WO2017154963A1 - ポリイソシアネート組成物、コーティング組成物、水系コーティング組成物、及びコーティング基材 - Google Patents

ポリイソシアネート組成物、コーティング組成物、水系コーティング組成物、及びコーティング基材 Download PDF

Info

Publication number
WO2017154963A1
WO2017154963A1 PCT/JP2017/009184 JP2017009184W WO2017154963A1 WO 2017154963 A1 WO2017154963 A1 WO 2017154963A1 JP 2017009184 W JP2017009184 W JP 2017009184W WO 2017154963 A1 WO2017154963 A1 WO 2017154963A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyisocyanate composition
mass
polyisocyanate
compound
Prior art date
Application number
PCT/JP2017/009184
Other languages
English (en)
French (fr)
Inventor
和子 中島
片川 洋徳
理計 山内
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to EP17763303.9A priority Critical patent/EP3428207B1/en
Priority to JP2018504548A priority patent/JP6568996B2/ja
Priority to CN201780013297.7A priority patent/CN108699204B/zh
Publication of WO2017154963A1 publication Critical patent/WO2017154963A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • C08G18/022Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only the polymeric products containing isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • C08G18/027Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only the polymeric products containing urethodione groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0828Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing sulfonate groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • C08G18/092Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • C08G18/095Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to carbodiimide or uretone-imine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • C08G18/097Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to urethdione groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/166Catalysts not provided for in the groups C08G18/18 - C08G18/26
    • C08G18/168Organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/225Catalysts containing metal compounds of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/26Catalysts containing metal compounds of lead
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3857Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur having nitrogen in addition to sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/625Polymers of alpha-beta ethylenically unsaturated carboxylic acids; hydrolyzed polymers of esters of these acids
    • C08G18/6254Polymers of alpha-beta ethylenically unsaturated carboxylic acids and of esters of these acids containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/703Isocyanates or isothiocyanates transformed in a latent form by physical means
    • C08G18/705Dispersions of isocyanates or isothiocyanates in a liquid medium
    • C08G18/706Dispersions of isocyanates or isothiocyanates in a liquid medium the liquid medium being water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7875Nitrogen containing heterocyclic rings having at least one nitrogen atom in the ring
    • C08G18/7887Nitrogen containing heterocyclic rings having at least one nitrogen atom in the ring having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/797Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing carbodiimide and/or uretone-imine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/798Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing urethdione groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints

Definitions

  • the present invention relates to a polyisocyanate composition, a coating composition, an aqueous coating composition, and a coating substrate.
  • a polyisocyanate composition obtained from an aliphatic diisocyanate containing 1,6-diisocyanatohexane (hereinafter, also referred to as “HDI” or “hexamethylene diisocyanate”) and having an isocyanurate structure is resistant to weathering and heat. Therefore, it has been widely used for various purposes.
  • the two-component urethane coating composition used as a solvent-based paint is desired to be water-based due to the increase in global environmental protection.
  • polyisocyanate used as a curing agent is difficult to disperse in water and easily reacts with water, and carbon dioxide is generated by the reaction. For this reason, development of polyisocyanates having emulsifying properties and suppressing the reaction between isocyanate groups and water even in a water-dispersed state is underway.
  • Patent Document 1 discloses a water-dispersible polyisocyanate mixture containing a polyisocyanate compound containing a uretdione group and a polyether containing an ethylene oxide unit.
  • Patent Document 2 and Patent Document 3 also disclose an aqueous polyisocyanate composition containing a uretdione group and capable of being dissolved or dispersed in water.
  • JP 05-222150 A Japanese Patent Application Laid-Open No. 07-330861 JP 2007-332193 A
  • Patent Documents 1 to 3 disclose that water dispersibility is improved by using a polyisocyanate containing a uretdione group.
  • the diisocyanate monomer concentration tends to increase during storage and its use is limited.
  • the amount of polyisocyanate mixed with the main agent varies widely from small to large, and in the case of small amounts, the same can can be opened and closed many times. It also has the problem of reacting with.
  • an object of the present invention is to provide a polyisocyanate composition that can form a coating film that is dispersible in water, excellent in storage stability and moisture stability, and excellent in adhesion to a base.
  • the present inventors obtained an isocyanurate group, a uretdione group, a uretonimino group, and an iminooxadiazinedione obtained by a reaction between a raw material polyisocyanate composition containing a polyisocyanate having an aliphatic diisocyanate unit and a hydrophilic compound.
  • the present invention was completed by finding that it is possible to form a coating film that is excellent in adhesion and adhesion to the substrate.
  • the molar ratio of the uretonimino group to the isocyanurate group is 0.0010 or more and 0.0050 or less, and the molar ratio of the iminooxadiazinedione group to the isocyanurate group is 0.00050 or more and 0.30.
  • a polyisocyanate composition which is: [2] The polyisocyanate composition according to [1], wherein the hydrophilic compound is one or more selected from the group consisting of an anionic compound, a cationic compound, and a nonionic compound. [3] The hydrophilic compound includes the anionic compound, The anionic compound is one or more selected from the group consisting of a compound containing a carboxylic acid group, a compound containing a phosphoric acid group, and a compound containing a sulfonic acid group, according to [2]. Polyisocyanate composition.
  • the anionic compound includes a compound containing the sulfonic acid group, The polyisocyanate composition according to [3], wherein the compound containing a sulfonic acid group is one or more selected from the group consisting of a sulfonic acid containing a hydroxyl group and a sulfonic acid containing an amino group.
  • the hydrophilic compound includes the nonionic compound, The polyisocyanate composition according to [2], wherein the nonionic compound is a polyalkylene glycol alkyl ether having a structure represented by the following general formula (1).
  • R 1 represents an alkylene group having 1 to 4 carbon atoms
  • R 2 represents an alkyl group having 1 to 4 carbon atoms
  • the average number of n is 5.0 or more and 20 or less.
  • [6] In the general formula (1), R 1 represents an alkylene group having 2 carbon atoms, and R 2 represents an alkyl group having 1 carbon atom, according to [5]. [7] [5] or [6], wherein the polyisocyanate composition contains 2.0% by mass or more and 30% by mass or less of a portion derived from the polyalkylene glycol alkyl ether with respect to the total amount of the polyisocyanate composition. The polyisocyanate composition described.
  • a coated substrate comprising: a substrate; and the coating composition according to [9] or the aqueous coating composition according to [10] coated on the substrate.
  • the polyisocyanate composition according to the present invention it is possible to form a coating film that is dispersible in water, excellent in storage stability and moisture stability, and excellent in adhesion to the base.
  • the polyisocyanate composition of the present embodiment is a raw material polyisocyanate composition containing a polyisocyanate having an aliphatic diisocyanate unit (hereinafter referred to as a polyisocyanate composition of the present embodiment and a polyisocyanate composition of the present embodiment.
  • the polyisocyanate composition that is a raw material of the polyisocyanate composition of the embodiment is also referred to as a “raw material polyisocyanate composition”) and a hydrophilic compound.
  • the polyisocyanate composition of this embodiment contains an isocyanurate group, a uretdione group, a uretonimino group, and an iminooxadiazinedione group. Furthermore, the molar ratio of the uretonimino group to the isocyanurate group is from 0.0010 to 0.0050, and the molar ratio of the iminooxadiazinedione group to the isocyanurate group is from 0.00050 to 0. .30 or less. Since the polyisocyanate composition of the present embodiment has the above-described configuration, it is dispersible in water, forms a coating film that is excellent in storage stability and moisture stability, and excellent in adhesion to the ground. It will be possible.
  • the polyisocyanate composition of the present embodiment reacts with the raw material polyisocyanate composition not reacted with the hydrophilic compound (hereinafter also referred to as “unreacted raw material polyisocyanate composition”) and the raw material polyisocyanate composition.
  • the above hydrophilic compound hereinafter also referred to as “unreacted hydrophilic compound” may be included.
  • polyisocyanate composition of the present embodiment to be described later are polyisocyanates obtained by reaction of the polyisocyanate contained in the raw material polyisocyanate composition and the hydrophilic compound ( Hereinafter, it is also the characteristic which shows the state containing a "modified polyisocyanate"), unreacted raw material polyisocyanate, and an unreacted hydrophilic compound.
  • the ratio of unreacted raw material polyisocyanate and modified polyisocyanate can be determined by measurement by liquid chromatography.
  • the polyisocyanate composition of the present embodiment includes a modified polyisocyanate having a structural unit derived from the polyisocyanate contained in the raw material polyisocyanate composition and a structural unit derived from the hydrophilic compound.
  • the polyisocyanate composition preferably has an average isocyanate functional group number exceeding 1.0 and not more than 5.0.
  • the polyisocyanate composition of this embodiment contains an isocyanurate group.
  • the isocyanurate group which is one of the components of the polyisocyanate composition of the present embodiment, is a polyisocyanate-derived functional group composed of three molecules of a diisocyanate monomer, and is represented by the following formula (II). .
  • the concentration of a trimer in which HDI 3 molecules are bonded by an isocyanurate bond is not particularly limited, but is 30% by mass or more and 90%. It is preferable that it is mass% or less, More preferably, it is 40 mass% or more and 90 mass% or less. From the viewpoint of improving the crosslinkability of the coating film, the concentration is preferably 30% by mass or more, and from the viewpoint of reducing the viscosity of the polyisocyanate composition of the present embodiment, it is preferably 90% by mass or less.
  • the concentration of the isocyanurate trimer can be measured by gel permeation chromatography (hereinafter also referred to as “GPC”).
  • the polyisocyanate composition of this embodiment contains a uretdione group. Thereby, the viscosity of this composition can be reduced.
  • the uretdione group which is one of the constituent components of the polyisocyanate composition of the present embodiment, is a polyisocyanate-derived functional group composed of two molecules of a diisocyanate monomer, and is represented by the following formula (III).
  • the molar ratio of the uretdione group to the isocyanurate group is not particularly limited, but is 0. It is preferable that it is 0.010 or more and 0.50 or less.
  • the lower limit of the molar ratio is more preferably 0.15, still more preferably 0.20, and still more preferably 0.30.
  • the upper limit of the molar ratio is more preferably 0.45, further preferably 0.40, and still more preferably 0.38.
  • the molar ratio is preferably 0.010 or more, and preferably 0.50 or more from the viewpoint of improving crosslinkability.
  • the molar ratio of uretdione group / isocyanurate group can be determined by 13 C-NMR measurement. Specifically, it can be measured by the method described in Examples described later.
  • isocyanurate of 1,6-diisocyanatohexane After carrying out the conversion reaction, the catalyst is deactivated, and then reacted at a temperature of about 140 to 160 ° C., more preferably 145 to 165 ° C., preferably about several hours, more preferably 1 to 3 hours.
  • the polyisocyanate composition obtained by carrying out the isocyanuration reaction of 1,6-diisocyanatohexane with the method of controlling, uretdione conversion of tertiary phosphine etc. to 1,6-diisocyanatohexane Polyisocyanate reacted with a catalyst at a temperature of about 20 to 80 ° C. for several hours to several tens of hours Narubutsu and a method to be mixed partially.
  • the former isocyanurate-forming reaction of 1,6-diisocyanatohexane is performed, the catalyst is deactivated, and then several times at a temperature of about 145 to 165 ° C. A method of reacting for about an hour is preferable.
  • the polyisocyanate composition of this embodiment contains a uretonimino group.
  • the uretonimino group which is one of the components of the polyisocyanate composition of the present embodiment, is a polyisocyanate-derived functional group composed of three molecules of a diisocyanate monomer, and is represented by the following formula (IV).
  • the molar ratio of the uretonimino group to the isocyanurate group (hereinafter sometimes referred to as “uretonimino group / isocyanurate group”) is 0.0010 or more and 0.0050 or less. .
  • the lower limit of the molar ratio is preferably 0.0012, more preferably 0.0015, and still more preferably 0.0020.
  • the upper limit of the molar ratio is preferably 0.0045, more preferably 0.0040, and still more preferably 0.0035.
  • the moisture stability and adhesion of the polyisocyanate composition of the present embodiment is improved, and when the molar ratio is 0.0050 or less, the concentration of the diisocyanate monomer after storage is increased. Can be suppressed.
  • the molar ratio of uretonimino group / isocyanurate group can be measured by the method described in Examples described later.
  • isocyanurate of 1,6-diisocyanatohexane is used.
  • the catalyst is deactivated, and then reacted at a temperature of about 140 to 160 ° C., more preferably 145 to 155 ° C., preferably about several hours, more preferably 1 hour to 3 hours.
  • the former isocyanurate-forming reaction of 1,6-diisocyanatohexane is performed, the catalyst is deactivated, and then several times at a temperature of about 140 to 160 ° C. A method of reacting for about an hour is preferable.
  • the polyisocyanate composition of this embodiment contains iminooxadiazinedione groups.
  • the iminooxadiazinedione group which is one of the components of the polyisocyanate composition of the present embodiment, is a polyisocyanate-derived functional group composed of three diisocyanate monomers, and is represented by the following formula (V). Is.
  • the molar ratio of the iminooxadiazinedione group (hereinafter also referred to as “iminooxadiazinedione group / isocyanurate group”) to the isocyanurate group is 0.00. 0,000 to 0.30.
  • the lower limit of the molar ratio is preferably 0.0010, more preferably 0.0015, still more preferably 0.0020, and still more preferably 0.0025.
  • the upper limit of the molar ratio is preferably 0.20, more preferably 0.10, still more preferably 0.050, and still more preferably 0.025.
  • the moisture stability of the polyisocyanate composition of the present embodiment can be expressed, and when the molar ratio is 0.30 or less, the adhesion with the base is excellent.
  • a coating film can be formed.
  • the molar ratio of iminooxadiazinedione group / isocyanurate group can be measured by the method described in Examples described later.
  • the catalyst As a method for controlling the molar ratio of iminooxadiazinedione group / isocyanurate group to 0.00050 or more and 0.30 or less, for example, after carrying out the isocyanuration reaction of 1,6-diisocyanatohexane, the catalyst And then controlling the reaction by reacting at a temperature of about 140 to 160 ° C. for about several hours, or the polyisocyanate composition obtained above with respect to 1,6-diisocyanatohexane, A method in which a partially reacted polyisocyanate composition is mixed for several hours to several tens of hours at a temperature of about 20 to 80 ° C. using a heterocyclic compound containing 1-butylphosphorane as a catalyst.
  • the catalyst is deactivated, and then at a temperature of about 140 to 160 ° C., A method of reacting for several hours is preferable.
  • the polyisocyanate composition of the present embodiment may further contain an allophanate group.
  • the allophanate group is formed from a hydroxyl group of an alcohol and an isocyanate group, and is represented by the following formula (VI).
  • the alcohol that can be used in the polyisocyanate composition of the present embodiment is preferably an alcohol formed only of carbon, hydrogen, and oxygen, more preferably a monoalcohol, and even more preferably a monoalcohol having a molecular weight of 200 or less.
  • the alcohol include, but are not limited to, monoalcohols such as methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, and nonanol, ethylene glycol, 1,3-butanediol, And dialcohols such as neopentyl glycol and 2-ethylhexanediol. These may be used alone or in combination of two or more.
  • the molar ratio of the allophanate group to the isocyanurate group (hereinafter also referred to as “allophanate group / isocyanurate group”) is 0.010 or more and 0.50 or less. It is preferably 0.010 or more and 0.20 or less, more preferably 0.010 or more and 0.10 or less. From the viewpoint of improving the crosslinkability, the allophanate group / isocyanurate group molar ratio is preferably 0.50 or less. The molar ratio of allophanate group / isocyanurate group can be measured by the method described in Examples described later.
  • the polyisocyanate composition of the present embodiment has a urethane group, a urea group, a burette group, a carbodiimide group, etc. in addition to the above isocyanurate group, uretdione group, uretonimino group, iminooxadiazinedione group, and allophanate group. Further, it may be included.
  • the diisocyanate monomer concentration in the polyisocyanate composition of the present embodiment is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.3% by mass, and still more preferably. Is 0.2% by mass.
  • the diisocyanate monomer concentration in the polyisocyanate composition of the present embodiment can be measured by a method according to the measurement of the HDI monomer mass concentration described later.
  • the viscosity at 25 ° C. is not particularly limited, but is preferably 100 mPa ⁇ s or more and 2000 mPa ⁇ s or less.
  • the lower limit of the viscosity is more preferably 140 mPa ⁇ s, still more preferably 180 mPa ⁇ s, still more preferably 200 mPa ⁇ s, and even more preferably 220 mPa ⁇ s.
  • the upper limit of the viscosity is more preferably 1800 mPa ⁇ s, further preferably 1500 mPa ⁇ s, still more preferably 1200 mPa ⁇ s, and even more preferably 1000 mPa ⁇ s.
  • the viscosity is 100 mPa ⁇ s or more, the crosslinking property tends to be further improved, and when the viscosity is 2000 mPa ⁇ s or less, the water dispersibility and the paint using the polyisocyanate composition can be improved.
  • the solid content concentration tends to be higher.
  • a method for controlling the viscosity at 25 ° C. within the above range specifically, a method for adjusting the blending ratio of the polyisocyanate and the hydrophilic compound, a method for modifying a polyisocyanate having a viscosity within an appropriate range as a raw material, Examples thereof include a method of adjusting the conversion rate when producing the starting polyisocyanate.
  • the viscosity of the polyisocyanate composition of the present embodiment can be measured by using a polyisocyanate composition having a nonvolatile content purified to 98% by mass or more by using an E-type viscometer (manufactured by Tokimec). It can be measured by the method described in Examples described later.
  • the isocyanate group content of the polyisocyanate composition of the present embodiment is preferably 10% by mass or more from the viewpoint of crosslinkability and coating film properties in a state where the nonvolatile content is substantially 100% by mass,
  • the content is more preferably at least mass%, and further preferably at least 16 mass%.
  • An isocyanate group here means what combined all the isocyanate groups in a polyisocyanate composition. From the viewpoint of reducing the diisocyanate monomer concentration, the isocyanate group content is preferably 25% by mass or less, more preferably 24% by mass or less, and further preferably 23% by mass or less.
  • the method for controlling the isocyanate group content within the above range is not limited to the following, and examples thereof include a method of adjusting the blending ratio of the polyisocyanate and the hydrophilic compound.
  • the isocyanate group content is measured by the method described in the examples.
  • the non-volatile content of the polyisocyanate composition is the ratio (%) of the mass after heating to the mass before heating, and is preferably 10% or more and 100% or less, more preferably 50% or more and 100% or less. .
  • the non-volatile content is 10% or more, the viscosity of the polyisocyanate composition is low, so that it tends to be easy to handle.
  • the non-volatile content is 100% or less, the amount of organic solvent used can be reduced. Therefore, environmental problems tend to be improved.
  • the method for controlling the non-volatile content within the above range is not limited to the following, but examples include a method of adjusting the blending ratio of the polyisocyanate composition and the solvent.
  • the nonvolatile content is measured by the method described in the examples.
  • the polyisocyanate composition of the present embodiment may contain components (other components) other than the modified polyisocyanate, unreacted polyisocyanate, and unreacted hydrophilic compound described above.
  • other components include a solvent, an antioxidant, a light stabilizer, a polymerization inhibitor, and a surfactant.
  • the content of the solvent is preferably 0% by mass or more and 90% by mass or less, more preferably 0% by mass or more and 50% by mass or less, with respect to the total amount (100% by mass) of the polyisocyanate composition. More preferably, it is 0 mass% or more and 30 mass% or less.
  • the content of the antioxidant, light stabilizer, polymerization inhibitor, and surfactant is each independently 0% by mass or more and 10% by mass or less based on the total amount (100% by mass) of the polyisocyanate composition. It is preferably 0% by mass or more and 5.0% by mass or less, and more preferably 0% by mass or more and 2.0% by mass or less.
  • the raw material polyisocyanate composition of this embodiment contains a polyisocyanate having an aliphatic diisocyanate unit.
  • the aliphatic diisocyanate preferably contains 1,6-diisocyanatohexane (HDI).
  • HDI 1,6-diisocyanatohexane
  • the “unit” refers to a structural unit of the polyisocyanate possessed by a polyisocyanate obtained using a certain compound as a monomer.
  • 1,6-diisocyanatohexane unit is a structural unit derived from 1,6-diisocyanatohexane, which is possessed by a polyisocyanate obtained using 1,6-diisocyanatohexane as a monomer.
  • the raw material polyisocyanate composition may contain an unreacted monomer (aliphatic diisocyanate such as HDI), it is preferable that no unreacted monomer is contained.
  • the aliphatic diisocyanate is not particularly limited, but those having 4 to 30 carbon atoms are preferable. Examples of those having 4 to 30 carbon atoms include HDI, 1,4-diisocyanatobutane, 1,5-diisocyanatopentane, 2,2,4-trimethyl-1,6-diisocyanato Examples include hexane and lysine diisocyanate.
  • a raw material polyisocyanate composition obtained from an aliphatic diisocyanate unit containing HDI is preferable from the viewpoint of industrial availability and reactivity during production of polyisocyanate.
  • the aliphatic diisocyanate only one kind may be used alone, or two or more kinds may be used in combination.
  • the raw material polyisocyanate composition of this embodiment may contain an alicyclic diisocyanate unit.
  • the alicyclic diisocyanate is not limited to the following, but those having 8 to 30 carbon atoms are preferable. Examples of those having 8 to 30 carbon atoms include isophorone diisocyanate (hereinafter also referred to as “IPDI”), 1,3-bis (isocyanatomethyl) -cyclohexane, 4,4′-dicyclohexylmethane diisocyanate, norbornene diisocyanate, And hydrogenated xylylene diisocyanate. Among these, IPDI is preferable from the viewpoint of weather resistance and industrial availability. Only one type of alicyclic diisocyanate may be used alone, or two or more types may be used in combination.
  • the raw material polyisocyanate composition comprises an isocyanurate reaction for forming an isocyanurate group derived from an isocyanate group, a uretdione reaction for forming a uretdione group, a ureton imination reaction for forming a ureton imino group, and an iminooxadiazine dione group.
  • the iminooxadiazine dionization reaction to be formed can be obtained by performing each of them sequentially or in parallel in the presence of an excess of diisocyanate monomer, and removing the unreacted diisocyanate monomer after completion of the reaction. It can also be obtained by mixing the above four reactions separately. From the viewpoint of availability, a method of sequentially performing the above four reactions and a method of performing some of them in parallel are preferable.
  • alcohol compounds such as alkyl monoalcohols and alkyldiols can be used together.
  • the allophanate group / isocyanurate in the polyisocyanate composition is used. It is preferably used so that the molar ratio of the group is in the range of 0.010 or more and 0.20 or less.
  • a polyisocyanate composition is prepared by adding a polymerization catalyst to HDI as a raw material or the above-mentioned auxiliary raw materials, allowing the reaction to proceed until a predetermined degree of polymerization is reached, and then removing unreacted HDI as necessary. Can be obtained.
  • an isocyanurate-forming catalyst is usually used.
  • the isocyanurate reaction catalyst those having basicity are preferable. Specific examples of such isocyanuration reaction catalysts are shown in the following 1) to 7).
  • Tetraalkylammonium hydroxides such as tetramethylammonium and tetraethylammonium, and weak organic acid salts such as acetic acid and capric acid
  • Hydroxyalkylammonium hydroxides such as trimethylhydroxypropylammonium, trimethylhydroxyethylammonium, triethylhydroxypropylammonium, triethylhydroxyethylammonium and the like, for example, organic weak acid salts with acetic acid, capric acid, etc.
  • the above 1), 2) and 3) are preferred from the viewpoint of the combined catalyst efficiency of tertiary amines and epoxy compounds. More preferably, it is an organic weak acid salt of 1).
  • the amount of the catalyst described above is preferably 10 ppm by mass or more and 1000 ppm by mass or less, more preferably 10 ppm by mass or more and 500 ppm by mass or less, further preferably 10 ppm by mass or more and 100 ppm by mass or less, relative to the mass of the diisocyanate charged.
  • isocyanurate reaction temperature is preferably 50 to 120 ° C.
  • the lower limit of the reaction temperature is more preferably 54 ° C, still more preferably 57 ° C, and still more preferably 60 ° C.
  • the upper limit value of the reaction temperature is more preferably 100 ° C., further preferably 90 ° C., and still more preferably 80 ° C.
  • the isocyanuration reaction temperature is 120 ° C. or lower, changes in characteristics such as coloring tend to be suppressed.
  • the uretdione group present in the raw material polyisocyanate composition can be obtained by using a uretdione reaction catalyst.
  • a uretdione reaction catalyst examples include, but are not limited to, trialkylphosphines such as tri-n-butylphosphine and tri-n-octylphosphine, which are tertiary phosphines; tris- (dimethyl And tris (dialkylamino) phosphine such as amino) phosphine; and cycloalkylphosphine such as cyclohexyl-di-n-hexylphosphine.
  • a quencher for the uretdione reaction catalyst such as phosphoric acid or methyl paratoluenesulfonate is added to stop the uretdione reaction.
  • a quencher for the uretdione reaction catalyst such as phosphoric acid or methyl paratoluenesulfonate is added to stop the uretdione reaction.
  • the uretdione reaction temperature is preferably 20 to 120 ° C.
  • the lower limit of the reaction temperature is more preferably 25 ° C, further preferably 30 ° C, and still more preferably 35 ° C.
  • the upper limit value of the reaction temperature is more preferably 110 ° C., further preferably 100 ° C., and still more preferably 90 ° C.
  • the uretdioneization reaction temperature is 120 ° C. or lower, characteristic changes such as coloring tend to be suppressed.
  • a uretdione group can be obtained by heating a diisocyanate monomer without using the above-described uretdione reaction catalyst.
  • the heating temperature is preferably 130 ° C. to 180 ° C.
  • the lower limit of the heating temperature is more preferably 140 ° C, still more preferably 145 ° C, still more preferably 150 ° C, and even more preferably 155 ° C.
  • the upper limit of the heating temperature is more preferably 170 ° C, still more preferably 165 ° C, still more preferably 162 ° C, and even more preferably 160 ° C.
  • the heating time is preferably 0.2 Hr to 8.0 Hr.
  • the lower limit of the heating time is more preferably 0.4 Hr, still more preferably 0.6 Hr, still more preferably 0.8 Hr, and even more preferably 1.0 Hr.
  • the upper limit of the heating time is more preferably 6.0 Hr, still more preferably 4.0 Hr, still more preferably 3.0 Hr, and even more preferably 2.0 Hr.
  • the heating time is 0.2 Hr or more, viscosity tends to be reduced, and when the heating time is 8.0 Hr or less, coloring of the polyisocyanate itself tends to be suppressed.
  • the unreacted diisocyanate monomer can be removed after the uretdiionization reaction by heating alone and the above-described isocyanuration reaction are completed. From the viewpoints of reducing the unreacted diisocyanate monomer concentration, reducing the rate of change in molecular weight after storage of the resulting polyisocyanate composition, and reducing yellowing during high-temperature baking.
  • the ureton imino group present in the raw material polyisocyanate composition can be obtained by reacting using a ureton imination reaction catalyst.
  • a ureton imination reaction catalyst include, but are not limited to, 1-methyl-1-phosphorane, 1-ethyl-1-phosphorane, 1-propyl-1 which are heterocycle-containing phosphorus compounds.
  • the ureton imination reaction temperature is preferably 20 to 120 ° C.
  • the lower limit of the reaction temperature is more preferably 25 ° C, still more preferably 30 ° C, and still more preferably 35 ° C.
  • the upper limit value of the reaction temperature is more preferably 110 ° C., further preferably 100 ° C., and still more preferably 90 ° C.
  • a uretonimino group can be obtained by heating a diisocyanate monomer without using the above-described uretonimination reaction catalyst.
  • the heating temperature is preferably 130 ° C. to 180 ° C.
  • the lower limit of the heating temperature is more preferably 140 ° C, further preferably 145 ° C, still more preferably 150 ° C, and even more preferably 155 ° C.
  • 170 degreeC is more preferable, More preferably, it is 165 degreeC, More preferably, it is 162 degreeC, More preferably, it is 160 degreeC.
  • the heating temperature is 120 ° C.
  • the heating time at the set temperature is preferably 0.2 Hr to 8.0 Hr.
  • the lower limit of the heating time is more preferably 0.4 Hr, still more preferably 0.6 Hr, still more preferably 0.8 Hr, and even more preferably 1.0 Hr.
  • the upper limit of the heating time is more preferably 6.0 Hr, further preferably 5.0 Hr, still more preferably 4.0 Hr, and even more preferably 3.0 Hr.
  • the rate of temperature increase / decrease to the ureton imination reaction temperature is preferably 0.5 ° C./min to 2.5 ° C./min.
  • the lower limit of the speed is more preferably 0.6 ° C./min, further preferably 0.8 ° C./min, and still more preferably 1.0 ° C./min.
  • 2.3 degree-C / min is more preferable, More preferably, it is 2.15 degree-C / min, More preferably, it is 2.0 degree-C / min.
  • rate of temperature increase / decrease is 0.5 ° C / min or more, the production time tends to be completed in a short time, and when it is 2.5 ° C / min or less, ureton iminization is achieved. The reaction tends to proceed efficiently.
  • the unreacted diisocyanate monomer is removed after the ureton iminization reaction by heating alone, the above-described isocyanurate reaction, and uretdione reaction are completed. It is preferable to reduce the concentration of unreacted diisocyanate monomer and reduce the amount of diisocyanate monomer increased after storage of the obtained polyisocyanate composition.
  • the allophanate group present in the raw material polyisocyanate composition is obtained by using an alcohol compound such as alkyl monoalcohol or alkyldiol in combination with HDI and using an allophanate reaction catalyst.
  • an alcohol compound such as alkyl monoalcohol or alkyldiol in combination with HDI
  • an allophanate reaction catalyst such as a compound which can be used for this embodiment is not limited to the following, The alcohol formed only with carbon, hydrogen, and oxygen is preferable, More preferably, it is monoalcohol. More preferred is an alcohol having a molecular weight of 200 or less.
  • the compound examples include methanol, ethanol, propanol, butanol, isobutanol, pentanol, hexanol, heptanol, octanol, nonanol and other monoalcohols, ethylene glycol, 1,3-butanediol, neopentyl glycol, Examples include dialcohols such as 2-ethylhexanediol, and two or more of these may be used in combination.
  • the addition amount of the alcohol compound is not limited to the following, but is preferably an equivalent ratio of the isocyanate group of HDI to the hydroxyl group of the alcohol compound, preferably 1000/1 or more and 10/1 or less, more preferably 1000/1 or more and 100/1 or less. It is. When the equivalent ratio is 10/1 or more, the average number of isocyanate groups tends to be ensured.
  • Specific examples of the allophanatization reaction catalyst include, but are not limited to, tin 2-lead hexanoate, dibutyl tin, which are alkyl carboxylates such as tin, lead, zinc, bismuth, zirconium, zirconyl, and the like.
  • Organotin compounds such as dilaurate, organolead compounds such as lead 2-ethylhexanoate, organozinc compounds such as zinc 2-ethylhexanoate, bismuth 2-ethylhexanoate, zirconium 2-ethylhexanoate, and 2-ethylhexane Zirconyl acid is mentioned.
  • an allophanate reaction deactivator such as phosphoric acid or methyl paratoluenesulfonate is added to stop the allophanate reaction.
  • an allophanate reaction deactivator such as phosphoric acid or methyl paratoluenesulfonate is added to stop the allophanate reaction.
  • the allophanatization reaction temperature is preferably 60 to 160 ° C.
  • the lower limit of the reaction temperature is more preferably 70 ° C., further preferably 80 ° C., and still more preferably 90 ° C.
  • the upper limit of the reaction temperature is more preferably 155 ° C., further preferably 150 ° C., and still more preferably 145 ° C.
  • the heating time is preferably 0.2 Hr to 8.0 Hr.
  • the lower limit of the heating time is more preferably 0.4 Hr, still more preferably 0.6 Hr, still more preferably 0.8 Hr, and even more preferably 1.0 Hr.
  • the upper limit of the heating time is more preferably 6.0 Hr, still more preferably 4.0 Hr, still more preferably 3.0 Hr, and even more preferably 2.0 Hr.
  • the heating time is 0.2 Hr or more, viscosity tends to be reduced, and when the heating time is 8.0 Hr or less, coloring of the polyisocyanate itself tends to be suppressed.
  • the above isocyanurate reaction catalyst can also be an allophanate reaction catalyst.
  • the allophanatization reaction using the above isocyanurate reaction catalyst the isocyanurate group-containing polyisocyanate is naturally produced. In view of economic production, it is preferable to perform the allophanate reaction and the isocyanurate reaction using the above isocyanurate reaction catalyst as the allophanate reaction catalyst.
  • the above-mentioned isocyanurate reaction, uretdione reaction, and ureton imination reaction can be performed sequentially or some of them can be performed in parallel.
  • an isocyanurate formation reaction and an allophanatization reaction are preceded in parallel, and a uretdioneization reaction and a ureton imination reaction are performed after that.
  • the isocyanuration reaction and the allophanatization reaction are simultaneously performed using a common catalyst, and then the uretdiionization reaction and ureton iminization reaction by heat are further preferable because the production process can be simplified.
  • the polymerization reaction When the polymerization reaction reaches a desired degree of polymerization, the polymerization reaction is stopped.
  • the termination of the polymerization reaction is not limited to the following, but for example, by adding an acidic compound of phosphoric acid, acidic phosphate ester, sulfuric acid, hydrochloric acid, sulfonic acid compound to the reaction solution, the polymerization reaction catalyst is neutralized or heated. This can be achieved by inactivation by decomposition, chemical decomposition, or the like. After the reaction is stopped, if necessary, filtration is performed.
  • the concentration of the HDI monomer contained in the polyisocyanate composition is 1.0% by mass or less by performing such post-treatment.
  • the upper limit value of the HDI monomer concentration in the polyisocyanate composition of the present embodiment is more preferably 0.7% by mass or less, still more preferably 0.5% by mass or less, and still more preferably 0.3% by mass. Or even more preferably 0.2% by mass or less.
  • the hydrophilic compound of this embodiment is not specifically limited, It is preferable that it is 1 type, or 2 or more types chosen from the group which consists of an anionic compound, a cationic compound, and a nonionic compound.
  • the anionic compound, the cationic compound, and the nonionic compound each preferably contain an active hydrogen group in order to react with an isocyanate group contained in the polyisocyanate composition.
  • an active hydrogen group For example, a hydroxyl group, an amino group, a mercapto group, and a carboxylic acid group are mentioned.
  • the anionic compound is not particularly limited, but may be one or more selected from the group consisting of a compound containing a carboxylic acid group, a compound containing a phosphate group, and a compound containing a sulfonic acid group. preferable.
  • the compound containing a carboxylic acid group is not particularly limited, and examples thereof include monohydroxycarboxylic acids such as 1-hydroxyacetic acid, 3-hydroxypropanoic acid, 12-hydroxy-9-octadecanoic acid, hydroxypivalic acid, and lactic acid; Examples thereof include carboxylic acids containing hydroxyl groups such as dimethylolacetic acid, 2,2-dimethylolbutyric acid, 2,2-dimethylolpentanoic acid, dihydroxysuccinic acid, dimethylolpropionic acid, and other polyhydroxycarboxylic acids. Valic acid and dimethylolpropionic acid are preferred.
  • acidic phosphate ester acidic phosphite ester, acidic hypophosphite ester, and specific polyether phosphonate (For example, the product of RHODAFAC (trademark)) That are commercially available under the name (Solvay Nikka Co., Ltd.), among which acid phosphates are preferred.
  • RHODAFAC polyether phosphonate
  • the polyisocyanate composition preferably has a phosphorus atom content of 0.03% by mass or more based on the total amount (100% by mass) of the polyisocyanate composition. More preferably, it is more than 0.1 mass%, and it is further more preferable that it is 0.1 mass% or more.
