CN104810165A - 一种制备磷化镍/石墨烯复合薄膜材料的方法 - Google Patents

一种制备磷化镍/石墨烯复合薄膜材料的方法 Download PDF

Info

Publication number
CN104810165A
CN104810165A CN201510210775.6A CN201510210775A CN104810165A CN 104810165 A CN104810165 A CN 104810165A CN 201510210775 A CN201510210775 A CN 201510210775A CN 104810165 A CN104810165 A CN 104810165A
Authority
CN
China
Prior art keywords
nickel
dispersion liquid
phosphide
red phosphorus
graphene composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510210775.6A
Other languages
English (en)
Other versions
CN104810165B (zh
Inventor
赵崇军
王倩
孙彩霞
沈海超
张雨潇
钱秀珍
张金朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201510210775.6A priority Critical patent/CN104810165B/zh
Publication of CN104810165A publication Critical patent/CN104810165A/zh
Application granted granted Critical
Publication of CN104810165B publication Critical patent/CN104810165B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)

Abstract

本发明公开了一种制备磷化镍/石墨烯复合薄膜材料的方法。首先在超声作用下,将氧化石墨烯和红磷分散在去离子水中制得分散液,然后将分散液转移到水热釜中,并将金属镍基体(泡沫镍、镍片或镍网)浸入分散液,水热反应后得到磷化镍/石墨烯复合薄膜材料。该制备方法简单易行,合成条件温和,材料成本低且易于大规模生产和利用。

