WO2015172592A1 - 适于生物质费托合成油生产航空煤油的催化剂及其制备方法 - Google Patents

适于生物质费托合成油生产航空煤油的催化剂及其制备方法 Download PDF

Info

Publication number
WO2015172592A1
WO2015172592A1 PCT/CN2015/072403 CN2015072403W WO2015172592A1 WO 2015172592 A1 WO2015172592 A1 WO 2015172592A1 CN 2015072403 W CN2015072403 W CN 2015072403W WO 2015172592 A1 WO2015172592 A1 WO 2015172592A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
zsm
molecular sieve
aviation kerosene
temperature
Prior art date
Application number
PCT/CN2015/072403
Other languages
English (en)
French (fr)
Inventor
王弯弯
宋德臣
许莉
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Priority to EP15792560.3A priority Critical patent/EP3144063A4/en
Priority to CA2948943A priority patent/CA2948943A1/en
Priority to KR1020167034812A priority patent/KR101828965B1/ko
Priority to AU2015258645A priority patent/AU2015258645B2/en
Priority to JP2016567239A priority patent/JP6337152B2/ja
Priority to RU2016148862A priority patent/RU2656598C1/ru
Publication of WO2015172592A1 publication Critical patent/WO2015172592A1/zh
Priority to US15/350,132 priority patent/US9795950B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7884TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7684TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
    • B01J35/50
    • B01J35/615
    • B01J35/633
    • B01J35/635
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/04Oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/04Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/08Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/16After treatment, characterised by the effect to be obtained to increase the Si/Al ratio; Dealumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/40Special temperature treatment, i.e. other than just for template removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1081Alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the invention relates to a hydroisomerization catalyst for producing aviation kerosene, in particular to a catalyst suitable for the production of aviation kerosene from biomass Fischer-Tropsch synthetic oil and a preparation method thereof.
  • liquid fuels can be converted into liquid fuels to reduce harmful substances and greenhouse gas emissions, improve carbon resource utilization efficiency, and obtain liquid fuels that are sulfur-free and nitrogen-free. It is highly aromatic because it meets the requirements of clean fuels and increasingly stringent environmental regulations and meets the low carbon policy of clean fuels.
  • the Fischer-Tropsch synthetic oil has a high content of normal paraffins, which is more than 90%, resulting in higher freezing point and poor low-temperature flow performance, which cannot be directly used as aviation kerosene. Therefore, the key to the production of aviation kerosene by biomass Fischer-Tropsch synthetic oil is the conversion of normal paraffins to isoparaffins by hydroisomerization.
  • the core of this problem is the highly active, highly selective hydroisomerization of long-chain alkanes. Catalyst development.
  • the hydroisomerization catalyst is a bifunctional catalyst composed of a metal having hydrogenation-dehydrogenation activity supported on an acidic carrier.
  • the active components are noble metals (Pt, Pd, etc.) and non-precious metals (Ni, Co, Mo, W, etc.), and acidic carriers are usually selected from USY, MOR, SAPO series and ⁇ molecular sieves. Since the acidity of the molecular sieve carrier is strong, the cracking reaction is intensified, resulting in low isomerization selectivity. Therefore, seeking a carrier having a weakly acidic and moderate pore structure is the key to preparing a hydroisomerization catalyst.
  • the Chinese invention patent application with the publication number CN101722031A describes a long-chain normal paraffin shape isomerization catalyst, a preparation method and application thereof, which use EUO type molecular sieve while mixing
  • the inorganic refractory oxide is used as a carrier, and the noble metal Pt and Pd are supported by the impregnation method.
  • the characteristic is that the rare earth element lanthanum, cerium and the like are used to modify the EUO molecular sieve, thereby generating more weakly acidic centers.
  • the catalyst is used in the hydrotreating process of the lubricating oil fraction, and the target product has high yield, low pour point and good viscosity index, but the catalyst is only suitable for the hydrotreating process of lubricating oil fraction, white oil, paraffin and the like.
  • Chinese Patent Application Publication No. CN103059901A proposes a method for preparing a diesel component or a jet fuel from animal and vegetable oils.
  • the method uses a two-stage reactor, the first stage reactor obtains C8-C24 normal paraffins, and the second The reactor is hydroisomerized to produce jet fuel.
  • the catalyst is a bifunctional catalyst.
  • the molecular sieve is used as a carrier, such as SAPO-11, SAPO-31, SAPO-41, ZSM-22, ZSM-23, ZSM-48.
  • the metal component selected is a noble metal such as Pt, Pd, Rh, Ru, Ag or the like.
  • the catalyst has a high isomerization selectivity, generally about 80%, the yield of jet fuel is relatively low, about 45%.
  • Chinese Patent Application Publication No. CN103013589A discloses a mixed fuel fuel containing biomass fuel and a preparation method thereof, using terpene as a raw material, using Ni/SiO 2 , Pd/Al 2 O 3 or Pd/C as a catalyst.
  • the process has a high conversion rate, and the obtained biomass fuel has a low freezing point, but its density is too high to be used alone as a jet fuel. It needs to be mixed with existing jet fuel to meet the national jet fuel. Standard.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a high activity and high selection.
  • the present invention is designed to be suitable for the production of aviation kerosene by biomass Fischer-Tropsch synthetic oil, wherein the weight percentage of each component is: 20-50% of amorphous silicon aluminum, 5-20% of alumina binder. , hydrothermal modified ZSM-22 molecular sieve 20 ⁇ 60%, field nitrile powder 0.5 ⁇ 1.0%, nickel oxide 0.5 ⁇ 5%, molybdenum oxide 5 ⁇ 15%.
  • the weight percentage of each component in the catalyst is: amorphous silicon aluminum 30 ⁇ 45%, alumina binder 8-15%, hydrothermal modified ZSM-22 molecular sieve 25-50%, field nitrile powder 0.6 ⁇ 0.8%, nickel oxide 2.5 to 4.5%, and molybdenum oxide 8 to 12%.
  • the hydrothermally modified ZSM-22 molecular sieve is a dealuminated modified ZSM-22 molecular sieve which has been subjected to high temperature steam heat treatment.
  • the hydrothermally modified ZSM-22 molecular sieve is a dealuminated modified H-ZSM-22 molecular sieve heat treated by high temperature steam.
  • the high temperature steam heat treatment has a temperature of 300 to 900 ° C, a pressure of 0.1 to 2.0 MPa, and a treatment time of 2 to 4 hours.
  • the high temperature steam heat treatment has a temperature of 500 to 800 ° C, a pressure of 0.1 to 0.5 MPa, and a treatment time of 2 to 3.5 hours.
  • the catalyst has a specific surface area of 200 to 300 m 2 /g, a pore volume of 0.4 to 0.8 mL/g, a pore distribution of 4 to 10 nm, 65 to 85% of the total pore volume, and a total acidity of NH 3 -TPD. 0.4 to 1.0 mmol/g.
  • the invention also provides a preparation method of a catalyst suitable for the production of aviation kerosene by biomass Fischer-Tropsch synthetic oil, the method comprising the following steps:
  • step 2) repeating the operation of step 1) 2 to 3 times, and then performing roasting treatment to obtain H-ZSM-22 molecular sieve;
  • H-ZSM-22 molecular sieve is subjected to hydrothermal treatment by introducing high-temperature steam to obtain a dealuminated modified H-ZSM-22 molecular sieve;
