US20190051601A1 - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device Download PDF

Info

Publication number
US20190051601A1
US20190051601A1 US16/138,868 US201816138868A US2019051601A1 US 20190051601 A1 US20190051601 A1 US 20190051601A1 US 201816138868 A US201816138868 A US 201816138868A US 2019051601 A1 US2019051601 A1 US 2019051601A1
Authority
US
United States
Prior art keywords
power supply
interconnect
row
interconnects
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/138,868
Other versions
US10847462B2 (en
Inventor
Masanobu Hirose
Toshihiro Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Socionext Inc
Original Assignee
Socionext Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Socionext Inc filed Critical Socionext Inc
Assigned to SOCIONEXT INC. reassignment SOCIONEXT INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIROSE, MASANOBU, NAKAMURA, TOSHIHIRO
Publication of US20190051601A1 publication Critical patent/US20190051601A1/en
Priority to US17/071,812 priority Critical patent/US11251125B2/en
Application granted granted Critical
Publication of US10847462B2 publication Critical patent/US10847462B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5286Arrangements of power or ground buses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0292Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using a specific configuration of the conducting means connecting the protective devices, e.g. ESD buses

Definitions

  • the present disclosure relates to a semiconductor integrated circuit device including a core region and an I/O region.
  • I/O cells input/output cells
  • Japanese Unexamined Patent Publication No. 2000-21987 discloses a semiconductor integrated circuit in which the I/O cells are arranged in multiple rows in a peripheral portion of the circuit. This arrangement avoids the area of the semiconductor integrated circuit from being defined by the I/O cells.
  • each I/O cell row is provided with a ring-shaped power supply interconnect, to which power is supplied through an external connection pad.
  • This configuration requires each I/O cell row to have sufficient power supply ability and electrostatic discharge (ESD) protection capability. This requirement can be met if the number of the I/O cells for power supply is increased in each I/O cell row. Unfortunately, this solution further increases the area of the semiconductor integrated circuit.
  • a semiconductor integrated circuit device includes: a first I/O cell row and a second I/O cell row each including a plurality of I/O cells arranged side by side in a first direction, the first and second I/O cell rows being adjacent to each other in a second direction perpendicular to the first direction; a first in-row power supply interconnect and a second in-row power supply interconnect extending in the first direction in a first interconnect layer, and provided in a region of the first I/O cell row and a region of the second I/O cell row, respectively, each of the first and second in-row power supply interconnects supplying a predetermined power supply potential, and the first interconnect layer being composed of a single sublayer or two or more sublayers; a first power supply interconnect extending in the first direction in a second interconnect layer which is located above the first interconnect layer and thicker than the single sublayer or a thickest one of the two or more sublayers of the first interconnect layer, and provided in
  • At least one of the first and second in-row power supply interconnects respectively provided in the first and second I/O cell rows is connected to the first power supply interconnect provided between the first and second I/O cell rows via the second power supply interconnect.
  • This configuration with the first power supply interconnect further enhances the power supply ability and the ESD protection capability than the configuration with the in-row power supply interconnects only.
  • the first power supply interconnect is formed in an interconnect layer thicker than the in-row power supply interconnects, the power supply ability and the ESD protection capability are much more enhanced.
  • the power supply ability and the ESD protection capability are enhanced without increasing the number of I/O cells, i.e., without increasing the area of the semiconductor integrated circuit.
  • the number of the pads for the power supply can also be reduced.
  • a semiconductor integrated circuit device includes: at least one I/O cell row including a plurality of I/O cells arranged side by side in a first direction; an in-row power supply interconnect extending in the first direction in a first interconnect layer, and provided in a region of the at least one I/O cell row, the in-row power supply interconnect supplying a predetermined power supply potential, and the first interconnect layer being composed of a single sublayer or two or more sublayers; a plurality of pad rows provided in the region of the at least one I/O cell row and arranged in a second direction perpendicular to the first direction, each of the pad rows including a plurality of external connection pads arranged side by side in the first direction; a first power supply interconnect extending in the first direction in a second interconnect layer located above the first interconnect layer and thicker than the single layer or a thickest one of the two or more sublayers of the first interconnect layer, and provided between an adjacent pair of the pad rows in the region
  • the in-row power supply interconnect provided in the I/O cell row is connected to the first power supply interconnect provided between any one of adjacent pairs of the pad rows via the second power supply interconnect.
  • This configuration with the first power supply interconnect further enhances the power supply ability and the ESD protection capability than the configuration with the in-row power supply interconnects only.
  • the first power supply interconnect is formed in an interconnect layer thicker than the in-row power supply interconnects, the power supply ability and the ESD protection capability are much more enhanced.
  • the power supply ability and the ESD protection capability are enhanced without increasing the number of I/O cells, i.e., without increasing the area of the semiconductor integrated circuit.
  • the number of the pads for the power supply can also be reduced.
  • a semiconductor integrated circuit device includes: at least one I/O cell row including a plurality of I/O cells arranged side by side in a first direction; an in-row power supply interconnect extending in the first direction in a first interconnect layer, and provided in a region of the at least one I/O cell row, the in-row power supply interconnect supplying a predetermined power supply potential, and the first interconnect layer being composed of a single sublayer or two or more sublayers; a plurality of pad rows provided in the region of the at least one I/O cell row and arranged side by side in a second direction perpendicular to the first direction, each of the pad rows including a plurality of external connection pads arranged side by side in the first direction; a first power supply interconnect extending in the first direction in a second interconnect layer at at least one of sides in the second direction of the plurality of the pad rows in the region of the at least one I/O cell row, the first power supply interconnect supplying the predetermined power supply
  • the in-row power supply interconnect provided in the I/O cell row is connected to the first power supply interconnect provided at at least one of the ends, in the second direction perpendicular to the direction in which the pad rows are arranged, of the pad rows via the second power supply interconnect.
  • This configuration with the first power supply interconnect further enhances the power supply ability and the ESD protection capability than the configuration with the in-row power supply interconnects only.
  • the first power supply interconnect is formed in an interconnect layer thicker than the in-row power supply interconnects, the power supply ability and the ESD protection capability are much more enhanced.
  • the power supply ability and the ESD protection capability are enhanced without increasing the number of I/O cells, i.e., without increasing the area of the semiconductor integrated circuit.
  • the number of the pads for the power supply can also be reduced.
  • the semiconductor integrated circuit device can ensure sufficient power supply ability and ESD protection capability for an I/O cell row, without increasing the area of the semiconductor integrated circuit.
  • FIG. 1 is a plan view schematically illustrating a general configuration of a semiconductor integrated circuit device according to a first embodiment.
  • FIG. 2 is a plan view illustrating an exemplary configuration of an I/O region of the semiconductor integrated circuit device according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating the exemplary configuration of FIG. 2 .
  • FIG. 4 is a cross-sectional view illustrating the exemplary configuration of FIG. 2 .
  • FIG. 5 illustrates another exemplary configuration of the I/O region of the semiconductor integrated circuit device according to the first embodiment.
  • FIG. 6 illustrates an exemplary configuration of an I/O region of a semiconductor integrated circuit device according to a second embodiment.
  • FIG. 1 is a plan view schematically illustrating a general configuration of a semiconductor integrated circuit device according to a first embodiment.
  • a semiconductor integrated circuit device 1 shown in FIG. 1 includes a core region 2 in which an internal core circuit is formed, and an I/O region 3 which surrounds the core region 2 and in which an interface circuit (i.e., an I/O circuit) is formed.
  • an interface circuit i.e., an I/O circuit
  • two I/O cell rows 10 A and 10 B are arranged along the periphery of the semiconductor integrated circuit device 1 .
  • a plurality of I/O cells 10 forming the interface circuit are arranged in each of the I/O cell rows 10 A and 10 B.
  • the semiconductor integrated circuit device 1 also includes a plurality of external connection pads (not shown in FIG. 1 ) arranged therein.
  • FIG. 2 is a plan view illustrating an exemplary configuration of the I/O region 3 of the semiconductor integrated circuit device 1 according to this embodiment, particularly showing a portion W in FIG. 1 in an enlarged scale. Note that FIG. 2 does not show an internal configuration of each I/O cell, signal interconnects, or other elements.
  • FIG. 3 is a schematic cross-sectional view taken along line X-X′ of FIG. 2
  • FIG. 4 is a schematic cross-sectional view taken along line Y-Y′ of FIG. 2 .
  • each of the two I/O cell rows 10 A and 10 B includes a plurality of I/O cells 10 (depicted by chain double-dashed lines) arranged side by side in an X direction corresponding to a first direction, i.e., a horizontal direction in FIG. 2 along an external side of the semiconductor integrated circuit device 1 .
  • the I/O cell rows 10 A and 10 B are adjacent to each other in a Y direction corresponding to a second direction, i.e., a vertical direction in FIG. 2 perpendicular to the first direction.
  • the I/O cells 10 include I/O cells for supplying a power supply potential and a ground potential, and I/O cells for signal transmission.
  • a plurality of external connection pads 30 (will be hereinafter simply referred to as “pads”) are arranged in regions of the I/O cell rows 10 A and 10 B.
  • the pads 30 are arranged side by side in the X direction in an upper layer of the I/O cells 10 , and are arranged in two rows in a staggered pattern in each of the I/O cell rows 10 A and 10 B. That is, four rows in total are formed in the I/O cell rows 10 A and 10 B.
  • An interval between the second and third rows of the pads 30 is larger than an interval between the pad rows in each of the regions of the I/O cell rows 10 A and 10 B.
  • the pads 30 include pads 31 a, 31 b, 31 c, and 31 d (indicated by “VDDIO” in FIG.
  • the VDDIO is, for example, 3.3V.
  • the other pads 30 are mainly for the signal transmission.
  • the pads 31 a, 31 b, 32 a, and 32 b, serving as first pads, are arranged on the I/O cell row 10 A, while the pads 31 c, 31 d, 32 c, and 32 d, serving as second pads, are arranged on the I/O cell row 10 B.
  • Each pad 30 is connected to the outside of the semiconductor integrated circuit device 1 via, for example, a bonding wire, or a bump.
  • Each pad 30 is arranged in an upper layer of an associated one of the I/O cells 10 , and connected to the associated one of the I/O cells 10 . Note that the positional relationship between the pad 30 and the corresponding I/O cell 10 is not limited to this example.
  • in-row power supply interconnects 21 a, 21 b, 21 c, and 21 d for supplying the VDDIO, and in-row power supply interconnects 22 a , 22 b, 22 c, and 22 d for supplying the VSS extend in the X direction.
  • the in-row power supply interconnects 21 a, 21 b, 22 a, and 22 b, serving as first in-row power supply interconnects, are arranged in the region of the I/O cell row 10 A, while the in-row power supply interconnects 21 c, 21 d, 22 c, and 22 d, serving as second in-row power supply interconnects, are arranged in the region of the I/O cell row 10 B.
  • the numbers and positions of the in-row power supply interconnects and the types of the potential to be supplied are not limited to those according to the configuration shown in FIG. 2 .
  • a signal interconnect region 28 extending in the Y direction is provided between an adjacent pair of the I/O cells 10 .
  • Signal interconnects can be disposed in the signal interconnect regions 28 . That is, each of the signal interconnects extending in the Y direction can pass between an adjacent pair of the I/O cells 10 .
  • the I/O cells 10 may be arranged with no clearance therebetween. In this case, the signal interconnects may pass through the I/O cells 10 .
  • FIG. 2 illustrates the I/O cells 10 of the same size and shape, but they may have different size and shape.
  • thick interconnect layers M 1 and M 2 are provided below the pads 30 (pads 31 c, 32 b, and 32 c ).
  • Thick interconnects 51 and 52 are respectively provided in the interconnect layers M 1 and M 2 below the pads 30 for relieving damage caused by bonding, for example.
  • the pads 30 and the thick interconnect 51 are connected together through vias 53
  • the thick interconnects 51 and 52 are connected together through vias 54 .
  • the in-row power supply interconnects 21 a to 21 d and 22 a to 22 d are provided in three interconnect layers M 31 , M 32 , and M 33 stacked one after another as a first interconnect layer below the interconnect layer M 2 .
  • the first interconnect layer is composed of three sublayers M 31 , M 32 , M 33 .
  • the first interconnect layer may be composed of a single sublayer or two or more sublayers.
  • the interconnect layers M 1 and M 2 are thicker than the interconnect layers M 31 , M 32 , and M 33 .
  • power supply interconnects 23 and 24 serving as first power supply interconnects, extend in the X direction in a region between the I/O cell rows 10 A and 10 B.
  • the power supply interconnect 23 supplies the VDDIO
  • the power supply interconnect 24 supplies the VSS.
  • power supply interconnects 25 a, 25 b, 25 c, 25 d, 26 a, 26 b, 26 c, and 26 d serving as second power supply interconnects, extend substantially in the Y direction.