Description

一种制备磷化镍/石墨烯复合薄膜材料的方法
技术领域
本发明涉及一种制备磷化镍/石墨烯复合薄膜材料的方法,特别涉及一种储能(超级电容器、电池)电极材料的制备方法。
背景技术
近年来,能源危机和环境污染已经成为全球性的难题,为了实现社会的可持续发展,新能源(太阳能,风能,潮汐能等)的开发和利用得到了广泛的关注。伴随着新能源的发展,我们对储能设备的要求也越来越高。
作为一种新型储能设备,超级电容器具有功率密度高、循环寿命长、充放电快等优点,被广泛应用于计算机、消费电子、电动汽车、航空航天等领域。超级电容器的电极材料主要有碳基材料(活性炭、介孔碳、碳纳米管等),过渡金属氧化物或氢氧化物(RuO2、MnO2、NiO2、Ni(OH)2等),导电聚合物等。其中,碳基材料比表面积大、双电层间距小及循环寿命高,但放电容量较低。导电聚合物价格低廉,但材料的热稳定性、化学稳定性以及充放电的可循环性较差。过渡金属氧化物或氢氧化物为赝电容储存机理,比电容量大,但导电性差,循环稳定性不佳。因此,寻找一种兼具高容量和良好循环稳定性的复合电极材料成为超级电容器发展的关键。
目前,石墨烯与过渡金属氧化物的复合材料被广泛研究。近期研究发现过渡金属磷化物有类金属性质,更适合做超级电容器的电极材料。目前过渡金属磷化物的合成方法主要有溶剂热反应法、单一有机金属前驱体的热分解法、纳米级金属磷酸盐前体的高温热分解法、金属或金属氧化物纳米粒子被PH3/H2还原等。但是这些方法大都利用金属纳米粒子作为反应物,且反应温度高,反应条件苛刻;得到的产物主要为粉体材料。
发明内容
为了克服上述方法的不足,本发明采用一种简单的水热法,以金属镍基体(泡沫镍、镍片或镍网)作为镍源,红磷作为磷源,与石墨烯复合生成磷化镍/石墨烯复合薄膜材料。制备方法简单易行,合成条件温和,材料成本低且易于大规模生产和利用。
本发明的技术解决方案如下:
以泡沫镍、镍片或镍网为镍源,红磷为磷源,利用水热法制备磷化镍/石墨烯复合薄膜材料的方法,包括如下步骤:
(1)      称取一定量氧化石墨烯,加入到去离子水中,超声分散,形成氧化石墨烯均一分散液;
(2)      称取一定量的红磷加入步骤(1)制得的分散液中,超声分散0.5~2小时,形成红磷和氧化石墨烯的分散液;
(3)      将步骤(2)制得的分散液加入到水热釜中,并将金属镍基体(泡沫镍、镍片或镍网)浸入分散液中,在150-210℃条件下水热反应12~36小时;
(4)      将反应结束后的以镍基体为载体的磷化镍/石墨烯复合薄膜材料在去离子水中清洗,干燥,保存待用。
所述的制备磷化镍/石墨烯复合薄膜材料的方法,其特征在于氧化石墨烯和红磷的质量比为1:5~5:1。
所述的制备磷化镍/石墨烯复合薄膜材料的方法,其特征在于磷化镍包括磷化二镍、二磷化三镍、二磷化镍、三磷化镍等。
本发明利用金属镍基体(泡沫镍、镍片或镍网)作为制备磷化镍/石墨烯复合薄膜材料的载体和镍离子源,红磷作为磷源,成功合成出磷化镍/石墨烯复合薄膜材料。该实验方法简单易控,容易实现规模化生产。
附图说明
图1为实施例1中制备的磷化镍/石墨烯复合薄膜材料的扫描电子显微镜(SEM)图片。
图2为实施例3中制备的磷化镍/石墨烯复合薄膜材料的扫描电子显微镜(SEM)图片。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明的保护范围并不限于此。
        实施例        1
称取31 mg氧化石墨烯,加入到30 mL的去离子水中,超声分散形成均一分散液,然后称取31 mg红磷溶于上述分散液中,超声2小时。将氧化石墨烯和红磷的分散液加入到水热釜的聚四氟乙烯内衬中,将1×2 cm2的泡沫镍浸入分散液中,拧紧不锈钢外套后置于180℃下保温12小时。对产物进行洗涤,干燥,保存待用。制备的磷化镍/石墨烯如附图1所示。
        实施例        2
称取31 mg氧化石墨烯,加入到30 mL的去离子水中,超声分散形成均一分散液,然后称取15.5 mg红磷溶于上述分散液中,超声1小时。将氧化石墨烯和红磷的分散液加入到水热釜的聚四氟乙烯内衬中,将1×2 cm2的泡沫镍浸入分散液中,拧紧不锈钢外套后置于210℃下保温24小时。对产物进行洗涤,干燥,保存待用。
        实施例        3
称取40 mg氧化石墨烯,加入到30 mL的去离子水中,超声分散形成均一分散液,然后称取8 mg红磷溶于上述分散液中,超声0.5小时。将氧化石墨烯和红磷的分散液加入到水热釜的聚四氟乙烯内衬中,将1×2 cm2的泡沫镍浸入分散液中,拧紧不锈钢外套后置于150℃下保温36小时。对产物进行洗涤,干燥,保存待用。制备的磷化镍/石墨烯如附图2所示。
        实施例        4
称取8 mg氧化石墨烯,加入到30 mL的去离子水中,超声分散形成均一分散液,然后称取40 mg红磷溶于上述分散液中,超声1小时。将氧化石墨烯和红磷的分散液加入到水热釜的聚四氟乙烯内衬中,将1× 2 cm2的泡沫镍浸入分散液中,拧紧不锈钢外套后置于180℃下保温24小时。对产物进行洗涤,干燥,保存待用。
        实施例        5
称取24 mg氧化石墨烯,加入到30 mL的去离子水中,超声分散形成均一分散液,然后称取40 mg红磷溶于上述分散液中,超声1小时。将氧化石墨烯和红磷的分散液加入到水热釜的聚四氟乙烯内衬中,将1× 2 cm2的泡沫镍浸入分散液中,拧紧不锈钢外套后置于210℃下保温12小时。对产物进行洗涤,干燥,保存待用。

Claims (4)

