CN108671947B - 用于生物油加氢脱氧反应的Ni2P/还原氧化石墨烯催化剂及其制备方法 - Google Patents

用于生物油加氢脱氧反应的Ni2P/还原氧化石墨烯催化剂及其制备方法 Download PDF

Info

Publication number
CN108671947B
CN108671947B CN201810321728.2A CN201810321728A CN108671947B CN 108671947 B CN108671947 B CN 108671947B CN 201810321728 A CN201810321728 A CN 201810321728A CN 108671947 B CN108671947 B CN 108671947B
Authority
CN
China
Prior art keywords
catalyst
graphene oxide
hours
hydrodeoxygenation
reduced graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810321728.2A
Other languages
English (en)
Other versions
CN108671947A (zh
Inventor
徐海升
王豪
丁丽芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Shiyou University
Original Assignee
Xian Shiyou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Shiyou University filed Critical Xian Shiyou University
Priority to CN201810321728.2A priority Critical patent/CN108671947B/zh
Publication of CN108671947A publication Critical patent/CN108671947A/zh
Application granted granted Critical
Publication of CN108671947B publication Critical patent/CN108671947B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种用于生物油加氢脱氧反应的Ni2P/还原氧化石墨烯催化剂及其制备方法,该催化剂是以还原氧化石墨烯为载体,负载活性组分Ni2P,以催化剂计,Ni2P的负载量为10%~25%。本发明催化剂制备条件相对温和,其用于苯甲醛加氢脱氧制备甲苯的反应体系中,苯甲醛转化率最高可达96%以上,对甲苯的选择性接近90%,催化剂活性好,选择性高,并且稳定性强,成本远低于贵金属催化剂,具有非常显著的应用价值。