  • the phosphorus atom content is 0.03% by mass or more, the interfacial tension is lowered and the water dispersibility tends to be better.
  • the polyisocyanate composition preferably has a phosphorus atom content of 6.0% by mass or less with respect to the total amount (100% by mass) of the polyisocyanate composition, from the viewpoint of physical properties of the coating film. It is more preferably 0% by mass or less, and further preferably 1.0% by mass or less. When the phosphorus atom content is 6.0% by mass or less, the physical properties of the coating film tend to be better due to an increase in the number of isocyanate groups used for crosslinking.
  • the method for controlling the content ratio to the above range is not limited to the following, but examples include a method of adjusting the blending ratio of the compound containing the phosphoric acid group and the raw material polyisocyanate composition. Moreover, the said content rate is measured by the method described in an Example.
  • the compound containing a sulfonic acid group is not particularly limited, but examples thereof include 2-hydroxyethanesulfonic acid, 3-hydroxypropanesulfonic acid, 4-hydroxybutanesulfonic acid, 5-hydroxypentanesulfonic acid, and 6-hydroxyhexanesulfone.
  • 2-aminoethanesulfonic acid 2-methylaminoethanesulfonic acid, 2- (cyclohexylamino) -ethanesulfonic acid, 3- (cyclohexylamino) -propanesulfonic acid, 4-aminotoluene-2-sulfonic acid, 5 -Aminotoluene-2-sulfonic acid, 2-aminonaphthalene-4-sulfonic acid, 4-aminobenzenesulfonic acid, sulfonic acid containing an amino group, such as 3-aminobenzenesulfonic acid.
  • 2-hydroxyethanesulfonic acid 3-hydroxypropanesulfonic acid, hydroxybenzenesulfonic acid, hydroxy (methyl) benzenesulfonic acid, 2- (cyclohexylamino) -ethanesulfonic acid, and 3- (cyclohexylamino)- Propanesulfonic acid is preferred.
  • An acidic group such as a carboxylic acid group, a phosphoric acid group, or a sulfonic acid group of the anionic compound is preferably neutralized with an inorganic base or an organic amine compound.
  • inorganic bases include alkali metals such as lithium, sodium, potassium, rubidium, and cesium; alkaline earth metals such as magnesium, calcium, strontium, and barium; manganese, iron, cobalt, nickel, copper, zinc, silver, and cadmium And metals such as lead and aluminum; ammonia.
  • organic amine compounds include linear tertiary amines such as trimethylamine, triethylamine, tripropylamine, tributylamine, trioctylamine, trilaurylamine, tritridecylamine, and tristearylamine; triisopropylamine, triisobutylamine Branched tertiary amines such as tri-2-ethylhexylamine and tri-branched tridecylamine; N, N-dimethylethylamine, N, N-dimethylpropylamine, N, N-dimethylisopropylamine, N, N-dimethyl Butylamine, N, N-dimethylisobutylamine, N, N-dimethyloctylamine, N, N-dimethyl-2-ethylhexylamine, N, N-dimethyllaurylamine, N, N-dimethyl (branched) tridecylamine, N , N- Me
  • Preferred examples among the above include at least one selected from tertiary amines having a total carbon number of 5 to 30, and specific examples thereof include triethylamine, tripropylamine, tributylamine, trioctylamine, trioctylamine.
  • the polyisocyanate composition preferably has a sulfur atom content of 0.03% by mass or more based on the total amount (100% by mass) of the polyisocyanate composition.
  • the content is more preferably at least mass%, more preferably at least 0.08 mass%.
  • the polyisocyanate composition preferably has a sulfur atom content of 3.0% by mass or less with respect to the total amount (100% by mass) of the polyisocyanate composition, from the viewpoint of physical properties of the coating film. It is more preferably 5% by mass or less, and further preferably 2.0% by mass or less. When the content is 3.0% by mass or less, the physical properties of the coating film tend to be better due to an increase in the number of isocyanate groups used for crosslinking.
  • the method for controlling the content rate within the above range is not limited to the following, and examples include a method of adjusting the blending ratio of the compound containing the sulfonic acid group and the raw material polyisocyanate composition. Moreover, the said content rate is measured by the method described in an Example.
  • the method of reacting the raw material polyisocyanate composition with the anionic compound is not limited to the following.
  • the terminal isocyanate group of the polyisocyanate of the raw material polyisocyanate composition and the active hydrogen of the anionic compound The method of making it react with group is mentioned.
  • the cationic compound is not particularly limited.
  • examples include amine compounds containing hydroxyl groups such as ethoxyethanol, N, N, N′-trimethylaminoethylethanolamine, N-methyl-N- (dimethylaminopropyl) aminoethanol, and tertiary amino modified with polyisocyanate.
  • the group (cationic hydrophilic group) can be quaternized with dimethyl sulfate, diethyl sulfate or the like.
  • dimethylethanolamine, diethylethanolamine, N, N-dimethylaminohexanol, N, N-dimethylaminoethoxyethanol, and N, N-dimethylaminoethoxyethoxyethanol are preferable.
  • the tertiary amino group of the cationic compound is preferably neutralized with a compound having an anion group.
  • the anionic group is not particularly limited, and examples thereof include a carboxyl group, a sulfonic acid group, a phosphoric acid group, a halogen group, and a sulfuric acid group.
  • the compound having a carboxyl group is not particularly limited, and examples thereof include formic acid, acetic acid, propionic acid, butyric acid, and lactic acid.
  • the compound having a sulfone group is not particularly limited, and examples thereof include ethanesulfonic acid.
  • it does not specifically limit as a compound which has the said adjacent acid group For example, an adjacent acid and acidic adjacent acid ester are mentioned.
  • the compound having a halogen group is not particularly limited, and examples thereof include hydrochloric acid.
  • the compound having a sulfate group is not particularly limited, and examples thereof include sulfuric acid.
  • compounds having one carboxyl group are preferable, and acetic acid, propionic acid, and butyric acid are more preferable.
  • Nonionic compound Although it does not specifically limit as a nonionic compound, for example, polyalkylene glycol alkyl ether is mentioned, Moreover, this polyalkylene glycol alkyl ether has a structure represented by following General formula (1).
  • the polyalkylene glycol alkyl ether is not a single component but an aggregate of substances having different numbers of n (“degree of polymerization n”, “n”) indicating the degree of polymerization. Therefore, the polymerization degree n is indicated by the average value.
  • R 1 in formula (1) represents an alkylene group, and preferably an alkylene group having 1 to 4 carbon atoms from the viewpoint of imparting hydrophilicity. Moreover, it is more preferable that a C2-C2 alkylene group (ethylene group) is shown from a viewpoint which can provide more hydrophilic property.
  • R 2 represents an alkyl group, and preferably an alkyl group having 1 to 4 carbon atoms from the viewpoint of imparting hydrophilicity. From the viewpoint of imparting more hydrophilicity, it is more preferable to indicate an alkyl group having 1 carbon atom (methyl group).
  • n is preferably 5.0 or more and 20 or less, more preferably 5.5 or more and 16 or less, and more preferably 6.0 or more, from the viewpoint of water dispersibility and dispersibility in the main agent. More preferably, it is 12 or less.
  • the average number of n is 5.0 or more, the emulsifying power is increased, so that the dispersibility tends to be improved. When the average number is 20 or less, the viscosity is prevented from increasing, so that it can be easily dispersed.
  • the said polyalkylene glycol alkyl ether can also use the thing from which the average number of n differs 1 type or in combination of 2 or more types. The average number of n of the raw material polyalkylene glycol alkyl ether is measured by the method described in the examples described later.
  • polyalkylene glycol alkyl ethers include, but are not limited to, polyethylene glycol (mono) methyl ether, poly (ethylene, propylene) glycol (mono) methyl ether, and polyethylene glycol (mono) ethyl ether. . From the viewpoint of imparting hydrophilicity, polyethylene glycol (mono) methyl ether is preferred.
  • the number of hydroxyl groups possessed by the polyalkylene glycol alkyl ether is preferably one from the viewpoint of lowering the viscosity of the polyisocyanate composition.
  • the part derived from the polyalkylene glycol alkyl ether is from 2.0% by mass to 30% by mass with respect to the total amount (100% by mass) of the polyisocyanate composition from the viewpoint of physical properties of the coating film. It is preferably included, more preferably 4.0% by mass or more and 20% by mass or less, still more preferably 6.0% by mass or more and 18% by mass or less, and even more preferably 6.0% by mass or more and 16% by mass or less. .
  • the isocyanate groups used for crosslinking increase, and the coating film properties (appearance, hardness, surface drying properties) , And water resistance) and moisture stability tend to be better.
  • the method for controlling the content to 2.0% by mass or more and 30% by mass or less is not limited to the following, but examples include a method of adjusting the blending ratio of the polyalkylene glycol alkyl ether and the polyisocyanate. It is done. Moreover, the said content rate is measured by the method described in an Example.
  • the ratio of the polyalkylene glycol alkyl ether modified is the ratio of the polyalkylene glycol alkyl ether modified with respect to 100 equivalents of the isocyanate group of the starting polyisoisocyanate.
  • the modification rate is preferably 0.5% or more and 40% or less, and preferably 1.0% or more and 30% or less from the viewpoint of adjusting the content of the portion derived from the polyalkylene glycol alkyl ether to the above-described preferable range. More preferably, it is 2.0% or more and 20% or less.
  • the modification rate is measured by the method described in the examples.
  • the method of reacting the polyisocyanate with the polyalkylene glycol alkyl ether is not limited to the following, but for example, there is a method of reacting the terminal isocyanate group possessed by the polyisocyanate with the hydroxyl group possessed by the polyalkylene glycol alkyl ether. Can be mentioned.
  • the manufacturing method of the polyisocyanate composition of this embodiment includes the process (reaction process) of carrying out the mixing reaction of the said raw material polyisocyanate composition and a hydrophilic compound.
  • the mixing ratio of the raw material polyisocyanate composition and the anionic compound is determined from the viewpoint of water dispersibility and coating film physical properties, and the molar amount of the isocyanate group in the raw material polyisocyanate composition (100 mol%).
  • the mixing ratio of the raw material polyisocyanate composition and the nonionic compound is such that the nonionic compound is based on 100% by mass of the polyisocyanate composition from the viewpoint of water dispersibility and coating film properties.
  • the reaction is preferably performed so as to be 2.0% by mass or more and 30% by mass or less, more preferably 4.0% by mass or more and 20% by mass or less.
  • the reaction temperature and reaction time are appropriately determined according to the progress of the reaction, but the reaction temperature is preferably 0 ° C. or higher and 150 ° C. or lower, and the reaction time is 0.5 hour or longer and 48 hours or shorter. It is preferable.
  • a known catalyst may be used in some cases.
  • the catalyst include tin octoate, tin 2-ethyl-1-hexanoate, tin ethylcaproate, tin laurate, tin palmitate, dibutyltin oxide, dibutyltin dichloride, dibutyltin diacetate, dibutyltin dimaleate, dibutyltin.
  • Organotin compounds such as dilaurate, dioctyltin diacetate, dioctyltin dilaurate; zinc chloride, zinc octoate, zinc 2-ethyl-1-hexanoate, zinc 2-ethylcaproate, zinc stearate, zinc naphthenate, acetylacetonic acid
  • Organic zinc compounds such as zinc; organic titanium compounds; organic zirconium compounds; tertiary amines such as triethylamine, tributylamine, N, N-diisopropylethylamine, N, N-dimethylethanolamine; Emissions, tetramethylethylenediamine, 1,4-diazabicyclo [2.2.2] diamines such as octane. You may use these individually or in mixture.
  • a solvent may or may not be used.
  • the solvent used in the method for producing the polyisocyanate composition of the present embodiment may be a hydrophilic solvent or a hydrophobic solvent.
  • hydrophobic solvents examples include mineral spirits, solvent naphtha, LAWS (Low Aromatic White Spirit), HAWS (High Aromatic White Spirit), toluene, xylene, cyclohexane, etc .; esters such as ethyl acetate, butyl acetate; acetone, methyl ethyl ketone, Examples thereof include ketones such as methyl isobutyl ketone and cyclohexanone.
  • hydrophilic solvents include alcohols such as methanol, ethanol, propanol, isopropanol and 2-ethylhexanol; ethers such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether and dipropylene glycol dimethyl ether; ethylene glycol monomethyl ether acetate, Ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl Esters of ether alcohols such as ether acetate. These can be used alone or in combination.
  • a polyisocyanate composition of the present embodiment in addition to the hydrophilic compound and the polyisocyanate, at least one selected from the group consisting of an antioxidant, a light stabilizer, a polymerization inhibitor, and a surfactant. Additional seeds may be added.
  • the coating composition of this embodiment contains the above-mentioned polyisocyanate composition.
  • the coating composition is not particularly limited, and an organic solvent-based coating composition may be an aqueous coating composition in which a resin that is a film-forming component is dissolved or dispersed in a water-based medium.
  • the water-based coating composition is preferable from the viewpoint of reducing the amount of organic solvent used.
  • the water-based coating composition of this embodiment contains a coating composition and water.
  • Coating compositions include, for example, architectural paints, automotive paints, automotive repair paints, plastic paints, adhesives, adhesives, building materials, household water-based paints, other coating agents, sealing agents, inks, casting materials, elastomers , Foams, plastic raw materials, and fiber treatment agents.
  • the main resin in the aqueous coating composition is not particularly limited.
  • acrylic resins polyester resins, polyether resins, epoxy resins, fluororesins, polyurethane resins, polyvinylidene chloride copolymers
  • examples include polyvinyl chloride copolymers, vinyl acetate copolymers, acrylonitrile butadiene copolymers, polybutadiene copolymers, and styrene butadiene copolymers.
  • acrylic resins include, but are not limited to, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and (meth) acrylic acid-2.
  • -(Meth) acrylic acid esters such as ethylhexyl, lauryl (meth) acrylate; 2-hydroxyethyl (meth) acrylic acid, 2-hydroxypropyl (meth) acrylic acid, 2-hydroxy (meth) acrylic acid (Meth) acrylic acid esters having active hydrogen such as butyl, (meth) acrylic acid-3-hydroxypropyl, (meth) acrylic acid-4-hydroxybutyl; acrylic acid, methacrylic acid, maleic acid, itaconic acid, etc.
  • Unsaturated carboxylic acids acrylamide, N-methylolacrylamide, diacetone acrylic Unsaturated amides such as glycidyl methacrylate, styrene, vinyl toluene, vinyl acetate, acrylonitrile, dibutyl fumarate, p-styrene sulfonic acid, allyl sulfosuccinic acid and other polymerizable monomers alone or Examples thereof include acrylic resins obtained by polymerizing the mixture.
  • emulsion polymerization is generally used, but it can also be produced by suspension polymerization, dispersion polymerization, and solution polymerization. In emulsion polymerization, it can also be polymerized stepwise.
  • polyester resins include, but are not limited to, carboxylic acids such as succinic acid, adipic acid, sebacic acid, dimer acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid, trimellitic acid, and pyromellitic acid.
  • carboxylic acids such as succinic acid, adipic acid, sebacic acid, dimer acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid, trimellitic acid, and pyromellitic acid.
  • the polyether resins are not particularly limited, but for example, using a polybasic hydroxy compound alone or as a mixture, a hydroxide such as lithium, sodium, or potassium; a strongly basic catalyst such as an alcoholate or an alkylamine; Polyether polyols obtained by adding a single or mixture of alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, cyclohexene oxide, styrene oxide or the like; polyalkylene compounds obtained by reacting alkylene oxide with a polyfunctional compound such as ethylenediamine Ether polyols; polyether polyols obtained by ring-opening polymerization of cyclic ethers such as tetrahydrofuran; so-called polymer polymers obtained by polymerizing acrylamide or the like using these polyethers as a medium Lumpur acids and the like.
  • acrylic resins and polyester resins are preferable.
  • resin such as a melamine type hardening
  • These resins are preferably emulsified, dispersed or dissolved in water. Therefore, the carboxyl group, the sulfone group, etc. contained in the resins can be neutralized.
  • neutralizing agents for neutralizing carboxyl groups, sulfone groups and the like include ammonia, water-soluble amino compounds such as monoethanolamine, ethylamine, dimethylamine, diethylamine, triethylamine, propylamine, dipropylamine, One or more selected from isopropylamine, diisopropylamine, triethanolamine, butylamine, dibutylamine, 2-ethylhexylamine, ethylenediamine, propylenediamine, methylethanolamine, dimethylethanolamine, diethylethanolamine, morpholine, etc. may be used. it can.
  • triethylamine which is a tertiary amine and dimethylethanolamine are preferable.
  • inorganic pigments organic pigments, extender pigments, silane coupling agents, titanium coupling agents, organic phosphates, organic phosphites, thickeners, leveling agents, thixotropic agents commonly added to paints Antifoaming agent, freezing stabilizer, matting agent, crosslinking reaction catalyst, anti-skinning agent, dispersant, wetting agent, filler, plasticizer, lubricant, reducing agent, preservative, antifungal agent, deodorant, You may combine a yellowing prevention agent, a ultraviolet absorber, an antistatic agent or a charge control agent, an anti-settling agent, etc.
  • a surfactant may be added, and in order to improve the storage stability of the paint, an antioxidant, a light stabilizer, and a polymerization inhibitor may be added. Also good.
  • curing accelerating catalyst examples include, but are not limited to, for example, metal salts such as dibutyltin dilaurate, tin 2-ethylhexanoate, zinc 2-ethylhexanoate, cobalt salt; triethylamine, pyridine, methylpyridine, And tertiary amines such as benzyldimethylamine, N, N-dimethylcyclohexylamine, N-methylpiperidine, pentamethyldiethylenetriamine, N, N′-endoethylenepiperazine, N, N′-dimethylpiperazine and the like.
  • metal salts such as dibutyltin dilaurate, tin 2-ethylhexanoate, zinc 2-ethylhexanoate, cobalt salt
  • triethylamine pyridine, methylpyridine
  • tertiary amines such as benzyldimethylamine, N, N-dimethylcycl
  • the coating substrate according to this embodiment has a substrate and the above-described coating composition coated on the substrate.
  • the desired substrate used for the coating substrate of the present embodiment is not particularly limited as long as it can be coated with the coating composition.
  • the coating composition for example, metal, wood, glass, stone, ceramic material, concrete, hard and flexible -Related plastics, textile products, leather products, and paper.
  • the substrate may be provided with conventional primers prior to coating.
  • Viscosity Viscosity Using a polyisocyanate composition as a sample, the viscosity was measured at 25 ° C. using an E-type viscometer (manufactured by Tokimec). In the measurement, a standard rotor (1 ° 34 ′ ⁇ R24) was used. The number of rotations was as follows.
  • the isocyanate group content was calculated by the following calculation method from the sample titration and blank titration determined above.
  • Isocyanate group content (mass%) (blank titration ⁇ sample titration) ⁇ 42 / [sample mass (g) ⁇ 1,000] ⁇ 100%
  • LC device manufactured by Waters, UPLC (trade name), Column: manufactured by Waters, ACQUITY UPLC HSS T3 1.8 ⁇ m C18 inner diameter 2.1 mm ⁇ length 50 mm Flow rate: 0.3 mL / min
  • B acetonitrile
  • Detection method photodiode array detector, measurement wavelength is 220 nm
  • polyalkylene glycol alkyl ether Isocyanate group content (% by mass) / 100% / 42 / (100-modification rate (%)) ⁇ modification rate (%) ⁇ molecular weight of polyalkylene glycol alkyl ether ⁇ 100%
  • polyalkylene glycol alkyl ether used is polyethylene glycol (mono) methyl ether
  • Molecular weight of polyethylene glycol (mono) methyl ether molecular weight of methyl group (15) + molecular weight of hydroxyl group (17) + (molecular weight of ethylene oxide (44) ⁇ n average number)
  • Phosphorus atom content per total amount (100% by mass) of the polyisocyanate composition is as follows. It was determined by inductively coupled plasma optical emission spectrometry (ICP-AES) using the apparatus and conditions.
  • ICP-AES device manufactured by Thermo Fisher Scientific Co., Ltd., iCAP6300Duo (trade name) High frequency output: 1150W Coolant gas: 12L / min Plasma gas: 0.5 L / min Carrier gas: 0.5L / min Purge gas: 0.6 MPa Torch: Horizontal axis Detector: CID Measurement wavelength: 180.731 nm Pretreatment method: The sample was decomposed with sulfuric acid and hydrogen peroxide to prepare a test solution.
  • 13C-NMR apparatus AVANCE 600 (manufactured by Bruker Biospin) Cryoprobe: CP DUL 600S3 C / HD-05 Z (Bruker Biospin) Resonance frequency: 150 MHz Concentration: 60 wt / vol% Shift standard: CDCl 3 (77 ppm) Integration count: 10,000 times Pulse program: zgpg30 (proton complete decoupling method, waiting time 2 sec)
  • non-volatile content 99.5% by mass, viscosity 520 mPa ⁇ s (25 ° C.), NCO content 23.1% by mass, HDI monomer concentration 0.11% by mass of polyisocyanate composition P-1 was obtained.
  • the uretdione dimer concentration increased by this reaction was 1.0 mass% or less. Thereafter, the temperature was raised to 160 ° C. at a temperature raising rate of 1.6 ° C./min, and maintained at 160 ° C. for 1 hour. Thereafter, the temperature was lowered to 40 ° C. at a rate of 1.5 ° C./min. This heating produced a uretdione group and a uretonimino group. Using a thin film evaporator, it was purified twice under the conditions of 160 ° C.
  • the uretdione dimer concentration increased by this reaction was 1.0 mass% or less.
  • the reaction solution was further maintained at 100 ° C. for 1 hour.
  • a thin film evaporator it was purified twice under the conditions of 160 ° C. and 0.2 Torr, non-volatile content 99.5% by mass, viscosity 1050 mPa ⁇ s (25 ° C.), NCO content 23.1% by mass, HDI monomer concentration 0.09 mass% polyisocyanate composition C-3 was obtained.
  • non-volatile content 99.5% by mass, viscosity 1000 mPa ⁇ s (25 ° C.), NCO content 23.3% by mass, HDI monomer concentration 0.12% by mass of polyisocyanate composition C-4 was obtained.
  • Example 1 Polyisocyanate P-1 obtained in Production Example 1: 80.0 parts by mass, polyethylene glycol monomethyl ether having an average number of ethylene oxide repeating units: 4.2 (trade name “MPG” manufactured by Nippon Emulsifier Co., Ltd.) : 14.3 parts by mass and an average number of ethylene oxide repeating units: 9.0 polyethylene glycol monomethyl ether (trade name “MPG-130” manufactured by Nippon Emulsifier Co., Ltd.): 5.7 parts by mass of ethylene glycol It adjusted so that the average number of an oxide repeating unit might be set to 5.0, and it reacted by stirring at 100 degreeC under nitrogen for 4 hours. After completion of the reaction, a polyisocyanate composition was obtained.
  • MPG manufactured by Nippon Emulsifier Co., Ltd.
  • the obtained polyisocyanate composition had a nonvolatile content of 100% by mass, a viscosity of 600 mPa ⁇ s (25 ° C.), an NCO content of 15.0% by mass, and an HDI monomer concentration of 0.09% by mass.
  • the modification ratio in the obtained composition was 17.9%, and the average number of ethylene oxide repeating units detected from NMR was 5.1. Therefore, the content of polyethylene glycol monomethyl ether was calculated to be 20.0%.
  • the molar ratio of uretdione group / isocyanurate group was 0.32, the molar ratio of uretonimino group / isocyanurate group was 0.0022, and the molar ratio of iminooxadiazinedione group / isocyanurate group was 13 C-NMR.
  • the molar ratio of 0.0038 and allophanate groups / isocyanurate groups was 0.070.
  • Example 2 Polyisocyanate P-1 obtained in Production Example 1: 82.0 parts by mass, polyethylene glycol monomethyl ether having an average number of ethylene oxide repeating units: 4.2 (trade name “MPG” manufactured by Nippon Emulsifier Co., Ltd.) 10.4 parts by mass and an average number of ethylene oxide repeating units of 9.0: polyethylene glycol monomethyl ether (manufactured by Nippon Emulsifier Co., Ltd., trade name “MPG-130”): 7.6 parts by mass of ethylene glycol It adjusted so that the average number of an oxide repeating unit might be set to 5.5, and it reacted by stirring at 100 degreeC under nitrogen for 4 hours. After completion of the reaction, a polyisocyanate composition was obtained. Subsequent measurements were performed in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 3 Polyisocyanate P-1 obtained in Production Example 1: 85.0 parts by mass, polyethylene glycol monomethyl ether having an average number of ethylene oxide repeating units: 4.2 (trade name “MPG” manufactured by Nippon Emulsifier Co., Ltd.) : 6.9 parts by mass and average number of ethylene oxide repeating units: 9.0 polyethylene glycol monomethyl ether (trade name “MPG-130”, manufactured by Nippon Emulsifier Co., Ltd.): 8.1 parts by mass of ethylene glycol It adjusted so that the average number of an oxide repeating unit might be set to 6.0, and it reacted by stirring at 100 degreeC under nitrogen for 4 hours. After completion of the reaction, a polyisocyanate composition was obtained. Subsequent measurements were performed in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 4 Polyisocyanate P-1 obtained in Production Example 1: 90.0 parts by mass, polyethylene glycol monomethyl ether having an average number of ethylene oxide repeating units: 9.0 (trade name “MPG-130, manufactured by Nippon Emulsifier Co., Ltd.”) )): 10.0 parts by mass were added, and the reaction was performed by stirring at 100 ° C. for 4 hours under nitrogen. After completion of the reaction, a polyisocyanate composition was obtained. Subsequent measurements were performed in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 5 Polyisocyanate P-1 obtained in Production Example 1: 94.0 parts by mass, polyethylene glycol monomethyl ether having a molecular weight of 550 (manufactured by NOF Corporation, trade name “M550”, average number of ethylene oxide repeating units: 11. 8): 6.0 parts by mass were added, and the reaction was performed by stirring at 100 ° C. for 4 hours under nitrogen. After completion of the reaction, a polyisocyanate composition was obtained. Subsequent measurements were performed in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 6 Polyisocyanate P-1 obtained in Production Example 1: 96.0 parts by mass, an average number of ethylene oxide repeating units: 15.0 polyethylene glycol monomethyl ether (manufactured by Nippon Emulsifier Co., Ltd., trade name “MPG-130”) )): 4.0 parts by mass were added, and the reaction was performed by stirring at 100 ° C. for 4 hours under nitrogen. After completion of the reaction, a polyisocyanate composition was obtained. Subsequent measurements were performed in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 7 Polyisocyanate P-1 obtained in Production Example 1: 98.0 parts by mass, polyethylene glycol monomethyl ether having a molecular weight of 750 (trade name “750” ethylene oxide repeating unit, manufactured by Dow Chemical Co., Ltd.): 16 .3): 2.0 parts by mass were added, and the reaction was performed by stirring at 100 ° C. for 4 hours under nitrogen. After completion of the reaction, a polyisocyanate composition was obtained. Subsequent measurements were performed in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 8 20 g of monobutyl phosphoric acid and 13.0 g of triethylamine were mixed to neutralize a part of monobutyl phosphoric acid.
  • polyisocyanate P-1 obtained in Production Example 1
  • 33.0 parts by mass of the mixture of monobutyl phosphoric acid and triethylamine obtained above was added and stirred at 90 ° C. for 4 hours under nitrogen to react. Went. After completion of the reaction, a polyisocyanate composition was obtained. Subsequent measurements were performed in the same manner as in Example 1. The concentration of phosphorus atoms detected by ICP-AES was 0.38% by mass. The evaluation results are shown in Table 1.
  • Example 9 10 g of monobutyl phosphoric acid and 6.5 g of triethylamine were mixed to neutralize a part of monobutyl phosphoric acid.
  • Polyisocyanate P-1 obtained in Production Example 1 1000 parts by mass, polyethylene glycol monomethyl ether having a molecular weight of 400 (manufactured by NOF Corporation, trade name “M400” average number of ethylene oxide repeating units: 8.4) : 100 parts by mass and 16.5 parts by mass of the mixture of monobutyl phosphoric acid and triethylamine obtained above were added, and the reaction was performed by stirring at 90 ° C. for 4 hours under nitrogen. After completion of the reaction, a polyisocyanate composition was obtained. Subsequent measurements were performed in the same manner as in Example 8. The evaluation results are shown in Table 1.
  • Example 10 To 1000 parts by mass of the polyisocyanate P-1 obtained in Production Example 1, 6.1 parts by mass of 3-cyclohexylaminopropanesulfonic acid and 3.5 parts by mass of N, N-dimethylcyclohexylamine were added. The reaction was stirred for 5 hours at 100 ° C. under nitrogen. After completion of the reaction, a polyisocyanate composition was obtained. Subsequent measurements were performed in the same manner as in Example 1. The concentration of sulfur atoms detected by ion chromatography was 0.09% by mass. The evaluation results are shown in Table 1.
  • Example 11 Polyisocyanate P-1 obtained in Production Example 1: 1000 parts by mass, trihydroxyamine salt of 2-hydroxyethanesulfonic acid obtained in Production Example 7: 12.5 parts by mass, acetone: 200 parts by mass, and dibutyltin dilaurate : 0.05 part by mass was added, and the reaction was performed by stirring at 70 ° C. for 5 hours under nitrogen and reflux. Thereafter, the reflux was removed, and the reaction was continued by stirring at 100 ° C. for 0.5 hour. After completion of the reaction, a polyisocyanate composition was obtained. Subsequent measurements were performed in the same manner as in Example 10. The evaluation results are shown in Table 1.
  • Example 12 Polyisocyanate P-1 obtained in Production Example 1: 1000 parts by mass, 2-hydroxyethanesulfonic acid N, N-diisopropylethylamine salt obtained in Production Example 8: 27.7 parts by mass, acetone: 200 parts by mass Part and dibutyltin dilaurate: 0.05 part by mass were added and reacted at 70 ° C. for 5 hours under nitrogen and reflux. Thereafter, the reflux was removed, and the reaction was continued by stirring at 100 ° C. for 0.5 hour. After completion of the reaction, a polyisocyanate composition was obtained. Subsequent measurements were performed in the same manner as in Example 10. The evaluation results are shown in Table 1.
  • Example 13 To the polyisocyanate P-1 obtained in Production Example 1, 1000 parts by mass, the 2-hydroxyethanesulfonic acid tributylamine salt obtained in Production Example 9: 85.5 parts by mass was added, and the mixture was added at 100 ° C. under nitrogen. The reaction was carried out with stirring for 6 hours. After completion of the reaction, a polyisocyanate composition was obtained. Subsequent measurements were performed in the same manner as in Example 10. The evaluation results are shown in Table 2.
  • Example 14 Polyisocyanate P-1 obtained in Production Example 1: 1000 parts by mass, 2-hydroxyethanesulfonic acid N, N-dimethylcyclohexylamine salt obtained in Production Example 10: 7.0 parts by mass, ethylene oxide repeating Average number of returning units: 9.0 parts of polyethylene glycol monomethyl ether (manufactured by Nippon Emulsifier Co., Ltd., trade name “MPG-130”) and 20.0 parts by mass were added and stirred at 100 ° C. for 4 hours under nitrogen. The reaction was performed. After completion of the reaction, a polyisocyanate composition was obtained. Subsequent measurements were performed in the same manner as in Example 10. The evaluation results are shown in Table 2.
  • Example 15 A polyisocyanate composition was obtained in the same manner as in Example 4 except that the polyisocyanate P-1 obtained in Production Example 1 was changed to the polyisocyanate P-2 obtained in Production Example 2. Subsequent measurements were performed in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 16 A polyisocyanate composition was obtained in the same manner as in Example 4 except that the polyisocyanate P-1 obtained in Production Example 1 was replaced with the polyisocyanate P-3 obtained in Production Example 3. Subsequent measurements were performed in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 17 A polyisocyanate composition was obtained in the same manner as in Example 4 except that the polyisocyanate P-1 obtained in Production Example 1 was replaced with the polyisocyanate P-4 obtained in Production Example 4. Subsequent measurements were performed in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 18 A polyisocyanate composition was obtained in the same manner as in Example 4 except that the polyisocyanate P-1 obtained in Production Example 1 was replaced with the polyisocyanate P-5 obtained in Production Example 5. Subsequent measurements were performed in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 19 A polyisocyanate composition was obtained in the same manner as in Example 4 except that the polyisocyanate P-1 obtained in Production Example 1 was replaced with the polyisocyanate P-6 obtained in Production Example 6. Subsequent measurements were performed in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 1 A polyisocyanate composition was obtained in the same manner as in Example 4 except that the polyisocyanate P-1 obtained in Production Example 1 was replaced with the polyisocyanate C-1 obtained in Comparative Production Example 1. Subsequent measurements were performed in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 2 A polyisocyanate composition was obtained in the same manner as in Example 4 except that the polyisocyanate P-1 obtained in Production Example 1 was replaced with the polyisocyanate C-2 obtained in Comparative Production Example 2. Subsequent measurements were performed in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 3 A polyisocyanate composition was obtained in the same manner as in Example 4 except that the polyisocyanate P-1 obtained in Production Example 1 was replaced with the polyisocyanate C-3 obtained in Comparative Production Example 3. Subsequent measurements were performed in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 4 A polyisocyanate composition was obtained in the same manner as in Example 4 except that the polyisocyanate P-1 obtained in Production Example 1 was replaced with the polyisocyanate C-4 obtained in Comparative Production Example 4. Subsequent measurements were performed in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 5 A polyisocyanate composition was obtained in the same manner as in Example 4 except that the polyisocyanate P-1 obtained in Production Example 1 was replaced with the polyisocyanate C-5 obtained in Comparative Production Example 5. Subsequent measurements were performed in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • B / A molar ratio indicates (uretdione group absorption ⁇ 1/2) / (isocyanurate group absorption ⁇ 1/3) calculated from an integral value in 13 C-NMR.
  • C / A molar ratio indicates (uretonimino group absorption) / (isocyanurate group absorption ⁇ 1/3) calculated from an integral value in 13 C-NMR, and “D / A molar ratio” is 13 C-NMR.
  • the mixture in the reactor was cooled, 11.6 parts by mass of a 25% by mass aqueous ammonia solution was added, and the mixture was stirred for 15 minutes. Furthermore, 1300 parts by mass of ion-exchanged water was added to the mixture in the reactor while stirring to obtain an aqueous dispersion. The obtained aqueous dispersion was concentrated using a rotary evaporator until the solid content was about 45% by mass. Thereafter, the obtained concentrate was adjusted to pH 8.0 with 25% by mass aqueous ammonia to obtain an aqueous dispersion of an acrylic polyol.
  • the obtained acrylic polyol aqueous dispersion has an average particle diameter of 90 nm of particles in the aqueous dispersion, and the hydroxyl group concentration of the polyol resin is 3.3% by mass as calculated from the raw materials used.
  • the number average molecular weight of the polyol resin was 9,600.
  • Example 20 to 38 Comparative Examples 6 to 10
  • coating compositions were prepared as follows.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Abstract

