WO2017140092A1 - 基于一体封装工艺的摄像模组及其一体基座组件和制造方法 - Google Patents

基于一体封装工艺的摄像模组及其一体基座组件和制造方法 Download PDF

Info

Publication number
WO2017140092A1
WO2017140092A1 PCT/CN2016/092020 CN2016092020W WO2017140092A1 WO 2017140092 A1 WO2017140092 A1 WO 2017140092A1 CN 2016092020 W CN2016092020 W CN 2016092020W WO 2017140092 A1 WO2017140092 A1 WO 2017140092A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera module
circuit board
motor
base portion
lens
Prior art date
Application number
PCT/CN2016/092020
Other languages
English (en)
French (fr)
Inventor
王明珠
赵波杰
田中武彦
郭楠
陈振宇
黄桢
陈飞帆
丁亮
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610091489.7A external-priority patent/CN105611134B/zh
Priority claimed from CN201610202500.2A external-priority patent/CN105721754B/zh
Priority claimed from CN201620269534.9U external-priority patent/CN205545597U/zh
Priority claimed from CN201620336842.9U external-priority patent/CN205792878U/zh
Priority claimed from CN201610250836.6A external-priority patent/CN105898120B/zh
Priority claimed from CN201620422525.9U external-priority patent/CN205792880U/zh
Priority claimed from CN201610311232.8A external-priority patent/CN105847645B/zh
Priority to EP16890320.1A priority Critical patent/EP3419275A4/en
Priority to CN201690000252.7U priority patent/CN208353432U/zh
Priority to KR1020217023290A priority patent/KR102465474B1/ko
Priority to US15/999,858 priority patent/US11877044B2/en
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to JP2018543321A priority patent/JP6829259B2/ja
Priority to KR1020187026982A priority patent/KR102282687B1/ko
Publication of WO2017140092A1 publication Critical patent/WO2017140092A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/52Elements optimising image sensor operation, e.g. for electromagnetic interference [EMI] protection or temperature control by heat transfer or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1686Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being an integrated camera
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Definitions

  • the invention relates to the field of camera modules, and further relates to a camera module based on an integrated packaging process and an integrated base assembly and a manufacturing method thereof.
  • the COB (Chip on Board) process is an extremely important process in the assembly and manufacture of camera modules.
  • the structure of the conventional COB process camera module is assembled by components such as a circuit board, a photosensitive chip, a mirror holder, a motor drive, and a lens.
  • FIG. 1 it is a schematic diagram of a camera module manufactured by a conventional COB process.
  • the camera module includes a circuit board 1P, a light sensor chip 2P, a bracket 3P, a filter 4P, a motor 5P and a lens 6P.
  • the photosensitive chip 2P is mounted on the wiring board 1P
  • the filter 4P is mounted on the bracket 3P
  • the lens 6P is mounted to the motor 5P
  • the motor 5P is mounted to the bracket 3P so that the lens 6P is located Above the photosensitive chip 2P.
  • circuit devices 11P such as resistors, capacitors, etc.
  • circuit board 1P some circuit devices 11P, such as resistors, capacitors, etc.
  • circuit board 1P has the circuit device 11P, and the assembly coordination relationship between the circuit board 1P, the circuit device 11P and the bracket 3P in the conventional COB process has some disadvantages, and the camera is limited to some extent.
  • the circuit device 11P is directly exposed to the surface of the circuit board 1P, so that in the subsequent assembly process, for example, the process of attaching the bracket 3P and soldering the motor 5P is inevitably affected, during soldering.
  • the solder resist, dust, and the like are easily adhered to the circuit device 11P, and the circuit device 11P and the photosensitive chip 2P are located in a space in which the mutual contact is made, so that dust contaminants easily affect the photosensitive chip 2P, and such influence may cause assembly.
  • the camera module has black spots and other undesirable phenomena, which reduces the yield of the product.
  • the bracket 3P is located outside the circuit device 11P, so when mounting the lens holder and the circuit board 1P, it is necessary to reserve a certain safety distance between the bracket 3P and the circuit device 11P, and in the horizontal direction and The safety distance needs to be reserved in the upward direction, which increases the demand for the thickness of the camera module to a certain extent, making it difficult to reduce the thickness.
  • the bracket 3P is pasted to the circuit board 1P by a glue or the like, and an AA (Active Arrangement) process is usually performed when pasting, that is, the bracket 3P and the circuit board are adjusted.
  • 1P and the central axis of the motor 5P are made to be consistent in the horizontal direction and the vertical direction. Therefore, in order to satisfy the AA process, it is necessary to pre-determine between the bracket 3P and the circuit board 1P and between the mirror base and the motor 5P. Set more glue so that there is room for adjustment between each other, and On the one hand, this requirement increases the thickness requirement of the camera module to a certain extent, so that the thickness thereof is difficult to reduce. On the other hand, the multiple-paste assembly process easily causes the tilt of the assembly to be inconsistent, and
  • the flatness of the lens holder 3P, the wiring board 1P, and the motor 5P is required to be high.
  • the circuit board 1P provides the most basic fixing and supporting carrier, and therefore, the circuit board 1P itself is required to have a certain structural strength, and this requirement makes the circuit board 1P have a large thickness, thereby On the other hand, the thickness requirement of the camera module is added.
  • camera modules are increasingly moving toward high performance, lightness and thinness, and in the face of high-performance development requirements such as high pixel and high image quality, electronic circuits in circuits More and more components, larger and larger chip areas, and more passive components such as drive resistors and capacitors, which make the specifications of electronic devices larger and larger, the difficulty of assembly increases, and the overall size of camera modules
  • An object of the present invention is to provide a camera module based on a molding process and a molded wiring board assembly and a manufacturing method thereof, wherein the circuit board assembly includes a molding portion and a wiring board portion, and the molding portion is molded In the circuit board section.
  • An object of the present invention is to provide a molding module based on a molding process and a molded wiring board assembly therefor, and a manufacturing method thereof, wherein the molded wiring board assembly includes at least one circuit component, the circuit component being wrapped around the circuit board assembly It is not directly exposed to the external environment.
  • An object of the present invention is to provide a molding module based on a molding process and a molded wiring board assembly therefor, and a manufacturing method thereof, wherein the molded circuit board assembly includes a molding portion and a wiring board portion, and the molding portion mold The circuit board portion is molded, and the circuit component disposed on the wiring portion is moldedly wrapped.
  • An object of the present invention is to provide a camera module based on a molding process, a molded circuit board assembly and a manufacturing method thereof, wherein the circuit board portion includes a circuit board body and a photosensitive chip, and the chip is disposed on the circuit board The inner surface, the molding portion surrounds the outer side of the photosensitive chip.
  • An object of the present invention is to provide a camera module based on a molding process, a molded circuit board assembly and a manufacturing method thereof, wherein the circuit board body has an inner ring groove, and the photosensitive chip is disposed in the inner ring groove. Thereby, the height requirement for the molded portion can be reduced.
  • An object of the present invention is to provide a camera module based on a molding process and a molded circuit board assembly therefor, and a method of manufacturing the same, wherein the circuit board body has a chip path adapted to be received from the back side of the circuit board main body
  • the installation and the photosensitive area of the photosensitive chip face the front side, which provides a more convenient installation method of flipping the photosensitive chip.
  • An object of the present invention is to provide a camera module based on a molding process and a molded circuit board assembly and a manufacturing method thereof, wherein a filter is mounted on an inner port of the chip channel of the main body of the circuit board, thereby eliminating the need for Provide an additional location to mount the filter.
  • An object of the present invention is to provide a camera module based on a molding process, and a molded circuit board assembly and a manufacturing method thereof, wherein the circuit body has at least one reinforcing hole, and the molding portion extends to the reinforcing hole, thereby increasing the The bonding force of the molded portion and the wiring board portion, and the structural strength of the wiring board main body is increased by the molding portion.
  • An object of the present invention is to provide a camera module based on a molding process and a molded wiring board assembly and a manufacturing method thereof, wherein the molding portion includes a support table adapted to support the filter to provide the filter The installation location of the piece.
  • An object of the present invention is to provide a camera module based on a molding process and a molded circuit board assembly and a manufacturing method thereof, wherein a molded portion is adapted to be mounted with a motor assembly or a lens, which can be used as a conventional bracket. Providing the motor assembly or the support fixed position of the lens.
  • An object of the present invention is to provide a camera module based on a molding process and a molded circuit board assembly and a manufacturing method thereof, wherein the molding portion replaces a conventional bracket, so that assembly and assembly of the bracket and the circuit board are not required during assembly. Process to increase process accuracy.
  • An object of the present invention is to provide a camera module based on a molding process and a molded circuit board assembly and a manufacturing method thereof, wherein the camera module is assembled from the molded circuit board assembly, and can have a smaller thickness and have A camera module with better performance.
  • An object of the present invention is to provide a camera module based on a molding process and a molded circuit board assembly and a manufacturing method thereof, wherein the camera module is assembled and manufactured by molding, thereby changing the COB process of the conventional camera module. .
  • An object of the present invention is to provide a camera module based on a molding process and a molded circuit board assembly therefor, and a manufacturing method thereof, wherein the camera module includes a seat, and the holder is mounted to the molding portion The filter is mounted to the holder.
  • An object of the present invention is to provide a camera module based on a molding process and a molded circuit board assembly therefor, and a manufacturing method thereof, the lens comprising a lens barrel, the filter being mounted in the lens barrel, thereby There is no need to provide additional components to mount the filter.
  • An object of the present invention is to provide a camera module based on a molding process and a molded circuit board assembly and a manufacturing method thereof, wherein the filter is mounted on an upper end of the chip path, thereby reducing the camera module Back focus.
  • An object of the present invention is to provide a camera module based on a molding process, a molded wiring board assembly and a manufacturing method thereof, wherein the base portion is integrally packaged to the wiring board portion, and the molding portion
  • the structural strength requirement can be achieved with a small thickness, so that the longitudinal dimension of the camera module can be reduced.
  • An object of the present invention is to provide a camera module based on a molding process, a molded circuit board assembly and a manufacturing method thereof, wherein, in manufacturing the camera module, a plurality of the moldings are simultaneously packaged in one package.
  • the board realizes the jigsaw operation of the camera module and improves production efficiency.
  • An object of the present invention is to provide a camera module based on a molding process and a molded circuit board assembly and a manufacturing method thereof, wherein the circuit board portion includes a reinforcing layer which is laminated on the bottom of the circuit board main body To enhance the structural strength and heat dissipation performance of the circuit board body.
  • An object of the present invention is to provide a camera module based on a molding process and a molded circuit board set thereof And a manufacturing method, wherein the molding portion includes a lens mounting portion adapted to mount a lens of the camera module to provide a stable mounting position for the lens.
  • An object of the present invention is to provide a molding module based on a molding process, and a molded wiring board assembly and a manufacturing method thereof, wherein the molding portion molds a side surface and a bottom surface of the wiring board main body to enhance the image capturing mold The structural strength of the group.
  • An object of the present invention is to provide a camera module based on a molding process and a molded circuit board assembly thereof
  • An aspect of the present invention provides a camera module, including:
  • At least one lens At least one lens
  • At least one photosensitive chip At least one photosensitive chip
  • At least one filter At least one filter
  • At least one integral base assembly At least one integral base assembly
  • At least one seat At least one seat
  • the integrated base assembly includes a base portion and a circuit board portion, the base portion is integrally packaged on the circuit board portion, and the photosensitive chip is mounted on the circuit board portion, the base portion Forming at least one through hole for providing a light path for the photosensitive chip, the lens is located in a light path of the photosensitive chip, the holder is mounted on the base portion, and the filter is mounted on the branch And a light path located in the photosensitive chip.
  • the holder has a first seating groove on the top side, the first seating groove is in communication with the through hole, and the filter is mounted on the first seating groove.
  • the mount has a second seating groove on the bottom side to engage the top end of the base portion.
  • the base portion has a mounting slot, the mounting slot is in communication with the through hole, and the mount is mounted to the mounting slot.
  • the base portion has a mounting groove, and the mounting groove communicates with the through hole.
  • the base portion forms a platform to which the mount is mounted.
  • the mounting groove has at least one notch that communicates the through hole with the outside, and the support includes at least one extended edge, and the extended edge is adapted to be overlapped with the notch.
  • the mounting slot has at least one indentation forming a U-shaped structure, the abutment portion including at least one extended edge that fills an opening of the U-shaped structure.
  • the unitary base assembly includes at least one circuit component that encases the circuit component.
  • the lens is at least partially mounted to the mount.
  • the camera module includes at least one motor mounted to the motor, the motor being at least partially mounted to the mount.
  • the lens is mounted to the base portion.
  • the camera module includes at least one motor mounted to the motor, the motor being mounted to the base portion or mounted to the mount.
  • the integrated package is in a molded, one-piece package.
  • the unitary base assembly includes an annular barrier element disposed on the circuit board portion and the barrier element is at least partially integrally encapsulated by the base portion.
  • the base portion has at least one first inner side surface integrally extending from the circuit board portion, forming at least a portion of the through hole, the first inner side surface being inclined upward extend.
  • the first inner side has an inclination angle ⁇ with the optical axis of the camera module, wherein the size of ⁇ ranges from 3° to 85°.
  • the first inner side surrounds a lower end of the through hole, and an inner diameter of the lower end of the through hole gradually increases from bottom to top.
  • the base portion has a second inner side surface, the second side surface is bent and extended from the first inner side surface, and the second inner side surface surrounds an upper end of the through hole.
  • the second inner side surface extends upward in an inclined shape.
  • the second inner side has an inclination angle ⁇ with the optical axis of the camera module, wherein the size of ⁇ ranges from 3° to 45°.
  • the base portion has an outer side surface that is integrally inclined upwardly from the circuit board portion and has an inclination angle ⁇ between the optical axis of the camera module, wherein the size of ⁇ The range is from 3° to 45°.
  • the present invention provides a camera module including:
  • At least one lens At least one lens
  • At least one sensor chip At least one sensor chip
  • At least one integral base assembly At least one integral base assembly
  • the integrated base assembly includes a base portion and a circuit board portion, the base portion is integrally connected to the circuit board portion, and the photosensitive chip is mounted on the circuit board portion, the base Forming at least one through hole for providing a light path for the photosensitive chip, the lens is located in a light path of the photosensitive chip, the base portion has at least a first inner side surface, forming at least a part of the through hole, The first inner side surface extends upward in an inclined manner.