Description

用于生物油加氢脱氧反应的Ni2P/还原氧化石墨烯催化剂及其 制备方法
技术领域
本发明属于催化加氢技术领域,具体涉及一种用于生物油加氢脱氧反应的Ni2P/还原氧化石墨烯催化剂,以及该催化剂的制备方法。
背景技术
生物油加氢脱氧反应是其加氢精制过程的手段。按照加氢的程度不同,其也可分为深度加氢脱氧和轻度加氢脱氧两种类型。按照加氢条件的不同,加氢脱氧可分为两种类型,通过热处理实现的过程称为热加氢脱氧,通过催化剂作用实现的过程称为催化加氢脱氧。但是,采用热加氢脱氧方式得到的产物,脱氧率不太理想,一般为78%~85%。相比之下,由于催化加氢脱氧催化剂的加入,使得其脱氧过程条件相对温和,且脱氧率极高。
磷化物具有特殊电子层结构和良好的催化性能,是用于生物油加氢脱氧的理想型催化剂之一,但是磷化物在高温下对水的敏感度较高,易于形成无催化性能、能还原的磷酸盐类物质(李克伦.负载磷化物催化剂苯甲醚加氢脱氧性能研究[D].天津:天津大学,2012);由于Ni2P比表面积很小(不超过14m2/g),将其负载到载体上能显著提高催化剂活性相的分散。Al2O3刚性强,廉价易得,在工业催化剂中得到广泛应用(Sawhill S,Layman K,Vanwyk D,et al.Thiophene hydrodesulfurization over nickel phosphidecatalysts:effect of the precursor composition and support[J]. Journal ofCatalysis,2005,231(2):300-313),但由于Al2O3不是惰性载体,具有丰富的L酸中心,在负载磷化物时,其表面会生成AlPO4,使得大部分磷酸盐不能被还原为磷化物(ClarkP.Alumina-supported molybdenum phosphide hydroprocessing catalysts[J].Journalof Catalysis,2003,218(1):78-87),被认为不适合用作Ni2P催化剂的载体。在一般条件(常温常压)下,存储时间越长越易失活,对催化剂的保存造成了不利影响,这都给磷化物催化剂的应用带来了巨大挑战。
Liu等制备了一系列不同镍负载量的NiP/SAPO-11催化剂,并通过固定床连续流动反应器中进行脂肪酸甲酯的催化加氢脱氧反应和长链链烷烃产物的异构化。实验表明,在340℃、2.0MPa条件下,脂肪酸甲酯的转化率极高,接近完全转化; C15-18收率也可达到84.5%,异构化率可达14.0%。在一种催化剂上同时进行加氢脱氧反应和异构化反应,不仅能保证C15-18的高收率,同时生物柴油的低温流动性能也可以得到改善。
Hsu等对木质素模型化合物四甲基愈创木酚(4-mGUA)转化为生物基芳香族化合物的加氢脱氧过程进行了研究。结果表明,Ni2P/SiO2催化剂的粒度效应对 4-mGUA的加氢脱氧过程具有一定影响。较大Ni2P颗粒的氢化率低于小颗粒,导致甲酚选择性较高;小颗粒Ni2P与B酸的协同作用,促进了4-甲基环己醇转化成甲基环己烷。
Guo等合成了一系列活性炭(AC)负载的磷化镍和磷化钴催化剂,并用于生物油加氢脱氧,研究了磷含量对Ni2P/AC和CoP/AC催化剂加氢脱氧性能的影响。在反应温度300℃、氢气压力50bar的条件下,金属与磷(M/P)的摩尔比从5/2、 3/2、1/1、1/2、1/3,对木材衍生的热解油进行加氢脱氧实验。结果表明,Ni2P/AC 和CoP/AC催化剂中磷含量的影响显著。用M/P摩尔比约为3/2的催化剂性能最佳。向M/P摩尔比为3/2和纯金属催化剂中进一步加入质量分数为0.5%的Ru,结果表明,添加少量的Ru显着降低了改质生物油的相对分子量,并且达到了5wt.%Ru/C 催化剂催化所得的高品质生物油产品。
发明内容
本发明的目的在于提供一种成本低、催化活性好、选择性高并且稳定性强的生物油加氢脱氧反应的Ni2P/还原氧化石墨烯催化剂,并为该催化剂提供一种制备方法。
针对上述目的,本发明采用的催化剂是以还原氧化石墨烯为载体,负载活性组分Ni2P,以催化剂计,Ni2P的负载量为10%~25%,优选Ni2P的负载量为15%~ 20%。
