represented by the following general formula (9).
  • R 16 , R 17 , R 18 and R 19 are each an organic group having an aromatic ring or a heterocyclic ring, or an aliphatic group. Represents a group, which may be the same or different from each other, wherein R 20 is an organic group bonded to the groups Y 2 and Y 3.
  • R 21 represents the groups Y 4 and Y 5 ; Y 2 and Y 3 represent a group formed by releasing a proton from a proton donating group, and groups Y 2 and Y 3 in the same molecule are bonded to a silicon atom to form a chelate structure.
  • Y 4 and Y 5 represent a group formed by releasing a proton from a proton donating group, and groups Y 4 and Y 5 in the same molecule are combined with a silicon atom to form a chelate structure.
  • R 20, and R 21 are mutually Or different mere, Y 2, Y 3, Y 4 and Y 5 may .Z 1 also being the same or different organic group having an aromatic ring or a heterocyclic ring or fat, A group.
  • examples of R 16 , R 17 , R 18 and R 19 include a phenyl group, a methylphenyl group, a methoxyphenyl group, a hydroxyphenyl group, a naphthyl group, a hydroxynaphthyl group, a benzyl group, and a methyl group.
  • alkyl group such as phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, hydroxynaphthyl group, alkoxy group, etc.
  • An aromatic group having a substituent such as a hydroxyl group or an unsubstituted aromatic group is more preferable.
  • R 20 is an organic group bonded to Y 2 and Y 3.
  • R 21 is an organic group that binds to groups Y 4 and Y 5 .
  • Y 2 and Y 3 are groups formed by proton-donating groups releasing protons, and groups Y 2 and Y 3 in the same molecule are combined with a silicon atom to form a chelate structure.
  • Y 4 and Y 5 are groups formed by proton-donating groups releasing protons, and groups Y 4 and Y 5 in the same molecule are combined with a silicon atom to form a chelate structure.
  • the groups R 20 and R 21 may be the same or different from each other, and the groups Y 2 , Y 3 , Y 4 , and Y 5 may be the same or different from each other.
  • the proton donor releases two protons.
  • the proton donor is preferably an organic acid having at least two carboxyl groups or hydroxyl groups in the molecule, and further has a carboxyl group or hydroxyl group on the adjacent carbon constituting the aromatic ring.
  • An aromatic compound having at least two is preferable, and an aromatic compound having at least two hydroxyl groups on adjacent carbons constituting the aromatic ring is more preferable.
  • catechol pyrogallol, 1,2-dihydroxynaphthalene, 2,3-dihydroxy Naphthalene, 2,2′-biphenol, 1,1′-bi-2-naphthol, salicylic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy Roxy-2-naphthoic acid, chloranilic acid, tannic acid, 2-hydroxybenzyl alcohol, 1,2-cyclohexanediol, 1,2-propanediol, glycerin, etc., among these, catechol, 1,2- Dihydroxynaphthalene and 2,3-dihydroxynaphthalene are more preferable.
  • Z 1 in the general formula (9) represents an organic group or an aliphatic group having an aromatic ring or a heterocyclic ring, and specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, Aliphatic hydrocarbon groups such as hexyl group and octyl group, aromatic hydrocarbon groups such as phenyl group, benzyl group, naphthyl group and biphenyl group, glycidyloxy groups such as glycidyloxypropyl group, mercaptopropyl group and aminopropyl group Reactive groups such as mercapto groups, alkyl groups having amino groups, and vinyl groups.
  • methyl groups, ethyl groups, phenyl groups, naphthyl groups, and biphenyl groups are preferred from the viewpoint of thermal stability. More preferable.
  • a silane compound such as phenyltrimethoxysilane and a proton donor such as 2,3-dihydroxynaphthalene are added to a flask containing methanol, and then dissolved.
  • Sodium methoxide-methanol solution is added dropwise with stirring.
  • crystals are precipitated. The precipitated crystals are filtered, washed with water, and vacuum dried to obtain an adduct of a phosphonium compound and a silane compound.
  • the content of the curing accelerator is preferably 0.1% by mass or more, more preferably 0.15% by mass or more, based on the entire thermosetting resin composition. It is particularly preferably 25% by mass or more.
  • content of a hardening accelerator is 1 mass% or less with respect to the whole thermosetting resin composition, and it is more preferable that it is 0.8 mass% or less.
  • thermosetting resin composition of this embodiment can contain a coupling agent.
  • the coupling agent may include one or more selected from the group consisting of mercaptosilane, aminosilane, and epoxysilane.
  • Examples of the epoxy silane include ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltri And methoxysilane.
  • Examples of the aminosilane include phenylaminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ .
  • aminoethyl ⁇ -aminopropylmethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane N- (6-aminohexyl) 3-aminopropyltrimethoxysilane, N- (3- (trimethoxysilylpropyl) -1,3-benzenedimethanane, etc.
  • the primary amino moiety of aminosilane is a ketone.
  • aminosilane coupling agent As the aminosilane may have a secondary amino group.
  • the mercaptosilane include ⁇ -mercaptopropyltrimethoxysilane and 3-mercaptopropylmethyldimethoxysilane, bis (3-triethoxysilylpropyl) tetrasulfide, and bis (3-triethoxysilylpropyl) disulfide.
  • silane coupling agents that exhibit the same function as a mercaptosilane coupling agent by thermal decomposition. These silane coupling agents may be preliminarily hydrolyzed.
  • silane coupling agents may be used alone or in combination of two or more.
  • the moldability is optimized by optimizing the viscosity of the thermosetting resin composition. Can be improved.
  • Mercaptosilane is preferable from the viewpoint of continuous moldability, secondary aminosilane is preferable from the viewpoint of fluidity, and epoxysilane is preferable from the viewpoint of adhesion.
  • thermosetting resin composition As a lower limit of content of the said coupling agent, 0.01 mass% or more is preferable with respect to the whole thermosetting resin composition, More preferably, it is 0.05 mass% or more, Most preferably, it is 0.1 mass. % Or more. Thereby, since the flow flow length of a thermosetting resin composition can be lengthened, injection moldability can be improved.
  • an upper limit of content of a coupling agent 1 mass% or less is preferable with respect to the whole thermosetting resin composition, More preferably, it is 0.8 mass% or less, Most preferably, it is 0.6 mass. % Or less. Thereby, the water absorption of the hardened
  • thermosetting resin composition of the present embodiment may contain additives such as a mold release agent, a flame retardant, an ion scavenger, a colorant, a low stress agent, and an antioxidant as necessary. it can. These may be used alone or in combination of two or more.
  • the mold release agent is, for example, one or two kinds selected from natural waxes such as carnauba wax, synthetic waxes such as montanic ester wax and polyethylene oxide wax, higher fatty acids such as zinc stearate and metal salts thereof, and paraffin.
  • the flame retardant can include, for example, one or more selected from aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, and phosphazene.
  • the ion scavenger may contain one or more selected from hydrotalcites or a hydrous oxide of an element selected from magnesium, aluminum, bismuth, titanium, and zirconium.
  • the colorant may include one or more selected from carbon black, bengara, and titanium oxide.
  • the low stress agent may include one or more selected from silicone compounds such as polybutadiene compounds, acrylonitrile butadiene copolymer compounds, silicone oils, and silicone rubbers.
  • thermosetting resin composition of the present embodiment can be configured not to contain carbon such as carbon black used as the colorant. Thereby, the characteristic with plating can be improved.
  • thermosetting resin composition of the present embodiment will be described.
  • the lower limit of the spiral flow flow length of the thermosetting resin composition of the present embodiment is, for example, 50 cm or more, preferably 55 cm or more, and more preferably 60 cm or more. Thereby, the fluidity
  • the upper limit value of the spiral flow flow length is not particularly limited, but may be, for example, 200 cm or less.
  • the spiral flow flow length can be measured according to the EMMI-1-66 method under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a holding time of 120 seconds.
  • thermosetting resin composition of this embodiment As a manufacturing method of the thermosetting resin composition of this embodiment, a mixture is obtained by mixing each component of the said thermosetting resin composition by a well-known means, for example. Furthermore, a kneaded product is obtained by melt-kneading the mixture.
  • a kneading method for example, an extrusion kneader such as a single-screw kneading extruder, a biaxial kneading extruder, or a roll kneader such as a mixing roll can be used, but a twin-screw kneading extruder is used. It is preferable.
  • the kneaded product After cooling, the kneaded product can be made into a predetermined shape.
  • thermosetting resin composition of this embodiment you may have predetermined
  • a thermosetting resin composition suitable for known molding methods such as transfer molding, injection molding, and compression molding can be obtained.
  • the granular thermosetting resin composition is a pulverized product obtained by pulverizing the obtained kneaded product, and the granular thermosetting resin composition is a powder of the thermosetting resin composition.
  • thermosetting resin composition (Powdered kneaded product) Agglomerated solids or granules obtained by a known granulation method, tablet-like thermosetting resin composition is a thermosetting resin composition at high pressure It is a shaped body shaped to have a predetermined shape by tableting, and the sheet-like thermosetting resin composition is, for example, a sheet-shaped or a roll-curable thermosetting resin composition It means a resin film made of a material.
  • the thermosetting resin composition in the form of powder, granules, tablets or sheets may be in a semi-cured state (B stage state).
  • thermosetting resin composition in the present embodiment examples include mold formation such as injection molding and transfer molding. By using such a molding method, it is possible to produce a resin molded product including a cured product of the thermosetting resin composition.
  • the shape of the resin molded product in the present embodiment is not particularly limited as long as it has a three-dimensional structure, but may have a curved surface in part.
  • a three-dimensional molded circuit component (MOLDED INTERCONNECT DEVICE (hereinafter referred to as “MID”)) has a three-dimensional shape, the above-mentioned resin molded product, and a three-dimensional circuit.
  • a three-dimensional resin This is a part formed with a metal film on the surface of a molded product.