  • the obtained catalyst carrier is subjected to saturated impregnation treatment with the obtained active impregnation liquid, and the active component thereof is supported on a carrier, and then aged, dried, and calcined to obtain a finished catalyst.
  • the molar ratio of SiO 2 /Al 2 O 3 in the K-ZSM-22 molecular sieve is 20-160.
  • the molar ratio of SiO 2 /Al 2 O 3 in the K-ZSM-22 molecular sieve is 30-100.
  • the concentration of the NH 4 NO 3 solution is 1.0 to 2.0 mol/L, and the temperature of the water bath of the K-ZSM-22 molecular sieve in the NH 4 NO 3 solution is 60 to 110 ° C, and the bath time is 1 to 4h.
  • the concentration of the NH 4 NO 3 solution is 1.0 to 1.5 mol/L, and the temperature of the water bath of the K-ZSM-22 molecular sieve in the NH 4 NO 3 solution is 80 to 100 ° C, and the bath time is 2 to 4h.
  • the high temperature steam is hydrothermally treated to the H-ZSM-22 molecular sieve at a temperature of 300 to 900 ° C, a pressure of 0.1 to 2.0 MPa, and a treatment time of 2 to 4 hours.
  • the high temperature steam is hydrothermally treated to the H-ZSM-22 molecular sieve at a temperature of 500 to 800 ° C, a pressure of 0.1 to 0.5 MPa, and a treatment time of 2 to 3.5 hours.
  • the amorphous silicon aluminum has a specific surface area of 250 to 400 m 2 /g, wherein the SiO 2 content accounts for 20 to 50% of the total weight of the amorphous silicon aluminum.
  • the amorphous silicon aluminum has a specific surface area of 250 to 300 m 2 /g, wherein the SiO 2 content accounts for 30 to 50% of the total weight of the amorphous silicon aluminum.
  • the concentration of the dilute nitric acid solution is from 3 to 8% by mass.
  • the strip is dried at a temperature of 80 to 120 ° C and the drying time is 6 to 24 h.
  • the strip is dried at a temperature of 100 to 120 ° C and the drying time is 6 to 12 h.
  • the temperature at which the dried strip is baked is 500 to 600 ° C, and the baking time is 4 to 8 h.
  • the obtained catalyst carrier has a shape of a cylindrical shape, a clover shape or a four-leaf clover shape. It is preferably a clover or a four-leaf clover which can diffuse faster in the reaction liquid.
  • the soluble molybdenum salt is ammonium molybdate or sodium molybdate
  • the soluble nickel salt is nickel nitrate
  • the ultrasonic dispersion treatment is performed for 0.5 to 1.5 hours.
  • the aging treatment is performed at room temperature, the aging time is 12 to 24 hours; the drying treatment temperature is 100 to 120 ° C, the drying time is 10 to 14 hours; and the baking treatment temperature is 500 to 600 ° C.
  • the calcination time is 4-8 hours.
  • the aging treatment is performed at room temperature, the aging time is 16-20 h; the drying treatment temperature is 110-120 ° C, the drying time is 10-12 h; and the roasting temperature is 550-600 ° C.
  • the calcination time is 4 to 6 hours.
  • ZSM-22 molecular sieve Since ZSM-22 molecular sieve has elliptical one-dimensional pores with ten-membered ring openings, the pore size is 0.45nm ⁇ 0.55nm, and there is no cross-channel. It is only suitable for the isomerization reaction of small molecules and is used for long-chain alkanes. During the isomerization process, the ZSM-22 molecular sieve needs to be modified to further expand the pore size of the ZSM-22 molecular sieve.
  • the invention aims at the characteristics of long-chain normal paraffin of Fischer-Tropsch synthetic oil, and uses K-ZSM-22 molecular sieve as raw material to obtain H-ZSM-22 molecular sieve by ion exchange, and then dealuminizes by hydrothermal treatment to reduce its acidity and utilize at the same time.
  • Amorphous silica-alumina has weak acidity
  • amorphous aluminum-aluminum and dealuminized modified H-ZSM-22 molecular sieves are mixed as a carrier to have a moderately weak acidity and pore size structure, and then the active components Ni and Mo are supported.
  • a catalyst having a pore size distribution of 4 to 10 nm is prepared, which is advantageous for the progress of the isomerization reaction of long-chain alkanes.
  • the invention has the advantages that the prepared catalyst has high activity and high selectivity, and the long-chain biomass Fischer-Tropsch synthetic oil can be subjected to hydroisomerization treatment, and the aviation kerosene is highly selective, and the long chain is added.
  • the degree of isomerization of alkanes reduces the freezing point of aviation kerosene fraction, improves the selectivity of aviation kerosene components, and has high catalytic activity and improves the yield of aviation kerosene.
  • the aviation kerosene produced by the catalyst obtained by the invention can meet the national jet fuel standard and replace the existing petrochemical aviation fuel.
  • K-ZSM-22 molecular sieve Take 200g of K-ZSM-22 molecular sieve, the molar ratio of SiO 2 /Al 2 O 3 in K-ZSM-22 molecular sieve is 40, according to the weight ratio of K-ZSM-22 molecular sieve to NH 4 NO 3 solution 1:10 , adding 1.5mol / L NH 4 NO 3 solution for ion exchange, stirring at a water bath temperature of 100 ° C for 2 h, filtering, washing, drying at 120 ° C for 4 h;
  • step 2) repeating the operation of step 1) 3 times, and then baking at 550 ° C for 6 h to obtain H-ZSM-22 molecular sieve;
  • H-ZSM-22 molecular sieve is placed in a high-temperature roasting furnace, water vapor is introduced, hydrothermal treatment temperature is 500 ° C, pressure is 0.2 Mpa, and treated for 4 hours to obtain dealuminized modified H-ZSM-22 molecular sieve;
  • the obtained catalyst carrier is subjected to saturated impregnation treatment with the obtained active impregnation solution, and the active component thereof is loaded onto the carrier, and then aged at room temperature for 24 hours, dried in an oven at 100 ° C for 14 hours, calcined at 500 ° C for 8 hours, and then cooled to Catalyst A was obtained at room temperature.
  • the mass percentage composition of each component in the catalyst A is: modified H-ZSM-22 molecular sieve 20.0%, amorphous silicon aluminum 50.0%, alumina binder 15.0%, field nitrile powder 0.8%, nickel oxide 4.2%, oxidation Molybdenum 10.0%.
  • K-ZSM-22 molecular sieve Take 200g of K-ZSM-22 molecular sieve, the molar ratio of SiO 2 /Al 2 O 3 in K-ZSM-22 molecular sieve is 50, according to the weight ratio of K-ZSM-22 molecular sieve to NH 4 NO 3 solution 1:10 Adding 1.0 mol / L NH 4 NO 3 solution for ion exchange, stirring at a water bath temperature of 80 ° C for 4 h, filtering, washing, drying at 120 ° C for 4 h;
  • step 2) repeating the operation of step 1) 3 times, and then baking at 550 ° C for 6 h to obtain H-ZSM-22 molecular sieve;
  • H-ZSM-22 molecular sieve is placed in a high-temperature roasting furnace, water vapor is introduced, hydrothermal treatment temperature is 650 ° C, pressure is 0.1 Mpa, and treated for 3 hours to obtain dealuminized modified H-ZSM-22 molecular sieve;
  • the obtained catalyst carrier is subjected to saturated impregnation treatment with the obtained active impregnation solution, and the active component thereof is loaded onto the carrier, and then aged at room temperature for 18 hours, dried in an oven at 120 ° C for 10 hours, calcined at 550 ° C for 6 hours, and then cooled to Catalyst B was obtained at room temperature.
  • the mass percentage composition of each component in Catalyst B is: modified H-ZSM-22 molecular sieve 50.0%, amorphous silica alumina 20.0%, alumina binder 19.2%, field nitrile powder 0.8%, nickel oxide 5.0%, oxidation Molybdenum 5.0%.
  • K-ZSM-22 molecular sieve Take 200g of K-ZSM-22 molecular sieve, the molar ratio of SiO 2 /Al 2 O 3 in K-ZSM-22 molecular sieve is 60, according to the weight ratio of K-ZSM-22 molecular sieve to NH 4 NO 3 solution 1:10 , adding 2.0 mol / L NH 4 NO 3 solution for ion exchange, stirring at a temperature of 90 ° C for 3 h, filtering, washing, drying at 120 ° C for 4 h;
  • step 2) repeating the operation of step 1) 3 times, and then baking at 550 ° C for 6 h to obtain H-ZSM-22 molecular sieve;