上述催化剂的制备方法为:以催化剂计,按照Ni2P的负载量为10%~25%,且 Ni元素和P元素的摩尔比为2:1.5,将氧化石墨烯超声分散于NaH2PO2·H2O和 NiCl2·6H2O或Ni(NO3)2·6H2O的混合水溶液中,在70~90℃下加入水合肼,恒温反应3~5小时,抽滤,滤饼用去离子水反复洗涤后,50~80℃真空干燥,然后在氮气气氛中300~400℃焙烧3~5小时,得到Ni2P/还原氧化石墨烯(Ni2P/RGO) 催化剂。
上述制备方法中,优选在氮气气氛中300℃焙烧4小时。
上述制备方法中,所述的氧化石墨烯采用Hummers法制备而成。
上述制备方法中,所述水合肼的加入量为NiCl2·6H2O或Ni(NO3)2·6H2O摩尔量的5~15倍。
本发明的有益效果如下:
1、本发明采用Hummer法和次磷酸磷化法制备Ni2P/RGO催化剂,制备条件相对温和,RGO较大的表面积、特殊的边缘碳性质及丰富的缺陷位为氢的存储和加氢反应提供的大而有效的场所,再者,RGO发挥了惰性载体的优势,在负载Ni2P 时,降低了生成AlPO4的可能,是理想的磷化物催化剂载体之一。Ni2P可以对RGO 的层状结构起到一定的支撑作用,从而使其孔径增大。
2、本发明催化剂用于苯甲醛加氢脱氧制备甲苯的反应体系中,苯甲醛转化率可达94%以上,对甲苯的选择性接近90%,催化剂活性好,选择性高,并且稳定性强,能够将生物油中的富氧化合物有效的转化为可燃组分,从而提高生物油品质,其成本远低于贵金属催化剂,具有非常显著的应用价值。
3、本发明催化剂在一般条件(常温常压除湿)下保存40天后,用于苯甲醛加氢脱氧制备甲苯的反应体系中,催化活性仅下降了5.1%,对甲苯的选择性下降了 4.9%,变化不大,总体上催化剂稳定性良好。
附图说明
图1是实施例1制备的Ni2P/RGO催化剂的XRD图。
图2是实施例1制备的Ni2P/RGO催化剂的扫描电镜图。
图3是催化剂储存时间对催化剂选择性的影响(a为苯甲醛转化率;b为甲苯选择性)。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
以催化剂计,按照Ni2P的负载量为20%,且Ni元素和P元素的摩尔比为2:1.5,将1.0g氧化石墨烯加入500mL含1.1409g(4.80mmol)NiCl2·6H2O和0.3815g(3.60 mmol)NaH2PO2·H2O的混合水溶液中,常温超声分散2小时,然后在80℃下加入 2mL(32.98mmol)体积分数为80%的水合肼水溶液,恒温反应4小时,抽滤,滤饼用去离子水反复洗涤后,转入真空干燥箱内60℃充分干燥,最后在氮气气氛中 300℃焙烧4小时,得到Ni2P/RGO催化剂,其比表面积为181.9m2·g-1、平均孔径为12.2nm、孔体积为0.55cm3·g-1。由图1可见,在37.6°、43.9°、64.2°、77.4°处出现了Ni2P的典型衍射峰,说明制备产物为Ni2P/RGO。由图2可见,RGO片层结构清晰,边缘明显可见。
实施例2
以催化剂计,按照Ni2P的负载量为10%,且Ni元素和P元素的摩尔比为2:1.5,将1.0g氧化石墨烯加入500mL含0.5705g(2.40mmol)NiCl2·6H2O和0.1908g(1.80 mmol)NaH2PO2·H2O的混合水溶液中,常温超声分散2小时,然后在80℃下加入 2mL(32.98mmol)体积分数为80%的水合肼水溶液,恒温反应4小时,抽滤,滤饼用去离子水反复洗涤后,转入真空干燥箱内60℃充分干燥,最后在氮气气氛中 300℃焙烧4小时,得到Ni2P/RGO催化剂,其比表面积为197.4m2·g-1,平均孔径为10.6nm,孔体积为0.61cm3·g-1
实施例3
以催化剂计,按照Ni2P的负载量为15%,且Ni元素和P元素的摩尔比为2:1.5,将1.0g氧化石墨烯加入500mL含0.8567g(3.60mmol)NiCl2·6H2O和0.2861g (2.70mmol)NaH2PO2·H2O的混合水溶液中,常温超声分散2小时,然后在80℃下加入2mL(32.98mmol)体积分数为80%的水合肼水溶液,恒温反应4小时,抽滤,滤饼用去离子水反复洗涤后,转入真空干燥箱内60℃充分干燥,最后在氮气气氛中300℃焙烧4小时,得到Ni2P/RGO催化剂,其比表面积为188.2m2·g-1、平均孔径为11.5nm、孔体积为0.54cm3·g-1
