WO2017185928A1 - 用于生产生物柴油的选择性加氢催化剂及其制备方法和应用 - Google Patents

用于生产生物柴油的选择性加氢催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2017185928A1
WO2017185928A1 PCT/CN2017/078021 CN2017078021W WO2017185928A1 WO 2017185928 A1 WO2017185928 A1 WO 2017185928A1 CN 2017078021 W CN2017078021 W CN 2017078021W WO 2017185928 A1 WO2017185928 A1 WO 2017185928A1
Authority
WO
WIPO (PCT)
Prior art keywords
selective hydrogenation
carrier
hydrogenation catalyst
active component
graphene
Prior art date
Application number
PCT/CN2017/078021
Other languages
English (en)
French (fr)
Inventor
王春锋
石友良
许莉
杨伟光
赖波
赵焘
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Publication of WO2017185928A1 publication Critical patent/WO2017185928A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7815Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates (SAPO compounds)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the invention relates to the field of catalysts, in particular to a selective hydrogenation catalyst for the production of biodiesel and a preparation method and application thereof.
  • the most notable characteristics of the low temperature Fischer-Tropsch synthesis reaction are wide product distribution, low product selectivity, low isomeric product content, and most of the products are linear hydrocarbons.
  • the above characteristics result in a very low octane number of the Fischer-Tropsch gasoline fraction and a high freezing point of the kerosene fraction and the diesel fraction, which limits the use of Fischer-Tropsch synthetic oil as a fuel oil to some extent.
  • Low-temperature Fischer-Tropsch synthetic oil can produce high-quality diesel without sulfur, nitrogen, low aromatics and high cetane by hydrotreating and hydrocracking.
  • the diesel produced from the low temperature Fischer-Tropsch synthesis product has a cetane number of more than 70 and the quality of the oil meets the Euro V standard.
  • Chinese Patent Publication No. CN102441374A discloses a catalyst for supporting metal active components Pt, Pd, Ni and the like by using graphene as a carrier for a selective hydrogenation reaction of pyrolysis gasoline.
  • the catalyst can hydrogenate the diolefin in the pyrolysis gasoline at a lower temperature, and the hydrogenation rate is over 60%.
  • the catalysts disclosed in the above two patents all have graphene materials, and these graphene materials are substantially non-acidic, which is not conducive to the cracking reaction, and the single layer and the small layer of graphene are expensive to prepare, and do not have large-scale industrialization.
  • the conditions of production, so the complete use of graphene in the preparation of hydrocracking catalyst carrier not only can not achieve good cracking performance, and the economy is not good.
  • hydrogenation catalysts generally use amorphous silica-alumina and molecular sieves as raw materials to prepare carriers.
  • the physicochemical properties such as pore volume and specific surface area of raw materials limit the loading of active metals, and the poor thermal conductivity of raw materials also leads to hydrogenation devices.
  • the temperature difference of the catalyst bed is large, up to 10 °C.
  • the catalyst overcomes the defects of low selectivity, low isomerization and high reaction temperature of Fischer-Tropsch paraffin wax during hydrocracking.
  • the present invention provides a selective hydrogenation catalyst for producing biodiesel, comprising a carrier and a main metal active component, the main metal active component being supported on a carrier; characterized in that:
  • the main metal active component is 5 to 30% by weight of the finished catalyst, and the main metal active component is one or a combination of oxides containing Co, Mo, Ni, and W. It is composed of 1 to 8% molecular sieve, 25 to 65% amorphous silica alumina, 30 to 65% alumina, and 2 to 10% graphene auxiliary agent, based on the weight percentage of the raw material.
  • the raw material of the graphene auxiliary agent is composed of a secondary metal active component and graphene, and the auxiliary metal active component is supported on graphene, and the auxiliary metal active component accounts for the weight percentage of the graphene auxiliary agent. It is 5 to 30%, wherein the auxiliary metal active component is one or a combination of one or more of oxides containing Co, Mo, Ni, and W.
  • the method for preparing the graphene auxiliary comprises the following steps:
  • Graphene is a layered structure, which is easily agglomerated by heat. It can prevent interlayer agglomeration after loading metal atoms to the graphene layer.
  • Both the auxiliary metal active component and the main metal active component are sources of hydrogenation activity of the hydrocracking catalyst, and both of them have the geometrical and electronic conditions for the hydrogenation-active metal, and have hexagonal or tetragonal geometrical conditions.
  • the crystal system and the interatomic distance are between 0.24916 and 0.27746 nm; the electrons satisfying the d orbital 10 electrons are not filled, that is, there are holes in the d orbital.
  • the metal salt containing Co is cobalt nitrate, cobalt chloride, cobalt sulfate, cobalt phosphate (preferably Cobalt chloride or cobalt nitrate;
  • the metal salt containing Mo is molybdenum chloride, molybdenum nitrate, molybdate, molybdate (preferably molybdenum chloride or molybdenum nitrate);
  • the metal salt containing Ni is nickel nitrate, chlorine Nickel, nickel sulfate, nickel phosphate (preferably nickel chloride or nickel nitrate), and the metal salt containing W is metatungstic acid, ethyl metatungstic acid, or metatungstate (preferably ammonium metatungstate).
  • auxiliary metal active component accounts for 12 to 25% by weight of the graphene auxiliary.
  • the method for preparing graphene oxide includes the following steps:
  • the specific surface area of the graphite oxide is preferably not less than 260 m 2 /g, and the layer spacing is preferably not less than 0.80 nm.
  • the molecular sieve is any one or more of ⁇ , Y, ZSM-5, SAPO and MCM-41 molecular sieves.
  • the molecular sieve is a Y or beta molecular sieve.
  • the alumina is composed of two grades, respectively, a small pore alumina and a large pore alumina; the weight percentage thereof is 1:0.8 to 2.3, respectively; wherein the specific surface area of the large pore alumina is 400 to 650 m. 2 / g, the total pore volume is 0.8 ⁇ 1.3mL / g; the specific surface area of the small pore alumina is 200 ⁇ 380m 2 / g, the total pore volume is 0.3 ⁇ 0.55mL / g.
  • main metal active component and the auxiliary metal active component are each one or a combination of oxides containing Co, Mo, Ni, and W; respectively, cobalt oxide, molybdenum oxide, Nickel oxide and tungsten oxide One or several.
  • the main metal active component and the auxiliary metal active component are two oxides, wherein one oxide is any one of cobalt oxide or nickel oxide, and the other oxide is molybdenum oxide. And any one of tungsten oxides, the atomic ratio of the number of atoms of Ni or Co/total metal element is from 0.2 to 0.8.
  • Ni and Co are Group VIII elements
  • Mo and W are Group VIB elements
  • the number of elements of Group VIII/(Number of atoms of Group VIII element + Number of atoms of Group VIB element) is from 0.2 to 0.8.
  • the main metal active component and the auxiliary metal active component are all three oxides, among which mainly include Mo-Ni-Co or W-Mo-Ni, atomic number of Ni or/and Co/total metal element The atomic ratio is 0.2 to 0.8.
  • the main metal active component accounts for 12 to 25% by weight of the finished catalyst, and the carrier is composed of 2 to 5% molecular sieve, 30 to 50% of amorphous silica alumina, by weight of the raw material. 20 to 30% of macroporous alumina, 18 to 30% of small pore alumina, and 3 to 8% of graphene auxiliary.
  • the method for preparing the carrier comprises the following steps:
  • the baking temperature is 350 to 500 ° C, and the time is 2 to 6 hours.
  • the carrier is in the form of a sheet, a strip, a ring, a wheel, a cylinder, a clover or a four-leaf clover.
  • a method of preparing a catalyst for selective hydrogenation comprises the steps of:
  • the above freeze drying is to prevent the agglomeration of graphite oxide and graphene.
  • the metal salt containing Co is cobalt nitrate, cobalt chloride, cobalt sulfate, cobalt phosphate (preferably cobalt chloride or cobalt nitrate);
  • the metal salt containing Mo is molybdenum chloride, molybdenum nitrate, molybdic acid a salt, a secondary molybdate (preferably molybdenum chloride or molybdenum nitrate);
  • a metal salt containing Ni is nickel nitrate, nickel chloride, nickel sulfate, nickel phosphate (preferably nickel chloride or nickel nitrate), metal containing W
  • the salt is metatungstic acid, ethyl metatungstic acid, metatungstate (preferably metatungstate).
  • the invention provides an application of the above selective hydrogenation catalyst in the maximum production of biodiesel in Fischer-Tropsch synthetic oil, wherein the selective hydrogenation reaction temperature is 300-360 ° C, and the reaction hydrogen is divided.
  • the pressure is 4.0 to 8.0 MPa
  • the volumetric space velocity in the liquid is 1 to 4 h -1
  • the volume ratio of hydrogen to oil is 500 to 1000.