1.一种制备磷化镍/石墨烯复合薄膜材料的方法,其特征在于包括如下步骤:
称取一定量氧化石墨烯,加入到去离子水中,超声分散,形成氧化石墨烯均一分散液;
称取一定量红磷,加入到步骤(1)制得的分散液中,超声分散0.5~2小时,形成红磷和氧化石墨烯的分散液;
将步骤(2)制得的分散液加入到水热釜中,并将金属镍基体(泡沫镍、镍片或镍网)浸入分散液中,在150-210℃条件下水热反应12~36小时;
将反应结束后的以镍基体为载体的磷化镍/石墨烯复合薄膜材料在去离子水中清洗,干燥,保存待用。
2.根据权利要求1所述的方法,其特征在于,金属镍基体(泡沫镍、镍片或镍网)作为制备磷化镍/石墨烯复合薄膜材料的载体和镍离子源,红磷作为磷离子源。
3.根据权利要求1所述的方法,其特征在于,氧化石墨烯和红磷的质量比为1:5~5:1。
4.根据权利要求1和2所述的方法,其特征在于,磷化镍包括磷化二镍、二磷化三镍、二磷化镍、三磷化镍等。
CN201510210775.6A 2015-04-29 2015-04-29 一种制备磷化镍/石墨烯复合薄膜材料的方法 Expired - Fee Related CN104810165B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510210775.6A CN104810165B (zh) 2015-04-29 2015-04-29 一种制备磷化镍/石墨烯复合薄膜材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510210775.6A CN104810165B (zh) 2015-04-29 2015-04-29 一种制备磷化镍/石墨烯复合薄膜材料的方法

Publications (2)

Publication Number Publication Date
CN104810165A true CN104810165A (zh) 2015-07-29
CN104810165B CN104810165B (zh) 2017-06-23

Family

ID=53694925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510210775.6A Expired - Fee Related CN104810165B (zh) 2015-04-29 2015-04-29 一种制备磷化镍/石墨烯复合薄膜材料的方法

Country Status (1)