实施例4
以催化剂计,按照Ni2P的负载量为25%,且Ni元素和P元素的摩尔比为2:1.5,将1.0g氧化石墨烯加入500mL含1.4262g(6.00mmol)NiCl2·6H2O和0.4769g (4.50mmol)NaH2PO2·H2O的混合水溶液中,常温超声分散2小时,然后在80℃下加入2mL(32.98mmol)体积分数为80%的水合肼水溶液,恒温反应4小时,抽滤,滤饼用去离子水反复洗涤后,转入真空干燥箱内60℃充分干燥,最后在氮气气氛中300℃焙烧4小时,得到Ni2P/RGO催化剂,其比表面积为164.8m2·g-1、平均孔径为6.5nm、孔体积为0.27cm3·g-1
实施例5
以催化剂计,按照Ni2P的负载量为20%,且Ni元素和P元素的摩尔比为2:1.5,将1.0g氧化石墨烯加入500mL含1.1409g(4.80mmol)NiCl2·6H2O和0.3815g(3.60 mmol)NaH2PO2·H2O的混合水溶液中,常温超声分散2小时,然后在80℃下加入 2mL(32.98mmol)体积分数为80%的水合肼水溶液,恒温反应4小时,抽滤,滤饼用去离子水反复洗涤后,转入真空干燥箱内60℃充分干燥,最后在氮气气氛中 350℃焙烧4小时,得到Ni2P/RGO催化剂。
实施例6
以催化剂计,按照Ni2P的负载量为20%,且Ni元素和P元素的摩尔比为2:1.5,将1.0g氧化石墨烯加入500mL含1.1409g(4.80mmol)NiCl2·6H2O和0.3815g(3.60 mmol)NaH2PO2·H2O的混合水溶液中,常温超声分散2小时,然后在80℃下加入 2mL(32.98mmol)体积分数为80%的水合肼水溶液,恒温反应4小时,抽滤,滤饼用去离子水反复洗涤后,转入真空干燥箱内60℃充分干燥,最后在氮气气氛中 400℃焙烧4小时,得到Ni2P/RGO催化剂。
对比例1
以催化剂计,按照Ni2P的负载量为20%,且Ni元素和P元素的摩尔比为2:1.5,将1.0g市售氧化铝加入8mL含1.1409g(4.80mmol)NiCl2·6H2O和0.3815g(3.60 mmol)NaH2PO2·H2O的混合水溶液中,常温浸渍12小时,然后在80℃水浴中蒸干多余水分,转入真空干燥箱内60℃充分干燥,最后在氮气气氛中300℃焙烧4 小时,得到Ni2P/Al2O3催化剂,其比表面积为171.2m2·g-1,平均孔径为13.7nm,孔体积为0.60cm3·g-1
为了证明本发明的有益效果,发明人以生物油含氧模型化合物苯甲醛加氢脱氧制备甲苯为反应体系,对实施例1~6制备的Ni2P/RGO催化剂和对比例1制备的 Ni2P/Al2O3催化剂的加氢脱氧性能进行了评价,加氢反应温度为300℃、反应压力为2.5MPa、反应时间为4小时、催化剂用量为0.1g。采用安捷伦7890B型气质联用仪(5977MSD,30m,HP-5毛细管柱)进行产物定性检测及定量分析,结果见表1。
表1不同催化剂的加氢脱氧性能
Figure BDA0001625455170000061
由表1可见,实例1~6制备的催化剂具有较高的催化活性及选择性,其用于苯甲醛加氢脱氧制备甲苯的反应体系中,苯甲醛转化率均在85%以上,最高可达 96%以上,对甲苯的选择性均在78%以上,最高可接近90%;在相同Ni2P负载量的情况下,本发明以RGO为载体的催化剂对苯甲醛转化率及选择性均优于对比例 1以Al2O3为载体的催化剂。
为了进一步证明本发明的有益效果,发明人对实施例1制备的Ni2P/RGO催化剂放置不同的时间,按照上述方法用于苯甲醛加氢脱氧反应,考察存储时间对 Ni2P/RGO催化剂活性和选择性的影响,结果见图3。由图3可知,随着催化剂储存时间延长,苯甲醛转化率和甲苯选择性都有所降低,但降低幅度不大,说明 Ni2P/RGO催化剂在放置40天后,仍保持了较好的活性和选择性,总体上催化剂稳定性良好。