  • H-ZSM-22 molecular sieve is placed in a high-temperature roasting furnace, water vapor is introduced, the hydrothermal treatment temperature is 800 ° C, the pressure is 0.5 Mpa, and the treatment is carried out for 2 h to obtain a dealuminated modified H-ZSM-22 molecular sieve;
  • the obtained catalyst carrier is subjected to saturated impregnation treatment with the obtained active impregnation solution, and the active component thereof is loaded onto the carrier, and then aged at room temperature for 12 hours, dried in an oven at 110 ° C for 12 hours, calcined at 600 ° C for 4 hours, and then cooled to Catalyst C was obtained at room temperature.
  • the mass percentage composition of each component in the catalyst C is: modified H-ZSM-22 molecular sieve 60.0%, amorphous silicon aluminum 20.0%, alumina binder 9.2%, field nitrile powder 0.8%, nickel oxide 5.0%, oxidation Molybdenum 5.0%.
  • K-ZSM-22 molecular sieve Take 200g of K-ZSM-22 molecular sieve, the molar ratio of SiO 2 /Al 2 O 3 in K-ZSM-22 molecular sieve is 80, according to the weight ratio of K-ZSM-22 molecular sieve to NH 4 NO 3 solution 1:10 , adding 1.0mol / L NH 4 NO 3 solution for ion exchange, stirring at a water bath temperature of 80 ° C for 4 h, filtering, washing, drying at 120 ° C for 4 h;
  • step 2) repeating the operation of step 1) 3 times, and then baking at 550 ° C for 6 h to obtain H-ZSM-22 molecular sieve;
  • H-ZSM-22 molecular sieve is placed in a high-temperature roasting furnace, water vapor is introduced, hydrothermal treatment temperature is 650 ° C, pressure is 0.1 Mpa, and treated for 3 hours to obtain dealuminized modified H-ZSM-22 molecular sieve;
  • the obtained catalyst carrier is subjected to saturated impregnation treatment with the obtained active impregnation solution, the active component thereof is loaded onto the carrier, and then aged at room temperature for 24 hours, dried in an oven at 110 ° C for 12 hours, calcined at 600 ° C for 4 hours, and then cooled to Catalyst D was obtained at room temperature.
  • the mass percentage composition of each component in the catalyst D is: modified H-ZSM-22 molecular sieve 35.0%, amorphous silicon aluminum 30.0%, alumina binder 20%, field nitrile powder 0.8%, nickel oxide 2.0%, oxidation Molybdenum 12.2%.
  • K-ZSM-22 molecular sieve Take 200g K-ZSM-22 molecular sieve, the molar ratio of SiO 2 /Al 2 O 3 in K-ZSM-22 molecular sieve is 90, according to the weight ratio of K-ZSM-22 molecular sieve to NH 4 NO 3 solution 1:10 , adding 1.0mol / L NH 4 NO 3 solution for ion exchange, stirring at a water bath temperature of 80 ° C for 4 h, filtering, washing, drying at 120 ° C for 4 h;
  • step 2) repeating the operation of step 1) 3 times, and then baking at 550 ° C for 6 h to obtain H-ZSM-22 molecular sieve;
  • H-ZSM-22 molecular sieve is placed in a high-temperature roasting furnace, water vapor is introduced, hydrothermal treatment temperature is 650 ° C, pressure is 0.1 Mpa, and treated for 3 hours to obtain dealuminized modified H-ZSM-22 molecular sieve;
  • the obtained catalyst carrier is subjected to saturated impregnation treatment with the obtained active impregnation solution, the active component thereof is loaded onto the carrier, and then aged at room temperature for 12 hours, dried in an oven at 100 ° C for 14 hours, calcined at 500 ° C for 8 hours, and then cooled to Catalyst E was obtained at room temperature.
  • the mass percentage composition of each component in the catalyst E is: modified H-ZSM-22 molecular sieve 20.0%, amorphous silicon aluminum 40.0%, alumina binder 24.2%, field nitrile powder 0.8%, nickel oxide 5.0%, oxidation Molybdenum 10.0%.
  • K-ZSM-22 molecular sieve Take 200g K-ZSM-22 molecular sieve, the molar ratio of SiO 2 /Al 2 O 3 in K-ZSM-22 molecular sieve is 100, according to the weight ratio of K-ZSM-22 molecular sieve to NH 4 NO 3 solution 1:10 , adding 2.0 mol / L NH 4 NO 3 solution for ion exchange, stirring at a temperature of 90 ° C for 3 h, filtering, washing, drying at 120 ° C for 4 h;
  • step 2) repeating the operation of step 1) 3 times, and then baking at 550 ° C for 6 h to obtain H-ZSM-22 molecular sieve;
  • H-ZSM-22 molecular sieve is placed in a high-temperature roasting furnace, water vapor is introduced, the hydrothermal treatment temperature is 800 ° C, the pressure is 0.5 Mpa, and the treatment is carried out for 2 h to obtain a dealuminated modified H-ZSM-22 molecular sieve;
  • the obtained catalyst carrier is subjected to saturated impregnation treatment with the obtained active impregnation solution, the active component thereof is loaded onto the carrier, and then aged at room temperature for 20 hours, dried in an oven at 120 ° C for 10 hours, calcined at 550 ° C for 6 hours, and then cooled to Catalyst F was obtained at room temperature.
  • the mass percentage composition of each component in the catalyst F is: modified H-ZSM-22 molecular sieve 20.0%, amorphous silicon aluminum 40.0%, alumina binder 19.2%, field nitrile powder 0.8%, nickel oxide 5.0%, oxidation Molybdenum 15.0%.
  • K-ZSM-22 molecular sieve Take 200g K-ZSM-22 molecular sieve, the molar ratio of SiO 2 /Al 2 O 3 in K-ZSM-22 molecular sieve is 30, according to the weight ratio of K-ZSM-22 molecular sieve to NH 4 NO 3 solution 1:10 , adding 2.0 mol / L NH 4 NO 3 solution for ion exchange, stirring at a temperature of 90 ° C for 3 h, filtering, washing, drying at 120 ° C for 4 h;
  • step 2) repeating the operation of step 1) 3 times, and then baking at 550 ° C for 6 h to obtain H-ZSM-22 molecular sieve;
  • H-ZSM-22 molecular sieve is placed in a high-temperature roasting furnace, water vapor is introduced, the hydrothermal treatment temperature is 800 ° C, the pressure is 0.5 Mpa, and the treatment is carried out for 2 h to obtain a dealuminated modified H-ZSM-22 molecular sieve;
  • the obtained catalyst carrier is subjected to saturated impregnation treatment with the obtained active impregnation solution, and the active component thereof is loaded onto the carrier, and then aged at room temperature for 24 hours, dried in an oven at 100 ° C for 14 hours, calcined at 500 ° C for 8 hours, and then cooled to Catalyst G was obtained at room temperature.
  • the mass percentage composition of each component in the catalyst G is: modified H-ZSM-22 molecular sieve 40.0%, amorphous silicon aluminum 33.0%, alumina binder 15%, field nitrile powder 0.8%, nickel oxide 1.2%, oxidation Molybdenum 10.0%.
  • K-ZSM-22 molecular sieve Take 200g K-ZSM-22 molecular sieve, the molar ratio of SiO 2 /Al 2 O 3 in K-ZSM-22 molecular sieve is 30, according to the weight ratio of K-ZSM-22 molecular sieve to NH 4 NO 3 solution 1:10 , adding 1.5mol / L NH 4 NO 3 solution for ion exchange, stirring at a water bath temperature of 100 ° C for 2 h, filtering, washing, drying at 120 ° C for 4 h;
  • step 2) repeating the operation of step 1) 3 times, and then baking at 550 ° C for 6 h to obtain H-ZSM-22 molecular sieve;
  • H-ZSM-22 molecular sieve is placed in a high-temperature roasting furnace, water vapor is introduced, hydrothermal treatment temperature is 500 ° C, pressure is 0.2 Mpa, and treated for 4 hours to obtain dealuminized modified H-ZSM-22 molecular sieve;
  • the obtained catalyst carrier is subjected to saturated impregnation treatment with the obtained active impregnation solution, the active component thereof is loaded onto the carrier, and then aged at room temperature for 12 hours, dried in an oven at 120 ° C for 10 hours, calcined at 600 ° C for 4 hours, and then cooled to Catalyst H was obtained at room temperature.
  • the mass percentage composition of each component in the catalyst H is: modified H-ZSM-22 molecular sieve 55.0%, amorphous silicon aluminum 20.0%, alumina binder 8.2%, field nitrile powder 0.8%, nickel oxide 1.0%, oxidation Molybdenum 15.0%.

