WO2017154102A1 - 熱硬化性樹脂硬化物の分解生成物の回収方法及び再生材料の製造方法 - Google Patents

熱硬化性樹脂硬化物の分解生成物の回収方法及び再生材料の製造方法 Download PDF

Info

Publication number
WO2017154102A1
WO2017154102A1 PCT/JP2016/057159 JP2016057159W WO2017154102A1 WO 2017154102 A1 WO2017154102 A1 WO 2017154102A1 JP 2016057159 W JP2016057159 W JP 2016057159W WO 2017154102 A1 WO2017154102 A1 WO 2017154102A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
decomposition product
product
recovering
resin cured
Prior art date
Application number
PCT/JP2016/057159
Other languages
English (en)
French (fr)
Inventor
加奈子 石原
小林 和仁
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to US15/743,585 priority Critical patent/US10968329B2/en
Priority to PCT/JP2016/057159 priority patent/WO2017154102A1/ja
Priority to CN201680083210.9A priority patent/CN108779284A/zh
Priority to JP2017536371A priority patent/JP6693522B2/ja
Publication of WO2017154102A1 publication Critical patent/WO2017154102A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/30Polymeric waste or recycled polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present disclosure relates to a method for recovering a decomposition product of a cured thermosetting resin and a method for manufacturing a recycled material.
  • Fiber Reinforced Plastics using fiber such as glass fiber as a reinforcing material is a lightweight, high-strength, high-elasticity material, and is widely used for components such as small ships, automobiles, and railway vehicles. ing. Carbon fiber reinforced plastics (Carbon Fiber Reinforced Plastics; CFRP) using carbon fiber as a reinforcing material have been developed for the purpose of further weight reduction, higher strength, and higher elasticity. Used for parts.
  • CFRP is produced, for example, by impregnating a carbon fiber base material with a thermosetting resin composition and heating to obtain a prepreg, and then firing the prepreg while pressing it in an autoclave.
  • thermosetting resin cured product In order to collect carbon fibers from CFRP or prepreg, it is necessary to remove the thermosetting resin cured product.
  • a treatment method for removing the thermosetting resin cured product 1) a method of thermally decomposing the thermosetting resin cured product by burning at a high temperature of about 500 ° C. to 700 ° C. Methods for decomposing (depolymerizing) and dissolving curable resin cured products are known.
  • the treatment method 2) has been attracting attention because it has advantages such as the ability to recover not only carbon fibers but also decomposition products of thermosetting resin cured products.
  • a cured epoxy resin is decomposed and dissolved using a treatment liquid containing a catalyst such as tripotassium phosphate, trisodium phosphate, potassium hydroxide and an organic solvent.
  • a catalyst such as tripotassium phosphate, trisodium phosphate, potassium hydroxide and an organic solvent.
  • a method for recovering the decomposition products is disclosed.
  • Japanese Patent Application Laid-Open No. 2005-255899 discloses decomposition and dissolution of an acid anhydride-cured epoxy resin using a treatment liquid containing an alkali metal phosphate and benzyl alcohol as a catalyst from which moisture has been removed.
  • a method for recovering the product is disclosed.
  • the recovered decomposition product contains alkali metal derived from the catalyst. It is desirable to remove the metal.
  • the present inventors have confirmed that even when water is added to the treatment liquid in which the decomposition product of the thermosetting resin cured product is dissolved, an intermediate layer is formed in addition to the aqueous layer and the organic layer. As a result, it was found that the recovery rate of the decomposition products was lowered.
  • the present disclosure relates to a method for recovering a decomposition product of a thermosetting resin cured product capable of efficiently recovering a decomposition product with a reduced amount of alkali metal, and regenerating the decomposition product with a reduced amount of alkali metal. It is an object to provide a method for producing a recycled material that can be efficiently produced as a material.
  • thermosetting resin cured product is brought into contact with a treatment liquid containing an alkali metal compound and an alcohol solvent, and the thermosetting resin cured product is decomposed and dissolved; Mixing the treatment solution in which the decomposition product of the thermosetting resin cured product is dissolved with an acidic aqueous solution, and separating the aqueous layer and the organic layer containing the decomposition product; Recovering the organic layer, and a method for recovering a decomposition product of the cured thermosetting resin.
  • thermosetting resin cured product includes an epoxy resin cured product.
  • the alkali metal compound is an alkali metal hydroxide, borohydride, amide compound, fluoride, chloride, bromide, iodide, borate, phosphate, carbonate, sulfate, nitrate,
  • ⁇ 4> The method for recovering a decomposition product of a cured thermosetting resin according to any one of ⁇ 1> to ⁇ 3>, wherein the alcohol solvent includes a solvent having a boiling point of 150 ° C. or higher at atmospheric pressure.
  • the processing object further includes an inorganic material, Any one of ⁇ 1> to ⁇ 4>, further comprising a step of removing the inorganic material from the treatment liquid in which the decomposition product is dissolved before mixing the treatment liquid in which the decomposition product is dissolved and the acidic aqueous solution.
  • thermosetting resin cured product according to ⁇ 5>, wherein the inorganic material includes carbon fibers.
  • thermosetting resin cured product is brought into contact with a treatment liquid containing an alkali metal compound and an alcohol solvent, and the thermosetting resin cured product is decomposed and dissolved; Mixing the treatment solution in which the decomposition product of the thermosetting resin cured product is dissolved with an acidic aqueous solution, and separating the aqueous layer and the organic layer containing the decomposition product; Recovering the organic layer and obtaining the decomposition product as a recycled material.
  • a method for recovering a decomposition product of a thermosetting resin cured product capable of efficiently recovering a decomposition product with a reduced amount of alkali metal, and a decomposition product with a reduced amount of alkali metal It is possible to provide a method for producing a recycled material that can be efficiently produced as a recycled material.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content of each component means the total content of the plurality of types of substances when there are a plurality of types of substances corresponding to the respective components, unless otherwise specified.
  • the recovery method of the decomposition product of the thermosetting resin cured product of the present embodiment refers to treating the processing object including the thermosetting resin cured product with an alkali metal.
  • a step of contacting a treatment liquid containing a compound and an alcohol solvent to decompose and dissolve the thermosetting resin cured product, and a decomposition product of the thermosetting resin cured product (hereinafter also simply referred to as “decomposition product”).
  • dissolved are mixed, It has the process of isolate
  • the collection method of this embodiment may further include other steps as necessary.
  • the amount of alkali metal is reduced by mixing the treatment solution in which the decomposition product is dissolved and the acidic aqueous solution, and separating the mixture into an aqueous layer and an organic layer containing the decomposition product.
  • the decomposed product can be efficiently recovered. The reason for this is not always clear, but the present inventors speculate as follows.
  • the alkali metal compound contained in the treatment liquid contains the alkali metal M
  • the decomposition product is considered to be dissolved in the treatment liquid, for example, in the state of the following formula: R—O ⁇ M + .
  • the decomposition product becomes R—OH and stays in the organic layer, and M + moves to the aqueous layer, so that the alkali contained in the decomposition product It is inferred that the amount of metal is reduced.
  • the processing object in the collection method of the present embodiment includes a thermosetting resin cured product.
  • the cured thermosetting resin include cured products of thermosetting resins such as epoxy resins, unsaturated polyester resins, polyimide resins, polyamide resins, polyamideimide resins, phenol resins, and melamine resins.
  • the thermosetting resin cured product may contain 1 type independently, and may contain 2 or more types.
  • the thermosetting resin cured product preferably contains at least one selected from the group consisting of an epoxy resin cured product and an unsaturated polyester resin cured product from the viewpoint of decomposition efficiency by the treatment liquid described later, It is more preferable to include a product.
  • the object to be treated may contain a thermoplastic resin in addition to the cured thermosetting resin.
  • the thermoplastic resin include polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polystyrene resin, polyvinyl acetate resin, polyurethane resin, polycarbonate resin, polyacetal resin, polyethylene terephthalate resin, and the like.