  • the three-dimensional molded circuit component can include, for example, a resin molded product having a three-dimensional structure and a three-dimensional circuit formed on the surface of the resin molded product.
  • LDS of this embodiment is one of the manufacturing methods of MID, and it is applied to the surface of the cured product (three-dimensional structure resin molded product) of the thermosetting resin composition containing the LDS additive by active energy rays.
  • a metal nucleus is generated, and a plating pattern (wiring) can be formed in the energy beam irradiation region by, for example, electroless plating treatment using the metal nucleus as a seed.
  • the manufacturing process of MID is based on the production of a thermosetting resin composition used for LDS, the molding of the thermosetting resin composition, the irradiation of active energy rays on the obtained resin molded product, and the plating treatment. Circuit formation can be included. A surface cleaning step may be added before the plating process.
  • a laser can be used as the active energy ray.
  • the laser can be appropriately selected from known lasers such as YAG laser, excimer laser, and electromagnetic radiation, and YGA laser is preferable.
  • the wavelength of the laser is not particularly defined, but is, for example, 200 nm to 12000 nm. Among these, preferably 248 nm, 308 nm, 355 nm, 532 nm, 1064 nm or 10600 nm may be used.
  • plating treatment either electroplating or electroless plating may be used.
  • a circuit (plating layer) can be formed by performing a plating process on the region irradiated with the laser.
  • the plating solution is not particularly defined, and a known plating solution can be widely used.
  • a plating solution in which copper, nickel, gold, silver, and palladium are mixed as a metal component may be used.
  • the resin molded product (cured product of the thermosetting resin composition) is not limited to the final product, and may include composite materials and various parts.
  • the resin molded product can be used as a component for portable electronic devices, vehicles and medical devices, electronic components including other electric circuits, semiconductor sealing materials, and composite materials for forming these.
  • the MID can be applied to a mobile phone, a smartphone, a built-in antenna, a sensor, or a semiconductor device.
  • thermosetting resin composition The raw materials having the blending amounts shown in Tables 1 to 3 below were mixed using a mixer at room temperature, and then roll kneaded at 70 to 100 ° C. Subsequently, after cooling the obtained kneaded material, this was grind
  • Thermosetting resin 1 phenol aralkyl resin type epoxy resin having biphenylene skeleton (Nippon Kayaku Co., Ltd., NC3000, epoxy equivalent 276 g / eq, softening point 58 ° C.)
  • Thermosetting resin 2 Orthocresol novolac type epoxy resin (“EOCN1020” manufactured by Nippon Kayaku Co., Ltd., softening point 55 ° C., epoxy equivalent 196, chloride ion amount 5.0 ppm)
  • Thermosetting resin 3 Triphenylmethane type epoxy resin (manufactured by Mitsubishi Chemical Corporation, 1032H-60, epoxy equivalent 171 g / eq, softening point 60 ° C.)
  • Thermosetting resin 4 biphenyl type epoxy resin (Japan Epoxy Resin Co., Ltd., YX4000HK, softening point 105 ° C., epoxy equivalent 193) (Curing agent) Curing agent 1:
  • Curing agent 3 Triphenylmethane type phenol resin modified with formaldehyde (HE910-20, manufactured by Air Water Co., Ltd.) (Inorganic filler)
  • Inorganic filler 1 fused spherical silica (average particle diameter D50: 3.4 ⁇ m, D90: 6.8 ⁇ m, D90 / D50: 2.0, particles exceeding 12 ⁇ m, 0.5% by mass or less, manufactured by Tatsumori Co., Ltd., MUF-4V)
  • Inorganic filler 2 fused spherical silica (average particle size D50: 0.9 ⁇ m, D90: 1.6 ⁇ m, D90 / D50: 1.8, manufactured by Admatechs, SD2500-SQ)
  • Inorganic filler 3 fused spherical silica (average particle size D50: 6.2 ⁇ m, D90: 20.4
  • Curing accelerator 2 Tetraphenylphosphonium • 4,4′-sulfonyldiphenolate represented by the following structural formula (14) obtained by the following production method [Method of synthesizing curing accelerator 2] A separable flask equipped with a stirrer was charged with 37.5 g (0.15 mol) of 4,4′-bisphenol S and 100 ml of methanol, dissolved by stirring at room temperature, and 4.0 g of sodium hydroxide in 50 ml of methanol in advance while stirring. A solution in which (0.1 mol) was dissolved was added.
  • Coupling agent 1 phenylaminopropyltrimethoxysilane (CF4083 manufactured by Toray Dow Corning Co., Ltd.)
  • Coupling agent 2 ⁇ -glycidoxypropyltrimethoxysilane (GPS-M manufactured by Chisso Corporation)
  • Coupling agent 3 ⁇ -mercaptopropyltrimethoxysilane (S810 manufactured by Chisso Corporation)
  • Carbon 1 Carbon black (trade name carbon # 5 manufactured by Mitsubishi Chemical Corporation)
  • Mold release agent 1 Glycerin trimontanate (manufactured by Clariant Japan Co., Ltd., Recolbe WE4)
  • Silicone oil 1 Silicone oil (FZ-3730 manufactured by Toray Dow Corning Co., Ltd.)
  • Low stress agent 1 epoxidized polybutadiene (JP-200, epoxidized polybutadiene manufactured by Nippon Soda, Td5: 245 ° C) Flame retardant 1: Aluminum
  • thermosetting resin composition of Comparative Example 1 was produced in the same manner as in Example 1 except that the coupling agent was not added.
  • the thermosetting resin composition of Comparative Example 2 was produced in the same manner as in Example 1 except that the nonconductive metal compound was not added.