Abstract

本发明公开了一种适于生物质费托合成油生产航空煤油的催化剂及其制备方法。该催化剂中各组份的重量百分比为:无定形硅铝20~50%,氧化铝粘结剂5~20%,水热改性ZSM-22分子筛20~60%,氧化镍0.5~5%,氧化钼5~15%。其制备方法是先将K-ZSM-22分子筛进行NH4 +交换处理得到H-ZSM-22分子筛,然后水热处理得到改性H-ZSM-22分子筛,再与无定形硅铝混匀后,加入氧化铝粘结剂、田腈粉后,混捏、碾压成团,挤条成型,然后经干燥、焙烧,最后负载活性金属Ni和Mo。本发明所得到的催化剂具有高活性、高选择性,增加了长链烷烃的异构化程度,降低了航空煤油馏分的冰点,提高了航空煤油的收率。

Description

适于生物质费托合成油生产航空煤油的催化剂及其制备方法 技术领域
本发明涉及生产航空煤油的加氢异构化催化剂,具体地指一种适于生物质费托合成油生产航空煤油的催化剂及其制备方法。
背景技术
近年来,我国原油净进口量持续快速增长,石油的消耗量也在不断增加,导致能源短缺日益严重。随着航空业的发展,对航空煤油的需求不断增加,有数据表明我国航空煤油的消费以每年13%左右的速率增长。目前,以煤、天然气和生物质为原料,经过费托合成反应及深加工得到高品质、超清洁的汽油、柴油和航空煤油等液态燃料以及其它高附加值的化学品引起了人们的极大兴趣。尤其是生物质原料,具有资源丰富、来源广泛、绿色可再生等特点,其转化为液体燃料可减少有害物质和温室气体排放,提高碳资源利用效率,且所得到的液体燃料无硫、无氮、无芳烃,可满足清洁燃料和日益严格的环境法规要求,符合清洁燃料的低碳政策,因而受到人们的高度重视。
费托合成油中具有高含量的正构烷烃,达90%以上,致使其冰点较高,低温流动性能较差,不能直接作为航空煤油使用。因此,生物质费托合成油生产航空煤油的关键是正构烷烃通过加氢异构转化为异构烷烃,而解决该问题的核心则是高活性、高选择性的长链烷烃加氢异构化催化剂的研发。
加氢异构化催化剂是一种将具有加氢-脱氢活性的金属载于酸性载体上所组成的双功能催化剂。活性组分为贵金属(Pt、Pd等)和非贵金属(Ni、Co、Mo、W等)两类,酸性载体则通常选用USY、MOR、SAPO系列及β分子筛。由于分子筛载体的酸性较强,会造成裂化反应加剧,从而导致异构化选择性较低,因此寻求具有弱酸性及适中孔道结构的载体成为制备加氢异构化催化剂的关键。
公开号为CN101722031A的中国发明专利申请介绍了一种长链正构烷烃择形异构化催化剂及其制备方法和应用,该催化剂使用EUO型分子筛,同时混合 无机耐熔氧化物作为载体,采用浸渍的方法负载贵金属Pt、Pd,其特点在于采用稀土元素镧、铈等对EUO型分子筛进行改性,从而产生了更多的弱酸性中心。该催化剂用于润滑油馏分的加氢处理过程,目的产品收率高、倾点低、粘度指数好,但是该催化剂仅适于润滑油馏分、白油、石蜡等的加氢处理过程。
公开号为CN103059901A的中国发明专利申请提出了一种动植物油脂制备柴油组分或喷气燃料的方法,该方法采用两段反应器,第一段反应器得到C8~C24的正构烷烃,第二段反应器加氢异构化反应来生产喷气燃料,该催化剂为双功能催化剂,选用分子筛作为载体,如SAPO-11、SAPO-31、SAPO-41、ZSM-22、ZSM-23、ZSM-48等,选用的金属组分为Pt、Pd、Rh、Ru、Ag等贵金属。该催化剂虽然具有较高的异构化选择性,一般在80%左右,但是喷气燃料的收率较低,在45%左右。
公开号为CN103013589A的中国发明专利申请公布了一种含生物质燃料的混合喷气燃料及其制备方法,以蒎烯为原料,以Ni/SiO2、Pd/Al2O3或Pd/C为催化剂来合成生物质燃料,该过程转化率很高,得到的生物质燃料冰点很低,但是其密度偏高,不能单独用作喷气燃料使用,需与现有的喷气燃料混合,才能符合国家喷气燃料的标准。
为了解决上述问题,已有科研人员将Pt/ZSM-22、Pt/SAPO-11催化剂用于航空煤油生产过程的报导,但由于载体的酸性依然较强且孔道较小,导致航空煤油的选择性较低。而费托合成油品中长链正构烷烃含量远高于传统石化油品,其正构烷烃达到90%以上,如果催化剂酸性过高,将会使裂解反应过于强烈,生成更多的小分子,这样降低了航空煤油的选择性,同时产物的异构化程度也较低。
因此,要得到高收率的航空煤油,科研人员亟需寻找一种高活性、高选择性的加氢异构化催化剂,将长链的生物质费托合成油经过加氢异构化处理,提高航空煤油成分的异构化程度,降低成品航空煤油的冰点,使其达到国家航空喷气燃料的标准,从而替代现有的石化航空燃料。
发明内容
本发明的目的就是要克服现有技术所存在的不足,提供一种高活性、高选择 性、高收率的适于生物质费托合成油生产航空煤油的催化剂及其制备方法。
为实现上述目的,本发明所设计适于生物质费托合成油生产航空煤油的催化剂,其中各组份的重量百分比为:无定形硅铝20~50%,氧化铝粘结剂5~20%,水热改性ZSM-22分子筛20~60%,田腈粉0.5~1.0%,氧化镍0.5~5%,氧化钼5~15%。
优选地,该催化剂中各组份的重量百分比为:无定形硅铝30~45%,氧化铝粘结剂8~15%,水热改性ZSM-22分子筛25~50%,田腈粉0.6~0.8%,氧化镍2.5~4.5%,氧化钼8~12%。
上述方案中,所述水热改性ZSM-22分子筛是经高温水蒸汽热处理的脱铝改性ZSM-22分子筛。优选地,所述水热改性ZSM-22分子筛是经高温水蒸汽热处理的脱铝改性H-ZSM-22分子筛。
上述方案中,所述高温水蒸汽热处理的温度为300~900℃,压力为0.1~2.0MPa,处理时间为2~4h。优选地,所述高温水蒸汽热处理的温度为500~800℃,压力为0.1~0.5Mpa,处理时间为2~3.5h。
优选地,所述催化剂的比表面积为200~300m2/g、孔容为0.4~0.8mL/g、4~10nm微孔分布占总孔容的65~85%、NH3-TPD总酸度为0.4~1.0mmol/g。
本发明还提供了一种适于生物质费托合成油生产航空煤油的催化剂的制备方法,该方法包括如下步骤:
1)以K-ZSM-22分子筛为原料,加入到NH4NO3溶液中进行离子交换,然后进行过滤、洗涤和干燥处理;
2)重复步骤1)的操作2~3次,再进行焙烧处理,获得H-ZSM-22分子筛;
3)对所得H-ZSM-22分子筛通入高温水蒸汽进行水热处理,获得脱铝改性H-ZSM-22分子筛;
4)将所得脱铝改性H-ZSM-22分子筛与无定形硅铝混匀,加入氧化铝粘结剂,然后加入稀硝酸溶液调制,再加入助挤剂田腈粉,混捏、碾压成团,挤压成条形物;
5)对所得条形物进行干燥、焙烧处理,获得催化剂载体;
6)将可溶性钼盐和可溶性镍盐混合配制成水溶液,并对其进行超声波分散 处理,获得活性浸渍液;
7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再经过老化、干燥、焙烧,即可获得成品催化剂。
进一步地,所述步骤1)中,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为20~160。优选地,所述步骤1)中,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为30~100。
进一步地,所述步骤1)中,NH4NO3溶液的浓度为1.0~2.0mol/L,K-ZSM-22分子筛在NH4NO3溶液中水浴的温度为60~110℃,水浴时间为1~4h。优选地,所述步骤1)中,NH4NO3溶液的浓度为1.0~1.5mol/L,K-ZSM-22分子筛在NH4NO3溶液中水浴的温度为80~100℃,水浴时间为2~4h。
进一步地,所述步骤3)中,高温水蒸汽对H-ZSM-22分子筛进行水热处理的温度为300~900℃,压力为0.1~2.0MPa,处理时间为2~4h。优选地,所述步骤3)中,高温水蒸汽对H-ZSM-22分子筛进行水热处理的温度为500~800℃,压力为0.1~0.5MPa,处理时间为2~3.5h。
进一步地,所述步骤4)中,无定形硅铝的比表面积为250~400m2/g,其中SiO2含量占无定形硅铝总重量的20~50%。优选地,所述步骤4)中,无定形硅铝的比表面积为250~300m2/g,其中SiO2含量占无定形硅铝总重量的30~50%。
进一步地,所述步骤4)中,稀硝酸溶液的质量百分比浓度为3~8%。