  • the power supply interconnects 25 a and 25 b extend linearly in the Y direction across the I/O cell rows 10 A and 10 B, and are connected to the power supply interconnect 23 between the I/O cell rows 10 A and 10 B, and also to the in-row power supply interconnects 21 a and 21 b in the I/O cell row 10 A and the in-row power supply interconnects 21 c and 21 d in the I/O cell row 10 B.
  • the power supply interconnects 26 a and 26 b extend linearly in the Y direction across the I/O cell rows 10 A and 10 B, and are connected to the power supply interconnect 24 between the I/O cell rows 10 A and 10 B, and also to the in-row power supply interconnects 22 a and 22 b in the I/O cell row 10 A, and the in-row power supply interconnects 22 c and 22 d in the I/O cell row 10 B.
  • the power supply interconnect 25 a is connected to the pads 31 a and 31 c.
  • the pads 31 a and 31 c are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 25 a when viewed in plan.
  • the power supply interconnect 25 b is connected to the pads 31 b and 31 d.
  • the pads 31 b and 31 d are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 25 b when viewed in plan.
  • the power supply interconnect 26 a is connected to the pads 32 a and 32 c.
  • the pads 32 a and 32 c are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 26 a when viewed in plan.
  • the power supply interconnect 26 b is connected to the pads 32 b and 32 d.
  • the pads 32 b and 32 d are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 26 b when viewed in plan.
  • the pads arranged in this manner can be efficiently connected to the power supply interconnects in a short distance.
  • the power supply interconnect 25 c connects the power supply interconnect 23 between the I/O cell rows 10 A and 10 B to the in-row power supply interconnects 21 a and 21 b in the I/O cell row 10 A.
  • the power supply interconnect 25 d connects the power supply interconnect 23 between the I/O cell rows 10 A and 10 B to the in-row power supply interconnects 21 c and 21 d in the I/O cell row 10 B.
  • the power supply interconnects 25 c and 25 d respectively have bends so that they do not overlap with the pads 30 when viewed in plan.
  • the power supply interconnect 26 c connects the power supply interconnect 24 between the I/O cell rows 10 A and 10 B to the in-row power supply interconnect 22 b in the I/O cell row 10 A.
  • the power supply interconnect 26 d connects the power supply interconnect 24 between the I/O cell rows 10 A and 10 B to the in-row power supply interconnect 22 c in the I/O cell row 10 B.
  • the power supply interconnects 23 and 24 between the I/O cell rows 10 A and 10 B are formed in the thick interconnect layer M 1 .
  • the power supply interconnect 26 b and other interconnects extending substantially in the Y direction are formed in the thick interconnect layer M 2 .
  • the power supply interconnects 23 and 24 are connected to the power supply interconnect 26 b and other interconnects formed in the interconnect layer M 2 through vias 41 .
  • the in-row power supply interconnects 22 b, 22 c and other interconnects are connected to the power supply interconnect 26 b and other interconnects formed in the interconnect layer M 2 through vias 42 . As shown in FIG.
  • an interconnect 43 extending in the Y direction across the I/O cell rows 10 A and 10 B may be formed in the layer in which the pads 30 are formed.
  • the interconnect 43 is connected to the power supply interconnect 24 for supplying the VSS through a via 44 .
  • the in-row power supply interconnects are not limited to have the three layers, and may have a single layer, or multiple layers more or less than three.
  • at least one additional interconnect layer may be formed between the interconnect layers M 1 and M 2 .
  • the power supply interconnects 23 and 24 may be connected to the power supply interconnect 26 a and other interconnects formed in the interconnect layer M 2 through a combination of short interconnects and vias formed in the interconnect layers between them.
  • one or more additional interconnect layer may be formed between the interconnect layer M 2 and the layer in which the in-row power supply interconnects are formed.
  • the in-row power supply interconnects may be connected to the power supply interconnect 26 a and other interconnects formed in the interconnect layer M 2 through a combination of short interconnects and vias formed in the interconnect layers between them.
  • the power supply interconnect 26 b and other interconnects may have, between the pads 30 , for example, a multilayer portion including the interconnect layer M 1 and the layer forming the pads 30 . This configuration can reduce the impedance of the power supply interconnect 26 b and other interconnects.
  • the configuration indicated by ⁇ 1 in FIGS. 3 and ⁇ 2 in FIG. 4 may be omitted.
  • a typical I/O cell has a high power supply voltage region including an ESD circuit and an output buffer for outputting a signal to a device outside the semiconductor integrated circuit device, and a low power supply voltage region including a circuit for inputting and outputting a signal to and from the semiconductor integrated circuit device.
  • Each of the I/O cells 10 in FIG. 2 includes a high power supply voltage region (indicated by “H” in FIG. 2 ) and a low power supply voltage region (indicated by “L” in FIG. 2 ) arranged side by side in the Y direction.
  • the I/O cells are arranged such that their high power supply voltage regions, which are mainly used for inputting and outputting signals to and from an external device, are located toward the outside in the semiconductor integrated circuit device 1 , and their low power supply voltage regions, which are mainly used for inputting and outputting signals to and from the internal core region, are located toward the inside in the semiconductor integrated circuit device 1 .
  • the I/O cell row 10 A is arranged such that its high power supply voltage regions are located toward the inside in the semiconductor integrated circuit device 1 , and its low power supply voltage regions are located toward the outside in the semiconductor integrated circuit device 1 .
  • the I/O cell rows 10 A and 10 B are both arranged such that their low power supply voltage regions are located closer to the power supply interconnects 23 and 24 .
  • the interconnects for supplying the VDDIO namely, the in-row power supply interconnects 21 a and 21 b in the I/O cell row 10 A and the in-row power supply interconnects 21 c and 21 d in the I/O cell row 10 B, are connected together via the power supply interconnect 23 between the I/O cell rows 10 A and 10 B and the power supply interconnects 25 a to 25 d.
  • This configuration with the power supply interconnect 23 further enhances the power supply ability and the ESD protection capability than the configuration with the in-row power supply interconnects 21 a to 21 d only.
  • the interconnects for supplying VSS namely, the in-row power supply interconnects 22 a and 22 b in the I/O cell row 10 A and the in-row power supply interconnects 22 c and 22 d in the I/O cell row 10 B, are connected together via the power supply interconnect 24 between the I/O cell rows 10 A and 10 B and the power supply interconnects 26 a to 26 d.
  • This configuration with the power supply interconnect 24 further enhances the power supply ability and the ESD protection capability than the configuration with the in-row power supply interconnects 22 a to 22 d only.
  • the power supply interconnects 23 and 24 are formed in the thick interconnect layer M 1 , and therefore, thicker than the in-row power supply interconnects 21 a to 21 d and 22 a to 22 d formed in the interconnect layers M 31 to M 33 . This can further enhance the power supply ability and the ESD protection capability.
  • the power supply ability and the ESD protection capability can be enhanced without increasing the number of I/O cells 10 for the power supply in the I/O cell rows 10 A and 10 B, i.e., without increasing the area of the semiconductor integrated circuit.
  • the number of the pads 30 for the power supply can also be reduced.
  • the in-row power supply interconnects 21 a and 21 b in the I/O cell row 10 A are connected to the in-row power supply interconnects 21 c and 21 d in the I/O cell row 10 B via the power supply interconnect 23 and the power supply interconnects 25 a to 25 d .
  • the in-row power supply interconnects 22 a and 22 b in the I/O cell row 10 A are connected to the in-row power supply interconnects 22 c and 22 d in the I/O cell row 10 B via the power supply interconnect 24 and the power supply interconnects 26 a to 26 d.
  • each of the I/O cell rows 10 A and 10 B can receive power supplied from the other I/O cell row, or make use of the ESD protection capability of the other I/O cell row.
  • the I/O cell rows 10 A and 10 B are both arranged such that their high power supply voltage regions are located closer to the power supply interconnects 23 and 24 .
  • the high power supply voltage regions arranged closer to the power supply interconnects 23 and 24 , a distance from each of the power supply interconnects 23 and 24 to the ESD circuit and output buffer of each high power supply voltage region can be shortened. This can more effectively reduce the power supply voltage drop and improve the resistance to ESD.
  • the in-row power supply interconnects of both of the I/O cell rows 10 A and 10 B have been connected to the power supply interconnects between the I/O cell rows 10 A and 10 B.
  • the in-row power supply interconnects of either one of the I/O cell rows 10 A and 10 B may be connected to the power supply interconnects between the I/O cell rows 10 A and 10 B.
  • the configuration of the present embodiment has been applied to the interconnects supplying the VDDIO and the interconnects supplying the VSS.
  • this is not limiting.
  • the configuration of the present embodiment may be applied only to the interconnects supplying the VDDIO.
  • the configuration of the present embodiment may be applied to some or all of the interconnects for supplying different types of power supply potentials and ground potentials.
  • FIG. 5 is a plan view illustrating another exemplary configuration of the I/O region 3 of the semiconductor integrated circuit device 1 to which different types of power supply potentials are supplied.
  • three types of power supply potentials namely, VDD, VDDIO 18 , and VDDIO 33 are supplied.
  • VDD is 0.9V
  • VDDIO 18 is 1.8 V
  • VDDIO 33 is 3.3V.
  • FIG. 5 does not show an internal configuration of each I/O cell, signal interconnects, or other elements.
  • the in-row power supply interconnects are also omitted from FIG. 5 for simplification.
  • the pads 30 include pads 33 a and 33 b to which VDD is supplied (indicated by “VDD” in FIG. 5 ), pads 34 a and 34 b to which VDDIO 18 is supplied (indicated by “VDDIO 18 ” in FIG. 5 ), pads 35 a and 35 b to which VDDIO 33 is supplied (indicated by “VDDIO 33 ” in FIG. 5 ), and pads 36 a, 36 b, 36 c, and 36 d to which VSS is supplied (indicated by “VSS” in FIG. 5 ).
  • the other pads 30 are mainly for the signal transmission.
  • the pads 33 a , 34 a, 35 a, 36 a, and 36 b, serving as first pads, are arranged on the I/O cell row 10 A, while the pads 33 b, 34 b, 35 b, 36 c, and 36 d, serving as second pads, are arranged on the I/O cell row 10 B.
  • Power supply interconnects 61 a, 61 b, 62 a, 62 b, 63 a, 63 b, 64 a, and 64 b serving as first power supply interconnects, extend in the X direction in a region between the I/O cell rows 10 A and 10 B.
  • the power supply interconnects 61 a and 61 b supply the VDD.
  • the power supply interconnects 62 a and 62 b supply the VDDIO 18 .
  • the power supply interconnects 63 a and 63 b supply the VDDIO 33 .
  • the power supply interconnects 64 A and 64 b supply the VSS.
  • power supply interconnects 65 a, 65 b, 65 c, 66 a, 66 b, 66 c, 67 a, 67 b, 67 c, 68 a, 68 b, 68 c , and 68 d serving as second power supply interconnects, extend substantially in the Y direction.
  • the power supply interconnect 65 a extends linearly in the Y direction across the I/O cell rows 10 A and 10 B, and is connected to the power supply interconnects 61 a and 61 b for supplying the VDD between the I/O cell rows 10 A and 10 B, and also to the in-row power supply interconnects in the I/O cell row 10 A, and the in-row power supply interconnects in the I/O cell row 10 B.
  • the power supply interconnect 65 b connects the power supply interconnects 61 a and 61 b to the in-row power supply interconnects in the I/O cell row 10 A.
  • the power supply interconnect 65 c connects the power supply interconnects 61 a and 61 b to the in-row power supply interconnects in the I/O cell row 10 B.
  • the power supply interconnects 65 b and 65 c respectively have bends so that they do not overlap with the pads 30 when viewed in plan.
  • the power supply interconnect 66 a extends linearly in the Y direction across the I/O cell rows 10 A and 10 B, and is connected to the power supply interconnects 62 a and 62 b , between the I/O cell rows 10 A and 10 B, for supplying the VDDIO 18 , and also to the in-row power supply interconnects in the I/O cell row 10 A and the in-row power supply interconnects in the I/O cell row 10 B.
  • the power supply interconnect 66 b connects the power supply interconnects 62 a and 62 b to the in-row power supply interconnects in the I/O cell row 10 A.
  • the power supply interconnect 66 c connects the power supply interconnects 62 a and 62 b to the in-row power supply interconnects in the I/O cell row 10 B.
  • the power supply interconnects 66 b and 66 c respectively have bends so that they do not overlap with the pads 30 when viewed in plan.
  • the power supply interconnect 67 a extends linearly in the Y direction across the I/O cell rows 10 A and 10 B, and is connected to the power supply interconnects 63 a and 63 b , between the I/O cell rows 10 A and 10 B, for supplying the VDDIO 33 , and also to the in-row power supply interconnects in the I/O cell row 10 A and the in-row power supply interconnects in the I/O cell row 10 B.
  • the power supply interconnect 67 b connects the power supply interconnects 63 a and 63 b to the in-row power supply interconnects in the I/O cell row 10 A.
  • the power supply interconnect 67 c connects the power supply interconnects 63 a and 63 b to the in-row power supply interconnects in the I/O cell row 10 B.
  • the power supply interconnects 67 b and 67 c respectively have bends so that they do not overlap with the pads 30 when viewed in plan.
  • the power supply interconnects 68 a and 68 b extend linearly in the Y direction across the I/O cell rows 10 A and 10 B, and are connected to the power supply interconnects 64 a and 64 b for supplying the VSS between the I/O cell rows 10 A and 10 B, and also to the in-row power supply interconnects in the I/O cell row 10 A and the in-row power supply interconnects in the I/O cell row 10 B.
  • the power supply interconnect 68 c connects the power supply interconnects 64 a and 64 b to the in-row power supply interconnects in the I/O cell row 10 A.
  • the power supply interconnect 68 d connects the power supply interconnects 64 a and 64 b to the in-row power supply interconnects in the I/O cell row 10 B.
  • the power supply interconnects 68 c and 68 d respectively have bends so that they do not overlap with the pads 30 when viewed in plan.
  • the power supply interconnect 65 a is connected to the pads 33 a and 33 b.
  • the pads 33 a and 33 b are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 65 a when viewed in plan.
  • the power supply interconnect 66 a is connected to the pads 34 a and 34 b.
  • the pads 34 a and 34 b are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 66 a when viewed in plan.