本発明は、脂肪族ジイソシアネート単位を有するポリイソシアネートを含む原料ポリイソシアネート組成物と親水性化合物との反応により得られるポリイソシアネート組成物であって、イソシアヌレート基、ウレトジオン基、ウレトンイミノ基、及びイミノオキサジアジンジオン基を含み、当該イソシアヌレート基に対する当該ウレトンイミノ基のモル比率が0.0010以上0.0050以下であり、かつ当該イソシアヌレート基に対する当該イミノオキサジアジンジオン基のモル比率が0.00050以上0.30以下である、ポリイソシアネート組成物、を提供する。

Description

ポリイソシアネート組成物、コーティング組成物、水系コーティング組成物、及びコーティング基材
 本発明は、ポリイソシアネート組成物、コーティング組成物、水系コーティング組成物、及びコーティング基材に関する。
 1,6-ジイソシアナトヘキサン(以下、「HDI」、「ヘキサメチレンジイソシアネート」ともいう。)を含む脂肪族ジイソシアネートから得られ、イソシアヌレート構造を含有するポリイソシアネート組成物は、耐候性、耐熱性に優れるため、従来から、各種用途に幅広く使用されている。
 また、近年、地球環境保護の高まりから、溶剤系塗料として利用されている二液ウレタンコーティング組成物は水系化が望まれている。しかし、二液ウレタンコーティング組成物において、硬化剤として用いられるポリイソシアネートは、水に分散しにくく、水と反応しやすく、その反応により二酸化炭素を発生する。そのため、乳化性を有し、水分散状態でもイソシアネート基と水との反応が抑えられるポリイソシアネートの開発が進められている。
 例えば、特許文献1では、ウレトジオン基を含むポリイソシアネート化合物と、エチレンオキシド単位を含むポリエーテルとを含む、水に分散可能なポリイソシアネート混合物が開示されている。また、特許文献2及び特許文献3でも、ウレトジオン基を含む、水に溶解又は分散しうる水性ポリイソシアネート組成物が開示されている。
特開平05-222150号公報 特開平07-330861号公報 特開2007-332193号公報
 確かに、特許文献1~3には、ウレトジオン基を含有するポリイソシアネートを使用することにより、水への分散性を向上させること自体は開示されている。しかしながら、貯蔵時にジイソシアネートモノマー濃度が増加する傾向があり、その使用が制限されている、という問題を有している。
 また、ウレトジオン基を含有するポリイソシアネートを使用することにより、基材との密着性を向上させることが開示されているが、まだ不十分である。
 さらに、ポリイソシアネートを主剤と混ぜ合わせて使用する量は、少量のものから多量のものまで幅広く、少量の場合は同じ缶を何度も開け閉めして使用するため、イソシアネート基が空気中の湿気と反応してしまうという問題も有している。
 以上から、特許文献1から3に記載のポリイソシアネート組成物でも、貯蔵時のジイソシアネートモノマー濃度の増加の抑制と、湿気安定性と、密着性とを満たすには不十分である。
 そこで、本発明は、水に分散可能であり、貯蔵安定性及び湿気安定性に優れ、かつ、下地との密着性にも優れる塗膜を形成可能な、ポリイソシアネート組成物を提供することを目的とする。
 本発明者らは、脂肪族ジイソシアネート単位を有するポリイソシアネートを含む原料ポリイソシアネート組成物と、親水性化合物と、の反応により得られ、イソシアヌレート基、ウレトジオン基、ウレトンイミノ基、及びイミノオキサジアジンジオン基を有し、当該イソシアヌレート基に対する当該ウレトンイミノ基、及び当該イソシアヌレート基に対する当該イミノオキサジアジンジオン基のモル比率が、特定の範囲であるポリイソシアネート組成物が、貯蔵安定性及び湿気安定性に優れ、かつ、下地との密着性にも優れる塗膜を形成可能なことを見出し、本発明を完成するに至った。
 即ち、本発明は下記の通りである。
[1]
 脂肪族ジイソシアネート単位を有するポリイソシアネートを含む原料ポリイソシアネート組成物と、親水性化合物と、の反応により得られるポリイソシアネート組成物であって、
 イソシアヌレート基、ウレトジオン基、ウレトンイミノ基、及びイミノオキサジアジンジオン基を含み、
 前記イソシアヌレート基に対する前記ウレトンイミノ基のモル比率が、0.0010以上0.0050以下であり、かつ、前記イソシアヌレート基に対する前記イミノオキサジアジンジオン基のモル比率が、0.00050以上0.30以下である、ポリイソシアネート組成物。
[2]
 前記親水性化合物は、アニオン性化合物、カチオン性化合物、及びノニオン性化合物からなる群より選ばれる1種又は2種以上である、[1]に記載のポリイソシアネート組成物。
[3]
 前記親水性化合物は、前記アニオン性化合物を含み、
 前記アニオン性化合物は、カルボン酸基を含有する化合物、リン酸基を含有する化合物、及びスルホン酸基を含有する化合物からなる群より選ばれる1種又は2種以上である、[2]に記載のポリイソシアネート組成物。
[4]
 前記アニオン性化合物は、前記スルホン酸基を含有する化合物を含み、
 前記スルホン酸基を含有する化合物は、水酸基を含有するスルホン酸、及びアミノ基を含有するスルホン酸からなる群より選ばれる1種又は2種以上である、[3]に記載のポリイソシアネート組成物。
[5]
 前記親水性化合物は、前記ノニオン性化合物を含み、
 前記ノニオン性化合物は、下記一般式(1)で表される構造を有するポリアルキレングリコールアルキルエーテルである、[2]に記載のポリイソシアネート組成物。
Figure JPOXMLDOC01-appb-C000002
(式(1)中、Rは、炭素原子数1~4のアルキレン基を示し、Rは、炭素数1~4のアルキル基を示し、nの平均数は、5.0以上20以下である。)
[6]
 一般式(1)中、Rは、炭素原子数2のアルキレン基を示し、Rは、炭素数1のアルキル基を示す、[5]に記載のポリイソシアネート組成物。
[7]
 前記ポリイソシアネート組成物は、該ポリイソシアネート組成物の総量に対して、前記ポリアルキレングリコールアルキルエーテルに由来する部分を、2.0質量%以上30質量%以下含む、[5]又は[6]に記載のポリイソシアネート組成物。
[8]
 前記脂肪族ジイソシアネート単位は、1,6-ジイソシアナトヘキサン単位を含む、[1]~[7]のいずれかに記載のポリイソシアネート組成物。
[9]
 [1]~[8]のいずれかに記載のポリイソシアネート組成物を含む、コーティング組成物。
[10]
 [9]に記載のコーティング組成物と、水と、を含む、水系コーティング組成物。
[11]
 基材と、該基材にコーティングされた[9]に記載のコーティング組成物又は[10]に記載の水系コーティング組成物と、を有する、コーティング基材。
 本発明に係るポリイソシアネート組成物によれば、水に分散可能であり、貯蔵安定性及び湿気安定性に優れ、かつ、下地との密着性に優れる塗膜を形成可能である。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。なお、特に断りがない限り、「(メタ)アクリル」はメタクリルとアクリルを包含し、「(メタ)アクリレート」はメタクリレートとアクリレートを包含するものとする。
〔ポリイソシアネート組成物〕
 本実施形態のポリイソシアネート組成物は、脂肪族ジイソシアネート単位を有するポリイソシアネートを含む原料ポリイソシアネート組成物(以下、原料となるポリイソシアネート組成物と本実施形態のポリイソシアネート組成物とを区別し、本実施形態のポリイソシアネート組成物の原料となるポリイソシアネート組成物を「原料ポリイソシアネート組成物」ともいう。)と、親水性化合物との反応により得られる。また、本実施形態のポリイソシアネート組成物は、イソシアヌレート基、ウレトジオン基、ウレトンイミノ基、及びイミノオキサジアジンジオン基を含む。さらに、上記イソシアヌレート基に対する上記ウレトンイミノ基のモル比率が、0.0010以上0.0050以下であり、かつ、上記イソシアヌレート基に対する上記イミノオキサジアジンジオン基のモル比率が、0.00050以上0.30以下である。本実施形態のポリイソシアネート組成物は、上記構成を有しているため、水に分散可能であり、貯蔵安定性及び湿気安定性に優れ、かつ、下地との密着性に優れた塗膜が形成可能なものとなる。
 本実施形態のポリイソシアネート組成物は、上記親水性化合物と反応していない上記原料ポリイソシアネート組成物(以下、「未反応原料ポリイソシアネート組成物」ともいう)、及び上記原料ポリイソシアネート組成物と反応していない上記親水性化合物(以下、「未反応親水性化合物」ともいう。)を含んでもよい。また、後述する本実施形態のポリイソシアネート組成物の各種物性又は特性は、特に言及のない限り、上記原料ポリイソシアネート組成物に含まれるポリイソシアネートと上記親水性化合物との反応により得られるポリイソシアネート(以下、「変性ポリイソシアネート」ともいう。)、未反応原料ポリイソシアネート、及び未反応親水性化合物を含んだ状態を示す特性である。
 また、本実施形態のポリイソシアネート組成物において、未反応原料ポリイソシアネートと変性ポリイソシアネートとの割合は、液体クロマトグラフィーにより測定して求めることができる。
 すなわち、本実施形態のポリイソシアネート組成物は、原料ポリイソシアネート組成物に含まれるポリイソシアネートに由来する構成単位と、親水性化合物に由来する構成単位とを有する変性ポリイソシアネートを含む。また、上記ポリイソシアネート組成物は、平均イソシアネート官能基数が、1.0を超えて5.0以下であることが好ましい。
 本実施形態のポリイソシアネート組成物は、イソシアヌレート基を含む。本実施形態のポリイソシアネート組成物の構成成分の1つである、イソシアヌレート基とは、ジイソシアネートモノマー3分子からなるポリイソシアネート由来の官能基であり、下記式(II)で表されるものである。
Figure JPOXMLDOC01-appb-C000003
 本実施形態のポリイソシアネート組成物における、HDI3分子がイソシアヌレート結合で結合した3量体(以下、「イソシアヌレート3量体」ともいう。)の濃度は、特に限定されないが、30質量%以上90質量%以下であることが好ましく、より好ましくは40質量%以上90質量%以下である。塗膜の架橋性を向上させる観点から、上記濃度は30質量%以上であることが好ましく、本実施形態のポリイソシアネート組成物の粘度を低減する観点から、90質量%以下であることが好ましい。イソシアヌレート3量体の濃度は、ゲルパーミエーションクロマトグラフィー(以下、「GPC」ともいう。)により測定することができる。
 本実施形態のポリイソシアネート組成物は、ウレトジオン基を含む。これにより、該組成物の粘度を低下させることができる。本実施形態のポリイソシアネート組成物の構成成分の1つである、ウレトジオン基とは、ジイソシアネートモノマー2分子からなるポリイソシアネート由来の官能基であり、下記式(III)で示されるものである。
Figure JPOXMLDOC01-appb-C000004
 本実施形態のポリイソシアネート組成物において、イソシアヌレート基に対するウレトジオン基(以下、「ウレトジオン基/イソシアヌレート基」とも表記する場合がある。)のモル比率は、特に限定されるものではないが、0.010以上0.50以下であることが好ましい。上記モル比率の下限値は0.15であることがより好ましく、さらに好ましくは0.20であり、よりさらに好ましくは0.30である。上記モル比率の上限値は0.45であることがより好ましく、さらに好ましくは0.40であり、よりさらに好ましくは0.38である。本実施形態のポリイソシアネート組成物の粘度を低下させる観点から、上記モル比率は0.010以上であることが好ましく、架橋性を向上させる観点から0.50以上であることが好ましい。ウレトジオン基/イソシアヌレート基のモル比率は、13C-NMRの測定によって求めることができる。具体的には後述する実施例に記載する方法により測定することができる。
 ウレトジオン基/イソシアヌレート基のモル比率を、0.010以上0.50以下の範囲に制御する方法としては、例えば、原料ポリイソシアネート組成物の製造時に、1,6-ジイソシアナトヘキサンのイソシアヌレート化反応を実施した後、触媒を失活させ、その後に140~160℃程度の温度、より好ましくは145~165℃で、好ましくは数時間程度、より好ましくは1時間~3時間反応させることにより制御する方法や、1,6-ジイソシアナトヘキサンのイソシアヌレート化反応を実施することにより得られたポリイソシアネート組成物に、1,6-ジイソシアナトヘキサンに対し、第3ホスフィン等のウレトジオン化触媒を添加し、20~80℃程度の温度で、数時間から数十時間程度、反応させたポリイソシアネート組成物を一部混合される方法が挙げられる。上記方法の中でも、入手の容易さの観点から、前者の1,6-ジイソシアナトヘキサンのイソシアヌレート化反応を実施した後、触媒を失活させ、その後に145~165℃程度の温度で数時間程度反応させる方法が好ましい。
 本実施形態のポリイソシアネート組成物は、ウレトンイミノ基を含む。本実施形態のポリイソシアネート組成物の構成成分の1つである、ウレトンイミノ基とは、ジイソシアネートモノマー3分子からなるポリイソシアネート由来の官能基であり、下記式(IV)で表されるものである。
Figure JPOXMLDOC01-appb-C000005
 本実施形態のポリイソシアネート組成物において、イソシアヌレート基に対するウレトンイミノ基(以下、「ウレトンイミノ基/イソシアヌレート基」とも表記する場合がある。)のモル比率は、0.0010以上0.0050以下である。上記モル比率の下限値は0.0012であることが好ましく、より好ましくは0.0015であり、さらに好ましくは0.0020である。上記モル比率の上限値は0.0045であることが好ましく、より好ましくは0.0040であり、さらに好ましくは0.0035である。上記モル比率が0.0010以上であることで、本実施形態のポリイソシアネート組成物の湿気安定性及び密着性が良好となり、0.0050以下であることで、貯蔵後のジイソシアネートモノマー濃度の増加を抑制することができる。ウレトンイミノ基/イソシアヌレート基のモル比率は、後述する実施例に記載する方法により測定することができる。
 ウレトンイミノ基/イソシアヌレート基のモル比率を、0.0010以上0.0050以下の範囲に制御する方法としては、例えば、原料ポリイソシアネート組成物の製造時に、1,6-ジイソシアナトヘキサンのイソシアヌレート化反応を実施した後、触媒を失活させ、その後に140~160℃程度の温度、より好ましくは145~155℃で、好ましくは数時間程度、より好ましくは1時間~3時間反応させることにより制御する方法や、上記で得たポリイソシアネート組成物に、1,6-ジイソシアナトヘキサンに対し、1-ブチルホスホラン等のヘテロ環含有リン系化合物を触媒とし、20~80℃程度の温度で、数時間から数十時間程度、反応させたポリイソシアネート組成物を一部混合される方法が挙げられる。上記方法の中でも、入手の容易さの観点から、前者の1,6-ジイソシアナトヘキサンのイソシアヌレート化反応を実施した後、触媒を失活させ、その後に140~160℃程度の温度で数時間程度反応させる方法が好ましい。
 本実施形態のポリイソシアネート組成物は、イミノオキサジアジンジオン基を含む。本実施形態のポリイソシアネート組成物の構成成分の1つである、イミノオキサジアジンジオン基とは、ジイソシアネートモノマー3分子からなるポリイソシアネート由来の官能基であり、下記式(V)で表されるものである。
Figure JPOXMLDOC01-appb-C000006
 本実施形態のポリイソシアネート組成物において、イソシアヌレート基に対するイミノオキサジアジンジオン基(以下、「イミノオキサジアジンジオン基/イソシアヌレート基」とも表記する場合がある。)のモル比率は、0.00050以上0.30以下である。上記モル比率の下限値は0.0010であることが好ましく、より好ましくは0.0015であり、さらに好ましくは0.0020であり、よりさらに好ましくは0.0025である。上記モル比率の上限値は0.20であることが好ましく、より好ましくは0.10であり、さらに好ましくは0.050であり、よりさらに好ましくは0.025である。上記モル比率が0.00050以上であることにより、本実施形態のポリイソシアネート組成物の湿気安定性を発現でき、上記モル比率が0.30以下であることにより、下地との密着性に優れた塗膜が形成可能なものとなる。イミノオキサジアジンジオン基/イソシアヌレート基のモル比率は、後述する実施例に記載する方法により測定することができる。
 イミノオキサジアジンジオン基/イソシアヌレート基のモル比率を0.00050以上0.30以下に制御する方法としては、例えば、1,6-ジイソシアナトヘキサンのイソシアヌレート化反応を実施した後、触媒を失活させ、その後に、140~160℃程度の温度で、数時間程度反応させることにより制御する方法や、上記で得たポリイソシアネート組成物に、1,6-ジイソシアナトヘキサンに対し、1-ブチルホスホラン等のヘテロ環含有リン系化合物を触媒とし、20~80℃程度の温度で、数時間から数十時間程度、反応させたポリイソシアネート組成物を一部混合される方法が挙げられる。上記の中でも、入手の容易さの観点から、前者の1,6-ジイソシアナトヘキサンのイソシアヌレート化反応を実施した後、触媒を失活させ、その後に、140~160℃程度の温度で、数時間程度反応させる方法が好ましい。
 また、本実施形態のポリイソシアネート組成物は、アロファネート基をさらに含んでもよい。アロファネート基とは、アルコールの水酸基とイソシアネート基とから形成され、下記式(VI)で表されるものである。
Figure JPOXMLDOC01-appb-C000007
 本実施形態のポリイソシアネート組成物に用い得るアルコールは、炭素、水素及び酸素のみで形成されるアルコールが好ましく、より好ましくはモノアルコールであり、さらに好ましくは分子量200以下のモノアルコールである。上記アルコールとしては、以下に限定されるものではないが、例えば、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール等のモノアルコール、エチレングリコール、1,3-ブタンジオール、ネオペンチルグリコール、2-エチルヘキサンジオール等のジアルコールが挙げられる。これらは1種のみを単独で用いてもよく、2種以上を併用してもよい。
 本実施形態のポリイソシアネート組成物において、イソシアヌレート基に対するアロファネート基(以下、「アロファネート基/イソシアヌレート基」とも表記する場合がある。)のモル比率は、0.010以上0.50以下であることが好ましく、より好ましくは0.010以上0.20以下であり、さらに好ましくは0.010以上0.10以下である。アロファネート基/イソシアヌレート基のモル比率は、架橋性を向上させる観点から、0.50以下であることが好ましい。アロファネート基/イソシアヌレート基のモル比率は、後述する実施例に記載する方法により測定することができる。
 また、本実施形態のポリイソシアネート組成物は、上記のイソシアヌレート基、ウレトジオン基、ウレトンイミノ基、イミノオキサジアジンジオン基、及びアロファネート基以外に、ウレタン基、ウレア基、ビュレット基、カルボジイミド基等をさらに含んでもよい。
 本実施形態のポリイソシアネート組成物中のジイソシアネートモノマー濃度は、好ましくは1.0質量%以下であり、より好ましくは0.5質量%以下であり、さらに好ましくは0.3質量%、よりさらに好ましくは0.2質量%である。ジイソシアネートモノマー濃度が1.0質量%以下であることにより、架橋性をより向上させることができる傾向にある。本実施形態のポリイソシアネート組成物中のジイソシアネートモノマー濃度は、後述するHDIモノマー質量濃度の測定に準じた方法により測定することができる。
 本実施形態のポリイソシアネート組成物において、25℃における粘度は、特に限定されないが、100mPa・s以上2000mPa・s以下であることが好ましい。上記粘度の下限値は、140mPa・sであることがより好ましく、さらに好ましくは180mPa・sであり、よりさらに好ましくは200mPa・sであり、さらにより好ましくは220mPa・sである。上記粘度の上限値は、1800mPa・sであることがより好ましく、さらに好ましくは1500mPa・sであり、よりさらに好ましくは1200mPa・sであり、さらにより好ましくは1000mPa・sである。粘度が100mPa・s以上であることにより、架橋性をより向上させることができる傾向にあり、また、粘度が2000mPa・s以下であることにより、水分散性とポリイソシアネート組成物を使用した塗料の固形分濃度とをより高くできる傾向にある。
 25℃における粘度を上記範囲に制御する方法として、具体的には、上記ポリイソシアネートと親水性化合物との配合比を調整する方法、粘度が適当な範囲にあるポリイソシアネートを原料として変性させる方法、原料のポリイソシアネートを製造する際に転化率を調整する方法等が挙げられる。本実施形態のポリイソシアネート組成物の粘度は、不揮発性分を98質量%以上に精製したポリイソシアネート組成物を、E型粘度計(トキメック社製)を用いることによって測定することができ、具体的には後述する実施例に記載の方法により測定することができる。
 本実施形態のポリイソシアネート組成物のイソシアネート基含有率は、不揮発分が実質的に100質量%である状態で、架橋性と塗膜物性の観点から、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、16質量%以上がさらに好ましい。イソシアネート基含有率が10質量%以上であることで、架橋に使用されるイソシアネート基が多くなり、ポリイソシアネート分子の硬化中における分子の動きやすさが良好となるため、架橋性が良好となり、塗膜物性が向上する傾向にある。ここでいうイソシアネート基は、ポリイソシアネート組成物中のすべてのイソシアネート基を併せたものをいう。また、ジイソシアネートモノマー濃度を低減する観点から、上記イソシアネート基含有率は、25質量%以下であることが好ましく、24質量%以下であることがより好ましく、23質量%以下であることがさらに好ましい。
 イソシアネート基含有率を上記範囲に制御する方法としては、以下のものに限定されないが、例えば、ポリイソシアネートと親水性化合物の配合比を調整する方法が挙げられる。また、イソシアネート基含有率は、実施例中に記載する方法により測定する。
 ポリイソシアネート組成物の不揮発分は、加熱前の質量に対する加熱後の質量の比率(%)であり、10%以上100%以下であることが好ましく、50%以上100%以下であることがより好ましい。不揮発分が10%以上であることで、ポリイソシアネート組成物の粘度が低くなるため、取扱いやすくなる傾向にあり、不揮発分が100%以下であることで、有機溶剤使用量を減少させることができるため、環境問題が改善される傾向にある。
 不揮発分を上記範囲に制御する方法としては、以下のものに限定されないが、例えば、ポリイソシアネート組成物と溶剤との配合比を調整する方法が挙げられる。不揮発分は、実施例中に記載する方法により測定する。
 本実施形態のポリイソシアネート組成物は、上述した変性ポリイソシアネート、未反応ポリイソシアネート、未反応親水性化合物以外の成分(その他の成分)を含んでいてもよい。その他の成分としては、例えば、溶剤、酸化防止剤、光安定剤、重合禁止剤、及び界面活性剤が挙げられる。
 溶剤の含有量は、ポリイソシアネート組成物の総量(100質量%)に対して、0質量%以上90質量%以下であることが好ましく、0質量%以上50質量%以下であることがより好ましく、0質量%以上30質量%以下であることがさらに好ましい。また、酸化防止剤、光安定剤、重合禁止剤、及び界面活性剤の含有量は、各々独立に、ポリイソシアネート組成物の総量(100質量%)に対して、0質量%以上10質量%以下であることが好ましく、0質量%以上5.0質量%以下であることがより好ましく、0質量%以上2.0質量%以下であることがさらに好ましい。
[原料ポリイソシアネート組成物]
 本実施形態の原料ポリイソシアネート組成物は、脂肪族ジイソシアネート単位を有するポリイソシアネートを含む。上記脂肪族ジイソシアネートは、1,6-ジイソシアナトヘキサン(HDI)を含むことが好ましい。ここで、「単位」とは、ある化合物をモノマーとして得られるポリイソシアネートが有する、該ポリイソシアネートの構成単位をいう。例えば、「1,6-ジイソシアナトヘキサン単位」は、1,6-ジイソシアナトヘキサンをモノマーとして得られるポリイソシアネートが有する、1,6-ジイソシアナトヘキサンに由来する構成単位である。また、原料ポリイソシアネート組成物は、未反応のモノマー(HDI等の脂肪族ジイソシアネート)を含んでいてもよいが、未反応のモノマーは含まれていない方が好ましい。
 脂肪族ジイソシアネートとしては、特に限定されるものではないが、炭素数4~30のものが好ましい。炭素数4~30のものとしては、HDIの他に、例えば、1,4-ジイソシアナトブタン、1,5-ジイソシアナトペンタン、2,2,4-トリメチル-1,6-ジイソシアナトヘキサン、及びリジンジイソシアネートが挙げられる。工業的入手の容易さ及びポリイソシアネート製造時の反応性の観点から、本実施形態においては、HDIを含む脂肪族ジイソシアネート単位から得られる原料ポリイソシアネート組成物が好ましい。脂肪族ジイソシアネートは、1種のみを単独で使用してもいいし、2種以上を併用してもよい。
 本実施形態の原料ポリイソシアネート組成物は、脂環族ジイソシアネート単位を含んでもよい。脂環族ジイソシアネートとしては、以下に限定されるものではないが、炭素数8~30のものが好ましい。炭素数8~30のものとしては、例えば、イソホロンジイソシアネート(以下、「IPDI」ともいう。)、1,3-ビス(イソシアナトメチル)-シクロヘキサン、4,4’-ジシクロヘキシルメタンジイソシアネート、ノルボルネンジイソシアネート、及び水添キシリレンジイソシアネートが挙げられる。この中でも、耐候性、工業的入手の容易さの観点から、IPDIが好ましい。脂環族ジイソシアネートは1種のみを単独で使用してもいいし、2種以上を併用してもよい。
[原料ポリイソシアネート組成物の製造方法]
 以下、本実施形態の原料ポリイソシアネート組成物の製造方法の一例を説明する。原料ポリイソシアネート組成物の原料は、少なくともHDI(1,6-ジイソシアナトヘキサン)を用いる。原料ポリイソシアネート組成物は、イソシアネート基から誘導されるイソシアヌレート基を形成するイソシアヌレート化反応、ウレトジオン基を形成するウレトジオン化反応、ウレトンイミノ基を形成するウレトンイミノ化反応、及びイミノオキサジアジンジオン基を形成するイミノオキサジアジンジオン化反応を、それぞれ逐次又はそのいくつかを並行して、過剰のジイソシアネートモノマー存在下で行い、反応終了後、未反応のジイソシアネートモノマーを除去することにより得られる。また、上記の4反応を別々に実施させたものを混合することによっても得られる。入手の容易さから、上記4反応をそれぞれ逐次行う方法、及び、そのいくつかを並行して実施する方法が好ましい。さらに、副原料として、アルキルモノアルコール、アルキルジオール等のアルコール化合物等も併用することができる、ここで、アルコール化合物を用いる場合には、上述したように、ポリイソシアネート組成物におけるアロファネート基/イソシアヌレート基のモル比率が0.010以上0.20以下の範囲となるように用いることが好ましい。
 好ましくは、原料のHDIや上記した副原料に重合触媒を添加し、所定の重合度に到達するまで反応を進行させた後、必要に応じて未反応のHDIを除去することによってポリイソシアネート組成物を得ることができる。
 ジイソシアネートモノマーからイソシアヌレート基含有ポリイソシアネートを誘導する場合は、通常、イソシアヌレート化反応触媒を用いる。イソシアヌレート化反応触媒としては塩基性を有するものが好ましい。このようなイソシアヌレート化反応触媒の具体的な例を以下1)~7)に示す。
 1)テトラメチルアンモニウム、テトラエチルアンモニウム等のテトラアルキルアンモニウムのヒドロオキシドや、例えば、酢酸、カプリン酸等との有機弱酸塩、
 2)トリメチルヒドロキシプロピルアンモニウム、トリメチルヒドロキシエチルアンモニウム、トリエチルヒドロキシプロピルアンモニウム、トリエチルヒドロキシエチルアンモニウム等のヒドロキシアルキルアンモニウムのヒドロオキシドや、例えば、酢酸、カプリン酸等との有機弱酸塩
 3)酢酸、カプロン酸、オクチル酸、ミリスチン酸等のアルキルカルボン酸の、例えば、錫、亜鉛、鉛、ナトリウム、カリウム等との金属塩
 4)ナトリウム、カリウム等の金属アルコラート
 5)ヘキサメチルジシラザン等のアミノシリル基含有化合物
 6)マンニッヒ塩基類
 7)第3級アミン類とエポキシ化合物との併用
触媒効率の観点から上記1)、2)及び3)が好ましい。より好ましくは、1)の有機弱酸塩である。
 上述した触媒を、仕込んだジイソシアネートの質量に対して、好ましくは10質量ppm以上1000質量ppm以下、より好ましくは10質量ppm以上500質量ppm以下、さらに好ましくは10質量ppm以上100質量ppm以下の量で使用し、イソシアヌレート化反応温度を50~120℃で行うことが好ましい。反応温度の下限値は、54℃であることがより好ましく、さらに好ましくは57℃であり、よりさらに好ましくは60℃である。また、反応温度の上限値は、100℃であることがより好ましく、さらに好ましくは90℃であり、よりさらに好ましくは80℃である。イソシアヌレート化反応温度が120℃以下であることにより、着色等の特性変化が抑制できる傾向にある。
 原料ポリイソシアネート組成物中に存在するウレトジオン基は、ウレトジオン化反応触媒を用いることにより得られる。上記ウレトジオン化反応触媒の具体的な化合物の例としては、以下に限定されないが、第3ホスフィンである、トリ-n-ブチルホスフィン、トリ-n-オクチルホスフィン等のトリアルキルホスフィン;トリス-(ジメチルアミノ)ホスフィン等のトリス(ジアルキルアミノ)ホスフィン;シクロヘキシル-ジ-n-ヘキシルホスフィン等のシクロアルキルホスフィンが挙げられる。これらの化合物の多くは、同時にイソシアヌレート化反応も促進し、ウレトジオン基含有ポリイソシアネートに加えてイソシアヌレート基含有ポリイソシアネートを生成する。所望の収率となった時点で、リン酸、パラトルエンスルホン酸メチル等のウレトジオン化反応触媒の失活剤を添加してウレトジオン化反応を停止する。上述した触媒を、仕込んだジイソシアネートの質量に対して、好ましくは10質量ppm以上10000質量ppm以下、より好ましくは10質量ppm以上1000質量ppm以下、さらに好ましくは10質量ppm以上500質量ppm以下の量で使用し、ウレトジオン化反応温度を20~120℃で行うことが好ましい。反応温度の下限値は、25℃であることがより好ましく、さらに好ましくは30℃であり、よりさらに好ましくは35℃である。また、反応温度の上限値は、110℃であることがより好ましく、さらに好ましくは100℃であり、よりさらに好ましくは90℃である。ウレトジオン化反応温度が120℃以下であることにより、着色等の特性変化が抑制できる傾向にある。
 また、上記のようなウレトジオン化反応触媒を用いることなく、ジイソシアネートのモノマーを加熱することによりウレトジオン基を得ることもできる。その加熱温度としては、130℃~180℃が好ましい。加熱温度の下限値としては140℃がより好ましく、さらに好ましくは145℃であり、よりさらに好ましくは150℃であり、さらにより好ましくは155℃である。また、加熱温度の上限値は、170℃がより好ましく、さらに好ましくは165℃であり、よりさらに好ましくは162℃であり、さらにより好ましくは160℃である。また、加熱時間は0.2Hr~8.0Hrであることが好ましい。加熱時間の下限値は、0.4Hrがより好ましく、さらに好ましくは0.6Hrであり、よりさらに好ましくは0.8Hrであり、さらにより好ましくは1.0Hrである。加熱時間の上限値は、6.0Hrがより好ましく、さらに好ましくは4.0Hrであり、よりさらに好ましくは3.0Hrであり、さらにより好ましくは2.0Hrである。加熱時間を0.2Hr以上とすることで、低粘度化を発現できることができる傾向にあり、8.0Hr以下とすることで、ポリイソシアネート自体の着色を抑制することができる傾向にある。
 ウレトジオン化反応触媒を使用せずに、本実施形態のポリイソシアネート組成物を得る場合、加熱のみによるウレトジオン化反応と上述したイソシアヌレート化反応とが終了した後、未反応ジイソシアネートモノマーを除去することが、未反応ジイソシアネートモノマー濃度の低減、得られたポリイソシアネート組成物の貯蔵後の分子量変化率の低減、及び高温焼付時の黄変性の低減の観点から好ましい。
 原料ポリイソシアネート組成物に存在するウレトンイミノ基は、ウレトンイミノ化反応触媒を用いて、反応させることにより得られる。上記ウレトンイミノ化反応触媒の具体的な化合物の例としては、以下に限定されないが、ヘテロ環含有リン系化合物である1-メチル-1-ホスホラン、1-エチル-1-ホスホラン、1-プロピル-1-ホスホラン、1-ブチル-1-ホスホラン、1-ペンチル-1-ホスホラン、1-ヘキシル-1-ホスホラン、1-オクチル-1-ホスホラン、9-メチル-9-ホスファビシクロノナン、9-エチル-9-ホスファビシクロノナン、9-プロピル-9-ホスファビシクロノナン、9-ブチル-9-ホスファビシクロノナン、9-ペンチル-9-ホスファビシクロノナン、9-ヘキシル-9-ホスファビシクロノナン、9-オクチル-9-ホスファビシクロノナン、9-ドデシル-9-ホスファビシクロノナン、及び9-エイコシル-9-ホスファビシクロノナンが挙げられる。これらの化合物の多くは、同時にイソシアヌレート化反応、ウレトジオン化反応も促進し、ウレトンイミノ基含有ポリイソシアネートに加えてイソシアヌレート基含有ポリイソシアネート、ウレトジオン基含有ポリイソシアネートを生成する。所望の収率となった時点で、リン酸、メチルトルエンスルホネート、酸塩化物ならびに硫黄等のウレトンイミノ化反応触媒の失活剤を添加してウレトンイミノ化反応を停止する。上述した触媒を、仕込んだジイソシアネートの質量に対して、好ましくは10質量ppm以上10000質量ppm以下、より好ましくは10質量ppm以上1000質量ppm以下、さらに好ましくは10質量ppm以上500質量ppm以下の量で使用し、ウレトンイミノ化反応温度を20~120℃で行うことが好ましい。反応温度の下限値は、25℃であることがより好ましく、さらに好ましくは30℃であり、さらにより好ましくは35℃である。また、反応温度の上限値は、110℃であることがより好ましく、さらに好ましくは100℃であり、よりさらに好ましくは90℃である。ウレトンイミノ化反応温度が120℃以下であることにより、着色等の特性変化が抑制できる傾向にある。
 また、上記のようなウレトンイミノ化反応触媒を用いることなく、ジイソシアネートのモノマーを加熱することによりウレトンイミノ基を得ることもできる。その加熱温度としては、130℃~180℃が好ましい。上記加熱温度の下限値としては140℃がより好ましく、さらに好ましくは145℃であり、よりさらに好ましくは150℃であり、さらにより好ましくは155℃である。また、上記加熱温度の上限値は、170℃がより好ましく、さらに好ましくは165℃であり、よりさらに好ましくは162℃であり、さらにより好ましくは160℃である。加熱温度を120℃以上とすることにより、ウレトンイミノ化反応を効率よく進行させることができる傾向にあり、また、180℃以下とすることにより、ポリイソシアネート自体の着色を抑制することができる傾向にある。また、設定温度での加熱時間は0.2Hr~8.0Hrであることが好ましい。加熱時間の下限値は、0.4Hrがより好ましく、さらに好ましくは0.6Hrであり、よりさらに好ましくは0.8Hrであり、さらにより好ましくは1.0Hrである。加熱時間の上限値は、6.0Hrがより好ましく、さらに好ましくは5.0Hrであり、よりさらに好ましくは4.0Hrであり、さらにより好ましくは3.0Hrである。加熱時間を0.2Hr以上とすることで、低粘度化を発現できることができる傾向にあり、8.0Hr以下とすることで、ポリイソシアネート自体の着色を抑制することができる傾向にある。さらに、ウレトンイミノ化反応温度に昇温、降温させる速度は、0.5℃/分~2.5℃/分であることが好ましい。上記速度の下限値としては、0.6℃/分がより好ましく、さらに好ましくは0.8℃/分であり、よりさらにより好ましくは1.0℃/分である。また、上記速度の上限値としては、2.3℃/分がより好ましく、さらに好ましくは2.15℃/分であり、よりさらに好ましくは2.0℃/分である。昇温、降温させる速度が0.5℃/分以上であることにより、製造時間を短時間で終了することが可能である傾向にあり、2.5℃/分以下であることにより、ウレトンイミノ化反応を効率よく進行させることができる傾向にある。ウレトンイミノ化反応触媒を使用せずに、本実施形態のポリイソシアネート組成物を得る場合、加熱のみによるウレトンイミノ化反応と上述したイソシアヌレート化反応、ウレトジオン化反応が終了した後、未反応ジイソシアネートモノマーを除去することが、未反応ジイソシアネートモノマー濃度の低減、及び得られたポリイソシアネート組成物の貯蔵後のジイソシアネートモノマー増加量の低減の観点から好ましい。
 原料ポリイソシアネート組成物に存在するアロファネート基は、HDIにアルキルモノアルコール、アルキルジオール等のアルコール化合物等を併用し、アロファネート化反応触媒を用いることにより得られる。本実施形態に用いることのできるアルコール化合物とは、以下に限定されないが、炭素、水素及び酸素のみで形成されるアルコールが好ましく、より好ましくはモノアルコールである。さらに好ましくは分子量200以下のアルコールが好ましい。その具体的な化合物としては、例えば、メタノール、エタノール、プロパノール、ブタノール、イソブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール等のモノアルコール、エチレングリコール、1,3-ブタンジオール、ネオペンチルグリコール、2-エチルヘキサンジオール等のジアルコールが挙げられ、これらの2種以上を併用してもよい。アルコール化合物の添加量は、以下に限定されないが、HDIのイソシアネート基とアルコール化合物の水酸基との当量比で、好ましくは1000/1以上10/1以下、より好ましくは1000/1以上100/1以下である。当量比が10/1以上であることで、イソシアネート基平均数を確保することができる傾向にある。上記アロファネート化反応触媒の具体的な化合物の例としては、以下に限定されないが、錫、鉛、亜鉛、ビスマス、ジルコニウム、ジルコニル等のアルキルカルボン酸塩である、2-エチルヘキサン酸錫、ジブチル錫ジラウレート等の有機錫化合物、2-エチルヘキサン酸鉛等の有機鉛化合物、2-エチルヘキサン酸亜鉛等の有機亜鉛化合物、2-エチルヘキサン酸ビスマス、2-エチルヘキサン酸ジルコニウム、及び2-エチルヘキサン酸ジルコニルが挙げられる。
 所望の収率となった時点で、リン酸、パラトルエンスルホン酸メチル等のアロファネート化反応触媒の失活剤を添加してアロファネート化反応を停止する。上述した触媒を、仕込んだジイソシアネートの質量に対して、好ましくは10質量ppm以上10000質量ppm以下、より好ましくは10質量ppm以上1000質量ppm以下、さらに好ましくは10質量ppm以上500質量ppm以下の量で使用し、アロファネート化反応温度を60~160℃で行うことが好ましい。反応温度の下限値は、70℃であることがより好ましく、さらに好ましくは80℃であり、よりさらに好ましくは90℃である。また、反応温度の上限値は、155℃であることがより好ましく、さらに好ましくは150℃であり、よりさらに好ましくは145℃である。アロファネート化反応温度が160℃以下であることにより、着色等の特性変化を抑制できる傾向にある。また、加熱時間は0.2Hr~8.0Hrであることが好ましい。加熱時間の下限値は、0.4Hrがより好ましく、さらに好ましくは0.6Hrであり、よりさらに好ましくは0.8Hrであり、さらにより好ましくは1.0Hrである。加熱時間の上限値は、6.0Hrがより好ましく、さらに好ましくは4.0Hrであり、よりさらに好ましくは3.0Hrであり、さらにより好ましくは2.0Hrである。加熱時間を0.2Hr以上とすることで、低粘度化を発現できることができる傾向にあり、8.0Hr以下とすることで、ポリイソシアネート自体の着色を抑制することができる傾向にある。
 また、上記のイソシアヌレート化反応触媒もアロファネート化反応触媒となり得る。上記のイソシアヌレート化反応触媒を用いて、アロファネート化反応を行う場合、イソシアヌレート基含有ポリイソシアネートも当然のことながら生成する。アロファネート化反応触媒として、上記したイソシアヌレート化反応触媒を用い、アロファネート化反応とイソシアヌレート反応を行うことが経済的生産上、好ましい。
 上述した、イソシアヌレート化反応、ウレトジオン化反応、ウレトンイミノ化反応はそれぞれを逐次行うこともできるし、そのいくつかを並行して行うこともできる。また、アロファネート化反応を伴う場合には、好ましくは、イソシアヌレート化反応とアロファネート化反応とを並行して先行させ、その後、ウレトジオン化反応、ウレトンイミノ化反応を行う。より好ましくは、イソシアヌレート化反応とアロファネート化反応とは共通した触媒を用いて同時に行い、その後熱によるウレトジオン化反応、ウレトンイミノ化反応を行う場合、製造工程を簡略化できるため、さらに好ましい。
 重合反応が所望の重合度に達した時点で、重合反応を停止させる。重合反応の停止は、以下に限定されないが、例えば、リン酸、酸性リン酸エステル、硫酸、塩酸、スルホン酸化合物の酸性化合物を反応液に添加することで、重合反応触媒を中和、あるいは熱分解、化学分解等により不活性化させることで達成できる。反応停止後、必要があれば、濾過を行う。
 反応停止直後の反応液は、未反応のHDIモノマーを含むため、これを薄膜蒸発缶、抽出等で除去することが好ましい。このような後処理を行うことで、ポリイソシアネート組成物に含有されるHDIモノマー濃度を1.0質量%以下に制御することが好ましい。本実施形態のポリイソシアネート組成物におけるHDIモノマー濃度の上限値は、より好ましくは0.7質量%以下であり、さらに好ましくは0.5質量%以下であり、よりさらに好ましくは0.3質量%以下であり、さらにより好ましくは0.2質量%以下である。HDIモノマー濃度を上記上限値以下とすることで、本実施形態のポリイソシアネート組成物の毒性を一層低減でき、安全性を向上させることができる傾向にある。
[親水性化合物]
 本実施形態の親水性化合物は、特に限定されないが、アニオン性化合物、カチオン性化合物、及びノニオン性化合物からなる群より選ばれる1種又は2種以上であることが好ましい。また、上記アニオン性化合物、カチオン性化合物、及びノニオン性化合物は、各々独立に、ポリイソシアネート組成物が含むイソシアネート基と反応させるために、活性水素基を含有していることが好ましい。活性水素基としては、特に限定されないが、例えば、水酸基、アミノ基、メルカプト基、及びカルボン酸基が挙げられる。
<アニオン性化合物>
 アニオン性化合物は、特に限定されないが、カルボン酸基を含有する化合物、リン酸基を含有する化合物、及びスルホン酸基を含有する化合物からなる群より選ばれる1種又は2種以上であることが好ましい。
 カルボン酸基を含有する化合物としては、特に限定されないが、例えば、1-ヒドロキシ酢酸、3-ヒドロキシプロパン酸、12-ヒドロキシ-9-オクタデカン酸、ヒドロキシピバル酸、乳酸等のモノヒドロキシカルボン酸;ジメチロール酢酸、2,2-ジメチロール酪酸、2,2-ジメチロールペンタン酸、ジヒドロキシコハク酸、ジメチロールプロピオン酸等のポリヒドロキシカルボン酸等の水酸基を含有するカルボン酸が挙げられ、この中でも、ヒドロキシピバル酸、及びジメチロールプロピオン酸が好ましい。
 リン酸基を含有する化合物としては、特に限定されないが、例えば、酸性リン酸エステル、酸性亜リン酸エステル、酸性次亜リン酸エステル、及び特定のポリエーテルホスホネート(例えばRHODAFAC(登録商標)の商品名で市販されているもの(ソルベイ日華株式会社))が挙げられ、この中でも、酸性リン酸エステルが好ましい。
 水分散性の観点から、ポリイソシアネート組成物は、該ポリイソシアネート組成物の総量(100質量%)に対して、リン原子の含有率が0.03質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましい。リン原子の含有率が0.03質量%以上であることで、界面張力が下がることに起因して、より良好な水分散性を示す傾向にある。
 また、ポリイソシアネート組成物は、塗膜物性の観点から、ポリイソシアネート組成物の総量(100質量%)に対して、リン原子の含有率が6.0質量%以下であることが好ましく、3.0質量%以下であることがより好ましく、1.0質量%以下であることが更に好ましい。リン原子の含有率が6.0質量%以下であることで、架橋に使用されるイソシアネート基が多くなることに起因して、塗膜物性がより良好となる傾向にある。
 上記含有率を上記範囲に制御する方法としては、以下のものに限定されないが、例えば、上記リン酸基を含有する化合物と原料ポリイソシアネート組成物との配合比を調整する方法が挙げられる。また、上記含有率は、実施例中に記載する方法により測定する。
 スルホン酸基を含有する化合物としては、特に限定されないが、例えば、2-ヒドロキシエタンスルホン酸、3-ヒドロキシプロパンスルホン酸、4-ヒドロキシブタンスルホン酸、5-ヒドロキシペンタンスルホン酸、6-ヒドロキシヘキサンスルホン酸、ヒドロキシベンゼンスルホン酸、ヒドロキシ(メチル)ベンゼンスルホン酸、4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸、4-(2-ヒドロキシエチル)-1-ピペラジンプロパンスルホン酸、2-ヒドロキシ-3-モルホリノプロパンスルホン酸、特定のポリエーテルスルホネート、例えばTegomer(登録商標)の商品名で市販されているもの(The Goldschmidt AG,Essen,ドイツ)等の水酸基を含有するスルホン酸が挙げられる。また、2-アミノエタンスルホン酸、2-メチルアミノエタンスルホン酸、2-(シクロヘキシルアミノ)-エタンスルホン酸、3-(シクロヘキシルアミノ)-プロパンスルホン酸、4-アミノトルエン-2-スルホン酸、5-アミノトルエン-2-スルホン酸、2-アミノナフタレン-4-スルホン酸、4-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸等のアミノ基を含有するスルホン酸が挙げられる。
 上記の中でも、2-ヒドロキシエタンスルホン酸、3-ヒドロキシプロパンスルホン酸、ヒドロキシベンゼンスルホン酸、ヒドロキシ(メチル)ベンゼンスルホン酸、2-(シクロヘキシルアミノ)-エタンスルホン酸、及び3-(シクロヘキシルアミノ)-プロパンスルホン酸が好ましい。
 アニオン性化合物のカルボン酸基、リン酸基、スルホン酸基等の酸性基は、無機塩基や有機アミン化合物で中和することが好ましい。無機塩基としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウムなどのアルカリ金属;マグネシウム、カルシウム、ストロンチウム、バリウムなどのアルカリ土類金属;マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、カドミウム、鉛、アルミニウム等の金属;アンモニアが挙げられる。
 有機アミン化合物としては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリオクチルアミン、トリラウリルアミン、トリトリデシルアミン、トリステアリルアミンのような直鎖三級アミン類;トリイソプロピルアミン、トリイソブチルアミン、トリ-2-エチルヘキシルアミン、トリ分岐トリデシルアミンのような分岐三級アミン類;N,N-ジメチルエチルアミン、N,N-ジメチルプロピルアミン、N,N-ジメチルイソプロピルアミン、N,N-ジメチルブチルアミン、N,N-ジメチルイソブチルアミン、N,N-ジメチルオクチルアミン、N,N-ジメチル-2-エチルヘキシルアミン、N,N-ジメチルラウリルアミン、N,N-ジメチル(分岐)トリデシルアミン、N,N-ジメチルステアリルアミン、N,N-ジエチルブチルアミン、N,N-ジエチルヘキシルアミン、N,N-ジエチルオクチルアミン、N,N-ジエチル-2-エチルヘキシルアミン、N,N-ジエチルラウリルアミン、N,N-ジイソプロピルメチルアミン、N,N-ジイソプロピルエチルアミン、N,N-ジイソプロピルブチルアミン、N,N-ジイソプロピル-2-エチルヘキシルアミン、のような混合炭化水素基を有する三級アミン類等の他に、N,N-ジメチルシクロヘキシルアミン、N,N-ジエチルベンジルアミン、N,N-ジエチルシクロヘキシルアミン、N,N-ジシクロヘキシルメチルアミン、N,N-ジシクロヘキシルエチルアミン、トリシクロヘキシルアミンのような脂環三級アミン類;N,N-ジメチルベンジルアミン、N,N-ジエチルベンジルアミン、N,N-ジベンジルメチルアミン、トリベンジルアミン、N,N-ジメチル-4-メチルベンジルアミン、N,N-ジメチルフェニルアミン、N,N-ジエチルフェニルアミン、N,N-ジフェニルメチルアミンのような芳香環置換基を持つ三級アミン類;N-メチルピロリジン、N-エチルピロリジン、N-プロピルピロリジン、N-ブチルピロリジン、N-メチルピペリジン、N-エチルピペリジン、N-プロピルピペリジン、N-ブチルピペリジン、N-メチルモルホリン、N-エチルモルホリン、N-プロピルモルホリン、N-ブチルモルホリン、N-sec-ブチルモルホリン、N-tert-ブチルモルホリン、N-イソブチルモルホリン、キヌクリジンのような環状アミン類等、及びこれらの任意の混合物が挙げられる。
 上述した中で好ましい例としては、総炭素数5~30の三級のアミン類から選ばれる少なくとも一種が挙げられ、その具体例としては、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリオクチルアミン、トリラウリルアミン、トリデシルアミン、トリイソプロピルアミン、トリイソブチルアミン、トリ-2-エチルヘキシルアミン、トリ分岐トリデシルアミン、N,N-ジメチルプロピルアミン、N,N-ジメチルイソプロピルアミン、N,N-ジメチルブチルアミン、N,N-ジメチルイソブチルアミン、N,N-ジメチルオクチルアミン、N,N-ジメチル-2-エチルヘキシルアミン、N,N-ジメチルラウリルアミン、N,N-ジメチル(分岐)トリデシルアミン、N,N-ジメチルステアリルアミン、N,N-ジエチルブチルアミン、N,N-ジエチルヘキシルアミン、N,N-ジエチルオクチルアミン、N,N-ジエチル-2-エチルヘキシルアミン、N,N-ジエチルラウリルアミン、N,N-ジイソプロピルメチルアミン、N,N-ジイソプロピルエチルアミン、N,N-ジメチルシクロヘキシルアミン、N,N-ジエチルシクロヘキシルアミン、N,N-ジシクロヘキシルメチルアミン、N,N-ジシクロヘキシルエチルアミン、N,N-ジメチルベンジルアミン、N,N-ジエチルベンジルアミン、N,N-ジベンジルメチルアミン、トリベンジルアミン、N,N-ジメチルフェニルアミン、N,N-ジエチルフェニルアミン、N,N-ジフェニルメチルアミン、N-メチルピペリジン、N-エチルピペリジン、N-メチルモルホリン、N-エチルモルホリン、キヌクリジン、ピリジン、キノリン等、及びこれらの任意の混合物が挙げられる。
 ポリイソシアネートを水に分散させるために、親水性化合物で変性を行うが、変性する割合を高くしすぎないことにより、塗膜物性(硬度、耐溶剤性、耐水性)の低下を抑制できる傾向にある。すなわち、アニオン性化合物は乳化力が高いため、少量で高い乳化効果を得ることができる。
 水分散性の観点から、ポリイソシアネート組成物は、該ポリイソシアネート組成物の総量(100質量%)に対して、硫黄原子の含有率が0.03質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.08質量%以上であることがさらに好ましい。硫黄原子の含有率が0.03質量%以上であることで、界面張力が下がることに起因して、より良好な水分散性を示す傾向がある。
 また、ポリイソシアネート組成物は、塗膜物性の観点から、ポリイソシアネート組成物の総量(100質量%)に対して、硫黄原子の含有率が3.0質量%以下であることが好ましく、2.5質量%以下であることがより好ましく、2.0質量%以下であることがさらに好ましい。上記含有率が3.0質量%以下であることで、架橋に使用されるイソシアネート基が多くなることに起因して、塗膜物性がより良好となる傾向にある。
 上記含有率を上記範囲に制御する方法としては、以下のものに限定されないが、例えば、上記スルホン酸基を含有する化合物と原料ポリイソシアネート組成物との配合比を調整する方法が挙げられる。また、上記含有率は、実施例中に記載する方法により測定する。
 原料ポリイソシアネート組成物と上記アニオン性化合物とを反応させる方法として、以下のものに限定されないが、例えば、原料ポリイソシアネート組成物のポリイソシアネートが有する末端イソシアネート基と、上記アニオン性化合物が有する活性水素基とを反応させる方法が挙げられる。
<カチオン性化合物>
 カチオン性化合物としては、特に限定されないが、例えば、ジメチルエタノールアミン、ジエチルエタノールアミン、ジエタノールアミン、メチルジエタノールアミン、N,N-ジメチルアミノヘキサノール、N,N-ジメチルアミノエトキシエタノール、N,N-ジメチルアミノエトキシエトキシエタノール、N,N,N‘-トリメチルアミノエチルエタノールアミン、N-メチル-N-(ジメチルアミノプロピル)アミノエタノール等の水酸基を含有するアミン化合物が挙げられ、ポリイソシアネートに変性された三級アミノ基(カチオン型親水基)は、硫酸ジメチル、硫酸ジエチル等で四級化することもできる。この中でも、ジメチルエタノールアミン、ジエチルエタノールアミン、N,N-ジメチルアミノヘキサノール、N,N-ジメチルアミノエトキシエタノール、及びN,N-ジメチルアミノエトキシエトキシエタノールが好ましい。
 カチオン性化合物の三級アミノ基は、アニオン基を有する化合物で中和されることが好ましい。このアニオン基としては、特に限定されないが、例えば、カルボキシル基、スルホン酸基、燐酸基、ハロゲン基、及び硫酸基が挙げられる。上記カルボキシル基を有する化合物としては、特に限定されないが、例えば、蟻酸、酢酸、プロピオン酸、酪酸、及び乳酸が挙げられる。また、上記スルホン基を有する化合物としては、特に限定されないが、例えば、エタンスルホン酸が挙げられる。さらに、上記隣酸基を有する化合物としては、特に限定されないが、例えば、隣酸、及び酸性隣酸エステルが挙げられる。またさらに、上記ハロゲン基を有する化合物としては、特に限定されないが、例えば、塩酸が挙げられる。さらにまた、上記硫酸基を有する化合物としては特に限定されないが、例えば、硫酸が挙げられる。これらの中でもカルボキシル基を1つ有する化合物が好ましく、より好ましくは、酢酸、プロピオン酸、及び酪酸である。
<ノニオン性化合物>
 ノニオン性化合物としては、特に限定されないが、例えば、ポリアルキレングリコールアルキルエーテルが挙げられ、また、このポリアルキレングリコールアルキルエーテルは、下記一般式(1)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000008
 上記ポリアルキレングリコールアルキルエーテルは、単一成分ではなく、重合度を示すn(「重合度n」、「n」)の数が異なる物質の集合体である。そのため、重合度nは、その平均値で示す。
 式(1)中のRは、アルキレン基を示し、親水性付与の観点から、炭素原子数1~4のアルキレン基を示すことが好ましい。また、より親水性が付与できる観点から、炭素原子数2のアルキレン基(エチレン基)を示すことがより好ましい。また、Rは、アルキル基を示し、親水性付与の観点から、炭素原子数1~4のアルキル基を示すことが好ましい。より親水性が付与できる観点から、炭素原子数1のアルキル基(メチル基)を示すことがより好ましい。
 ポリイソシアネートを水系主剤に配合する際、主剤と混ぜたときの増粘が問題となる場合が多い。増粘が多い場合は、ポリイソシアネートが主剤へ均一に分散することができず、塗膜物性の低下につながる傾向にある。
 nの平均数は、水分散性と主剤への分散性及との観点から、5.0以上20以下であることが好ましく、5.5以上16以下であることがより好ましく、6.0以上12以下であることがさらに好ましい。
 nの平均数が5.0以上であると、乳化力が増すため分散性が向上する傾向にあり、20以下であると、粘度上昇を防ぐため、容易に分散することができる傾向にある。上記ポリアルキレングリコールアルキルエーテルは、nの平均数が異なるものを1種又は2種以上を組み合わせて使用することもできる。原料のポリアルキレングリコールアルキルエーテルのnの平均数は、後述する実施例に記載の方法により測定する。
 ポリアルキレングリコールアルキルエーテルとしては、以下のものに限定されないが、例えば、ポリエチレングリコール(モノ)メチルエーテル、ポリ(エチレン、プロピレン)グリコール(モノ)メチルエーテル、及びポリエチレングリコール(モノ)エチルエーテルが挙げられる。親水性付与の観点から、ポリエチレングリコール(モノ)メチルエーテルが好ましい。
 ポリアルキレングリコールアルキルエーテルが有する水酸基の数は、ポリイソシアネート組成物の粘度を低くする観点から、好ましくは1つである。
 ポリイソシアネート組成物は、該ポリイソシアネート組成物の総量(100質量%)に対して、ポリアルキレングリコールアルキルエーテルに由来する部分を、塗膜物性の観点から、2.0質量%以上30質量%以下含むことが好ましく、より好ましくは4.0質量%以上20質量%以下含み、さらに好ましくは6.0質量%以上18質量%以下含み、よりさらに好ましくは6.0質量%以上16質量%以下含む。ポリアルキレングリコールアルキルエーテルに由来する部分の含有率が2.0質量%以上30質量%以下であることで、架橋に使用されるイソシアネート基が多くなり、塗膜物性(外観、硬度、表面乾燥性、及び耐水性)並びに、湿気安定性がより良好となる傾向にある。
 上記含有率を2.0質量%以上30質量%以下に制御する方法としては、以下のものに限定されないが、例えば、上記ポリアルキレングリコールアルキルエーテルとポリイソシアネートとの配合比を調整する方法が挙げられる。また、上記含有率は、実施例中に記載する方法により測定する。
 ポリイソシアネート組成物中において、ポリアルキレングリコールアルキルエーテルが変性された割合(変性率)は、原料のポリイソイソシアネートのイソシアネート基100当量に対して、ポリアルキレングリコールアルキルエーテルが変性された割合である。
 変性率は、ポリアルキレングリコールアルキルエーテルに由来する部分の含有率を上述した好ましい範囲に調整する観点から、0.5%以上40%以下であることが好ましく、1.0%以上30%以下であることがより好ましく、2.0%以上20%以下であることがさらに好ましい。変性率は、実施例中に記載する方法により測定する。
 ポリイソシアネートと上記ポリアルキレングリコールアルキルエーテルとを反応させる方法として、以下のものに限定されないが、例えば、ポリイソシアネートが有する末端イソシアネート基と、上記ポリアルキレングリコールアルキルエーテルが有する水酸基とを反応させる方法が挙げられる。
〔ポリイソシアネート組成物の製造方法〕
 本実施形態のポリイソシアネート組成物の製造方法は、上記原料ポリイソシアネート組成物と、親水性化合物とを混合反応させる工程(反応工程)を含むことが好ましい。
 反応工程において、上記原料ポリイソシアネート組成物と、アニオン性化合物との混合比率は、水分散性と塗膜物性との観点から、原料ポリイソシアネート組成物中のイソシアネート基のモル量(100モル%)に対して、上記アニオン性化合物中の活性水素基が0.5モル%以上50モル%以下となるように反応されていることが好ましく、1.0モル%以上40モル%以下となるように反応されていることがより好ましい。
 反応工程において、上記原料ポリイソシアネート組成物と、ノニオン性化合物との混合比率は、水分散性と塗膜物性との観点から、ポリイソシアネート組成物100質量%に対して、上記ノニオン性化合物が、2.0質量%以上30質量%以下となるように反応されていることが好ましく、4.0質量%以上20質量%以下となるように反応されていることがより好ましい。
 反応工程において、反応温度や反応時間は、反応の進行に応じて適宜決められるが、反応温度は0℃以上150℃以下であることが好ましく、反応時間は0.5時間以上48時間以下であることが好ましい。
 また、反応工程において、場合により公知の触媒を使用してもよい。触媒として、具体的には、オクタン酸スズ、2-エチル-1-ヘキサン酸スズ、エチルカプロン酸スズ、ラウリン酸スズ、パルミチン酸スズ、ジブチルスズオキシド、ジブチルスズジクロライド、ジブチルスズジアセテート、ジブチルスズジマレート、ジブチルスズジラウレート、ジオクチルスズジアセテート、ジオクチルスズジラウレート等の有機スズ化合物;塩化亜鉛、オクタン酸亜鉛、2-エチル-1-ヘキサン酸亜鉛、2-エチルカプロン酸亜鉛、ステアリン酸亜鉛、ナフテン酸亜鉛、アセチルアセトン酸亜鉛等の有機亜鉛化合物;有機チタン化合物;有機ジルコニウム化合物;トリエチルアミン、トリブチルアミン、N,N-ジイソプロピルエチルアミン、N,N-ジメチルエタノールアミン等の三級アミン類;トリエチレンジアミン、テトラメチルエチレンジアミン、1,4-ジアザビシクロ[2.2.2]オクタン等のジアミン類が挙げられる。これらは単独又は混合して使用してもよい。
 本実施形態のポリイソシアネート組成物の製造方法において、溶剤を使用してもよいし、使用しなくてもよい。本実施形態のポリイソシアネート組成物の製造方法に用いられる溶剤は、親水性溶剤でも疎水性溶剤でもよい。
 疎水性溶剤として、例えば、ミネラルスピリット、ソルベントナフサ、LAWS(Low Aromatic White Spirit)、HAWS(High Aromatic White Spirit)、トルエン、キシレン、シクロヘキサン等;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類が挙げられる。
 親水性溶剤として、例えば、メタノール、エタノール、プロパノール、イソプロパノール、2-エチルヘキサノール等のアルコール類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル等のエーテル類;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート等のエーテルアルコール類のエステル類が挙げられる。これらは単独又は混合して使用することができる。
 本実施形態のポリイソシアネート組成物の製造方法において、上記親水性化合物と、ポリイソシアネートとに加えて、酸化防止剤、光安定剤、重合禁止剤、及び界面活性剤からなる群より選ばれる少なくとも1種をさらに添加してもよい。
〔コーティング組成物、水系コーティング組成物〕
 本実施形態のコーティング組成物は、上述のポリイソシアネート組成物を含む。コーティング組成物は、特に限定されず、有機溶剤系のコーティング組成物としても、水を主とする媒体中に塗膜形成成分である樹脂類が溶解又は分散している水系コーティング組成物としてしてもよく、水系コーティング組成物とすることが、有機溶剤の使用量低減の観点から好ましい。本実施形態の水系コーティング組成物は、コーティング組成物と、水とを含む。コーティング組成物は、例えば、建築用塗料、自動車用塗料、自動車補修用塗料、プラスチック用塗料、粘着剤、接着剤、建材、家庭用水系塗料、その他コーティング剤、シーリング剤、インキ、注型材、エラストマー、フォーム、プラスチック原料、及び繊維処理剤に使用することができる。
 水系コーティング組成物における主剤の樹脂類として、特に限定されないが、例えば、アクリル樹脂類、ポリエステル樹脂類、ポリエーテル樹脂類、エポキシ樹脂類、フッ素樹脂類、ポリウレタン樹脂類、ポリ塩化ビニリデン共重合体、ポリ塩化ビニル共重合体、酢酸ビニル共重合体、アクリロニトリルブタジエン共重合体、ポリブタジエン共重合体、及びスチレンブタジエン共重合体が挙げられる。
 アクリル樹脂類として、特に限定されないが、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸-n-ブチル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸ラウリル等の(メタ)アクリル酸エステル類;(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-2-ヒドロキシプロピル、(メタ)アクリル酸-2-ヒドロキシブチル、(メタ)アクリル酸-3-ヒドロキシプロピル、(メタ)アクリル酸-4-ヒドロキシブチル等の活性水素を持つ(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、マレイン酸、イタコン酸等の不飽和カルボン酸類;アクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド等の不飽和アミド類;メタクリル酸グリシジル、スチレン、ビニルトルエン、酢酸ビニル、アクリロニトリル、フマル酸ジブチル、p-スチレンスルホン酸、アリルスルホコハク酸等のその他の重合性モノマー類等から選ばれた単独又は混合物を重合させて得られるアクリル樹脂類が挙げられる。その重合方法としては、乳化重合が一般的であるが、懸濁重合、分散重合、及び溶液重合でも製造できる。乳化重合では段階的に重合することもできる。
 ポリエステル樹脂類として、特に限定されないが、例えば、コハク酸、アジピン酸、セバシン酸、ダイマー酸、無水マレイン酸、無水フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸等のカルボン酸の群から選ばれた単独又は混合物と、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、2-メチル-1,2-プロパンジオール、1,5-ペンタンジオール、2-メチル-2,3-ブタンジオール、1,6-ヘキサンジオール、1,2-ヘキサンジオール、2,5-ヘキサンジオール、2-メチル-2,4-ペンタンジオール、2,3-ジメチル-2,3-ブタンジオール、2-エチル-ヘキサンジオール、1,2-オクタンジオール、1,2-デカンジオール、2,2,4-トリメチルペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール等のジオール類;グリセリン、トリメチロールプロパン等のトリオール類;ジグリセリン、ジメチロールプロパン、ペンタエリトリトール等のテトラオール類等の群から選ばれた多価アルコールの単独又は混合物と、の縮合反応によって得られるポリエステル樹脂類等、及び低分子量ポリオールの水酸基にε-カプロラクトンを開環重合して得られるようなポリカプロラクトン類が挙げられる。
 ポリエーテル樹脂類として、特に限定されないが、例えば、多価ヒドロキシ化合物の単独又は混合物に、リチウム、ナトリウム、カリウム等の水酸化物;アルコラート、アルキルアミン等の強塩基性触媒等を使用して、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、シクロヘキセンオキサイド、スチレンオキサイド等のアルキレンオキサイドの単独又は混合物を付加して得られるポリエーテルポリオール類;エチレンジアミン類等の多官能化合物にアルキレンオキサイドを反応させて得られるポリエーテルポリオール類;テトラヒドロフラン等の環状エーテル類の開環重合によって得られるポリエーテルポリオール類;これらポリエーテル類を媒体としてアクリルアミド等を重合して得られる、いわゆるポリマーポリオール類が挙げられる。
 これらの樹脂類の中では、アクリル樹脂類、及びポリエステル樹脂類が好ましい。また、必要に応じて、メラミン系硬化剤、ウレタンディスパージョン、ウレタンアクリルエマルジョン等の樹脂を併用することができる。
 これらの樹脂類は、水に乳化、分散又は溶解することが好ましい。そのために、樹脂類に含まれるカルボキシル基、スルホン基等を中和することができる。
 カルボキシル基、スルホン基等を中和するための中和剤として、具体的には、アンモニア、水溶性アミノ化合物であるモノエタノールアミン、エチルアミン、ジメチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、イソプロピルアミン、ジイソプロピルアミン、トリエタノールアミン、ブチルアミン、ジブチルアミン、2-エチルヘキシルアミン、エチレンジアミン、プロピレンジアミン、メチルエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、モルホリン等から選択される1種以上を用いることができる。中和剤としては、第三級アミンであるトリエチルアミン、及びジメチルエタノールアミンが好ましい。
 さらに、一般的に塗料に加えられる無機顔料、有機顔料、体質顔料、シランカップリング剤、チタンカップリング剤、有機リン酸塩、有機亜リン酸塩、増粘剤、レベリング剤、チキソ化剤、消泡剤、凍結安定剤、艶消し剤、架橋反応触媒、皮張り防止剤、分散剤、湿潤剤、充填剤、可塑剤、潤滑剤、還元剤、防腐剤、防黴剤、消臭剤、黄変防止剤、紫外線吸収剤、静電防止剤又は帯電調整剤、沈降防止剤等を組み合わせてもよい。塗料への分散性を良くするために、さらに界面活性剤を添加してもよいし、塗料の保存安定性を良くするために、さらに酸化防止剤、光安定剤、重合禁止剤を添加してもよい。
 硬化促進用の触媒の例としては、以下に限定されないが、例えば、ジブチルスズジラウレート、2-エチルヘキサン酸スズ、2-エチルヘキサン酸亜鉛、コバルト塩、等の金属塩;トリエチルアミン、ピリジン、メチルピリジン、ベンジルジメチルアミン、N,N-ジメチルシクロヘキシルアミン、N-メチルピペリジン、ペンタメチルジエチレントリアミン、N,N’-エンドエチレンピペラジン、N,N’-ジメチルピペラジン等の3級アミン類が挙げられる。
〔コーティング基材〕
 本実施形態コーティング基材は、基材と、該基材にコーティングされた上述のコーティング組成物と、を有する。
 本実施形態のコーティング基材に用いる所望の基材としては、コーティング組成物をコーティングできるものであれば特に限定されないが、例えば、金属、木材、ガラス、石、セラミック材料、コンクリート、硬質及び可撓性プラスチック、繊維製品、皮革製品、紙が挙げられる。場合により、基材は、コーティング前に通常のプライマーを備えてもよい。
 以下、具体的な実施例及び比較例を挙げて本実施形態をより具体的に説明するが、本実施形態はその要旨を超えない限り、以下の実施例及び比較例によって何ら限定されるものではない。実施例及び比較例における、ポリイソシアネート組成物の物性は、以下のとおり測定した。なお、特に明記しない場合は、「部」及び「%」は、「質量部」及び「質量%」を意味する。
(物性1)粘度
 ポリイソシアネート組成物を試料として、粘度は、E型粘度計(トキメック社製)を用いて25℃で測定した。測定に際しては、標準ローター(1°34’×R24)を用いた。回転数は、以下のとおりとした。
 100rpm (128mPa・s未満の場合)
 50rpm (128mPa・s以上256mPa・s未満の場合)
 20rpm (256mPa・s以上640mPa・s未満の場合)
 10rpm (640mPa・s以上1280mPa・s未満の場合)
 5.0rpm (1280mPa・s以上2560mPa・s未満の場合)
 なお、後述する各実施例及び各比較例で製造したポリイソシアネート組成物の不揮発分を以下に記載の方法によって調べ、その値が98質量%以上であったものは、そのまま測定に供した。
(物性2)不揮発分
 ポリイソシアネート組成物を試料として、溶剤希釈をした場合には、アルミニウム製カップの質量を精秤し、試料約1gを入れて、加熱乾燥前のカップ質量を精秤した。上記試料を入れたカップを105℃の乾燥機中で3時間加熱した。上記加熱後のカップを室温まで冷却した後、再度カップの質量を精秤した。試料中の乾燥残分の質量%を不揮発分とした。不揮発分の計算方法は以下のとおりである。なお、溶剤希釈なしの場合には、不揮発分は実質的に100%であるとして扱った。
 不揮発分(質量%)=(加熱乾燥後のカップ質量-アルミニウム製カップ質量)/(加熱乾燥前のカップ質量-アルミニウム製カップ質量)×100%。
(物性3)イソシアネート基含有率
 ポリイソシアネート組成物を試料として、イソシアネート基含有率の測定は、JIS K7301-1995(熱硬化性ウレタンエラストマー用トリレンジイソシアネート型プレポリマー試験方法)に記載の方法に従って実施した。以下に、より具体的なイソシアネート基含有率の測定方法を示す。
(1)試料1gを200mL三角フラスコに採取し、該フラスコにトルエン20mLを添加し、試料を溶解させた。
(2)その後、上記フラスコに2.0Nのジ-n-ブチルアミン・トルエン溶液20mLを添加し、15分間静置した。
(3)上記フラスコに2-プロパノール70mLを添加し、溶解させて溶液を得た。
(4)上記(3)で得られた溶液について、1mol/L塩酸を用いて滴定を行い、試料滴定量を求めた。
(5)試料を添加しない場合にも、上記(1)~(3)と同様の方法で測定を実施し、ブランク滴定量を求めた。
 上記で求めた試料滴定量及びブランク滴定量から、イソシアネート基含有率を以下の計算方法により算出した。
 イソシアネート基含有率(質量%)=(ブランク滴定量-試料滴定量)×42/[試料質量(g)×1,000]×100%
(物性4)HDIモノマー質量濃度
 まず、20mLサンプル瓶をデジタル天秤に乗せ試料を約1g精秤した。次に、ニトロベンゼン(内部標準液)を0.03~0.04g加え精秤した。さらに、酢酸エチルを約9mL加えた後、蓋をしっかりしてよく混合し、サンプルを調整した。
 上記調整液を以下の条件で、ガスクロマトグラフィー分析し、定量した。
  装置:SHIMADZU(株)GC-8A
  カラム:信和化工(株)Silicone OV-17