进一步地,所述步骤5)中,对条形物进行干燥的温度80~120℃,干燥时间为6~24h。优选地,所述步骤5)中,对条形物进行干燥的温度100~120℃,干燥时间为6~12h。
进一步地,所述步骤5)中,对干燥后的条形物进行焙烧的温度为500~600℃,焙烧时间为4~8h。
进一步地,所述步骤5)中,所得催化剂载体的形状为圆柱形、三叶草形或四叶草形。优选为三叶草形或四叶草形,可以在反应液中扩散较快。
进一步地,所述步骤6)中,可溶性钼盐为钼酸铵或钼酸钠,可溶性镍盐为硝酸镍。
进一步地,所述步骤6)中,进行超声波分散处理的时间为0.5~1.5h。
进一步地,所述步骤7)中,老化处理在室温下进行,老化时间为12~24h;干燥处理的温度为100~120℃,干燥时间为10~14h;焙烧处理的温度为500~600℃,焙烧时间为4~8h。优选地,所述步骤7)中,老化处理在室温下进行,老化时间为16~20h;干燥处理的温度为110~120℃,干燥时间为10~12h;焙烧处理的温度为550~600℃,焙烧时间为4~6h。
由于ZSM-22分子筛具有十元环开口的椭圆形一维孔道,孔口大小0.45nm×0.55nm,没有交叉孔道,仅适宜于小分子烷烃异构化反应的进行,将其用于长链烷烃的异构化过程中,则需要对ZSM-22分子筛进行改性处理,进一步扩大ZSM-22分子筛的孔道尺寸。
本发明针对费托合成油长链正构烷烃多的特点,以K-ZSM-22分子筛为原料,通过离子交换获得H-ZSM-22分子筛,再通过水热处理脱铝,降低其酸性,同时利用无定形硅铝具有的弱酸性,将无定形硅铝与脱铝改性H-ZSM-22分子筛按比例混合作为载体,使其具备适中的弱酸性和孔道尺寸结构,然后负载活性成分Ni和Mo,制备得到孔径分布集中在4~10nm的催化剂,有利于长链烷烃异构化反应的进行。
本发明的有益效果在于:所制备的催化剂具有高活性、高选择性,可将长链的生物质费托合成油经过加氢异构化处理,高选择性的得到航空煤油,增加了长链烷烃的异构化程度,降低了航空煤油馏分的冰点,提高了航空煤油组分的选择性,同时具有很高的催化活性,提高了航空煤油的收率。通过本发明所得到的催化剂生产出来的航空煤油,可达到国家喷气燃料的标准,从而替代现有的石化航空燃料。
具体实施方式
为了更好地解释本发明,以下结合具体实施例对本发明作进一步的详细说明,但它们不对本发明构成限定。
以下实施例中,所述原料生物质费托合成油的性质,如表1所示。
表1 原料油的性质
馏程(℃) 密度(20℃,kg/m3) 冰点(℃) 粘度(-20℃,mm2/s)
100~350 820 -20 6.82
实施例1
1)取200g K-ZSM-22分子筛,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为40,按K-ZSM-22分子筛与NH4NO3溶液的重量比1∶10,加入1.5mol/L的NH4NO3溶液中进行离子交换,在水浴温度100℃条件下恒温搅拌2h,过滤、洗涤、120℃干燥4h;
2)重复步骤1)的操作3次后,再于550℃焙烧6h,获得H-ZSM-22分子筛;
3)将所得H-ZSM-22分子筛置于高温焙烧炉中,通入水蒸气,水热处理温度500℃,压力0.2Mpa,处理4h,获得脱铝改性H-ZSM-22分子筛;
4)称取50.0g所得脱铝改性H-ZSM-22分子筛、125.0g无定形硅铝、37.5g氧化铝粘结剂,加入质量百分比浓度5.0%的稀硝酸溶液调制,并加入2.0g助挤剂田腈粉后混合均匀,混捏、碾压成团,放入挤条机中挤出三叶草形条形物;
5)将所得条形物放入烘箱中于120℃干燥6h,500℃焙烧8h后冷却至室温,获得催化剂载体;
6)将42.0g钼酸钠和40.8g硝酸镍混合配制成水溶液,并对其超声波分散1h,获得活性浸渍液;
7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再于室温下老化24h,置于100℃烘箱中干燥14h,500℃焙烧8h后冷却至室温,得到催化剂A。
催化剂A中各组分的质量百分比组成为:改性H-ZSM-22分子筛20.0%,无定形硅铝50.0%,氧化铝粘结剂15.0%,田腈粉0.8%,氧化镍4.2%,氧化钼10.0%。
催化剂A的物化性质如表2所示。催化剂A的评价结果及产品性质如表3所示。
实施例2
1)取200g K-ZSM-22分子筛,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为50,按K-ZSM-22分子筛与NH4NO3溶液的重量比1∶10,加入1.0mo1/L的NH4NO3溶液中进行离子交换,在水浴温度80℃条件下恒温搅拌4h,过滤、洗涤、120℃干燥4h;
2)重复步骤1)的操作3次后,再于550℃焙烧6h,获得H-ZSM-22分子筛;
3)将所得H-ZSM-22分子筛置于高温焙烧炉中,通入水蒸气,水热处理温度650℃,压力0.1Mpa,处理3h,获得脱铝改性H-ZSM-22分子筛;
4)称取50.0g所得脱铝改性H-ZSM-22分子筛、20.0g无定形硅铝、19.2g氧化铝粘结剂,加入质量百分比浓度5.0%的稀硝酸溶液调制,并加入0.8g助挤剂田腈粉混合均匀,混捏、碾压成团,放入挤条机中挤出三叶草形条形物;
5)将所得条形物放入烘箱中于100℃干燥12h,550℃焙烧6h后冷却至室温,获得催化剂载体;
6)将6.8g钼酸铵和19.5g硝酸镍混合配制成水溶液,并对其超声波分散1h,获得活性浸渍液;
7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再于室温下老化18h,置于120℃烘箱中干燥10h,550℃焙烧6h后冷却至室温,得到催化剂B。
催化剂B中各组分的质量百分比组成为:改性H-ZSM-22分子筛50.0%,无定形硅铝20.0%,氧化铝粘结剂19.2%,田腈粉0.8%,氧化镍5.0%,氧化钼5.0%。
催化剂B的物化性质如表2所示。催化剂B的评价结果及产品性质如表3所示。
实施例3
1)取200g K-ZSM-22分子筛,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为60,按K-ZSM-22分子筛与NH4NO3溶液的重量比1∶10,加入2.0mol/L的NH4NO3溶液中进行离子交换,在水浴温度90℃条件下恒温搅拌3h,过滤、洗涤、120℃干燥4h;
2)重复步骤1)的操作3次后,再于550℃焙烧6h,获得H-ZSM-22分子筛;
3)将所得H-ZSM-22分子筛置于高温焙烧炉中,通入水蒸气,水热处理温度800℃,压力0.5Mpa,处理2h,获得脱铝改性H-ZSM-22分子筛;
4)称取50.0g所得脱铝改性H-ZSM-22分子筛、16.7g无定形硅铝、7.7g氧化铝粘结剂,加入质量百分比浓度5.0%的稀硝酸溶液调制,并加入0.7g助挤剂田腈粉混合均匀,混捏、碾压成团,放入挤条机中挤出三叶草形条形物;
5)将所得条形物放入烘箱中于110℃干燥10h,600℃焙烧4h后冷却至室温,获得催化剂载体;
6)将5.7g钼酸铵和16.2g硝酸镍混合配制成水溶液,并对其超声波分散1h,获得活性浸渍液;
7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再于室温下老化12h,置于110℃烘箱中干燥12h,600℃焙烧4h后冷却至室温,得到催化剂C。
催化剂C中各组分的质量百分比组成为:改性H-ZSM-22分子筛60.0%,无定形硅铝20.0%,氧化铝粘结剂9.2%,田腈粉0.8%,氧化镍5.0%,氧化钼5.0%。
催化剂C的物化性质如表2所示。催化剂C的评价结果及产品性质如表3所示。
实施例4
1)取200g K-ZSM-22分子筛,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为80,按K-ZSM-22分子筛与NH4NO3溶液的重量比1∶10,加入1.0mol/L的NH4NO3溶液中进行离子交换,在水浴温度80℃条件下恒温搅拌4h,过滤、洗涤、120℃干燥4h;
2)重复步骤1)的操作3次后,再于550℃焙烧6h,获得H-ZSM-22分子筛;
3)将所得H-ZSM-22分子筛置于高温焙烧炉中,通入水蒸气,水热处理温度650℃,压力0.1Mpa,处理3h,获得脱铝改性H-ZSM-22分子筛;