  • Carbon is one of the most common and wonderful materials on the planet. Since the discovery of graphene by British scientists in 2004, graphene has quickly become a hot topic in physics, chemistry and materials science due to its unique properties and two-dimensional nanostructures. Received widespread attention in the scientific community and was named one of the top ten scientific advances by Science Magazine in 2009.
  • Graphene is a novel two-dimensional material with a single-layer two-dimensional honeycomb lattice structure, which is closely packed by carbon atoms and sp 2 hybridized.
  • the discovery of graphene forms a complete system from zero-dimensional fullerenes, one-dimensional carbon nanotubes, two-dimensional graphene to three-dimensional diamond and graphite, and graphene is considered to be fullerenes and carbon nanotubes. And the basic structural unit of graphite.
  • Graphene has excellent mechanical strength, large specific surface area, simple surface treatment and good electrical conductivity, thermal conductivity and chemical stability, making graphene an ideal composite carrier. Using graphene as a carrier, loading nanoparticles between graphene layers can not only improve the dispersibility of nanoparticles, but also promote the electron transfer during the catalytic reaction due to the electronic structure characteristics of graphene, and significantly improve the catalytic performance. Graphene has been used. Become a popular application material in many high-tech fields.
  • Graphene is a carbonaceous new material in which a single layer of carbon atoms is closely packed into a two-dimensional honeycomb lattice structure. Compared with carbon nanotubes, it has a larger theoretical specific surface area. Because the active metal disperses well on graphene, it exhibits a larger active surface area and more active sites at the same loading. Lowering the reaction temperature and improving the performance of hydrogenation;
  • the surface of the catalyst has low acidity, high hydrogenation activity and moderate cracking performance, less deposition of carbon and coke on the catalyst, and excellent stability and corrosion resistance of graphene, which are beneficial to prolong Catalyst regeneration cycle;
  • the active components can also interact to improve the performance of the catalyst.
  • this structure can avoid the blockage of the pores by the high-load active component, and can also eliminate the internal diffusion of the reactants and products in the pores, thereby increasing the reaction rate;
  • Graphene has excellent thermal conductivity, which has obvious thermal conductivity advantage in the catalytic reaction of absorption and exothermic, and the temperature distribution of the catalyst bed is uniform;
  • the present invention uses graphene supporting an active component as an auxiliary agent, and the content is only 2 to 10% by weight of the carrier, and the reduction process of the graphite oxide is At the same time, the metal is loaded, which greatly reduces the agglomeration of graphene, and achieves the high efficiency of graphene as an auxiliary agent while reducing the cost.
  • ⁇ molecular sieve SiO 2 /Al 2 O 3 is 50-80, specific surface is 500-650 m 2 /g, pore volume is 0.35-0.6 ml/g; purchased at Nankai University Catalyst Factory;
  • Y molecular sieve SiO 2 /Al 2 O 3 is 2 to 3, specific surface 650 ⁇ 850 m 2 / g, pore volume 0.35 ⁇ 0.5 ml / g;
  • ZSM-5 molecular sieve SiO 2 /Al 2 O 3 is 60-200, specific surface 450-600 m 2 /g, pore volume 0.30-0.55 ml / g;
  • SAPO molecular sieve specific surface 400 ⁇ 600m 2 / g, pore volume 0.35 ⁇ 0.6ml / g;
  • MCM-41 molecular sieve specific surface 800 ⁇ 1000m 2 /g, pore volume 0.70 ⁇ 1ml / g;
  • Y, ZSM-5, SAPO and MCM-41 molecular sieves were purchased from Nankai University Catalyst Factory;
  • Amorphous silica-alumina SiO 2 content is 35-60w%, specific surface 350-600m 2 /g, pore volume 0.6-0.9ml/g; amorphous silicon-aluminum purchased from China Aluminum Shandong Branch;
  • Tian Jing powder was purchased from the market, and other unspecified materials were purchased from the market.
  • the preparation method of the graphene auxiliary 1 is as follows:
  • the preparation method of the carrier 1 is as follows:
  • the preparation method of the selective hydrogenation catalyst 1 is as follows:
  • This embodiment uses the same preparation method as in Embodiment 1, except that:
  • the raw material of the carrier 3 is 0.5 g of graphene auxiliary 1, 0.5 g of ⁇ molecular sieve, 4.5 g of amorphous silica alumina, 2.5 g of macroporous alumina, 2 g of small pore alumina, and 0.1 g of phthalocyanine powder;
  • the raw material of the selective hydrogenation catalyst 3 was: 5 g of the carrier 3 and 10 mL of a 1 mol/L solution of Ni(NO 3 ) 2 ⁇ 6H 2 O.
  • This embodiment uses the same preparation method as in Embodiment 1, except that:
  • the raw material of the carrier 4 is 0.7 g of graphene auxiliary 1, 0.5 g of ⁇ molecular sieve, 4.3 g of amorphous silica alumina, 2.5 g of macroporous alumina, 2 g of small pore alumina, and 0.1 g of phthalocyanine powder;
  • the raw material of the selective hydrogenation catalyst 4 is: 5 g of the carrier 4 and 10 mL of a 1 mol/L solution of Ni(NO 3 ) 2 ⁇ 6H 2 O;
  • This embodiment uses the same preparation method as in Embodiment 1, except that:
  • the raw material of the carrier 5 is 1 g of graphene auxiliary 1, 0.5 g of ⁇ molecular sieve, 4.0 g of amorphous silica alumina, 2.5 g of macroporous alumina, 2 g of small pore alumina, and 0.1 g of phthalocyanine powder;
  • the raw material of the selective hydrogenation catalyst 5 is: 5 g of the carrier 5 and 10 mL of a 1 mol/L solution of Ni(NO 3 ) 2 ⁇ 6H 2 O;
  • This embodiment uses the same preparation method as in Embodiment 2, except that:
  • the raw material of the carrier 6 is 0.5 g of graphene auxiliary 2, 0.5 g of ⁇ molecular sieve, 4.5 g of amorphous silica alumina, 2.5 g of macroporous alumina, 2 g of small pore alumina, and 0.1 g of phthalocyanine powder;
  • the raw material of the selective hydrogenation catalyst 6 is: 5g of carrier 6 and 10mL of 0.05mol/L of (NH 4 ) 6 H 2 W 12 O 40 solution;
  • This embodiment uses the same preparation method as in Embodiment 2, except that:
  • the raw material of the carrier 7 is 0.7 g of graphene auxiliary 2, 0.5 g of ⁇ molecular sieve, 4.3 g of amorphous silica alumina, 2.5 g of macroporous alumina, 2 g of small pore alumina, and 0.1 g of phthalocyanine powder;
  • the raw material of the selective hydrogenation catalyst 7 is: 5g of carrier 7 and 10mL of 0.05mol/L of (NH 4 ) 6 H 2 W 12 O 40 solution;
  • This embodiment uses the same preparation method as in Embodiment 2, except that:
  • the raw material of the carrier 8 is 1 g of graphene auxiliary 2, 0.5 g of ⁇ molecular sieve, 4.0 g of amorphous silica alumina, 2.5 g of macroporous alumina, 2 g of small pore alumina, and 0.1 g of phthalocyanine powder;
  • the raw material of the selective hydrogenation catalyst 8 is: 5 g of carrier 8 and 10 mL of 0.05 mol/L of (NH 4 ) 6 H 2 W 12 O 40 solution;
  • This example is the same as the method for preparing the graphene auxiliary and the carrier of Example 3.
  • the preparation method of the selective hydrogenation catalyst 9 is as follows:
  • This example is the same as the method for preparing the graphene auxiliary and the carrier of Example 3.
  • the preparation method of the selective hydrogenation catalyst 10 is as follows:
  • the preparation method in this embodiment is basically the same as that in Embodiment 1, except that:
  • the preparation method of the carrier 11 is as follows:
  • the preparation method in this embodiment is basically the same as that in Embodiment 2, except that:
  • the preparation method of the carrier 12 is as follows:
  • the preparation method in this embodiment is basically the same as that in Embodiment 1, except that:
  • the preparation method of the carrier 13 is as follows:
  • the preparation method in this embodiment is basically the same as that in Embodiment 2, except that:
  • the preparation method of the carrier 14 is as follows:
  • the preparation method in this embodiment is basically the same as that in the embodiment 10, except that:
  • the preparation method of the carrier 15 is as follows:
  • the preparation method of the carrier 16 is as follows:
  • the preparation method of the catalyst 16 is as follows:
  • the preparation method of the catalyst 17 is as follows:
  • This example is the same as the method for preparing the graphene auxiliary of Example 1.
  • the preparation method of the carrier 18 is as follows:
  • the preparation method of the catalyst 18 is as follows:
  • This example is the same as the method for preparing the graphene auxiliary of Example 1.
  • the preparation method of the carrier 19 is as follows:
  • the kneaded material is transferred to the extruder to form a strip, the extruded carrier is freeze-dried for 20 h, pelletized, and then calcined in an air atmosphere at 500 ° C for 4 h and then cooled to room temperature to obtain a carrier 19;
  • the preparation method of the catalyst 19 is as follows:
  • This example is the same as the method for preparing the graphene auxiliary and the carrier of Example 3.
  • the preparation method of the catalyst 20 is as follows:
  • This example is the same as the method for preparing the graphene auxiliary and the carrier of Example 3.