Country Link
CN (1) CN104810165B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105926021A (zh) * 2016-03-24 2016-09-07 西北师范大学 一种磷化镍纳米薄膜及其制备方法和应用
CN106964381A (zh) * 2017-03-02 2017-07-21 西北大学 一种高浓度纳米红磷光催化剂分散液的制备方法
CN107715898A (zh) * 2017-10-11 2018-02-23 肇庆市华师大光电产业研究院 一种氧化石墨烯/红磷复合材料及其制备方法与应用
CN108671947A (zh) * 2018-04-11 2018-10-19 西安石油大学 用于生物油加氢脱氧反应的Ni2P/还原氧化石墨烯催化剂及其制备方法
CN108864636A (zh) * 2018-08-08 2018-11-23 燕山大学 一种磷化镍/氟化石墨烯-聚四氟乙烯复合材料及其制备方法和应用
CN109894129A (zh) * 2019-04-15 2019-06-18 内蒙古大学 一种Ni2P负载石墨烯泡沫结构催化剂的制备方法及其应用
CN110183589A (zh) * 2019-05-24 2019-08-30 燕山大学 聚酯树脂/聚四氟乙烯-苄氯-二乙烯三胺-氧化石墨/磷化镍复合摩擦材料的制备方法
CN110952112A (zh) * 2019-12-24 2020-04-03 济南大学 一种石墨烯外层@磷化镍夹层@镍内层框架复合材料及其制备方法和应用
CN114784243A (zh) * 2022-04-18 2022-07-22 河南工程学院 一种氮掺杂还原氧化石墨烯负载磷化镍复合材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103466574A (zh) * 2013-09-17 2013-12-25 天津工业大学 一种制备三维大孔金属磷化物的方法
CN104437572A (zh) * 2014-10-31 2015-03-25 常州大学 一种石墨烯负载纳米磷化镍加氢催化剂的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103466574A (zh) * 2013-09-17 2013-12-25 天津工业大学 一种制备三维大孔金属磷化物的方法
CN104437572A (zh) * 2014-10-31 2015-03-25 常州大学 一种石墨烯负载纳米磷化镍加氢催化剂的制备方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
A novel synthetic approach to synthesizing bulk and supported metal phosphides;Qingxin Guan等;《Journal of Catalysis》;20100324(第271期);第413-415页 *
CHUANGANG HU等: "Spontaneous Reduction and Assembly of Graphene oxide into Three-Dimensional Graphene Network on Arbitrary Conductive Substrates", 《SCIENCE REPORTS》 *
CUIHUA AN等: "Facile synthesis and superior supercapacitor performances of Ni2P/rGO nanoparticles", 《RSC ADVANCES》 *
Facile synthesis and superior supercapacitor performances of Ni2P/rGO nanoparticles;Cuihua An等;《RSC Advances》;20130125(第3期);第4628-4633页 *
QINGXIN GUAN等: "A novel synthetic approach to synthesizing bulk and supported metal phosphides", 《JOURNAL OF CATALYSIS》 *
Synthesis of dinickel phosphide (Ni2P) for fast lithium-ion transportation a new class of nanowires with exceptionally improved electrochemical performance as a negative electrode;Yi Lu等;《RSC Advances》;20120229(第2期);第3430-3436页 *
XUEBO CAO等: "Ambient Fabrication of Large-Area Graphene Films via a Synchronous Reduction and Assembly Strategy", 《ADVANCED MATERIALS》 *
YI LU等: "Synthesis of dinickel phosphide (Ni2P) for fast lithium-ion transportation a new class of nanowires with exceptionally improved electrochemical performance as a negative electrode", 《RSC ADVANCES》 *
ZHUANGJUN FAN等: "An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder", 《CARBON》 *
ZHUANG-JUN FAN等: "Facile Synthesis of Graphene Nanosheets Via Fe Reduction of Exfoliated Graphite Oxide", 《ACS NANO》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105926021B (zh) * 2016-03-24 2018-02-27 西北师范大学 一种磷化镍纳米薄膜及其制备方法和应用
CN105926021A (zh) * 2016-03-24 2016-09-07 西北师范大学 一种磷化镍纳米薄膜及其制备方法和应用
CN106964381B (zh) * 2017-03-02 2019-08-27 西北大学 一种高浓度纳米红磷光催化剂分散液的制备方法
CN106964381A (zh) * 2017-03-02 2017-07-21 西北大学 一种高浓度纳米红磷光催化剂分散液的制备方法
CN107715898A (zh) * 2017-10-11 2018-02-23 肇庆市华师大光电产业研究院 一种氧化石墨烯/红磷复合材料及其制备方法与应用
CN108671947A (zh) * 2018-04-11 2018-10-19 西安石油大学 用于生物油加氢脱氧反应的Ni2P/还原氧化石墨烯催化剂及其制备方法
CN108671947B (zh) * 2018-04-11 2021-02-02 西安石油大学 用于生物油加氢脱氧反应的Ni2P/还原氧化石墨烯催化剂及其制备方法
CN108864636B (zh) * 2018-08-08 2019-08-23 燕山大学 一种磷化镍/氟化石墨烯-聚四氟乙烯复合材料及其制备方法和应用
CN108864636A (zh) * 2018-08-08 2018-11-23 燕山大学 一种磷化镍/氟化石墨烯-聚四氟乙烯复合材料及其制备方法和应用
CN109894129A (zh) * 2019-04-15 2019-06-18 内蒙古大学 一种Ni2P负载石墨烯泡沫结构催化剂的制备方法及其应用
CN109894129B (zh) * 2019-04-15 2021-09-28 内蒙古大学 一种Ni2P负载石墨烯泡沫结构催化剂的制备方法及其应用
CN110183589A (zh) * 2019-05-24 2019-08-30 燕山大学 聚酯树脂/聚四氟乙烯-苄氯-二乙烯三胺-氧化石墨/磷化镍复合摩擦材料的制备方法
CN110952112A (zh) * 2019-12-24 2020-04-03 济南大学 一种石墨烯外层@磷化镍夹层@镍内层框架复合材料及其制备方法和应用
CN110952112B (zh) * 2019-12-24 2021-07-27 济南大学 一种石墨烯外层@磷化镍夹层@镍内层框架复合材料及其制备方法和应用
CN114784243A (zh) * 2022-04-18 2022-07-22 河南工程学院 一种氮掺杂还原氧化石墨烯负载磷化镍复合材料及其制备方法
CN114784243B (zh) * 2022-04-18 2023-07-14 河南工程学院 一种氮掺杂还原氧化石墨烯负载磷化镍复合材料及其制备方法