Claims (4)

1.一种用于生物油加氢脱氧反应的Ni2P/还原氧化石墨烯催化剂,其特征在于:该催化剂是以还原氧化石墨烯为载体,负载活性组分Ni2P,以催化剂计,Ni2P的负载量为10%~25%;
上述催化剂的制备方法为:以催化剂计,按照Ni2P的负载量为10%~25%,且Ni元素和P元素的摩尔比为2:1.5,将氧化石墨烯超声分散于NaH2PO2·H2O和NiCl2·6H2O或Ni(NO3)2·6H2O的混合水溶液中,在70~90 ℃下加入水合肼,恒温反应3~5小时,抽滤,滤饼用去离子水反复洗涤后,50~80℃真空干燥,然后在氮气气氛中300~400 ℃焙烧3~5小时,得到Ni2P/还原氧化石墨烯催化剂。
2.根据权利要求1所述的催化剂,其特征在于:以催化剂计,Ni2P的负载量为15%~20%。
3.根据权利要求1所述的催化剂,其特征在于:在氮气气氛中300 ℃焙烧4小时。
4.根据权利要求1所述的催化剂,其特征在于:所述水合肼的加入量为NiCl2·6H2O或Ni(NO3)2·6H2O摩尔量的5~15倍。
CN201810321728.2A 2018-04-11 2018-04-11 用于生物油加氢脱氧反应的Ni2P/还原氧化石墨烯催化剂及其制备方法 Active CN108671947B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810321728.2A CN108671947B (zh) 2018-04-11 2018-04-11 用于生物油加氢脱氧反应的Ni2P/还原氧化石墨烯催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810321728.2A CN108671947B (zh) 2018-04-11 2018-04-11 用于生物油加氢脱氧反应的Ni2P/还原氧化石墨烯催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN108671947A CN108671947A (zh) 2018-10-19
CN108671947B true CN108671947B (zh) 2021-02-02

Family

ID=63799934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810321728.2A Active CN108671947B (zh) 2018-04-11 2018-04-11 用于生物油加氢脱氧反应的Ni2P/还原氧化石墨烯催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN108671947B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113881506B (zh) * 2021-09-15 2023-06-23 华中科技大学 基于乳化体系电催化制备提质生物质热解油的方法及得到的提质生物质热解油
CN114588925A (zh) * 2022-03-21 2022-06-07 福州大学 一种无贵金属负载的磷化镍/氮化碳可见光催化剂及其制备方法
CN116764629B (zh) * 2023-08-25 2023-10-20 内蒙古瑞翔拓创新材料有限公司 一种苯部分加氢制备环己烯钌基催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772156A (zh) * 2015-03-23 2015-07-15 陕西科技大学 一种石墨烯负载磷化镍钴复合材料的制备方法
CN104810165A (zh) * 2015-04-29 2015-07-29 华东理工大学 一种制备磷化镍/石墨烯复合薄膜材料的方法
CN105214676A (zh) * 2015-11-03 2016-01-06 广东工业大学 一种纳米Ni-Mo/氧化石墨烯催化剂及其制备方法
CN105289636A (zh) * 2015-11-03 2016-02-03 广东工业大学 纳米Ni-Mo/氧化石墨烯催化剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150099169A1 (en) * 2013-10-07 2015-04-09 Ut-Battelle, Llc High energy density multivalent conversion based cathodes for lithium batteries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772156A (zh) * 2015-03-23 2015-07-15 陕西科技大学 一种石墨烯负载磷化镍钴复合材料的制备方法
CN104810165A (zh) * 2015-04-29 2015-07-29 华东理工大学 一种制备磷化镍/石墨烯复合薄膜材料的方法
CN105214676A (zh) * 2015-11-03 2016-01-06 广东工业大学 一种纳米Ni-Mo/氧化石墨烯催化剂及其制备方法
CN105289636A (zh) * 2015-11-03 2016-02-03 广东工业大学 纳米Ni-Mo/氧化石墨烯催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Facile synthesis and superior supercapacitor performances of Ni2P/rGO nanoparticles";Cuihua An et al;《RSC Advances》;20130125;第3卷(第14期);附件第1页 *
"Production of high-grade diesel from palmitic acid over activatedcarbon-supported nickel phosphide catalysts";Xin Hui et al;《APPLIED CATALYSIS B-ENVIRONMENTAL》;20160125;第187卷;第376页第2.1节 *
"磷化铟(镍)/还原氧化石墨烯复合材料的制备、表征及性能研究";何晓东;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》;20180115(第01期);第40页2.2.2节 *