Abstract

一种用于生产生物柴油的选择性加氢催化剂及其制备方法和应用。该选择性加氢催化剂,包括载体和主金属活性组分,主金属活性组分负载在载体上;主金属活性组分占催化剂成品的重量百分比为 5-30 %,主金属活性组分为含有 Co、Mo、Ni、W 的氧化物中的一种或一种以上的组合,载体按原料的重量百分比计由 1-8%的分子筛、 25-65%的无定形硅铝、30-65%的氧化铝和2-10 %的石墨烯助剂组成。催化剂制备方法是将载体置于含有Co、 Mo、Ni或/和W的金属盐溶液中浸渍 4-20h,得到浸渍后的载体;浸渍后的载体冷冻干燥后再焙烧处理得到选择性加氢的催化剂。载体在相同的载量下,表现的活性表面积较大,具有更多的活性位点,降低反应温度,提高加氢的性能。

Description

用于生产生物柴油的选择性加氢催化剂及其制备方法和应用 技术领域
本发明涉及催化剂领域,具体地指一种用于生产生物柴油的选择性加氢催化剂及其制备方法和应用。
背景技术
低温费托合成反应最显著的特点是产物分布宽、产物的选择性低、异构产物含量低,且产物绝大部分为直链烃。上述特性导致了费托合成汽油馏分辛烷值非常低、煤油馏分和柴油馏分的凝点偏高,这在一定程度上限制了费托合成油作为燃料油的使用。
低温费托合成油经加氢处理和加氢裂化等手段可生产无硫、无氮、低芳烃、高十六烷值的高品质柴油。由低温费托合成产物生产的柴油,其十六烷值高达70以上,油品质量符合欧V标准。
但目前用于生物柴油生产的加氢催化剂以对于异构化和裂化程度的调节不够理想,导致生物柴油的凝点较高。
公开号为CN102441374A的中国发明专利公开了一种以石墨烯为载体负载金属活性组分Pt、Pd、Ni等的催化剂,用于裂解汽油一段选择性加氢反应。该催化剂在较低的温度下就可以对裂解汽油中的双烯烃加氢饱和,加氢率达到60%以上。
公开号为CN103301841B的中国发明专利公开了一种石墨烯负载纳米Ni的催化剂,并参杂少量无定形Al2O3,该催化剂不仅能高度负载纳米Ni,而且纳米Ni能很好地分散在石墨烯层上,用于肉桂醛选择性加氢合成苯丙醛,转化率和对苯丙醛的选择性分别可达到86~100%和88~96%。
上述两个专利公开的催化剂的原料均有石墨烯材料,而这些石墨烯材料基本无酸性,不利于裂解反应的进行,而且单层及少层的石墨烯制备成本较高,不具备大规模工业化生产的条件,所以在加氢裂化催化剂载体制备中完全使用石墨烯不仅不能起到很好的裂化性能,经济性也不佳。
目前加氢催化剂普遍使用无定形硅铝和分子筛为原料制备载体,原料的孔容和比表面积等物化性质限制了活性金属的负载量,而且原料的导热性能不佳也导致加氢装置上 催化剂床层温差较大,可达10℃以上。
发明内容
本发明的目的是提供了一种用于生产生物柴油的选择性加氢催化剂及其制备方法和应用。该催化剂克服费托合成石蜡在加氢裂化时低选择性、低异构化和反应温度高等的缺陷。
为实现上述目的,本发明提供的一种用于生产生物柴油的选择性加氢催化剂,包括载体和主金属活性组分,所述主金属活性组分负载在载体上;其特征在于:所述主金属活性组分占催化剂成品的重量百分比为5~30%,所述主金属活性组分为含有Co、Mo、Ni、W的氧化物中的一种或一种以上的组合,所述载体按原料的重量百分比计由1~8%的分子筛、25~65%的无定形硅铝、30~65%的氧化铝和2~10%的石墨烯助剂组成。
进一步地,所述石墨烯助剂的原料由辅金属活性组分和石墨烯组成,所述辅金属活性组分负载在石墨烯上,所述辅金属活性组分占石墨烯助剂的重量百分比为5~30%,其中,所述辅助型金属活性组分为含有Co、Mo、Ni、W的氧化物中的一种或一种以上的组合。
再进一步地,所述石墨烯助剂的制备方法,包括以下步骤:
1)将含有Co、Mo、Ni或/和W的金属盐溶解于氧化石墨溶液中,得到混合溶液,
2)向混合溶液中加入柠檬酸,在温度为140~200℃水热反应4~10h;冷冻干燥得到石墨烯助剂;其中,混合溶液中的氧化石墨与柠檬酸质量比为1:3~8;
柠檬酸还原氧化石墨,柠檬酸会在水热处理中分解成CO2和H2O,氧化石墨还原后形成石墨烯;
石墨烯为层状结构,受热很容易团聚,负载金属原子到石墨烯层间后可以防止层间团聚。
辅金属活性组分与主金属活性组分均是加氢裂化催化剂加氢活性的来源,它们均具有加氢活性的金属应具备的几何条件和电子条件,几何条件上均具有六方晶系或四方晶系并且原子间距离均在0.24916~0.27746nm之间;电子条件符合d轨道的10个电子不充满,也就是d轨道上有空穴存在。
再进一步地,所述含有Co的金属盐为硝酸钴、氯化钴、硫酸钴、磷酸钴(优选为 氯化钴或硝酸钴);含有Mo的金属盐为氯化钼、硝酸钼、钼酸盐、仲钼酸盐(优选为氯化钼或硝酸钼);含有Ni的金属盐为硝酸镍、氯化镍、硫酸镍、磷酸镍(优选为氯化镍或硝酸镍),含有W的金属盐为偏钨酸、乙基偏钨酸、偏钨酸盐(优选为偏钨酸胺)。
再进一步地,所述辅金属活性组分占石墨烯助剂的重量百分比为12~25%。
再进一步地,所述氧化石墨烯的制备方法,包括以下步骤:
1)按重量比:1∶0.5~2∶50~100称取天然石墨、无水硝酸钠和浓硫酸;
2)将天然石墨和无水硝酸钠缓慢放入置于冰浴内的浓H2SO4中,并以天然石墨∶高锰酸钾重量比=1∶5~10缓慢加入高锰酸钾进行氧化处理,搅拌0.5~2h,得到混合溶液;
3)将混合溶液置于温度为25~45℃的水浴中搅拌反应1~4h,同时搅拌过程中向混合溶液中缓慢加入去离子水;
4)再将混合溶液置于温度为90~98℃水浴中继续搅拌高温反应0.5~2h;然后用去离子水稀释混合溶液,得到稀释溶液;
5)按天然石墨∶双氧水重量比=1∶20~50将双氧水缓慢滴加至稀释溶液中,趁热过滤,得到滤液,其中,双氧水的质量分数为25~30%;
6)用盐酸充分离心洗涤,直至滤液中无SO4 2-,再用去离子水离心洗涤多次,去除Cl-,直至滤液变为中性,得到粘稠的黄色液体;
7)将粘稠的黄色液体在功率为120~250W条件下超声处理2~6h,得到的氧化石墨溶液冷冻干燥20~60h得到的就是氧化石墨。
再进一步地,所述氧化石墨比表面积优选不小于260m2/g,层间距优选不小于0.80nm。
再进一步地,所述分子筛为β、Y、ZSM-5、SAPO和MCM-41分子筛中任意一种或几种。
再进一步地,所述分子筛为Y或β分子筛。
再进一步地,所述氧化铝由两个级配构成,分别为小孔氧化铝和大孔氧化铝;其重量百分比分别为1∶0.8~2.3;其中,大孔氧化铝的比表面积400~650m2/g、总孔孔容0.8~1.3mL/g;小孔氧化铝的比表面积200~380m2/g、总孔孔容0.3~0.55mL/g。
再进一步地,所述主金属活性组分和辅助型金属活性组分均为含有Co、Mo、Ni、W的氧化物中的一种或一种以上的组合;分别为氧化钴、氧化钼、氧化镍和氧化钨中任 意一种或几种。
再进一步地,所述主金属活性组分和辅助型金属活性组分均为两种氧化物,其中,一种氧化物为氧化钴或氧化镍中任意一种,另一种氧化物为氧化钼和氧化钨中任意一种,Ni或Co的原子数/总金属元素的原子数比为0.2~0.8。Ni和Co为VIII族元素,Mo和W为VIB族元素,VIII族元素原子数/(VIII族元素原子数+VIB族元素原子数)为0.2~0.8。
所述主金属活性组分和辅助型金属活性组分均为三种氧化物,其中,主要包括Mo-Ni-Co或W-Mo-Ni,Ni或/和Co的原子数/总金属元素的原子数比为0.2~0.8。
再进一步地,所述主金属活性组分占催化剂成品的重量百分比为12~25%,所述载体按原料的重量百分比计由2~5%的分子筛、30~50%的无定形硅铝、20~30%的大孔氧化铝、18~30%的小孔氧化铝和3~8%的石墨烯助剂构成。
再进一步地,所述载体的制备方法,包括以下步骤:
1)按上述重量百分比计称取分子筛、无定形硅铝、氧化铝和石墨烯助剂;
2)将分子筛、无定形硅铝、氧化铝和石墨烯助剂混合均匀,再加入田菁粉(田菁粉在后续的焙烧过程中消散,其作用为提高挤出速度并改进载体的物化性能)混匀捏合成型,冷冻干燥后在空气气氛下焙烧制得载体。
再进一步地,所述步骤2)中,焙烧温度为350~500℃,时间为2~6h。
再进一步地,所述载体的形状为片状、条形、环形、轮形、圆柱形、三叶草或四叶草形。
再进一步地,选择性加氢的催化剂的制备方法,包括以下步骤:
1)将载体置于含有Co、Mo、Ni或/和W的金属盐溶液中浸渍4~20h,得到浸渍后的载体;
2)浸渍后的载体冷冻干燥后再焙烧处理得到选择性加氢的催化剂。
上述冷冻干燥均为了防止氧化石墨和石墨烯的团聚
再进一步地,所述含有Co的金属盐为硝酸钴、氯化钴、硫酸钴、磷酸钴(优选为氯化钴或硝酸钴);含有Mo的金属盐为氯化钼、硝酸钼、钼酸盐、仲钼酸盐(优选为氯化钼或硝酸钼);含有Ni的金属盐为硝酸镍、氯化镍、硫酸镍、磷酸镍(优选为氯化镍或硝酸镍),含有W的金属盐为偏钨酸、乙基偏钨酸、偏钨酸盐(优选为偏钨酸胺)。
本发明提供了一种上述选择性加氢催化剂在费托合成油最大量生产生物柴油反应中 的应用,所述生产生物柴油反应中,选择性加氢反应温度为300~360℃,反应氢分压为4.0~8.0MPa,液时体积空速为1~4h-1,氢油体积比为500~1000。
本发明的原理
碳材料是地球上最普遍也是最奇妙的一种材料,自从2004年英国科学家发现了石墨烯以来,石墨烯因独特的性能和二维纳米结构迅速成为物理学、化学和材料学的热门话题,受到科学界普遍的关注,并在2009年被Science杂志评为十大科学进展之一。
石墨烯(graphene,简称为GE)是一种由碳原子以sp2杂化连接的、紧密堆积成的、具有单层二维蜂窝晶格结构的新型二维材料。石墨烯的发现,形成了从零维的富勒烯、一维的碳纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系,并且石墨烯被认为是富勒烯、碳纳米管和石墨的基本结构单元。