  • the thermoplastic resin may contain 1 type independently, and may contain 2 or more types.
  • the object to be treated is obtained, for example, by heating a thermosetting resin composition containing a thermosetting resin and curing at least a part of the thermosetting resin.
  • the processing object may include an uncured thermosetting resin.
  • the processing object heats, for example, a thermosetting resin composition containing an epoxy resin, a curing agent, and, if necessary, a curing accelerator, and at least of the epoxy resin. It is obtained by curing a part.
  • Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A.
  • Novolac epoxy resin diglycidyl etherified product of biphenol, diglycidyl etherified product of naphthalene diol, diglycidyl etherified product of phenolic compound, diglycidyl etherified product of alcohol compound, alkyl substituted products thereof, halides thereof, hydrogens thereof An additive etc. are mentioned.
  • An epoxy resin may be used individually by 1 type, and may use 2 or more types together.
  • curing agent examples include acid anhydrides, amine compounds, phenol compounds, and isocyanate compounds.
  • curing agent may be used individually by 1 type, and may use 2 or more types together.
  • an acid anhydride is preferable as the curing agent. That is, it is preferable that a processing target object contains an acid anhydride cured epoxy resin.
  • the acid anhydride-cured epoxy resin has an ester bond in the molecule and can be more efficiently decomposed using a treatment liquid described later.
  • Acid anhydrides include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl nadic acid anhydride, succinic anhydride, Dodecyl succinic anhydride, chlorendic acid anhydride, itaconic acid anhydride, maleic acid anhydride, pyromellitic acid anhydride, trimellitic acid anhydride, benzophenone tetracarboxylic dianhydride, ethylene glycol bis trimellitate dianhydride Products, glycerol trislimitate trianhydride, polyadipic acid anhydride, polyazeline acid anhydride, polysebacic acid anhydride, and the like.
  • An acid anhydride may be used individually by 1 type, and may use 2 or more types together.
  • curing accelerator examples include imidazole compounds, tertiary amine compounds, quaternary ammonium salts, and organic phosphorus compounds.
  • a hardening accelerator may be used individually by 1 type, and may use 2 or more types together.
  • the treatment target further includes an inorganic material.
  • the inorganic material include carbon, glass, metal, and metal compound.
  • examples of the shape of the inorganic material include fibers, particles, and foils.
  • the fiber may be a non-woven fabric or a woven fabric, and in the case of a woven fabric, it may be a cloth material produced by weaving a fiber bundle, and UD (Uni -Direction) material.
  • the inorganic material may contain 1 type independently, and may contain 2 or more types.
  • the object to be treated preferably contains carbon fiber among inorganic materials.
  • the carbon fiber may be made from an acrylic resin as a raw material, or may be made from pitch as a raw material.
  • the object to be treated containing carbon fiber is obtained, for example, by impregnating a carbon fiber base material with a thermosetting resin composition and heating.
  • the object to be treated containing carbon fiber may be a B-stage prepreg in which a thermosetting resin is semi-cured, or a C-stage cured product (CFRP) in which a thermosetting resin is cured.
  • the size of the processing object is not particularly limited, and may be adjusted to a size that can be processed according to the scale of the processing apparatus. From the viewpoint of shortening the processing time, it is preferable that the processing object is small.
  • the object to be treated includes an inorganic material such as carbon fiber, it is preferable that the object to be treated is large from the viewpoint of recycling the recovered inorganic material.
  • the size of the object to be treated is adjusted to a range of 0.1 cm 3 to 1.5 m 3 .
  • recovered carbon fiber can be used for preparation of a nonwoven fabric, for example.
  • the treatment liquid used in the recovery method of this embodiment contains an alkali metal compound and an alcohol solvent.
  • the treatment liquid may further contain other components as necessary.
  • the alkali metal compound is not particularly limited as long as it has catalytic activity to decompose the cured thermosetting resin.
  • An alkali metal compound may be used individually by 1 type, and may use 2 or more types together.
  • Examples of the alkali metal include lithium, sodium, potassium, rubidium, cesium and the like.
  • alkali metal compounds include alkali metal hydroxides, borohydrides, amide compounds, fluorides, chlorides, bromides, iodides, borates, It is preferable to include at least one selected from the group consisting of phosphate, carbonate, sulfate, nitrate, organic acid salt, alcoholate, and phenolate. These alkali metal compounds may be in the form of hydrates.
  • the alkali metal compound may be an alkali metal hydroxide or phosphorus. It is preferable to include at least one selected from the group consisting of acid salts and organic acid salts. As phosphate, orthophosphate, metaphosphate, hypophosphate, phosphite, hypophosphite, pyrophosphate, trimetaphosphate, tetrametaphosphate, pyrophosphite, etc. Is mentioned.
  • the organic acid salt include formate, acetate, citrate, succinate, and oxalate.
  • the content of the alkali metal compound in the treatment liquid is preferably 0.01 mol or more as a total amount with respect to 1000 g of the alcohol solvent, and is 0.10 mol or more. More preferably, it is more preferably 0.30 mol or more.
  • the content of the alkali metal compound in the treatment liquid is 10.00 mol or less as a total amount with respect to 1000 g of the alcohol solvent from the viewpoint of enhancing the solubility of the decomposition product and facilitating preparation of the treatment liquid.
  • it is 5.00 mol or less, more preferably 3.00 mol or less, and particularly preferably 1.00 mol or less.
  • the alcohol solvent is not particularly limited, and is 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 3-pentanol, 2 -Methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-1-butanol, 3-methyl-2-butanol, 2,2-dimethyl-1-propanol, 1-hexanol, 2-hexanol, 3 -Hexanol, 2-methyl-1-pentanol, 4-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol, 2-heptanol, 3-heptanol, 2-ethylhexanol, dodecanol, cyclohexanol 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclo Xanol, 4-methylcyclohexanol
  • the alcohol solvent is a solvent having a boiling point of 150 ° C. or higher at atmospheric pressure (hereinafter also referred to as “high boiling solvent”). It is preferable to include.
  • the content of the high boiling point solvent is preferably 50% by volume or more, more preferably 70% by volume or more, still more preferably 90% by volume or more, and 100% by volume with respect to the total amount of the alcohol solvent. % Is particularly preferred.
  • the treatment liquid may further contain other components as necessary.
  • other components include surfactants.
  • the acidic aqueous solution used in the recovery method of this embodiment contains an acidic substance.
  • An acidic substance may be used individually by 1 type, and may use 2 or more types together.
  • the acidic aqueous solution may further contain other components as necessary.
  • the acidic substance a substance having an oxidizing action is preferable from the viewpoint of further reducing the amount of alkali metal contained in the decomposition product.
  • acidic substances include inorganic acids such as hydrochloric acid and phosphoric acid, and acidic salts thereof, sulfonic acids, carboxylic acids, vinyl carboxylic acids, organic acids such as nucleic acids and acidic salts thereof, iron-based flocculants such as ferric chloride, Examples thereof include aluminum flocculants such as aluminum sulfate.
  • the acidic substance may be any of a weak acid, a strong acid, and a super acid.
  • the acidic substance preferably contains at least one selected from the group consisting of phosphoric acid, an acidic salt of phosphoric acid, and a carboxylic acid.
  • phosphoric acid include orthophosphoric acid, metaphosphoric acid, hypophosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, trimetaphosphoric acid, tetrametaphosphoric acid, pyrophosphorous acid and the like.
  • acid salt of phosphoric acid include potassium dihydrogen phosphate and sodium dihydrogen phosphate.
  • the carboxylic acid include formic acid, acetic acid, citric acid, succinic acid, oxalic acid and the like.
  • the content of acidic substances in the acidic aqueous solution is not particularly limited.
  • the content of the acidic substance in the acidic aqueous solution is preferably adjusted as appropriate depending on the alkali metal concentration in the treatment liquid in which the decomposition product is dissolved, the mixing ratio of the treatment liquid in which the decomposition product is dissolved and the acidic aqueous solution, and the like. .
  • the pH of the acidic aqueous solution is not particularly limited.
  • the pH of the acidic aqueous solution at room temperature (25 ° C.) is, for example, preferably 0 to 7, and more preferably 1 to 6.
  • the recovery method of the present embodiment is a process (hereinafter, also referred to as “treatment process”) in which a treatment object including a thermosetting resin cured product is brought into contact with the treatment liquid described above to decompose and dissolve the thermosetting resin cured product. ) And the treatment solution in which the decomposition product of the thermosetting resin cured product is dissolved and the acidic aqueous solution described above are mixed, and separated into an aqueous layer and an organic layer containing the decomposition product (hereinafter referred to as “separation step”). And a step of recovering the organic layer (hereinafter also referred to as “recovery step”).
  • the treatment object including the cured thermosetting resin is brought into contact with the treatment liquid described above, and the cured thermosetting resin is decomposed and dissolved.
  • the method for decomposing and dissolving the thermosetting resin cured product using the treatment liquid is not particularly limited, and the treatment object may be immersed in the treatment liquid, or the treatment liquid may be sprayed on the treatment object by spraying or the like. Good. From the viewpoint of more efficiently decomposing and dissolving the thermosetting resin cured product, it is preferable to immerse the processing object in the processing liquid.
  • the thermosetting resin cured product is decomposed and dissolved by immersing the processing object in the processing liquid in the container and stirring the processing liquid as necessary.
  • the stirring method is not particularly limited, and examples thereof include a method using a stirring blade, a method of generating a jet, a method of shaking a container, a method of generating bubbles of an inert gas, and a method of applying ultrasonic waves.
  • the temperature of the treatment liquid is not particularly limited as long as it is a temperature below the boiling point of the alcohol solvent. From the viewpoint of more efficiently decomposing and dissolving the thermosetting resin cured product, the temperature of the treatment liquid is preferably 100 ° C. or higher, and more preferably 150 ° C. or higher. Moreover, it is preferable that the temperature of a process liquid is 300 degrees C or less from a viewpoint of suppressing the damage of the inorganic material in case a process target object contains an inorganic material.
  • the atmosphere when the thermosetting resin cured product is decomposed and dissolved using the treatment liquid is not particularly limited, and may be an air atmosphere or an inert gas atmosphere such as nitrogen gas or argon gas.
  • the treatment liquid in which the decomposition product is dissolved and the acidic aqueous solution described above are mixed and separated into an aqueous layer and an organic layer containing the decomposition product.
  • the mixing method and the method for separating the aqueous layer and the organic layer are not particularly limited, and examples thereof include a method in which a treatment liquid in which a decomposition product is dissolved and an acidic aqueous solution are mixed and stirred and then allowed to stand.
  • the mixing ratio of the treatment solution in which the decomposition product is dissolved and the acidic aqueous solution is not particularly limited. From the viewpoint of further reducing the amount of alkali metal contained in the decomposition product, the mixing ratio of the treatment solution in which the decomposition product is dissolved and the acidic aqueous solution (acid aqueous solution / treatment solution in which the decomposition product is dissolved) is on a mass basis. It is preferably 0.01 to 100, more preferably 0.25 to 50, and still more preferably 1 to 10.
  • the mixing ratio of the treatment liquid in which the decomposition product is dissolved and the acidic aqueous solution is such that the molar amount of the acidic substance to be mixed is dissolved in the decomposition product.
  • the amount of alkali metal in the treated liquid is preferably adjusted to be 0.1 to 10 times, more preferably 1 to 7 times.
  • the temperature of the mixed solution obtained by mixing the treatment solution in which the decomposition product is dissolved and the acidic aqueous solution is not particularly limited.
  • the organic layer containing the decomposition product is recovered.
  • the alcohol solvent may be removed by distillation or the like.
  • the recovered decomposition product can be recycled as a raw material for synthetic resin.
  • acidic aqueous solution may be mixed with the collect
  • the recovery method of the present embodiment removes the inorganic material from the processing solution in which the decomposition product is dissolved before mixing the processing solution in which the decomposition product is dissolved with the acidic aqueous solution. It is preferable to further include a step of removing (hereinafter also referred to as “removing step”).
  • the inorganic material can be removed from the treatment liquid by, for example, filtering the treatment liquid after decomposing and dissolving the thermosetting resin cured product.
  • the inorganic material recovered through the removal step can be used for recycling.
  • a method for producing a recycled material according to this embodiment is a treatment containing an alkali metal compound and an alcohol solvent.
  • the process of decomposing and dissolving the thermosetting resin cured product by bringing it into contact with the solution, the treatment solution in which the decomposition product of the thermosetting resin cured product is dissolved, and the acidic aqueous solution are mixed, and the aqueous layer and the decomposition product are mixed.
  • the manufacturing method of this embodiment may further have another process as needed.
  • the amount of alkali metal is reduced by mixing the treatment solution in which the decomposition product is dissolved and the acidic aqueous solution, and separating the mixture into an aqueous layer and an organic layer containing the decomposition product.
  • the decomposed product can be efficiently produced as a recycled material.
  • an acidic aqueous solution may be mixed with the recovered organic layer, and the separation step may be repeated a plurality of times. By repeating the separation step a plurality of times, a decomposition product in which the amount of alkali metal is further reduced can be obtained.
  • the use of the recycled material obtained by the manufacturing method of the present embodiment is not particularly limited. For example, it can be used for production of fuel and resin.
  • Example 1 [Preparation of specimen] A trading card (registered trademark) prepreg (manufactured by Toray Industries, Inc.) using Trading Card (registered trademark) T300 (manufactured by Toray Industries, Inc.) as a carbon fiber was cut into a size of 10 mm ⁇ 40 mm to obtain a test piece.
  • Trading Card registered trademark
  • T300 manufactured by Toray Industries, Inc.
  • An acidic aqueous solution was prepared by adding 11 g of potassium dihydrogen phosphate (KH 2 PO 4 ) to 50 g of distilled water and stirring to dissolve the potassium dihydrogen phosphate.
  • KH 2 PO 4 potassium dihydrogen phosphate
  • Example 5 Except that the ratio of the acidic aqueous solution used as the extract was changed as shown in Table 1, the presence or absence of the intermediate layer was determined in the same manner as in Example 1, and the reduction rate of potassium ions was calculated. The results are shown in Table 1.
  • Example 6 [Preparation of specimen] A trading card (registered trademark) prepreg (manufactured by Toray Industries, Inc.) using Trading Card (registered trademark) T300 (manufactured by Toray Industries, Inc.) as a carbon fiber was cut into a size of 10 mm ⁇ 40 mm to obtain a test piece.
  • Trading Card registered trademark
  • aqueous citric acid solution was prepared as the extract.
  • the molar concentration of citric acid in the extract was 7 times the molar concentration of potassium ions in the recovered treatment liquid.
  • 5 g of the collected treatment liquid was added to a test tube containing 5 g of the extract and stirred, the mixture was allowed to stand for 19 hours to separate into an aqueous layer and an organic layer.
  • Table 2 shows the presence or absence of the intermediate layer after standing.
  • a ruler was applied to the side surface of the test tube after standing, and when there was a layer having a width of 1 mm or more between the aqueous layer and the organic layer, it was determined that there was an intermediate layer.
  • Example 7 to 9 and Comparative Examples 6 to 8 Except for changing the type of the extract as shown in Table 2, the presence or absence of the intermediate layer was determined in the same manner as in Example 6 to calculate the potassium ion reduction rate. The results are shown in Table 2.
  • Comparative Example 6 extracted with distilled water, the decrease rate of potassium ions was 94.1%, and an intermediate layer was generated.
  • Comparative Examples 7 to 8 extracted with a basic aqueous solution, no intermediate layer was generated, but the decrease rate of potassium ions was lower than that of Comparative Example 6.
  • Examples 6 to 9 extracted with an acidic aqueous solution, the amount of potassium ions could be reduced as compared with Comparative Examples 6 to 8, and no intermediate layer was generated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

熱硬化性樹脂硬化物を含む処理対象物を、アルカリ金属化合物及びアルコール溶媒を含有する処理液に接触させ、前記熱硬化性樹脂硬化物を分解及び溶解する工程と、前記熱硬化性樹脂硬化物の分解生成物が溶解した処理液と酸性水溶液とを混合し、水層と、前記分解生成物を含む有機層とに分離させる工程と、前記有機層を回収する工程と、を有する熱硬化性樹脂硬化物の分解生成物の回収方法を提供する。

Description

熱硬化性樹脂硬化物の分解生成物の回収方法及び再生材料の製造方法
 本開示は、熱硬化性樹脂硬化物の分解生成物の回収方法及び再生材料の製造方法に関する。
 ガラス繊維等の繊維を強化材として用いた繊維強化プラスチック(Fiber Reinforced Plastics;FRP)は、軽量、高強度、かつ高弾性の材料であり、小型船舶、自動車、鉄道車両等の部材に幅広く使用されている。また、更なる軽量化、高強度化、及び高弾性化を目的として、炭素繊維を強化材として用いた炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics;CFRP)が開発されており、航空機、自動車等の部材に使用されている。
 CFRPは、例えば、炭素繊維基材に熱硬化性樹脂組成物を含浸させて加熱することによりプリプレグを得た後、プリプレグをオートクレーブ内で加圧しながら焼成することにより製造される。
 最終的な形状のCFRPを製造する過程では、プリプレグ及びCFRPの端材が大量に生じる。また、CFRPを用いた部材を廃棄する際にも、CFRPの廃材が大量に生じる。そこで、CFRP又はプリプレグから炭素繊維を回収し、リサイクルに供することが望まれている。
 CFRP又はプリプレグから炭素繊維を回収するには、熱硬化性樹脂硬化物を除去する必要がある。従来、熱硬化性樹脂硬化物を除去する処理方法としては、1)500℃~700℃程度の高温で燃焼して熱硬化性樹脂硬化物を熱分解する方法、2)処理液を用いて熱硬化性樹脂硬化物を分解(解重合)及び溶解する方法、等が知られている。特に、上記2)の処理方法は、炭素繊維のみならず、熱硬化性樹脂硬化物の分解生成物の回収も可能である等の利点があり、注目されている。
 例えば、特開2001-172426号公報には、リン酸三カリウム、リン酸三ナトリウム、水酸化カリウム等の触媒と有機溶媒とを含有する処理液を用いて、エポキシ樹脂硬化物を分解及び溶解し、分解生成物を回収する方法が開示されている。
 また、特開2005-255899号公報には、水分を除去した触媒としてのアルカリ金属リン酸塩とベンジルアルコールとを含有する処理液を用いて、酸無水物硬化エポキシ樹脂を分解及び溶解し、分解生成物を回収する方法が開示されている。
 上記のように処理液を用いて熱硬化性樹脂硬化物を分解及び溶解した場合、回収した分解生成物には触媒由来のアルカリ金属が含まれてしまうため、分解生成物のリサイクルに際しては、アルカリ金属を除去することが望まれる。しかし、本発明者らが確認したところ、熱硬化性樹脂硬化物の分解生成物が溶解した処理液に水を加えて抽出操作を行っても、水層及び有機層のほかに中間層が生じ、分解生成物の回収率が低下してしまうことが判明した。
 本開示は、アルカリ金属の量が低減された分解生成物を効率的に回収可能な熱硬化性樹脂硬化物の分解生成物の回収方法、及びアルカリ金属の量が低減された分解生成物を再生材料として効率的に製造可能な再生材料の製造方法を提供することを課題とする。
 上記課題を解決するための具体的な手段には、以下の実施態様が含まれる。
<1> 熱硬化性樹脂硬化物を含む処理対象物を、アルカリ金属化合物及びアルコール溶媒を含有する処理液に接触させ、前記熱硬化性樹脂硬化物を分解及び溶解する工程と、
 前記熱硬化性樹脂硬化物の分解生成物が溶解した処理液と酸性水溶液とを混合し、水層と、前記分解生成物を含む有機層とに分離させる工程と、
 前記有機層を回収する工程と、を有する熱硬化性樹脂硬化物の分解生成物の回収方法。
<2> 前記熱硬化性樹脂硬化物がエポキシ樹脂硬化物を含む、<1>に記載の熱硬化性樹脂硬化物の分解生成物の回収方法。
<3> 前記アルカリ金属化合物が、アルカリ金属の水酸化物、ホウ水素化物、アミド化合物、フッ化物、塩化物、臭化物、ヨウ化物、ホウ酸塩、リン酸塩、炭酸塩、硫酸塩、硝酸塩、有機酸塩、アルコラート、及びフェノラートからなる群より選択される少なくとも1種を含む、<1>又は<2>に記載の熱硬化性樹脂硬化物の分解生成物の回収方法。
<4> 前記アルコール溶媒が、大気圧における沸点が150℃以上の溶媒を含む、<1>~<3>のいずれか1項に記載の熱硬化性樹脂硬化物の分解生成物の回収方法。
<5> 前記処理対象物が無機材料を更に含み、
 前記分解生成物が溶解した処理液と前記酸性水溶液とを混合する前に、前記分解生成物が溶解した処理液から前記無機材料を除去する工程を更に有する、<1>~<4>のいずれか1項に記載の熱硬化性樹脂硬化物の分解生成物の回収方法。
<6> 前記無機材料が炭素繊維を含む、<5>に記載の熱硬化性樹脂硬化物の分解生成物の回収方法。
<7> 熱硬化性樹脂硬化物を含む処理対象物を、アルカリ金属化合物及びアルコール溶媒を含有する処理液に接触させ、前記熱硬化性樹脂硬化物を分解及び溶解する工程と、
 前記熱硬化性樹脂硬化物の分解生成物が溶解した処理液と酸性水溶液とを混合し、水層と、前記分解生成物を含む有機層とに分離させる工程と、
 前記有機層を回収し、前記分解生成物を再生材料として得る工程と、を有する再生材料の製造方法。
 本開示によれば、アルカリ金属の量が低減された分解生成物を効率的に回収可能な熱硬化性樹脂硬化物の分解生成物の回収方法、及びアルカリ金属の量が低減された分解生成物を再生材料として効率的に製造可能な再生材料の製造方法を提供することができる。
 以下、本発明の実施形態について説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において各成分の含有率は、各成分に該当する物質が複数種存在する場合、特に断らない限り、当該複数種の物質の合計の含有率を意味する。
<熱硬化性樹脂硬化物の分解生成物の回収方法>
 本実施形態の熱硬化性樹脂硬化物の分解生成物の回収方法(以下、単に「本実施形態の回収方法」ともいう。)は、熱硬化性樹脂硬化物を含む処理対象物を、アルカリ金属化合物及びアルコール溶媒を含有する処理液に接触させ、熱硬化性樹脂硬化物を分解及び溶解する工程と、熱硬化性樹脂硬化物の分解生成物(以下、単に「分解生成物」ともいう。)が溶解した処理液と酸性水溶液とを混合し、水層と、分解生成物を含む有機層とに分離させる工程と、有機層を回収する工程と、を有する。本実施形態の回収方法は、必要に応じて他の工程を更に有していてもよい。
 本実施形態の回収方法によれば、分解生成物が溶解した処理液と酸性水溶液とを混合し、水層と、分解生成物を含む有機層とに分離させることにより、アルカリ金属の量が低減された分解生成物を効率的に回収することができる。その理由は必ずしも明らかではないが、本発明者らは以下のように推察している。
 処理液に含有されるアルカリ金属化合物がアルカリ金属Mを含む場合、分解生成物は、例えば、次式:R-Oの状態で処理液中に溶解すると考えられる。分解生成物が溶解した処理液と酸性水溶液とを混合すると、分解生成物はR-OHの状態となって有機層に留まり、Mは水層に移行するため、分解生成物に含まれるアルカリ金属の量が低減されると推察される。
 以下では、まず、本実施形態の回収方法で用いられる処理対象物、処理液、及び酸性水溶液について説明し、次いで、本実施形態の回収方法について説明する。
(処理対象物)
 本実施形態の回収方法における処理対象物は、熱硬化性樹脂硬化物を含む。熱硬化性樹脂硬化物としては、エポキシ樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、フェノール樹脂、メラミン樹脂等の熱硬化性樹脂の硬化物が挙げられる。熱硬化性樹脂硬化物は、1種を単独で含んでいてもよく、2種以上を含んでいてもよい。熱硬化性樹脂硬化物としては、後述する処理液による分解効率の観点から、エポキシ樹脂硬化物及び不飽和ポリエステル樹脂硬化物からなる群より選択される少なくとも1種を含むことが好ましく、エポキシ樹脂硬化物を含むことがより好ましい。
 処理対象物は、熱硬化性樹脂硬化物のほかに、熱可塑性樹脂を含んでいてもよい。熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリ酢酸ビニル樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂等が挙げられる。熱可塑性樹脂は、1種を単独で含んでいてもよく、2種以上を含んでいてもよい。
 処理対象物は、例えば、熱硬化性樹脂を含有する熱硬化性樹脂組成物を加熱し、熱硬化性樹脂の少なくとも一部を硬化させることにより得られる。処理対象物には、未硬化の熱硬化性樹脂が含まれていてもよい。
 処理対象物がエポキシ樹脂硬化物を含む場合、処理対象物は、例えば、エポキシ樹脂、硬化剤、及び必要に応じて硬化促進剤を含有する熱硬化性樹脂組成物を加熱し、エポキシ樹脂の少なくとも一部を硬化させることにより得られる。
 エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール化合物のジグリシジルエーテル化物、アルコール化合物のジグリシジルエーテル化物、これらのアルキル置換体、これらのハロゲン化物、これらの水素添加物等が挙げられる。エポキシ樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 硬化剤としては、酸無水物、アミン化合物、フェノール化合物、イソシアネート化合物等が挙げられる。硬化剤は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、硬化剤としては酸無水物が好ましい。すなわち、処理対象物は、酸無水物硬化エポキシ樹脂を含むことが好ましい。酸無水物硬化エポキシ樹脂は、分子内にエステル結合を有し、後述する処理液を用いてより効率的に分解することができる。
 酸無水物としては、フタル酸無水物、テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、メチルナジック酸無水物、コハク酸無水物、ドデシルコハク酸無水物、クロレンディック酸無水物、イタコン酸無水物、マレイン酸無水物、ピロメリット酸無水物、トリメリット酸無水物、ベンゾフェノンテトラカルボン酸二無水物、エチレングリコールビストリメリテート二無水物、グリセロールトリストリメリテート三無水物、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物等が挙げられる。酸無水物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 硬化促進剤としては、イミダゾール化合物、第三級アミン化合物、第四級アンモニウム塩、有機リン化合物等が挙げられる。硬化促進剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 処理対象物は、無機材料を更に含むことが好ましい。無機材料としては、炭素、ガラス、金属、金属化合物等が挙げられる。また、無機材料の形状としては、繊維、粒子、箔等が挙げられる。繊維は、不織布状であっても織布状であってもよく、織布状の場合、繊維束を織って作製したクロス材であってもよく、繊維束を一方向に配列したUD(Uni-Direction)材であってもよい。無機材料は、1種を単独で含んでいてもよく、2種以上を含んでいてもよい。
 処理対象物は、無機材料の中でも、炭素繊維を含むことが好ましい。熱硬化性樹脂硬化物を分解及び溶解することで、処理対象物に含まれる炭素繊維を回収し、リサイクルに供することが可能となる。炭素繊維は、アクリル樹脂を原料とするものであってもよく、ピッチを原料とするものであってもよい。
 炭素繊維を含む処理対象物は、例えば、炭素繊維基材に熱硬化性樹脂組成物を含浸させ、加熱することにより得られる。炭素繊維を含む処理対象物は、熱硬化性樹脂が半硬化したBステージ状態のプリプレグであってもよく、熱硬化性樹脂が硬化したCステージ状態の硬化体(CFRP)であってもよい。
 処理対象物の大きさは特に制限されず、処理装置の規模に合わせて処理可能な大きさに調整されていればよい。処理時間を短縮する観点からは、処理対象物は小さい方が好ましい。一方、処理対象物が炭素繊維等の無機材料を含む場合、回収した無機材料をリサイクルする観点からは、処理対象物は大きい方が好ましい。ある実施態様では、処理対象物の大きさは、0.1cm~1.5mの範囲に調整される。なお、炭素繊維を含む処理対象物が小さく裁断されている場合、回収した炭素繊維は、例えば、不織布の作製に用いることができる。
(処理液)
 本実施形態の回収方法で用いられる処理液は、アルカリ金属化合物とアルコール溶媒とを含有する。処理液は、必要に応じて他の成分を更に含有していてもよい。
 アルカリ金属化合物としては、熱硬化性樹脂硬化物を分解する触媒活性を有するものであれば特に制限されない。アルカリ金属化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等が挙げられる。
 熱硬化性樹脂硬化物を分解する触媒活性の観点から、アルカリ金属化合物としては、アルカリ金属の水酸化物、ホウ水素化物、アミド化合物、フッ化物、塩化物、臭化物、ヨウ化物、ホウ酸塩、リン酸塩、炭酸塩、硫酸塩、硝酸塩、有機酸塩、アルコラート、及びフェノラートからなる群より選択される少なくとも1種を含むことが好ましい。これらのアルカリ金属化合物は、水和物の形態であってもよい。
 また、熱硬化性樹脂硬化物をより効率的に分解し、かつ、分解生成物中に含まれるアルカリ金属の量をより低減する観点から、アルカリ金属化合物としては、アルカリ金属の水酸化物、リン酸塩、及び有機酸塩からなる群より選択される少なくとも1種を含むことが好ましい。
 リン酸塩としては、正リン酸塩、メタリン酸塩、次リン酸塩、亜リン酸塩、次亜リン酸塩、ピロリン酸塩、トリメタリン酸塩、テトラメタリン酸塩、ピロ亜リン酸塩等が挙げられる。
 有機酸塩としては、ギ酸塩、酢酸塩、クエン酸塩、コハク酸塩、シュウ酸塩等が挙げられる。
 処理液中のアルカリ金属化合物の含有率は、熱硬化性樹脂硬化物の分解効率を向上させる観点から、アルコール溶媒1000gに対する合計量として、0.01mol以上であることが好ましく、0.10mol以上であることがより好ましく、0.30mol以上であることが更に好ましい。また、処理液中のアルカリ金属化合物の含有率は、分解生成物の溶解性を高め、処理液の調製を容易にする観点から、アルコール溶媒1000gに対する合計量として、10.00mol以下であることが好ましく、5.00mol以下であることがより好ましく、3.00mol以下であることが更に好ましく、1.00mol以下であることが特に好ましい。
 アルコール溶媒としては、特に制限されず、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-1-ブタノール、3-メチル-2-ブタノール、2,2-ジメチル-1-プロパノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、2-エチルヘキサノール、ドデカノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、4-メチルシクロヘキサノール、ベンジルアルコール、フェノキシエタノール、1-(2-ヒドロキシエチル)-2-ピロリドン、ジアセトンアルコール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコール、ポリエチレングリコール(分子量200~400)、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、グリセリン、ジプロピレングリコール等が挙げられる。アルコール溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
 処理液の温度を高めて熱硬化性樹脂硬化物の分解効率を向上させる観点から、アルコール溶媒としては、大気圧における沸点が150℃以上の溶媒(以下、「高沸点溶媒」ともいう。)を含むことが好ましい。高沸点溶媒の含有率は、アルコール溶媒の全量に対して、50体積%以上であることが好ましく、70体積%以上であることがより好ましく、90体積%以上であることが更に好ましく、100体積%であることが特に好ましい。
 処理液は、必要に応じて他の成分を更に含有していてもよい。他の成分としては、界面活性剤等が挙げられる。
(酸性水溶液)
 本実施形態の回収方法で用いられる酸性水溶液は、酸性物質を含有する。酸性物質は、1種を単独で用いてもよく、2種以上を併用してもよい。酸性水溶液は、必要に応じて他の成分を更に含有していてもよい。
 酸性物質としては、分解生成物に含まれるアルカリ金属の量をより低減する観点から、酸化作用を有する物質が好ましい。酸性物質としては、塩酸、リン酸等の無機酸及びその酸性塩、スルホン酸、カルボン酸、ビニル性カルボン酸、核酸等の有機酸及びその酸性塩、塩化第二鉄等の鉄系凝集剤、硫酸アルミニウム等のアルミニウム系凝集剤などが挙げられる。酸性物質は、弱酸、強酸、及び超酸のいずれであってもよい。
 分解生成物に含まれるアルカリ金属の量をより低減する観点から、酸性物質としては、リン酸、リン酸の酸性塩、及びカルボン酸からなる群より選択される少なくとも1種を含むことが好ましい。
 リン酸としては、正リン酸、メタリン酸、次リン酸、亜リン酸、次亜リン酸、ピロリン酸、トリメタリン酸、テトラメタリン酸、ピロ亜リン酸等が挙げられる。
 リン酸の酸性塩としては、リン酸二水素カリウム、リン酸二水素ナトリウム等が挙げられる。
 カルボン酸としては、ギ酸、酢酸、クエン酸、コハク酸、シュウ酸等が挙げられる。
 酸性水溶液中の酸性物質の含有率は特に制限されない。酸性水溶液中の酸性物質の含有率は、分解生成物が溶解した処理液中のアルカリ金属濃度、分解生成物が溶解した処理液と酸性水溶液との混合比等に応じて適宜調整することが好ましい。
 酸性水溶液のpHは特に制限されない。酸性水溶液の室温(25℃)におけるpHは、例えば、0~7であることが好ましく、1~6であることがより好ましい。
(熱硬化性樹脂硬化物の分解生成物の回収方法)
 本実施形態の回収方法は、熱硬化性樹脂硬化物を含む処理対象物を前述した処理液に接触させ、熱硬化性樹脂硬化物を分解及び溶解する工程(以下、「処理工程」ともいう。)と、熱硬化性樹脂硬化物の分解生成物が溶解した処理液と前述した酸性水溶液とを混合し、水層と、分解生成物を含む有機層とに分離させる工程(以下、「分離工程」ともいう。)と、有機層を回収する工程(以下、「回収工程」ともいう。)と、を有する。
 処理工程では、熱硬化性樹脂硬化物を含む処理対象物を前述した処理液に接触させ、熱硬化性樹脂硬化物を分解及び溶解する。処理液を用いて熱硬化性樹脂硬化物を分解及び溶解する方法は特に制限されず、処理対象物を処理液中に浸漬してもよく、処理液をスプレー等によって処理対象物に吹き付けてもよい。熱硬化性樹脂硬化物をより効率的に分解及び溶解する観点からは、処理対象物を処理液中に浸漬することが好ましい。
 ある実施態様では、処理対象物を容器内の処理液中に浸漬し、必要に応じて処理液を撹拌することにより、熱硬化性樹脂硬化物を分解及び溶解する。撹拌方法は特に制限されず、撹拌羽根を用いる方法、噴流を生じさせる方法、容器を搖動する方法、不活性気体の気泡を生じさせる方法、超音波を印加する方法等が挙げられる。
 処理液の温度は、アルコール溶媒の沸点以下の温度であれば特に制限されない。熱硬化性樹脂硬化物をより効率的に分解及び溶解する観点からは、処理液の温度は100℃以上であることが好ましく、150℃以上であることがより好ましい。また、処理対象物が無機材料を含む場合における無機材料の損傷を抑える観点からは、処理液の温度は300℃以下であることが好ましい。
 処理液を用いて熱硬化性樹脂硬化物を分解及び溶解する際の雰囲気は特に制限されず、大気雰囲気であってもよく、窒素ガス、アルゴンガス等の不活性ガス雰囲気であってもよい。
 次いで、分離工程では、分解生成物が溶解した処理液と前述した酸性水溶液とを混合し、水層と、分解生成物を含む有機層とに分離させる。混合方法及び水層と有機層とに分離させる方法は特に制限されず、例えば、分解生成物が溶解した処理液と酸性水溶液とを混合して撹拌した後、静置する方法が挙げられる。
 分解生成物が溶解した処理液と酸性水溶液との混合比は特に制限されない。分解生成物に含まれるアルカリ金属の量をより低減する観点から、分解生成物が溶解した処理液と酸性水溶液との混合比(酸性水溶液/分解生成物が溶解した処理液)は、質量基準で0.01~100であることが好ましく、0.25~50であることがより好ましく、1~10であることが更に好ましい。
 また、分解生成物に含まれるアルカリ金属の量をより低減する観点から、分解生成物が溶解した処理液と酸性水溶液との混合比は、混合する酸性物質のモル量が、分解生成物が溶解した処理液中におけるアルカリ金属のモル量に対して、0.1倍~10倍となるように調整することが好ましく、1倍~7倍となるように調整することがより好ましい。
 分解生成物が溶解した処理液と酸性水溶液とを混合した混合液の温度は特に制限されない。
 次いで、回収工程では、分解生成物を含む有機層を回収する。有機層の回収後には、蒸留等によりアルコール溶媒を除去してもよい。回収した分解生成物は、合成樹脂の原料等にリサイクルすることができる。また、回収した有機層に酸性水溶液を混合し、分離工程を複数回繰り返してもよい。分離工程を複数回繰り返すことで、分解生成物に含まれるアルカリ金属の量をより低減することができる。
 なお、処理対象物が無機材料を含む場合、本実施形態の回収方法は、分解生成物が溶解した処理液と酸性水溶液とを混合する前に、分解生成物が溶解した処理液から無機材料を除去する工程(以下、「除去工程」ともいう。)を更に有することが好ましい。
 無機材料は、例えば、熱硬化性樹脂硬化物を分解及び溶解した後の処理液を濾過することにより、処理液から除去することができる。除去工程を経て回収した無機材料は、リサイクルに供することができる。
<再生材料の製造方法>
 本実施形態の再生材料の製造方法(以下、単に「本実施形態の製造方法」ともいう。)は、熱硬化性樹脂硬化物を含む処理対象物を、アルカリ金属化合物及びアルコール溶媒を含有する処理液に接触させ、熱硬化性樹脂硬化物を分解及び溶解する工程と、熱硬化性樹脂硬化物の分解生成物が溶解した処理液と酸性水溶液とを混合し、水層と、分解生成物を含む有機層とに分離させる工程と、有機層を回収し、分解生成物を再生材料として得る工程と、を有する。本実施形態の製造方法は、必要に応じて他の工程を更に有していてもよい。
 本実施形態の製造方法によれば、分解生成物が溶解した処理液と酸性水溶液とを混合し、水層と、分解生成物を含む有機層とに分離させることにより、アルカリ金属の量が低減された分解生成物を再生材料として効率的に製造することができる。
 本実施形態の製造方法における処理対象物、処理液、及び酸性水溶液の詳細及び好ましい態様、並びに各工程の詳細及び好ましい態様は、前述した本実施形態の回収方法におけるものと同様である。
 なお、前述した本実施形態の回収方法と同様に、回収した有機層に酸性水溶液を混合し、分離工程を複数回繰り返してもよい。分離工程を複数回繰り返すことで、アルカリ金属の量がより低減された分解生成物を得ることができる。
 本実施形態の製造方法で得られた再生材料の用途は特に制限されない。例えば、燃料、樹脂の製造等に利用できる。
 以下に実施例及び比較例を挙げ、本発明を具体的に説明するが、本発明は実施例に限定されるものではない。
(実施例1)
[試験片の準備]
 炭素繊維としてトレカ(登録商標)T300(東レ株式会社製)を用いたトレカ(登録商標)プリプレグ(東レ株式会社製)を10mm×40mmの大きさに切断し、試験片とした。
[処理液の調製]
 試験管に、ベンジルアルコール(アルコール溶媒)10gと、ベンジルアルコール1000gあたり0.33molのリン酸三カリウム(アルカリ金属化合物)とをそれぞれ秤量し、スパチュラで静かに底から撹拌しながら、オイルバスを用いて試験管内の温度が190℃±2℃になるように加熱し、処理液を調製した。
[酸性水溶液の調製]
 蒸留水50gにリン酸二水素カリウム(KHPO)11gを添加し、撹拌してリン酸二水素カリウムを溶解することにより、酸性水溶液を調製した。
[分解生成物の回収]
 処理液の温度が190℃±2℃に達したら、処理液に対して20質量%の量の試験片を静かに投入し、大気雰囲気かつ大気圧の条件下、処理液の温度を190℃±2℃に維持して3時間処理し、熱硬化性樹脂硬化物を分解及び溶解した。その後、漏斗で固液分離を行うことにより炭素繊維を除去し、熱硬化性樹脂硬化物の分解生成物が溶解した処理液を回収した。原子吸光光度計(株式会社日立ハイテクサイエンス製)を用いて、回収した処理液中のカリウムイオン濃度を測定した。
 次いで、回収した処理液5gと、表1に示す割合の酸性水溶液とをそれぞれ秤量し、試験管に入れて撹拌した後、19時間静置し、水層と有機層とに分離させた。表1中、抽出液として用いる酸性水溶液の割合は、分解生成物が溶解した処理液に対する酸性水溶液の割合(質量%)で示している。静置後における中間層の有無を表1に示す。静置後の試験管側面に定規をあてて、水層と有機層との間に幅1mm以上の層が存在する場合に、中間層が有るものと判定した。
 次いで、有機層を回収し、原子吸光光度計(株式会社日立ハイテクサイエンス製)を用いて、有機層中のカリウムイオン濃度を測定した。そして、以下の式に従って、カリウムイオンの減少率を算出した。結果を表1に示す。
 カリウムイオンの減少率(%)=100×(回収した処理液中のカリウムイオン濃度-有機層中のカリウムイオン濃度)/回収した処理液中のカリウムイオン濃度
(実施例2~5)
 抽出液として用いる酸性水溶液の割合を表1のように変更したほかは、実施例1と同様にして、中間層の有無を判定し、カリウムイオンの減少率を算出した。結果を表1に示す。
(比較例1~5)
 酸性水溶液の代わりに蒸留水を抽出液として用いたほかは、実施例1~5と同様にして、中間層の有無を判定し、カリウムイオンの減少率を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、蒸留水で抽出した比較例1~5では、抽出液の割合が150質量%の場合であっても、カリウムイオンの減少率は94.9%であった。また、比較例1~5では、いずれも中間層が発生した。これに対して、KHPO水溶液で抽出した実施例1~5では、抽出液の割合が25質量%の場合であっても、カリウムイオンの減少率は96.1%であり、比較例1~5よりもカリウムイオンの量を低減することができた。また、実施例1~5では、中間層の発生も無かった。
(実施例6)
[試験片の準備]
 炭素繊維としてトレカ(登録商標)T300(東レ株式会社製)を用いたトレカ(登録商標)プリプレグ(東レ株式会社製)を10mm×40mmの大きさに切断し、試験片とした。
[処理液の調製]
 試験管に、ベンジルアルコール(アルコール溶媒)10gと、ベンジルアルコール1000gあたり0.66molのリン酸三カリウム(アルカリ金属化合物)とをそれぞれ秤量し、スパチュラで静かに底から撹拌しながら、オイルバスを用いて試験管内の温度が190℃±2℃になるように加熱し、処理液を調製した。
[分解生成物の回収]
 処理液の温度が190℃±2℃に達したら、処理液に対して20質量%の量の試験片を静かに投入し、大気雰囲気かつ大気圧の条件下、処理液の温度を190℃±2℃に維持して3時間処理し、熱硬化性樹脂硬化物を分解及び溶解した。その後、漏斗で固液分離を行うことにより炭素繊維を除去し、熱硬化性樹脂硬化物の分解生成物が溶解した処理液を回収した。原子吸光光度計(株式会社日立ハイテクノロジーズ製)を用いて、回収した処理液中のカリウムイオン濃度を測定した。
 抽出液としては、クエン酸水溶液を準備した。抽出液中のクエン酸のモル濃度は、回収した処理液中のカリウムイオンのモル濃度の7倍とした。抽出液5gが入った試験管に、回収した処理液5gを加えて撹拌した後、19時間静置し、水層と有機層とに分離させた。静置後における中間層の有無を表2に示す。静置後の試験管側面に定規をあてて、水層と有機層との間に幅1mm以上の層が存在する場合に、中間層が有るものと判定した。
 次いで、有機層を回収し、原子吸光光度計(株式会社日立ハイテクノロジーズ製)を用いて、有機層中のカリウムイオン濃度を測定した。そして、以下の式に従って、カリウムイオンの減少率を算出した。結果を表2に示す。
 カリウムイオンの減少率(%)=100×(回収した処理液中のカリウムイオン濃度-有機層中のカリウムイオン濃度)/回収した処理液中のカリウムイオン濃度
(実施例7~9及び比較例6~8)
 抽出液の種類を表2のように変更したほかは、実施例6と同様にして、中間層の有無を判定し、カリウムイオンの減少率を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、蒸留水で抽出した比較例6では、カリウムイオンの減少率は94.1%であり、中間層が発生した。塩基性水溶液で抽出した比較例7~8では、いずれも中間層の発生は無かったが、比較例6よりもカリウムイオンの減少率は低かった。これに対して、酸性水溶液で抽出した実施例6~9では、比較例6~8よりもカリウムイオンの量を低減することができ、中間層の発生も無かった。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (7)

  1.  熱硬化性樹脂硬化物を含む処理対象物を、アルカリ金属化合物及びアルコール溶媒を含有する処理液に接触させ、前記熱硬化性樹脂硬化物を分解及び溶解する工程と、
     前記熱硬化性樹脂硬化物の分解生成物が溶解した処理液と酸性水溶液とを混合し、水層と、前記分解生成物を含む有機層とに分離させる工程と、
     前記有機層を回収する工程と、を有する熱硬化性樹脂硬化物の分解生成物の回収方法。
  2.  前記熱硬化性樹脂硬化物がエポキシ樹脂硬化物を含む、請求項1に記載の熱硬化性樹脂硬化物の分解生成物の回収方法。
  3.  前記アルカリ金属化合物が、アルカリ金属の水酸化物、ホウ水素化物、アミド化合物、フッ化物、塩化物、臭化物、ヨウ化物、ホウ酸塩、リン酸塩、炭酸塩、硫酸塩、硝酸塩、有機酸塩、アルコラート、及びフェノラートからなる群より選択される少なくとも1種を含む、請求項1又は請求項2に記載の熱硬化性樹脂硬化物の分解生成物の回収方法。
  4.  前記アルコール溶媒が、大気圧における沸点が150℃以上の溶媒を含む、請求項1~請求項3のいずれか1項に記載の熱硬化性樹脂硬化物の分解生成物の回収方法。
  5.  前記処理対象物が無機材料を更に含み、
     前記分解生成物が溶解した処理液と前記酸性水溶液とを混合する前に、前記分解生成物が溶解した処理液から前記無機材料を除去する工程を更に有する、請求項1~請求項4のいずれか1項に記載の熱硬化性樹脂硬化物の分解生成物の回収方法。
  6.  前記無機材料が炭素繊維を含む、請求項5に記載の熱硬化性樹脂硬化物の分解生成物の回収方法。
  7.  熱硬化性樹脂硬化物を含む処理対象物を、アルカリ金属化合物及びアルコール溶媒を含有する処理液に接触させ、前記熱硬化性樹脂硬化物を分解及び溶解する工程と、
     前記熱硬化性樹脂硬化物の分解生成物が溶解した処理液と酸性水溶液とを混合し、水層と、前記分解生成物を含む有機層とに分離させる工程と、
     前記有機層を回収し、前記分解生成物を再生材料として得る工程と、を有する再生材料の製造方法。
PCT/JP2016/057159 2016-03-08 2016-03-08 熱硬化性樹脂硬化物の分解生成物の回収方法及び再生材料の製造方法 WO2017154102A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/743,585 US10968329B2 (en) 2016-03-08 2016-03-08 Method of recovering decomposition product of thermosetting resin cured product and method of producing recycled material
PCT/JP2016/057159 WO2017154102A1 (ja) 2016-03-08 2016-03-08 熱硬化性樹脂硬化物の分解生成物の回収方法及び再生材料の製造方法
CN201680083210.9A CN108779284A (zh) 2016-03-08 2016-03-08 热固性树脂固化物的分解产物的回收方法以及再生材料的制造方法
JP2017536371A JP6693522B2 (ja) 2016-03-08 2016-03-08 熱硬化性樹脂硬化物の分解生成物の回収方法及び再生材料の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057159 WO2017154102A1 (ja) 2016-03-08 2016-03-08 熱硬化性樹脂硬化物の分解生成物の回収方法及び再生材料の製造方法

Publications (1)

Publication Number Publication Date
WO2017154102A1 true WO2017154102A1 (ja) 2017-09-14

Family

ID=59790397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057159 WO2017154102A1 (ja) 2016-03-08 2016-03-08 熱硬化性樹脂硬化物の分解生成物の回収方法及び再生材料の製造方法

Country Status (4)

Country Link
US (1) US10968329B2 (ja)
JP (1) JP6693522B2 (ja)
CN (1) CN108779284A (ja)
WO (1) WO2017154102A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070871A1 (ja) * 2022-09-30 2024-04-04 三菱ケミカル株式会社 ビスフェノールの製造方法、エポキシ樹脂の製造方法、及びエポキシ樹脂硬化物の製造方法、並びにビスフェノール組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI753444B (zh) * 2020-05-29 2022-01-21 財團法人工業技術研究院 組合物、其製備方法及由其所製備的發泡體

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007416A (ja) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd プラスチックの分解方法
WO2009081974A1 (ja) * 2007-12-25 2009-07-02 Panasonic Electric Works Co., Ltd. 熱硬化性樹脂の分解および分解生成物の回収方法
JP2012082371A (ja) * 2010-10-14 2012-04-26 Institute Of National Colleges Of Technology Japan ポリエステル結合性樹脂の再利用方法
JP2013006948A (ja) * 2011-06-24 2013-01-10 Aasu Recycle Kk 複合系プラスチック廃棄物の分離回収方法及びそれに用いる分離回収装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4024601C2 (de) * 1990-08-02 1997-04-03 Gunter Prof Dr Bauer Verfahren zur Herstellung polyolhaltiger Dispersionen und deren Verwendung
US6168908B1 (en) * 1997-10-09 2001-01-02 Jsr Corporation Process for forming a cured film of a thermoplastic resin
DE19839083C2 (de) * 1998-08-27 2001-02-15 Siemens Ag Recycling von Duroplastwerkstoffen
JP3946390B2 (ja) * 1999-09-13 2007-07-18 株式会社東芝 熱硬化性樹脂のリサイクル方法
CN1185286C (zh) * 1999-10-07 2005-01-19 日立化成工业株式会社 处理环氧树脂固化产物的方法
JP4967885B2 (ja) * 1999-10-07 2012-07-04 日立化成工業株式会社 エポキシ樹脂硬化物のリサイクル方法
JP4051873B2 (ja) 1999-10-07 2008-02-27 日立化成工業株式会社 無機物とエポキシ樹脂硬化物との複合材料のリサイクル方法
DE60102049T2 (de) * 2000-09-28 2004-07-22 Kabushiki Kaisha Toshiba Verfahren zur Zersetzung eines hitzehärtbaren Harzes, Vorrichtung und Wärmesteuerprogramm
JP2004002564A (ja) * 2002-05-31 2004-01-08 Toshiba Corp ウレタン樹脂の処理方法、被処理物及び再生樹脂の製造方法
JP4686991B2 (ja) * 2004-03-11 2011-05-25 日立化成工業株式会社 炭素材料/酸無水物硬化エポキシ樹脂複合材料の分離方法
JP4996041B2 (ja) 2004-03-12 2012-08-08 日立化成工業株式会社 炭素材料/酸無水物硬化エポキシ樹脂複合材料の処理液および分離方法
JP4539130B2 (ja) * 2004-03-12 2010-09-08 日立化成工業株式会社 エポキシ樹脂硬化物用処理液、およびこれを用いた処理方法
CA2626033C (en) * 2005-12-29 2013-09-03 Bp Corporation North America Inc. Ethanolysis of pet to form det and oxidation thereof
EP2036950B1 (en) * 2006-06-30 2017-05-31 Toray Industries, Inc. Epoxy resin composition, prepreg, and fiber-reinforced composite material
CN101368087B (zh) * 2007-10-22 2010-12-08 清华大学深圳研究生院 复合相变储能材料微粉的制备方法
KR101047924B1 (ko) * 2007-12-28 2011-07-08 주식회사 엘지화학 경화 조성물 및 이를 이용하여 제조된 경화물
JP5148617B2 (ja) * 2008-03-26 2013-02-20 パナソニック株式会社 熱硬化性樹脂の分解および分解生成物の回収方法
CN104119645B (zh) * 2008-09-29 2016-10-26 东丽株式会社 环氧树脂组合物、预浸料坯及纤维增强复合材料
JP5244728B2 (ja) * 2009-07-28 2013-07-24 株式会社日立製作所 バイオマス由来エポキシ樹脂組成物
WO2012043453A1 (ja) * 2010-09-28 2012-04-05 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
US9598551B2 (en) * 2011-07-08 2017-03-21 Adesso Advanced Materials Wuhu Co., Ltd. Reinforced composite and method for recycling the same
EP2789648A4 (en) * 2011-12-05 2015-08-19 Toray Industries CARBON FIBER MOLDING MATERIAL, MOLDING MATERIAL, AND CARBON FIBER REINFORCING COMPOSITE MATERIAL
WO2014017340A1 (ja) * 2012-07-25 2014-01-30 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
WO2014142024A1 (ja) * 2013-03-11 2014-09-18 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007416A (ja) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd プラスチックの分解方法
WO2009081974A1 (ja) * 2007-12-25 2009-07-02 Panasonic Electric Works Co., Ltd. 熱硬化性樹脂の分解および分解生成物の回収方法
JP2012082371A (ja) * 2010-10-14 2012-04-26 Institute Of National Colleges Of Technology Japan ポリエステル結合性樹脂の再利用方法
JP2013006948A (ja) * 2011-06-24 2013-01-10 Aasu Recycle Kk 複合系プラスチック廃棄物の分離回収方法及びそれに用いる分離回収装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070871A1 (ja) * 2022-09-30 2024-04-04 三菱ケミカル株式会社 ビスフェノールの製造方法、エポキシ樹脂の製造方法、及びエポキシ樹脂硬化物の製造方法、並びにビスフェノール組成物

Also Published As

Publication number Publication date
US10968329B2 (en) 2021-04-06
US20180371203A1 (en) 2018-12-27
JPWO2017154102A1 (ja) 2018-12-27
CN108779284A (zh) 2018-11-09
JP6693522B2 (ja) 2020-05-13

Similar Documents

Publication Publication Date Title
JP4051873B2 (ja) 無機物とエポキシ樹脂硬化物との複合材料のリサイクル方法
DE60019624T2 (de) Methode zur behandlung von gehärteten epoxydharzprodukten
JP4967885B2 (ja) エポキシ樹脂硬化物のリサイクル方法
JP6687031B2 (ja) 無機材料の分離方法、再生材料の製造方法、及び有機物の除去方法
JP6693522B2 (ja) 熱硬化性樹脂硬化物の分解生成物の回収方法及び再生材料の製造方法
JP6677254B2 (ja) 熱硬化性樹脂硬化物の処理方法
JP2010065230A (ja) エステル結合含有高分子の分解または溶解用の処理液、該処理液を用いた処理方法、複合材料の分離方法
JPWO2017154103A1 (ja) 炭素繊維不織布、炭素繊維不織布の製造方法、炭素繊維多層布、及び複合材料
JP6540996B2 (ja) 未硬化エポキシ樹脂複合材料の溶解方法
JP7386304B1 (ja) 再生補強繊維の製造方法
JP7240567B2 (ja) 再生補強繊維の製造方法
JP4539130B2 (ja) エポキシ樹脂硬化物用処理液、およびこれを用いた処理方法
JP2017160299A (ja) 熱硬化性樹脂溶解液
KR101900338B1 (ko) 열경화성 수지 경화물의 분해 전 팽윤 전처리 조성물 및 팽윤 전처리 방법
JP4765202B2 (ja) エポキシ樹脂硬化物の処理溶液、これを用いた処理方法および処理生成物
JP6687030B2 (ja) 無機材料の分離方法、再生材料の製造方法、及び有機物の除去方法
JP2020045407A (ja) 樹脂の溶解方法及び再生強化繊維の製造方法
JP2020050689A (ja) 処理液及び熱硬化性樹脂硬化物の処理方法
JP4654537B2 (ja) 不飽和ポリエステル樹脂硬化物の処理溶液、これを用いた処理方法および処理生成物
JP2006131698A (ja) エステル結合含有高分子の分解または溶解用の処理液、該処理液を用いた処理方法、複合材料の分離方法
JPWO2017154104A1 (ja) 炭素繊維不織布、炭素繊維不織布の製造方法、炭素繊維多層布、及び複合材料
JP2020040302A (ja) 両性金属の回収方法及び再生両性金属の製造方法
JP2020001021A (ja) 無機材料の処理方法及び再生材料の製造方法
JP2008036547A (ja) エステル交換反応触媒の再生方法
JP2024017470A (ja) 無機物の製造方法、及び複合材料の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017536371

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893434

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893434

Country of ref document: EP

Kind code of ref document: A1