4)称取50.0g步骤2)得到的脱铝改性H-ZSM-22分子筛、42.8g无定形硅铝、28.6g氧化铝粘结剂,加入质量百分比浓度5.0%的稀硝酸溶液调制,并加入1.2g助挤剂田腈粉后混合均匀,混捏、碾压成团,放入挤条机中挤出三叶草形条形物;
5)将所得条形物放入烘箱中于120℃干燥6h,600℃焙烧4h后冷却至室温,获得催化剂载体;
6)将23.7g钼酸铵和11.1g硝酸镍混合配制成水溶液,并对其超声波分散1h,,获得活性浸渍液;
7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再于室温下老化24h,置于110℃烘箱中干燥12h,600℃焙烧4h后冷却至室温,得到催化剂D。
催化剂D中各组分的质量百分比组成为:改性H-ZSM-22分子筛35.0%,无定形硅铝30.0%,氧化铝粘结剂20%,田腈粉0.8%,氧化镍2.0%,氧化钼12.2%。
催化剂D的物化性质如表2所示。催化剂D的评价结果及产品性质如表3所示。
实施例5
1)取200g K-ZSM-22分子筛,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为90,按K-ZSM-22分子筛与NH4NO3溶液的重量比1∶10,加入1.0mol/L的NH4NO3溶液中进行离子交换,在水浴温度80℃条件下恒温搅拌4h,过滤、洗涤、120℃干燥4h;
2)重复步骤1)的操作3次后,再于550℃焙烧6h,获得H-ZSM-22分子筛;
3)将所得H-ZSM-22分子筛置于高温焙烧炉中,通入水蒸气,水热处理温度650℃,压力0.1Mpa,处理3h,获得脱铝改性H-ZSM-22分子筛;
4)称取50.0g步骤2)得到的脱铝改性H-ZSM-22分子筛、100g无定形硅铝、60.5g氧化铝粘结剂,加入质量百分比浓度5.0%的稀硝酸溶液调制,并加入2.0g助挤剂田腈粉后混合均匀,混捏、碾压成团,放入挤条机中挤出圆柱形条形物;
5)将所得条形物放入烘箱中于110℃干燥10h,500℃焙烧8h后冷却至室温,获得催化剂载体;
6)将34.0g钼酸铵和7.8g硝酸镍混合配制成水溶液,并对其超声波分散1h,获得活性浸渍液;
7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再于室温下老化12h,置于100℃烘箱中干燥14h,500℃焙烧8h后冷却至室温,得到催化剂E。
催化剂E中各组分的质量百分比组成为:改性H-ZSM-22分子筛20.0%,无定形硅铝40.0%,氧化铝粘结剂24.2%,田腈粉0.8%,氧化镍5.0%,氧化钼10.0%。
催化剂E的物化性质如表2所示。催化剂E的评价结果及产品性质如表3所示。
实施例6
1)取200g K-ZSM-22分子筛,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为100,按K-ZSM-22分子筛与NH4NO3溶液的重量比1∶10,加入2.0mol/L的NH4NO3溶液中进行离子交换,在水浴温度90℃条件下恒温搅拌3h,过滤、洗涤、120℃干燥4h;
2)重复步骤1)的操作3次后,再于550℃焙烧6h,获得H-ZSM-22分子筛;
3)将所得H-ZSM-22分子筛置于高温焙烧炉中,通入水蒸气,水热处理温度800℃,压力0.5Mpa,处理2h,获得脱铝改性H-ZSM-22分子筛;
4)称取50.0g所得脱铝改性H-ZSM-22分子筛、100.0g无定形硅铝、48.0g氧化铝粘结剂,加入质量百分比浓度5.0%的稀硝酸溶液调制,并加入2.0g助挤剂田腈粉后混合均匀,混捏、碾压成团,放入挤条机中挤出四叶草形条形物;
5)将所得条形物放入烘箱中于120℃干燥6h,550℃焙烧6h后冷却至室温,获得催化剂载体;
6)将51.1g钼酸铵和7.8g硝酸镍混合配制成水溶液,并对其超声波分散1h,获得活性浸渍液;
7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再于室温下老化20h,置于120℃烘箱中干燥10h,550℃焙烧6h后冷却至室温,得到催化剂F。
催化剂F中各组分的质量百分比组成为:改性H-ZSM-22分子筛20.0%,无定形硅铝40.0%,氧化铝粘结剂19.2%,田腈粉0.8%,氧化镍5.0%,氧化钼15.0%。
催化剂F的物化性质如表2所示。催化剂F的评价结果及产品性质如表3所示。
实施例7
1)取200g K-ZSM-22分子筛,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为30,按K-ZSM-22分子筛与NH4NO3溶液的重量比1∶10,加入2.0mol/L的NH4NO3溶液中进行离子交换,在水浴温度90℃条件下恒温搅拌3h,过滤、洗涤、120℃干燥4h;
2)重复步骤1)的操作3次后,再于550℃焙烧6h,获得H-ZSM-22分子筛;
3)将所得H-ZSM-22分子筛置于高温焙烧炉中,通入水蒸气,水热处理温度800℃,压力0.5Mpa,处理2h,获得脱铝改性H-ZSM-22分子筛;
4)称取50.0g所得脱铝改性H-ZSM-22分子筛、41.3g无定形硅铝、18.8g氧化铝粘结剂,加入质量百分比浓度5.0%的稀硝酸溶液调制,并加入1.0g助挤剂田腈粉后混合均匀,混捏、碾压成团,放入挤条机中挤出四叶草形条形物,
5)将所得条形物放入烘箱中于100℃干燥10h,500℃焙烧8h后冷却至室温,获得催化剂载体;
6)将17.0g钼酸铵和5.8g硝酸镍混合配制成水溶液,并对其超声波分散1h,获得活性浸渍液;
7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再于室温下老化24h,置于100℃烘箱中干燥14h,500℃焙烧8h后冷却至室温,得到催化剂G。
催化剂G中各组分的质量百分比组成为:改性H-ZSM-22分子筛40.0%,无定形硅铝33.0%,氧化铝粘结剂15%,田腈粉0.8%,氧化镍1.2%,氧化钼10.0%。
催化剂G的物化性质如表2所示。催化剂G的评价结果及产品性质如表3所示。
实施例8
1)取200g K-ZSM-22分子筛,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为30,按K-ZSM-22分子筛与NH4NO3溶液的重量比1∶10,加入1.5mol/L的NH4NO3溶液中进行离子交换,在水浴温度100℃条件下恒温搅拌2h,过滤、洗涤、120℃干燥4h;
2)重复步骤1)的操作3次后,再于550℃焙烧6h,获得H-ZSM-22分子筛;
3)将所得H-ZSM-22分子筛置于高温焙烧炉中,通入水蒸气,水热处理温度500℃,压力0.2Mpa,处理4h,获得脱铝改性H-ZSM-22分子筛;
4)称取50.0g所得脱铝改性H-ZSM-22分子筛、18.2g无定形硅铝、7.5g氧化铝粘结剂,加入质量百分比浓度5.0%的稀硝酸溶液调制,并加入0.7g助挤剂田腈粉后混合均匀,混捏、碾压成团,放入挤条机中挤出三叶草形成条形物;
5)将所得条形物放入烘箱中于100℃干燥12h,600℃焙烧4h后冷却至室温,获得催化剂载体;
6)将18.6g钼酸铵和4.3g硝酸镍混合配制成水溶液,并对其超声波分散1h,获得活性浸渍液;
7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再于室温下老化12h,置于120℃烘箱中干燥10h,600℃焙烧4h后冷却至室温,得到催化剂H。
催化剂H中各组分的质量百分比组成为:改性H-ZSM-22分子筛55.0%,无定形硅铝20.0%,氧化铝粘结剂8.2%,田腈粉0.8%,氧化镍1.0%,氧化钼15.0%。
催化剂H的物化性质如表2所示。催化剂H的评价结果及产品性质如表3所示。
表2 催化剂的物化性质
Figure PCTCN2015072403-appb-000001
表3 催化剂的评价结果及产品的性质
Figure PCTCN2015072403-appb-000002
由表3中可以看出,采用本发明的催化剂时,航空煤油的选择性和转化率更高,而且冰点很低,符合3号喷气燃料(GB 6537-2006)的要求。