石墨烯具有很好的机械强度,比表面积大,表面处理简单以及良好的导电、导热性和化学稳定性,使得石墨烯成为了一个非常理想的复合材料载体。利用石墨烯为载体,在石墨烯层间负载纳米粒子,不仅可以提高纳米粒子的分散性,而且由于石墨烯的电子结构特性可以促进催化反应过程中的电子转移,显著提高催化性能,石墨烯已经成为众多高科技领域的热门应用材料。
本发明的有益效果在于:
(1)石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料。与碳纳米管相比,具有更大的理论比表面积,由于活性金属在石墨烯上分散的程度较好,在相同的载量下,表现的活性表面积较大,具有更多的活性位点,降低反应温度,提高加氢的性能;
(2)催化剂表面酸性低,具有高的加氢活性和适中的裂化性能,炭质及焦质在催化剂上的沉积少,而且石墨烯具有优异的稳定性和抗腐蚀性,这些都有利于延长催化剂的再生周期;
(3)由于石墨烯特殊电子性能也可活性组分发生相互作用,从而提高催化剂的性能。与传统多孔材料相比,这一结构可避免高负载量活性组分对孔道的堵塞,同时还可消除反应物和产物在孔道中的内扩散,从而提高反应速率;
(4)石墨烯具有优异的导热性能,使其在吸、放热的催化反应中具有明显的导热优势,催化剂床层温度分布均匀;
(5)由于少层、高比表面积的石墨烯制备成本很高,本发明以负载活性组分的石墨烯为助剂,含量仅占载体的2~10wt%,而且在氧化石墨的还原过程就同时负载上了金属,大大减少了石墨烯的团聚,在降低了成本的同时达到了石墨烯作为助剂的高效性能。
具体实施方式
为了更好地解释本发明,以下结合具体实施例进一步阐明本发明的主要内容,但本发明的内容不仅仅局限于以下实施例。
原料的制备与购买
1、氧化石墨的制备方法,具体步骤如下:
1)称取1g天然石墨和1g无水NaNO3缓慢放入置于冰浴内的50ml浓H2SO4中,以6gKMnO4为氧化剂缓慢加入进行氧化处理0.5h(期间不间断搅拌),此为预氧化阶段;
2)将烧瓶放入35℃的水浴中搅拌反应2h,然后再缓慢加入200ml的去离子水,期间控制温度不超过50℃,然后转移至98℃水浴中继续搅拌高温反应30min,用去离子水稀释到400ml,缓慢滴加30ml的H2O2(质量分数为30%),趁热过滤,用5%HCl充分离心洗涤,直至滤液中无SO4 2-,再用去离子水离心洗涤多次,去除Cl-,直至溶液变为中性;
3)将粘稠的黄色液体转移至烧杯中,然后放在超声仪中以250W的功率超声4h剥离氧化石墨(为了防止氧化石墨烯的团聚,超声过程中不断的换水,保证超声仪中水温不高于40℃),将得到的氧化石墨溶液冷冻干燥48h,即得到的氧化石墨。
2、β分子筛:SiO2/Al2O3为50~80,比表面500~650m2/g,孔容0.35~0.6ml/g;购于南开大学催化剂厂;
Y分子筛:SiO2/Al2O3为2~3,比表面650~850m2/g,孔容0.35~0.5ml/g;
ZSM-5分子筛:SiO2/Al2O3为60~200,比表面450~600m2/g,孔容0.30~0.55ml/g;
SAPO分子筛:比表面400~600m2/g,孔容0.35~0.6ml/g;
MCM-41分子筛:比表面800~1000m2/g,孔容0.70~1ml/g;
Y、ZSM-5、SAPO和MCM-41分子筛购于南开大学催化剂厂;
3、大孔氧化铝的比表面积400~650m2/g、总孔孔容0.8~1.3mL/g;小孔氧化铝的比表面积200~380m2/g、总孔孔容0.3~0.55mL/g;大孔氧化铝和小孔氧化铝购于中国铝业 山东分公司
4、无定形硅铝:SiO2含量为35~60w%,比表面350~600m2/g,孔容0.6~0.9ml/g;无定形硅铝购于中国铝业山东分公司;
5、硝酸钴、氯化钴、硫酸钴、磷酸钴、氯化钼、硝酸钼、钼酸盐、仲钼酸盐、硝酸镍、氯化镍、硫酸镍、磷酸镍、偏钨酸、乙基偏钨酸、偏钨酸盐均购于湖北七八九化工有限公司,
田菁粉购于市面,其他未说明的物质均购于市面。
实施例1
石墨烯助剂1的制备方法,具体步骤如下:
1)称取1g上述制备的氧化石墨加入1L去离子水中,将其超声处理,超声频率为180W,40℃超声2h,超声结束后,向溶液中加入20mL的0.1mol/L的Ni(NO3)2·6H2O溶液,常温搅拌10h,得到混合溶液;
2)向混合溶液中加入4g的柠檬酸,在温度为180℃水热反应6h,待反应溶液冷却后,将溶液先离心水洗2次,之后用乙醇离心清洗2次,再离心水洗多次,完全去除NO3 -。将离心得到的物质放在冷冻干燥机中冷冻干燥20h,研磨后即石墨烯助剂1。
载体1的制备方法,具体步骤如下:
1)取0.2g的石墨烯助剂1、0.5g的β分子筛、4.8g的无定形硅铝、2.5g的大孔氧化铝、2g的小孔氧化铝、0.1g的田菁粉于捏合机中,干混15min,然后加入质量分数为5%的硝酸溶液,继续混捏30min;
2)将混捏均匀的物料转移至挤条机中挤条成型,将挤条后的载体冷冻干燥20h,切粒,然后在空气气氛中500℃下焙烧4h后冷却至室温,得到载体1;
选择性加氢催化剂1的制备方法,具体步骤如下:
1)将5g的上述载体1浸渍在10mL的1mol/L的Ni(NO3)2·6H2O溶液中,过饱和浸泡12h后过滤静置2h;
2)在冷冻干燥机中冷冻干燥20h,最后在空气气氛中450℃下焙烧4h后冷却至室温,得到选择性加氢催化剂1。
实施例2
石墨烯助剂2的制备方法,具体步骤如下:
1)首先称取1g的氧化石墨加入1L去离子水中,将其超声处理,超声频率为180W,40℃超声2h,超声结束后,向溶液中加入10mL的0.1mol/L的(NH4)6H2W12O40(偏钨酸胺)溶液,常温搅拌10h,得到混合溶液;
2)向混合溶液中加入4g的柠檬酸,在温度为180℃条件下水热反应6h,待反应溶液冷却后,将溶液先离心水洗2次,之后用乙醇离心清洗2次,再离心水洗多次,完全去除NH4 +。将离心得到的物质放在冷冻干燥机中冷冻干燥20h,研磨后即得石墨烯助剂2;
载体2的制备方法,具体步骤如下:
1)称取0.2g的石墨烯助剂2、0.5g的β分子筛、4.8g的无定形硅铝、2.5g的大孔氧化铝、2g的小孔氧化铝、0.1g的田菁粉于捏合机中,干混15min,然后加入一定量5%的硝酸溶液,继续混捏30min;
2)将混捏均匀的物料转移至挤条机中挤条成型,将挤条后的载体冷冻干燥20h,切粒,然后在空气气氛中500℃下焙烧4h后冷却至室温,得到载体2;
选择性加氢催化剂2的制备方法,具体步骤如下:
1)将5g上述的载体2浸渍在10mL的0.05mol/L的(NH4)6H2W12O40(偏钨酸胺)溶液中,过饱和浸泡12h后过滤静置2h,
2)在冷冻干燥机中冷冻干燥20h,最后在空气气氛中450℃下焙烧4h后冷却至室温,得到选择性加氢催化剂2。
实施例3
本实施例与实施例1使用相同的制备方法,不同之处在于:
载体3的原料有0.5g的石墨烯助剂1、0.5g的β分子筛、4.5g的无定形硅铝、2.5g的大孔氧化铝、2g的小孔氧化铝、0.1g的田菁粉;
选择性加氢催化剂3的原料有:5g载体3和10mL1mol/L的Ni(NO3)2·6H2O溶液。
实施例4
本实施例与实施例1使用相同的制备方法,不同之处在于:
载体4的原料有0.7g的石墨烯助剂1、0.5g的β分子筛、4.3g的无定形硅铝、2.5g的大孔氧化铝、2g的小孔氧化铝、0.1g的田菁粉;
选择性加氢催化剂4的原料有:5g载体4和10mL1mol/L的Ni(NO3)2·6H2O溶液;
实施例5
本实施例与实施例1使用相同的制备方法,不同之处在于:
载体5的原料有1g的石墨烯助剂1、0.5g的β分子筛、4.0g的无定形硅铝、2.5g的大孔氧化铝、2g的小孔氧化铝、0.1g的田菁粉;
选择性加氢催化剂5的原料有:5g载体5和10mL1mol/L的Ni(NO3)2·6H2O溶液;
实施例6
本实施例与实施例2使用相同的制备方法,不同之处在于:
载体6的原料有0.5g的石墨烯助剂2、0.5g的β分子筛、4.5g的无定形硅铝、2.5g的大孔氧化铝、2g的小孔氧化铝、0.1g的田菁粉;
选择性加氢催化剂6的原料有:5g载体6和10mL0.05mol/L的(NH4)6H2W12O40溶液;
实施例7
本实施例与实施例2使用相同的制备方法,不同之处在于:
载体7的原料有0.7g的石墨烯助剂2、0.5g的β分子筛、4.3g的无定形硅铝、2.5g的大孔氧化铝、2g的小孔氧化铝、0.1g的田菁粉;
选择性加氢催化剂7的原料有:5g载体7和10mL0.05mol/L的(NH4)6H2W12O40溶液;
实施例8
本实施例与实施例2使用相同的制备方法,不同之处在于:
载体8的原料有1g的石墨烯助剂2、0.5g的β分子筛、4.0g的无定形硅铝、2.5g的大孔氧化铝、2g的小孔氧化铝、0.1g的田菁粉;
选择性加氢催化剂8的原料有:5g载体8和10mL0.05mol/L的(NH4)6H2W12O40溶液;
实施例9
本实施例与实施例3的石墨烯助剂和载体制备方法相同。
选择性加氢催化剂9的制备方法,具体步骤如下:
1)称取5g的载体3浸渍在10mL的0.5mol/L的Ni(NO3)2·6H2O溶液中,过饱和浸泡12h后过滤静置2h,然后在冷冻干燥机中冷冻干燥20h,
2)在空气气氛中450℃下焙烧4h后冷却至室温;再将得到的催化剂浸渍在10mL的0.025mol/L的(NH4)6H2W12O40(偏钨酸胺)溶液中,过饱和浸泡12h后过滤静置2h,然后在冷冻干燥机中冷冻干燥20h,最后在空气气氛中450℃下焙烧4h后冷却至室温, 得到加氢催化剂9。
实施例10
本实施例与实施例3的石墨烯助剂和载体制备方法相同。
选择性加氢催化剂10的制备方法,具体步骤如下:
1)称取5g的载体3首先浸渍在10mL的0.5mol/L的Ni(NO3)2·6H2O和0.025mol/L的(NH4)6H2W12O40(偏钨酸胺)混合溶液中,过饱和浸泡12h后过滤静置2h,然后在冷冻干燥机中冷冻干燥20h,
2)在空气气氛中450℃下焙烧4h后冷却至室温;再将得到的催化剂浸渍在10mL的0.05mol/L的(NH4)6Mo7O24(仲钼酸铵)的溶液中,过饱和浸泡12h后过滤静置2h,然后在冷冻干燥机中冷冻干燥20h,最后在空气气氛中450℃下焙烧4h后冷却至室温,得到加氢催化剂10。
实施例11
本实施例中制备方法与实施例1基本相同,不同之处在于:
载体11的制备方法,具体步骤如下:
1)称取0.9g的石墨烯助剂1、0.3g的Y分子筛、5g的无定形硅铝、2.0g的大孔氧化铝、1.8g的小孔氧化铝、0.1g的田菁粉于捏合机中,干混15min;然后加入质量分数为5%的硝酸溶液,继续混捏30min;
2)将混捏均匀的物料转移至挤条机中挤条成型。将挤条后的载体冷冻干燥20h,切粒,然后在空气气氛中500℃下焙烧4h后冷却至室温,得到载体11。
实施例12
本实施例中制备方法与实施例2基本相同,不同之处在于:
载体12的制备方法,具体步骤如下:
1)称取0.4g的石墨烯助剂2、0.3g的β分子筛、0.3g的Y分子筛、3g的无定形硅铝、3.0g的大孔氧化铝、3.0g的小孔氧化铝、0.1g的田菁粉于捏合机中,干混15min;然后加入质量分数为5%的硝酸溶液,继续混捏30min;
2)将混捏均匀的物料转移至挤条机中挤条成型。将挤条后的载体冷冻干燥20h,切粒,然后在空气气氛中500℃下焙烧4h后冷却至室温,得到载体12。
实施例13
本实施例中制备方法与实施例1基本相同,不同之处在于:
载体13的制备方法,具体步骤如下:
1)称取0.8g的石墨烯助剂1、1g的β分子筛、2.5g的无定形硅铝、3.5g的大孔氧化铝、2.2g的小孔氧化铝、0.1g的田菁粉于捏合机中,干混15min;然后加入质量分数为5%的硝酸溶液,继续混捏30min;
2)将混捏均匀的物料转移至挤条机中挤条成型。将挤条后的载体冷冻干燥20h,切粒,然后在空气气氛中500℃下焙烧4h后冷却至室温,得到载体13。
实施例14
本实施例中制备方法与实施例2基本相同,不同之处在于:
载体14的制备方法,具体步骤如下:
1)称取0.3g的石墨烯助剂2、0.2g的SAPO分子筛、4.5g的无定形硅铝、2.5g的大孔氧化铝、2.5g的小孔氧化铝、0.1g的田菁粉于捏合机中,干混15min;然后加入质量分数为5%的硝酸溶液,继续混捏30min;
2)将混捏均匀的物料转移至挤条机中挤条成型。将挤条后的载体冷冻干燥20h,切粒,然后在空气气氛中500℃下焙烧4h后冷却至室温,得到载体14。
实施例15
本实施例中制备方法与实施例10基本相同,不同之处在于:
载体15的制备方法,具体步骤如下:
1)称取0.2g的石墨烯助剂3、0.1g的SAPO分子筛、0.2g的MCM-41分子筛、6.5g的无定形硅铝、2.0g的大孔氧化铝、1.0g的小孔氧化铝、0.1g的田菁粉于捏合机中,干混15min;然后加入质量分数为5%的硝酸溶液,继续混捏30min;
2)将混捏均匀的物料转移至挤条机中挤条成型。将挤条后的载体冷冻干燥20h,切粒,然后在空气气氛中500℃下焙烧4h后冷却至室温,得到载体15。
对比例1
载体16的制备方法,具体步骤如下:
分别称取0.5g的β分子筛、5g的无定形硅铝、2.5g的大孔氧化铝、2g的小孔氧化铝、0.1g的田菁粉于捏合机中,干混15min,然后加入一定量5%的硝酸溶液,继续混捏30min。将混捏均匀的物料转移至挤条机中挤条成型。将挤条后的载体冷冻干燥20h,切 粒,然后在空气气氛中500℃下焙烧4h后冷却至室温,得到载体16;
催化剂16的制备方法,具体步骤如下:
1)称取5g的载体16浸渍在10mL的0.5mol/L的Ni(NO3)2·6H2O溶液中,过饱和浸泡12h后过滤静置2h,然后在冷冻干燥机中冷冻干燥20h;
2)在空气气氛中450℃下焙烧4h后冷却至室温;再将得到的催化剂浸渍在10mL的0.025mol/L的(NH4)6H2W12O40(偏钨酸胺)溶液中,过饱和浸泡12h后过滤静置2h,然后在冷冻干燥机中冷冻干燥20h,最后在空气气氛中450℃下焙烧4h后冷却至室温,得到加氢催化剂16。
对比例2
载体17的制备方法,具体步骤如下:
1)分别称取0.5g的β分子筛、4.5g的无定形硅铝、3g的大孔氧化铝、2g的小孔氧化铝、0.1g的田菁粉于捏合机中,干混15min,然后加入一定量5%的硝酸溶液,继续混捏30min。将混捏均匀的物料转移至挤条机中挤条成型。将挤条后的载体冷冻干燥20h,切粒,然后在空气气氛中500℃下焙烧4h后冷却至室温,得到载体17;
催化剂17的制备方法,具体步骤如下:
1)称取5g的载体17浸渍在10mL的0.5mol/L的Ni(NO3)2·6H2O溶液中,过饱和浸泡12h后过滤静置2h,然后在冷冻干燥机中冷冻干燥20h,
2)最后在空气气氛中450℃下焙烧4h后冷却至室温;再将得到的催化剂浸渍在10mL的0.025mol/L的(NH4)6H2W12O40(偏钨酸胺)溶液中,过饱和浸泡12h后过滤静置2h,然后在冷冻干燥机中冷冻干燥20h,最后在空气气氛中450℃下焙烧4h后冷却至室温,得到加氢催化剂17。
对比例3
本实施例与实施例1的石墨烯助剂制备方法相同。
载体18的制备方法,具体步骤如下:
1)取0.5g的石墨烯助剂3、0.5g的β分子筛、4.5g的无定形硅铝、2.0g的大孔氧化铝、2.5g的小孔氧化铝、0.1g的田菁粉于捏合机中,干混15min,然后加入质量分数为5%的硝酸溶液,继续混捏30min;
2)将混捏均匀的物料转移至挤条机中挤条成型,将挤条后的载体冷冻干燥20h,切 粒,然后在空气气氛中500℃下焙烧4h后冷却至室温,得到载体18;
催化剂18的制备方法,具体步骤如下:
1)称取5g的载体18浸渍在10mL的0.5mol/L的Ni(NO3)2·6H2O溶液中,过饱和浸泡12h后过滤静置2h,然后在冷冻干燥机中冷冻干燥20h,
2)最后在空气气氛中450℃下焙烧4h后冷却至室温;再将得到的催化剂浸渍在10mL的0.05mol/L的(NH4)6H2W12O40(偏钨酸胺)溶液中,过饱和浸泡12h后过滤静置2h,然后在冷冻干燥机中冷冻干燥20h,最后在空气气氛中450℃下焙烧4h后冷却至室温,得到加氢催化剂18。
对比例4
本实施例与实施例1的石墨烯助剂制备方法相同。
载体19的制备方法,具体步骤如下:
1)取0.5g的石墨烯助剂3、0.5g的β分子筛、4.0g的无定形硅铝、2.0g的大孔氧化铝、3.0g的小孔氧化铝、0.1g的田菁粉于捏合机中,干混15min,然后加入质量分数为5%的硝酸溶液,继续混捏30min;
2)将混捏均匀的物料转移至挤条机中挤条成型,将挤条后的载体冷冻干燥20h,切粒,然后在空气气氛中500℃下焙烧4h后冷却至室温,得到载体19;
催化剂19的制备方法,具体步骤如下:
1)称取5g的载体19浸渍在10mL的0.5mol/L的Ni(NO3)2·6H2O溶液中,过饱和浸泡12h后过滤静置2h,然后在冷冻干燥机中冷冻干燥20h,
2)最后在空气气氛中450℃下焙烧4h后冷却至室温;再将得到的催化剂浸渍在10mL的0.05mol/L的(NH4)6H2W12O40(偏钨酸胺)溶液中,过饱和浸泡12h后过滤静置2h,然后在冷冻干燥机中冷冻干燥20h,最后在空气气氛中450℃下焙烧4h后冷却至室温,得到加氢催化剂19。
对比例5
本实施例与实施例3的石墨烯助剂和载体制备方法相同。
催化剂20的制备方法,具体步骤如下:
1)称取5g的载体3浸渍在10mL的0.5mol/L的Ni(NO3)2·6H2O溶液中,过饱和浸泡12h后过滤静置2h,然后在冷冻干燥机中冷冻干燥20h,
2)最后在空气气氛中450℃下焙烧4h后冷却至室温;再将得到的催化剂浸渍在10mL的0.05mol/L的(NH4)6H2W12O40(偏钨酸胺)溶液中,过饱和浸泡12h后过滤静置2h,然后在冷冻干燥机中冷冻干燥20h,最后在空气气氛中450℃下焙烧4h后冷却至室温,得到加氢催化剂20。
对比例6
本实施例与实施例3的石墨烯助剂和载体制备方法相同。
催化剂21的制备方法,具体步骤如下:
1)称取5g的载体3浸渍在10mL的1mol/L的Ni(NO3)2·6H2O溶液中,过饱和浸泡12h后过滤静置2h,然后在冷冻干燥机中冷冻干燥20h,
2)在空气气氛中450℃下焙烧4h后冷却至室温;再将得到的催化剂浸渍在10mL的0.05mol/L的(NH4)6H2W12O40(偏钨酸胺)溶液中,过饱和浸泡12h后过滤静置2h,然后在冷冻干燥机中冷冻干燥20h,最后在空气气氛中450℃下焙烧4h后冷却至室温,得到加氢催化剂21。
Figure PCTCN2017078021-appb-000001
表2原料油主要性质
Figure PCTCN2017078021-appb-000002
Figure PCTCN2017078021-appb-000003
由实施例1-8可以看出,在其它条件不变的情况下,在一定范围内增加石墨烯助剂的添加量可以增加生物柴油的收率并且降低了柴油的凝点;活性组分的复合明显提高了催化剂的转化率和柴油收率,三种活性组分的复合相对两种活性组分柴油收率相当;从例11至15可以看出,工艺参数对产品影响收率和性质影响较大,反应温度的提升能明显提高原料的转化率;从例9、20和21可以看出,活性组分负载量的增加提高了催化剂的加氢活性,对航煤的收率有一定的提高,柴油收率稍有下降。
其它未详细说明的部分均为现有技术。尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。