  • Resin molded products were obtained by transfer molding the thermosetting resin compositions of Examples 1 to 21, Reference Examples 1 to 3, and Comparative Examples 1 and 2, respectively.
  • the surface of the resin molded product obtained in Examples 1 to 21 was irradiated with a YAG laser, and it was found that the characteristics with plating in the laser irradiation region were better than those of Comparative Examples 1 and 2, respectively. .
  • thermosetting resin composition of each Example was evaluated using thermosetting resin composition of each Example and each reference example.
  • spiral flow The spiral flow flow length was measured using the obtained thermosetting resin composition under the conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a holding time of 120 seconds in accordance with the EMMI-1-66 method.
  • the surface of the obtained resin molded product was irradiated with a YAG laser, and the plating property in the laser irradiation region was evaluated according to the following criteria. ⁇ : There is no unevenness on the plating surface ⁇ : Some unevenness is visible on the plating surface, but there is no unplated part ⁇ : There is unevenness on the plating surface, but there is no unplated part ⁇ : Severe unevenness appears on the plating surface Yes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

本発明のLDS用熱硬化性樹脂組成物は、熱硬化性樹脂と、無機充填材と、活性エネルギー線の照射により金属核を形成する非導電性金属化合物と、カップリング剤と、を含み、非導電性金属化合物が、スピネル型の金属酸化物、周期表第3族~第12族の中から選択されており、かつ当該族が隣接する2以上の遷移金属元素を有する金属酸化物、および錫含有酸化物からなる群から選択される一種以上を含み、カップリング剤が、メルカプトシラン、アミノシランおよびエポキシシランからなる群から選択される一種以上を含むものである。

Description

LDS用熱硬化性樹脂組成物、樹脂成形品および三次元成形回路部品
 本発明は、LDS用熱硬化性樹脂組成物、樹脂成形品および三次元成形回路部品に関する。
 LASER DIRECT STRUCTURING(LDS)に用いられる樹脂材料としては、LDS添加剤を含む熱可塑性樹脂組成物を繊維に含浸されてなる繊維強化樹脂材料が挙げられる。この種の技術としては、特許文献1に記載されているものがある。同文献によれば、熱可塑性樹脂としてポリアミド樹脂が使用されている。
特開2015-134903号公報
 しかしながら、発明者が検討した結果、LDS添加剤を含有させる樹脂の種類として、熱可塑性樹脂については、これまで検討が行われてきたが、一方で、熱硬化性樹脂については、未だ十分な検討がなされていないことが判明した。このため、熱硬化性樹脂を使用したLDS用熱硬化性樹脂組成物には、めっき付き特性に改善の余地を有していることが分かった。
 本発明によれば、
 LASER DIRECT STRUCTURING(LDS)の形成に用いるLDS用熱硬化性樹脂組成物であって、
 熱硬化性樹脂と、
 無機充填材と、
 活性エネルギー線の照射により金属核を形成する非導電性金属化合物と、
 カップリング剤と、を含み、
 前記非導電性金属化合物が、
  スピネル型の金属酸化物、
  周期表第3族~第12族の中から選択されており、かつ当該族が隣接する2以上の遷移金属元素を有する金属酸化物、および
  錫含有酸化物からなる群から選択される一種以上を含み、
 前記カップリング剤が、メルカプトシラン、アミノシランおよびエポキシシランからなる群から選択される一種以上を含む、LDS用熱硬化性樹脂組成物が提供される。
 また、上記LDS用熱硬化性樹脂組成物の硬化物を備える、樹脂成形品が提供される。
 また、
 三次元構造を有する上記樹脂成形品と、
 前記樹脂成形品の表面に形成された三次元回路と、を備える、三次元成形回路部品が提供される。
 本発明によれば、めっき付き特性に優れたLDS用熱硬化性樹脂組成物、それを用いた樹脂成形品および三次元成形回路部品が提供される。
 以下、本発明の実施の形態の熱硬化性樹脂組成物について説明する。
 本実施形態の熱硬化性樹脂組成物は、LDSに用いるLDS用熱硬化性樹脂組成物である。当該LDS(LASER DIRECT STRUCTURING(レーザーダイレクトストラクチャリング))とは、三次元成形回路部品(MID)の製造方法の一つであり、活性エネルギー線を照射して、LDS添加剤を含有する樹脂成形品の表面に金属核を生成し、その金属核をシードとして、例えば無電解めっき処理等により、エネルギー線照射領域にめっきパターン(配線)を形成することができる。
 本実施形態の熱硬化性樹脂組成物は、熱硬化性樹脂と、無機充填材と、活性エネルギー線の照射により金属核を形成する非導電性金属化合物と、カップリング剤と、を含むことができる。
 本実施形態において、上記非導電性金属化合物は、上記LDS添加剤として作用し、(i)スピネル型の金属酸化物、(ii)周期表第3族~第12族の中から選択されており、かつ当該族が隣接する2以上の遷移金属元素を有する金属酸化物、および(iii)錫含有酸化物からなる群から選択される一種以上を含むことができる。また、上記カップリング剤は、メルカプトシラン、アミノシランおよびエポキシシランからなる群から選択される一種以上を含むことができる。
 本実施形態において、上記非導電性金属化合物は、活性エネルギー線の照射により金属核を形成できるものであれば特に限定されない。詳細なメカニズムは定かでないが、このような非導電性金属化合物は、吸収可能な波長領域を有するYAGレーザー等の活性エネルギー線が照射されると、金属核が活性化して(例えば、還元されて)、金属めっきが可能な金属核が生成される、と考えられる。そして、非導電性金属化合物が分散された熱硬化性樹脂組成物の硬化物の表面に対して上記活性エネルギー線を照射すると、その照射面に、金属めっきが可能な金属核を有するシード領域が形成される。得られたシード領域を利用することにより、熱硬化性樹脂組成物の硬化物の表面に、回路などのめっきパターンを形成することが可能になる。
 本実施形態によれば、熱硬化性樹脂組成物において、適切なカップリング剤を選択することにより、熱硬化性樹脂組成物の硬化物におけるめっき付き特性を向上させることができる。
 以下、本実施形態の熱硬化性樹脂組成物の各成分について説明する。
 本実施形態の熱硬化性樹脂組成物は、熱硬化性樹脂を含有するものである。
 上記熱硬化性樹脂としては、例えば、たとえばエポキシ樹脂、フェノール樹脂、オキセタン樹脂、(メタ)アクリレート樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、およびマレイミド樹脂からなる群から選択される一種類または二種類以上を含むことができる。これらの中でも、硬化性、保存性、耐熱性、耐湿性、および耐薬品性を向上させる観点から、エポキシ樹脂を含むことがとくに好ましい。
 本実施形態において、熱硬化性樹脂に含まれるエポキシ樹脂としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができ、その分子量や分子構造は特に限定されない。本実施形態において、エポキシ樹脂は、たとえばビフェニル型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;スチルベン型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等に例示されるトリスフェノール型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレン骨格を有するナフトールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂からなる群から選択される一種類または二種類以上を含むことができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 成形体の反り抑制や、充填性、耐熱性、耐湿性等の諸特性のバランスを向上させる観点からは、これらのうち、ノボラック型エポキシ樹脂、多官能エポキシ樹脂、およびフェノールアラルキル型エポキシ樹脂を用いることができる。また、上記エポキシ樹脂としては、オルソクレゾールノボラック型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル樹脂型エポキシ樹脂およびトリフェニルメタン型エポキシ樹脂からなる群から選択される一種以上を含むことができる。このようなエポキシ樹脂とカップリング剤との適切に選択することにより、熱硬化性樹脂組成物の硬化物におけるめっき付き特性を向上させることができる。
 本実施形態において、熱硬化性樹脂の含有量の下限値は、熱硬化性樹脂組成物全体に対して1質量%以上であることが好ましく、2質量%以上であることがより好ましく、2.5質量%以上であることがとくに好ましい。これにより、成形時における流動性を向上させることができる。このため、充填性や成形安定性の向上を図ることができる。一方で、熱硬化性樹脂の含有量の上限値は、熱硬化性樹脂組成物全体に対して、例えば、15質量%以下であることが好ましく、14質量%以下であることがより好ましく、13質量%以下であることがとくに好ましい。これにより、耐湿信頼性や耐リフロー性を向上させることができる。また、熱硬化性樹脂の含有量をこのような範囲に制御することによって、成形体の反り抑制に寄与することが可能である。
 本実施形態において、熱硬化性樹脂組成物全体に対する含有量とは、溶媒を含む場合には、熱硬化性樹脂組成物のうちの溶媒を除く固形分全体に対する含有量を指す。熱硬化性樹脂組成物の固形分とは、熱硬化性樹脂組成物中における不揮発分を指し、水や溶媒等の揮発成分を除いた残部を指す。
 本実施形態の熱硬化性樹脂組成物は、硬化剤を含有することができる。
 上記硬化剤としては、たとえば重付加型の硬化剤、触媒型の硬化剤、および縮合型の硬化剤の3タイプに大別することができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 上記硬化剤として用いられる重付加型の硬化剤は、たとえばジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m-フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドラジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ノボラック型フェノール樹脂、ポリビニルフェノール、アラルキル型フェノール樹脂などのフェノール樹脂系硬化剤;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類からなる群から選択される一種類または二種類以上を含むことができる。