  • the power supply interconnect 67 a is connected to the pads 35 a and 35 b.
  • the pads 35 a and 35 b are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 67 a when viewed in plan.
  • the power supply interconnect 68 a is connected to the pads 36 a and 36 c.
  • the pads 36 a and 36 c are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 68 a when viewed in plan.
  • the power supply interconnect 68 b is connected to the pads 36 b and 36 d.
  • the pads 36 b and 36 d are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 68 b when viewed in plan.
  • the pads arranged in this manner can be efficiently connected to the power supply interconnects in a short distance.
  • a power supply interconnect 65 d connecting the power supply interconnects 61 a and 61 b together, a power supply interconnect 66 d connecting the power supply interconnects 62 a and 62 b together, and a power supply interconnect 67 d connecting the power supply interconnects 63 a and 63 b together extend in the Y direction.
  • the configuration of the interconnect layers of the device of FIG. 5 is the same as that of the device of FIG. 2 .
  • the device of FIG. 5 can obtain the same advantages as those of the device of FIG. 2 . Specifically, the power supply ability and the ESD protection capability can be enhanced without increasing the area of the semiconductor integrated circuit.
  • the two I/O cell rows 10 A and 10 B have been arranged.
  • the configuration of the present embodiment may be applied to three or more I/O cell rows, or two or more of the three or more I/O cell rows.
  • the pads 30 have been arranged in two rows in a staggered pattern in each of the I/O cell rows 10 A and 10 B.
  • the number of pad rows is not limited thereto, and the pads are not necessarily arranged in a staggered pattern.
  • the interval between the pad rows is not limited to that shown in FIGS. 2 and 5 .
  • two pads receiving the VDDIO and two pads receiving the VSS have been arranged in each of the I/O cell rows 10 A and 10 B.
  • this configuration is not limiting.
  • either one of the I/O cell rows 10 A or 10 B may have no pads receiving the VDDIO.
  • the pads receiving the VDDIO and the pads receiving the VSS that have been opposed to each other are not necessarily opposed to each other.
  • the power supply interconnect 23 for supplying the VDD and the power supply interconnect 24 for supplying the VSS are provided one each in the device of FIG. 2 , and two each in the device of FIG. 5 .
  • the number of the power supply interconnects is not limited thereto.
  • FIG. 6 is a view illustrating an exemplary configuration of an I/O region 3 of a semiconductor integrated circuit device according to a second embodiment, particularly showing a portion W in FIG. 1 in an enlarged scale.
  • three types of power supply potentials namely, VDD, VDDIO 18 , and VDDIO 33 are supplied.
  • VDD is 0.9V
  • VDDIO 18 is 1.8 V
  • VDDIO 33 is 3.3V.
  • FIG. 6 does not show an internal configuration of each I/O cell, signal interconnects, or other elements.
  • FIG. 6 shows two I/O cell rows 10 A and 10 B, each of which includes a plurality of I/O cells 10 (depicted by chain double-dashed lines) arranged side by side in an X direction corresponding to a first direction, i.e., a horizontal direction in FIG. 6 along one external side of the semiconductor integrated circuit device 1 .
  • the I/O cell rows 10 A and 10 B are adjacent to each other in a Y direction corresponding to a second direction, i.e., a vertical direction in FIG. 2 perpendicular to the first direction.
  • the I/O cells 10 include I/O cells for supplying a power supply potential and a ground potential, and I/O cells for signal transmission.
  • the two I/O cell rows 10 A and 10 B are arranged with no gap left therebetween.
  • a plurality of pads 30 are arranged in the regions of the I/O cell rows 10 A and 10 B.
  • the pads 30 are arranged side by side in the X direction in an upper layer of the I/O cells 10 , and are arranged in two rows in a staggered pattern in each of the I/O cell rows 10 A and 10 B. That is, four pad rows 30 A, 30 B, 30 C, and 30 D are arranged in the regions of the I/O cell rows 10 A and 10 B.
  • the pads 30 include pads 33 c and 33 d to which the VDD is supplied (indicated by “VDD” in FIG. 6 ), pads 34 c and 34 d to which the VDDIO 18 is supplied (indicated by “VDDIO 18 ” in FIG.
  • pads 35 c and 35 c to which the VDDIO 33 is supplied (indicated by “VDDIO 33 ” in FIG. 6 )
  • pads 36 c and 36 d to which the VSS is supplied (indicated by “VSS” in FIG. 6 ).
  • the other pads 30 are mainly for the signal transmission.
  • the in-row power supply interconnects 71 a, 72 a , and 74 a are arranged in a layer below the pad row 30 A in the region of the I/O cell row 10 A.
  • the in-row power supply interconnects 73 a, 74 b, and 74 c are arranged in a layer below the pad row 30 B in the region of the I/O cell row 10 A.
  • the in-row power supply interconnects 73 a, 74 d, and 74 e are arranged in a layer below the pad row 30 C in the region of the I/O cell row 10 B.
  • the in-row power supply interconnects 71 b, 72 b, and 74 f are arranged in a layer below the pad row 30 D in the region of the I/O cell row 10 B.
  • the numbers and positions of the in-row power supply interconnects and the types of the potential supplied by these interconnects are not limited to those according to the configuration shown in FIG. 6 .
  • a signal interconnect extending in the Y direction can pass between an adjacent pair of the I/O cells 10 .
  • FIG. 6 illustrates the I/O cells 10 of the same size and shape, but they may have different size and shape.
  • a power supply interconnect 75 a for supplying the VDD extends in the X direction below the pad row 30 A in FIG. 6 .
  • a power supply interconnect 75 b for supplying the VDD extends in the X direction above the pad row 30 D in FIG. 6 .
  • the power supply interconnects 75 a and 75 b for supplying the VDD, serving as the first power supply interconnects are respectively provided at the sides in the Y direction of the pad rows 30 A to 30 D.
  • power supply interconnects 81 , 82 a, 82 b, 82 c, 83 a, 83 b, 83 c, 84 a, 84 b, 84 c , 84 d, and 84 e, serving as second power supply interconnects, extend substantially in the Y direction.
  • the power supply interconnect 81 extends linearly in the Y direction across the I/O cell rows 10 A and 10 B, and connects the power supply interconnects 75 a and 75 b for supplying the VDD respectively provided at the ends, in the Y direction, of the set of the pad rows 30 A to 30 D to the in-row power supply interconnect 71 a in the I/O cell row 10 A and the in-row power supply interconnect 71 b in the I/O cell row 10 B.
  • the power supply interconnect 82 a extends linearly in the Y direction across the I/O cell rows 10 A and 10 B, and connects the power supply interconnects 76 a and 76 b for supplying the VDDIO 18 to the in-row power supply interconnect 72 a in the I/O cell row 10 A and the in-row power supply interconnect 72 b in the I/O cell row 10 B.
  • the power supply interconnects 82 b and 82 c also connect the power supply interconnects 76 a and 76 b to the in-row power supply interconnects 72 a and 72 b.
  • the power supply interconnects 82 b and 82 c respectively have bends so that they do not overlap with the pads 30 when viewed in plan.
  • the power supply interconnect 83 a extends linearly in the Y direction across the I/O cell rows 10 A and 10 B, and connects the power supply interconnects 77 a and 77 b for supplying the VDDIO 33 to the in-row power supply interconnect 73 a in the I/O cell row 10 A and the in-row power supply interconnect 73 b in the I/O cell row 10 B.
  • the power supply interconnects 83 b and 83 c also connect the power supply interconnects 77 a and 77 b to the in-row power supply interconnects 73 a and 73 b.
  • the power supply interconnects 83 b and 83 c respectively have bends so that they do not overlap with the pads 30 when viewed in plan.
  • the power supply interconnect 84 a extends linearly in the Y direction across the I/O cell rows 10 A and 10 B, and connects together the power supply interconnects 78 a and 78 b for supplying the VSS, the in-row power supply interconnects 74 a, 74 b, and 74 c in the I/O cell row 10 A, and the in-row power supply interconnect 74 d, 74 e, and 74 f in the I/O cell row 10 B.
  • the power supply interconnects 84 b and 84 c connect the power supply interconnects 78 a and 78 b to the in-row power supply interconnects 74 d, 74 e, and 74 f in the I/O cell row 10 B.
  • the power supply interconnects 84 d and 84 e connect the power supply interconnects 78 a and 78 b to the in-row power supply interconnects 74 a, 74 b, and 74 c in the I/O cell row 10 A.
  • the power supply interconnects 84 b, 84 c, 84 d, and 84 e respectively have bends so that they do not overlap with the pads 30 when viewed in plan.
  • the power supply interconnect 81 is connected to the pads 33 c and 33 d.
  • the pads 33 c and 33 d are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 81 when viewed in plan.
  • the power supply interconnect 82 a is connected to the pads 34 c and 34 d.
  • the pads 34 c and 34 d are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 82 a when viewed in plan.
  • the power supply interconnect 83 a is connected to the pads 35 c and 35 d.
  • the pads 35 c and 35 d are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 83 a when viewed in plan.
  • the power supply interconnect 84 a is connected to the pads 36 c and 36 d.
  • the pads 36 c and 36 d are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 84 a when viewed in plan.
  • the pads arranged in this manner can be efficiently connected to the power supply interconnects in a short distance.
  • the configuration of the interconnect layers of the device of FIG. 6 is the same as that of the first embodiment shown in FIGS. 3 and 4 .
  • the power supply interconnects 76 a and other interconnects provided between the pad rows, and the power supply interconnects 75 a and 75 b provided at the ends, in the Y direction, of the set of the pad rows are formed in the interconnect layer M 1 , which is thicker than, and formed above, the interconnect layers M 31 , M 32 , and M 33 in which the in-row power supply interconnects are formed.
  • the power supply interconnect 81 and other interconnects extending substantially in the Y direction are formed in the interconnect layer M 2 .
  • this configuration of the interconnect layers is not limiting.
  • the interconnects for supplying the VDDIO 18 namely, the in-row power supply interconnects 72 a and 72 b in the I/O cell rows 10 A and 10 B, are connected to the power supply interconnect 76 a between the pad rows 30 A and 30 B and the power supply interconnect 76 b between the pad rows 30 C and 30 D via the power supply interconnects 82 a to 82 c.
  • This configuration with the power supply interconnects 76 a and 76 b further enhances the power supply ability and the ESD protection capability than the configuration with the in-row power supply interconnects 72 a and 72 b only.
  • the interconnects for supplying the VDDIO 33 namely, the in-row power supply interconnects 73 a and 73 b in the I/O cell rows 10 A and 10 B, are connected to the power supply interconnect 77 a between the pad rows 30 A and 30 B and the power supply interconnect 77 b between the pad rows 30 C and 30 D via the power supply interconnects 83 a to 83 c.
  • This configuration with the power supply interconnects 77 a and 77 b further enhances the power supply ability and the ESD protection capability than the configuration with the in-row power supply interconnects 73 a and 73 b only.
  • the interconnects for supplying the VSS namely, the in-row power supply interconnects 74 a to 74 f in the I/O cell rows 10 A and 10 B, are connected to the power supply interconnects 78 a and 78 b between the pad rows 30 B and 30 C via the power supply interconnects 84 a to 84 e.
  • This configuration with the power supply interconnects 78 a and 78 b further enhances the power supply ability and the ESD protection capability than the configuration with the in-row power supply interconnects 74 a to 74 f only.
  • the power supply interconnects 76 a, 76 b, 77 a, 77 b, 78 a, and 78 b are thicker than the in-row power supply interconnects 72 a, 72 b, 73 a, 73 b, and 74 a to 74 f, the power supply ability and the ESD protection capability are much more enhanced.
  • the interconnects for supplying the VDD namely, the in-row power supply interconnects 71 a and 71 b in the I/O cell rows 10 A and 10 B
  • the interconnects for supplying the VDD are connected to the power supply interconnects 75 a and 75 b provided at the ends, in the Y direction, of the set of the pad rows 30 A to 30 D via the power supply interconnect 81 .
  • This configuration with the power supply interconnects 75 a and 75 b further enhances the power supply ability and the ESD protection capability than the configuration including the in-row power supply interconnects 71 a and 71 b only.
  • the power supply interconnects 75 a and 75 b are thicker than the in-row power supply interconnects 71 a and 71 b , the power supply ability and the ESD protection capability are much more enhanced.
  • the power supply ability and the ESD protection capability are enhanced without increasing the number of I/O cells for the power supply in the I/O cell rows 10 A and 10 B, i.e., without increasing the area of the semiconductor integrated circuit.
  • the number of the pads for the power supply can also be reduced.
  • the device of FIG. 6 is merely an example, and the arrangements of the pads, in-row power supply interconnects, and power supply interconnects between the pad rows are not limited to those shown in FIG. 6 .
  • the power supply interconnects 75 a and 75 b for supplying the VDD provided at the ends, in the Y direction, of the set of the pad rows 30 A to 30 D in the configuration of FIG. 6 may be replaced with power supply interconnects for supplying a different potential, e.g., VSS.
  • the power supply interconnect may be provided only at either one of the ends, in the Y direction, of the set of the pad rows, or power supply interconnects for supplying different potentials may be respectively provided at the ends, in the Y direction, of the set of the pad rows.
  • the two I/O cell rows 10 A and 10 B have been arranged.
  • the configuration of the present embodiment may be applied to a device with a single I/O cell row, or three or more I/O cell rows.
  • the pads 30 have been arranged in two rows in a staggered pattern in each of the I/O cell rows 10 A and 10 B.
  • the number of pad rows is not limited thereto, and the pads are not necessarily arranged in a staggered pattern.
  • the interval between the pad rows is not limited to that shown in FIG. 6 .
  • each of the I/O cell rows 10 A and 10 B in an annular shape has been arranged along the periphery of the semiconductor integrated circuit device 1 .
  • the I/O cell rows 10 A and 10 B may be arranged along a portion of the periphery of the semiconductor integrated circuit device 1 , for example.
  • the configuration of the present embodiment is not necessarily applied to the whole I/O cell rows 10 A and 10 B, and may be applied to a portion of the I/O cell rows 10 A and 10 B.
  • the present disclosure can ensure sufficient power supply ability and ESD protection capability for an I/O cell row without increasing the area of the semiconductor integrated circuit, and therefore, is effective for downsizing a large-scale LSI inputting and outputting a large number of signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