Claims (19)

  1. 一种用于生产生物柴油的选择性加氢催化剂,包括载体和主金属活性组分,所述主金属活性组分负载在载体上;其特征在于:所述主金属活性组分占催化剂成品的重量百分比为5~30%,所述主金属活性组分为含有Co、Mo、Ni、W的氧化物中的一种或一种以上的组合,所述载体按原料的重量百分比计由1~8%的分子筛、25~65%的无定形硅铝、30~65%的氧化铝和2~10%的石墨烯助剂组成。
  2. 根据权利要求1所述用于生产生物柴油的选择性加氢催化剂,其特征在于:所述石墨烯助剂的原料由辅金属活性组分和石墨烯组成,所述辅金属活性组分负载在石墨烯上,所述辅金属活性组分占石墨烯助剂的重量百分比为5~30%,其中,所述辅助型金属活性组分为含有Co、Mo、Ni、W的氧化物中的一种或一种以上的组合。
  3. 根据权利要求2所述用于生产生物柴油的选择性加氢催化剂,其特征在于:所述石墨烯助剂的制备方法,包括以下步骤:
    1)将含有Co、Mo、Ni或/和W的金属盐溶解于氧化石墨溶液中,得到混合溶液;
    2)向混合溶液中加入柠檬酸,在温度为140~200℃水热反应4~10h;冷冻干燥得到石墨烯助剂;其中,混合溶液中的氧化石墨与柠檬酸质量比为1∶3~8。
  4. 根据权利要求3所述用于生产生物柴油的选择性加氢催化剂,其特征在于:所述含有Co的金属盐为硝酸钴、氯化钴、硫酸钴或磷酸钴;含有Mo的金属盐为氯化钼、硝酸钼、钼酸盐或仲钼酸盐;含有Ni的金属盐为硝酸镍、氯化镍、硫酸镍或磷酸镍,含有W的金属盐为偏钨酸、乙基偏钨酸或偏钨酸盐。
  5. 根据权利要求2或3所述用于生产生物柴油的选择性加氢催化剂,其特征在于:所述辅金属活性组分占石墨烯助剂的重量百分比为12~25%。
  6. 根据权利要求3所述用于生产生物柴油的选择性加氢催化剂,其特征在于:所述 氧化石墨的制备方法,包括以下步骤:
    1)按重量比:1∶0.5~2∶50~100称取天然石墨、无水硝酸钠和浓硫酸;
    2)将天然石墨和无水硝酸钠缓慢放入置于冰浴内的浓H2SO4中,并以天然石墨∶高锰酸钾重量比=1∶5~10缓慢加入高锰酸钾进行氧化处理,搅拌0.5~2h,得到混合溶液;
    3)将混合溶液置于温度为25~45℃的水浴中搅拌反应1~4h,同时搅拌过程中向混合溶液中缓慢加入去离子水;
    4)再将混合溶液置于温度为90~98℃水浴中继续搅拌高温反应0.5~2h;然后用去离子水稀释混合溶液,得到稀释溶液;
    5)按天然石墨∶双氧水重量比=1∶20~50将双氧水缓慢滴加至稀释溶液中,趁热过滤,得到滤液,其中,双氧水的质量分数为25~30%;
    6)用盐酸充分离心洗涤,直至滤液中无SO4 2-,再用去离子水离心洗涤多次,去除Cl-,直至滤液变为中性,得到粘稠的黄色液体;
    7)将粘稠的黄色液体在功率为120~250W条件下超声处理2~6h,得到的氧化石墨溶液冷冻干燥20~60h,得到的就是氧化石墨。
  7. 根据权利要求6所述用于生产生物柴油的选择性加氢催化剂,其特征在于:所述氧化石墨比表面积不小于260m2/g,层间距不小于0.80nm。
  8. 根据权利要求1或2所述用于生产生物柴油的选择性加氢催化剂,其特征在于:所述分子筛为β、Y、ZSM-5、SAPO和MCM-41分子筛中任意一种或几种。
  9. 根据权利要求8所述用于生产生物柴油的选择性加氢催化剂,其特征在于:所述分子筛为Y或β分子筛。
  10. 根据权利要求1或2所述用于生产生物柴油的选择性加氢催化剂,其特征在于:所述氧化铝由两个级配构成,分别为小孔氧化铝和大孔氧化铝;其重量百分比分别为1∶1~2.3;其中,大孔氧化铝的比表面积400~650m2/g、总孔孔容0.8~1.3mL/g;小孔氧化铝的比表面积200~380m2/g、总孔孔容0.3~0.55mL/g。
  11. 根据权利要求1或2所述用于生产生物柴油的选择性加氢催化剂,其特征在于:所述主金属活性组分和辅助型金属活性组分均为含有Co、Mo、Ni、W的氧化物中的一种或一种以上的组合;分别为氧化钴、氧化钼、氧化镍和氧化钨中任意一种或几种。
  12. 根据权利要求11所述用于生产生物柴油的选择性加氢催化剂,其特征在于:所述主金属活性组分和辅助型金属活性组分均为两种氧化物,其中,一种氧化物为氧化钴或氧化镍中任意一种,另一种氧化物为氧化钼和氧化钨中任意一种,Ni或Co的原子数/总金属元素的原子数比为0.2~0.8;
    或者,所述主金属活性组分和辅助型金属活性组分均为三种氧化物,其中,包括Mo-Ni-Co和W-Mo-Ni,Ni或/和Co的原子数/总金属元素的原子数比为0.2~0.8。
  13. 根据权利要求10所述用于生产生物柴油的选择性加氢催化剂,其特征在于:所述主金属活性组分占催化剂成品的重量百分比为12~25%,所述载体按原料的重量百分比计由2~5%的分子筛、30~50%的无定形硅铝、20~30%的大孔氧化铝、18~30%的小孔氧化铝和3~8%的石墨烯助剂构成。
  14. 根据权利要求1所述用于生产生物柴油的选择性加氢催化剂,其特征在于:所述载体的制备方法,包括以下步骤:
    1)按上述重量百分比计称取分子筛、无定形硅铝、氧化铝和石墨烯助剂;
    2)将分子筛、无定形硅铝、氧化铝和石墨烯助剂混合均匀,再加入田菁粉混匀捏合成型,冷冻干燥后在空气气氛下焙烧制得载体。
  15. 根据权利要求14所述用于生产生物柴油的选择性加氢催化剂,其特征在于:所述步骤2)中,焙烧温度为350~500℃,时间为2~6h。
  16. 根据权利要求14或15所述用于生产生物柴油的选择性加氢催化剂,其特征在于:所述载体的形状为片状、条形、环形、轮形、圆柱形、三叶草或四叶草形。
  17. 一种权利要求1所述用于生产生物柴油的选择性加氢催化剂的制备方法,其特征在于:包括以下步骤:
    1)将载体置于含有Co、Mo、Ni或/和W的金属盐溶液中浸渍4~20h,得到浸渍后的载体;
    2)浸渍后的载体冷冻干燥后再焙烧处理得到选择性加氢的催化剂。
  18. 根据权利要求17所述用于生产生物柴油的选择性加氢催化剂的制备方法,其特征在于:所述含有Co的金属盐为硝酸钴、氯化钴、硫酸钴或磷酸钴;含有Mo的金属盐为氯化钼、硝酸钼、钼酸盐或仲钼酸盐;含有Ni的金属盐为硝酸镍、氯化镍、硫酸镍或磷酸镍,含有W的金属盐为偏钨酸、乙基偏钨酸或偏钨酸盐。
  19. 一种权利要求1所述选择性加氢催化剂在费托合成油最大量生产生物柴油反应中的应用,其特征在于:所述生产生物柴油反应中,选择性加氢反应温度为300~360℃,反应氢分压为4.0~8.0MPa,液时体积空速为1~4h-1,氢油体积比为500~1000。
PCT/CN2017/078021 2016-04-27 2017-03-24 用于生产生物柴油的选择性加氢催化剂及其制备方法和应用 WO2017185928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610268071.9A CN105903488A (zh) 2016-04-27 2016-04-27 用于生产生物柴油的选择性加氢催化剂及其制备方法和应用
CN201610268071.9 2016-04-27