Also Published As

Publication number Publication date
CN108671947A (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
US11000831B2 (en) Transition metal(s) catalyst supported on nitrogen-doped mesoporous carbon and its use in catalytic transfer hydrogenation reactions
JP5426776B2 (ja) メソ多孔性炭素上に担持されたタングステンカーバイド触媒、その調製及び適用
CN108671947B (zh) 用于生物油加氢脱氧反应的Ni2P/还原氧化石墨烯催化剂及其制备方法
WO2017185928A1 (zh) 用于生产生物柴油的选择性加氢催化剂及其制备方法和应用
CN108144653B (zh) 一种油脂加氢催化剂制备及催化剂和应用
Alsultan et al. Preparation of activated carbon from walnut shell doped la and Ca catalyst for biodiesel production from waste cooking oil
CN107442166B (zh) 适于生产生物柴油的加氢催化剂及其制备方法和应用
Lin et al. Hydrothermal stable Ni nanoparticles encapsulated in carbon for hydrothermal hydrogenation of long-chain fatty acids to alkanes
KR101818676B1 (ko) 지방산으로부터 파라핀계 화합물의 선택적 제조를 위한 메조세공 탄소 촉매
Longo et al. Waste biomasses as precursors of catalytic supports in benzaldehyde hydrogenation
Anutrasakda et al. Performances of mesoporous silica-supported nickel phosphide nanocatalysts in the one-pot transformation of cellobiose to sorbitol
CN105709802B (zh) 一种高金属分散度加氢裂化催化剂及其制备方法
CN111135857B (zh) 还原型催化剂的制备方法及其用途
CN112657519A (zh) 一种介孔结构磷化镍-磷酸锆复合催化剂及其制备方法与应用
Mao et al. Ru/P-containing porous biochar-efficiently catalyzed cascade conversion of cellulose to sorbitol in water under medium-pressure H2 atmosphere
Chen et al. Environmentally-friendly preparation of natural hollow carbon spheres derived from a biomass puffball for in situ upgrading of lignin-derived vanillin
KR20170127085A (ko) 지방산으로부터 탈산소화 화합물의 선택적 제조를 위한 3 차원 메조세공 탄소 촉매
CN113634247B (zh) 一种脱氧及异构化催化剂及其制备方法和应用
Pham et al. High Catalytic Activity of a Nickel Phosphide Nanocatalyst Supported on Melamine-Doped Activated Carbon for Deoxygenation
CN101636471B (zh) 通过一氧化碳的还原生产烃的方法
Pulungan et al. The stabilization of bio-oil as an alternative energy source through hydrodeoxygenation using Co and Co-Mo supported on active natural zeolite
Ji et al. Renewable biomass-derived hollow carbon sphere for efficient transformation of lignin-derived phenols to high value chemicals
KR20160128949A (ko) 지방산으로부터 파라핀계 화합물의 선택적 제조를 위한 메조세공 탄소 촉매
Cai et al. Construction of Cu–Ru bimetallic catalyst for the selective catalytic transfer hydrogenation of carbonyl (CO) in biomass-derived compounds
CN102059136B (zh) 糠醛乙酸加氢酯化反应复合双功能催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant