WO2017169150A1 - 半導体集積回路装置 - Google Patents

半導体集積回路装置 Download PDF

Info

Publication number
WO2017169150A1
WO2017169150A1 PCT/JP2017/004580 JP2017004580W WO2017169150A1 WO 2017169150 A1 WO2017169150 A1 WO 2017169150A1 JP 2017004580 W JP2017004580 W JP 2017004580W WO 2017169150 A1 WO2017169150 A1 WO 2017169150A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
wiring
integrated circuit
semiconductor integrated
circuit device
Prior art date
Application number
PCT/JP2017/004580
Other languages
English (en)
French (fr)
Inventor
雅庸 廣瀬
敏宏 中村
Original Assignee
株式会社ソシオネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソシオネクスト filed Critical 株式会社ソシオネクスト
Priority to CN201780018518.XA priority Critical patent/CN108886020B/zh
Priority to JP2018508507A priority patent/JP6849927B2/ja
Publication of WO2017169150A1 publication Critical patent/WO2017169150A1/ja
Priority to US16/138,868 priority patent/US10847462B2/en
Priority to US17/071,812 priority patent/US11251125B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5286Arrangements of power or ground buses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0292Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using a specific configuration of the conducting means connecting the protective devices, e.g. ESD buses

Definitions

  • the present disclosure relates to a semiconductor integrated circuit device in which a core region and an I / O region are formed.
  • I / O cells input / output cells
  • the area of the semiconductor integrated circuit is regulated by the I / O cells, that is, a device in which the semiconductor integrated circuit is formed, that is, a semiconductor
  • the area of the integrated circuit device may increase.
  • Patent Document 1 discloses a configuration of a semiconductor integrated circuit in which I / O cells are multiply arranged around the periphery. With this configuration, the area of the semiconductor integrated circuit is not restricted by the I / O cell.
  • a semiconductor integrated circuit device includes a plurality of I / O cells arranged in a first direction, and is adjacent to each other in a second direction perpendicular to the first direction.
  • a first power supply potential first electrode provided to extend in the first direction in at least one first wiring layer.
  • the upper layer of the first wiring layer is higher than each layer of the first wiring layer.
  • the first power supply wiring for the predetermined power supply potential, the first power supply wiring, and the first and second in-column power supplies provided to extend in the first direction.
  • a second power supply for connecting at least one of the wirings. And a wiring.
  • At least one of the first and second in-column power supply lines respectively provided in the first and second I / O cell columns is provided between the first and second I / O cell columns.
  • the first power supply wiring and the second power supply wiring are connected.
  • the power supply capability and the ESD protection capability are enhanced by the presence of the first power supply wiring as compared with the case where only the in-column power supply wiring is used.
  • the first power supply wiring is formed in a wiring layer having a thickness larger than that of the intra-column power supply wiring, the effect of enhancing the power supply capability and the ESD protection capability is greater. Therefore, the power supply capability and the ESD protection capability are enhanced without increasing the number of I / O cells, that is, without increasing the area of the semiconductor integrated circuit. In addition, the number of pads for power supply can be reduced.
  • a semiconductor integrated circuit device includes at least one I / O cell column including a plurality of I / O cells arranged in a first direction, and the at least one I / O cell column.
  • the at least one I / O cell column In the region of the at least one I / O cell column and the in-column power source wire for a predetermined power supply potential provided in the at least one first wiring layer so as to extend in the first direction.
  • the second wiring layer that is above the first wiring layer and is thicker than each layer of the first wiring layer extends in the first direction.
  • the a first power line for the predetermined supply potential and said first power line and a second power line for connecting the columns in the power wiring.
  • the in-column power supply wiring provided in the I / O cell column is connected to the first power supply wiring provided between any of the plurality of pad rows via the second power supply wiring. .
  • the power supply capability and the ESD protection capability are enhanced by the presence of the first power supply wiring as compared with the case where only the in-column power supply wiring is used.
  • the first power supply wiring is formed in a wiring layer having a thickness larger than that of the intra-column power supply wiring, the effect of enhancing the power supply capability and the ESD protection capability is greater. Therefore, the power supply capability and the ESD protection capability are enhanced without increasing the number of I / O cells, that is, without increasing the area of the semiconductor integrated circuit. In addition, the number of pads for power supply can be reduced.
  • a semiconductor integrated circuit device includes at least one I / O cell column including a plurality of I / O cells arranged in a first direction, and the at least one I / O cell column.
  • the at least one I / O cell column In the region of the at least one I / O cell column and the in-column power source wire for a predetermined power supply potential provided in the at least one first wiring layer so as to extend in the first direction.
  • a second arrangement that is above the first wiring layer and has a thickness larger than each layer of the first wiring layer.
  • the first power supply wiring for the predetermined power supply potential, the second power supply wiring connecting the first power supply wiring and the in-column power supply wiring, provided to extend in the first direction are provided.
  • the in-column power supply wiring provided in the I / O cell column includes the first power supply wiring provided in at least one of the plurality of pad rows on both sides in the second direction perpendicular to the pad arrangement; It is connected via the second power supply wiring.
  • the power supply capability and the ESD protection capability are enhanced by the presence of the first power supply wiring as compared with the case where only the in-column power supply wiring is used.
  • the first power supply wiring is formed in a wiring layer having a thickness larger than that of the intra-column power supply wiring, the effect of enhancing the power supply capability and the ESD protection capability is greater. Therefore, the power supply capability and the ESD protection capability are enhanced without increasing the number of I / O cells, that is, without increasing the area of the semiconductor integrated circuit. In addition, the number of pads for power supply can be reduced.
  • the semiconductor integrated circuit device According to the semiconductor integrated circuit device according to the present disclosure, it is possible to sufficiently ensure the power supply capability and the ESD protection capability for the I / O cell column without increasing the area of the semiconductor integrated circuit.
  • FIG. 1 is a plan view schematically showing the overall configuration of a semiconductor integrated circuit device according to a first embodiment.
  • 1 is a diagram showing a configuration example of an I / O region of a semiconductor integrated circuit device according to a first embodiment.
  • FIG. 10 is a diagram showing another configuration example of the I / O region of the semiconductor integrated circuit device according to the first embodiment.
  • FIG. 1 is a plan view schematically showing the overall configuration of the semiconductor integrated circuit device according to the embodiment.
  • a semiconductor integrated circuit device 1 shown in FIG. 1 includes a core region 2 in which an internal core circuit is formed, and an I / O region 3 provided around the core region 2 and in which an interface circuit (I / O circuit) is formed. It has.
  • I / O region 3 two I / O cell columns 10A and 10B are provided so as to surround the periphery of the semiconductor integrated circuit device 1 in a ring shape.
  • a plurality of I / O cells 10 constituting an interface circuit are arranged in each of the I / O cell columns 10A and 10B.
  • the semiconductor integrated circuit device 1 has a plurality of external connection pads.
  • FIG. 2 is a plan view showing a configuration example of the I / O region 3 of the semiconductor integrated circuit device 1 according to the present embodiment, and corresponds to an enlarged view of a portion W in FIG. In FIG. 2, the internal configuration of the I / O cell, signal wiring, and the like are not shown.
  • 3 is a schematic cross-sectional view taken along line X-X ′ in FIG. 2
  • FIG. 4 is a schematic cross-sectional view taken along line Y-Y ′ in FIG. 2.
  • two I / O cell rows 10A and 10B each have a plurality of I / O cells arranged in the X direction corresponding to the first direction (the horizontal direction in the drawing, the direction along the outer side of the semiconductor integrated circuit device 1).
  • An O cell 10 (a cell region is indicated by a two-dot chain line) is provided.
  • the I / O cell rows 10A and 10B are adjacent to each other in the Y direction (vertical direction in the drawing) corresponding to the second direction perpendicular to the first direction.
  • the I / O cell 10 includes an I / O cell for supplying a power supply potential and a ground potential, and a signal I / O cell.
  • a plurality of external connection pads (hereinafter simply referred to as “pads”) 30 are arranged.
  • the pads 30 are arranged on the upper layer of the I / O cell 10 so as to be arranged in the X direction.
  • two rows are arranged, shifted in a total of four rows and in a staggered manner. Has been.
  • the interval between the second row and the third row of the pads 30 is wider than the interval between the pad rows in the region of the I / O cell rows 10A and 10B.
  • the pad 30 includes pads 31a, 31b, 31c, and 31d (denoted as “VDDIO” in the figure) to which the power supply potential VDDIO is supplied, and pads 32a, 32b, 32c, and 32d to which the ground potential VSS is supplied (in the figure, “VSS”). ”)".
  • VDDIO is, for example, 3.3V.
  • the other pads 30 are mainly used for signals. Pads 31a, 31b, 32a and 32b as first pads are arranged on the I / O cell row 10A, and pads 31c, 31d, 32c and 32d as second pads are arranged on the I / O cell row 10B. Has been.
  • Each pad 30 is connected to the outside of the semiconductor integrated circuit device 1 through, for example, bonding wires or bumps.
  • Each pad 30 is arranged in an upper layer of the corresponding I / O cell 10 and is connected to the corresponding I / O cell 10.
  • the positional relationship between the pad 30 and the corresponding I / O cell 10 is not limited to this mode.
  • VDDIO internal power supply lines 21a, 21b, 21c and 21d and VSS internal power supply lines 22a, 22b, 22c and 22d extend in the X direction. It is provided as follows.
  • the in-column power supply wires 21a, 21b, 22a, 22b as the first in-column power supply wires are arranged in the region of the I / O cell column 10A, and the in-column power supply wires 21c, 21d as the second in-column power supply wires are arranged.
  • 22c, 22d are arranged in the area of the I / O cell column 10B. Note that the number and arrangement positions of the in-column power supply wirings and the types of potentials to be supplied are not limited to the configuration shown in FIG.
  • a signal wiring region 28 extending in the Y direction is provided between the I / O cells 10.
  • a signal wiring can be disposed in the signal wiring region 28. That is, the signal wiring extending in the Y direction may pass between the I / O cells 10.
  • the I / O cells 10 may be arranged without a gap. In this case, the signal wiring may pass through the I / O cell 10.
  • the I / O cell 10 is shown to be uniform in size and shape, but these may not be uniform.
  • thick wiring layers M1 and M2 are provided below the pads 30 (31c, 32b, and 32c).
  • a thick film wiring 51 and a thick film wiring 52 are provided under the pad 30 in the wiring layers M1 and M2, respectively, in order to reduce damage during bonding.
  • the pad 30 and the thick film wiring 51 are connected through a via 53, and the thick film wiring 51 and the thick film wiring 52 are connected through a via 54.
  • the in-column power supply wirings 21a to 21d and 22a to 22d are provided in three stacked wiring layers M31, M32, and M32 (corresponding to the first wiring layer) below the wiring layer M2.
  • the thickness of the wiring layers M1, M2 is larger than that of the wiring layers M31, M32, M33.
  • power supply lines 23 and 24 as first power supply lines are provided in the region between the I / O cell column 10A and the I / O cell column 10B so as to extend in the X direction.
  • the power supply wiring 23 is for VDDIO
  • the power supply wiring 24 is for VSS.
  • power supply lines 25a, 25b, 25c, 25d, 26a, 26b, 26c, and 26d as second power supply lines are provided so as to extend mainly in the Y direction.
  • the power supply lines 25a and 25b extend linearly in the Y direction from the I / O cell column 10A to the I / O cell column 10B, and are connected to the power supply line 23 provided between the I / O cell columns 10A and 10B. In addition, it is connected to in-column power supply wirings 21a and 21b provided in the I / O cell column 10A and in-column power supply wirings 21c and 21d provided in the I / O cell column 10B.
  • the power supply wirings 26a and 26b extend linearly in the Y direction from the I / O cell column 10A to the I / O cell column 10B, and are connected to the power supply wiring 24 provided between the I / O cell columns 10A and 10B. In addition, it is connected to in-column power supply wirings 22a and 22b provided in the I / O cell column 10A and in-column power supply wirings 22c and 22d provided in the I / O cell column 10B.
  • the power supply wiring 25a is connected to the pads 31a and 31c.
  • the pads 31a and 31c are arranged at positions facing each other in the Y direction, and overlap the power supply wiring 25a in plan view.
  • the power supply wiring 25b is connected to the pads 31b and 31d.
  • the pads 31b and 31d are arranged at positions facing each other in the Y direction, and overlap the power supply wiring 25b in plan view.
  • the power supply wiring 26a is connected to the pads 32a and 32c.