 上記硬化剤として用いられる触媒型の硬化剤は、たとえばベンジルジメチルアミン(BDMA)、2,4,6-トリスジメチルアミノメチルフェノール(DMP-30)などの3級アミン化合物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)などのイミダゾール化合物;BF3錯体などのルイス酸からなる群から選択される一種類または二種類以上を含むことができる。
 上記硬化剤として用いられる縮合型の硬化剤は、たとえばレゾール型フェノール樹脂;メチロール基含有尿素樹脂などの尿素樹脂;メチロール基含有メラミン樹脂などのメラミン樹脂からなる群から選択される一種類または二種類以上を含むことができる。
 これらの中でも、耐燃性、耐湿性、電気特性、硬化性、および保存安定性等についてのバランスを向上させる観点から、フェノール樹脂系硬化剤を含むことがより好ましい。フェノール樹脂系硬化剤としては、例えば、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができ、その分子量、分子構造は特に限定されない。
 本実施形態の硬化剤として用いられるフェノール樹脂系硬化剤は、たとえば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック等のノボラック型フェノール樹脂;ポリビニルフェノール、トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のフェノールアラルキル型フェノール樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物からなる群から選択される一種類または二種類以上を含むことができる。これらの中でも、成形体の反りを抑制する観点からは、ノボラック型フェノール樹脂、多官能型フェノール樹脂およびフェノールアラルキル型フェノール樹脂を含むことがより好ましい。また、フェノールノボラック樹脂、ビフェニレン骨格を有するフェノールアラルキル樹脂、ホルムアルデヒドで変性したトリフェニルメタン型フェノール樹脂が好ましく使用することができる。
 本実施形態において、硬化剤の含有量の下限値は、熱硬化性樹脂組成物全体に対して、例えば、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、1.5質量%以上であることがとくに好ましい。これにより、成形時において、優れた流動性を実現し、充填性や成形性の向上を図ることができる。一方で、硬化剤の含有量の上限値は、熱硬化性樹脂組成物全体に対して、例えば、9質量%以下であることが好ましく、8質量%以下であることがより好ましく、7質量%以下であることがとくに好ましい。これにより、電子部品の耐湿信頼性や耐リフロー性を向上させることができる。また、硬化剤の含有量をこのような範囲に制御することによって得られる成形体の反り抑制に寄与することが可能である。
 本実施形態の熱硬化性樹脂組成物は、非導電性金属化合物を含有するものである。
 非導電性金属化合物の具体例としては、例えば、スピネル型の金属酸化物、周期表第3族~第12族の中から選択されており、かつ当該族が隣接する2以上の遷移金属元素を有する金属酸化物、および錫含有酸化物からなる群から選択される一種以上を含むことができる。
 上記スピネル型の金属酸化物としては、例えば、スピネル型の構造とは、複酸化物でAB型の化合物(AとBは金属元素)にみられる代表的結晶構造型の一つである。順スピネル構造、(AとBが一部入れ替わった)逆スピネル構造(B(AB)O)のいずれでもよいが、順スピネル構造がより好ましく使用できる。この場合、順スピネル構造のAが銅であってもよい。
 上記スピネル型の金属酸化物を構成する金属原子としては、例えば、銅やクロムを用いることができる。つまり、上記非導電性金属化合物は、銅またはクロムを含むスピネル型の金属酸化物を含有することができる。例えば、銅メッキパターンとの密着性の観点から、上記金属原子として銅を用いることができる。
 また、上記金属原子としては、銅やクロムの他に、アンチモン、スズ、鉛、インジウム、鉄、コバルト、ニッケル、亜鉛、カドミウム、銀、ビスマス、ヒ素、マンガン、マグネシウム、カルシウムなどの金属原子を微量含有していてもよい。これらの微量金属原子は酸化物として存在していてもよい。また、微量金属原子の含有量は、それぞれ、金属酸化物中の金属原子全体に対して、0.001質量%以下とすることができる。
 本実施形態において、上記スピネル型の金属酸化物は、熱的に高安定性があり、酸性またはアルカリ性の水性金属化浴において耐久性を有することができる。上記スピネル型の金属酸化物は、例えば、熱硬化性樹脂組成物の分散性を適切に制御することにより、高酸化物の状態で、熱硬化性樹脂組成物の硬化物の表面における未照射領域に存在することができる。以上のような上記スピネル型の金属酸化物の一例としては、例えば、特許3881338号に記載されている。
 また、上記遷移金属元素を有する金属酸化物としては、周期表第3族~第12族の中から選択されており、かつ当該族が隣接する2以上の遷移金属元素を有する金属酸化物である。ここで、上記遷移金属元素に属する金属は、周期表のn族の金属と、n+1族の金属とを含有すると表すことができる。上記遷移金属元素を有する金属酸化物は、これら金属の酸化物を単独で用いても2種以上を組み合わせて用いてもよい。
 上記周期表のn族に属する金属としては、例えば、3族(スカンジウム、イットリウム)、4族(チタン、ジルコニウムなど)、5族(バナジウム、ニオブなど)、6族(クロム、モリブテンなど)、7族(マンガンなど)、8族(鉄、ルテニウムなど)、9族(コバルト、ロジウム、イリジウムなど)、10族(ニッケル、パラジウム、白金)、11族(銅、銀、金など)、12族(亜鉛、カドミウムなど)、13族(アルミニウム、ガリウム、インジウムなど)が挙げられる。
 周期表のn+1族の金属としては、例えば、4族(チタン、ジルコニウムなど)、5族(バナジウム、ニオブなど)、6族(クロム、モリブテンなど)、7族(マンガンなど)、8族(鉄、ルテニウムなど)、9族(コバルト、ロジウム、イリジウムなど)、10族(ニッケル、パラジウム、白金)、11族(銅、銀、金など)、12族(亜鉛、カドミウムなど)、13族(アルミニウム、ガリウム、インジウムなど)が挙げられる。
 以上のような上記遷移金属元素を有する金属酸化物の一例としては、例えば、特許3881338号に記載されている。
 また、上記錫含有酸化物としては、少なくとも錫を含有する金属酸化物である。上記錫含有酸化物を構成する金属原子は、錫のほかにアンチモンを用いてもよい。このような上記錫含有酸化物は、酸化錫、酸化アンチモンを含有することができる。
 例えば、錫含有酸化物に含まれる金属成分の、90質量%以上が錫であり、5質量%以上がアンチモンであってもよい。この錫含有酸化物は、金属成分として、鉛および/または銅をさらに含有してもよい。具体的には、錫含有酸化物に含まれる金属成分においては、例えば、90質量%以上が錫であり、5~9質量%がアンチモンであり、0.01~0.1質量%の範囲で鉛を含み、0.001~0.01質量%の範囲で銅を含むことができる。このような錫含有酸化物は、例えば、酸化錫、酸化アンチモン、酸化鉛および/または酸化銅を含有することができる。なお、上記錫含有酸化物は、スピネル型の金属酸化物で例示された微量金属原子を含有してもよい。また、上記錫含有酸化物は、上記スピネル型の金属酸化物または上記遷移金属元素を有する金属酸化物と併用して使用してもよい。
 上記非導電性金属化合物の含有量の下限値は、熱硬化性樹脂組成物全体に対して、例えば、3質量%以上であり、好ましくは5質量%以上であり、さらに好ましくは8質量%以上である。これにより、熱硬化性樹脂組成物の硬化物において、めっき付き特性を良好なものとすることができる。また、上記非導電性金属化合物の含有量の上限値は、熱硬化性樹脂組成物全体に対して、例えば、20質量%以下であり、好ましくは18質量%以下であり、さらに好ましくは15質量%以下である。これにより、熱硬化性樹脂組成物の硬化物において、絶縁性の低下を抑制したり、誘電正接の増加を抑制することができる。また、非導電性金属化合物が非球形の場合において、熱硬化性樹脂組成物の流動性を良好なものとすることができる。
 本実施形態の熱硬化性樹脂組成物は、上記の非導電性金属化合物のほかに、少なくとも1種類の有機性の熱安定性金属キレート錯塩を含有していてもよい。
 本実施形態の熱硬化性樹脂組成物は、無機充填材を含有することができる。
 上記無機充填材としては、たとえば、溶融破砕シリカ及び溶融球状シリカ等の溶融シリカ、結晶シリカ等のシリカ、アルミナ、水酸化アルミニウム、窒化珪素、および窒化アルミからなる群から選択される一種類または二種類以上の無機充填材を含むことができる。この中でも、無機充填材として、溶融破砕シリカ、溶融球状シリカ、結晶シリカ等のシリカを用いることが好ましく、溶融球状シリカを用いることがより好ましい。球状の無機充填材を用いることにより、熱硬化性樹脂組成物の分散性を向上させることができる。
 また、上記無機充填材の平均粒径D50の上限値は、例えば30μm以下であり、好ましくは20μm以下であり、より好ましくは10μm以下である。これにより、熱硬化性樹脂組成物の硬化物において、スルーホール加工性を向上させることができる。また、得られる回路パターンの幅を細くすることも可能になる。一方で、上記無機充填材の平均粒径D50の下限値は、特に限定されないが、例えば、0.01μm以上であり、好ましくは0.05μm以上であり、より好ましくは0.1μm以上である。これにより、熱硬化性樹脂組成物の溶融粘度を適切に制御できるので、射出成形やトランスファー成形などの成形性を向上させることができる。
 また、無機充填材のD90の上限値は、例えば、80μm以下であり、好ましくは70μm以下であり、より好ましくは60μm以下である。これにより、熱硬化性樹脂組成物の硬化物において、開口径が小さいレーザーによるスルーホール加工性を向上させることができる。また、レーザー加工後における硬化物の表面粗さを低減できるので、めっき付き特性を向上させることができる。一方で、無機充填材のD90の下限値は、特に限定されないが、例えば、1μm以上でもよく、3μm以上でもよく、10μm以上でもよく、20μm以上でもよい。これにより、熱硬化性樹脂組成物の流動性を良好なものとし、成形性をより効果的に向上させることが可能となる。また、ワイヤーボンディング性を高めることもできる。
 上記無機充填材の粒度分布幅(D90/D50)の上限値は、例えば、10以下であり、好ましくは9以下であり、より好ましくは8以下である。これにより、熱硬化性樹脂組成物の硬化物の表面粗さのバラツキを抑制できるので、めっき付き特性を向上させることができる。また、上記無機充填材の粒度分布幅(D90/D50)の下限値は、例えば、1以上であってもよい。
 本実施形態において、無機充填材のD50やD90は、市販のレーザー回折式粒度分布測定装置(例えば、島津製作所社製、SALD-7000)を用いて粒子の粒度分布を体積基準で測定することができる。ここで、得られたメディアン径(D50)を、平均粒径とすることができる。
 本実施形態の熱硬化性樹脂組成物は、硬化促進剤を含有することができる。
 上記硬化促進剤としては、熱硬化性樹脂と硬化剤との架橋反応を促進させるものであればよく、一般の熱硬化性樹脂組成物に使用するものを用いることができる。
 本実施形態において、硬化促進剤は、たとえば有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;1,8-ジアザビシクロ[5.4.0]ウンデセン-7、ベンジルジメチルアミン、2-メチルイミダゾール等が例示されるアミジンや3級アミン、前記アミジンやアミンの4級塩等の窒素原子含有化合物から選択される1種類または2種類以上を含むことができる。これらの中でも、硬化性を向上させる観点からはリン原子含有化合物を含むことがより好ましい。また、成形性と硬化性のバランスを向上させる観点からは、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等の潜伏性を有するものを含むことがより好ましい。
 本実施形態の熱硬化性樹脂組成物で用いることができる有機ホスフィンとしては、例えばエチルホスフィン、フェニルホスフィン等の第1ホスフィン;ジメチルホスフィン、ジフェニルホスフィン等の第2ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等の第3ホスフィンが挙げられる。