Disclosed herein is a semiconductor integrated circuit device which can ensure sufficient power supply ability and ESD protection capability for an I/O cell without increasing the area of the semiconductor integrated circuit. In-row power supply interconnects (21 a to 21 d) provided in I/O cell rows (10A, 10B) are connected to a power supply interconnect (23) provided between the I/O cell rows (10A, 10B) via power supply interconnects (25 a to 25 d). The power supply interconnect (23) is thicker than the in-row power supply interconnects (21 a to 21 d).

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This is a continuation of International Application No. PCT/JP2017/004580 filed on Feb. 8, 2017, which claims priority to Japanese Patent Application No. 2016-063758 filed on Mar. 28, 2016. The entire disclosures of these applications are hereby incorporated by reference.
  • BACKGROUND
  • The present disclosure relates to a semiconductor integrated circuit device including a core region and an I/O region.
  • Semiconductor integrated circuits have been increasing in their scale, and number of input and output signals. Therefore, if input/output cells (I/O cells) are arranged in a single row to surround a core region, the area of the semiconductor integrated circuit is defined by the I/O cells. This is disadvantageous in some cases because it leads to an increase in the area of a device including the semiconductor integrated circuit, i.e., a semiconductor integrated circuit device.
  • Japanese Unexamined Patent Publication No. 2000-21987 discloses a semiconductor integrated circuit in which the I/O cells are arranged in multiple rows in a peripheral portion of the circuit. This arrangement avoids the area of the semiconductor integrated circuit from being defined by the I/O cells.
  • SUMMARY
  • In a semiconductor integrated circuit including the I/O cells arranged in multiple concentric rows as disclosed by Japanese Unexamined Patent Publication No. 2000-21987, each I/O cell row is provided with a ring-shaped power supply interconnect, to which power is supplied through an external connection pad. This configuration requires each I/O cell row to have sufficient power supply ability and electrostatic discharge (ESD) protection capability. This requirement can be met if the number of the I/O cells for power supply is increased in each I/O cell row. Unfortunately, this solution further increases the area of the semiconductor integrated circuit.
  • It is therefore an object of the present disclosure to provide a semiconductor integrated circuit device which can ensure sufficient power supply ability and ESD protection capability for an I/O cell, without increasing the area of a semiconductor integrated circuit.
  • According to an aspect of the present disclosure, a semiconductor integrated circuit device includes: a first I/O cell row and a second I/O cell row each including a plurality of I/O cells arranged side by side in a first direction, the first and second I/O cell rows being adjacent to each other in a second direction perpendicular to the first direction; a first in-row power supply interconnect and a second in-row power supply interconnect extending in the first direction in a first interconnect layer, and provided in a region of the first I/O cell row and a region of the second I/O cell row, respectively, each of the first and second in-row power supply interconnects supplying a predetermined power supply potential, and the first interconnect layer being composed of a single sublayer or two or more sublayers; a first power supply interconnect extending in the first direction in a second interconnect layer which is located above the first interconnect layer and thicker than the single sublayer or a thickest one of the two or more sublayers of the first interconnect layer, and provided in a region between the first and second I/O cell rows, the first power supply interconnect supplying the predetermined power supply potential; and a second power supply interconnect connecting the first power supply interconnect to at least one of the first in-row power supply interconnect or the second in-row power supply interconnect.
  • In this aspect, at least one of the first and second in-row power supply interconnects respectively provided in the first and second I/O cell rows is connected to the first power supply interconnect provided between the first and second I/O cell rows via the second power supply interconnect. This configuration with the first power supply interconnect further enhances the power supply ability and the ESD protection capability than the configuration with the in-row power supply interconnects only. In addition, since the first power supply interconnect is formed in an interconnect layer thicker than the in-row power supply interconnects, the power supply ability and the ESD protection capability are much more enhanced. Thus, the power supply ability and the ESD protection capability are enhanced without increasing the number of I/O cells, i.e., without increasing the area of the semiconductor integrated circuit. In addition, the number of the pads for the power supply can also be reduced.
  • According to another aspect of the present disclosure, a semiconductor integrated circuit device includes: at least one I/O cell row including a plurality of I/O cells arranged side by side in a first direction; an in-row power supply interconnect extending in the first direction in a first interconnect layer, and provided in a region of the at least one I/O cell row, the in-row power supply interconnect supplying a predetermined power supply potential, and the first interconnect layer being composed of a single sublayer or two or more sublayers; a plurality of pad rows provided in the region of the at least one I/O cell row and arranged in a second direction perpendicular to the first direction, each of the pad rows including a plurality of external connection pads arranged side by side in the first direction; a first power supply interconnect extending in the first direction in a second interconnect layer located above the first interconnect layer and thicker than the single layer or a thickest one of the two or more sublayers of the first interconnect layer, and provided between an adjacent pair of the pad rows in the region of the at least one I/O cell row, the first power supply interconnect supplying the predetermined power supply potential; and a second power supply interconnect connecting the first power supply interconnect to the in-row power supply interconnect.
  • In this aspect, the in-row power supply interconnect provided in the I/O cell row is connected to the first power supply interconnect provided between any one of adjacent pairs of the pad rows via the second power supply interconnect. This configuration with the first power supply interconnect further enhances the power supply ability and the ESD protection capability than the configuration with the in-row power supply interconnects only. In addition, since the first power supply interconnect is formed in an interconnect layer thicker than the in-row power supply interconnects, the power supply ability and the ESD protection capability are much more enhanced. Thus, the power supply ability and the ESD protection capability are enhanced without increasing the number of I/O cells, i.e., without increasing the area of the semiconductor integrated circuit. In addition, the number of the pads for the power supply can also be reduced.
  • According to another aspect of the present disclosure, a semiconductor integrated circuit device includes: at least one I/O cell row including a plurality of I/O cells arranged side by side in a first direction; an in-row power supply interconnect extending in the first direction in a first interconnect layer, and provided in a region of the at least one I/O cell row, the in-row power supply interconnect supplying a predetermined power supply potential, and the first interconnect layer being composed of a single sublayer or two or more sublayers; a plurality of pad rows provided in the region of the at least one I/O cell row and arranged side by side in a second direction perpendicular to the first direction, each of the pad rows including a plurality of external connection pads arranged side by side in the first direction; a first power supply interconnect extending in the first direction in a second interconnect layer at at least one of sides in the second direction of the plurality of the pad rows in the region of the at least one I/O cell row, the first power supply interconnect supplying the predetermined power supply potential, and the second interconnect layer being located above the first interconnect layer and thicker than the at least one sublayer of the first interconnect layer; and a second power supply interconnect connecting the first power supply interconnect to the in-row power supply interconnect.
  • In this aspect, the in-row power supply interconnect provided in the I/O cell row is connected to the first power supply interconnect provided at at least one of the ends, in the second direction perpendicular to the direction in which the pad rows are arranged, of the pad rows via the second power supply interconnect. This configuration with the first power supply interconnect further enhances the power supply ability and the ESD protection capability than the configuration with the in-row power supply interconnects only. In addition, since the first power supply interconnect is formed in an interconnect layer thicker than the in-row power supply interconnects, the power supply ability and the ESD protection capability are much more enhanced. Thus, the power supply ability and the ESD protection capability are enhanced without increasing the number of I/O cells, i.e., without increasing the area of the semiconductor integrated circuit. In addition, the number of the pads for the power supply can also be reduced.
  • The semiconductor integrated circuit device according to the present disclosure can ensure sufficient power supply ability and ESD protection capability for an I/O cell row, without increasing the area of the semiconductor integrated circuit.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view schematically illustrating a general configuration of a semiconductor integrated circuit device according to a first embodiment.
  • FIG. 2 is a plan view illustrating an exemplary configuration of an I/O region of the semiconductor integrated circuit device according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating the exemplary configuration of FIG. 2.
  • FIG. 4 is a cross-sectional view illustrating the exemplary configuration of FIG. 2.
  • FIG. 5 illustrates another exemplary configuration of the I/O region of the semiconductor integrated circuit device according to the first embodiment.
  • FIG. 6 illustrates an exemplary configuration of an I/O region of a semiconductor integrated circuit device according to a second embodiment.
  • DETAILED DESCRIPTION
  • Embodiments will be described below in detail with reference to the drawings.
  • First Embodiment
  • FIG. 1 is a plan view schematically illustrating a general configuration of a semiconductor integrated circuit device according to a first embodiment. A semiconductor integrated circuit device 1 shown in FIG. 1 includes a core region 2 in which an internal core circuit is formed, and an I/O region 3 which surrounds the core region 2 and in which an interface circuit (i.e., an I/O circuit) is formed. In the I/O region 3, two I/ O cell rows 10A and 10B, each of which is in an annular shape, are arranged along the periphery of the semiconductor integrated circuit device 1. Although not illustrated in detail in FIG. 1, a plurality of I/O cells 10 forming the interface circuit are arranged in each of the I/ O cell rows 10A and 10B. The semiconductor integrated circuit device 1 also includes a plurality of external connection pads (not shown in FIG. 1) arranged therein.
  • FIG. 2 is a plan view illustrating an exemplary configuration of the I/O region 3 of the semiconductor integrated circuit device 1 according to this embodiment, particularly showing a portion W in FIG. 1 in an enlarged scale. Note that FIG. 2 does not show an internal configuration of each I/O cell, signal interconnects, or other elements. FIG. 3 is a schematic cross-sectional view taken along line X-X′ of FIG. 2, and FIG. 4 is a schematic cross-sectional view taken along line Y-Y′ of FIG. 2.
  • In FIG. 2, each of the two I/ O cell rows 10A and 10B includes a plurality of I/O cells 10 (depicted by chain double-dashed lines) arranged side by side in an X direction corresponding to a first direction, i.e., a horizontal direction in FIG. 2 along an external side of the semiconductor integrated circuit device 1. The I/ O cell rows 10A and 10B are adjacent to each other in a Y direction corresponding to a second direction, i.e., a vertical direction in FIG. 2 perpendicular to the first direction. The I/O cells 10 include I/O cells for supplying a power supply potential and a ground potential, and I/O cells for signal transmission.
  • A plurality of external connection pads 30 (will be hereinafter simply referred to as “pads”) are arranged in regions of the I/ O cell rows 10A and 10B. The pads 30 are arranged side by side in the X direction in an upper layer of the I/O cells 10, and are arranged in two rows in a staggered pattern in each of the I/ O cell rows 10A and 10B. That is, four rows in total are formed in the I/ O cell rows 10A and 10B. An interval between the second and third rows of the pads 30 is larger than an interval between the pad rows in each of the regions of the I/ O cell rows 10A and 10B. The pads 30 include pads 31 a, 31 b, 31 c, and 31 d (indicated by “VDDIO” in FIG. 2) to which a power supply potential VDDIO is supplied, and pads 32 a, 32 b, 32 c, and 32 d (indicated by “VSS” in FIG. 2) to which a ground potential VSS is supplied. The VDDIO is, for example, 3.3V. The other pads 30 are mainly for the signal transmission. The pads 31 a, 31 b, 32 a, and 32 b, serving as first pads, are arranged on the I/O cell row 10A, while the pads 31 c, 31 d, 32 c, and 32 d, serving as second pads, are arranged on the I/O cell row 10B.
  • Each pad 30 is connected to the outside of the semiconductor integrated circuit device 1 via, for example, a bonding wire, or a bump. Each pad 30 is arranged in an upper layer of an associated one of the I/O cells 10, and connected to the associated one of the I/O cells 10. Note that the positional relationship between the pad 30 and the corresponding I/O cell 10 is not limited to this example.
  • In the regions of the I/ O cell rows 10A and 10B, in-row power supply interconnects 21 a, 21 b, 21 c, and 21 d for supplying the VDDIO, and in-row power supply interconnects 22 a, 22 b, 22 c, and 22 d for supplying the VSS extend in the X direction. The in-row power supply interconnects 21 a, 21 b, 22 a, and 22 b, serving as first in-row power supply interconnects, are arranged in the region of the I/O cell row 10A, while the in-row power supply interconnects 21 c, 21 d, 22 c, and 22 d, serving as second in-row power supply interconnects, are arranged in the region of the I/O cell row 10B. The numbers and positions of the in-row power supply interconnects and the types of the potential to be supplied are not limited to those according to the configuration shown in FIG. 2.
  • A signal interconnect region 28 extending in the Y direction is provided between an adjacent pair of the I/O cells 10. Signal interconnects can be disposed in the signal interconnect regions 28. That is, each of the signal interconnects extending in the Y direction can pass between an adjacent pair of the I/O cells 10. Alternatively, the I/O cells 10 may be arranged with no clearance therebetween. In this case, the signal interconnects may pass through the I/O cells 10. FIG. 2 illustrates the I/O cells 10 of the same size and shape, but they may have different size and shape.
  • As shown in FIGS. 3 and 4, thick interconnect layers M1 and M2 are provided below the pads 30 ( pads 31 c, 32 b, and 32 c). Thick interconnects 51 and 52 are respectively provided in the interconnect layers M1 and M2 below the pads 30 for relieving damage caused by bonding, for example. The pads 30 and the thick interconnect 51 are connected together through vias 53, and the thick interconnects 51 and 52 are connected together through vias 54. The in-row power supply interconnects 21 a to 21 d and 22 a to 22 d are provided in three interconnect layers M31, M32, and M33 stacked one after another as a first interconnect layer below the interconnect layer M2. Here, the first interconnect layer is composed of three sublayers M31, M32, M33. The first interconnect layer may be composed of a single sublayer or two or more sublayers. The interconnect layers M1 and M2 are thicker than the interconnect layers M31, M32, and M33.
  • Back to FIG. 2, power supply interconnects 23 and 24, serving as first power supply interconnects, extend in the X direction in a region between the I/ O cell rows 10A and 10B. The power supply interconnect 23 supplies the VDDIO, and the power supply interconnect 24 supplies the VSS. Further, power supply interconnects 25 a, 25 b, 25 c, 25 d, 26 a, 26 b, 26 c, and 26 d, serving as second power supply interconnects, extend substantially in the Y direction.
  • The power supply interconnects 25 a and 25 b extend linearly in the Y direction across the I/ O cell rows 10A and 10B, and are connected to the power supply interconnect 23 between the I/ O cell rows 10A and 10B, and also to the in-row power supply interconnects 21 a and 21 b in the I/O cell row 10A and the in-row power supply interconnects 21 c and 21 d in the I/O cell row 10B. The power supply interconnects 26 a and 26 b extend linearly in the Y direction across the I/ O cell rows 10A and 10B, and are connected to the power supply interconnect 24 between the I/ O cell rows 10A and 10B, and also to the in-row power supply interconnects 22 a and 22 b in the I/O cell row 10A, and the in-row power supply interconnects 22 c and 22 d in the I/O cell row 10B.
  • The power supply interconnect 25 a is connected to the pads 31 a and 31 c. The pads 31 a and 31 c are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 25 a when viewed in plan. The power supply interconnect 25 b is connected to the pads 31 b and 31 d. The pads 31 b and 31 d are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 25 b when viewed in plan. The power supply interconnect 26 a is connected to the pads 32 a and 32 c. The pads 32 a and 32 c are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 26 a when viewed in plan. The power supply interconnect 26 b is connected to the pads 32 b and 32 d. The pads 32 b and 32 d are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 26 b when viewed in plan. The pads arranged in this manner can be efficiently connected to the power supply interconnects in a short distance.
  • The power supply interconnect 25 c connects the power supply interconnect 23 between the I/ O cell rows 10A and 10B to the in-row power supply interconnects 21 a and 21 b in the I/O cell row 10A. The power supply interconnect 25 d connects the power supply interconnect 23 between the I/ O cell rows 10A and 10B to the in-row power supply interconnects 21 c and 21 d in the I/O cell row 10B. The power supply interconnects 25 c and 25 d respectively have bends so that they do not overlap with the pads 30 when viewed in plan. The power supply interconnect 26 c connects the power supply interconnect 24 between the I/ O cell rows 10A and 10B to the in-row power supply interconnect 22 b in the I/O cell row 10A. The power supply interconnect 26 d connects the power supply interconnect 24 between the I/ O cell rows 10A and 10B to the in-row power supply interconnect 22 c in the I/O cell row 10B.
  • As shown in FIGS. 3 and 4, the power supply interconnects 23 and 24 between the I/ O cell rows 10A and 10B are formed in the thick interconnect layer M1. The power supply interconnect 26 b and other interconnects extending substantially in the Y direction are formed in the thick interconnect layer M2. The power supply interconnects 23 and 24 are connected to the power supply interconnect 26 b and other interconnects formed in the interconnect layer M2 through vias 41. The in-row power supply interconnects 22 b, 22 c and other interconnects are connected to the power supply interconnect 26 b and other interconnects formed in the interconnect layer M2 through vias 42. As shown in FIG. 4, an interconnect 43 extending in the Y direction across the I/ O cell rows 10A and 10B may be formed in the layer in which the pads 30 are formed. The interconnect 43 is connected to the power supply interconnect 24 for supplying the VSS through a via 44.
  • Note that the cross sectional configurations shown in FIGS. 3 and 4 are merely examples, and the present embodiment is not limited thereto. For example, the in-row power supply interconnects are not limited to have the three layers, and may have a single layer, or multiple layers more or less than three. Likewise, at least one additional interconnect layer may be formed between the interconnect layers M1 and M2. In such a case, the power supply interconnects 23 and 24 may be connected to the power supply interconnect 26 a and other interconnects formed in the interconnect layer M2 through a combination of short interconnects and vias formed in the interconnect layers between them. Likewise, one or more additional interconnect layer may be formed between the interconnect layer M2 and the layer in which the in-row power supply interconnects are formed. In such a case, the in-row power supply interconnects may be connected to the power supply interconnect 26 a and other interconnects formed in the interconnect layer M2 through a combination of short interconnects and vias formed in the interconnect layers between them. Alternatively, as indicated by α1 in FIGS. 3 and α2 in FIG. 4, the power supply interconnect 26 b and other interconnects may have, between the pads 30, for example, a multilayer portion including the interconnect layer M1 and the layer forming the pads 30. This configuration can reduce the impedance of the power supply interconnect 26 b and other interconnects. The configuration indicated by α1 in FIGS. 3 and α2 in FIG. 4 may be omitted.
  • The configuration shown in FIG. 2 has the following additional features. A typical I/O cell has a high power supply voltage region including an ESD circuit and an output buffer for outputting a signal to a device outside the semiconductor integrated circuit device, and a low power supply voltage region including a circuit for inputting and outputting a signal to and from the semiconductor integrated circuit device. Each of the I/O cells 10 in FIG. 2 includes a high power supply voltage region (indicated by “H” in FIG. 2) and a low power supply voltage region (indicated by “L” in FIG. 2) arranged side by side in the Y direction. In general, the I/O cells are arranged such that their high power supply voltage regions, which are mainly used for inputting and outputting signals to and from an external device, are located toward the outside in the semiconductor integrated circuit device 1, and their low power supply voltage regions, which are mainly used for inputting and outputting signals to and from the internal core region, are located toward the inside in the semiconductor integrated circuit device 1. By contrast, in the configuration of FIG. 2, the I/O cell row 10A is arranged such that its high power supply voltage regions are located toward the inside in the semiconductor integrated circuit device 1, and its low power supply voltage regions are located toward the outside in the semiconductor integrated circuit device 1. Specifically, the I/ O cell rows 10A and 10B are both arranged such that their low power supply voltage regions are located closer to the power supply interconnects 23 and 24.
  • Advantages
  • In the configuration shown in FIGS. 2 to 4, the interconnects for supplying the VDDIO, namely, the in-row power supply interconnects 21 a and 21 b in the I/O cell row 10A and the in-row power supply interconnects 21 c and 21 d in the I/O cell row 10B, are connected together via the power supply interconnect 23 between the I/ O cell rows 10A and 10B and the power supply interconnects 25 a to 25 d. This configuration with the power supply interconnect 23 further enhances the power supply ability and the ESD protection capability than the configuration with the in-row power supply interconnects 21 a to 21 d only. Further, the interconnects for supplying VSS, namely, the in-row power supply interconnects 22 a and 22 b in the I/O cell row 10A and the in-row power supply interconnects 22 c and 22 d in the I/O cell row 10B, are connected together via the power supply interconnect 24 between the I/ O cell rows 10A and 10B and the power supply interconnects 26 a to 26 d. This configuration with the power supply interconnect 24 further enhances the power supply ability and the ESD protection capability than the configuration with the in-row power supply interconnects 22 a to 22 d only.
  • Moreover, the power supply interconnects 23 and 24 are formed in the thick interconnect layer M1, and therefore, thicker than the in-row power supply interconnects 21 a to 21 d and 22 a to 22 d formed in the interconnect layers M31 to M33. This can further enhance the power supply ability and the ESD protection capability. Thus, the power supply ability and the ESD protection capability can be enhanced without increasing the number of I/O cells 10 for the power supply in the I/ O cell rows 10A and 10B, i.e., without increasing the area of the semiconductor integrated circuit. In addition, the number of the pads 30 for the power supply can also be reduced.
  • Further, the in-row power supply interconnects 21 a and 21 b in the I/O cell row 10A are connected to the in-row power supply interconnects 21 c and 21 d in the I/O cell row 10B via the power supply interconnect 23 and the power supply interconnects 25 a to 25 d. Likewise, the in-row power supply interconnects 22 a and 22 b in the I/O cell row 10A are connected to the in-row power supply interconnects 22 c and 22 d in the I/O cell row 10B via the power supply interconnect 24 and the power supply interconnects 26 a to 26 d. Thus, each of the I/ O cell rows 10A and 10B can receive power supplied from the other I/O cell row, or make use of the ESD protection capability of the other I/O cell row.
  • Further, the I/ O cell rows 10A and 10B are both arranged such that their high power supply voltage regions are located closer to the power supply interconnects 23 and 24. With the high power supply voltage regions arranged closer to the power supply interconnects 23 and 24, a distance from each of the power supply interconnects 23 and 24 to the ESD circuit and output buffer of each high power supply voltage region can be shortened. This can more effectively reduce the power supply voltage drop and improve the resistance to ESD.
  • Another Exemplary Configuration
  • In the device shown in FIG. 2, the in-row power supply interconnects of both of the I/ O cell rows 10A and 10B have been connected to the power supply interconnects between the I/ O cell rows 10A and 10B. Alternatively, the in-row power supply interconnects of either one of the I/ O cell rows 10A and 10B may be connected to the power supply interconnects between the I/ O cell rows 10A and 10B.
  • Further, in the semiconductor integrated circuit device shown in FIG. 2, to which the power supply potential VDDIO and the ground potential VSS are supplied, the configuration of the present embodiment has been applied to the interconnects supplying the VDDIO and the interconnects supplying the VSS. However, this is not limiting. For example, the configuration of the present embodiment may be applied only to the interconnects supplying the VDDIO. Alternatively, in a semiconductor integrated circuit device to which different types of power supply potentials are supplied, the configuration of the present embodiment may be applied to some or all of the interconnects for supplying different types of power supply potentials and ground potentials.
  • FIG. 5 is a plan view illustrating another exemplary configuration of the I/O region 3 of the semiconductor integrated circuit device 1 to which different types of power supply potentials are supplied. In the exemplary configuration of FIG. 5, three types of power supply potentials, namely, VDD, VDDIO 18, and VDDIO 33 are supplied. For example, the VDD is 0.9V, the VDDIO 18 is 1.8 V, and the VDDIO 33 is 3.3V. Note that FIG. 5 does not show an internal configuration of each I/O cell, signal interconnects, or other elements. The in-row power supply interconnects are also omitted from FIG. 5 for simplification.
  • The pads 30 include pads 33 a and 33 b to which VDD is supplied (indicated by “VDD” in FIG. 5), pads 34 a and 34 b to which VDDIO 18 is supplied (indicated by “VDDIO18” in FIG. 5), pads 35 a and 35 b to which VDDIO 33 is supplied (indicated by “VDDIO33” in FIG. 5), and pads 36 a, 36 b, 36 c, and 36 d to which VSS is supplied (indicated by “VSS” in FIG. 5). The other pads 30 are mainly for the signal transmission. The pads 33 a, 34 a, 35 a, 36 a, and 36 b, serving as first pads, are arranged on the I/O cell row 10A, while the pads 33 b, 34 b, 35 b, 36 c, and 36 d, serving as second pads, are arranged on the I/O cell row 10B.
  • Power supply interconnects 61 a, 61 b, 62 a, 62 b, 63 a, 63 b, 64 a, and 64 b, serving as first power supply interconnects, extend in the X direction in a region between the I/ O cell rows 10A and 10B. The power supply interconnects 61 a and 61 b supply the VDD. The power supply interconnects 62 a and 62 b supply the VDDIO 18. The power supply interconnects 63 a and 63 b supply the VDDIO 33. The power supply interconnects 64A and 64 b supply the VSS. Further, power supply interconnects 65 a, 65 b, 65 c, 66 a, 66 b, 66 c, 67 a, 67 b, 67 c, 68 a, 68 b, 68 c, and 68 d, serving as second power supply interconnects, extend substantially in the Y direction.
  • The power supply interconnect 65 a extends linearly in the Y direction across the I/ O cell rows 10A and 10B, and is connected to the power supply interconnects 61 a and 61 b for supplying the VDD between the I/ O cell rows 10A and 10B, and also to the in-row power supply interconnects in the I/O cell row 10A, and the in-row power supply interconnects in the I/O cell row 10B. The power supply interconnect 65 b connects the power supply interconnects 61 a and 61 b to the in-row power supply interconnects in the I/O cell row 10A. The power supply interconnect 65 c connects the power supply interconnects 61 a and 61 b to the in-row power supply interconnects in the I/O cell row 10B. The power supply interconnects 65 b and 65 c respectively have bends so that they do not overlap with the pads 30 when viewed in plan.
  • The power supply interconnect 66 a extends linearly in the Y direction across the I/ O cell rows 10A and 10B, and is connected to the power supply interconnects 62 a and 62 b, between the I/ O cell rows 10A and 10B, for supplying the VDDIO 18, and also to the in-row power supply interconnects in the I/O cell row 10A and the in-row power supply interconnects in the I/O cell row 10B. The power supply interconnect 66 b connects the power supply interconnects 62 a and 62 b to the in-row power supply interconnects in the I/O cell row 10A. The power supply interconnect 66 c connects the power supply interconnects 62 a and 62 b to the in-row power supply interconnects in the I/O cell row 10B. The power supply interconnects 66 b and 66 c respectively have bends so that they do not overlap with the pads 30 when viewed in plan.
  • The power supply interconnect 67 a extends linearly in the Y direction across the I/ O cell rows 10A and 10B, and is connected to the power supply interconnects 63 a and 63 b, between the I/ O cell rows 10A and 10B, for supplying the VDDIO 33, and also to the in-row power supply interconnects in the I/O cell row 10A and the in-row power supply interconnects in the I/O cell row 10B. The power supply interconnect 67 b connects the power supply interconnects 63 a and 63 b to the in-row power supply interconnects in the I/O cell row 10A. The power supply interconnect 67 c connects the power supply interconnects 63 a and 63 b to the in-row power supply interconnects in the I/O cell row 10B. The power supply interconnects 67 b and 67 c respectively have bends so that they do not overlap with the pads 30 when viewed in plan.
  • The power supply interconnects 68 a and 68 b extend linearly in the Y direction across the I/ O cell rows 10A and 10B, and are connected to the power supply interconnects 64 a and 64 b for supplying the VSS between the I/ O cell rows 10A and 10B, and also to the in-row power supply interconnects in the I/O cell row 10A and the in-row power supply interconnects in the I/O cell row 10B. The power supply interconnect 68 c connects the power supply interconnects 64 a and 64 b to the in-row power supply interconnects in the I/O cell row 10A. The power supply interconnect 68 d connects the power supply interconnects 64 a and 64 b to the in-row power supply interconnects in the I/O cell row 10B. The power supply interconnects 68 c and 68 d respectively have bends so that they do not overlap with the pads 30 when viewed in plan.
  • The power supply interconnect 65 a is connected to the pads 33 a and 33 b. The pads 33 a and 33 b are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 65 a when viewed in plan. The power supply interconnect 66 a is connected to the pads 34 a and 34 b. The pads 34 a and 34 b are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 66 a when viewed in plan. The power supply interconnect 67 a is connected to the pads 35 a and 35 b. The pads 35 a and 35 b are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 67 a when viewed in plan. The power supply interconnect 68 a is connected to the pads 36 a and 36 c. The pads 36 a and 36 c are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 68 a when viewed in plan. The power supply interconnect 68 b is connected to the pads 36 b and 36 d. The pads 36 b and 36 d are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 68 b when viewed in plan. The pads arranged in this manner can be efficiently connected to the power supply interconnects in a short distance.