  • the pads 32a and 32c are arranged at positions facing each other in the Y direction, and overlap the power supply wiring 26a in plan view.
  • the power supply wiring 26b is connected to the pads 32b and 32d.
  • the pads 32b and 32d are arranged at positions facing each other in the Y direction, and overlap the power supply wiring 26b in plan view. With such an arrangement, the pad and the power supply wiring can be efficiently connected at a short distance.
  • the power supply wiring 25c connects the power supply wiring 23 provided between the I / O cell columns 10A and 10B and the intra-column power supply wirings 21a and 21b provided in the I / O cell column 10A.
  • the power supply wiring 25d connects the power supply wiring 23 provided between the I / O cell columns 10A and 10B and the intra-column power supply wirings 21c and 21d provided in the I / O cell column 10B.
  • the power supply wirings 25c and 25d have bent portions and are arranged so as not to overlap the pad 30 in plan view.
  • the power supply wiring 26c connects the power supply wiring 24 provided between the I / O cell columns 10A and 10B and the intra-column power supply wiring 22b provided in the I / O cell column 10A.
  • the power supply wiring 26d connects the power supply wiring 24 provided between the I / O cell columns 10A and 10B and the intra-column power supply wiring 22c provided in the I / O cell column 10B.
  • the power supply wirings 23 and 24 provided between the I / O cell rows 10A and 10B are formed in a thick wiring layer M1. Further, the power supply wiring 26b and the like extending mainly in the Y direction are formed in the thick wiring layer M2.
  • the power supply wirings 23 and 24 are connected to the power supply wiring 26b and the like formed in the wiring layer M2 through vias 41.
  • the in-column power supply wirings 22b and 22c and the like are connected to the power supply wiring 26b and the like formed in the wiring layer M2 through the vias 42.
  • a wiring 43 extending from the I / O cell column 10A to the I / O cell column 10B in the Y direction may be formed.
  • the wiring 43 is connected to the VSS power supply wiring 24 via the via 44.
  • the in-column power supply wiring has a three-layer structure here, but may be a single-layer wiring or a multilayer wiring other than three layers. Further, there may be one or more other wiring layers between the wiring layer M1 and the wiring layer M2. In this case, the power supply wires 23 and 24 and the power supply wire 26a formed in the wiring layer M2 may be connected by a combination of short wires and vias formed in each wiring layer therebetween. Similarly, there may be one or more other wiring layers between the wiring layer M2 and the wiring layer in which the in-column power supply wiring is formed.
  • the in-column power supply wiring and the power supply wiring 26a formed in the wiring layer M2 may be connected by a combination of a short wiring and a via formed in each wiring layer therebetween.
  • the power supply wiring 26b and the like are formed as multilayer wiring using the wiring layer M1 and the formation layer of the pad 30 in a portion passing between the pads 30, for example. Also good. Thereby, the impedance of the power supply wiring 26b etc. can be lowered. Note that the configurations indicated by ⁇ 1 in FIG. 3 and ⁇ 2 in FIG. 4 may be omitted.
  • An I / O cell generally includes a high power supply voltage region including an output buffer for outputting a signal to the outside of an ESD circuit or a semiconductor integrated circuit device, and a circuit unit for inputting / outputting a signal to / from the semiconductor integrated circuit device. Including a low power supply voltage region.
  • Each I / O cell 10 in FIG. 2 includes a high power supply voltage region (portion indicated by “H” in FIG. 2) and a low power supply voltage region (portion indicated by “L” in FIG. 2) in the Y direction. It is divided into.
  • the high power supply voltage region mainly used for input / output with the outside is outside the semiconductor integrated circuit device 1
  • the low power supply voltage region mainly used for input / output with the internal core region is inside the semiconductor integrated circuit device 1.
  • I / O cells are arranged so that On the other hand, in the configuration of FIG. 2, the I / O cell column 10 ⁇ / b> A is arranged such that the high power supply voltage region is inside the semiconductor integrated circuit device 1 and the low power supply voltage region is outside the semiconductor integrated circuit device 1. . That is, the I / O cell columns 10A and 10B are both arranged such that the high power supply voltage region is on the power supply wirings 23 and 24 side.
  • the in-column power supply wirings 21a and 21b provided in the I / O cell column 10A and the in-column power supply wirings 21c and 21d provided in the I / O cell column 10B are The power supply wiring 23 provided between the I / O cell rows 10A and 10B is connected to the power supply wirings 25a to 25d. For this reason, the power supply capability and the ESD protection capability are enhanced by the presence of the power supply wiring 23 as compared with the case where only the in-column power supply wirings 21a to 21d are provided.
  • the in-column power supply wirings 22a and 22b provided in the I / O cell column 10A and the in-column power supply wirings 22c and 22d provided in the I / O cell column 10B are connected to the I / O cell columns 10A and 10B.
  • the power supply wiring 24 provided therebetween is connected to the power supply wirings 26a to 26d. Therefore, the power supply capability and the ESD protection capability are enhanced by the presence of the power supply wiring 24 as compared with the case where only the in-column power supply wirings 22a to 22d are provided.
  • the power supply wirings 23 and 24 are formed in the thick wiring layer M1, and are thicker than the in-column power supply wirings 21a to 21d and 22a to 22d formed in the wiring layers M31 to M33.
  • the effect of strengthening ability and ESD protection ability will be greater. Therefore, the power supply capability and the ESD protection capability can be enhanced without increasing the number of I / O cells 10 used for power supply for the I / O cell columns 10A and 10B, that is, without increasing the area of the semiconductor integrated circuit. it can.
  • the number of pads 30 used for power supply can be reduced.
  • the intra-column power supply wirings 21a and 21b provided in the I / O cell column 10A and the intra-column power supply wirings 21c and 21d provided in the I / O cell column 10B include the power supply wiring 23 and the power supply wirings 25a to 25d. Are connected to each other.
  • the intra-column power supply wirings 22a and 22b provided in the I / O cell column 10A and the intra-column power supply wirings 22c and 22d provided in the I / O cell column 10B are the power supply wiring 24 and the power supply wirings 26a to 26d. Are connected to each other. For this reason, each of the I / O cell columns 10A and 10B can be supplied with power from the other I / O cell column, or can utilize the ESD protection function of the other I / O cell column.
  • the I / O cell rows 10A and 10B are both arranged so that the high power supply voltage region is on the power supply wirings 23 and 24 side. In this way, by arranging the high power supply voltage region closer to the region where the power supply wirings 23 and 24 are disposed, the power supply wirings 23 and 24 can be connected to an ESD circuit or output buffer provided in the high power supply voltage region. Since the distance to the end can be shortened, it is possible to more effectively realize suppression of power supply voltage drop and improvement of ESD resistance.
  • the power supply wirings in both the I / O cell columns 10A and 10B are connected to the power supply wiring between the I / O cell columns 10A and 10B.
  • Either one of the power supply lines in the column 10B may be connected to the power supply line between the I / O cell columns 10A and 10B.
  • the configuration of this embodiment is applied to each of VDDIO and VSS in the semiconductor integrated circuit device to which the power supply potential VDDIO and the ground potential VSS are supplied.
  • the configuration is not limited thereto. Absent.
  • the configuration of this embodiment may be applied only to the power supply potential VDDIO.
  • the configuration of this embodiment may be applied to some or all of the plurality of types of power supply potentials and ground potentials.
  • FIG. 5 is a plan view showing another configuration example of the I / O region 3 of the semiconductor integrated circuit device 1 to which a plurality of types of power supply potentials are supplied.
  • three kinds of power supply potentials VDD, VDDIO18, and VDDIO33 are supplied.
  • VDD is 0.9V
  • VDDIO18 is 1.8V
  • VDD33 is 3.3V.
  • the internal configuration of the I / O cell, signal wiring, and the like are not shown. Also, in-column power supply wiring is not shown for the sake of simplicity.
  • the pad 30 includes pads 33a and 33b (referred to as “VDD” in the figure) supplied with VDD, pads 34a and 34b (referred to as “VDDIO18” in the figure) supplied with VDDIO18, and a pad supplied with VDDIO33. 35a, 35b (denoted as “VDDIO33” in the figure) and pads 36a, 36b, 36c, 36d (denoted as “VSS” in the figure) to which VSS is supplied.
  • the other pads 30 are mainly used for signals.
  • Pads 33a, 34a, 35a, 36a, 36b as first pads are arranged on the I / O cell row 10A, and pads 33b, 34b, 35b, 36c, 36d as second pads are I / O cell rows. 10B.
  • the power supply wires 61a, 61b, 62a, 62b, 63a, 63b, 64a, and 64b as the first power supply wires extend in the X direction in the region between the I / O cell column 10A and the I / O cell column 10B. Is provided.
  • the power supply lines 61a and 61b are for VDD
  • the power supply lines 62a and 62b are for VDDIO
  • the power supply lines 63a and 63b are for VDDIO 33
  • the power supply lines 64a and 64b are for VSS.
  • power supply lines 65a, 65b, 65c, 66a, 66b, 66c, 67a, 67b, 67c, 68a, 68b, 68c, 68d as second power supply lines are provided so as to extend mainly in the Y direction. .
  • the power supply wiring 65a extends linearly in the Y direction from the I / O cell column 10A to the I / O cell column 10B, and includes VDD power supply wires 61a and 61b provided between the I / O cell columns 10A and 10B. In addition, it is connected to the intra-column power supply wiring provided in the I / O cell column 10A and the intra-column power supply wiring provided in the I / O cell column 10B.
  • the power supply wiring 65b connects the power supply wirings 61a and 61b and the in-column power supply wiring provided in the I / O cell column 10A.
  • the power supply wiring 65c connects the power supply wirings 61a and 61b and the in-column power supply wiring provided in the I / O cell column 10B.
  • the power supply lines 65b and 65c have bent portions and are arranged so as not to overlap the pad 30 in plan view.
  • the power supply wiring 66a extends linearly in the Y direction from the I / O cell column 10A to the I / O cell column 10B, and power supply wirings 62a and 62b for VDDIO18 provided between the I / O cell columns 10A and 10B. In addition, it is connected to the intra-column power supply wiring provided in the I / O cell column 10A and the intra-column power supply wiring provided in the I / O cell column 10B.
  • the power supply wiring 66b connects the power supply wirings 62a and 62b to the intra-column power supply wiring provided in the I / O cell column 10A.
  • the power supply wiring 66c connects the power supply wirings 62a and 62b and the in-column power supply wiring provided in the I / O cell column 10B.
  • the power supply wirings 66b and 66c have bent portions and are arranged so as not to overlap the pad 30 in plan view.
  • the power supply wiring 67a extends linearly in the Y direction from the I / O cell column 10A to the I / O cell column 10B, and the power supply wirings 63a and 63b for VDDIO33 provided between the I / O cell columns 10A and 10B. In addition, it is connected to the intra-column power supply wiring provided in the I / O cell column 10A and the intra-column power supply wiring provided in the I / O cell column 10B.
  • the power supply wiring 67b connects the power supply wirings 63a and 63b to the intra-column power supply wiring provided in the I / O cell column 10A.
  • the power supply wiring 67c connects the power supply wirings 63a and 63b and the in-column power supply wiring provided in the I / O cell column 10B.
  • the power supply wires 67b and 67c have bent portions and are arranged so as not to overlap the pad 30 in plan view.
  • the power supply wirings 68a and 68b extend linearly in the Y direction from the I / O cell column 10A to the I / O cell column 10B, and VSS power supply wirings 64a and 64b provided between the I / O cell columns 10A and 10B. 64b, and is connected to the in-column power supply wiring provided in the I / O cell column 10A and the in-column power supply wiring provided in the I / O cell column 10B.
  • the power supply wiring 68c connects the power supply wirings 64a and 64b and the in-column power supply wiring provided in the I / O cell column 10A.
  • the power supply wiring 68d connects the power supply wirings 64a and 64b and the in-column power supply wiring provided in the I / O cell column 10B.
  • the power supply wires 68c and 68d have bent portions and are arranged so as not to overlap the pad 30 in plan view.
  • the power supply wiring 65a is connected to the pads 33a and 33b.
  • the pads 33a and 33b are arranged at positions facing each other in the Y direction, and overlap the power supply wiring 65a in plan view.
  • the power supply wiring 66a is connected to the pads 34a and 34b.
  • the pads 34a and 34b are disposed at positions facing each other in the Y direction, and overlap the power supply wiring 66a in plan view.
  • the power supply wiring 67a is connected to the pads 35a and 35b.
  • the pads 35a and 35b are disposed at positions facing each other in the Y direction, and overlap the power supply wiring 67a in plan view.
  • the power supply wiring 68a is connected to the pads 36a and 36c.
  • the pads 36a and 36c are arranged at positions facing each other in the Y direction, and overlap the power supply wiring 68a in plan view.
  • the power supply wiring 68b is connected to the pads 36b and 36d.
  • the pads 36b and 36d are arranged at positions facing each other in the Y direction, and overlap the power supply wiring 68b in plan view. With such an arrangement, the pad and the power supply wiring can be efficiently connected at a short distance.