  カラムオーブン温度;120℃
  インジェクション/ディテクター温度;160℃
(物性5)原料ポリアルキレングリコールアルキルエーテルのnの平均数
 原料のポリアルキレングリコールアルキルエーテルを試料として、nの平均数は、下記の水酸基価から算出した。
 水酸基価の測定は、JIS K 0070-1992(化学製品の酸価,けん化価,エステル価,よう素価,水酸基価及び不けん化物の試験方法)及び、JIS K 1557-1(プラスチック-ポリウレタン原料ポリオール試験方法-第1部:水酸基価の求め方)に記載の方法に従って実施した。
 上記で求めた水酸基価から、ポリアルキレングリコールアルキルエーテルの分子量を求め、その値を用いてnの平均数を以下の計算方法により算出した。
 nの平均数=(ポリアルキレングリコールアルキルエーテルの分子量-アルキル基の分子量-水酸基の分子量)/(アルキレンオキサイドの分子量)
 ポリアルキレングリコールアルキルエーテルの分子量=56.1×1000/[水酸基価(mgKOH/g)]
 例えば、使用したポリアルキレングリコールアルキルエーテルがポリエチレングリコール(モノ)メチルエーテルだった場合、以下のように求められる。
 nの平均数=(ポリエチレングリコール(モノ)メチルエーテルの分子量-メチル基の分子量(15)-水酸基の分子量(17))/(エチレンオキサイドの分子量(44))
(物性6)ポリイソシアネート組成物中のポリアルキレングリコールアルキルエーテルのnの平均数
 ポリイソシアネート組成物を試料として、nの平均数は、以下の装置及び条件を用いてプロトン核磁気共鳴(NMR)により求めた。ここでは、アルキレン基に対応する相対強度の積分値とアルキル基に対応する相対強度の積分値を対応させることにより、ポリイソシアネート組成物中のポリアルキレングリコールアルキルエーテルのnの平均数を求めた。
 NMR装置:Bruker Biospin Avance600(商品名)
 観測核:1H
 周波数:600MHz
 溶媒:CDCl
 積算回数:256回
(物性7)ポリアルキレングリコールアルキルエーテルが変性された割合(変性率)
 ポリイソシアネート組成物を試料として、変性率は、原料のポリイソイソシアネートのイソシアネート基100当量に対して、ポリアルキレングリコールアルキルエーテルが変性された割合であり、液体クロマトグラフィー(LC)の220nmにおける、未変性イソシアヌレート3量体、1変性イソシアヌレート3量体、2変性イソシアヌレート3量体、及び3変性イソシアヌレート3量体のピーク面積比から求めた。用いた装置及び条件は以下のとおりである。
 LC装置:Waters社製、UPLC(商品名)、
 カラム:Waters社製、ACQUITY UPLC HSS T3 1.8μm C18 内径2.1mm×長さ50mm
 流速:0.3mL/min
 移動相:A=10mM酢酸アンモニウム水溶液、B=アセトニトリル
 グラジェント条件:初期の移動相組成はA/B=98/2で、試料注入後Bの比率を直線的に上昇させ、10分後にA/B=0/100とした。
 検出方法:フォトダイオードアレイ検出器、測定波長は220nm
(物性8)ポリアルキレングリコールアルキルエーテルに由来する部分の含有率
 ポリイソシアネート組成物を試料として、ポリイソシアネート組成物中の、変性ポリイソシアネートのポリアルキレングリコールアルキルエーテルに由来する部分の含有率は、(物性3)で測定したイソシアネート基含有率と、(物性6)で求めたポリアルキレングリコールアルキルエーテルのnの平均数から算出されるポリアルキレングリコールアルキルエーテルの分子量と、(物性7)で求めた変性率とから以下のとおり算出した。
 含有率(%)=イソシアネート基含有率(質量%)/100%/42/(100-変性率(%))×変性率(%)×ポリアルキレングリコールアルキルエーテルの分子量×100%
 例えば、使用したポリアルキレングリコールアルキルエーテルがポリエチレングリコール(モノ)メチルエーテルだった場合、以下のように求められる。
 ポリエチレングリコール(モノ)メチルエーテルの分子量=メチル基の分子量(15)+水酸基の分子量(17)+(エチレンオキサイドの分子量(44)×nの平均数)
(物性9)ポリイソシアネート組成物の総量(100質量%)当たりのリン原子含有率
 ポリイソシアネート組成物を試料として、ポリイソシアネート組成物中の、リン酸基に由来するリン原子含有率は、以下の装置及び条件を用いて誘導結合プラズマ発光分光分析法(ICP-AES)により求めた。
 ICP-AES装置:サーモフィッシャーサイエンティフィック株式会社製、iCAP6300Duo(商品名)
 高周波出力:1150W
 クーラントガス:12L/min
 プラズマガス:0.5L/min
 キャリアガス:0.5L/min
 パージガス:0.6MPa
 トーチ:横軸
 検出器:CID
 測定波長:180.731nm
 前処理方法:試料を硫酸及び過酸化水素で分解し検液とした。
(物性10)ポリイソシアネート組成物の総量(100質量%)当たりの硫黄原子含有率
 ポリイソシアネート組成物を試料として、ポリイソシアネート組成物中の、スルホン酸基に由来する硫黄原子含有率は、以下の装置及び条件を用いてイオンクロマトグラフィー(IC)により求めた。
 IC装置:サーモフィッシャーサイエンティフィック株式会社製、ICS-1500(商品名)
 カラム:AS12A
 移動相:2.7mmol/L NaCO,0.3mmol/L NaHCO
 流量:1.5mL/min
 試料注入量:1mL
 サプレッサー:AERS-500
 検出器:電気伝導度検出器
 前処理方法:試料を炉内で燃焼させ、その燃焼ガスを吸収液に吸収させた。
(物性11)ウレトジオン基/イソシアヌレート基、ウレトンイミノ基/イソシアヌレート基、イミノオキサジアジンジオン基/イソシアヌレート基、アロファネート基/イソシアヌレート基のモル比率
 BrukerBiospin社製 Avance600(商品名)を用いた、13C-NMRの測定により、ウレトジオン基/イソシアヌレート基、ウレトンイミノ基/イソシアヌレート基、イミノオキサジアジンジオン基/イソシアヌレート基、アロファネート基/イソシアヌレート基のモル比率をそれぞれ求めた。
 具体的な測定条件は以下の通りとした。
  13C-NMR装置:AVANCE600(ブルカーバイオスピン社製)
  クライオプローブ:CP DUL 600S3 C/H-D-05 Z
           (ブルカーバイオスピン社製)
  共鳴周波数:150MHz
  濃度:60wt/vol%
  シフト基準:CDCl(77ppm)
  積算回数:10000回
  パルスプログラム:zgpg30(プロトン完全デカップリング法、待ち時間2sec)
 なお、上記測定においては、以下のシグナルの積分値を、測定している炭素の数で除し、その値から各モル比率を求めた。
 イソシアヌレート基:148.6ppm付近:積分値÷3
 ウレトジオン基:157.5ppm付近:積分値÷2
 アロファネート基:154ppm付近:積分値÷1
 ウレトンイミノ基:159.5ppm付近:積分値÷1
 イミノオキサジアジンジオン基:137.3ppm付近:積分値÷1
〔原料ポリイソシアネート組成物の製造〕
(製造例1)
 撹拌機、温度計、還流冷却管、窒素吹き込み管、及び滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気にし、HDI 6,000g、イソブタノール7.0gを仕込み、撹拌下反応器内温度を80℃、2Hr保持した。その後、イソシアヌレート化触媒トリメチル-2-メチル-2-ヒドロキシエチルアンモニウムヒドロキシドをイソブタノールで5質量%に希釈した溶液5.0gを加え、イソシアヌレート化反応を行い、反応液のNCO含有率が44.6質量%になった時点でリン酸を添加し反応を停止した。この反応で増加したウレトジオン2量体濃度は1.0質量%以下であった。この後、昇温速度1.6℃/分の速度で、160℃まで昇温させ、160℃で、1Hr保持した。その後、降温速度1.5℃/分の速度で、40℃まで降温させた。この加熱によりウレトジオン基並びに、ウレトンイミノ基が生成した。薄膜蒸発缶を用いて、160℃、0.2Torrの条件で2回精製し、不揮発分99.5質量%、粘度520mPa・s(25℃)、NCO含有率23.1質量%、HDIモノマー濃度0.11質量%のポリイソシアネート組成物P-1を得た。
(製造例2)
 撹拌機、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気にし、HDI 6,000g、イソブタノール11.0gを仕込み、撹拌下反応器内温度を80℃、2Hr保持した。その後、イソシアヌレート化触媒トリメチル-2-メチル-2-ヒドロキシエチルアンモニウムヒドロキシドをイソブタノールで5質量%に希釈した溶液5.0gを加え、イソシアヌレート化反応を行い、反応液のNCO含有率が45.5質量%になった時点でリン酸を添加し反応を停止した。この反応で増加したウレトジオン2量体濃度は1.0質量%以下であった。この後、昇温速度1.6℃/分の速度で、160℃まで昇温させ、160℃で、1Hr保持した。その後、降温速度1.5℃/分の速度で、40℃まで降温させた。この加熱によりウレトジオン基並びに、ウレトンイミノ基が生成した。薄膜蒸発缶を用いて、160℃、0.2Torrの条件で2回精製し、不揮発分99.5質量%、粘度280mPa・s(25℃)、NCO含有率23.2質量%、HDIモノマー濃度0.11質量%のポリイソシアネート組成物P-2を得た。
(製造例3)
 イソシアヌレート化反応後の反応液の昇温速度、降温速度をそれぞれ、2.2℃/分、2.4℃/分に変更した。その他の条件は実施例1と同様に行い、不揮発分99.6質量%、粘度540mPa・s(25℃)、NCO含有率23.1質量%、HDIモノマー濃度0.12質量%のポリイソシアネート組成物P-3を得た。
(製造例4)
 イソシアヌレート化反応後の反応液の加温条件を155℃、1.0Hrに変更した。
 その他の条件は実施例1と同様に行い、不揮発分99.7質量%、粘度530mPa・s(25℃)、NCO含有率23.1質量%、HDIモノマー濃度0.10質量%のポリイソシアネート組成物P-4を得た。
(製造例5)
 イソシアヌレート化反応後の反応液の加温条件を165℃、5.0Hrに変更した。
 その他の条件は実施例1と同様に行い、不揮発分99.5質量%、粘度510mPa・s(25℃)、NCO含有率23.1質量%、HDIモノマー濃度0.09質量%のポリイソシアネート組成物P-5を得た。
(比較製造例1)
 イソシアヌレート化反応後の反応液の昇温速度、降温速度をそれぞれ、2.6℃/分、4.5℃/分に変更した。その他の条件は実施例1と同様に行い、不揮発分99.6質量%、粘度530mPa・s(25℃)、NCO含有率23.1質量%、HDIモノマー濃度0.10質量%のポリイソシアネート組成物C-1を得た。
(比較製造例2)
 イソシアヌレート化反応後、昇温速度0.3℃/分の速度で、165℃まで昇温させ、165℃で、8Hr保持した。その後、降温速度0.3℃/分の速度で、40℃まで降温させた。その他の条件は実施例1と同様に行い、不揮発分99.6質量%、粘度520mPa・s(25℃)、NCO含有率23.1質量%、HDIモノマー濃度0.11質量%のポリイソシアネート組成物C-2を得た。
(比較製造例3)
 撹拌機、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気にし、HDI 6,000g、イソブタノール7.0gを仕込み、撹拌下反応器内温度を80℃、2Hr保持した。その後、イソシアヌレート化触媒トリメチル-2-メチル-2-ヒドロキシエチルアンモニウムヒドロキシドをイソブタノールで5質.0量%に希釈した溶液5.0gを加え、イソシアヌレート化反応を行い、反応液のNCO含有率が44.1質量%になった時点でリン酸を添加し、反応を停止した。この反応で増加したウレトジオン2量体濃度は1.0質量%以下であった。反応液を更に100℃、1Hr保持した。薄膜蒸発缶を用いて、160℃、0.2Torrの条件で2回精製し、不揮発分99.5質量%、粘度1050mPa・s(25℃)、NCO含有率23.1質量%、HDIモノマー濃度0.09質量%のポリイソシアネート組成物C-3を得た。
(比較製造例4)
 撹拌機、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気にし、HDI 6,000gを仕込み、撹拌下反応器内温度を30℃、2Hr保持した。その後、14.8g(0.1mol)の1-ブチルホスホランを添加し、15Hr保持した。その後、3.6g(0.11mol)の元素状硫黄の添加により、反応を停止した。薄膜蒸発缶を用いて、160℃、0.2Torrの条件で2回精製し、不揮発分99.5質量%、粘度1000mPa・s(25℃)、NCO含有率23.3質量%、HDIモノマー濃度0.12質量%のポリイソシアネート組成物C-4を得た。
(比較製造例5)
 撹拌機、温度計、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、比較製造例1で得たポリイソシアネート組成物C-1 700g、比較製造例4で得たポリイソシアネート組成物C-4 300gを仕込み、40℃、2Hr撹拌し、不揮発分99.7質量%、粘度690mPa・s(25℃)、NCO含有率23.1質量%、HDIモノマー濃度0.11質量%のポリイソシアネート組成物C-5を得た。
(製造例6)
 撹拌機、温度計、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、比較製造例1で得たポリイソシアネート組成物C-1 820g、比較製造例4で得たポリイソシアネート組成物C-4 180gを仕込み、40℃、2Hr撹拌し、不揮発分99.5質量%、粘度520mPa・s(25℃)、NCO含有率23.1質量%、HDIモノマー濃度0.11質量%のポリイソシアネート組成物P-6を得た。
(製造例7(スルホン酸アミン塩の製造))
 2-ヒドロキシエタンスルホン酸70質量%水溶液20質量部に、1-プロパノールを10質量部添加して撹拌して溶液を得た。更に、当量比1となるようにトリエチルアミンを量り取り、同質量部の1-プロパノールで希釈した液を、撹拌中の上記溶液に滴下していった。滴下開始から1時間後に撹拌を止め、エバポレーターで脱水及び脱溶剤し、固形分99.0質量%の2-ヒドロキシエタンスルホン酸トリエチルアミン塩を得た。
(製造例8(スルホン酸アミン塩の製造))
 2-ヒドロキシエタンスルホン酸70質量%水溶液20質量部に、1-プロパノールを10質量部添加して撹拌して溶液を得た。更に、当量比1となるようにN,N-ジイソプロピルエチルアミンを量り取り、同質量部の1-プロパノールで希釈した液を、撹拌中の上記溶液に滴下していった。滴下開始から1時間後に撹拌を止め、エバポレーターで脱水及び脱溶剤し、固形分99.1質量%の2-ヒドロキシエタンスルホン酸N,N-ジイソプロピルエチルアミン塩を得た。
(製造例9(スルホン酸アミン塩の製造))
 2-ヒドロキシエタンスルホン酸70質量%水溶液20質量部に、1-プロパノールを10質量部添加して撹拌して溶液を得た。更に、当量比1となるようにトリブチルアミンを量り取り、同質量部の1-プロパノールで希釈した液を、撹拌中の上記溶液に滴下していった。滴下開始から1時間後に撹拌を止め、エバポレーターで脱水及び脱溶剤し、固形分99.1質量%の2-ヒドロキシエタンスルホン酸トリブチルアミン塩を得た。
(製造例10(スルホン酸アミン塩の製造))
 2-ヒドロキシエタンスルホン酸70質量%水溶液20質量部に、1-プロパノールを10質量部添加して撹拌して溶液を得た。更に、当量比1となるようにN,N-ジメチルシクロヘキシルアミンを量り取り、同質量部の1-プロパノールで希釈した液を、撹拌中の上記溶液に滴下していった。滴下開始から1時間後に撹拌を止め、エバポレーターで脱水及び脱溶剤し、固形分99.8質量%の2-ヒドロキシエタンスルホン酸N,N-ジメチルシクロヘキシルアミン塩を得た。
(実施例1)
 製造例1で得られたポリイソシアネートP-1:80.0質量部に、エチレンオキサイド繰返単位の平均数:4.2のポリエチレングリコールモノメチルエーテル(日本乳化剤株式会社製、商品名「MPG」):14.3質量部と、エチレンオキサイド繰返単位の平均数:9.0のポリエチレングリコールモノメチルエーテル(日本乳化剤株式会社製、商品名「MPG-130」):5.7質量部添加し、エチレンオキサイド繰返単位の平均数が5.0となるように調整し、窒素下、100℃で4時間攪拌して反応を行った。反応終了後、ポリイソシアネート組成物を得た。
 得られたポリイソシアネート組成物は、不揮発分100質量%、粘度600mPa・s(25℃)、NCO含有率15.0質量%、HDIモノマー濃度0.09質量%であった。得られた組成物中の変性率:17.9%であり、NMRから検出されたエチレンオキサイド繰返単位の平均数は5.1であった。よって、ポリエチレングリコールモノメチルエーテルの含有率は20.0%と算出された。
 また、13C-NMR測定によりウレトジオン基/イソシアヌレート基のモル比率は0.32、ウレトンイミノ基/イソシアヌレート基のモル比率は0.0022、イミノオキサジアジンジオン基/イソシアヌレート基のモル比率は0.0038、アロファネート基/イソシアヌレート基のモル比率は0.070であった。その後、ポリイソシアネート組成物の貯蔵後ジイソシアネート(DI)増加量、湿気安定性を評価した。さらに上記ポリイソシアネート組成物の水分散性を評価した。評価結果を表1に示す。
(実施例2)
 製造例1で得られたポリイソシアネートP-1:82.0質量部に、エチレンオキサイド繰返単位の平均数:4.2のポリエチレングリコールモノメチルエーテル(日本乳化剤株式会社製、商品名「MPG」):10.4質量部と、エチレンオキサイド繰返単位の平均数:9.0のポリエチレングリコールモノメチルエーテル(日本乳化剤株式会社製、商品名「MPG-130」):7.6質量部添加し、エチレンオキサイド繰返単位の平均数が5.5となるように調整し、窒素下、100℃で4時間攪拌して反応を行った。反応終了後、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。評価結果を表1に示す。
(実施例3)
 製造例1で得られたポリイソシアネートP-1:85.0質量部に、エチレンオキサイド繰返単位の平均数:4.2のポリエチレングリコールモノメチルエーテル(日本乳化剤株式会社製、商品名「MPG」):6.9質量部と、エチレンオキサイド繰返単位の平均数:9.0のポリエチレングリコールモノメチルエーテル(日本乳化剤株式会社製、商品名「MPG-130」):8.1質量部添加し、エチレンオキサイド繰返単位の平均数が6.0となるように調整し、窒素下、100℃で4時間攪拌して反応を行った。反応終了後、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。評価結果を表1に示す。
(実施例4)
 製造例1で得られたポリイソシアネートP-1:90.0質量部に、エチレンオキサイド繰返単位の平均数:9.0のポリエチレングリコールモノメチルエーテル(日本乳化剤株式会社製、商品名「MPG-130」):10.0質量部を添加し、窒素下、100℃で4時間攪拌して反応を行った。反応終了後、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。評価結果を表1に示す。
(実施例5)
 製造例1で得られたポリイソシアネートP-1:94.0質量部に、分子量550のポリエチレングリコールモノメチルエーテル(日油株式会社製、商品名「M550」エチレンオキサイド繰返単位の平均数:11.8):6.0質量部を添加し、窒素下、100℃で4時間攪拌して反応を行った。反応終了後、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。評価結果を表1に示す。
(実施例6)
 製造例1で得られたポリイソシアネートP-1:96.0質量部に、エチレンオキサイド繰返単位の平均数:15.0のポリエチレングリコールモノメチルエーテル(日本乳化剤株式会社製、商品名「MPG-130」):4.0質量部を添加し、窒素下、100℃で4時間攪拌して反応を行った。反応終了後、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。評価結果を表1に示す。
(実施例7)
 製造例1で得られたポリイソシアネートP-1:98.0質量部に、分子量750のポリエチレングリコールモノメチルエーテル(ダウ・ケミカル株式会社製、商品名「750」エチレンオキサイド繰返単位の平均数:16.3):2.0質量部を添加し、窒素下、100℃で4時間攪拌して反応を行った。反応終了後、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。評価結果を表1に示す。
(実施例8)
 モノブチルリン酸20gと、トリエチルアミン13.0gを混合し、モノブチルリン酸の一部を中和した。製造例1で得られたポリイソシアネートP-1:1000質量部に、上記より得られたモノブチルリン酸とトリエチルアミンの混合物33.0質量部を添加し、窒素下、90℃で4時間攪拌して反応を行った。反応終了後、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。また、ICP-AESで検出されたリン原子の濃度は0.38質量%であった。評価結果を表1に示す。
(実施例9)
 モノブチルリン酸10gと、トリエチルアミン6.5gを混合し、モノブチルリン酸の一部を中和した。製造例1で得られたポリイソシアネートP-1:1000質量部に、分子量400のポリエチレングリコールモノメチルエーテル(日油株式会社製、商品名「M400」エチレンオキサイド繰返単位の平均数:8.4):100質量部と、上記より得られたモノブチルリン酸とトリエチルアミンの混合物16.5質量部を添加し、窒素下、90℃で4時間攪拌して反応を行った。反応終了後、ポリイソシアネート組成物を得た。その後の測定は実施例8と同様に行った。評価結果を表1に示す。
(実施例10)
 製造例1で得られたポリイソシアネートP-1:1000質量部に、3-シクロヘキシルアミノプロパンスルホン酸:6.1質量部と、N,N-ジメチルシクロヘキシルアミン:3.5質量部を添加し、窒素下、100℃で5時間攪拌して反応を行った。反応終了後、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。また、イオンクロマトグラフィーで検出された硫黄原子の濃度は0.09質量%であった。評価結果を表1に示す。
(実施例11)
 製造例1で得られたポリイソシアネートP-1:1000質量部に、製造例7で得られた2-ヒドロキシエタンスルホン酸トリエチルアミン塩:12.5質量部と、アセトン:200質量部と、ジブチルスズジラウレート:0.05質量部とを添加し、窒素下、還流下、70℃で5時間攪拌して反応を行った。その後、還流を外して100℃で0.5時間撹拌して反応を継続した。反応終了後、ポリイソシアネート組成物を得た。その後の測定は実施例10と同様に行った。評価結果を表1に示す。
(実施例12)
 製造例1で得られたポリイソシアネートP-1:1000質量部に、製造例8で得られた2-ヒドロキシエタンスルホン酸N,N-ジイソプロピルエチルアミン塩:27.7質量部と、アセトン:200質量部と、ジブチルスズジラウレート:0.05質量部とを添加し、窒素下、還流下、70℃で5時間攪拌して反応を行った。その後、還流を外して100℃で0.5時間撹拌して反応を継続した。反応終了後、ポリイソシアネート組成物を得た。その後の測定は実施例10と同様に行った。評価結果を表1に示す。
(実施例13)
 製造例1で得られたポリイソシアネートP-1:1000質量部に、製造例9で得られた2-ヒドロキシエタンスルホン酸トリブチルアミン塩:85.5質量部を添加し、窒素下、100℃で6時間攪拌して反応を行った。反応終了後、ポリイソシアネート組成物を得た。その後の測定は実施例10と同様に行った。評価結果を表2に示す。
(実施例14)
 製造例1で得られたポリイソシアネートP-1:1000質量部に、製造例10で得られた2-ヒドロキシエタンスルホン酸N,N-ジメチルシクロヘキシルアミン塩:7.0質量部と、エチレンオキサイド繰返単位の平均数:9.0のポリエチレングリコールモノメチルエーテル(日本乳化剤株式会社製、商品名「MPG-130」)を20.0質量部とを添加し、窒素下、100℃で4時間攪拌して反応を行った。反応終了後、ポリイソシアネート組成物を得た。その後の測定は実施例10と同様に行った。評価結果を表2に示す。
(実施例15)
 製造例1で得られたポリイソシアネートP-1を、製造例2で得られたポリイソシアネートP-2に変えた以外は実施例4と同様に行い、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。評価結果を表2に示す。
(実施例16)
 製造例1で得られたポリイソシアネートP-1を、製造例3で得られたポリイソシアネートP-3に変えた以外は実施例4と同様に行い、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。評価結果を表2に示す。
(実施例17)
 製造例1で得られたポリイソシアネートP-1を、製造例4で得られたポリイソシアネートP-4に変えた以外は実施例4と同様に行い、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。評価結果を表2に示す。
(実施例18)
 製造例1で得られたポリイソシアネートP-1を、製造例5で得られたポリイソシアネートP-5に変えた以外は実施例4と同様に行い、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。評価結果を表2に示す。
(実施例19)
 製造例1で得られたポリイソシアネートP-1を、製造例6で得られたポリイソシアネートP-6に変えた以外は実施例4と同様に行い、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。評価結果を表2に示す。
(比較例1)
 製造例1で得られたポリイソシアネートP-1を、比較製造例1で得られたポリイソシアネートC-1に変えた以外は実施例4と同様に行い、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。評価結果を表2に示す。
(比較例2)
 製造例1で得られたポリイソシアネートP-1を、比較製造例2で得られたポリイソシアネートC-2に変えた以外は実施例4と同様に行い、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。評価結果を表2に示す。
(比較例3)
 製造例1で得られたポリイソシアネートP-1を、比較製造例3で得られたポリイソシアネートC-3に変えた以外は実施例4と同様に行い、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。評価結果を表2に示す。
(比較例4)
 製造例1で得られたポリイソシアネートP-1を、比較製造例4で得られたポリイソシアネートC-4に変えた以外は実施例4と同様に行い、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。評価結果を表2に示す。
(比較例5)
 製造例1で得られたポリイソシアネートP-1を、比較製造例5で得られたポリイソシアネートC-5に変えた以外は実施例4と同様に行い、ポリイソシアネート組成物を得た。その後の測定は実施例1と同様に行った。評価結果を表2に示す。
 以下、表1及び表2において、「B/Aモル比率」は13C-NMRにおける積分値より算出した(ウレトジオン基吸収×1/2)/(イソシアヌレート基吸収×1/3)を示し、「C/Aモル比率」は13C-NMRにおける積分値より算出した(ウレトンイミノ基吸収)/(イソシアヌレート基吸収×1/3)を示し、「D/Aモル比率」は13C-NMRにおける積分値より算出した(イミノオキサジアジンジオン基吸収)/(イソシアヌレート基吸収×1/3)を示し、「E/Aモル比率」は13C-NMRにおける積分値より算出した(アロファネート基吸収)/(イソシアヌレート基吸収×1/3)を示した。
 実施例1~19、及び比較例1~5で得られたポリイソシアネート組成物は、以下のとおり評価した。評価結果を表1及び表2に示す。
(評価1)水分散性
(1)ポリイソシアネート組成物を、固形分換算で3gとなるように50mLをPETスクリュー瓶に採取し、脱イオン水27gを添加した。
(2)スパチュラで1分間撹拌し、目視で観察した。
 判定方法は以下の通りである。
 A:簡単に分散し、スパチュラにあまり残らない。
 B:増粘し、スパチュラに多く残る。
 C:ひどく増粘し、撹拌が困難。
(評価2)貯蔵後ジイソシアネートモノマー(DI)増加量
 ポリイソシアネート組成物を窒素雰囲気下、40℃で30日間貯蔵後、上記HDIモノマー質量濃度の測定条件のガスクロマトグラフ測定によりジイソシアネートモノマー濃度を測定した。
 以下の計算方法で、貯蔵によるジイソシアネートモノマーの増加量を求めた。
 増加量(%)=貯蔵後のジイソシアネートモノマー濃度-貯蔵前のジイソシアネートモノマー濃度
 判定方法は以下のとおりとした。
 A:0.20質量%以下
 C:0.20質量%超
(評価3)湿気安定性
 ポリイソシアネート組成物を50mLのガラス瓶に40g入れて、23℃/50%RHの雰囲気下で蓋を開けた状態で4時間開放した。その後窒素シールをせずに瓶の蓋を閉じ、24時間後にまた瓶の蓋を開け、4時間放置した。同様の作業を10サイクル繰り返した後に粘度を測定し、粘度の上昇度合いを以下のように求めて評価した。
 粘度の上昇度合い=10サイクル後の粘度÷初期粘度
 判定方法は以下のとおりとした。
 A:1.06以下
 B:1.07以上、1.10未満
 C:1.10以上
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
(製造例11(アクリル系ポリオール水分散体の製造))
 反応器として、撹拌機、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口のセパラブルフラスコを用いた。該反応器内を窒素雰囲気にし、エチレングリコールモノブチルエーテル300質量部を仕込み、攪拌下、反応器内温度を80℃に保持した。該反応器に、モノマーとしてメタクリル酸メチル146.3質量部、スチレン105質量部、アクリル酸-n-ブチル257.6質量部、メタクリル酸14質量部、メタクリル酸-2-ヒドロキシエチル177.1質量部、重合開始剤として2,2’-アゾビスイソブチロニトリル0.7質量部、及び連鎖移動剤としてn-ドデシルメルカプタン0.3質量部を均一に混合した混合物を4.5時間かけて一定速度で連続的に加えた。その後、反応器内温度を80℃のまま2時間保持した。その後、反応器内の混合物を冷却し、アンモニア25質量%水溶液を11.6質量部加えて15分間撹拌した。さらに、反応器内の混合物を、攪拌下、イオン交換水を1300質量部加えて水分散体を得た。得られた水分散体を、ロータリーエバポレーターを用いて固形分が約45質量%になるまで濃縮した。その後、得られた濃縮物を、アンモニア25質量%水溶液でpH8.0に調整し、アクリル系ポリオールの水分散体を得た。得られたアクリル系ポリオールの水分散体は、水分散体中の粒子の平均粒子径が90nmであり、ポリオール樹脂分のヒドロキシル基濃度が仕込み原材料からの計算値で3.3質量%であり、ポリオール樹脂分の数平均分子量が9600であった。
(実施例20~38、比較例6~10)
 実施例1~19、及び比較例1~5で得られたポリイソシアネート組成物を用いて、下記のようにコーティング組成物を作製した。
[コーティング組成物の作製]
 製造例11で作製したポリオール水分散体40g容器に計り取り、レベリング剤Byk348を15部と、TegoWet270を19部と、エチレングリコールモノブチルエーテルアセテート266部を予め混合しておいたものを3.0g加え、さらに分散剤Disperbyk192を37.5部とプロピレングリコール-n-プロピルエーテル62.5部を予め混合しておいたものを3.2g加え、ディスパー羽を使用し、600rpmで3分間撹拌した。これに、ポリイソシアネート組成物中のイソシアネート基とポリオール水分散体中のヒドロキシル基とのモル比が、NCO/OH=1.25になるように、ポリイソシアネート組成物を加えて混合物を得た。更に上記混合物に、コーティング組成物の固形分が44質量%となるように脱イオン水を加え、ディスパー羽を使用し、600rpmで10分間撹拌し、コーティング組成物を作製した。作製したコーティング組成物を用いて、以下の塗膜評価を行った。評価結果を表3及び表4に示す。
(評価4)塗膜の外観
 上記のコーティング組成物を用いて、ガラス板上に、厚さ40μmの塗膜を塗装し、60℃で30分間焼成した。得られた塗膜をBYK Garder社製、商品名「haze-gloss version3.40」を用いて、屈折率が1.567の黒色ガラス標準板での測定結果を100グロスユニットとして、20°の光沢値を測定した。なお、塗装に用いたガラス板単体の20°の光沢値は174であった。判定方法は以下のとおりとした。
 AA:160以上
 A:150以上160未満
 B:100以上150未満
 C:100未満
(評価5)塗膜の硬度
 上記のコーティング組成物を用いて、ガラス板上に、厚さ40μmの塗膜を塗装し、60℃で30分間焼成した。23℃/50%RHの雰囲気下で冷却し、翌日、得られた塗膜をケーニッヒ硬度計(BYK Garder社製、商品名「Pendulum hardness tester」)を用いて測定した。判定方法は以下のとおりとした。
 AA:50以上
 A:40以上50未満
 B:30以上40未満
 C:30未満
(評価6)塗膜の表面乾燥性
 上記のコーティング組成物を用いて、ガラス板上に、厚さ40μmの塗膜を塗装し、23℃/50%RHの雰囲気下で乾燥し、4時間後、得られた塗膜上に直径2.5cm、高さ2.0cmの円柱型のコットンを置き、その上に100gの分銅を60秒間置いた。その後、分銅とコットンを取り除き、塗膜上に残ったコットン跡を観察した。判定方法は以下のとおりとした。
 AA:コットン跡なし
 A:コットン跡わずかにあり
 B:コットン跡ややあり
 C:コットン跡多くあり
(評価7)塗膜の耐溶剤性
 上記のコーティング組成物を用いて、ガラス板上に、厚さ40μmの塗膜を塗装し、60℃で30分間焼成した後、23℃/50%RHの雰囲気下で冷却し、翌日、得られた塗膜上にキシレンを1g含ませた直径10mmのコットンボールを5分間置き、表面に残ったキシレンを除いた後の塗膜の様子を観察した。判定方法は以下のとおりとした。
 AA:透明、凹みなし
 A:わずかに白濁、又はわずかに凹みあり
 B:やや白濁、又はやや凹みあり
 C:白濁、又は凹みあり
(評価8)塗膜の耐水性
 上記のコーティング組成物を用いて、アロジン処理されたアルミ板上に、厚さ40μmの塗膜を塗装し、60℃で30分間焼成した後、23℃/50%RHの雰囲気下で冷却し、翌日、得られた塗膜上に直径30mmのシリコン製Oリングを載せ、その中に水を0.5g注ぎ入れた。23℃で24時間置き、表面に残った水を除いた後の塗膜の様子を観察した。判定方法は以下のとおりとした。
 AA:透明、ブリスターなし
 A:わずかに白濁、又はわずかにブリスターあり
 B:やや白濁、又はややブリスターあり
 C:白濁、又はブリスターあり
(評価9)塗膜の密着性
 上記のコーティング組成物を用いて、ポリカーボネート板(タキロン株式会社製、PC-1600)上に、厚さ40μmの塗膜を塗装し、60℃で30分間焼成した後、23℃/50%RHの雰囲気下で冷却した。翌日、得られた塗膜において、JIS K5600-5-6に準じて密着性試験を行い、剥離したマスの数で評価した。
判定方法は以下のとおりとした。
 AA:0マス以上10マス未満
 A:10マス以上20マス未満 
 B:20マス以上50マス未満
 C:50マス以上
(評価10)塗膜の耐水密着性
 上記のコーティング組成物を用いて、ポリカーボネート板(タキロン株式会社製、PC-1600)上に、厚さ40μmの塗膜を塗装し、60℃で30分間焼成した後、23℃/50%RHの雰囲気下で冷却した。翌日、得られた塗膜上に直径30mmのシリコン製Oリングを載せ、その中に水を0.5g注ぎ入れた。23℃で24時間置き、表面に残った水を除き、その部分において、JIS K5600-5-6に準じて密着性試験を行い、剥離したマスの数で評価した。
判定方法は以下のとおりとした。
 AA:0マス以上10マス未満
 A:10マス以上20マス未満 
 B:20マス以上50マス未満
 C:50マス以上
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 本出願は、2016年3月9日に日本国特許庁へ出願された日本特許出願(特願2016-045987号)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (11)