  • the present invention provides a camera module including:
  • At least one lens At least one lens
  • At least one sensor chip At least one sensor chip
  • At least one integral base assembly At least one integral base assembly
  • the integrated base assembly includes a base portion and a circuit board portion, the base portion is molded on the circuit board portion, and the base portion forms at least one through hole for the photosensitive chip and The lens provides a light path.
  • the base portion has a top surface that extends in a planar manner.
  • the base portion has a mounting groove, the mounting groove communicates with the through hole, and the base portion includes at least one raised step, the raised step forming the mounting groove.
  • the circuit board portion includes at least one side, and the base covers at least one of the side surfaces of the circuit board portion.
  • the base portion further covers a bottom portion of the circuit board portion.
  • the base portion has two mounting slots in sequence along the optical axis direction of the camera module, and each of the mounting slots communicates with the through hole such that a stepped structure is formed inside the base portion.
  • the camera module includes at least one filter, the filter being mounted to the top surface such that the filter is mounted flat.
  • the lens is mounted to the top surface.
  • the camera module includes at least one motor mounted to the motor, the motor being mounted to the top surface of the base portion.
  • the camera module includes at least one filter, and the filter is mounted to the mounting slot.
  • the lens is mounted to the raised step.
  • the camera module includes at least one motor mounted to the motor, the motor being mounted to the raised step.
  • the camera module includes a filter that is mounted to the mounting slot at a lower position.
  • the lens is mounted to the mounting slot in the upper position.
  • the base portion extends integrally upward from the mounting slot in a higher position to form a lens inner wall.
  • the inner surface of the lens is flat and adapted to mount an unthreaded lens.
  • At least one lens mount mounted to the base portion, the lens mount being adapted to mount the lens.
  • the camera module includes at least one seat and at least one filter, the holder is mounted to the mounting slot, and the filter is mounted to the holder.
  • the wiring board portion has an inner groove communicating with the through hole, and the photosensitive chip is housed in the inner groove.
  • the lens includes a lens barrel and at least one lens, each of the lenses being mounted to the lens barrel, the filter being mounted to the lens barrel, below the lens.
  • the camera module includes at least one motor and at least one filter, the filter is mounted to the motor, the lens is mounted to the motor, and the filter is located at the filter Above.
  • the unitary base assembly includes at least one circuit component that encases the circuit component.
  • the circuit component is selected from the group consisting of: one or more of a resistor, a capacitor, a diode, a transistor, a potentiometer, a relay, a driver, a processor, and a memory.
  • the wiring board portion has at least one via that communicates with both sides of the wiring board portion, and the photosensitive chip is mounted to the via.
  • the circuit board portion has a reinforcement hole, and the base portion extends into the reinforcement hole.
  • the circuit board portion includes a reinforcement layer, and the laminate is disposed on the bottom of the circuit board portion unit.
  • the circuit board portion includes a shielding layer wrapped around the camera module.
  • the circuit board portion includes a shielding layer surrounding the inner side of the base portion.
  • the circuit board portion includes a circuit board body material selected from the group consisting of: a combination of a soft and hard bonding board, a ceramic substrate, and a PCB hard board.
  • the base portion material is selected from the group consisting of: one or more of nylon, LCP, PP, and resin.
  • the molding portion molding process is an insert molding or a molding process.
  • the photosensitive chip is electrically connected to the wiring board portion through at least one connecting wire.
  • the present invention provides a camera module including:
  • At least one lens At least one lens
  • At least one photosensitive chip At least one photosensitive chip
  • At least one integral base assembly At least one integral base assembly
  • At least one motor At least one motor
  • the integrated base assembly includes a base portion and a circuit board portion, the base portion is integrally packaged on the circuit board portion, the photosensitive chip is mounted on the circuit board portion, and the lens is located at the a photosensitive path of the photosensitive chip, the base portion forming a through hole, providing a light path for the photosensitive chip;
  • the integrated base assembly includes at least one motor connection structure, the motor connection structure is preset to the base portion, and the motor is electrically connected to the circuit board portion through the motor connection structure, and the lens is Mounted to the motor to facilitate adjustment of the lens by the motor.
  • the circuit board portion includes a circuit board body that is integrally molded to the circuit board body in a molded manner.
  • the motor connection structure includes at least one lead wire and at least one lead slot
  • the lead wire is disposed on the base portion, and is electrically connected to the circuit board main body
  • the pin slot is Provided at an upper end of the base portion, the lead includes a motor connection end, the motor connection end is exposed on the bottom wall of the slot, so that at least one motor pin of the motor is plugged into the pin
  • the slot is electrically connected to the motor connection end.
  • the motor connection structure includes at least one lead slot and at least one circuit contact, the circuit contact is electrically connected to the circuit board main body, and the pin slot is disposed on the base portion. Extending from the circuit board body to a top end of the base portion, and the circuit contacts are exposed in the pin slots, so that when at least one motor pin of the motor is plugged into the pin slot Connected to the circuit contacts.
  • the motor connection structure includes at least one engraving line disposed on the base portion and electrically connected to the circuit board body to facilitate electrical connection of a motor pin.
  • the base portion has a thickness ranging from 0.3 to 1.2 mm.
  • the camera module has a lateral cross-sectional dimension ranging from 5 to 20 mm.
  • the height of the camera module ranges from 3 to 6 mm.
  • the thickness of the circuit board portion ranges from 0.15 to 0.5 mm.
  • the base portion is adjacent to the outside of the photosensitive chip, thereby expanding the The thickness of the base portion is such that the base portion and the circuit board portion have stronger connection fastness.
  • the present invention provides an integrated base assembly that utilizes a camera module that includes:
  • the base portion is integrally packaged in the circuit board portion, a photosensitive chip of the camera module is adapted to be mounted on the circuit board portion, and the base portion forms at least one through hole for providing the photosensitive chip A light path, the lens being located in a light path of the photosensitive chip.
  • the unitary base assembly includes at least one circuit component that encases the circuit component.
  • the integral base assembly includes at least one circuit component, and the circuit component is located inside the base portion, the base portion not covering the circuit component.
  • FIG. 1 is a cross-sectional view of a camera module of a conventional COB packaging process.
  • FIG. 2 is a cross-sectional view of a camera module in accordance with a first preferred embodiment of the present invention.
  • FIG. 3 is a schematic exploded view of a camera module in accordance with a first preferred embodiment of the present invention.
  • FIG. 4 is a partially enlarged view of a camera module in accordance with a first preferred embodiment of the present invention.
  • Figure 5 is a schematic view showing the process of forming a molded circuit assembly of a camera module in accordance with a first preferred embodiment of the present invention.
  • Figure 6A is a cross-sectional view showing a first modified embodiment of a molded wiring board assembly of a camera module according to a first preferred embodiment of the invention.
  • Figure 6B is a partially enlarged schematic view showing a first modified embodiment of the molded wiring board assembly of the camera module in accordance with the first preferred embodiment of the present invention.
  • Figure 7A is a cross-sectional view showing a second modified embodiment of a molded wiring board assembly of a camera module in accordance with a first preferred embodiment of the present invention.
  • Figure 7B is a partially enlarged schematic view showing a second modified embodiment of the circuit board assembly of the camera module in accordance with the first preferred embodiment of the present invention.
  • Figure 8A is a cross-sectional view showing a third modified embodiment of the wiring board assembly of the camera module in accordance with the first preferred embodiment of the present invention.