  • a power supply wiring 65d for connecting the power supply wirings 61a and 61b, a power supply wiring 66d for connecting the power supply wirings 62a and 62b, and a power supply wiring 67d for connecting the power supply wirings 63a and 63b are provided so as to extend in the Y direction. Yes.
  • the wiring layer structure in the configuration of FIG. 5 is the same as the configuration of FIG. Also in the configuration of FIG. 5, the same effect as that of the configuration of FIG. 2 can be obtained. That is, the power supply capability and the ESD protection capability can be enhanced without increasing the area of the semiconductor integrated circuit.
  • the two I / O cell columns 10A and 10B are arranged.
  • the present invention is not limited to this.
  • the configuration of the present embodiment may be applied to three or more I / O cell columns. In the three or more I / O cell columns, not all the columns but a part of two or more I / O cell columns.
  • the configuration of the present embodiment may be applied to the / O cell column.
  • the arrangement form of the pads, the arrangement form of the power supply wiring, etc. are not limited to the configurations shown in FIGS.
  • the pads 30 are arranged in a staggered manner by two in each of the I / O cell rows 10A and 10B, but the number of pad rows is not limited to this, and the pads are staggered. It doesn't matter if you don't move.
  • the spacing between the pad rows is not limited to that shown in FIGS.
  • two pads to which VDDIO is supplied and two pads to which VSS is supplied are arranged in the I / O cell rows 10A and 10B, respectively, but the present invention is not limited to this. There may be no pad to which VDDIO is supplied in either of the O cell rows 10A and 10B.
  • the pads supplied with VDDIO and the pads supplied with VSS are opposed in the Y direction, they may not be opposed.
  • the VDD power supply wiring 23 and the VSS power supply wiring 24 are arranged one by one in the configuration of FIG. 2, and two by two in the configuration of FIG.
  • the number of power supply lines is not limited to this.
  • FIG. 6 is a diagram illustrating a configuration example of the I / O region 3 of the semiconductor integrated circuit device according to the second embodiment, and corresponds to an enlarged view of a portion W in FIG.
  • three kinds of power supply potentials VDD, VDDIO18, and VDDIO33 are supplied.
  • VDD is 0.9V
  • VDDIO18 is 1.8V
  • VDD33 is 3.3V.
  • FIG. 6 the internal configuration of the I / O cell, signal wiring, and the like are not shown.
  • two I / O cell columns 10A and 10B each have a plurality of I / Os arranged in the X direction corresponding to the first direction (the horizontal direction in the drawing, the direction along the outer side of the semiconductor integrated circuit device 1).
  • An O cell 10 (a cell region is indicated by a two-dot chain line) is provided.
  • the I / O cell rows 10A and 10B are adjacent to each other in the Y direction (vertical direction in the drawing) corresponding to the second direction perpendicular to the first direction.
  • the I / O cell 10 includes an I / O cell for supplying a power supply potential and a ground potential, and a signal I / O cell.
  • the two I / O cell columns 10A and 10B are arranged without a gap.
  • a plurality of pads 30 are provided in the region of the I / O cell rows 10A and 10B.
  • the pads 30 are arranged on the upper layer of the I / O cell 10 so as to be arranged in the X direction, and the I / O cell rows 10A and 10B are arranged in a staggered manner by two rows each. That is, four pad rows 30A, 30B, 30C, and 30D are arranged in the region of the I / O cell rows 10A and 10B.
  • the pad 30 includes pads 33c and 33d (denoted as “VDD” in the figure) supplied with VDD, pads 34c and 34d (denoted as “VDDIO18” in the figure) supplied with VDDIO18, and a pad supplied with VDDIO33. 35c and 35d (denoted as “VDDIO33” in the figure) and pads 36c and 36d (denoted as “VSS” in the figure) supplied with VSS.
  • the other pads 30 are mainly used for signals.
  • in-column power supply wires 71a and 71b for VDD In the region of the I / O cell columns 10A and 10B, in-column power supply wires 71a and 71b for VDD, in-column power supply wires 72a and 72b for VDDIO18, in-column power supply wires 73a and 73b for VDDIO33, and VSS In-column power supply wirings 74a, 74b, 74c, 74d, 74e, and 74f are provided so as to extend in the X direction.
  • In-column power supply wirings 71a, 72a, 74a are arranged in the lower layer of the pad column 30A in the region of the I / O cell column 10A, and the in-column power supply wirings 73a, 74b, 74c are in the region of the I / O cell column 10A.
  • the in-column power supply wirings 73b, 74d, and 74e are arranged in the lower layer of the pad column 30C in the region of the I / O cell column 10B, and the in-column power supply wirings 71b, 72b, and 74f are in the region of the I / O cell column 10B.
  • a signal wiring extending in the Y direction may pass between the I / O cells 10.
  • the I / O cell 10 is shown to be uniform in size and shape, but these may not be uniform.
  • a power supply wiring 76a for VDDIO 18 and a power supply wiring 77a for VDDIO 33 as first power supply wirings are provided so as to extend in the X direction.
  • VSS power supply wires 78a and 78b as first power supply wires are provided in the region between the pad rows 30B and 30C so as to extend in the X direction.
  • a power supply wiring 76b for VDDIO18 and a power supply wiring 77b for VDDIO33 as the first power supply wiring are provided in the region between the pad rows 30C and 30D so as to extend in the X direction.
  • a VDD power supply wiring 75a extends in the X direction on the lower side of the pad row 30A in the drawing, and a VDD power supply wiring 75b extends in the X direction on the upper side of the pad row 30D in the drawing. Is provided. That is, VDD power supply wirings 75a and 75b as first power supply wirings are provided on both sides in the Y direction of the plurality of pad rows 30A to 30D, respectively.
  • power supply wirings 81, 82a, 82b, 82c, 83a, 83b, 83c, 84a, 84b, 84c, 84d, and 84e as second power supply wirings are provided so as to extend mainly in the Y direction.
  • the power supply wiring 81 extends linearly in the Y direction from the I / O cell column 10A to the I / O cell column 10B, and is a VDD power source provided on each side of the plurality of pad columns 30A to 30D in the Y direction.
  • the wirings 75a and 75b are connected to the in-column power supply wiring 71a provided in the I / O cell column 10A and the in-column power supply wiring 71b provided in the I / O cell column 10B.
  • the power supply wiring 82a extends linearly in the Y direction from the I / O cell column 10A to the I / O cell column 10B.
  • the internal power supply wiring 72a and the internal power supply wiring 72b provided in the I / O cell column 10B are connected.
  • the power supply wires 82b and 82c also connect the power supply wires 76a and 76b to the in-column power supply wires 72a and 72b.
  • the power supply wirings 82b and 82c have bent portions and are arranged so as not to overlap the pad 30 in plan view.
  • the power supply wiring 83a extends linearly in the Y direction from the I / O cell column 10A to the I / O cell column 10B.
  • the internal power supply wiring 73a and the internal power supply wiring 73b provided in the I / O cell column 10B are connected.
  • the power supply lines 83b and 83c also connect the power supply lines 77a and 77b to the in-column power supply lines 73a and 73b.
  • the power supply wires 83b and 83c have bent portions and are arranged so as not to overlap the pad 30 in plan view.
  • the power supply wiring 84a extends linearly in the Y direction from the I / O cell column 10A to the I / O cell column 10B.
  • the power supply wirings 78a and 78b for VSS and the column provided in the I / O cell column 10A are provided.
  • the internal power supply wirings 74a, 74b, and 74c and the internal power supply wirings 74d, 74e, and 74f provided in the I / O cell column 10B are connected.
  • the power supply wires 84b and 84c connect the power supply wires 78a and 78b to the in-column power supply wires 74d, 74e, and 74f provided in the I / O cell column 10B.
  • the power supply wires 84d and 84e connect the power supply wires 78a and 78b to the in-column power supply wires 74a, 74b, and 74c provided in the I / O cell column 10A.
  • the power supply wires 84b, 84c, 84d, and 84e have bent portions and are arranged so as not to overlap the pad 30 in plan view.
  • the power supply wiring 81 is connected to the pads 33c and 33d.
  • the pads 33c and 33d are arranged at positions facing each other in the Y direction, and overlap the power supply wiring 81 in plan view.
  • the power supply wiring 82a is connected to the pads 34c and 34d.
  • the pads 34c and 34d are disposed at positions facing each other in the Y direction, and overlap the power supply wiring 82a in plan view.
  • the power supply wiring 83a is connected to the pads 35c and 35d.
  • the pads 35c and 35d are disposed at positions facing each other in the Y direction, and overlap the power supply wiring 83a in plan view.
  • the power supply wiring 84a is connected to the pads 36c and 36d.
  • the pads 36c and 36d are arranged at positions facing each other in the Y direction, and overlap the power supply wiring 84a in plan view. With such an arrangement, the pad and the power supply wiring can be efficiently connected at a short distance.
  • the power supply wiring 76a provided between the pad rows and the power supply wirings 75a and 75b provided on both sides in the Y direction of the pad row are upper layers of the wiring layers M31, M32, and M33 of the power supply wiring in the column.
  • the wiring layers M31, M32, and M33 are provided in the wiring layer M1 having a larger thickness.
  • the power supply wiring 81 and the like provided mainly extending in the Y direction are provided in the wiring layer M2.
  • the wiring layer structure is not limited to this.
  • the in-column power supply wirings 72a and 72b provided in the I / O cell columns 10A and 10B are the power supply wiring 76a and the pad columns 30C and 30D provided between the pad columns 30A and 30B.
  • the power supply wiring 76b provided therebetween is connected to the power supply wirings 82a to 82c. For this reason, the power supply capability and the ESD protection capability are enhanced by the presence of the power supply wirings 76a and 76b as compared with the case where only the in-column power supply wirings 72a and 72b are provided.
  • in-column power supply wirings 73a and 73b provided in the I / O cell columns 10A and 10B are provided between the power supply wiring 77a provided between the pad rows 30A and 30B and the pad rows 30C and 30D.
  • the power supply wiring 77b is connected to the power supply wirings 83a to 83c. For this reason, the power supply capability and the ESD protection capability are enhanced by the presence of the power supply lines 77a and 77b as compared with the case of only the in-column power supply lines 73a and 73b.
  • in-column power supply wirings 74a to 74f provided in the I / O cell rows 10A and 10B are connected via power supply wirings 78a and 78b provided between the pad rows 30B and 30C and power supply wirings 84a to 84e. Connected. For this reason, the power supply capability and the ESD protection capability are enhanced by the presence of the power supply lines 78a and 78b as compared with the case where only the in-column power supply lines 74a to 74f are provided.
  • the power supply wirings 76a, 76b, 77a, 77b, 78a, 78b are thicker than the in-column power supply wirings 72a, 72b, 73a, 73b, 74a-74f, the effect of enhancing the power supply capability and ESD protection capability is Greater than.
  • in-column power supply wirings 71a and 71b provided in the I / O cell columns 10A and 10B are provided on both sides in the Y direction of the plurality of pad columns 30A to 30D, respectively.
  • the power supply wirings 75 a and 75 b are connected to each other through the power supply wiring 81.
  • the power supply capability and the ESD protection capability are enhanced by the presence of the power supply wirings 75a and 75b as compared with the case where only the in-column power supply wirings 71a and 71b are provided.
  • the power supply wirings 75a and 75b are thicker than the in-column power supply wirings 71a and 71b, the effect of enhancing the power supply capability and the ESD protection capability is greater.
  • the power supply capability and the ESD protection capability are enhanced without increasing the number of I / O cells 10 used for power supply for the I / O cell rows 10A and 10B, that is, without increasing the area of the semiconductor integrated circuit.
  • the number of power supply pads for supplying power can be reduced.
  • the configuration of FIG. 6 is an example, and the arrangement of pads, the arrangement of power supply lines in a column, the arrangement of power supply wiring between pad rows, and the like are not limited to the configuration of FIG.
  • the power supply wirings 75a and 75b for supplying VDD are arranged on both sides in the Y direction of the pad rows 30A to 30D, respectively, but a power supply wiring for supplying another potential, for example, VSS is arranged. May be.
  • the power supply wiring may be arranged only on either one of the two sides in the Y direction of the pad row, or the power supply wiring for supplying different potentials may be arranged on both sides of the pad row in the Y direction.
  • two I / O cell columns 10A and 10B are arranged.
  • the present invention is not limited to this.
  • the configuration of the present embodiment may be applied to one column or three or more I / O cell columns.
  • the pads 30 are arranged in a staggered manner by two in each of the I / O cell rows 10A and 10B, but the number of pad rows is not limited to this, and the pads are staggered. It doesn't matter if you don't move. Further, the pad row spacing is not limited to that shown in FIG.
  • the I / O cell rows 10A and 10B are provided so as to surround the periphery of the semiconductor integrated circuit device 1 in a ring shape, but the present invention is not limited to this. For example, it may be provided in a part of the peripheral portion of the semiconductor integrated circuit device 1. Further, the configuration of the present embodiment does not need to be applied to the entire I / O cell columns 10A and 10B, and may be applied to a part of the range.
  • the power supply capability and the ESD protection capability can be sufficiently secured for the I / O cell column without increasing the area of the semiconductor integrated circuit in the semiconductor integrated circuit device. This is useful for downsizing many large-scale LSIs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