 本実施形態の熱硬化性樹脂組成物で用いることができるテトラ置換ホスホニウム化合物としては、例えば下記一般式(6)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(上記一般式(6)において、Pはリン原子を表す。R、R、RおよびRは芳香族基またはアルキル基を表す。Aはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸のアニオンを表す。AHはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸を表す。x、yは1~3の数、zは0~3の数であり、かつx=yである。)
 一般式(6)で表される化合物は、例えば以下のようにして得られるがこれに限定されるものではない。まず、テトラ置換ホスホニウムハライドと芳香族有機酸と塩基を有機溶剤に混ぜ均一に混合し、その溶液系内に芳香族有機酸アニオンを発生させる。次いで水を加えると、一般式(6)で表される化合物を沈殿させることができる。一般式(6)で表される化合物において、リン原子に結合するR、R、RおよびRがフェニル基であり、かつAHはヒドロキシル基を芳香環に有する化合物、すなわちフェノール類であり、かつAは該フェノール類のアニオンであるのが好ましい。上記フェノール類としては、フェノール、クレゾール、レゾルシン、カテコールなどの単環式フェノール類、ナフトール、ジヒドロキシナフタレン、アントラキノールなどの縮合多環式フェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールSなどのビスフェノール類、フェニルフェノール、ビフェノールなどの多環式フェノール類などが例示される。
 本実施形態の熱硬化性樹脂組成物で用いることができるホスホベタイン化合物としては、例えば、下記一般式(7)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000002
(上記一般式(7)において、Pはリン原子を表す。Rは炭素数1~3のアルキル基、Rはヒドロキシル基を表す。fは0~5の数であり、gは0~3の数である。)
 一般式(7)で表される化合物は、例えば以下のようにして得られる。まず、第三ホスフィンであるトリ芳香族置換ホスフィンとジアゾニウム塩とを接触させ、トリ芳香族置換ホスフィンとジアゾニウム塩が有するジアゾニウム基とを置換させる工程を経て得られる。しかしこれに限定されるものではない。
 本実施形態の熱硬化性樹脂組成物で用いることができるホスフィン化合物とキノン化合物との付加物としては、例えば、下記一般式(8)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
(上記一般式(8)において、Pはリン原子を表す。R10、R11およびR12は炭素数1~12のアルキル基または炭素数6~12のアリール基を表し、互いに同一であっても異なっていてもよい。R13、R14およびR15は水素原子または炭素数1~12の炭化水素基を表し、互いに同一であっても異なっていてもよく、R14とR15が結合して環状構造となっていてもよい。)
 ホスフィン化合物とキノン化合物との付加物に用いるホスフィン化合物としては、例えばトリフェニルホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリナフチルホスフィン、トリス(ベンジル)ホスフィン等の芳香環に無置換またはアルキル基、アルコキシル基等の置換基が存在するものが好ましく、アルキル基、アルコキシル基等の置換基としては1~6の炭素数を有するものが挙げられる。入手しやすさの観点からはトリフェニルホスフィンが好ましい。
 また、ホスフィン化合物とキノン化合物との付加物に用いるキノン化合物としては、ベンゾキノン、アントラキノン類が挙げられ、中でもp-ベンゾキノンが保存安定性の点から好ましい。
 ホスフィン化合物とキノン化合物との付加物の製造方法としては、有機第三ホスフィンとベンゾキノン類の両者が溶解することができる溶媒中で接触、混合させることにより付加物を得ることができる。溶媒としてはアセトンやメチルエチルケトン等のケトン類で付加物への溶解性が低いものがよい。しかしこれに限定されるものではない。
 一般式(8)で表される化合物において、リン原子に結合するR10、R11およびR12がフェニル基であり、かつR13、R14およびR15が水素原子である化合物、すなわち1,4-ベンゾキノンとトリフェニルホスフィンを付加させた化合物が熱硬化性樹脂組成物の硬化物の熱時弾性率を低下させる点で好ましい。
 本実施形態の熱硬化性樹脂組成物で用いることができるホスホニウム化合物とシラン化合物との付加物としては、例えば下記一般式(9)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
(上記一般式(9)において、Pはリン原子を表し、Siは珪素原子を表す。R16、R17、R18およびR19は、それぞれ、芳香環または複素環を有する有機基、あるいは脂肪族基を表し、互いに同一であっても異なっていてもよい。式中R20は、基YおよびYと結合する有機基である。式中R21は、基YおよびYと結合する有機基である。YおよびYは、プロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基YおよびYが珪素原子と結合してキレート構造を形成するものである。YおよびYはプロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基YおよびYが珪素原子と結合してキレート構造を形成するものである。R20、およびR21は互いに同一であっても異なっていてもよく、Y、Y、YおよびYは互いに同一であっても異なっていてもよい。Zは芳香環または複素環を有する有機基、あるいは脂肪族基である。)
 一般式(9)において、R16、R17、R18およびR19としては、例えば、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ナフチル基、ヒドロキシナフチル基、ベンジル基、メチル基、エチル基、n-ブチル基、n-オクチル基およびシクロヘキシル基等が挙げられ、これらの中でも、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ヒドロキシナフチル基等のアルキル基、アルコキシ基、水酸基などの置換基を有する芳香族基もしくは無置換の芳香族基がより好ましい。
 また、一般式(9)において、R20は、YおよびYと結合する有機基である。同様に、R21は、基YおよびYと結合する有機基である。YおよびYはプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基YおよびYが珪素原子と結合してキレート構造を形成するものである。同様にYおよびYはプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基YおよびYが珪素原子と結合してキレート構造を形成するものである。基R20およびR21は互いに同一であっても異なっていてもよく、基Y、Y、Y、およびYは互いに同一であっても異なっていてもよい。このような一般式(9)中の-Y-R20-Y-、およびY-R21-Y-で表される基は、プロトン供与体が、プロトンを2個放出してなる基で構成されるものであり、プロトン供与体としては、分子内にカルボキシル基、または水酸基を少なくとも2個有する有機酸が好ましく、さらには芳香環を構成する隣接する炭素にカルボキシル基または水酸基を少なくとも2個有する芳香族化合物が好ましく、芳香環を構成する隣接する炭素に水酸基を少なくとも2個有する芳香族化合物がより好ましく、例えば、カテコール、ピロガロール、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,2’-ビフェノール、1,1’-ビ-2-ナフトール、サリチル酸、1-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、クロラニル酸、タンニン酸、2-ヒドロキシベンジルアルコール、1,2-シクロヘキサンジオール、1,2-プロパンジオールおよびグリセリン等が挙げられるが、これらの中でも、カテコール、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレンがより好ましい。
 また、一般式(9)中のZは、芳香環または複素環を有する有機基または脂肪族基を表し、これらの具体的な例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基およびオクチル基等の脂肪族炭化水素基や、フェニル基、ベンジル基、ナフチル基およびビフェニル基等の芳香族炭化水素基、グリシジルオキシプロピル基、メルカプトプロピル基、アミノプロピル基等のグリシジルオキシ基、メルカプト基、アミノ基を有するアルキル基およびビニル基等の反応性置換基等が挙げられるが、これらの中でも、メチル基、エチル基、フェニル基、ナフチル基およびビフェニル基が熱安定性の面から、より好ましい。
 ホスホニウム化合物とシラン化合物との付加物の製造方法としては、メタノールを入れたフラスコに、フェニルトリメトキシシラン等のシラン化合物、2,3-ジヒドロキシナフタレン等のプロトン供与体を加えて溶かし、次に室温攪拌下ナトリウムメトキシド-メタノール溶液を滴下する。さらにそこへ予め用意したテトラフェニルホスホニウムブロマイド等のテトラ置換ホスホニウムハライドをメタノールに溶かした溶液を室温攪拌下滴下すると結晶が析出する。析出した結晶を濾過、水洗、真空乾燥すると、ホスホニウム化合物とシラン化合物との付加物が得られる。しかし、これに限定されるものではない。
 本実施形態において、硬化促進剤の含有量は、熱硬化性樹脂組成物の全体に対して0.1質量%以上であることが好ましく、0.15質量%以上であることがより好ましく、0.25質量%以上であることがとくに好ましい。硬化促進剤の含有量を上記下限値以上とすることにより、成形時における硬化性を効果的に向上させることができる。
 一方で、硬化促進剤の含有量は、熱硬化性樹脂組成物の全体に対して1質量%以下であることが好ましく、0.8質量%以下であることがより好ましい。硬化促進剤の含有量を上記上限値以下とすることにより、成形時における流動性の向上を図ることができる。
 また、本実施形態の熱硬化性樹脂組成物は、カップリング剤を含有することができる。
 上記カップリング剤は、メルカプトシラン、アミノシランおよびエポキシシランからなる群から選択される一種以上を含むことができる。
 上記エポキシシランとしては、例えば、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。
 また、上記アミノシランとしては、例えば、フェニルアミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-(6-アミノヘキシル)3-アミノプロピルトリメトキシシラン、N-(3-(トリメトキシシリルプロピル)-1,3-ベンゼンジメタナン等が挙げられる。アミノシランの1級アミノ部位をケトン又はアルデヒドを反応させて保護した潜在性アミノシランカップリング剤として用いてもよい。また、アミノシランとしては、2級アミノ基を有してもよい。
 また、上記メルカプトシランとしては、例えば、γ-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシランのほか、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィドのような熱分解することによってメルカプトシランカップリング剤と同様の機能を発現するシランカップリング剤など、が挙げられる。
 これらのシランカップリング剤は予め加水分解反応させたものを配合してもよい。これらのシランカップリング剤は1種類を単独で用いても2種類以上を併用してもよい。
 本実施形態において、カップリング剤として、メルカプトシラン、アミノシランおよびエポキシシランからなる群から選択される一種以上を含むことにより、熱硬化性樹脂組成物の粘度を最適にすることにより、金型成形性を向上させることができる。
 連続成形性という観点では、メルカプトシランが好ましく、流動性の観点では、2級アミノシランが好ましく、密着性という観点ではエポキシシランが好ましい。