Also Published As

Publication number Publication date
CN104810165B (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
Zang et al. Polypyrrole nanotube-interconnected NiCo-LDH nanocages derived by ZIF-67 for supercapacitors
CN104810165A (zh) 一种制备磷化镍/石墨烯复合薄膜材料的方法
Zhang et al. Electrostatic self-assembly of sandwich-like CoAl-LDH/polypyrrole/graphene nanocomposites with enhanced capacitive performance
Wu et al. Rational design of cobalt–nickel double hydroxides for flexible asymmetric supercapacitor with improved electrochemical performance
Chen et al. Core-shell structured Ni3S2@ Co (OH) 2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors
Yuan et al. Oxygen vacancy-determined highly efficient oxygen reduction in NiCo2O4/hollow carbon spheres
Wang et al. Solvothermal synthesis of flower-string-like NiCo-MOF/MWCNT composites as a high-performance supercapacitor electrode material
Liu et al. Growth of uniform CuCo2O4 porous nanosheets and nanowires for high-performance hybrid supercapacitors
Xiang et al. Facile green route to Ni/Co oxide nanoparticle embedded 3D graphitic carbon nanosheets for high performance hybrid supercapacitor devices
Li et al. Nanoflower-branch LDHs and CoNi alloy derived from electrospun carbon nanofibers for efficient oxygen electrocatalysis in microbial fuel cells
Xue et al. Hierarchical porous nickel cobaltate nanoneedle arrays as flexible carbon-protected cathodes for high-performance lithium–oxygen batteries
Zhang et al. The yolk-shell nanorod structure of Ni3Se2@ C electrodes boosting charge transfer and cyclability in high-performance supercapacitors
CN108390014B (zh) 泡沫镍负载不同形貌一氧化钴纳米材料的制备方法
Reddy et al. Highly porous metal organic framework derived NiO hollow spheres and flowers for oxygen evolution reaction and supercapacitors
CN112233912B (zh) 一种泡沫镍载MnCo2O4.5/MXene复合纳米材料的制备方法及应用
CN102324321B (zh) 一种泡沫镍基负载的金属氧化镍/碳复合电极材料
CN110183655A (zh) 一种二维碳化物晶体基聚酰亚胺有机正极材料的制备方法
CN104701036A (zh) 基于分级花状NiCo2O4超级电容器电极材料的研究
Song et al. Ni-Co double hydroxide grown on graphene oxide for enhancing lithium ion storage
Wu et al. Facile and scalable synthesis of 3D structures of V10O24· 12H2O nanosheets coated with carbon toward ultrafast and ultrastable zinc storage
CN106315522A (zh) 一种用于超级电容器的NiSe三维多孔纳米片材料及其制备方法
Sun et al. Electrode made of NiCo double hydroxide on oxidized activated carbon for asymmetric supercapacitors
CN104616915A (zh) 一种石墨烯-氧化钌复合材料的制备方法
CN105185606A (zh) 一种新型碱式碳酸钴-掺氮石墨烯复合电极材料的制备方法
Yang et al. Facile synthesis of yolk-shelled NiO/Ni composites as cathode material for high-performance hybrid supercapacitors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhao Chongjun

Inventor after: Wang Qian

Inventor after: Sun Caixia

Inventor after: Shen Haichao

Inventor after: Zhang Yuxiao

Inventor after: Qian Xiuzhen

Inventor after: Zhang Jinchao

Inventor before: Zhao Chongjun

Inventor before: Wang Qian

Inventor before: Sun Caixia

Inventor before: Shen Haichao

Inventor before: Zhang Yuxiao

Inventor before: Qian Xiuzhen

Inventor before: Zhang Jinchao

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170623

Termination date: 20190429

CF01 Termination of patent right due to non-payment of annual fee