半導体集積回路装置について、回路面積の増加を招くことなく、I/Oセルに対する電源供給能力およびESD保護能力を十分に確保可能な構成を提供する。I/Oセル列(10A,10B)に設けられた列内電源配線(21a~21d)は、I/Oセル列(10A,10B)の間に設けられた電源配線(23)と、電源配線(25a~25d)を介して接続されている。電源配線(23)は、列内電源配線(21a~21d)よりも厚さが大きい。

Description

半導体集積回路装置
 本開示は、コア領域とI/O領域とが形成された半導体集積回路装置に関する。
 近年の半導体集積回路は、大規模化が進み、入出力信号数が増大している。このため、コア領域の周囲に入出力セル(I/Oセル)を一重に並べて配置すると、I/Oセルによって半導体集積回路の面積が律束され、半導体集積回路が構成される装置、すなわち半導体集積回路装置の面積が増大する場合がある、という問題がある。
 特許文献1では、I/Oセルを周囲に多重に配置した半導体集積回路の構成が開示されている。この構成によって、I/Oセルによって半導体集積回路の面積が律束されることを回避している。
特開2000-21987号公報
 特許文献1に開示されたようなI/Oセルを多重に配置した構成では、I/Oセル列のそれぞれにおいてリング状の電源配線が設けられており、この電源配線に外部接続パッドから電源が供給される。このため、I/Oセル列のそれぞれについて、十分な電源供給能力およびESD(Electrostatic discharge)保護能力を保証する必要がある。このことは、各I/Oセル列において電源供給用I/Oセルを増やすことによって対処可能であるが、この場合には、半導体集積回路の面積がさらに増加してしまうという問題が起こる。
 本開示は、半導体集積回路装置について、半導体集積回路の面積の増加を招くことなく、I/Oセルに対する電源供給能力およびESD保護能力を十分に確保可能な構成を提供することを目的とする。
 本開示の一態様では、半導体集積回路装置であって、第1方向に並ぶ複数のI/Oセルをそれぞれ備え、前記第1方向と垂直をなす第2方向において隣り合う第1および第2I/Oセル列と、前記第1および第2I/Oセル列のそれぞれの領域内において、少なくとも1層の第1配線層において前記第1方向に延びるように設けられた、所定電源電位用の第1および第2列内電源配線と、前記第1I/Oセル列と前記第2I/Oセル列との間の領域に、前記第1配線層の上層にありかつ前記第1配線層の各層よりも厚さが大きい第2配線層において、前記第1方向に延びるように設けられた、前記所定電源電位用の第1電源配線と、前記第1電源配線と、前記第1および第2列内電源配線のうち少なくともいずれか一方とを接続する第2電源配線とを備える。
 この態様によると、第1および第2I/Oセル列にそれぞれ設けられた第1および第2列内電源配線のうち少なくともいずれか一方は、第1および第2I/Oセル列の間に設けられた第1電源配線と、第2電源配線を介して接続されている。このため、列内電源配線のみの場合に比べて、第1電源配線の存在により、電源供給能力やESD保護能力が強化される。しかも、第1電源配線は列内電源配線よりも厚さが大きい配線層に形成されているので、電源供給能力やESD保護能力の強化効果はより大きい。したがって、I/Oセルを増やすことなく、すなわち、半導体集積回路の面積を増加させることなく、電源供給能力やESD保護能力が強化される。また、電源供給用のパッドの個数も減らすことができる。
 本開示の他の態様では、半導体集積回路装置であって、第1方向に並ぶ複数のI/Oセルを備えた、少なくとも1つのI/Oセル列と、前記少なくとも1つのI/Oセル列の領域内において、少なくとも1層の第1配線層において前記第1方向に延びるように設けられた、所定電源電位用の列内電源配線と、前記少なくとも1つのI/Oセル列の領域内において、前記第1方向に並ぶように配置された複数の外部接続パッドをそれぞれ備え、前記第1方向と垂直をなす第2方向において並ぶ複数のパッド列と、前記少なくとも1つのI/Oセル列の領域内における前記複数のパッド列のいずれかの間において、前記第1配線層の上層にありかつ前記第1配線層の各層よりも厚さが大きい第2配線層において、前記第1方向に延びるように設けられた、前記所定電源電位用の第1電源配線と、前記第1電源配線と、前記列内電源配線とを接続する第2電源配線とを備える。
 この態様によると、I/Oセル列に設けられた列内電源配線は、複数のパッド列のいずれかの間に設けられた第1電源配線と、第2電源配線を介して接続されている。このため、列内電源配線のみの場合に比べて、第1電源配線の存在により、電源供給能力やESD保護能力が強化される。しかも、第1電源配線は列内電源配線よりも厚さが大きい配線層に形成されているので、電源供給能力やESD保護能力の強化効果はより大きい。したがって、I/Oセルを増やすことなく、すなわち、半導体集積回路の面積を増加させることなく、電源供給能力やESD保護能力が強化される。また、電源供給用のパッドの個数も減らすことができる。
 本開示の他の態様では、半導体集積回路装置であって、第1方向に並ぶ複数のI/Oセルを備えた、少なくとも1つのI/Oセル列と、前記少なくとも1つのI/Oセル列の領域内において、少なくとも1層の第1配線層において前記第1方向に延びるように設けられた、所定電源電位用の列内電源配線と、前記少なくとも1つのI/Oセル列の領域内において、前記第1方向に並ぶように配置された複数の外部接続パッドをそれぞれ備え、前記第1方向と垂直をなす第2方向において並ぶ複数のパッド列と、前記少なくとも1つのI/Oセル列の領域内における、前記複数のパッド列の前記第2方向における両側のうち少なくともいずれか一方において、前記第1配線層の上層にありかつ前記第1配線層の各層よりも厚さが大きい第2配線層において、前記第1方向に延びるように設けられた、前記所定電源電位用の第1電源配線と、前記第1電源配線と、前記列内電源配線とを接続する第2電源配線とを備える。
 この態様によると、I/Oセル列に設けられた列内電源配線は、複数のパッド列の、パッド並びと垂直をなす第2方向における両側の少なくとも一方に設けられた第1電源配線と、第2電源配線を介して接続されている。このため、列内電源配線のみの場合に比べて、第1電源配線の存在により、電源供給能力やESD保護能力が強化される。しかも、第1電源配線は列内電源配線よりも厚さが大きい配線層に形成されているので、電源供給能力やESD保護能力の強化効果はより大きい。したがって、I/Oセルを増やすことなく、すなわち、半導体集積回路の面積を増加させることなく、電源供給能力やESD保護能力が強化される。また、電源供給用のパッドの個数も減らすことができる。
 本開示に係る半導体集積回路装置によると、半導体集積回路の面積の増加を招くことなく、I/Oセル列について電源供給能力およびESD保護能力を十分に確保可能である。
第1実施形態に係る半導体集積回路装置の全体構成を模式的に示す平面図 第1実施形態に係る半導体集積回路装置のI/O領域の構成例を示す図 図2の構成例における断面図 図2の構成例における断面図 第1実施形態に係る半導体集積回路装置のI/O領域の他の構成例を示す図 第2実施形態に係る半導体集積回路装置のI/O領域の構成例を示す図
 以下、実施の形態について、図面を参照して説明する。
 (第1実施形態)
 図1は実施形態に係る半導体集積回路装置の全体構成を模式的に示す平面図である。図1に示す半導体集積回路装置1は、内部コア回路が形成されたコア領域2と、コア領域2の周囲に設けられ、インターフェイス回路(I/O回路)が形成されたI/O領域3とを備えている。I/O領域3には、半導体集積回路装置1の周辺部を環状に囲むように、2列のI/Oセル列10A,10Bが設けられている。図1では図示を簡略化しているが、I/Oセル列10A,10Bにはそれぞれ、インターフェイス回路を構成する複数のI/Oセル10が並んでいる。また図1では図示を省略しているが、半導体集積回路装置1には、複数の外部接続パッドが配置されている。
 図2は本実施形態に係る半導体集積回路装置1のI/O領域3の構成例を示す平面図であり、図1の部分Wの拡大図に相当する。なお、図2では、I/Oセルの内部構成や信号配線等については図示を省略している。また、図3は図2の線X-X’における模式断面図であり、図4は図2の線Y-Y’における模式断面図である。
 図2において、2列のI/Oセル列10A,10Bは、それぞれ、第1方向に相当するX方向(図面横方向、半導体集積回路装置1の外辺に沿う方向)に並ぶ複数のI/Oセル10(セル領域を2点鎖線で示している)を備えている。I/Oセル列10A,10Bは、第1方向と垂直をなす第2方向に相当するY方向(図面縦方向)において隣り合っている。I/Oセル10には、電源電位や接地電位を供給するためのI/Oセルや、信号用のI/Oセルが含まれる。
 I/Oセル列10A,10Bの領域内において、複数の外部接続パッド(以下、適宜、単に「パッド」という)30が配置されている。パッド30は、I/Oセル10の上層において、X方向に並ぶように配置されており、I/Oセル列10A,10Bにおいてそれぞれ、2列ずつ、全体で4列、千鳥状にずらして配置されている。パッド30の2列目と3列目との間隔が、I/Oセル列10A,10Bの領域内におけるパッド列の間隔よりも広くなっている。パッド30は、電源電位VDDIOが供給されるパッド31a,31b,31c,31d(図で「VDDIO」と記す)と、接地電位VSSが供給されるパッド32a,32b,32c,32d(図で「VSS」と記す)とを含む。VDDIOは例えば3.3Vである。その他のパッド30は主に信号用である。第1パッドとしてのパッド31a,31b,32a,32bはI/Oセル列10A上に配置されており、第2パッドとしてのパッド31c,31d,32c,32dはI/Oセル列10B上に配置されている。
 各パッド30は、半導体集積回路装置1の外部と、例えばボンディングワイヤやバンプを介して接続される。また、各パッド30は、対応するI/Oセル10の上層に配置されており、対応するI/Oセル10と接続されている。ただし、パッド30とこれに対応するI/Oセル10との位置関係は、この態様に限られるものではない。