Publications (1)

Publication Number Publication Date
WO2017185928A1 true WO2017185928A1 (zh) 2017-11-02

Family

ID=56753118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078021 WO2017185928A1 (zh) 2016-04-27 2017-03-24 用于生产生物柴油的选择性加氢催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN105903488A (zh)
WO (1) WO2017185928A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063258A (zh) * 2017-12-26 2018-05-22 成都新柯力化工科技有限公司 一种提高锂电池硅电极循环稳定性的粘结剂的制备方法
CN111185226A (zh) * 2020-03-06 2020-05-22 中化泉州石化有限公司 Zn改性分子筛负载Ni/W双金属异构降凝催化剂的制备方法
CN112371157A (zh) * 2020-11-30 2021-02-19 西安石油大学 氮掺杂石墨烯负载镍基催化剂及其催化苯酚选择性加氢制环己酮的应用
CN112691692A (zh) * 2019-10-22 2021-04-23 中国石油化工股份有限公司 加氢裂化催化剂载体及其制备方法
CN112791742A (zh) * 2019-11-14 2021-05-14 中国石油天然气股份有限公司 一种加氢裂化催化剂的制备方法
CN112973737A (zh) * 2019-12-13 2021-06-18 中国石油化工股份有限公司 一种液相加氢催化剂及其制备方法
CN112973669A (zh) * 2021-02-25 2021-06-18 南京大学 三氧化钨包覆金刚石的制备方法及其在染料废水光降解中的应用
CN112973731A (zh) * 2021-03-05 2021-06-18 江苏美玛技术有限公司 一种新能源燃料电池的氢气净化用催化剂制备方法
US11124465B2 (en) 2019-07-24 2021-09-21 King Fahd University Of Petroleum And Minerals Hydrodesulfurization catalyst with a zeolite-graphene material composite support and methods thereof
CN114433180A (zh) * 2020-10-30 2022-05-06 中国石油化工股份有限公司 催化剂载体、加氢催化剂和重质馏分油加氢改质生产低凝柴油的方法
CN114433193A (zh) * 2020-10-30 2022-05-06 中国石油化工股份有限公司 催化剂载体、加氢催化剂和生产低凝柴油的方法
CN114471619A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 一种重整生成油加氢脱烯烃催化剂及其制备方法
CN114602546A (zh) * 2020-12-08 2022-06-10 中国科学院广州能源研究所 一种石墨烯封装镍负载的沸石分子筛催化剂的制备方法
CN115501873A (zh) * 2021-06-23 2022-12-23 中国石油化工股份有限公司 催化剂及其制备方法和应用、混合芳烃选择性加氢脱烯烃的方法
CN115608404A (zh) * 2022-11-11 2023-01-17 陕西延长石油(集团)有限责任公司 一种金属负载型催化剂的制备方法
CN116060033A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种石蜡加氢精制催化剂及其制备方法和应用

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105903488A (zh) * 2016-04-27 2016-08-31 武汉凯迪工程技术研究总院有限公司 用于生产生物柴油的选择性加氢催化剂及其制备方法和应用
CN106622353B (zh) * 2016-11-22 2019-05-28 新奥生态环境治理有限公司 一种具有高温水汽稳定性的垃圾处理用催化剂
CN106582878A (zh) * 2016-12-16 2017-04-26 东至绿洲环保化工有限公司 一种油脂加氢脱氧用负载型树脂催化剂
CN106902862A (zh) * 2017-03-01 2017-06-30 武汉凯迪工程技术研究总院有限公司 选择性加氢催化剂和制备方法及其生成2‑甲基烯丙醇的催化评价方法
CN107442166B (zh) * 2017-07-13 2020-09-01 武汉凯迪工程技术研究总院有限公司 适于生产生物柴油的加氢催化剂及其制备方法和应用
CN107362825B (zh) * 2017-07-13 2020-09-01 武汉凯迪工程技术研究总院有限公司 免焙烧加氢催化剂及其制备方法和应用
CN107224992A (zh) * 2017-07-13 2017-10-03 武汉凯迪工程技术研究总院有限公司 适于高效生产生物柴油的加氢催化剂及其制备方法和应用
CN107335469A (zh) * 2017-07-13 2017-11-10 武汉凯迪工程技术研究总院有限公司 适于生产低凝生物柴油的加氢催化剂及其制备方法和应用
CN109304182B (zh) * 2017-07-28 2021-04-30 中国科学院宁波材料技术与工程研究所 处理劣质油料的加氢精制催化剂及其制备方法与应用
CN109304183B (zh) * 2017-07-28 2021-06-29 中国科学院宁波材料技术与工程研究所 处理劣质油料的加氢处理催化剂及其制备方法与应用
CN108452807B (zh) * 2017-10-27 2020-10-13 中国石油天然气股份有限公司 焦化石脑油脱硅催化剂及其制备方法
CN108452844B (zh) * 2017-10-27 2021-01-29 中国石油天然气股份有限公司 一种柴油加氢精制催化剂及其制备方法和应用
CN108452806B (zh) * 2017-10-27 2021-01-01 中国石油天然气股份有限公司 焦化石脑油二烯烃饱和催化剂及其制备方法
CN108452843B (zh) * 2017-10-27 2021-03-09 中国石油天然气股份有限公司 一种柴油加氢精制催化剂及其制备方法和应用
CN111013645B (zh) * 2018-10-09 2022-11-15 中国石油化工股份有限公司 制备2-壬烯醛和壬醛酸或者2-壬烯醛和壬醛酸甲酯的方法
CN112090442A (zh) * 2020-09-24 2020-12-18 天长市润源催化剂有限公司 一种以改性zsm-5分子筛为载体的脱硫催化剂及其制备方法
CN112206814B (zh) * 2020-09-27 2023-06-13 天长市润源催化剂有限公司 一种以改性zsm-48分子筛为载体的异构催化剂及其制备方法
CN112206815A (zh) * 2020-09-29 2021-01-12 天长市润源催化剂有限公司 一种用于润滑油异构化的催化剂及其制备方法
CN115650317B (zh) * 2022-10-20 2024-02-23 浙江理工大学 非晶态多金属硼化物催化剂及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102441374A (zh) * 2010-10-12 2012-05-09 上海欣年石化助剂有限公司 一种选择性加氢催化剂及其制备方法和应用
CN102471700A (zh) * 2009-07-01 2012-05-23 雪佛龙美国公司 加氢加工催化剂及其制备方法
US20130085189A1 (en) * 2007-08-17 2013-04-04 Juzer Jangbarwala Fischer-Tropsch Process Using Fibrous Composite Catalytic Structures Having at Least Three Solid Phases
CN103949280A (zh) * 2014-05-14 2014-07-30 武汉凯迪工程技术研究总院有限公司 适于生物质费托合成油生产航空煤油的催化剂及其制备方法
CN104646052A (zh) * 2015-02-15 2015-05-27 中国海洋石油总公司 一种双环以上芳烃选择性加氢开环催化剂的制备方法
CN105903488A (zh) * 2016-04-27 2016-08-31 武汉凯迪工程技术研究总院有限公司 用于生产生物柴油的选择性加氢催化剂及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8747656B2 (en) * 2008-10-10 2014-06-10 Velocys, Inc. Process and apparatus employing microchannel process technology