  1.  脂肪族ジイソシアネート単位を有するポリイソシアネートを含む原料ポリイソシアネート組成物と、親水性化合物と、の反応により得られるポリイソシアネート組成物であって、
     イソシアヌレート基、ウレトジオン基、ウレトンイミノ基、及びイミノオキサジアジンジオン基を含み、
     前記イソシアヌレート基に対する前記ウレトンイミノ基のモル比率が、0.0010以上0.0050以下であり、かつ、前記イソシアヌレート基に対する前記イミノオキサジアジンジオン基のモル比率が、0.00050以上0.30以下である、ポリイソシアネート組成物。
  2.  前記親水性化合物は、アニオン性化合物、カチオン性化合物、及びノニオン性化合物からなる群より選ばれる1種又は2種以上である、請求項1に記載のポリイソシアネート組成物。
  3.  前記親水性化合物は、前記アニオン性化合物を含み、
     前記アニオン性化合物は、カルボン酸基を含有する化合物、リン酸基を含有する化合物、及びスルホン酸基を含有する化合物からなる群より選ばれる1種又は2種以上である、請求項2に記載のポリイソシアネート組成物。
  4.  前記アニオン性化合物は、前記スルホン酸基を含有する化合物を含み、
     前記スルホン酸基を含有する化合物は、水酸基を含有するスルホン酸、及びアミノ基を含有するスルホン酸からなる群より選ばれる1種又は2種以上である、請求項3に記載のポリイソシアネート組成物。
  5.  前記親水性化合物は、前記ノニオン性化合物を含み、
     前記ノニオン性化合物は、下記一般式(1)で表される構造を有するポリアルキレングリコールアルキルエーテルである、請求項2に記載のポリイソシアネート組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、炭素原子数1~4のアルキレン基を示し、Rは、炭素数1~4のアルキル基を示し、nの平均数は、5.0以上20以下である。)
  6.  一般式(1)中、Rは、炭素原子数2のアルキレン基を示し、Rは、炭素数1のアルキル基を示す、請求項5に記載のポリイソシアネート組成物。
  7.  前記ポリイソシアネート組成物は、該ポリイソシアネート組成物の総量に対して、前記ポリアルキレングリコールアルキルエーテルに由来する部分を、2.0質量%以上30質量%以下含む、請求項5又は6に記載のポリイソシアネート組成物。
  8.  前記脂肪族ジイソシアネート単位は、1,6-ジイソシアナトヘキサン単位を含む、請求項1~7のいずれか一項に記載のポリイソシアネート組成物。
  9.  請求項1~8のいずれか一項に記載のポリイソシアネート組成物を含む、コーティング組成物。
  10.  請求項9に記載のコーティング組成物と、水と、を含む、水系コーティング組成物。
  11.  基材と、該基材にコーティングされた請求項9に記載のコーティング組成物又は請求項10に記載の水系コーティング組成物と、を有する、コーティング基材。
PCT/JP2017/009184 2016-03-09 2017-03-08 ポリイソシアネート組成物、コーティング組成物、水系コーティング組成物、及びコーティング基材 WO2017154963A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17763303.9A EP3428207B1 (en) 2016-03-09 2017-03-08 Polyisocyanate composition, coating composition, aqueous coating composition, and coated substrate
JP2018504548A JP6568996B2 (ja) 2016-03-09 2017-03-08 ポリイソシアネート組成物、コーティング組成物、水系コーティング組成物、及びコーティング基材
CN201780013297.7A CN108699204B (zh) 2016-03-09 2017-03-08 多异氰酸酯组合物、涂覆组合物、水系涂覆组合物和涂覆基材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016045987 2016-03-09
JP2016-045987 2016-03-09