  • Additionally, a power supply interconnect 65 d connecting the power supply interconnects 61 a and 61 b together, a power supply interconnect 66 d connecting the power supply interconnects 62 a and 62 b together, and a power supply interconnect 67 d connecting the power supply interconnects 63 a and 63 b together extend in the Y direction.
  • The configuration of the interconnect layers of the device of FIG. 5 is the same as that of the device of FIG. 2. The device of FIG. 5 can obtain the same advantages as those of the device of FIG. 2. Specifically, the power supply ability and the ESD protection capability can be enhanced without increasing the area of the semiconductor integrated circuit.
  • In the devices of FIGS. 2 and 5, the two I/ O cell rows 10A and 10B have been arranged. However, this is not limiting. For example, the configuration of the present embodiment may be applied to three or more I/O cell rows, or two or more of the three or more I/O cell rows.
  • The arrangements of the pads and power supply interconnects are not limited to those shown in FIGS. 2 and 5. For example, in the embodiments described above, the pads 30 have been arranged in two rows in a staggered pattern in each of the I/ O cell rows 10A and 10B. However, the number of pad rows is not limited thereto, and the pads are not necessarily arranged in a staggered pattern. The interval between the pad rows is not limited to that shown in FIGS. 2 and 5. Further, in each of the I/ O cell rows 10A and 10B, two pads receiving the VDDIO and two pads receiving the VSS have been arranged. However, this configuration is not limiting. For example, either one of the I/ O cell rows 10A or 10B may have no pads receiving the VDDIO. The pads receiving the VDDIO and the pads receiving the VSS that have been opposed to each other are not necessarily opposed to each other. Furthermore, between the I/ O cell rows 10A and 10B, the power supply interconnect 23 for supplying the VDD and the power supply interconnect 24 for supplying the VSS are provided one each in the device of FIG. 2, and two each in the device of FIG. 5. However, the number of the power supply interconnects is not limited thereto.
  • Second Embodiment
  • FIG. 6 is a view illustrating an exemplary configuration of an I/O region 3 of a semiconductor integrated circuit device according to a second embodiment, particularly showing a portion W in FIG. 1 in an enlarged scale. In the exemplary configuration of FIG. 6, three types of power supply potentials, namely, VDD, VDDIO 18, and VDDIO 33 are supplied. For example, the VDD is 0.9V, the VDDIO 18 is 1.8 V, and the VDDIO 33 is 3.3V. Note that FIG. 6 does not show an internal configuration of each I/O cell, signal interconnects, or other elements.
  • FIG. 6 shows two I/ O cell rows 10A and 10B, each of which includes a plurality of I/O cells 10 (depicted by chain double-dashed lines) arranged side by side in an X direction corresponding to a first direction, i.e., a horizontal direction in FIG. 6 along one external side of the semiconductor integrated circuit device 1. The I/ O cell rows 10A and 10B are adjacent to each other in a Y direction corresponding to a second direction, i.e., a vertical direction in FIG. 2 perpendicular to the first direction. The I/O cells 10 include I/O cells for supplying a power supply potential and a ground potential, and I/O cells for signal transmission. In FIG. 6, the two I/ O cell rows 10A and 10B are arranged with no gap left therebetween.
  • A plurality of pads 30 are arranged in the regions of the I/ O cell rows 10A and 10B. The pads 30 are arranged side by side in the X direction in an upper layer of the I/O cells 10, and are arranged in two rows in a staggered pattern in each of the I/ O cell rows 10A and 10B. That is, four pad rows 30A, 30B, 30C, and 30D are arranged in the regions of the I/ O cell rows 10A and 10B. The pads 30 include pads 33 c and 33 d to which the VDD is supplied (indicated by “VDD” in FIG. 6), pads 34 c and 34 d to which the VDDIO 18 is supplied (indicated by “VDDIO18” in FIG. 6), pads 35 c and 35 c to which the VDDIO 33 is supplied (indicated by “VDDIO33” in FIG. 6), and pads 36 c and 36 d to which the VSS is supplied (indicated by “VSS” in FIG. 6). The other pads 30 are mainly for the signal transmission.
  • In the regions of the I/ O cell rows 10A and 10B, in-row power supply interconnects 71 a and 71 b for supplying the VDD, in-row power supply interconnects 72 a and 72 b for supplying the VDDIO 18, in-row power supply interconnects 73 a and 73 b for supplying the VDDIO 33, and in-row power supply interconnects 74 a, 74 b, 74 c, 74 d, 74 e, and 74 f for supplying the VSS extend in the X direction. The in-row power supply interconnects 71 a, 72 a, and 74 a are arranged in a layer below the pad row 30A in the region of the I/O cell row 10A. The in-row power supply interconnects 73 a, 74 b, and 74 c are arranged in a layer below the pad row 30B in the region of the I/O cell row 10A. The in-row power supply interconnects 73 a, 74 d, and 74 e are arranged in a layer below the pad row 30C in the region of the I/O cell row 10B. The in-row power supply interconnects 71 b, 72 b, and 74 f are arranged in a layer below the pad row 30D in the region of the I/O cell row 10B. The numbers and positions of the in-row power supply interconnects and the types of the potential supplied by these interconnects are not limited to those according to the configuration shown in FIG. 6.
  • A signal interconnect extending in the Y direction can pass between an adjacent pair of the I/O cells 10. FIG. 6 illustrates the I/O cells 10 of the same size and shape, but they may have different size and shape.
  • A power supply interconnect 76 a for supplying the VDDIO 18 and a power supply interconnect 77 a for supplying the VDDIO 33, serving as first power supply interconnects, extend in the X direction in a region between the pad rows 30A and 30B. Power supply interconnects 78 a and 78 b for supplying the VSS, serving as the first power supply interconnects, extend in the X direction in a region between the pad rows 30B and 30C. A power supply interconnect 76 b for supplying the VDDIO 18 and a power supply interconnect 77 b for supplying the VDDIO 33, serving as the first power supply interconnects, extend in the X direction in a region between the pad rows 30C and 30D. In addition, a power supply interconnect 75 a for supplying the VDD extends in the X direction below the pad row 30A in FIG. 6. A power supply interconnect 75 b for supplying the VDD extends in the X direction above the pad row 30D in FIG. 6. Specifically, the power supply interconnects 75 a and 75 b for supplying the VDD, serving as the first power supply interconnects, are respectively provided at the sides in the Y direction of the pad rows 30A to 30D.
  • Further, power supply interconnects 81, 82 a, 82 b, 82 c, 83 a, 83 b, 83 c, 84 a, 84 b, 84 c, 84 d, and 84 e, serving as second power supply interconnects, extend substantially in the Y direction. The power supply interconnect 81 extends linearly in the Y direction across the I/ O cell rows 10A and 10B, and connects the power supply interconnects 75 a and 75 b for supplying the VDD respectively provided at the ends, in the Y direction, of the set of the pad rows 30A to 30D to the in-row power supply interconnect 71 a in the I/O cell row 10A and the in-row power supply interconnect 71 b in the I/O cell row 10B.
  • The power supply interconnect 82 a extends linearly in the Y direction across the I/ O cell rows 10A and 10B, and connects the power supply interconnects 76 a and 76 b for supplying the VDDIO 18 to the in-row power supply interconnect 72 a in the I/O cell row 10A and the in-row power supply interconnect 72 b in the I/O cell row 10B. The power supply interconnects 82 b and 82 c also connect the power supply interconnects 76 a and 76 b to the in-row power supply interconnects 72 a and 72 b. The power supply interconnects 82 b and 82 c respectively have bends so that they do not overlap with the pads 30 when viewed in plan.
  • The power supply interconnect 83 a extends linearly in the Y direction across the I/ O cell rows 10A and 10B, and connects the power supply interconnects 77 a and 77 b for supplying the VDDIO 33 to the in-row power supply interconnect 73 a in the I/O cell row 10A and the in-row power supply interconnect 73 b in the I/O cell row 10B. The power supply interconnects 83 b and 83 c also connect the power supply interconnects 77 a and 77 b to the in-row power supply interconnects 73 a and 73 b. The power supply interconnects 83 b and 83 c respectively have bends so that they do not overlap with the pads 30 when viewed in plan.
  • The power supply interconnect 84 a extends linearly in the Y direction across the I/ O cell rows 10A and 10B, and connects together the power supply interconnects 78 a and 78 b for supplying the VSS, the in-row power supply interconnects 74 a, 74 b, and 74 c in the I/O cell row 10A, and the in-row power supply interconnect 74 d, 74 e, and 74 f in the I/O cell row 10B. The power supply interconnects 84 b and 84 c connect the power supply interconnects 78 a and 78 b to the in-row power supply interconnects 74 d, 74 e, and 74 f in the I/O cell row 10B. The power supply interconnects 84 d and 84 e connect the power supply interconnects 78 a and 78 b to the in-row power supply interconnects 74 a, 74 b, and 74 c in the I/O cell row 10A. The power supply interconnects 84 b, 84 c, 84 d, and 84 e respectively have bends so that they do not overlap with the pads 30 when viewed in plan.
  • The power supply interconnect 81 is connected to the pads 33 c and 33 d. The pads 33 c and 33 d are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 81 when viewed in plan. The power supply interconnect 82 a is connected to the pads 34 c and 34 d. The pads 34 c and 34 d are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 82 a when viewed in plan. The power supply interconnect 83 a is connected to the pads 35 c and 35 d. The pads 35 c and 35 d are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 83 a when viewed in plan. The power supply interconnect 84 a is connected to the pads 36 c and 36 d. The pads 36 c and 36 d are arranged to oppose to each other in the Y direction, and overlap with the power supply interconnect 84 a when viewed in plan. The pads arranged in this manner can be efficiently connected to the power supply interconnects in a short distance.
  • The configuration of the interconnect layers of the device of FIG. 6 is the same as that of the first embodiment shown in FIGS. 3 and 4. Specifically, the power supply interconnects 76 a and other interconnects provided between the pad rows, and the power supply interconnects 75 a and 75 b provided at the ends, in the Y direction, of the set of the pad rows are formed in the interconnect layer M1, which is thicker than, and formed above, the interconnect layers M31, M32, and M33 in which the in-row power supply interconnects are formed. Further, the power supply interconnect 81 and other interconnects extending substantially in the Y direction are formed in the interconnect layer M2. As described in the first embodiment, this configuration of the interconnect layers is not limiting.
  • Advantages
  • In the device of FIG. 6, the interconnects for supplying the VDDIO 18, namely, the in-row power supply interconnects 72 a and 72 b in the I/ O cell rows 10A and 10B, are connected to the power supply interconnect 76 a between the pad rows 30A and 30B and the power supply interconnect 76 b between the pad rows 30C and 30D via the power supply interconnects 82 a to 82 c. This configuration with the power supply interconnects 76 a and 76 b further enhances the power supply ability and the ESD protection capability than the configuration with the in-row power supply interconnects 72 a and 72 b only. Moreover, the interconnects for supplying the VDDIO 33, namely, the in-row power supply interconnects 73 a and 73 b in the I/ O cell rows 10A and 10B, are connected to the power supply interconnect 77 a between the pad rows 30A and 30B and the power supply interconnect 77 b between the pad rows 30C and 30D via the power supply interconnects 83 a to 83 c. This configuration with the power supply interconnects 77 a and 77 b further enhances the power supply ability and the ESD protection capability than the configuration with the in-row power supply interconnects 73 a and 73 b only. Moreover, the interconnects for supplying the VSS, namely, the in-row power supply interconnects 74 a to 74 f in the I/ O cell rows 10A and 10B, are connected to the power supply interconnects 78 a and 78 b between the pad rows 30B and 30C via the power supply interconnects 84 a to 84 e. This configuration with the power supply interconnects 78 a and 78 b further enhances the power supply ability and the ESD protection capability than the configuration with the in-row power supply interconnects 74 a to 74 f only. In addition, since the power supply interconnects 76 a, 76 b, 77 a, 77 b, 78 a, and 78 b are thicker than the in-row power supply interconnects 72 a, 72 b, 73 a, 73 b, and 74 a to 74 f, the power supply ability and the ESD protection capability are much more enhanced.
  • Further, in the device of FIG. 6, the interconnects for supplying the VDD, namely, the in-row power supply interconnects 71 a and 71 b in the I/ O cell rows 10A and 10B, are connected to the power supply interconnects 75 a and 75 b provided at the ends, in the Y direction, of the set of the pad rows 30A to 30D via the power supply interconnect 81. This configuration with the power supply interconnects 75 a and 75 b further enhances the power supply ability and the ESD protection capability than the configuration including the in-row power supply interconnects 71 a and 71 b only. In addition, since the power supply interconnects 75 a and 75 b are thicker than the in-row power supply interconnects 71 a and 71 b, the power supply ability and the ESD protection capability are much more enhanced.
  • Thus, the power supply ability and the ESD protection capability are enhanced without increasing the number of I/O cells for the power supply in the I/ O cell rows 10A and 10B, i.e., without increasing the area of the semiconductor integrated circuit. In addition, the number of the pads for the power supply can also be reduced.
  • Still Another Exemplary Configuration
  • The device of FIG. 6 is merely an example, and the arrangements of the pads, in-row power supply interconnects, and power supply interconnects between the pad rows are not limited to those shown in FIG. 6. For example, the power supply interconnects 75 a and 75 b for supplying the VDD provided at the ends, in the Y direction, of the set of the pad rows 30A to 30D in the configuration of FIG. 6 may be replaced with power supply interconnects for supplying a different potential, e.g., VSS. Alternatively, the power supply interconnect may be provided only at either one of the ends, in the Y direction, of the set of the pad rows, or power supply interconnects for supplying different potentials may be respectively provided at the ends, in the Y direction, of the set of the pad rows.
  • In the device of FIG. 6, the two I/ O cell rows 10A and 10B have been arranged. However, this is not limiting. For example, the configuration of the present embodiment may be applied to a device with a single I/O cell row, or three or more I/O cell rows. Further, in the embodiments described above, the pads 30 have been arranged in two rows in a staggered pattern in each of the I/ O cell rows 10A and 10B. However, the number of pad rows is not limited thereto, and the pads are not necessarily arranged in a staggered pattern. The interval between the pad rows is not limited to that shown in FIG. 6.
  • In the above-described embodiments, each of the I/ O cell rows 10A and 10B in an annular shape has been arranged along the periphery of the semiconductor integrated circuit device 1. However, this is not limiting, and the I/ O cell rows 10A and 10B may be arranged along a portion of the periphery of the semiconductor integrated circuit device 1, for example. The configuration of the present embodiment is not necessarily applied to the whole I/ O cell rows 10A and 10B, and may be applied to a portion of the I/ O cell rows 10A and 10B.
  • The present disclosure can ensure sufficient power supply ability and ESD protection capability for an I/O cell row without increasing the area of the semiconductor integrated circuit, and therefore, is effective for downsizing a large-scale LSI inputting and outputting a large number of signals.