 上記カップリング剤の含有量の下限値としては、熱硬化性樹脂組成物全体に対して、0.01質量%以上が好ましく、より好ましくは0.05質量%以上、特に好ましくは0.1質量%以上である。これにより、熱硬化性樹脂組成物のフロー流動長を長くすることができるので、射出成形性を向上させることができる。一方で、カップリング剤の含有量の上限値としては、熱硬化性樹脂組成物全体に対して、1質量%以下が好ましく、より好ましくは0.8質量%以下、特に好ましくは0.6質量%以下である。これにより、熱硬化性樹脂組成物の硬化物の吸水性が増大することがなく、良好な防錆性を得ることができる。
(その他の成分)
 本実施形態の熱硬化性樹脂組成物には、必要に応じて、たとえば、離型剤、難燃剤、イオン捕捉剤、着色剤、低応力剤および酸化防止剤等の添加剤を含有することができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 上記離型剤は、たとえばカルナバワックス等の天然ワックス、モンタン酸エステルワックスや酸化ポリエチレンワックス等の合成ワックス、ステアリン酸亜鉛等の高級脂肪酸およびその金属塩類、ならびにパラフィンから選択される1種類または2種類以上を含むことができる。
 上記難燃剤は、たとえば、水酸化アルミニウム、水酸化マグネシウム、ホウ酸亜鉛、モリブデン酸亜鉛、ホスファゼンから選択される1種類または2種類以上を含むことができる。
 上記イオン捕捉剤は、ハイドロタルサイト類またはマグネシウム、アルミニウム、ビスマス、チタン、ジルコニウムから選ばれる元素の含水酸化物から選択される1種類または2種類以上を含むことができる。
 上記着色剤は、カーボンブラック、ベンガラ、酸化チタンから選択される1種類または2種類以上を含むことができる。
 上記低応力剤は、ポリブタジエン化合物、アクリロニトリルブタジエン共重合化合物、シリコーンオイル、シリコーンゴム等のシリコーン化合物から選択される1種類または2種類以上を含むことができる。
 また、本実施形態の熱硬化性樹脂組成物は、上記着色剤として用いるカーボンブラックなどのカーボンを含有しない構成とすることができる。これにより、めっき付き特性を向上させることができる。
 次に、本実施形態の熱硬化性樹脂組成物の特性について説明する。
 本実施形態の熱硬化性樹脂組成物のスパイラルフロー流動長の下限値は、例えば、50cm以上であり、好ましくは55cm以上であり、より好ましくは60cm以上である。これにより、熱硬化性樹脂組成物の流動性を優れたものとすることができ、その成形性を向上させることができる。上記スパイラルフロー流動長の上限値は、特に限定されないが、例えば、200cm以下としてもよい。
 本実施形態において、上記スパイラルフロー流動長は、EMMI-1-66法に従い、金型温度175℃、注入圧力6.9MPa、保圧時間120秒の条件で測定することができる。
 本実施形態の熱硬化性樹脂組成物の製造方法としては、たとえば、上記熱硬化性樹脂組成物の各成分を、公知の手段で混合することにより混合物を得る。さらに、混合物を溶融混練することにより、混練物を得る。混練方法としては、例えば、1軸型混練押出機、2軸型混練押出機等の押出混練機や、ミキシングロール等のロール式混練機を用いることができるが、2軸型混練押出機を用いることが好ましい。冷却した後、混練物を所定の形状とすることができる。
 本実施形態の熱硬化性樹脂組成物の形状としては、例えば、粉粒状、顆粒状、タブレット状またはシート状等の所定の形状を有していてもよい。これにより、トランスファー成形、射出成形、および圧縮成形等の公知の成形方法に適する熱硬化性樹脂組成物を得ることができる。
 本実施形態において、粉粒状の熱硬化性樹脂組成物とは、得られた混練物を粉砕した粉砕物であり、顆粒状の熱硬化性樹脂組成物とは、熱硬化性樹脂組成物の粉末(粉粒状の混練物)同士を固めた凝集体または公知の造粒法で得られた造粒物であり、タブレット状の熱硬化性樹脂組成物とは、熱硬化性樹脂組成物を高圧で打錠成形することによって所定形状を有するように造形された造形体であり、シート状の熱硬化性樹脂組成物とは、例えば、枚葉状または巻き取り可能なロール状を有する熱硬化性樹脂組成物からなる樹脂膜であることを意味する。
 本実施形態において、粉粒状、顆粒状、タブレット状またはシート状の、熱硬化性樹脂組成物は、半硬化状態(Bステージ状態)であってもよい。
 本実施形態における熱硬化性樹脂組成物の成形方法としては、例えば、射出成形やトランスファー成形などの金型形成が挙げられる。このような成形方法を使用することにより、上記熱硬化性樹脂組成物の硬化物を備える樹脂成形品を製造することができる。
 本実施形態における樹脂成形品は、三次元構造を有していれば特に形状は限定されないが、一部に曲面を有していてもよい。
 三次元成形回路部品(MOLDED INTERCONNECT DEVICE(以下、「MID」と呼称する))は、三次元形状、上記樹脂成形品、三次元回路の3要素を有するものであり、例えば、三次元構造の樹脂成形品の表面に金属膜で回路形成された部品である。具体的には、上記三次元成形回路部品は、例えば、三次元構造を有する樹脂成形品と、この樹脂成形品の表面に形成された三次元回路と、を備えることができる。このような三次元成形回路部品(MID)を使用することにより、空間を有効活用でき、部品点数の削減や軽薄短小化が可能である。
 本実施形態のLDSとは、MIDの製造方法の一つであり、活性エネルギー線により、LDS添加剤を含有する熱硬化性樹脂組成物の硬化物(三次元構造の樹脂成形品)の表面に金属核を生成し、その金属核をシードとして、例えば無電解めっき処理等により、エネルギー線照射領域にめっきパターン(配線)を形成することができる。
 本実施形態において、MIDの製造工程は、LDSに用いる熱硬化性樹脂組成物の作製、この熱硬化性樹脂組成物の成形、得られた樹脂成形品に対する活性エネルギー線の照射、及びめっき処理による回路形成を含むことができる。なお、めっき処理前に表面洗浄工程を追加してもよい。
 本実施形態において活性エネルギー線としては、例えば、レーザーを用いることができる。レーザーは、例えば、YAGレーザー、エキシマレーザー、電磁線等の公知のレーザーから適宜選択することができ、YGAレーザーが好ましい。また、レーザーの波長も特に定めるものではないが、例えば、200nm~12000nmである。この中でも、好ましくは248nm、308nm、355nm、532nm、1064nmまたは10600nmを使用してもよい。
 上記めっき処理としては、電界めっきまたは無電解メッキのいずれを用いてもよい。上述のレーザーが照射された領域に、めっき処理を施すことにより、回路(めっき層)を形成することができる。めっき液としては、特に定めるものではなく、公知のめっき液を広く採用することができ、金属成分として銅、ニッケル、金、銀、パラジウムが混合されているめっき液を用いてもよい。
 本実施形態において、上記樹脂成形品(熱硬化性樹脂組成物の硬化物)は、最終製品に限らず、複合材料や各種部品も含むことができる。上記樹脂成形品は、携帯電子機器、車両および医療機器の部品や、その他の電気回路を含む電子部品、半導体封止材ならびに、これらを形成するための複合材料として用いることができる。また、上記MIDとしては、携帯電話やスマートフォンと内臓アンテナ、センサー、半導体装置に適用することもできる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
 各実施例、各参考例で用いた成分について、以下に示す。
(熱硬化性樹脂組成物の調製)
 下記の表1~3に示す配合量の各原材料を、常温でミキサーを用いて混合した後、70~100℃でロール混練した。次いで、得られた混練物を冷却した後、これを粉砕して、粉粒状の熱硬化性樹脂組成物を得た。次いで、高圧で打錠成形することによってタブレット状の熱硬化性樹脂組成物を得た。
(熱硬化性樹脂)
熱硬化性樹脂1:ビフェニレン骨格を有するフェノールアラルキル樹脂型エポキシ樹脂(日本化薬株式会社製、NC3000、エポキシ当量276g/eq、軟化点58℃)
熱硬化性樹脂2:オルソクレゾールノボラック型エポキシ樹脂(日本化薬(株)製「EOCN1020」、軟化点55℃、エポキシ当量196、塩素イオン量5.0ppm)
熱硬化性樹脂3:トリフェニルメタン型エポキシ樹脂(三菱化学株式会社製、1032H-60。エポキシ当量171g/eq、軟化点60℃)
熱硬化性樹脂4:ビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)製、YX4000HK、軟化点105℃、エポキシ当量193)
(硬化剤)
硬化剤1:ビフェニレン骨格を有するフェノールアラルキル樹脂(明和化成株式会社製、MEH-7851SS、水酸基当量203g/eq)
硬化剤2:フェノールノボラック樹脂(住友ベークライト(株)製PR-HF-3(フェノールノボラック樹脂、水酸基当量105g/eq、軟化点80℃))
硬化剤3:ホルムアルデヒドで変性したトリフェニルメタン型フェノール樹脂(エア・ウォーター(株)製、HE910-20)
(無機充填材)
無機充填材1:溶融球状シリカ(平均粒径D50:3.4μm、D90:6.8μm、D90/D50:2.0、12μmを超える粒子0.5質量%以下、(株)龍森製、MUF-4V)
無機充填材2:溶融球状シリカ(平均粒径D50:0.9μm、D90:1.6μm、D90/D50:1.8、アドマテックス(株)製、SD2500-SQ)
無機充填材3:溶融球状シリカ(平均粒径D50:6.2μm、D90:20.4μm、D90/D50:3.3、24μmを超える粒子0.5質量%以下、アドマテックス(株)製、FEB24S5)
無機充填材4:溶融球状シリカ(平均粒径D50:12.3μm、D90:36.8μm、D90/D50:3.0、45μmを超える粒子0.5質量%以下、アドマテックス(株)製、FED45S2)
無機充填材5:溶融球状シリカ(平均粒径D50:7.2μm、D90:43.9μm、D90/D50:6.1、電気化学工業株式会社製、FB-105FD)
無機充填材6:溶融球状シリカ(平均粒径D50:0.8μm、D90:1.3μm、D90/D50:1.7、(株)アドマテックス製、SC2500SQ)
無機充填材7:溶融球状シリカ(平均粒径D50:1.0μm、D90:4.0μm、D90/D50:3.8、(株)アドマテックス製、SC5500SQ)
(非導電性金属化合物)
非導電性金属化合物1:Black 30C965:CuCr(Shephred color company製)
非導電性金属化合物2:Black 1G:CuCr(Shephred color company製)
(硬化促進剤)
硬化促進剤1:下記の製造方法で得られた下記構造式(16)で示されるテトラフェニルホスホニウムビス(ナフタレン-2,3-ジオキシ)フェニルシリケート
Figure JPOXMLDOC01-appb-C000005
[硬化促進剤1の合成方法]
 メタノール1800gを入れたフラスコに、フェニルトリメトキシシラン249.5g、2,3-ジヒドロキシナフタレン384.0gを加えて溶かし、次に室温攪拌下28%ナトリウムメトキシド-メタノール溶液231.5gを滴下した。さらにそこへ予め用意したテトラフェニルホスホニウムブロマイド503.0gをメタノール600gに溶かした溶液を室温攪拌下滴下すると結晶が析出した。析出した結晶を濾過、水洗、真空乾燥し、桃白色結晶の硬化促進剤1を得た。
硬化促進剤2:下記の製造方法で得られた下記構造式(14)で示されるテトラフェニルホスホニウム・4,4'-スルフォニルジフェノラート
Figure JPOXMLDOC01-appb-C000006
[硬化促進剤2の合成方法]
 撹拌装置付きのセパラブルフラスコに4,4'-ビスフェノールS37.5g(0.15モル)、メタノール100mlを仕込み、室温で撹拌溶解し、更に攪拌しながら予め50mlのメタノールに水酸化ナトリウム4.0g(0.1モル)を溶解した溶液を添加した。次いで予め150mlのメタノールにテトラフェニルホスホニウムブロマイド41.9g(0.1モル)を溶解した溶液を加えた。しばらく攪拌を継続し、300mlのメタノールを追加した後、フラスコ内の溶液を大量の水に撹拌しながら滴下し、白色沈殿を得た。沈殿を濾過、乾燥し、白色結晶の硬化促進剤2を得た。
(カップリング剤)
カップリング剤1:フェニルアミノプロピルトリメトキシシラン(東レ・ダウコーニング(株)製CF4083)
カップリング剤2:γ-グリシドキシプロピルトリメトキシシラン(チッソ(株)製GPS-M)
カップリング剤3:γ-メルカプトプロピルトリメトキシシラン(チッソ(株)製S810)
(添加剤)
カーボン1:カーボンブラック(三菱化学株式会社製商品名カーボン#5)
離型剤1:グリセリントリモンタン酸エステル(クラリアントジャパン(株)製、リコルブWE4)
シリコーンオイル1:シリコーンオイル(東レ・ダウコーニング(株)製FZ-3730