Publications (1)

Publication Number Publication Date
WO2017154963A1 true WO2017154963A1 (ja) 2017-09-14

Family

ID=59790579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009184 WO2017154963A1 (ja) 2016-03-09 2017-03-08 ポリイソシアネート組成物、コーティング組成物、水系コーティング組成物、及びコーティング基材

Country Status (4)

Country Link
EP (1) EP3428207B1 (ja)
JP (1) JP6568996B2 (ja)
CN (1) CN108699204B (ja)
WO (1) WO2017154963A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078241A1 (ja) * 2017-10-20 2019-04-25 旭化成株式会社 ポリイソシアネート組成物、塗料組成物及び塗膜
WO2019188781A1 (ja) * 2018-03-28 2019-10-03 旭化成株式会社 ポリイソシアネート組成物、コーティング組成物及びコーティング基材
JP2019172986A (ja) * 2018-03-28 2019-10-10 旭化成株式会社 ポリイソシアネート組成物、コーティング組成物及びコーティング基材
JP2019218521A (ja) * 2018-06-22 2019-12-26 三井化学株式会社 水分散型ポリイソシアネート
JP2020059763A (ja) * 2018-10-04 2020-04-16 旭化成株式会社 ポリイソシアネート組成物、塗料組成物及び塗膜
WO2020109189A1 (en) * 2018-11-30 2020-06-04 Covestro Deutschland Ag Modified polyisocyanate
JP2020122105A (ja) * 2019-01-31 2020-08-13 旭化成株式会社 ポリイソシアネート組成物、コーティング組成物及びコーティング基材
JP2020128503A (ja) * 2019-02-08 2020-08-27 旭化成株式会社 水系2成分型硬化樹脂組成物及び物品のコーティング方法
CN111868131A (zh) * 2018-03-23 2020-10-30 科思创德国股份有限公司 包含亲水基团的含脲二酮的聚氨酯分散体
CN112041369A (zh) * 2018-04-25 2020-12-04 科思创知识产权两合公司 离子亲水化多异氰酸酯、水含量
EP3560975B1 (de) 2018-04-25 2021-04-07 Covestro Intellectual Property GmbH & Co. KG Ionisch hydrophilierte polyisocyanate und antioxidantien
EP3560976B1 (de) 2018-04-25 2021-05-26 Covestro Intellectual Property GmbH & Co. KG Ionisch hydrophilierte polyisocyanate und radikalfänger und/oder peroxidzersetzer
JP2022509628A (ja) * 2018-11-30 2022-01-21 コベストロ・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・アンド・コー・カーゲー 変性ポリイソシアネート

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109749036B (zh) * 2018-12-25 2021-06-29 万华化学集团股份有限公司 亚胺型季铵盐催化剂及其制备方法和由该催化剂制备的低粘度多异氰酸酯组合物
EP3712188B1 (en) * 2019-03-11 2022-05-11 Asahi Kasei Kabushiki Kaisha Polyisocyanate composition, blocked polyisocyanate composition, coating material composition, and coating film
TW202206519A (zh) * 2019-06-27 2022-02-16 日商旭化成股份有限公司 聚異氰酸酯組合物、薄膜形成用組合物、薄膜、薄膜積層體、接著性樹脂組合物及接著性樹脂硬化物、塗料用組合物及塗料硬化物
BR112021026894A2 (pt) * 2019-07-15 2022-02-15 Chemetall Gmbh Polímero de poliuretano, composição aquosa, composição para pré-tratamento de metal, uso de uma composição para pré-tratamento de metal , método para pré-tratamento de um substrato de metal, e, substrato de metal revestido
JP7498621B2 (ja) * 2019-09-17 2024-06-12 旭化成株式会社 ポリイソシアネート組成物、コーティング組成物及びコーティング基材
CN111393613B (zh) * 2020-04-29 2022-09-02 广东巴德富新材料有限公司 一种易分散自消光水性聚氨酯固化剂及制备方法
CN111793182B (zh) * 2020-07-15 2022-04-22 万华化学集团股份有限公司 一种多异氰酸酯组合物
EP4001332A1 (en) * 2020-11-18 2022-05-25 Covestro Deutschland AG A modified polyisocyanate
WO2022069561A1 (en) * 2020-09-30 2022-04-07 Covestro Deutschland Ag A modified polyisocyanate
EP4015546A1 (de) 2020-12-15 2022-06-22 Covestro Deutschland AG Nichtionisch hydrophilierte polyisocyanate mit sehr niedrigem monomergehalt
EP4015552A1 (en) * 2020-12-18 2022-06-22 Asahi Kasei Kabushiki Kaisha Polyisocyanate composition, water-based coating composition and coated substrate
CN113698572B (zh) * 2021-09-15 2023-12-19 万华化学(宁波)有限公司 一种多异氰酸酯组合物和制备方法及应用
EP4279519A1 (en) * 2022-05-19 2023-11-22 Covestro Deutschland AG A two-component coating composition
WO2023187113A1 (en) * 2022-04-01 2023-10-05 Covestro Deutschland Ag A two-component coating composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268212A (ja) * 1996-03-26 1997-10-14 Bayer Ag イミノオキサジアジンジオン基を含むイソシアネート三量体、その製造及び使用
JP2014231599A (ja) * 2013-04-30 2014-12-11 旭化成ケミカルズ株式会社 ポリイソシアネート組成物及びそれを用いた塗料組成物
JP2015028163A (ja) * 2013-06-28 2015-02-12 旭化成ケミカルズ株式会社 ポリイソシアネート組成物
JP2015127368A (ja) * 2013-12-27 2015-07-09 旭化成ケミカルズ株式会社 ポリイソシアネート組成物、コーティング組成物、及び硬化物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4974342B2 (ja) * 2006-06-13 2012-07-11 旭化成ケミカルズ株式会社 水性ポリイソシアネート組成物及びそれを含む水性塗料組成物
EP2100885A1 (de) * 2008-03-14 2009-09-16 Bayer MaterialScience AG Herstellung von Polyisocyanaten vom Trimertyp
DE102009027395A1 (de) * 2009-07-01 2011-01-05 Evonik Degussa Gmbh Reaktive Derivate auf Basis Dianhydrohexitol basierender Isocyanate
JP6165419B2 (ja) * 2012-05-29 2017-07-19 旭化成株式会社 水系2成分型コーティング組成物、インキ組成物、及び接着剤組成物、並びにその使用方法
JP2014214301A (ja) * 2013-04-30 2014-11-17 旭化成ケミカルズ株式会社 ポリイソシアネート組成物
CN104130686B (zh) * 2013-04-30 2017-09-19 旭化成株式会社 多异氰酸酯组合物及涂料组合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268212A (ja) * 1996-03-26 1997-10-14 Bayer Ag イミノオキサジアジンジオン基を含むイソシアネート三量体、その製造及び使用
JP2014231599A (ja) * 2013-04-30 2014-12-11 旭化成ケミカルズ株式会社 ポリイソシアネート組成物及びそれを用いた塗料組成物
JP2015028163A (ja) * 2013-06-28 2015-02-12 旭化成ケミカルズ株式会社 ポリイソシアネート組成物
JP2015127368A (ja) * 2013-12-27 2015-07-09 旭化成ケミカルズ株式会社 ポリイソシアネート組成物、コーティング組成物、及び硬化物

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7030833B2 (ja) 2017-10-20 2022-03-07 旭化成株式会社 ポリイソシアネート組成物、塗料組成物及び塗膜
CN111201257A (zh) * 2017-10-20 2020-05-26 旭化成株式会社 多异氰酸酯组合物、涂料组合物及涂膜
WO2019078241A1 (ja) * 2017-10-20 2019-04-25 旭化成株式会社 ポリイソシアネート組成物、塗料組成物及び塗膜
JPWO2019078241A1 (ja) * 2017-10-20 2020-04-09 旭化成株式会社 ポリイソシアネート組成物、塗料組成物及び塗膜
CN111868131A (zh) * 2018-03-23 2020-10-30 科思创德国股份有限公司 包含亲水基团的含脲二酮的聚氨酯分散体
CN111741991B (zh) * 2018-03-28 2022-07-01 旭化成株式会社 多异氰酸酯组合物、涂覆组合物和涂覆基材
JPWO2019188781A1 (ja) * 2018-03-28 2020-12-03 旭化成株式会社 ポリイソシアネート組成物、コーティング組成物及びコーティング基材
JP7377613B2 (ja) 2018-03-28 2023-11-10 旭化成株式会社 ポリイソシアネート組成物、コーティング組成物及びコーティング基材
WO2019188781A1 (ja) * 2018-03-28 2019-10-03 旭化成株式会社 ポリイソシアネート組成物、コーティング組成物及びコーティング基材
JP6999027B2 (ja) 2018-03-28 2022-01-18 旭化成株式会社 ポリイソシアネート組成物、コーティング組成物及びコーティング基材
CN111741991A (zh) * 2018-03-28 2020-10-02 旭化成株式会社 多异氰酸酯组合物、涂覆组合物和涂覆基材
JP2019172986A (ja) * 2018-03-28 2019-10-10 旭化成株式会社 ポリイソシアネート組成物、コーティング組成物及びコーティング基材
CN112041369A (zh) * 2018-04-25 2020-12-04 科思创知识产权两合公司 离子亲水化多异氰酸酯、水含量
EP3560975B1 (de) 2018-04-25 2021-04-07 Covestro Intellectual Property GmbH & Co. KG Ionisch hydrophilierte polyisocyanate und antioxidantien
EP3560976B1 (de) 2018-04-25 2021-05-26 Covestro Intellectual Property GmbH & Co. KG Ionisch hydrophilierte polyisocyanate und radikalfänger und/oder peroxidzersetzer
JP2019218521A (ja) * 2018-06-22 2019-12-26 三井化学株式会社 水分散型ポリイソシアネート
JP7219022B2 (ja) 2018-06-22 2023-02-07 三井化学株式会社 水分散型ポリイソシアネート
JP2020059763A (ja) * 2018-10-04 2020-04-16 旭化成株式会社 ポリイソシアネート組成物、塗料組成物及び塗膜
JP7206089B2 (ja) 2018-10-04 2023-01-17 旭化成株式会社 ポリイソシアネート組成物、塗料組成物及び塗膜
JP2022509628A (ja) * 2018-11-30 2022-01-21 コベストロ・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・アンド・コー・カーゲー 変性ポリイソシアネート
US11407852B2 (en) 2018-11-30 2022-08-09 Covestro Intellectual Property Gmbh & Co. Kg Modified polyisocyanate
WO2020109189A1 (en) * 2018-11-30 2020-06-04 Covestro Deutschland Ag Modified polyisocyanate
JP2020122105A (ja) * 2019-01-31 2020-08-13 旭化成株式会社 ポリイソシアネート組成物、コーティング組成物及びコーティング基材
JP7249793B2 (ja) 2019-01-31 2023-03-31 旭化成株式会社 ポリイソシアネート組成物、コーティング組成物及びコーティング基材
JP2020128503A (ja) * 2019-02-08 2020-08-27 旭化成株式会社 水系2成分型硬化樹脂組成物及び物品のコーティング方法

Also Published As

Publication number Publication date
JP6568996B2 (ja) 2019-08-28
CN108699204A (zh) 2018-10-23
EP3428207A4 (en) 2019-03-06
EP3428207A1 (en) 2019-01-16
CN108699204B (zh) 2020-10-16
JPWO2017154963A1 (ja) 2018-12-13
EP3428207B1 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
JP6568996B2 (ja) ポリイソシアネート組成物、コーティング組成物、水系コーティング組成物、及びコーティング基材
EP3527596B1 (en) Polyisocyanate composition
JP6626985B2 (ja) イソシアネート組成物、イソシアネート組成物の水分散体、およびその製造方法、塗料組成物、並びに塗膜
JP6419197B2 (ja) ポリイソシアネート組成物、塗料組成物、塗膜及びその製造方法、並びに湿気安定化方法
JP6360377B2 (ja) ポリイソシアネート組成物
JP7030833B2 (ja) ポリイソシアネート組成物、塗料組成物及び塗膜
JP6294136B2 (ja) ポリイソシアネート組成物
JP6600508B2 (ja) ポリイソシアネート組成物、コーティング組成物、水系コーティング組成物、及びコーティング基材
JP6393122B2 (ja) ポリイソシアネート組成物、塗料組成物及び塗膜
JP2014231599A (ja) ポリイソシアネート組成物及びそれを用いた塗料組成物
JP6538363B2 (ja) 硬化剤組成物、コーティング組成物、水系コーティング組成物、及びコーティング基材
CN112708106B (zh) 多异氰酸酯组合物、涂覆组合物和涂覆基材
JP2022151826A (ja) ポリイソシアネート組成物、コーティング組成物及びコーティング基材
WO2019188781A1 (ja) ポリイソシアネート組成物、コーティング組成物及びコーティング基材
JP2019119847A (ja) ポリイソシアネート組成物、水系コーティング組成物及びコーティング基材
JP6411552B2 (ja) ポリイソシアネート組成物及びその製造方法、コーティング組成物、水系コーティング組成物、並びにコーティング基材
JP2022172210A (ja) ポリイソシアネート組成物、コーティング組成物及びコーティング基材
JP7377706B2 (ja) ポリイソシアネート組成物、コーティング組成物及びコーティング基材
JP2023084122A (ja) ポリイソシアネート組成物、コーティング組成物及びコーティング基材
JP2023083901A (ja) ポリイソシアネート組成物、コーティング組成物及びコーティング基材
JP2021070820A (ja) ポリイソシアネート組成物、コーティング組成物及びコーティング基材
JP2023183352A (ja) ポリイソシアネート組成物、水系コーティング組成物、コーティング基材及びポリイソシアネート組成物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504548

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017763303

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763303

Country of ref document: EP

Effective date: 20181009

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763303

Country of ref document: EP

Kind code of ref document: A1