 I/Oセル列10A,10Bの領域内に、VDDIO用の列内電源配線21a,21b,21c,21dと、VSS用の列内電源配線22a,22b,22c,22dとが、X方向に延びるように設けられている。第1列内電源配線としての列内電源配線21a,21b,22a,22bはI/Oセル列10Aの領域内に配置されており、第2列内電源配線としての列内電源配線21c,21d,22c,22dはI/Oセル列10Bの領域内に配置されている。なお、列内電源配線の本数や配置位置、および、供給する電位の種類は、図2に示した構成に限られるものではない。
 また、各I/Oセル10間には、Y方向に延びる信号配線領域28が設けられている。信号配線領域28には、信号配線を配置することができる。すなわち、Y方向に延びる信号配線が、I/Oセル10間を通っていてもよい。なお、I/Oセル10を隙間なく配置してもよい。この場合、信号配線はI/Oセル10内を通過させるようにしてもよい。また、図2では、I/Oセル10は、サイズおよび形状が均一であるように図示しているが、これらは均一でなくてもよい。
 図3および図4に示すように、パッド30(31c,32b,32c)の下層には厚膜の配線層M1,M2が設けられている。例えばボンディング時のダメージ緩和のために、パッド30の下には、配線層M1,M2にそれぞれ厚膜配線51,厚膜配線52が設けられる。パッド30と厚膜配線51はビア53を介して接続され、厚膜配線51と厚膜配線52はビア54を介して接続される。列内電源配線21a~21d,22a~22dは、配線層M2の下層にある、積層された3層の配線層M31,M32,M32(第1配線層に相当)に設けられている。配線層M1,M2の厚さは、配線層M31,M32,M33よりも大きい。
 図2にもどり、I/Oセル列10AとI/Oセル列10Bとの間の領域に、第1電源配線としての電源配線23,24が、X方向に延びるように設けられている。電源配線23はVDDIO用であり、電源配線24はVSS用である。また、第2電源配線としての電源配線25a,25b,25c,25d,26a,26b,26c,26dが、主にY方向に延びるように、設けられている。
 電源配線25a,25bは、I/Oセル列10AからI/Oセル列10BにわたってY方向に直線状に延びており、I/Oセル列10A,10B間に設けられた電源配線23と接続され、また、I/Oセル列10Aに設けられた列内電源配線21a,21bおよびI/Oセル列10Bに設けられた列内電源配線21c,21dと接続されている。電源配線26a,26bは、I/Oセル列10AからI/Oセル列10BにわたってY方向に直線状に延びており、I/Oセル列10A,10B間に設けられた電源配線24と接続され、また、I/Oセル列10Aに設けられた列内電源配線22a,22bおよびI/Oセル列10Bに設けられた列内電源配線22c,22dと接続されている。
 また、電源配線25aはパッド31a,31cと接続されている。パッド31a,31cはY方向において対向する位置に配置されており、電源配線25aと平面視で重なっている。電源配線25bはパッド31b,31dと接続されている。パッド31b,31dはY方向において対向する位置に配置されており、電源配線25bと平面視で重なっている。電源配線26aはパッド32a,32cと接続されている。パッド32a,32cはY方向において対向する位置に配置されており、電源配線26aと平面視で重なっている。電源配線26bはパッド32b,32dと接続されている。パッド32b,32dはY方向において対向する位置に配置されており、電源配線26bと平面視で重なっている。このような配置によって、パッドと電源配線を効率良く、短い距離で接続することができる。
 また、電源配線25cは、I/Oセル列10A,10B間に設けられた電源配線23とI/Oセル列10Aに設けられた列内電源配線21a,21bとを接続している。電源配線25dは、I/Oセル列10A,10B間に設けられた電源配線23とI/Oセル列10Bに設けられた列内電源配線21c,21dとを接続している。電源配線25c、25dは、屈曲部を有し、パッド30と平面視で重ならないように配置されている。また、電源配線26cは、I/Oセル列10A,10B間に設けられた電源配線24とI/Oセル列10Aに設けられた列内電源配線22bとを接続している。電源配線26dは、I/Oセル列10A,10B間に設けられた電源配線24とI/Oセル列10Bに設けられた列内電源配線22cとを接続している。
 図3および図4に示すように、I/Oセル列10A,10B間に設けられた電源配線23,24は、厚膜の配線層M1に形成されている。また、主にY方向に延びる電源配線26b等は、厚膜の配線層M2に形成されている。電源配線23,24と配線層M2に形成された電源配線26b等とは、ビア41を介して接続されている。列内電源配線22b,22c等と配線層M2に形成された電源配線26b等とは、ビア42を介して接続されている。また、図4に示すように、パッド30の形成層において、Y方向においてI/Oセル列10AからI/Oセル列10Bにかけて延びる配線43が形成されていてもよい。この配線43は、VSS用電源配線24とビア44を介して接続されている。
 なお、図3および図4に示す断面構造は一例であり、本実施形態はこれに限られるものではない。例えば、ここでは列内電源配線は3層構造であるものとしたが、1層配線でもよいし、3層以外の多層配線であってもよい。また、配線層M1と配線層M2との間に他の1層以上の配線層があってもよい。この場合は、電源配線23,24と配線層M2に形成された電源配線26a等とは、その間の各配線層に形成した短配線とビアとの組み合わせによって、接続すればよい。同様に、配線層M2と列内電源配線が形成される配線層との間に他の1層以上の配線層があってもよい。この場合は、列内電源配線と配線層M2に形成された電源配線26a等とは、その間の各配線層に形成した短配線とビアとの組み合わせによって、接続すればよい。また、図3のα1および図4のα2に示すように、電源配線26b等は、例えばパッド30間を通過する部分において、配線層M1およびパッド30の形成層を用いて多層配線として形成してもよい。これにより、電源配線26b等のインピーダンスを下げることができる。なお、図3のα1および図4のα2に示す構成は省いてもかまわない。
 図2の構成はさらに次のような特徴を有している。I/Oセルは一般に、ESD回路や半導体集積回路装置外部へ信号を出力するための出力バッファ等を含む高電源電圧領域と、半導体集積回路装置内部へ信号を入出力するための回路部等を含む低電源電圧領域とを有している。そして、図2の各I/Oセル10は、Y方向において、高電源電圧領域(図2において「H」と示す部分)と、低電源電圧領域(図2において「L」と示す部分)とに分かれている。ここで、通常は、主として外部との入出力に用いられる高電源電圧領域は半導体集積回路装置1外側に、主として内部コア領域との入出力に用いられる低電源電圧領域は半導体集積回路装置1内側になるように、I/Oセルが配置される。これに対して図2の構成では、I/Oセル列10Aは、高電源電圧領域が半導体集積回路装置1内側に、低電源電圧領域が半導体集積回路装置1外側になるように配置されている。すなわち、I/Oセル列10A,10Bはいずれも、高電源電圧領域が電源配線23,24の側にあるように配置されている。
 <作用効果>
 図2~図4の構成によると、VDDIOに関して、I/Oセル列10Aに設けられた列内電源配線21a,21bおよびI/Oセル列10Bに設けられた列内電源配線21c,21dは、I/Oセル列10A,10B間に設けられた電源配線23と、電源配線25a~25dを介して接続されている。このため、列内電源配線21a~21dのみの場合に比べて、電源配線23の存在により、電源供給能力やESD保護能力が強化される。また、VSSに関して、I/Oセル列10Aに設けられた列内電源配線22a,22bおよびI/Oセル列10Bに設けられた列内電源配線22c,22dは、I/Oセル列10A,10B間に設けられた電源配線24と、電源配線26a~26dを介して接続されている。このため、列内電源配線22a~22dのみの場合に比べて、電源配線24の存在により、電源供給能力やESD保護能力が強化される。
 しかも、電源配線23,24は厚膜の配線層M1に形成されており、配線層M31~M33に形成された列内電源配線21a~21d,22a~22dよりも厚さが大きいので、電源供給能力やESD保護能力の強化効果はより大きくなる。したがって、I/Oセル列10A,10Bについて電源供給に用いるI/Oセル10を増やすことなく、すなわち、半導体集積回路の面積を増加させることなく、電源供給能力やESD保護能力を強化することができる。また、電源供給に用いるパッド30の個数も減らすことができる。
 また、I/Oセル列10Aに設けられた列内電源配線21a,21bとI/Oセル列10Bに設けられた列内電源配線21c,21dとは、電源配線23および電源配線25a~25dを介して、互いに接続されている。同様に、I/Oセル列10Aに設けられた列内電源配線22a,22bとI/Oセル列10Bに設けられた列内電源配線22c,22dとは、電源配線24および電源配線26a~26dを介して、互いに接続されている。このため、I/Oセル列10A,10Bはそれぞれ、他方のI/Oセル列から電源供給を受けたり、他方のI/Oセル列のESD保護機能を活用したりすることが可能になる。
 また、I/Oセル列10A,10Bはいずれも、高電源電圧領域が電源配線23,24の側にあるように配置されている。このように、高電源電圧領域を、電源配線23,24が配置されている領域に近い方に配置することによって、電源配線23,24から高電源電圧領域に設けられたESD回路や出力バッファに至るまでの距離を短くすることができるため、電源電圧降下の抑制やESD耐性の向上をより効果的に実現することができる。
 <他の構成例>
 図2の構成では、I/Oセル列10A,10Bの両方の列内電源配線を、I/Oセル列10A,10B間の電源配線に接続するものとしたが、I/Oセル列10A,10Bのうちいずれか一方の列内電源配線を、I/Oセル列10A,10B間の電源配線に接続するようにしてもよい。