Claims (25)

  1. 一种适于生物质费托合成油生产航空煤油的催化剂,其特征在于:该催化剂中各组份的重量百分比为:无定形硅铝20~50%,氧化铝粘结剂5~20%,水热改性ZSM-22分子筛20~60%,田腈粉0.5~1.0%,氧化镍0.5~5%,氧化钼5~15%。
  2. 根据权利要求1所述适于生物质费托合成油生产航空煤油的催化剂,其特征在于:该催化剂中各组份的重量百分比为:无定形硅铝30~45%,氧化铝粘结剂8~15%,水热改性ZSM-22分子筛25~50%,田腈粉0.6~0.8%,氧化镍2.5~4.5%,氧化钼8~12%。
  3. 根据权利要求1所述适于生物质费托合成油生产航空煤油的催化剂,其特征在于:所述水热改性ZSM-22分子筛是经高温水蒸汽热处理的脱铝改性ZSM-22分子筛。
  4. 根据权利要求1所述适于生物质费托合成油生产航空煤油的催化剂,其特征在于:所述水热改性ZSM-22分子筛是经高温水蒸汽热处理的脱铝改性H-ZSM-22分子筛。
  5. 根据权利要求4所述适于生物质费托合成油生产航空煤油的催化剂,其特征在于:所述高温水蒸汽热处理的温度为300~900℃,压力为0.1~2.0MPa,处理时间为2~4h。
  6. 根据权利要求4所述适于生物质费托合成油生产航空煤油的催化剂,其特征在于:所述高温水蒸汽热处理的温度为500~800℃,压力为0.1~0.5Mpa,处理时间为2~3.5h。
  7. 根据权利要求1~6中任一项所述适于生物质费托合成油生产航空煤油的催化剂,其特征在于:所述催化剂的比表面积为200~300m2/g、孔容为0.4~0.8mL/g、4~10nm微孔分布占总孔容的65~85%、NH3-TPD总酸度为0.4~1.0mmol/g。
  8. 一种权利要求4所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:该方法包括如下步骤:
    1)以K-ZSM-22分子筛为原料,加入到NH4NO3溶液中进行离子交换,然后进行过滤、洗涤和干燥处理;
    2)重复步骤1)的操作2~3次,再进行焙烧处理,获得H-ZSM-22分子筛;
    3)对所得H-ZSM-22分子筛通入高温水蒸汽进行水热处理,获得脱铝改性H-ZSM-22分子筛;
    4)将所得脱铝改性H-ZSM-22分子筛与无定形硅铝混匀,加入氧化铝粘结剂,然后加入稀硝酸溶液调制,再加入助挤剂田腈粉,混捏、碾压成团,挤压成条形物;
    5)对所得条形物进行干燥、焙烧处理,获得催化剂载体;
    6)将可溶性钼盐和可溶性镍盐混合配制成水溶液,并对其进行超产波分散处理,获得活性浸渍液;
    7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再经过老化、干燥、焙烧,即可获得成品催化剂。
  9. 根据权利要求8所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤1)中,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为20~160。
  10. 根据权利要求8所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤1)中,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为30~100。
  11. 根据权利要求8所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤1)中,NH4NO3溶液的浓度为1.0~2.0mol/L,K-ZSM-22分子筛在NH4NO3溶液中水浴的温度为60~110℃,水浴时间为1~4h。
  12. 根据权利要求8所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤1)中,NH4NO3溶液的浓度为1.0~1.5mol/L,K-ZSM-22分子筛在NH4NO3溶液中水浴的温度为80~100℃,水浴时间为2~4h。
  13. 根据权利要求8所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤3)中,高温水蒸汽对H-ZSM-22分子筛进行水热处理的温度为300~900℃,压力为0.1~2.0MPa,处理时间为2~4h。
  14. 根据权利要求8所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤3)中,高温水蒸汽对H-ZSM-22分子筛进行水热处理的温度为500~800℃,压力为0.1~0.5MPa,处理时间为2~3.5h。
  15. 根据权利要求8所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤4)中,无定形硅铝的比表面积为250~400m2/g,其中SiO2含量占无定形硅铝总重量的20~50%。
  16. 根据权利要求8所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤4)中,无定形硅铝的比表面积为250~300m2/g,其中SiO2含量占无定形硅铝总重量的30~50%。
  17. 根据权利要求8所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤4)中,稀硝酸溶液的质量百分比浓度为3~8%。
  18. 根据权利要求8所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤5)中,对条形物进行干燥的温度80~120℃,干燥时间为6~24h。
  19. 根据权利要求8所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤5)中,对条形物进行干燥的温度100~120℃,干燥时间为6~12h。
  20. 根据权利要求8所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤5)中,对干燥后的条形物进行焙烧的温度为500~600℃,焙烧时间为4~8h。
  21. 根据权利要求8所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤5)中,所得催化剂载体的形状为圆柱形、三叶草形或四叶草形。
  22. 根据权利要求8所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤6)中,可溶性钼盐为钼酸铵或钼酸钠,可溶性镍盐为硝酸镍。
  23. 根据权利要求8所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤6)中,进行超产波分散处理的时间为0.5~1.5h。
  24. 根据权利要求8所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤7)中,老化处理在室温下进行,老化时间为12~24h;干燥处理的温度为100~120℃,干燥时间为10~14h;焙烧处理的温度为500~600℃,焙烧时间为4~8h。
  25. 根据权利要求8所述适于生物质费托合成油生产航空煤油的催化剂的 制备方法,其特征在于:所述步骤7)中,老化处理在室温下进行,老化时间为16~20h;干燥处理的温度为110~120℃,干燥时间为10~12h;焙烧处理的温度为550~600℃,焙烧时间为4~6h。
PCT/CN2015/072403 2014-05-14 2015-02-06 适于生物质费托合成油生产航空煤油的催化剂及其制备方法 WO2015172592A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP15792560.3A EP3144063A4 (en) 2014-05-14 2015-02-06 Catalyst suitable for production of aviation kerosene from biomass fischer-tropsch synthesis oil and preparation method therefor
CA2948943A CA2948943A1 (en) 2014-05-14 2015-02-06 Catalyst suitable for production of aviation kerosene from biomass fischer-tropsch synthesis oil and preparation method therefor
KR1020167034812A KR101828965B1 (ko) 2014-05-14 2015-02-06 바이오매스 피셔-트롭시 합성유로부터 항공 등유의 생산에 적합한 촉매제 및 그 제조 방법
AU2015258645A AU2015258645B2 (en) 2014-05-14 2015-02-06 Catalyst suitable for production of aviation kerosene from biomass Fischer-Tropsch synthesis oil and preparation method therefor
JP2016567239A JP6337152B2 (ja) 2014-05-14 2015-02-06 バイオマスフィッシャートロプシュ法により得られた合成油からの航空機用ケロシン製造に適する触媒およびその調製方法
RU2016148862A RU2656598C1 (ru) 2014-05-14 2015-02-06 Катализатор, пригодный для получения авиационного керосина из синтетического нефтепродукта фишера-тропша из биомассы, и способ его приготовления
US15/350,132 US9795950B2 (en) 2014-05-14 2016-11-14 Catalyst for preparing aviation fuel from Fischer-Tropsch products and method for preparing said catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410201892.1 2014-05-14
CN201410201892.1A CN103949280B (zh) 2014-05-14 2014-05-14 适于生物质费托合成油生产航空煤油的催化剂及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/350,132 Continuation-In-Part US9795950B2 (en) 2014-05-14 2016-11-14 Catalyst for preparing aviation fuel from Fischer-Tropsch products and method for preparing said catalyst

Publications (1)

Publication Number Publication Date
WO2015172592A1 true WO2015172592A1 (zh) 2015-11-19

Family

ID=51326706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072403 WO2015172592A1 (zh) 2014-05-14 2015-02-06 适于生物质费托合成油生产航空煤油的催化剂及其制备方法

Country Status (9)