低応力剤1:エポキシ化ポリブタジエン(JP-200、日本曹達製エポキシ化ポリブタジエン、Td5:245℃)
難燃剤1:水酸化アルミニウム(住友化学(株)製、商品名CL303)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
[比較例1、2]
 比較例1の熱硬化性樹脂組成物は、カップリング剤を添加しなかった点を除いて実施例1と同様にして作製した。比較例2の熱硬化性樹脂組成物は、非導電性金属化合物を添加しなかった点を除いて、実施例1と同様にして作製した。
 実施例1~21、参考例1~3、比較例1、2の熱硬化性樹脂組成物をトランスファー成形することにより、それぞれ樹脂成形品を得た。実施例1~21で得られた樹脂成形品の表面に対して、YAGレーザーを照射し、そのレーザー照射領域におけるめっき付き特性は、比較例1、2それぞれと比べて良好であることが分かった。
 また、各実施例、各参考例の熱硬化性樹脂組成物について、以下の評価を行った。
(スパイラルフロー)
 スパイラルフロー流動長は、得られた熱硬化性樹脂組成物を使用し、EMMI-1-66法に従い、金型温度175℃、注入圧力6.9MPa、保圧時間120秒の条件で測定した。
(めっき付き性)
 得られた樹脂成形品の表面に対して、YAGレーザーを照射し、そのレーザー照射領域におけるめっき付き性について、以下の判断基準で評価した。
 ◎:めっき表面にムラ無し
 ○:めっき表面に多少のムラが見えるがめっき未着部分はなし
 △:めっき表面にムラが見えるがめっき未着部分はなし
 ×:めっき表面にひどいムラが見えめっき未着部あり
 この出願は、2016年5月18日に出願された日本出願特願2016-099412号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (16)

  1.  LASER DIRECT STRUCTURING(LDS)に用いるLDS用熱硬化性樹脂組成物であって、
     熱硬化性樹脂と、
     無機充填材と、
     活性エネルギー線の照射により金属核を形成する非導電性金属化合物と、
     カップリング剤と、を含み、
     前記非導電性金属化合物が、
      スピネル型の金属酸化物、
      周期表第3族~第12族の中から選択されており、かつ当該族が隣接する2以上の遷移金属元素を有する金属酸化物、および
      錫含有酸化物からなる群から選択される一種以上を含み、
     前記カップリング剤が、メルカプトシラン、アミノシランおよびエポキシシランからなる群から選択される一種以上を含む、LDS用熱硬化性樹脂組成物。
  2.  請求項1に記載のLDS用熱硬化性樹脂組成物であって、
     前記無機充填材の平均粒径D50が30μm以下である、LDS用熱硬化性樹脂組成物。
  3.  請求項1または2に記載のLDS用熱硬化性樹脂組成物であって、
     前記無機充填材のD90が80μm以下である、LDS用熱硬化性樹脂組成物。
  4.  請求項1から3のいずれか1項に記載のLDS用熱硬化性樹脂組成物であって、
     前記無機充填材の粒度分布幅(D90/D50)が10以下である、LDS用熱硬化性樹脂組成物。
  5.  請求項1から4のいずれか1項に記載のLDS用熱硬化性樹脂組成物であって、
     前記非導電性金属化合物の含有量が、当該LDS用熱硬化性樹脂組成物全体に対して、3質量%以上20質量%以下である、LDS用熱硬化性樹脂組成物。
  6.  請求項1から5のいずれか1項に記載のLDS用熱硬化性樹脂組成物であって、
     EMMI-1-66法に従い、金型温度175℃、注入圧力6.9MPa、保圧時間120秒の条件で測定される、当該LDS用硬化性樹脂組成物のスパイラルフロー流動長が50cm以上である、LDS用熱硬化性樹脂組成物。
  7.  請求項1から6のいずれか1項に記載のLDS用熱硬化性樹脂組成物であって、
     カーボンを含まない、LDS用熱硬化性樹脂組成物。
  8.  請求項1から7のいずれか1項に記載のLDS用熱硬化性樹脂組成物であって、
     前記非導電性金属化合物が、銅またはクロムを含む前記スピネル型の金属酸化物を含有する、LDS用熱硬化性樹脂組成物。
  9.  請求項1から8のいずれか1項に記載のLDS用熱硬化性樹脂組成物であって、
     前記無機充填材が、シリカを含む、LDS用熱硬化性樹脂組成物。
  10.  請求項1から9のいずれか1項に記載のLDS用熱硬化性樹脂組成物であって、
     前記熱硬化性樹脂が、エポキシ樹脂を含む、LDS用熱硬化性樹脂組成物。
  11.  請求項10に記載のLDS用熱硬化性樹脂組成物であって、
     前記エポキシ樹脂が、オルソクレゾールノボラック型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル樹脂型エポキシ樹脂、およびトリフェニルメタン型エポキシ樹脂からなる群から選択される一種以上を含む、LDS用熱硬化性樹脂組成物。
  12.  請求項1から11のいずれか1項に記載のLDS用熱硬化性樹脂組成物であって、
     硬化剤をさらに含む、LDS用熱硬化性樹脂組成物。
  13.  請求項1から12のいずれか1項に記載のLDS用熱硬化性樹脂組成物であって、
     硬化促進剤を含む、LDS用熱硬化性樹脂組成物。
  14.  請求項1から13のいずれか1項に記載のLDS用熱硬化性樹脂組成物であって、
     粉粒状、顆粒状、タブレット状またはシート状である、LDS用熱硬化性樹脂組成物。
  15.  請求項1から14のいずれか1項に記載のLDS用熱硬化性樹脂組成物であって、
     LDS用熱硬化性樹脂組成物の硬化物を備える、樹脂成形品。
  16.  三次元構造を有する請求項15に記載の樹脂成形品と、
     前記樹脂成形品の表面に形成された三次元回路と、を備える、三次元成形回路部品。
PCT/JP2017/014663 2016-05-18 2017-04-10 Lds用熱硬化性樹脂組成物、樹脂成形品および三次元成形回路部品 WO2017199639A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP17799071.0A EP3460005B1 (en) 2016-05-18 2017-04-10 Thermosetting resin composition for lds, resin molded article and three-dimensional molded circuit component
MYPI2018001862A MY173559A (en) 2016-05-18 2017-04-10 Thermosetting resin composition for lds, resin molded article, and three-dimensional molded interconnect device
CN202310032342.0A CN116023762A (zh) 2016-05-18 2017-04-10 Lds用热固性树脂组合物、树脂成型品和三维成型电路元件
CN201780030491.6A CN109153858A (zh) 2016-05-18 2017-04-10 Lds用热固性树脂组合物、树脂成型品和三维成型电路元件
JP2017536364A JP6265308B1 (ja) 2016-05-18 2017-04-10 Lds用熱硬化性樹脂組成物、樹脂成形品および三次元成形回路部品
US16/302,299 US11174402B2 (en) 2016-05-18 2017-04-10 Thermosetting resin composition for LDS, resin molded article, and three-dimensional molded interconnect device
KR1020187034762A KR102040766B1 (ko) 2016-05-18 2017-04-10 Lds용 열경화성 수지 조성물, 수지 성형품 및 3차원 성형 회로 부품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016099412 2016-05-18
JP2016-099412 2016-05-18

Publications (1)

Publication Number Publication Date
WO2017199639A1 true WO2017199639A1 (ja) 2017-11-23

Family

ID=60325096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014663 WO2017199639A1 (ja) 2016-05-18 2017-04-10 Lds用熱硬化性樹脂組成物、樹脂成形品および三次元成形回路部品

Country Status (8)

Country Link
US (1) US11174402B2 (ja)
EP (1) EP3460005B1 (ja)
JP (1) JP6265308B1 (ja)
KR (1) KR102040766B1 (ja)
CN (2) CN116023762A (ja)
MY (1) MY173559A (ja)
TW (1) TWI759296B (ja)
WO (1) WO2017199639A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094092A (ja) * 2018-12-10 2020-06-18 住友ベークライト株式会社 ステータコア絶縁用樹脂組成物
WO2020130012A1 (ja) * 2018-12-18 2020-06-25 住友ベークライト株式会社 Lds用熱硬化性樹脂組成物および半導体装置の製造方法
JP2020132647A (ja) * 2019-02-12 2020-08-31 住友ベークライト株式会社 Ldsに用いる射出成形用熱硬化性樹脂成形材料、それを用いた射出成形品の製造方法およびmidの製造方法
US20210002474A1 (en) * 2019-07-05 2021-01-07 Shin-Etsu Chemical Co., Ltd. Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2021020996A (ja) * 2019-07-26 2021-02-18 信越化学工業株式会社 熱硬化性マレイミド樹脂組成物及び半導体装置
JP7476589B2 (ja) 2020-03-16 2024-05-01 住友ベークライト株式会社 半導体装置の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6735505B2 (ja) * 2016-09-06 2020-08-05 パナソニックIpマネジメント株式会社 プリント配線板、プリント回路板、プリプレグ
WO2021025125A1 (ja) * 2019-08-08 2021-02-11 住友ベークライト株式会社 熱硬化性樹脂組成物
TWI747202B (zh) * 2020-03-18 2021-11-21 科宏精密有限公司 精密立體電路零件的製造方法
JP6907393B1 (ja) * 2020-08-05 2021-07-21 信越化学工業株式会社 熱硬化性樹脂組成物及び半導体装置
US11554537B2 (en) * 2021-02-09 2023-01-17 Xerox Corporation Polymer filaments comprising a metal precursor for additive manufacturing and methods associated therewith
CN113912976B (zh) * 2021-10-11 2023-04-28 四川大学 含钼敏化助剂在树脂组合物的激光活化选择性金属化工艺中的应用
TW202337995A (zh) * 2021-11-17 2023-10-01 德商漢高股份有限及兩合公司 液體模製物料及其當暴露於雷射能後變成具可鍍性的反應產物
CN115612333A (zh) * 2022-05-09 2023-01-17 成都普林泰克新材料有限公司 一种用于三维结构一体化电路的涂料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3881338B2 (ja) 2001-07-05 2007-02-14 エル・ピー・ケー・エフ・レーザー・ウント・エレクトロニクス・アクチエンゲゼルシヤフト コンダクタートラック構造物およびその製造方法
JP2013545832A (ja) * 2010-10-26 2013-12-26 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ すべての色特性を有するレーザダイレクトストラクチャリング材料
JP2014088618A (ja) * 2012-10-26 2014-05-15 Rohm & Haas Electronic Materials Llc 無電解めっきのための方法およびそのために使用される溶液
JP2015108123A (ja) * 2013-10-24 2015-06-11 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、樹脂成形品、および樹脂成形品の製造方法
JP2015520775A (ja) * 2012-03-16 2015-07-23 ミツビシ ケミカル ヨーロッパ ゲーエムベーハー 熱可塑性組成物
JP2015134903A (ja) 2013-12-17 2015-07-27 三菱エンジニアリングプラスチックス株式会社 繊維強化樹脂材料、樹脂成形品、メッキ層付樹脂成形品、メッキ層付樹脂成形品の製造方法、および繊維強化樹脂材料の製造方法
WO2015157354A1 (en) * 2014-04-09 2015-10-15 The Shepherd Color Company Core-shell composite inorganic metal oxides and method of preparation for prevention of thermal oxidative degradation in polymer and resin compositions
JP2016099412A (ja) 2014-11-19 2016-05-30 キヤノン株式会社 プロセスカートリッジ及び画像形成装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101895831B1 (ko) 2008-01-09 2018-09-07 히타치가세이가부시끼가이샤 열경화성 수지 조성물, 에폭시 수지 성형 재료 및 다가 카르복시산 축합체
WO2014050871A1 (ja) * 2012-09-27 2014-04-03 積水化学工業株式会社 多層基板の製造方法、多層絶縁フィルム及び多層基板
CN105531309A (zh) * 2013-06-04 2016-04-27 沙特基础全球技术有限公司 具有激光直接成型功能的导热聚合物组合物
JP5710826B2 (ja) * 2013-07-09 2015-04-30 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、樹脂成形品、樹脂成形品の製造方法およびレーザーダイレクトストラクチャリング添加剤
CN103467967A (zh) * 2013-09-16 2013-12-25 广东生益科技股份有限公司 一种热固性树脂组合物及其用途
CN103709747B (zh) * 2013-12-27 2017-01-04 广东生益科技股份有限公司 一种热固性树脂组合物及其用途
DE102014008963A1 (de) 2014-06-23 2016-01-07 Merck Patent Gmbh Additiv für LDS-Kunststoffe
CN105504686B (zh) 2015-12-30 2018-01-05 广东生益科技股份有限公司 一种热固性树脂组合物以及含有它的预浸料、层压板和电路载体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3881338B2 (ja) 2001-07-05 2007-02-14 エル・ピー・ケー・エフ・レーザー・ウント・エレクトロニクス・アクチエンゲゼルシヤフト コンダクタートラック構造物およびその製造方法
JP2013545832A (ja) * 2010-10-26 2013-12-26 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ すべての色特性を有するレーザダイレクトストラクチャリング材料
JP2015520775A (ja) * 2012-03-16 2015-07-23 ミツビシ ケミカル ヨーロッパ ゲーエムベーハー 熱可塑性組成物
JP2014088618A (ja) * 2012-10-26 2014-05-15 Rohm & Haas Electronic Materials Llc 無電解めっきのための方法およびそのために使用される溶液
JP2015108123A (ja) * 2013-10-24 2015-06-11 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、樹脂成形品、および樹脂成形品の製造方法
JP2015134903A (ja) 2013-12-17 2015-07-27 三菱エンジニアリングプラスチックス株式会社 繊維強化樹脂材料、樹脂成形品、メッキ層付樹脂成形品、メッキ層付樹脂成形品の製造方法、および繊維強化樹脂材料の製造方法
WO2015157354A1 (en) * 2014-04-09 2015-10-15 The Shepherd Color Company Core-shell composite inorganic metal oxides and method of preparation for prevention of thermal oxidative degradation in polymer and resin compositions
JP2016099412A (ja) 2014-11-19 2016-05-30 キヤノン株式会社 プロセスカートリッジ及び画像形成装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7302166B2 (ja) 2018-12-10 2023-07-04 住友ベークライト株式会社 ステータコア絶縁用樹脂組成物
JP2020094092A (ja) * 2018-12-10 2020-06-18 住友ベークライト株式会社 ステータコア絶縁用樹脂組成物
KR102490214B1 (ko) 2018-12-18 2023-01-19 스미또모 베이크라이트 가부시키가이샤 Lds용 열경화성 수지 조성물 및 반도체 장치의 제조 방법
WO2020130012A1 (ja) * 2018-12-18 2020-06-25 住友ベークライト株式会社 Lds用熱硬化性樹脂組成物および半導体装置の製造方法
TWI797404B (zh) * 2018-12-18 2023-04-01 日商住友電木股份有限公司 Lds 用熱固性樹脂組成物及半導體裝置之製造方法
KR20210104798A (ko) * 2018-12-18 2021-08-25 스미또모 베이크라이트 가부시키가이샤 Lds용 열경화성 수지 조성물 및 반도체 장치의 제조 방법
JPWO2020130012A1 (ja) * 2018-12-18 2021-09-09 住友ベークライト株式会社 Lds用熱硬化性樹脂組成物および半導体装置の製造方法
JP7078138B2 (ja) 2018-12-18 2022-05-31 住友ベークライト株式会社 半導体装置の製造方法
EP3901214A4 (en) * 2018-12-18 2022-08-31 Sumitomo Bakelite Co.Ltd. THERMOSETTING RESIN COMPOSITION FOR LDS AND SEMICONDUCTOR DEVICE PRODUCTION METHOD
JP2020132647A (ja) * 2019-02-12 2020-08-31 住友ベークライト株式会社 Ldsに用いる射出成形用熱硬化性樹脂成形材料、それを用いた射出成形品の製造方法およびmidの製造方法
JP2021011528A (ja) * 2019-07-05 2021-02-04 信越化学工業株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置
JP7243493B2 (ja) 2019-07-05 2023-03-22 信越化学工業株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置
US20210002474A1 (en) * 2019-07-05 2021-01-07 Shin-Etsu Chemical Co., Ltd. Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP7188309B2 (ja) 2019-07-26 2022-12-13 信越化学工業株式会社 熱硬化性マレイミド樹脂組成物及び半導体装置
JP2021020996A (ja) * 2019-07-26 2021-02-18 信越化学工業株式会社 熱硬化性マレイミド樹脂組成物及び半導体装置
JP7476589B2 (ja) 2020-03-16 2024-05-01 住友ベークライト株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
TWI759296B (zh) 2022-04-01
US20190292386A1 (en) 2019-09-26
JP6265308B1 (ja) 2018-01-24
KR102040766B1 (ko) 2019-11-06
US11174402B2 (en) 2021-11-16
CN109153858A (zh) 2019-01-04
EP3460005B1 (en) 2022-05-11
CN116023762A (zh) 2023-04-28
MY173559A (en) 2020-02-04
TW201819497A (zh) 2018-06-01
KR20180135077A (ko) 2018-12-19
EP3460005A4 (en) 2020-01-08
JPWO2017199639A1 (ja) 2018-06-07
EP3460005A1 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
JP6265308B1 (ja) Lds用熱硬化性樹脂組成物、樹脂成形品および三次元成形回路部品
JP6436263B2 (ja) エポキシ樹脂組成物および構造体
KR101831573B1 (ko) 봉지용 수지 조성물, 차재용 전자 제어 유닛의 제조 방법, 및 차재용 전자 제어 유닛
JPWO2011052157A1 (ja) 半導体封止用樹脂組成物およびこれを用いた半導体装置
JP6766360B2 (ja) 樹脂組成物
JP7078138B2 (ja) 半導体装置の製造方法
JP2016169367A (ja) 封止用樹脂組成物、電子部品の製造方法、および電子部品
JP6281178B2 (ja) 電子装置、自動車および電子装置の製造方法
JP5050923B2 (ja) 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2022030195A (ja) Lds用熱硬化性樹脂組成物、樹脂成形品および三次元成形回路部品
JP2021195586A (ja) Lds用熱硬化性樹脂組成物および構造体
JP6686457B2 (ja) 封止用樹脂組成物および電子装置
WO2023182485A1 (ja) 封止用樹脂組成物および片面封止構造体の製造方法
JP2022096238A (ja) Lds用熱硬化性樹脂組成物および電子デバイス
JP2021102728A (ja) Lds用熱硬化性樹脂組成物
JP6544107B2 (ja) 車載用電子制御ユニットの製造方法、および封止用樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017536364

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187034762

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017799071

Country of ref document: EP

Effective date: 20181218