 また、図2の構成では、電源電位VDDIOと接地電位VSSとが供給される半導体集積回路装置において、VDDIO,VSSそれぞれに関して本実施形態の構成を適用するものとしたが、これに限られるものではない。例えば、電源電位VDDIOのみに本実施形態の構成を適用してもよい。あるいは、複数種類の電源電位が供給される半導体集積回路装置において、複数種類の電源電位および接地電位のうちの一部または全部について、本実施形態の構成を適用してもよい。
 図5は複数種類の電源電位が供給される半導体集積回路装置1のI/O領域3の他の構成例を示す平面図である。図5の構成例では、3種類の電源電位VDD,VDDIO18,VDDIO33が供給される。例えば、VDDは0.9V、VDDIO18は1.8V、VDD33は3.3Vである。なお、図5では、I/Oセルの内部構成や信号配線等については図示を省略している。また、列内電源配線についても、簡略化のために図示を省略している。
 パッド30は、VDDが供給されるパッド33a,33b(図で「VDD」と記す)と、VDDIO18が供給されるパッド34a,34b(図で「VDDIO18」と記す)と、VDDIO33が供給されるパッド35a,35b(図で「VDDIO33」と記す)と、VSSが供給されるパッド36a,36b,36c,36d(図で「VSS」と記す)とを含む。その他のパッド30は主に信号用である。第1パッドとしてのパッド33a,34a,35a,36a,36bはI/Oセル列10A上に配置されており、第2パッドとしてのパッド33b,34b,35b,36c,36dはI/Oセル列10B上に配置されている。
 I/Oセル列10AとI/Oセル列10Bとの間の領域に、第1電源配線としての電源配線61a,61b,62a,62b,63a,63b,64a,64bが、X方向に延びるように設けられている。電源配線61a,61bはVDD用であり、電源配線62a,62bはVDDIO18用であり、電源配線63a,63bはVDDIO33用であり、電源配線64a,64bはVSS用である。また、第2電源配線としての電源配線65a,65b,65c,66a,66b,66c,67a,67b,67c,68a,68b,68c,68dが、主にY方向に延びるように、設けられている。
 電源配線65aは、I/Oセル列10AからI/Oセル列10BにわたってY方向に直線状に延びており、I/Oセル列10A,10B間に設けられたVDD用電源配線61a,61bと接続され、また、I/Oセル列10Aに設けられた列内電源配線およびI/Oセル列10Bに設けられた列内電源配線と接続されている。電源配線65bは、電源配線61a,61bとI/Oセル列10Aに設けられた列内電源配線とを接続している。電源配線65cは、電源配線61a,61bとI/Oセル列10Bに設けられた列内電源配線とを接続している。電源配線65b,65cは屈曲部を有し、パッド30と平面視で重ならないように配置されている。
 電源配線66aは、I/Oセル列10AからI/Oセル列10BにわたってY方向に直線状に延びており、I/Oセル列10A,10B間に設けられたVDDIO18用電源配線62a,62bと接続され、また、I/Oセル列10Aに設けられた列内電源配線およびI/Oセル列10Bに設けられた列内電源配線と接続されている。電源配線66bは、電源配線62a,62bとI/Oセル列10Aに設けられた列内電源配線とを接続している。電源配線66cは、電源配線62a,62bとI/Oセル列10Bに設けられた列内電源配線とを接続している。電源配線66b,66cは屈曲部を有し、パッド30と平面視で重ならないように配置されている。
 電源配線67aは、I/Oセル列10AからI/Oセル列10BにわたってY方向に直線状に延びており、I/Oセル列10A,10B間に設けられたVDDIO33用電源配線63a,63bと接続され、また、I/Oセル列10Aに設けられた列内電源配線およびI/Oセル列10Bに設けられた列内電源配線と接続されている。電源配線67bは、電源配線63a,63bとI/Oセル列10Aに設けられた列内電源配線とを接続している。電源配線67cは、電源配線63a,63bとI/Oセル列10Bに設けられた列内電源配線とを接続している。電源配線67b,67cは屈曲部を有し、パッド30と平面視で重ならないように配置されている。
 電源配線68a,68bは、I/Oセル列10AからI/Oセル列10BにわたってY方向に直線状に延びており、I/Oセル列10A,10B間に設けられたVSS用電源配線64a,64bと接続され、また、I/Oセル列10Aに設けられた列内電源配線およびI/Oセル列10Bに設けられた列内電源配線と接続されている。電源配線68cは、電源配線64a,64bとI/Oセル列10Aに設けられた列内電源配線とを接続している。電源配線68dは、電源配線64a,64bとI/Oセル列10Bに設けられた列内電源配線とを接続している。電源配線68c,68dは屈曲部を有し、パッド30と平面視で重ならないように配置されている。
 また、電源配線65aはパッド33a,33bと接続されている。パッド33a,33bはY方向において対向する位置に配置されており、電源配線65aと平面視で重なっている。電源配線66aはパッド34a,34bと接続されている。パッド34a,34bはY方向において対向する位置に配置されており、電源配線66aと平面視で重なっている。電源配線67aはパッド35a,35bと接続されている。パッド35a,35bはY方向において対向する位置に配置されており、電源配線67aと平面視で重なっている。電源配線68aはパッド36a,36cと接続されている。パッド36a,36cはY方向において対向する位置に配置されており、電源配線68aと平面視で重なっている。電源配線68bはパッド36b,36dと接続されている。パッド36b,36dはY方向において対向する位置に配置されており、電源配線68bと平面視で重なっている。このような配置によって、パッドと電源配線を効率良く、短い距離で接続することができる。
 その他に、電源配線61a,61bを接続する電源配線65d、電源配線62a,62bを接続する電源配線66d、電源配線63a,63bを接続する電源配線67dが、Y方向に延びるように、設けられている。
 なお、図5の構成における配線層構造については、図2の構成と同様である。図5の構成においても、図2の構成と同様の作用効果が得られる。すなわち、半導体集積回路の面積を増加させることなく、電源供給能力やESD保護能力を強化することができる。
 また、図2および図5の構成では、2列のI/Oセル列10A,10Bが配置されているものとしたが、これに限られるものではない。例えば、3列以上のI/Oセル列について、本実施形態の構成を適用してもよいし、3列以上のI/Oセル列において、全列ではなく、2列以上の一部のI/Oセル列に本実施形態の構成を適用してもかまわない。
 また、パッドの配置形態、電源配線の配置形態等は、図2や図5の構成に限られるものではない。例えば、パッド30は、I/Oセル列10A,10Bにおいてそれぞれ、2列ずつ、千鳥状にずらして配置されているが、パッド列数はこれに限られるものではなく、また、パッドは千鳥状にずらしていなくてもかまわない。また、パッド列の間隔も、図2や図5に示したものに限られるものではない。また、VDDIOが供給されるパッドとVSSが供給されるパッドとが、それぞれ2個ずつ、I/Oセル列10A,10Bに配置されているが、これに限られるものではなく、例えば、I/Oセル列10A,10BのいずれかにVDDIOが供給されるパッドがなくてもかまわない。また、VDDIOが供給されるパッド同士、VSSが供給されるパッド同士がY方向において対向しているものとしたが、対向していなくてもかまわない。また、I/Oセル列10A,10B間に、VDD用電源配線23とVSS用電源配線24とが、図2の構成では1本ずつ、図5の構成では2本ずつ、配置されているものとしたが、電源配線の本数はこれに限られるものではない。
 (第2実施形態)
 図6は第2実施形態に係る半導体集積回路装置のI/O領域3の構成例を示す図であり、図1の部分Wの拡大図に相当する。図6の構成例では、3種類の電源電位VDD,VDDIO18,VDDIO33が供給される。例えば、VDDは0.9V、VDDIO18は1.8V、VDD33は3.3Vである。なお、図6では、I/Oセルの内部構成や信号配線等については図示を省略している。
 図6において、2列のI/Oセル列10A,10Bは、それぞれ、第1方向に相当するX方向(図面横方向、半導体集積回路装置1の外辺に沿う方向)に並ぶ複数のI/Oセル10(セル領域を2点鎖線で示している)を備えている。I/Oセル列10A,10Bは、第1方向と垂直をなす第2方向に相当するY方向(図面縦方向)において隣り合っている。I/Oセル10には、電源電位や接地電位を供給するためのI/Oセルや、信号用のI/Oセルが含まれる。図6の構成では、2列のI/Oセル列10A,10Bは、間隔を空けずに配置されている。
 I/Oセル列10A,10Bの領域内において、複数のパッド30が設けられている。パッド30は、I/Oセル10の上層において、X方向に並ぶように配置されており、I/Oセル列10A,10Bにおいてそれぞれ2列ずつ、千鳥状にずらして配置されている。すなわち、I/Oセル列10A,10Bの領域内に、4列のパッド列30A,30B,30C,30Dが配置されている。パッド30は、VDDが供給されるパッド33c,33d(図で「VDD」と記す)と、VDDIO18が供給されるパッド34c,34d(図で「VDDIO18」と記す)と、VDDIO33が供給されるパッド35c,35d(図で「VDDIO33」と記す)と、VSSが供給されるパッド36c,36d(図で「VSS」と記す)とを含む。その他のパッド30は主に信号用である。
 I/Oセル列10A,10Bの領域内に、VDD用の列内電源配線71a,71bと、VDDIO18用の列内電源配線72a,72bと、VDDIO33用の列内電源配線73a,73bと、VSS用の列内電源配線74a,74b,74c,74d,74e,74fとが、X方向に延びるように設けられている。列内電源配線71a,72a,74aはI/Oセル列10Aの領域内でパッド列30Aの下層に配置されており、列内電源配線73a,74b,74cはI/Oセル列10Aの領域内でパッド列30Bの下層に配置されている。列内電源配線73b,74d,74eはI/Oセル列10Bの領域内でパッド列30Cの下層に配置されており、列内電源配線71b,72b,74fはI/Oセル列10Bの領域内でパッド列30Dの下層に配置されている。なお、列内電源配線の本数や配置位置、および、供給する電位の種類は、図6に示した構成に限られるものではない。
 また、各I/Oセル10間には、Y方向に延びる信号配線が通っていてもよい。また、図6では、I/Oセル10は、サイズおよび形状が均一であるように図示しているが、これらは均一でなくてもよい。
 パッド列30A,30B間の領域に、第1電源配線としてのVDDIO18用の電源配線76aおよびVDDIO33用の電源配線77aが、X方向に延びるように設けられている。パッド列30B,30C間の領域に、第1電源配線としてのVSS用の電源配線78a,78bが、X方向に延びるように設けられている。パッド列30C,30D間の領域に、第1電源配線としてのVDDIO18用の電源配線76bおよびVDDIO33用の電源配線77bが、X方向に延びるように設けられている。また、パッド列30Aの図面下側に、VDD用の電源配線75aがX方向に延びるように設けられており、パッド列30Dの図面上側に、VDD用の電源配線75bがX方向に延びるように設けられている。すなわち、複数のパッド列30A~30DのY方向における両側にそれぞれ、第1電源配線としてのVDD用の電源配線75a,75bが設けられている。
 さらに、第2電源配線としての電源配線81,82a,82b,82c,83a,83b,83c,84a,84b,84c,84d,84eが、主にY方向に延びるように、設けられている。電源配線81は、I/Oセル列10AからI/Oセル列10BにわたってY方向に直線状に延びており、複数のパッド列30A~30DのY方向における両側にそれぞれ設けられたVDD用の電源配線75a,75bと、I/Oセル列10Aに設けられた列内電源配線71aおよびI/Oセル列10Bに設けられた列内電源配線71bとを接続している。
 電源配線82aは、I/Oセル列10AからI/Oセル列10BにわたってY方向に直線状に延びており、VDDIO18用の電源配線76a,76bと、I/Oセル列10Aに設けられた列内電源配線72aおよびI/Oセル列10Bに設けられた列内電源配線72bとを接続している。電源配線82b,82cもまた、電源配線76a,76bと列内電源配線72a,72bとを接続している。電源配線82b,82cは屈曲部を有しており、パッド30と平面視で重ならないように配置されている。
 電源配線83aは、I/Oセル列10AからI/Oセル列10BにわたってY方向に直線状に延びており、VDDIO33用の電源配線77a,77bと、I/Oセル列10Aに設けられた列内電源配線73aおよびI/Oセル列10Bに設けられた列内電源配線73bとを接続している。電源配線83b,83cもまた、電源配線77a,77bと列内電源配線73a,73bとを接続している。電源配線83b,83cは屈曲部を有しており、パッド30と平面視で重ならないように配置されている。
 電源配線84aは、I/Oセル列10AからI/Oセル列10BにわたってY方向に直線状に延びており、VSS用の電源配線78a,78bと、I/Oセル列10Aに設けられた列内電源配線74a,74b,74cおよびI/Oセル列10Bに設けられた列内電源配線74d,74e,74fとを接続している。電源配線84b,84cは、電源配線78a,78bとI/Oセル列10Bに設けられた列内電源配線74d,74e,74fとを接続している。電源配線84d,84eは、電源配線78a,78bとI/Oセル列10Aに設けられた列内電源配線74a,74b,74cとを接続している。電源配線84b,84c,84d,84eは屈曲部を有しており、パッド30と平面視で重ならないように配置されている。
 また、電源配線81はパッド33c,33dと接続されている。パッド33c,33dはY方向において対向する位置に配置されており、電源配線81と平面視で重なっている。電源配線82aはパッド34c,34dと接続されている。パッド34c,34dはY方向において対向する位置に配置されており、電源配線82aと平面視で重なっている。電源配線83aはパッド35c,35dと接続されている。パッド35c,35dはY方向において対向する位置に配置されており、電源配線83aと平面視で重なっている。電源配線84aはパッド36c,36dと接続されている。パッド36c,36dはY方向において対向する位置に配置されており、電源配線84aと平面視で重なっている。このような配置によって、パッドと電源配線を効率良く、短い距離で接続することができる。
 図6の構成における配線層構造は、第1実施形態において図3および図4に示したものと同様である。すなわち、パッド列間に設けられた電源配線76a等や、パッド列のY方向における両側に設けられた電源配線75a,75bは、列内電源配線の配線層M31,M32,M33の上層であり、配線層M31,M32,M33よりも厚さが大きい配線層M1に設けられている。また、主にY方向に延びるように設けられた電源配線81等は、配線層M2に設けられている。なお、第1実施形態と同様に、配線層構造はこれに限られるものではない。
 <作用効果>
 図6の構成によると、VDDIO18に関して、I/Oセル列10A,10Bに設けられた列内電源配線72a,72bは、パッド列30A,30B間に設けられた電源配線76aおよびパッド列30C,30D間に設けられた電源配線76bと、電源配線82a~82cを介して接続されている。このため、列内電源配線72a,72bのみの場合に比べて、電源配線76a,76bの存在により、電源供給能力やESD保護能力が強化される。また、VDDIO33に関して、I/Oセル列10A,10Bに設けられた列内電源配線73a,73bは、パッド列30A,30B間に設けられた電源配線77aおよびパッド列30C,30D間に設けられた電源配線77bと、電源配線83a~83cを介して接続されている。このため、列内電源配線73a,73bのみの場合に比べて、電源配線77a,77bの存在により、電源供給能力やESD保護能力が強化される。また、VSSに関して、I/Oセル列10A,10Bに設けられた列内電源配線74a~74fは、パッド列30B,30C間に設けられた電源配線78a,78bと、電源配線84a~84eを介して接続されている。このため、列内電源配線74a~74fのみの場合に比べて、電源配線78a,78bの存在により、電源供給能力やESD保護能力が強化される。しかも、電源配線76a,76b,77a,77b,78a,78bは列内電源配線72a,72b,73a,73b,74a~74fよりも厚さが大きいので、電源供給能力やESD保護能力の強化効果はより大きい。
 また、図6の構成によると、VDDに関して、I/Oセル列10A,10Bに設けられた列内電源配線71a,71bは、複数のパッド列30A~30DのY方向における両側にそれぞれ設けられた電源配線75a,75bと、電源配線81を介して接続されている。このため、列内電源配線71a,71bのみの場合に比べて、電源配線75a,75bの存在により、電源供給能力やESD保護能力が強化される。しかも、電源配線75a,75bは列内電源配線71a,71bよりも厚さが大きいので、電源供給能力やESD保護能力の強化効果はより大きい。
 したがって、I/Oセル列10A,10Bについて電源供給に用いるI/Oセル10を増やすことなく、すなわち、半導体集積回路の面積を増加させることなく、電源供給能力やESD保護能力が強化される。また、電源供給する電源パッドの個数も減らすことができる。
 <他の構成例>
 図6の構成は一例であり、パッドの配置形態、列内電源配線の配置形態、パッド列間の電源配線の配置形態等については、図6の構成に限られるものではない。例えば、図6の構成では、パッド列30A~30DのY方向における両側にVDDを供給する電源配線75a,75bをそれぞれ配置するものとしたが、他の電位例えばVSSを供給する電源配線を配置してもよい。あるいは、パッド列のY方向における両側のいずれか一方にのみ電源配線を配置してもよいし、パッド列のY方向における両側に、互いに異なる電位を供給する電源配線をそれぞれ配置してもよい。
 また、図6の構成では、2列のI/Oセル列10A,10Bが配置されているものとしたが、これに限られるものではない。例えば、1列や3列以上のI/Oセル列について、本実施形態の構成を適用してもよい。また、パッド30は、I/Oセル列10A,10Bにおいてそれぞれ、2列ずつ、千鳥状にずらして配置されているが、パッド列数はこれに限られるものではなく、また、パッドは千鳥状にずらしていなくてもかまわない。また、パッド列の間隔も、図6に示したものに限られるものではない。
 なお、上述した各実施形態では、I/Oセル列10A,10Bは、半導体集積回路装置1の周辺部を環状に囲むように設けられているものとしたが、これに限られるものではなく、例えば、半導体集積回路装置1の周辺部の一部に設けられていてもよい。また、本実施形態の構成は、I/Oセル列10A,10Bの全体にわたって適用されている必要はなく、その一部の範囲において適用されていればよい。
 本開示によると、半導体集積回路装置について、半導体集積回路の面積の増加を招くことなく、I/Oセル列について電源供給能力およびESD保護能力を十分に確保可能なので、例えば、入出力信号数が多い大規模LSIの小型化に有用である。
1 半導体集積回路装置
10 I/Oセル
10A I/Oセル列
10B I/Oセル列
21a,21b,22a,22b 第1列内電源配線
21c,21d,22c,22d 第2列内電源配線
23,24 第1電源配線
25a~25d,26a~26d 第2電源配線
30 外部接続パッド
30A~30D パッド列
31a,31b,32a,32b 第1パッド
31c,31d,32c,32d 第2パッド
33a,34a,35a,36a,36b 第1パッド
33b,34b,35b,36c,36d 第2パッド
61a,61b,62a,62b,63a,63b,64a,64b 第1電源配線
65a~65c,66a~66c,67a~67c,68a~68d 第2電源配線
71a,71b,72a,72b,73a,73b,74a~74d 列内電源配線
75a,75b,76a,76b,77a,77b,78a,78b 第1電源配線
81,82a~82c,83a~83d,84a~84e 第2電源配線