Country Link
US (1) US9795950B2 (zh)
EP (1) EP3144063A4 (zh)
JP (1) JP6337152B2 (zh)
KR (1) KR101828965B1 (zh)
CN (1) CN103949280B (zh)
AU (1) AU2015258645B2 (zh)
CA (1) CA2948943A1 (zh)
RU (1) RU2656598C1 (zh)
WO (1) WO2015172592A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949280B (zh) * 2014-05-14 2016-04-13 武汉凯迪工程技术研究总院有限公司 适于生物质费托合成油生产航空煤油的催化剂及其制备方法
CN105903488A (zh) * 2016-04-27 2016-08-31 武汉凯迪工程技术研究总院有限公司 用于生产生物柴油的选择性加氢催化剂及其制备方法和应用
CN105944752A (zh) * 2016-04-27 2016-09-21 武汉凯迪工程技术研究总院有限公司 用于生产航煤的选择性加氢催化剂及其制备方法和应用
CN110433819A (zh) * 2018-05-04 2019-11-12 国家能源投资集团有限责任公司 费托合成蜡加氢裂化催化剂及其制备方法以及费托合成蜡加氢裂化的方法
CN111229229B (zh) * 2020-01-20 2022-07-05 曲阜师范大学 一种Ni/NiO复合材料及其制备方法与应用
CN115041224B (zh) * 2022-05-20 2023-07-14 大连理工大学 Cu-ZSM-35分子筛的合成和生物油脂一步法制生物航煤催化剂的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696732A (en) * 1984-10-29 1987-09-29 Mobil Oil Corporation Simultaneous hydrotreating and dewaxing of petroleum feedstocks
CN1184843A (zh) * 1996-12-10 1998-06-17 中国石油化工总公司 柴油加氢转化催化剂
CN1884446A (zh) * 2006-05-23 2006-12-27 中国科学院山西煤炭化学研究所 用于费托合成重质蜡的加氢裂解催化剂及其制法和应用
CN102295955A (zh) * 2010-06-25 2011-12-28 中国石油天然气股份有限公司 劣质汽油的加氢改质方法
CN103949280A (zh) * 2014-05-14 2014-07-30 武汉凯迪工程技术研究总院有限公司 适于生物质费托合成油生产航空煤油的催化剂及其制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568655A (en) * 1984-10-29 1986-02-04 Mobil Oil Corporation Catalyst composition comprising Zeolite Beta
CN1054150C (zh) * 1996-09-27 2000-07-05 中国石油化工总公司 一种柴油加氢转化催化剂
BR9915120B1 (pt) * 1998-11-06 2010-12-14 processo para a produÇço de àleos e de destilados mÉdios de alta qualidade a partir de uma carga hidrocarbonada, em que pelo menos 20% de volume ferve acima de 340°c, bem como instalaÇço para a produÇço de àleos de elevada qualidade e eventualmente de destilados mÉdios de elevada qualidade.
US6372949B1 (en) * 1999-10-15 2002-04-16 Mobil Oil Corporation Single stage process for converting oxygenates to gasoline and distillate in the presence of undimensional ten member ring zeolite
US7341657B2 (en) * 2003-12-22 2008-03-11 China Petroleum & Chemical Corporation Process for reducing sulfur and olefin contents in gasoline
CN101144033B (zh) * 2006-09-14 2011-04-20 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备
JP5261801B2 (ja) * 2006-09-20 2013-08-14 中国石油化工股▲分▼有限公司 選択的水素化のためのニッケル触媒
CN101596462B (zh) * 2008-06-03 2012-01-25 中国石油化工股份有限公司 一种加氢异构催化剂及其制备方法
FR2934794B1 (fr) * 2008-08-08 2010-10-22 Inst Francais Du Petrole Procede de production de distillats moyens par hydrocraquage de charges issues du procede fischer-trospch en presence d'un catalyseur comprenant un solide izm-2
AU2009301573B2 (en) * 2008-10-09 2013-09-26 Synfuels China Technology Co., Ltd. Method and equipment for multistage liquefying of carbonaceous solid fuel
CN101722031B (zh) * 2008-10-29 2011-11-30 中国石油化工股份有限公司 长链正构烷烃择形异构化催化剂及其制备方法和应用
JP5312013B2 (ja) * 2008-12-26 2013-10-09 Jx日鉱日石エネルギー株式会社 水素化異性化触媒、その製造方法、炭化水素油の脱蝋方法及び潤滑油基油の製造方法
FR2952380B1 (fr) * 2009-11-10 2012-05-18 Inst Francais Du Petrole Procede de production de distillat moyen a partir de cires fischer tropsch mettant en oeuvre un catalyseur a base de zeolithe modifiee par un traitement basique
CN102380311B (zh) * 2010-09-01 2013-12-25 中国石油化工股份有限公司 汽油吸附脱硫再生烟气处理方法及其尾气加氢催化剂制法
CN101942336A (zh) * 2010-09-07 2011-01-12 中国石油天然气股份有限公司 一种生产低浊点高粘度指数润滑油基础油的方法
CN102794181B (zh) * 2011-05-27 2015-04-22 中科合成油技术有限公司 一种费托合成油品加氢脱氧催化剂、其制备方法和应用
CN102909048B (zh) * 2011-08-01 2015-04-01 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备方法和应用
CN103059901B (zh) * 2011-10-24 2015-11-25 中国石油化工股份有限公司 一种动植物油脂制备柴油组分或喷气燃料组分的方法
CN103316710B (zh) * 2013-07-11 2015-05-13 中科合成油内蒙古有限公司 一种临氢异构化/裂化催化剂及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696732A (en) * 1984-10-29 1987-09-29 Mobil Oil Corporation Simultaneous hydrotreating and dewaxing of petroleum feedstocks
CN1184843A (zh) * 1996-12-10 1998-06-17 中国石油化工总公司 柴油加氢转化催化剂
CN1884446A (zh) * 2006-05-23 2006-12-27 中国科学院山西煤炭化学研究所 用于费托合成重质蜡的加氢裂解催化剂及其制法和应用
CN102295955A (zh) * 2010-06-25 2011-12-28 中国石油天然气股份有限公司 劣质汽油的加氢改质方法
CN103949280A (zh) * 2014-05-14 2014-07-30 武汉凯迪工程技术研究总院有限公司 适于生物质费托合成油生产航空煤油的催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3144063A4 *

Also Published As

Publication number Publication date
US9795950B2 (en) 2017-10-24
RU2656598C1 (ru) 2018-06-06
CN103949280B (zh) 2016-04-13
AU2015258645A1 (en) 2017-01-12
US20170056867A1 (en) 2017-03-02
KR101828965B1 (ko) 2018-02-13
CN103949280A (zh) 2014-07-30
KR20170005475A (ko) 2017-01-13
CA2948943A1 (en) 2015-11-19
EP3144063A1 (en) 2017-03-22
AU2015258645B2 (en) 2017-07-27
JP2017521232A (ja) 2017-08-03
EP3144063A4 (en) 2018-02-07
JP6337152B2 (ja) 2018-06-06

Similar Documents

Publication Publication Date Title
WO2015172592A1 (zh) 适于生物质费托合成油生产航空煤油的催化剂及其制备方法
WO2017185928A1 (zh) 用于生产生物柴油的选择性加氢催化剂及其制备方法和应用
CN101269343B (zh) 一种复合介孔分子筛加氢裂化催化剂的应用
JP6653715B2 (ja) 合成ガスから高品質の灯油留分を選択的に合成するための担体、その触媒、およびその調製方法
CN107500296B (zh) 一种棒状β-Mo2C的可控合成及其在逆水汽变换反应中的应用
RU2626397C1 (ru) Способ гидрокрекинга углеводородного сырья
CN107442166A (zh) 适于生产生物柴油的加氢催化剂及其制备方法和应用
CN110215927A (zh) 一种高分散的负载型磷化镍催化剂的制备方法
CN104711012A (zh) 加氢脱氧催化剂在合成可再生柴油或航空煤油中的应用
CN102872905B (zh) 一种用于费托定向合成汽油的催化剂及其制备方法
CN104549345B (zh) 一种加氢裂化活性支撑剂及其制备方法
CN107224992A (zh) 适于高效生产生物柴油的加氢催化剂及其制备方法和应用
CN112625773B (zh) 一种变压器油基础油的制备方法
CN105126899A (zh) 一种负载于分子筛的劣质重油悬浮床加氢催化剂及其制备和使用方法
WO2021027019A1 (zh) 多孔结构的硅铝磷载体加氢催化剂的制备方法及在制备生物燃料中的应用
CN107362825A (zh) 免焙烧加氢催化剂及其制备方法和应用
CN112337506B (zh) 一种用于费托合成蜡加氢转化的催化剂及其制备方法和应用
CN111097501A (zh) 一种用于劣质柴油加氢处理的体相催化剂及其制备方法
CN106466623B (zh) 一种加氢脱蜡催化剂的制备方法及由该方法制备的催化剂及该催化剂的应用
CN102417824A (zh) 一种烃类燃料的制备方法
CN106466624B (zh) 一种加氢脱蜡催化剂的制备方法及由该方法制备的催化剂及该催化剂的应用
CN106582628B (zh) 选择性开环催化剂及其制备方法
CN115106123B (zh) 一种采用担载Pd的HGaZSM-12沸石基双功能催化剂制取多支链异十六烷的方法
CN115282992B (zh) 一种原位合成多级孔zsm-5分子筛负载的非晶态磷化镍催化剂的制备方法
CN108325517A (zh) 一种用于萘选择性加氢生产四氢萘的催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016567239

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2948943

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167034812

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015792560

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015792560

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016148862

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015258645

Country of ref document: AU

Date of ref document: 20150206

Kind code of ref document: A