Claims (18)

What is claimed is:
1. A semiconductor integrated circuit device, comprising:
a first I/O cell row and a second I/O cell row each including a plurality of I/O cells arranged side by side in a first direction, the first and second I/O cell rows being adjacent to each other in a second direction perpendicular to the first direction;
a first in-row power supply interconnect and a second in-row power supply interconnect extending in the first direction in a first interconnect layer, and provided in a region of the first I/O cell row and a region of the second I/O cell row, respectively, each of the first and second in-row power supply interconnects supplying a predetermined power supply potential, and the first interconnect layer being composed of a single sublayer or two or more sublayers;
a first power supply interconnect extending in the first direction in a second interconnect layer which is located above the first interconnect layer and thicker than the single sublayer or a thickest one of the two or more sublayers of the first interconnect layer, and provided in a region between the first and second I/O cell rows, the first power supply interconnect supplying the predetermined power supply potential; and
a second power supply interconnect connecting the first power supply interconnect to at least one of the first in-row power supply interconnect or the second in-row power supply interconnect.
2. The semiconductor integrated circuit device of claim 1, wherein the second power supply interconnect includes an interconnect extending linearly in the second direction and connecting the first power supply interconnect to both of the first and second in-row power supply interconnects.
3. The semiconductor integrated circuit device of claim 1, wherein
the second power supply interconnect includes an interconnect having a bend.
4. The semiconductor integrated circuit device of claim 1, wherein
the second power supply interconnect is formed in a third interconnect layer which is located above the first interconnect layer and below the second interconnect layer, and is thicker than the at least one sublayer of the first interconnect layer.
5. The semiconductor integrated circuit device of claim 4, wherein
the second power supply interconnect has at least a portion formed in the third interconnect layer and in the second interconnect layer.
6. The semiconductor integrated circuit device of claim 1, further comprising
a first pad and a second pad provided in the region of the first I/O cell row and the region of the second I/O cell row, respectively, the first and second pads serving as external connection pads supplying the predetermined power supply potential, wherein
the first and second pads are arranged to oppose to each other in the second direction, and connected to the second power supply interconnect.
7. The semiconductor integrated circuit device of claim 1, wherein
each of the I/O cells in the first and second I/O cell rows includes a high power supply voltage region and a low power supply voltage region which are separated from each other in the second direction, each of the I/O cells being arranged such that the high power supply voltage region is adjacent to the first power supply interconnect.
8. The semiconductor integrated circuit device of claim 1, wherein
a signal interconnect extending in the second direction is provided between an adjacent pair of the I/O cells.
9. A semiconductor integrated circuit device, comprising:
at least one I/O cell row including a plurality of I/O cells arranged side by side in a first direction;
an in-row power supply interconnect extending in the first direction in a first interconnect layer, and provided in a region of the at least one I/O cell row, the in-row power supply interconnect supplying a predetermined power supply potential, and the first interconnect layer being composed of a single sublayer or two or more sublayers;
a plurality of pad rows provided in the region of the at least one I/O cell row and arranged in a second direction perpendicular to the first direction, each of the pad rows including a plurality of external connection pads arranged side by side in the first direction;
a first power supply interconnect extending in the first direction in a second interconnect layer which is located above the first interconnect layer and thicker than the single layer or a thickest one of the two or more sublayers of the first interconnect layer, and provided between an adjacent pair of the pad rows in the region of the at least one I/O cell row, the first power supply interconnect supplying the predetermined power supply potential; and
a second power supply interconnect connecting the first power supply interconnect to the in-row power supply interconnect.
10. The semiconductor integrated circuit device of claim 9, wherein
the second power supply interconnect includes an interconnect extending linearly in the second direction.
11. The semiconductor integrated circuit device of claim 9, wherein
the second power supply interconnect includes an interconnect having a bend.
12. The semiconductor integrated circuit device of claim 9, wherein
the second power supply interconnect is formed in a third interconnect layer which is located above the first interconnect layer and below the second interconnect layer, and is thicker than the at least one sublayer of the first interconnect layer.
13. The semiconductor integrated circuit device of claim 9, wherein
a signal interconnect extending in the second direction is provided between an adjacent pair of the I/O cells.
14. A semiconductor integrated circuit device, comprising:
at least one I/O cell row including a plurality of I/O cells arranged side by side in a first direction;
an in-row power supply interconnect extending in the first direction in a first interconnect layer, and provided in a region of the at least one I/O cell row, the in-row power supply interconnect supplying a predetermined power supply potential, and the first interconnect layer being composed of a single sublayer or two or more sublayers;
a plurality of pad rows provided in the region of the at least one I/O cell row and arranged side by side in a second direction perpendicular to the first direction, each of the pad rows including a plurality of external connection pads arranged side by side in the first direction;
a first power supply interconnect extending in the first direction in a second interconnect layer at at least one of sides in the second direction of the plurality of the pad rows in the region of the at least one I/O cell row, the first power supply interconnect supplying the predetermined power supply potential, and the second interconnect layer being located above the first interconnect layer and thicker than the single layer or a thickest one of the two or more sublayers of the first interconnect layer; and
a second power supply interconnect connecting the first power supply interconnect to the in-row power supply interconnect.
15. The semiconductor integrated circuit device of claim 14, wherein
the second power supply interconnect includes an interconnect extending linearly in the second direction.
16. The semiconductor integrated circuit device of claim 14, wherein
the second power supply interconnect includes an interconnect having a bend.
17. The semiconductor integrated circuit device of claim 14, wherein
the second power supply interconnect is formed in a third interconnect layer which is located above the first interconnect layer and below the second interconnect layer, and is thicker than the at least one sublayer of the first interconnect layer.
18. The semiconductor integrated circuit device of claim 14, wherein
a signal interconnect extending in the second direction is provided between an adjacent pair of the I/O cells.
US16/138,868 2016-03-28 2018-09-21 Semiconductor integrated circuit device Active 2037-06-27 US10847462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/071,812 US11251125B2 (en) 2016-03-28 2020-10-15 Semiconductor integrated circuit device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016063758 2016-03-28
JP2016-063758 2016-03-28
PCT/JP2017/004580 WO2017169150A1 (en) 2016-03-28 2017-02-08 Semiconductor integrated circuit device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004580 Continuation WO2017169150A1 (en) 2016-03-28 2017-02-08 Semiconductor integrated circuit device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/071,812 Division US11251125B2 (en) 2016-03-28 2020-10-15 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
US20190051601A1 true US20190051601A1 (en) 2019-02-14
US10847462B2 US10847462B2 (en) 2020-11-24