Claims (18)

  1.  第1方向に並ぶ複数のI/Oセルをそれぞれ備え、前記第1方向と垂直をなす第2方向において隣り合う第1および第2I/Oセル列と、
     前記第1および第2I/Oセル列のそれぞれの領域内において、少なくとも1層の第1配線層において前記第1方向に延びるように設けられた、所定電源電位用の第1および第2列内電源配線と、
     前記第1I/Oセル列と前記第2I/Oセル列との間の領域に、前記第1配線層の上層にありかつ前記第1配線層の各層よりも厚さが大きい第2配線層において、前記第1方向に延びるように設けられた、前記所定電源電位用の第1電源配線と、
     前記第1電源配線と、前記第1および第2列内電源配線のうち少なくともいずれか一方とを接続する第2電源配線とを備えた
    ことを特徴とする半導体集積回路装置。
  2.  請求項1記載の半導体集積回路装置において、
     前記第2電源配線は、前記第2方向に直線状に延びるように配置されており、かつ、前記第1電源配線と、前記第1および第2列内電源配線の両方とを接続する配線を含む
    ことを特徴とする半導体集積回路装置。
  3.  請求項1記載の半導体集積回路装置において、
     前記第2電源配線は、屈曲部を有する配線を含む
    ことを特徴とする半導体集積回路装置。
  4.  請求項1記載の半導体集積回路装置において、
     前記第2電源配線は、前記第1配線層の上層でかつ前記第2配線層の下層にあり、かつ前記第1配線層の各層よりも厚さが大きい第3配線層に設けられている
    ことを特徴とする半導体集積回路装置。
  5.  請求項4記載の半導体集積回路装置において、
     前記第2電源配線は、配線経路の少なくとも一部において、前記第3配線層に加えて前記第2配線層に設けられている
    ことを特徴とする半導体集積回路装置。
  6.  請求項1記載の半導体集積回路装置において、
     前記第1および第2I/Oセル列のそれぞれの領域内に設けられており、前記所定電源電位を供給するための外部接続パッドである第1および第2パッドを備え、
     前記第1および第2パッドは、前記第2方向において対向する位置に配置されており、かつ、前記第2電源配線とそれぞれ接続されている
    ことを特徴とする半導体集積回路装置。
  7.  請求項1記載の半導体集積回路装置において、
     前記第1および第2I/Oセル列におけるI/Oセルは、前記第2方向において分かれた高電源電圧領域と低電源電圧領域とを含み、かつ、前記高電源電圧領域が前記第1電源配線の側にあるように配置されている
    ことを特徴とする半導体集積回路装置。
  8.  請求項1記載の半導体集積回路装置において、
     前記第2方向に延びる信号配線が、前記I/Oセル間を通っている
    ことを特徴とする半導体集積回路装置。
  9.  第1方向に並ぶ複数のI/Oセルを備えた、少なくとも1つのI/Oセル列と、
     前記少なくとも1つのI/Oセル列の領域内において、少なくとも1層の第1配線層において前記第1方向に延びるように設けられた、所定電源電位用の列内電源配線と、
     前記少なくとも1つのI/Oセル列の領域内において、前記第1方向に並ぶように配置された複数の外部接続パッドをそれぞれ備え、前記第1方向と垂直をなす第2方向において並ぶ複数のパッド列と、
     前記少なくとも1つのI/Oセル列の領域内における前記複数のパッド列のいずれかの間において、前記第1配線層の上層にありかつ前記第1配線層の各層よりも厚さが大きい第2配線層において、前記第1方向に延びるように設けられた、前記所定電源電位用の第1電源配線と、
     前記第1電源配線と、前記列内電源配線とを接続する第2電源配線とを備えた
    ことを特徴とする半導体集積回路装置。
  10.  請求項9記載の半導体集積回路装置において、
     前記第2電源配線は、前記第2方向に直線状に延びるように配置された配線を含む
    ことを特徴とする半導体集積回路装置。
  11.  請求項9記載の半導体集積回路装置において、
     前記第2電源配線は、屈曲部を有する配線を含む
    ことを特徴とする半導体集積回路装置。
  12.  請求項9記載の半導体集積回路装置において、
     前記第2電源配線は、前記第1配線層の上層でかつ前記第2配線層の下層にあり、かつ前記第1配線層の各層よりも厚さが大きい第3配線層に設けられている
    ことを特徴とする半導体集積回路装置。
  13.  請求項9記載の半導体集積回路装置において、
     前記第2方向に延びる信号配線が、前記I/Oセル間を通っている
    ことを特徴とする半導体集積回路装置。
  14.  第1方向に並ぶ複数のI/Oセルを備えた、少なくとも1つのI/Oセル列と、
     前記少なくとも1つのI/Oセル列の領域内において、少なくとも1層の第1配線層において前記第1方向に延びるように設けられた、所定電源電位用の列内電源配線と、
     前記少なくとも1つのI/Oセル列の領域内において、前記第1方向に並ぶように配置された複数の外部接続パッドをそれぞれ備え、前記第1方向と垂直をなす第2方向において並ぶ複数のパッド列と、
     前記少なくとも1つのI/Oセル列の領域内における、前記複数のパッド列の前記第2方向における両側のうち少なくともいずれか一方において、前記第1配線層の上層にありかつ前記第1配線層の各層よりも厚さが大きい第2配線層において、前記第1方向に延びるように設けられた、前記所定電源電位用の第1電源配線と、
     前記第1電源配線と、前記列内電源配線とを接続する第2電源配線とを備えた
    ことを特徴とする半導体集積回路装置。
  15.  請求項14記載の半導体集積回路装置において、
     前記第2電源配線は、前記第2方向に直線状に延びるように配置された配線を含む
    ことを特徴とする半導体集積回路装置。
  16.  請求項14記載の半導体集積回路装置において、
     前記第2電源配線は、屈曲部を有する配線を含む
    ことを特徴とする半導体集積回路装置。
  17.  請求項14記載の半導体集積回路装置において、
     前記第2電源配線は、前記第1配線層の上層でかつ前記第2配線層の下層にあり、かつ前記第1配線層の各層よりも厚さが大きい第3配線層に設けられている
    ことを特徴とする半導体集積回路装置。
  18.  請求項14記載の半導体集積回路装置において、
     前記第2方向に延びる信号配線が。前記I/Oセル間を通っている
    ことを特徴とする半導体集積回路装置。
PCT/JP2017/004580 2016-03-28 2017-02-08 半導体集積回路装置 WO2017169150A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780018518.XA CN108886020B (zh) 2016-03-28 2017-02-08 半导体集成电路装置
JP2018508507A JP6849927B2 (ja) 2016-03-28 2017-02-08 半導体集積回路装置
US16/138,868 US10847462B2 (en) 2016-03-28 2018-09-21 Semiconductor integrated circuit device
US17/071,812 US11251125B2 (en) 2016-03-28 2020-10-15 Semiconductor integrated circuit device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-063758 2016-03-28
JP2016063758 2016-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/138,868 Continuation US10847462B2 (en) 2016-03-28 2018-09-21 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
WO2017169150A1 true WO2017169150A1 (ja) 2017-10-05

Family

ID=59963818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004580 WO2017169150A1 (ja) 2016-03-28 2017-02-08 半導体集積回路装置

Country Status (4)

Country Link
US (2) US10847462B2 (ja)
JP (1) JP6849927B2 (ja)
CN (1) CN108886020B (ja)
WO (1) WO2017169150A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044438A1 (ja) * 2018-08-28 2020-03-05 株式会社ソシオネクスト 半導体集積回路装置
WO2020079830A1 (ja) * 2018-10-19 2020-04-23 株式会社ソシオネクスト 半導体チップ
WO2024042698A1 (ja) * 2022-08-26 2024-02-29 株式会社ソシオネクスト 半導体集積回路装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098227A (ja) * 1995-06-16 1997-01-10 Fujitsu Ltd 半導体集積回路装置
JP2005159145A (ja) * 2003-11-27 2005-06-16 Oki Electric Ind Co Ltd 半導体集積回路の多層化電源ラインおよびそのレイアウト方法
JP2008218751A (ja) * 2007-03-05 2008-09-18 Fujitsu Ltd 半導体装置及びi/oセル
JP2011530171A (ja) * 2008-07-30 2011-12-15 クゥアルコム・インコーポレイテッド 集積回路においてi/oクラスタを形成するための方法及び装置
JP2013206905A (ja) * 2012-03-27 2013-10-07 Renesas Electronics Corp 半導体装置およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3380465B2 (ja) 1998-06-29 2003-02-24 松下電器産業株式会社 半導体装置
JP2007173760A (ja) * 2005-11-25 2007-07-05 Matsushita Electric Ind Co Ltd 半導体集積回路及びその設計方法
JP4995455B2 (ja) * 2005-11-30 2012-08-08 ルネサスエレクトロニクス株式会社 半導体装置
JP2007250933A (ja) * 2006-03-17 2007-09-27 Matsushita Electric Ind Co Ltd 半導体集積回路およびそのレイアウト設計方法
JP5242103B2 (ja) * 2007-09-07 2013-07-24 ルネサスエレクトロニクス株式会社 半導体集積回路のレイアウト方法
US20090128189A1 (en) * 2007-11-19 2009-05-21 Raminda Udaya Madurawe Three dimensional programmable devices
JP4492736B2 (ja) * 2008-06-12 2010-06-30 ソニー株式会社 半導体集積回路
US9135373B1 (en) * 2010-04-12 2015-09-15 Cadence Design Systems, Inc. Method and system for implementing an interface for I/O rings
US9401717B2 (en) * 2012-05-28 2016-07-26 Baysand Inc. Flexible, space-efficient I/O circuitry for integrated circuits
JP6028097B2 (ja) * 2013-05-21 2016-11-16 ルネサスエレクトロニクス株式会社 半導体集積回路装置
WO2016063459A1 (ja) * 2014-10-24 2016-04-28 株式会社ソシオネクスト 半導体集積回路装置
CN107112280B (zh) * 2014-10-24 2020-08-04 株式会社索思未来 半导体集成电路装置
US10424575B2 (en) * 2015-03-26 2019-09-24 Renesas Electronics Corporation Semiconductor device
US9831236B2 (en) * 2015-04-29 2017-11-28 GlobalFoundries, Inc. Electrostatic discharge (ESD) protection transistor devices and integrated circuits with electrostatic discharge protection transistor devices
KR102401577B1 (ko) * 2016-06-02 2022-05-24 삼성전자주식회사 집적 회로 및 표준 셀 라이브러리
JP6966686B2 (ja) * 2016-10-21 2021-11-17 株式会社ソシオネクスト 半導体装置
US10672709B2 (en) * 2016-12-12 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd Power grid, IC and method for placing power grid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098227A (ja) * 1995-06-16 1997-01-10 Fujitsu Ltd 半導体集積回路装置
JP2005159145A (ja) * 2003-11-27 2005-06-16 Oki Electric Ind Co Ltd 半導体集積回路の多層化電源ラインおよびそのレイアウト方法
JP2008218751A (ja) * 2007-03-05 2008-09-18 Fujitsu Ltd 半導体装置及びi/oセル
JP2011530171A (ja) * 2008-07-30 2011-12-15 クゥアルコム・インコーポレイテッド 集積回路においてi/oクラスタを形成するための方法及び装置
JP2013206905A (ja) * 2012-03-27 2013-10-07 Renesas Electronics Corp 半導体装置およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044438A1 (ja) * 2018-08-28 2020-03-05 株式会社ソシオネクスト 半導体集積回路装置
JPWO2020044438A1 (ja) * 2018-08-28 2021-08-12 株式会社ソシオネクスト 半導体集積回路装置
JP7140994B2 (ja) 2018-08-28 2022-09-22 株式会社ソシオネクスト 半導体集積回路装置
US11699660B2 (en) 2018-08-28 2023-07-11 Socionext Inc. Semiconductor integrated circuit device
WO2020079830A1 (ja) * 2018-10-19 2020-04-23 株式会社ソシオネクスト 半導体チップ
JPWO2020079830A1 (ja) * 2018-10-19 2021-09-16 株式会社ソシオネクスト 半導体チップ
JP7208543B2 (ja) 2018-10-19 2023-01-19 株式会社ソシオネクスト 半導体チップ
US11621259B2 (en) 2018-10-19 2023-04-04 Socionext Inc. Semiconductor chip
WO2024042698A1 (ja) * 2022-08-26 2024-02-29 株式会社ソシオネクスト 半導体集積回路装置

Also Published As

Publication number Publication date
JPWO2017169150A1 (ja) 2019-02-07
US11251125B2 (en) 2022-02-15
JP6849927B2 (ja) 2021-03-31
US20210028110A1 (en) 2021-01-28
CN108886020B (zh) 2022-09-09
US10847462B2 (en) 2020-11-24
US20190051601A1 (en) 2019-02-14
CN108886020A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2017169150A1 (ja) 半導体集積回路装置
US20080054307A1 (en) Power supply wiring configuration in semiconductor integrated circuit
US10438939B2 (en) Semiconductor integrated circuit device
US10446492B2 (en) Semiconductor integrated circuit device
JP5264135B2 (ja) 半導体集積回路及びマルチチップモジュール
JP2013021249A (ja) 半導体集積装置
JP7140994B2 (ja) 半導体集積回路装置
KR20090025239A (ko) 패드 및 입출력(i/o) 셀을 갖는 집적 회로
WO2010100849A1 (ja) 半導体集積回路装置
WO2017183352A1 (ja) 半導体チップおよびこれを備えた半導体装置
JP7323847B2 (ja) 半導体集積回路装置
CN112868094B (zh) 半导体芯片
JP5385575B2 (ja) 半導体記憶装置
JP2000307063A (ja) 半導体集積回路装置
JP2012164923A (ja) 半導体集積回路
JP2012114137A (ja) 半導体集積回路
JP2005353683A (ja) 半導体集積回路
JP2006013061A (ja) 半導体装置
JP2008172142A (ja) 半導体集積回路装置およびその設計方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018508507

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773698

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773698

Country of ref document: EP

Kind code of ref document: A1