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130085189A1 (en) * 2007-08-17 2013-04-04 Juzer Jangbarwala Fischer-Tropsch Process Using Fibrous Composite Catalytic Structures Having at Least Three Solid Phases
CN102471700A (zh) * 2009-07-01 2012-05-23 雪佛龙美国公司 加氢加工催化剂及其制备方法
CN102441374A (zh) * 2010-10-12 2012-05-09 上海欣年石化助剂有限公司 一种选择性加氢催化剂及其制备方法和应用
CN103949280A (zh) * 2014-05-14 2014-07-30 武汉凯迪工程技术研究总院有限公司 适于生物质费托合成油生产航空煤油的催化剂及其制备方法
CN104646052A (zh) * 2015-02-15 2015-05-27 中国海洋石油总公司 一种双环以上芳烃选择性加氢开环催化剂的制备方法
CN105903488A (zh) * 2016-04-27 2016-08-31 武汉凯迪工程技术研究总院有限公司 用于生产生物柴油的选择性加氢催化剂及其制备方法和应用

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063258A (zh) * 2017-12-26 2018-05-22 成都新柯力化工科技有限公司 一种提高锂电池硅电极循环稳定性的粘结剂的制备方法
US11124465B2 (en) 2019-07-24 2021-09-21 King Fahd University Of Petroleum And Minerals Hydrodesulfurization catalyst with a zeolite-graphene material composite support and methods thereof
CN112691692A (zh) * 2019-10-22 2021-04-23 中国石油化工股份有限公司 加氢裂化催化剂载体及其制备方法
CN112791742A (zh) * 2019-11-14 2021-05-14 中国石油天然气股份有限公司 一种加氢裂化催化剂的制备方法
CN112791742B (zh) * 2019-11-14 2023-07-25 中国石油天然气股份有限公司 一种加氢裂化催化剂的制备方法
CN112973737A (zh) * 2019-12-13 2021-06-18 中国石油化工股份有限公司 一种液相加氢催化剂及其制备方法
CN112973737B (zh) * 2019-12-13 2022-04-05 中国石油化工股份有限公司 一种液相加氢催化剂及其制备方法
CN111185226A (zh) * 2020-03-06 2020-05-22 中化泉州石化有限公司 Zn改性分子筛负载Ni/W双金属异构降凝催化剂的制备方法
CN114471619B (zh) * 2020-10-26 2023-09-01 中国石油化工股份有限公司 一种重整生成油加氢脱烯烃催化剂及其制备方法
CN114471619A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 一种重整生成油加氢脱烯烃催化剂及其制备方法
CN114433180A (zh) * 2020-10-30 2022-05-06 中国石油化工股份有限公司 催化剂载体、加氢催化剂和重质馏分油加氢改质生产低凝柴油的方法
CN114433193A (zh) * 2020-10-30 2022-05-06 中国石油化工股份有限公司 催化剂载体、加氢催化剂和生产低凝柴油的方法
CN114433193B (zh) * 2020-10-30 2023-12-12 中国石油化工股份有限公司 催化剂载体、加氢催化剂和生产低凝柴油的方法
CN112371157B (zh) * 2020-11-30 2023-06-13 西安石油大学 氮掺杂石墨烯负载镍基催化剂及其催化苯酚选择性加氢制环己酮的应用
CN112371157A (zh) * 2020-11-30 2021-02-19 西安石油大学 氮掺杂石墨烯负载镍基催化剂及其催化苯酚选择性加氢制环己酮的应用
CN114602546A (zh) * 2020-12-08 2022-06-10 中国科学院广州能源研究所 一种石墨烯封装镍负载的沸石分子筛催化剂的制备方法
CN112973669A (zh) * 2021-02-25 2021-06-18 南京大学 三氧化钨包覆金刚石的制备方法及其在染料废水光降解中的应用
CN112973731A (zh) * 2021-03-05 2021-06-18 江苏美玛技术有限公司 一种新能源燃料电池的氢气净化用催化剂制备方法
CN112973731B (zh) * 2021-03-05 2023-08-15 山东德易智能科技有限公司 一种新能源燃料电池的氢气净化用催化剂制备方法
CN115501873A (zh) * 2021-06-23 2022-12-23 中国石油化工股份有限公司 催化剂及其制备方法和应用、混合芳烃选择性加氢脱烯烃的方法
CN115501873B (zh) * 2021-06-23 2024-01-05 中国石油化工股份有限公司 催化剂及其制备方法和应用、混合芳烃选择性加氢脱烯烃的方法
CN116060033A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种石蜡加氢精制催化剂及其制备方法和应用
CN115608404A (zh) * 2022-11-11 2023-01-17 陕西延长石油(集团)有限责任公司 一种金属负载型催化剂的制备方法

Also Published As

Publication number Publication date
CN105903488A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
WO2017185928A1 (zh) 用于生产生物柴油的选择性加氢催化剂及其制备方法和应用
WO2017185929A1 (zh) 用于生产航煤的选择性加氢催化剂及其制备方法和应用
WO2017020400A2 (zh) 用于蓖麻油制备生物航空煤油的催化剂与制备方法及应用
WO2020047902A1 (zh) 一种分子筛催化剂的制备方法及应用
CN107442166B (zh) 适于生产生物柴油的加氢催化剂及其制备方法和应用
Wang et al. N-dodecane hydroisomerization over Pt/ZSM-22: Controllable microporous Brönsted acidity distribution and shape-selectivity
Li et al. Ordered mesoporous Sn-SBA-15 as support for Pt catalyst with enhanced performance in propane dehydrogenation
Sun et al. Filter and buffer-pot confinement effect of hollow sphere catalyst for promoted activity and enhanced selectivity
JP6653715B2 (ja) 合成ガスから高品質の灯油留分を選択的に合成するための担体、その触媒、およびその調製方法
Wang et al. Effect of hierarchical crystal structures on the properties of cobalt catalysts for Fischer–Tropsch synthesis
WO2022166084A1 (zh) 一种溶剂配位金属催化剂的制备方法及应用
Subsadsana et al. Synthesis and catalytic performance of bimetallic NiMo-and NiW-ZSM-5/MCM-41 composites for production of liquid biofuels
Liu et al. Rapid and green synthesis of SAPO-11 for deoxygenation of stearic acid to produce bio-diesel fractions
WO2019183842A1 (zh) 一种复合催化剂、其制备方法和乙烯的制备方法
WO2015172592A1 (zh) 适于生物质费托合成油生产航空煤油的催化剂及其制备方法
WO2020019276A1 (zh) 一种用于乙醇和苯制备乙苯的催化剂及其制备和应用
CN107537476A (zh) 脱氢催化剂、制备方法及其用途
WO2021027019A1 (zh) 多孔结构的硅铝磷载体加氢催化剂的制备方法及在制备生物燃料中的应用
CN107362825B (zh) 免焙烧加氢催化剂及其制备方法和应用
CN108671947B (zh) 用于生物油加氢脱氧反应的Ni2P/还原氧化石墨烯催化剂及其制备方法
Hunsiri et al. Branched-chain biofuels derived from hydroisomerization of palm olein using Ni/modified beta zeolite catalysts for biojet fuel production
Wang et al. Effect of preparation methods on hierarchical zeolites for cobalt-based Fischer–Tropsch synthesis
WO2018205839A1 (zh) 柴油和喷气燃料生产用加氢裂化催化剂及其制备方法
CN107224992A (zh) 适于高效生产生物柴油的加氢催化剂及其制备方法和应用
CN107262143A (zh) 适于生产航空煤油的加氢催化剂及其制备方法和应用

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788581

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788581

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/05/2019)