Family

ID=59963818

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/138,868 Active 2037-06-27 US10847462B2 (en) 2016-03-28 2018-09-21 Semiconductor integrated circuit device
US17/071,812 Active 2037-02-10 US11251125B2 (en) 2016-03-28 2020-10-15 Semiconductor integrated circuit device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/071,812 Active 2037-02-10 US11251125B2 (en) 2016-03-28 2020-10-15 Semiconductor integrated circuit device

Country Status (4)

Country Link
US (2) US10847462B2 (en)
JP (1) JP6849927B2 (en)
CN (1) CN108886020B (en)
WO (1) WO2017169150A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11621259B2 (en) 2018-10-19 2023-04-04 Socionext Inc. Semiconductor chip
US11699660B2 (en) 2018-08-28 2023-07-11 Socionext Inc. Semiconductor integrated circuit device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042698A1 (en) * 2022-08-26 2024-02-29 株式会社ソシオネクスト Semiconductor integrated circuit device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098227A (en) * 1995-06-16 1997-01-10 Fujitsu Ltd Semiconductor integrated circuit device
JP3380465B2 (en) 1998-06-29 2003-02-24 松下電器産業株式会社 Semiconductor device
JP3954561B2 (en) * 2003-11-27 2007-08-08 沖電気工業株式会社 Multilayer power supply line of semiconductor integrated circuit and layout method thereof
JP2007173760A (en) * 2005-11-25 2007-07-05 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit and method for designing the same
JP4995455B2 (en) * 2005-11-30 2012-08-08 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2007250933A (en) * 2006-03-17 2007-09-27 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit and method of designing its layout
JP2008218751A (en) * 2007-03-05 2008-09-18 Fujitsu Ltd Semiconductor device and i/o cell
JP5242103B2 (en) * 2007-09-07 2013-07-24 ルネサスエレクトロニクス株式会社 Layout method of semiconductor integrated circuit
US20090128189A1 (en) * 2007-11-19 2009-05-21 Raminda Udaya Madurawe Three dimensional programmable devices
JP4492736B2 (en) * 2008-06-12 2010-06-30 ソニー株式会社 Semiconductor integrated circuit
US8184414B2 (en) * 2008-07-30 2012-05-22 Qualcomm Incorporated Method and apparatus for forming I/O clusters in integrated circuits
US9135373B1 (en) * 2010-04-12 2015-09-15 Cadence Design Systems, Inc. Method and system for implementing an interface for I/O rings
JP2013206905A (en) * 2012-03-27 2013-10-07 Renesas Electronics Corp Semiconductor device and manufacturing method of the same
US9166593B2 (en) * 2012-05-28 2015-10-20 Baysand Inc. Flexible, space-efficient I/O circuitry for integrated circuits
WO2014188514A1 (en) * 2013-05-21 2014-11-27 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device
JP6597628B2 (en) * 2014-10-24 2019-10-30 株式会社ソシオネクスト Semiconductor integrated circuit device
WO2016063459A1 (en) * 2014-10-24 2016-04-28 株式会社ソシオネクスト Semiconductor integrated circuit device
US10424575B2 (en) * 2015-03-26 2019-09-24 Renesas Electronics Corporation Semiconductor device
US9831236B2 (en) * 2015-04-29 2017-11-28 GlobalFoundries, Inc. Electrostatic discharge (ESD) protection transistor devices and integrated circuits with electrostatic discharge protection transistor devices
KR102401577B1 (en) * 2016-06-02 2022-05-24 삼성전자주식회사 Integrated circuit and standard cell library
JP6966686B2 (en) * 2016-10-21 2021-11-17 株式会社ソシオネクスト Semiconductor device
US10672709B2 (en) * 2016-12-12 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd Power grid, IC and method for placing power grid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11699660B2 (en) 2018-08-28 2023-07-11 Socionext Inc. Semiconductor integrated circuit device
US11621259B2 (en) 2018-10-19 2023-04-04 Socionext Inc. Semiconductor chip

Also Published As

Publication number Publication date
US10847462B2 (en) 2020-11-24
WO2017169150A1 (en) 2017-10-05
US11251125B2 (en) 2022-02-15
JP6849927B2 (en) 2021-03-31
US20210028110A1 (en) 2021-01-28
CN108886020B (en) 2022-09-09
CN108886020A (en) 2018-11-23
JPWO2017169150A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
US11251125B2 (en) Semiconductor integrated circuit device
US10438939B2 (en) Semiconductor integrated circuit device
US10446492B2 (en) Semiconductor integrated circuit device
JP7093020B2 (en) Semiconductor integrated circuit equipment
US20040036141A1 (en) Multi-concentric pad arrangements for integrated circuit pads
US8115321B2 (en) Separate probe and bond regions of an integrated circuit
US10756059B2 (en) Semiconductor chip including a plurality of pads
US10825760B2 (en) Semiconductor chip and semiconductor device provided with same
WO2020044438A1 (en) Semiconductor integrated circuit device
US8698325B2 (en) Integrated circuit package and physical layer interface arrangement
US20220415882A1 (en) Semiconductor integrated circuit device
US9933835B2 (en) Integrated circuit with interface circuitry, and an interface cell for such interface circuitry
WO2022254676A1 (en) Semiconductor integrated circuit device
TWI437675B (en) Integrated circuit package and phisical layer interface arrangement
US8549257B2 (en) Area efficient arrangement of interface devices within an integrated circuit
US20210233902A1 (en) Semiconductor chip
KR102457807B1 (en) Semiconductor chip with a plurality of pads
JP2009010410A (en) Semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOCIONEXT INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIROSE, MASANOBU;NAKAMURA, TOSHIHIRO;REEL/FRAME:046943/0966

Effective date: 20180822

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4