  • Figure 8B is a partial enlarged view of a third modified embodiment of the circuit board assembly of the camera module in accordance with the first preferred embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a camera module in accordance with a second preferred embodiment of the present invention.
  • Figure 10 is a schematic exploded view of a camera module in accordance with a second preferred embodiment of the present invention.
  • Figure 11 is a partially enlarged view of a camera module in accordance with a second preferred embodiment of the present invention.
  • Figure 12 is a cross-sectional view of a camera module in accordance with a third preferred embodiment of the present invention.
  • Figure 13 is a schematic view showing the process of forming a molded circuit assembly of a camera module in accordance with a third preferred embodiment of the present invention.
  • Figure 14 is a cross-sectional view showing a camera module in accordance with a fourth preferred embodiment of the present invention.
  • Figure 15 is an exploded view of a camera module in accordance with a fourth preferred embodiment of the present invention.
  • Figure 16 is a cross-sectional view showing a camera module based on a molding process in accordance with a fifth preferred embodiment of the present invention.
  • Figure 17 is a perspective exploded view of a camera module based on a molding process in accordance with a fifth preferred embodiment of the present invention.
  • Figure 18A is another embodiment of a molding process based camera module in accordance with a fifth preferred embodiment of the present invention.
  • Figure 18B is another embodiment of a molding process based camera module in accordance with a fifth preferred embodiment of the present invention.
  • Figure 18C is another embodiment of a molding process based camera module in accordance with a fifth preferred embodiment of the present invention.
  • Figure 19 is a cross-sectional view showing a camera module based on a molding process in accordance with a sixth preferred embodiment of the present invention.
  • Figure 20 is a cross-sectional view showing a camera module based on a molding process in accordance with a seventh preferred embodiment of the present invention.
  • Figure 21 is a schematic cross-sectional view showing an image forming process based on a molding process in accordance with an eighth preferred embodiment of the present invention.
  • Figure 22 is a cross-sectional view showing a camera module based on a molding process in accordance with a ninth preferred embodiment of the present invention.
  • Figure 23 is a cross-sectional view showing a camera module based on a molding process in accordance with a tenth preferred embodiment of the present invention.
  • Figure 24 is a cross-sectional view showing a camera module based on a molding process in accordance with an eleventh preferred embodiment of the present invention.
  • 25A and 25B are schematic cross-sectional views showing different angles of a camera module based on a molding process in accordance with a twelfth preferred embodiment of the present invention.
  • Figure 26 is a partial perspective view of a camera module based on a molding process in accordance with a twelfth preferred embodiment of the present invention.
  • Figure 27 is a cross-sectional view showing a camera module based on an integrated packaging process in accordance with a thirteenth preferred embodiment of the present invention.
  • Figure 28 is a schematic illustration of the manufacturing process of an integral base assembly in accordance with a thirteenth preferred embodiment of the present invention.
  • Figure 29 is a schematic illustration of a method of manufacturing an integrated base assembly in accordance with a thirteenth preferred embodiment of the present invention.
  • FIG. 30 is another embodiment of a camera module based on an integrated packaging process in accordance with a thirteenth preferred embodiment of the present invention.
  • 31A, 31B, 31C, and 31D are different embodiments of a camera module based on an integrated packaging process and a motor connection structure thereof according to a fourteenth preferred embodiment of the present invention.
  • FIG. 32 is a cross-sectional view showing a camera module based on an integrated packaging process and an integrated base assembly thereof according to a fifteenth preferred embodiment of the present invention.
  • FIG 33 is a cross-sectional view of a camera module based on an integrated packaging process and an integrated base assembly thereof in accordance with a sixteenth preferred embodiment of the present invention.
  • Figure 34 is a cross-sectional view showing a camera module based on an integrated packaging process and an integrated base assembly thereof in accordance with a seventeenth preferred embodiment of the present invention.
  • 35 is a cross-sectional view of a camera module based on an integrated packaging process and an integrated base assembly thereof in accordance with an eighteenth preferred embodiment of the present invention.
  • FIG. 36 is a cross-sectional view of a camera module based on an integrated packaging process and an integrated base assembly thereof in accordance with a nineteenth preferred embodiment of the present invention.
  • FIG. 37 is a cross-sectional view of a camera module based on an integrated packaging process and an integrated base assembly thereof in accordance with a twentieth preferred embodiment of the present invention.
  • FIG. 38 is a cross-sectional view of a camera module and an integrated base assembly thereof based on an integrated packaging process in accordance with a twenty-first preferred embodiment of the present invention.
  • 39 is a cross-sectional view of a camera module based on an integrated packaging process and an integrated base assembly thereof in accordance with a twenty-second preferred embodiment of the present invention.
  • FIG. 40 is another embodiment of a camera module based on an integrated packaging process in accordance with a twenty-second preferred embodiment of the present invention.
  • 41 is a schematic diagram showing the structural strength comparison between an imaging and a conventional camera module based on an integrated packaging process according to the above preferred embodiment of the present invention.
  • FIG. 42 is a schematic diagram showing the horizontal dimension comparison of a camera module based on an integrated packaging process and a conventional camera module according to the above preferred embodiment of the present invention.
  • FIG. 43 is a schematic diagram showing the height comparison between the camera module and the conventional camera module based on the integrated packaging process according to the above preferred embodiment of the present invention.
  • Figure 44 is a schematic illustration of the flatness of a camera module based on an integrated packaging process in accordance with the above-described preferred embodiment of the present invention.
  • 45 is a schematic diagram showing the comparison of imaging quality of a camera module based on an integrated packaging process and a conventional camera module according to the above preferred embodiment of the present invention.
  • 46A and 46B are schematic diagrams showing a comparison of a manufacturing process of a camera module and a conventional camera module based on the integrated packaging process according to the above preferred embodiment of the present invention.
  • Figure 47 is a side cross-sectional view of a camera module based on an integrated packaging process in accordance with a twenty-third preferred embodiment of the present invention.
  • Figure 48 is a side cross-sectional view of a camera module based on an integrated packaging process in accordance with a twenty-fourth preferred embodiment of the present invention.
  • Figure 49A is a schematic view of a molded image forming module formed by a comparative technique.
  • Figure 49B is a schematic view of a conventional molded image forming module in the comparative art.
  • Figure 49C is a schematic view of a conventional molded image forming module in the comparative art.
  • Figure 49D is a schematic view of a conventional molded image forming module in the comparative art.
  • Figure 49E is a schematic view of a conventional molded image forming module in the comparative art.
  • Figure 50 is a cross-sectional view showing a camera module of a twenty-fifth preferred embodiment of the present invention.
  • Figure 51 is a perspective view of a molded wiring board assembly of a camera module in accordance with a twenty-fifth preferred embodiment of the present invention.
  • Figure 52 is a perspective view showing a tilt angle of a molded wiring board assembly of a camera module according to a twenty-fifth preferred embodiment of the present invention.
  • Figure 53 is a schematic view of a light ray of a camera module in accordance with a twenty-fifth preferred embodiment of the present invention.
  • 54A and 54B are schematic views showing a manufacturing process of a molded wiring board assembly in accordance with a twenty-fifth preferred embodiment of the present invention.
  • Figure 55 is a schematic illustration of the demolding process of a molded wiring board assembly in accordance with a twenty-fifth preferred embodiment of the present invention.
  • Figure 56 is a variant embodiment of a molded wiring board assembly in accordance with a twenty-fifth preferred embodiment of the present invention.
  • Figure 57 is another modified embodiment of a molded wiring board assembly in accordance with a twenty-fifth preferred embodiment of the present invention.
  • Figure 58 is a schematic diagram of an application of a camera module in accordance with a twenty-fifth preferred embodiment of the present invention.
  • Figure 59 is a variant embodiment of a camera module in accordance with a twenty-first preferred embodiment of the present invention.
  • the term “a” is understood to mean “at least one” or “one or more”, that is, in one embodiment, the number of one element may be one, and in other embodiments, the element The number can be multiple, and the term “a” cannot be construed as limiting the quantity.
  • the camera module can be applied to various electronic devices to assist in the shooting activities through the camera module.
  • the camera module can be used to capture images or video images of objects or people.
  • the camera module can be applied to a mobile electronic device, for example, the mobile electronic device can be, but not limited to, a mobile phone, a tablet device, a television, an intelligent vehicle, an intelligent monitoring device, and the like.
  • the camera module can be a dynamic focus camera module including a molded circuit board assembly 1010, a lens 1050, a motor 1060, and a sensor chip 1030.
  • a dynamic focus camera module including a molded circuit board assembly 1010, a lens 1050, a motor 1060, and a sensor chip 1030.
  • the camera module can be embodied as a fixed focus camera module without the motor.
  • the lens may be mounted to a lens holder and then mounted to the molded circuit board assembly.
  • the motor 1060 is mounted to the molded wiring board assembly 1010, and the lens 1050 is mounted to the motor 1060 such that the lens 1050 is supported above the molded wiring board assembly 1010.
  • the molded wiring board assembly 1010 includes a molding portion 1011 and a wiring board portion 1012, and the molding portion 1011 is molded to connect the wiring board portion 1012.
  • the circuit board portion 1012 includes a circuit board main body 10121.
  • the photo sensor chip 1030 is disposed on the circuit board main body 10121 and located inside the molding portion 1011.
  • the motor 1060 is mounted on the molding portion 1011 of the molded wiring board assembly 1010 and electrically connected to the wiring board portion 1012, and the lens 1050 is mounted to the motor 1060.
  • the lens 1050 can be adapted by the motor 1060 to auto focus.
  • the lens 1050 is located in the photosensitive path of the photosensitive chip 1030, so that when the camera module is used to collect an image of an object, the light reflected by the object can be further processed by the lens 1050 to be further used by the sensor chip. 1030 is received to be suitable for photoelectric conversion.
  • the circuit board portion 1012 includes a photosensitive circuit and at least one circuit component 10122.
  • the photosensitive circuit is preset in the circuit board main body 10121, and the circuit component 10122 is electrically connected to the photosensitive circuit and the photosensitive chip 1030 for the photosensitive operation process of the photosensitive chip 1030.
  • the circuit component 10122 can be, for example but not limited to, a resistor, a capacitor, a diode, a triode, a potentiometer, a relay, a driver, a processor, a memory, and the like.
  • the motor 1060 when assembling the image forming mold, is electrically connected to the photosensitive circuit through at least one motor pin 1061, and the motor pin 1061 is soldered to The circuit board main body 10121.
  • the molding portion 1011 can enclose the circuit component 10122 inside, thus making the circuit component 10122 not directly exposed to the space, more specifically, not exposed to the In the closed environment in which the photosensitive chip 1030 communicates, it is different from the existing circuit elements in the conventional camera module, such as a resisting container member, thereby preventing dust and debris from staying in the circuit components and contaminating the photosensitive chip.
  • the molding portion 1011 forms a through hole 101100 such that the molding portion 1011 surrounds the outside of the photosensitive chip 1030 and provides a light path of the lens 1050 and the photosensitive chip 1030. In other words, the molding portion forms a light window for the photosensitive chip, and in the camera module, light passing through the lens 1050 further passes through the light window to reach the photosensitive chip.
  • the molding portion 1011 envelops the circuit component 10122 has the advantages of protecting the circuit component 10122 and corresponding performance improvement of the camera module, but those skilled in the art should understand that The molding portion 1011 is not limited to wrapping the circuit component 10122. That is, in other embodiments of the present invention, the molding portion 1011 may be directly molded to the wiring board of the circuit component 10122 which is not protruded, or may be molded to the outside of the circuit component 10122. Different locations, such as around, or embedded in the interior of the board body 10121.
  • the molding portion 1011 is convexly surrounding the outside of the photosensitive chip 1030, and in particular, the molding portion 1011 is integrally closed and connected to have The sealing property is good, so that when the motor 1060 is mounted on the molding portion 1011, the photosensitive chip 1030 is sealed inside to form a closed inner space.
  • a conventional wiring board may be used as the wiring board main body 10121, and the surface of the wiring board main body 10121 may be molded, such as by an injection molding machine, by insert molding ( Insert molding process).
  • the wiring board after the SMT process Surface Mount Technology surface mount process is molded to form the molding portion 1011, or the molding portion 1011 is formed by a molding process commonly used in a semiconductor package.
  • the circuit board main body 10121 may be selected, for example, but not limited to, a soft and hard bonding board, a ceramic substrate (without a soft board), a PCB hard board (without a soft board), and the like.
  • the manner in which the molding portion 1011 is formed may be selected, for example, but not limited to, an injection molding process, a molding process, and the like.
  • the molding material 1011 can be selected from materials such as, but not limited to, nylon, LCP (Liquid Crystal Polymer), PP (Polypropylene, polypropylene), etc., and the molding process can be adopted. Resin. It should be understood by those skilled in the art that the foregoing alternatives and the materials that can be selected are merely illustrative of the embodiments of the invention and are not intended to be limiting.
  • the motor 1060 is mounted on the molding portion 1011 of the molded wiring board assembly 1010, so that the molding portion 1011 is equivalent to the function of the bracket in the conventional camera module.
  • the motor 1060 provides a support, fixed position, but assembly is different from conventional COB processes.
  • the bracket of the camera module of the conventional COB process is fixed to the circuit board in a pasting manner, and the molding portion 1011 is fixed to the circuit board main body 10121 by a molding process, and does not need to be pasted and fixed, and the molding method is relatively pasted.
  • the fixing has better connection stability and controllability of the process, and there is no need to reserve an AA-adjusted glue space between the molding portion 1011 and the circuit board main body 10121, thereby reducing the conventional camera module AA.
  • the adjusted reserved space is such that the thickness of the camera module is reduced; on the other hand, the molding portion 1011 is wrapped around the circuit component 10122, so that the conventional bracket function and the circuit component can be spatially overlapped, It is required to reserve a safe distance around the circuit device like a conventional camera module, so that the height of the molding portion 1011 having a bracket function can be set in a small range, thereby further providing a reduction in the thickness of the camera module. space.
  • the molding portion 1011 replaces the conventional bracket, avoiding the tilt error caused by the bracket during the assembly, and reduces the cumulative tolerance of the assembly of the camera module.
  • the molding portion 1011 includes a support table 10111, and the support table 10111 is adapted to mount a filter 1040 such that the filter 1040 is located above the photosensitive chip 1030. That is, the light entering the lens 1050 passes through the filter 1040 and reaches the photosensitive chip 1030.
  • the filter 1040 can be implemented as, but not limited to, an infrared cut filter (IRCF).
  • the support table 10111 of the molding portion 1011 forms an inner ring groove 10113 to provide a sufficient installation space for the filter 1040. It is worth mentioning that the molding portion 1011 replaces the conventional bracket, and connects the motor 1060 with the filter 1040 while providing the mounting position of the filter 1040 so that the molding portion 1011, the filter 1040 and the circuit component 10122 are reasonably arranged to fully utilize the remaining space outside the photosensitive area of the photosensitive chip 1030, so that the imaging mode The group is minimized. At the same time, by means of the molding process, the molding portion 1011 is provided with the flat support table 10111, so that the filter 1040 can be mounted flat, ensuring the consistency of the optical path.
  • the inner ring groove 10113 has an L-shaped cross section and communicates with the through hole 101100 of the molding portion 1011 so that the filter 1040 is supported and mounted on the photosensitive chip 1030. path.
  • the photosensitive chip 1030 is connected to the wiring board main body 10121 through a series of leads 1031, and is electrically connected to the photosensitive circuit.
  • the lead 1031 can be implemented as, for example but not limited to, a gold wire, a copper wire, an aluminum wire, a silver wire.
  • the series of leads 1031 of the photosensitive chip 1030 may be connected to the circuit board body 10121 by a conventional COB method, such as, but not limited to, soldering. That is to say, the connection between the photosensitive chip 1030 and the circuit board main body 10121 can fully utilize the existing mature connection technology to reduce the cost of the improved technology, fully utilize the traditional process and equipment, and avoid waste of resources.
  • the connection between the photosensitive chip 1030 and the circuit board main body 10121 can also be realized by any other connection manner of the inventive object of the present invention, and the present invention is in this aspect. Unlimited.
  • the photosensitive chip 1030 is disposed on the upper surface of the circuit board main body 10121, such as attached to the upper surface, and the molding portion 1011 surrounds the The outside of the photosensitive chip 1030, when manufacturing the molded wiring board assembly 1010, different manufacturing sequences may be selected, for example, but not limited to, in one embodiment, the circuit board main body 10121 may be first installed.
  • the photosensitive chip 1030, and then outside the photosensitive chip 1030, the edge position of the wiring board main body 10121, molding the molding portion 1011, and protruding the circuit component of the wiring board main body 10121 10122 is wrapped inside it.
  • the edge position of the circuit board main body 10121 may be first molded to form the molding portion 1011, and the circuit protruding from the circuit board main body 10121 may be formed.
  • the element 10122 is wrapped inside, and then the photosensitive chip 1030 is mounted on the wiring board main body 10121 so as to be located inside the molding portion 1011.
  • the molded wiring board assembly 1010A includes a molding portion 1011A and a wiring board portion 1012A, and the molding portion 1011A is molded to connect the wiring board portion 1012A.
  • the circuit board portion 1012A includes a circuit board main body 10121A, and the photo sensor chip 1030 is disposed on the circuit board main body 10121A and located inside the molding portion 1011A.
  • the motor 1060 is mounted on the molding portion 1011A of the wiring board assembly 10A, and is electrically connected to the wiring board portion 1012A, and the lens 1050 is mounted to the motor 1060, and The lens 1050 can be adjusted by the motor 1060 to be suitable for autofocus.
  • the lens 1050 is located in the photosensitive path of the photosensitive chip 1030, so that when the camera module is used to collect an image of an object, the light reflected by the object can be further processed by the lens 1050 to be further used by the sensor chip. 1030 is received to be suitable for photoelectric conversion.
  • the circuit board portion 1012A includes a light sensing circuit and at least one circuit component 10122A.
  • the photosensitive circuit is preset in the circuit board main body 10121A, and the circuit component 10122A is electrically connected
  • the photosensitive circuit and the photosensitive chip 1030 are used for the photosensitive operation of the photosensitive chip 1030.
  • the circuit component 10122A can be, but not limited to, a resistor, a capacitor, a diode, a triode, a potentiometer, a relay, a driver, a processor, a memory, and the like.
  • the motor 1060 when assembling the image forming mold, is electrically connected to the photosensitive circuit through at least one motor pin 1061A, and the motor pin 1061A is soldered to The circuit board main body 10121.
  • the molding portion 1011A encloses the circuit component 10122A inside, thus making the circuit component 10122A not directly exposed to the space, more specifically, not exposed to the photosensitive In the closed environment in which the chip 1030 communicates, it is different from the existing circuit elements in the conventional camera module, such as a resisting container member, thereby preventing dust and debris from staying in the circuit components and contaminating the photosensitive chip.
  • the molding portion 1011A forms a through hole 101100A such that the molding portion surrounds the outside of the photosensitive chip 1030 and provides a light path of the lens 1050 and the photosensitive chip 1030.
  • the circuit board main body 10121A includes an inner recess 101211A, and the photosensor chip 1030 is disposed in the inner recess 101211A.
  • the inner groove 101211A is disposed in the circuit board main body 10121A, and the photosensitive chip 1030 is accommodated therein, so that the photosensitive chip 1030 can be prevented from protruding significantly.
  • the height of the photosensitive chip 1030 relative to the molding portion 1011A is lowered, thereby reducing the height limitation of the photosensitive chip 1030 to the molding portion 1011A, providing further reduction High probability.
  • a conventional wiring board may be used as the wiring board main body 10121A, and the surface of the wiring board main body 10121A may be molded, such as by an injection molding machine, by insert molding. (insert molding) Process
  • the wiring board after the SMT process is molded to form the molding portion 1011A, or the molding portion 1011A is formed by a molding process commonly used in a semiconductor package.
  • the inner groove 101211 needs to be opened to the circuit board main body 10121A. That is, the inner groove 101211A is opened on the conventional circuit board to be adapted to accommodate the mounting of the photosensitive chip 1030.
  • the circuit board main body 10121A may be selected, for example, but not limited to, a soft and hard bonding board, a ceramic substrate (without a soft board), a PCB hard board (without a soft board), and the like.
  • the manner in which the molding portion 1011A is formed may be selected, for example, but not limited to, an injection molding process, a molding process, and the like.
  • the molding part 1011A may be selected from materials such as, but not limited to, nylon, LCP (Liquid Crystal Polymer), PP (Polypropylene, polypropylene), etc., and the molding process may be adopted. Resin. It should be understood by those skilled in the art that the foregoing alternatives and the materials that can be selected are merely illustrative of the embodiments of the invention and are not intended to be limiting.
  • the motor 1060 is mounted to the molding portion 1011A of the molded wiring board assembly 1010A, so that the molding portion 1011A is equivalent to the function of the bracket in the conventional camera module,
  • the motor 1060 provides a support, fixed position, but assembly is different from conventional COB processes.
  • the bracket of the camera module of the conventional COB process is fixed to the circuit board in a pasting manner, and the molding portion 1011A is fixed to the circuit board main body 10121A by a molding process, and does not need to be pasted and fixed.
  • the plastic method has better connection stability and controllability of the process than the adhesive fixing, and there is no need to reserve an AA-adjusted glue space between the molding portion 1011A and the circuit board main body, thereby reducing the conventional imaging mode.
  • the reserved space of the group AA is adjusted so that the thickness of the camera module is reduced; on the other hand, the molding portion 1011A is wrapped around the circuit component 10122A, so that the conventional bracket function and circuit components can be spatially overlapped.
  • There is no need to reserve a safe distance around the circuit device like the conventional camera module so that the height of the molding portion 1011A having the function of the bracket can be set in a small range, thereby further providing the thickness of the camera module can be reduced. Small space.
  • the molding portion 1011A replaces the conventional bracket, avoiding the tilt error caused by the bracket during the assembly and assembly, and reducing the cumulative tolerance of the assembly of the camera module.
  • the molding portion 1011A includes a support table 10111A adapted to mount the filter 1040 such that the filter 1040 is positioned above the photosensitive chip 1030. That is, the light entering the lens 1050 passes through the filter 1040 and reaches the photosensitive chip 1030.
  • the filter 1040 can be implemented as, but not limited to, an infrared cut filter (IRCF).
  • the support table 10111A of the molding portion 1011A forms an inner ring groove 10113A to provide a sufficient installation space for the filter 1040. It is worth mentioning that the molding portion 1011 replaces the conventional bracket, and connects the motor 1060 with the filter 1040 while providing the mounting position of the filter 1040 so that the molding portion The 1011A, the filter 1040, and the circuit component 10122A are reasonably arranged to fully utilize the remaining space outside the photosensitive area of the photosensitive chip 1030, thereby minimizing the camera module. At the same time, the molding portion 1011A is provided with the flat support table 10111A by means of a molding process, so that the filter 1040 can be mounted flat, ensuring the consistency of the optical path.
  • the inner ring groove 10113A may have an L-shaped cross section and communicate with the through hole 101100A of the molding portion 1011A, so that the filter 1040 is supported and mounted on the photosensitive chip 1030. path.
  • the photosensitive chip 1030 is connected to the wiring board main body 10121A through a series of leads 1031A, and is electrically connected to the photosensitive circuit.
  • the lead 51A may be implemented as, for example but not limited to, a gold wire, a copper wire, an aluminum wire, a silver wire.
  • the series of leads 1031A of the photosensitive chip 1030 may be connected to the circuit board body 10121A by a conventional COB method, such as, but not limited to, soldering. That is to say, the connection between the photosensitive chip 1030 and the circuit board main body 10121A can fully utilize the existing mature connection technology to reduce the cost of the improved technology, fully utilize the traditional process and equipment, and avoid waste of resources.
  • the connection of the photosensitive chip 1030 to the circuit board main body 10121A can also be realized by any other connection manner of the inventive object of the present invention, and the present invention is in this aspect. Unlimited.
  • the photosensitive chip 1030 is disposed in the inner groove 101211A of the circuit board main body 10121A, and the molding portion 1011A surrounds the photosensitive chip. Outside of 1030.
  • the inner groove 101211A may be first opened on the circuit board main body 10121A, and then Installed in the inner groove 12110A of the circuit board main body 10121
  • the photosensitive chip 1030, and then the outer side of the photosensitive chip 1030, the edge position of the wiring board main body 10121A, molding the molding portion 1011A, and the circuit protruding from the wiring board main body 10121A Element 10122A is wrapped inside it.
  • the inner groove 101211A may be opened on the circuit board main body 10121A, and then the molding portion may be molded at an edge position of the circuit board main body 10121A. 1011A, and the circuit component 10122A protruding from the circuit board main body 10121A is wrapped therein, and then the photosensitive chip 1030 is mounted in the inner groove 101211A of the circuit board main body 10121A, so that Located inside the molded portion 1011A.
  • the molded wiring board assembly 1010B includes a molding portion 1011B and a wiring board portion 1012B that is moldedly joined to the wiring board portion 1012B.
  • the wiring board portion 1012B includes a wiring board main body 10121B, and the photosensitive chip 1030 is disposed on the wiring board main body 10121B and located inside the molding portion 1011B.
  • the motor 1060 is mounted on the molding portion 1011B of the wiring board assembly 10B, and is electrically connected to the wiring board portion 1012B, and the lens 1050 is mounted to the motor 1060, and The lens 1050 can be adapted by the motor 1060 to auto focus.
  • the lens 1050 is located in the photosensitive path of the photosensitive chip 1030, so that when the camera module is used to collect an image of an object, the light reflected by the object can be further processed by the lens 1050 to be further used by the sensor chip. 1030 is received to be suitable for photoelectric conversion.
  • the circuit board portion 1012B includes a photosensitive circuit (not shown) and at least one circuit component 10122B.
  • the photosensitive circuit is preset in the circuit board main body 10121B, and the circuit component 10122B is electrically connected to the photosensitive circuit and the photosensitive chip 1030 for the photosensitive operation process of the photosensitive chip 1030.
  • the circuit component 10122B can be, for example but not limited to, a resistor, a capacitor, a diode, a triode, a potentiometer, a relay, a driver, a processor, a memory, and the like.
  • the motor 1060 when assembling the image forming mold, is electrically connected to the photosensitive circuit through at least one motor pin 1061, and the wire is soldered to the line Plate body 10121B.
  • the molding portion 1011B encloses the circuit component 10122B inside, thus making the circuit component 10122B not directly exposed to the space, more specifically, not exposed to the photosensitive In the closed environment in which the chip 1030 communicates, it is different from the existing circuit elements in the conventional camera module, such as a resisting container member, thereby preventing dust and debris from staying in the circuit components and contaminating the photosensitive chip.
  • the molding portion 1011B forms a through hole 101100B such that the molding portion surrounds the outside of the photosensitive chip 1030 and provides a light path of the lens 1050 and the photosensitive chip 1030.
  • the circuit board main body 10121B has a passage 101212B, and a lower portion of the passage 101212B is adapted to mount the photosensitive chip 1030.
  • the via 101212B causes the upper and lower sides of the wiring board main body 10121B to communicate, so that when the photosensitive chip 1030 is mounted on the back surface of the wiring board main body 10121B and the photosensitive area is mounted upward on the wiring board main body 10121B,
  • the photosensitive chip 1030B of the photosensitive chip 1030 is capable of receiving light entering by the lens 1050.
  • the via 101212B has an outer ring groove 101213B on the bottom side to provide a mounting position of the photosensitive chip 1030.
  • the bottom surface of the photosensitive chip 1030 and the surface of the circuit board main body 10121B are in the same plane, and may be
  • the bottom surface of the photosensitive chip 1030 is recessed inwardly with respect to the surface of the circuit board main body 10121B, that is, the bottom surface of the photosensitive chip 1030 may not protrude from the bottom surface of the circuit board main body 10121B, thereby securing the mold.
  • the surface flatness of the plastic circuit board assembly 1010B is recessed inwardly with respect to the surface of the circuit board main body 10121B, that is, the bottom surface of the photosensitive chip 1030 may not protrude from the bottom surface of the circuit board main body 10121B, thereby securing the mold.
  • the via 101212B is stepped to facilitate mounting of the photosensitive chip 1030, providing a stable mounting position for the photosensitive chip 1030 and exposing its photosensitive region to the inner space.
  • a chip mounting method different from the conventional one is provided, that is, a Flip Chip.
  • the photosensitive chip 1030 is attached to the wiring board main body 10121B from the back surface direction of the wiring board main body 10121B instead of being required from the front surface of the wiring board main body 10121, that is, from the wiring board as in the above embodiment.
  • the photosensitive region of the photosensitive chip 1030 is mounted on the wiring board main body 10121 upward.
  • Such a structure and mounting manner are such that the photosensitive chip 1030 and the molding portion 1011B are relatively independent, the mounting of the photosensitive chip 1030 is not affected by the molding portion 1011B, and the molding of the molding portion 1011B The influence of the molding on the photosensitive chip 1030 is also small.
  • the photosensitive chip 1030 is embedded on the outer side surface of the circuit board main body 10121B, and does not protrude from the inner side surface of the circuit board main body 10121B, so that a larger space is left inside the circuit board main body 10121B.
  • the height of the molded portion 1011B is not limited by the height of the photosensitive chip 1030, so that the molded portion 1011B can reach a smaller height.
  • a conventional wiring board may be used as the wiring board main body 10121B, and the surface of the wiring board main body 10121B may be molded, such as by an injection molding machine, by insert molding ( Insert molding process to form the molding portion 1011B by a wiring board after performing an SMT process (Surface Mount Technology surface mount process), or to form the molding portion 1011B by a molding process commonly used in a semiconductor package, and The via 101212B is opened on the wiring board main body 10121B.
  • the circuit board main body 10121B may be selected, for example, but not limited to, a soft and hard bonding board, a ceramic substrate (without a soft board), a PCB hard board (without a soft board), and the like.
  • the manner in which the molding portion 1011B is formed may be selected, for example, but not limited to, an injection molding process, a molding process, and the like.
  • the molding part 1011B may be selected from materials such as, but not limited to, nylon, LCP (Liquid Crystal Polymer), PP (Polypropylene, polypropylene), etc., and the molding process may be adopted. Resin. It should be understood by those skilled in the art that the foregoing alternatives and the materials that can be selected are merely illustrative of the embodiments of the invention and are not intended to be limiting.
  • the motor 1060 is mounted on the molding portion 1011B of the molded wiring board assembly 1010B, so that the molding portion 1011B is equivalent to the function of the bracket in the conventional camera module,
  • the motor 1060 provides a support, fixed position, but assembly is different from conventional COB processes.
  • the bracket of the camera module of the conventional COB process is fixed to the circuit board by sticking, and the molding part 1011 is fixed to the circuit board main body 10121B by a molding process, and does not require a sticking and fixing process, and the molding method has better connection stability and controllability with respect to the pasting fixing, and is in the molding portion 1011 on the line.
  • the molding part 1011B is wrapped In the circuit component 10122B, the conventional bracket function and the circuit component can be spatially overlapped, and there is no need to reserve a safe distance around the circuit device like the conventional camera module, thereby making the molding portion having the bracket function.
  • the height of the 1011B can be set in a smaller range, thereby further providing a space in which the thickness of the camera module can be reduced.
  • the molding portion 1011B replaces the conventional bracket, avoiding the tilt error caused by the bracket during the assembly and assembly, and reducing the cumulative tolerance of the assembly of the camera module.
  • the molding portion 1011B includes a support table 10111B adapted to mount the filter 1040 such that the filter 1040 is positioned above the photosensitive chip 1030. That is, the light entering the lens 1050 passes through the filter 1040 and reaches the photosensitive chip 40.
  • the filter 1040 can be implemented as, but not limited to, an infrared cut filter (IRCF).
  • the support table 10111B of the molding portion 1011B forms an inner ring groove 10113B to provide a sufficient installation space for the filter 1040. It is worth mentioning that the molding portion 1011B replaces the conventional bracket, and connects the motor 1060 with the filter 1040 while providing the mounting position of the filter 1040 so that the molding portion 1011B, the filter 1040 and the circuit component 10122B are reasonably arranged to fully utilize the remaining space outside the photosensitive area of the photosensitive chip 1030, so that the camera module is minimized. At the same time, the molding portion 1011B is provided with the flat support table 10111B by means of a molding process, so that the filter 1040 can be mounted flat, ensuring the consistency of the optical path.
  • the inner ring groove 10113B has an L-shaped circular cross section that communicates with the through hole 101100B of the molding portion 1011B so that the filter 1040 is supported and mounted on the photosensitive chip 1030. Photosensitive path.
  • the photosensitive chip 1030 is disposed on a lower surface of the wiring board main body 10121B, and the molding portion 1011B surrounds the outside of the wiring board main body 10121B. edge.
  • different manufacturing sequences may be selected, such as, but not limited to, in one embodiment, the via 101212B may be first opened on the wiring board main body 10121B, and then The photosensitive chip 1030 is flip-chip mounted on the via 101212B of the wiring board main body 10121, and then the molded portion 1011B is molded at an edge position of the wiring board main body 10121B outside the photosensitive chip 1030.
  • the via 101212B may be first opened on the wiring board main body 10121B, and then the molding portion 1011B may be molded at an edge position of the wiring board main body 10121B, and The circuit component 10122B protruding from the circuit board main body 10121B is wrapped therein, and then the photosensitive chip 1030 is mounted on the circuit board main body 10121B so as to be located outside the circuit board main body 10121B. Ring groove 101213B.
  • the molding portion 1011B may be molded at an edge position of the wiring board main body 10121B, and the circuit component protruding from the wiring board main body 10121B may be formed.
  • 10122B is wrapped around the inside of the circuit board main body 10121B to open the passage 101212B, the via 101212B is then opened in the board main body 10121B, and then the photoreceptor chip 1030 is flip-chip mounted on the via 101212B of the board main body 10121B.
  • the molded wiring board assembly 1010C includes a molding portion 1011C and a wiring board portion 1012C that is moldedly joined to the wiring board portion 1012C.
  • the circuit board portion 1012C includes a circuit board main body 10121C, and the photo sensor chip 1030 is disposed on the circuit board main body 10121C and located inside the molding portion 1011C.
  • the motor 1060 is mounted on the molding portion 1011C of the wiring board assembly 10C, and is electrically connected to the wiring board portion 1012C, and the lens 1050 is mounted to the motor 1060, and
  • the lens 1050 can be adapted by the motor 50 to be auto focus.
  • the lens 1050 is located in the photosensitive path of the photosensitive chip 1030, so that when the camera module is used to collect an image of an object, the light reflected by the object can be further processed by the lens 1050 to be further used by the sensor chip. 1030 is received to be suitable for photoelectric conversion.
  • the circuit board portion 1012C includes a photosensitive circuit (not shown) and at least one circuit component 10122C.
  • the photosensitive circuit is preset in the circuit board main body 10121C, and the circuit component 10122C is electrically connected to the photosensitive circuit and the photosensitive chip 1030 for the photosensitive operation process of the photosensitive chip 1030.
  • the circuit component 10122C can be, for example but not limited to, a resistor, a capacitor, a diode, a triode, a potentiometer, a relay, a driver, a processor, a memory, and the like.
  • the motor 1060 when assembling the image forming mold, the motor 1060 is electrically connected to the photosensitive circuit through a motor pin 1061, and the motor pin 106 is soldered to The circuit board main body 10121C.
  • the molding portion 1011C wraps the circuit component 10122C inside, thus making the circuit component 10122C not directly exposed to the space, more specifically, not exposed to the photosensitive In the closed environment in which the chip 1030 communicates, it is different from the existing circuit elements in the conventional camera module, such as a resisting container member, thereby preventing dust and debris from staying in the circuit components and contaminating the photosensitive chip.
  • the molding portion 1011C forms a through hole 101100C such that the molding portion surrounds the outside of the photosensitive chip 1030 and provides a light path of the lens 1050 and the photosensitive chip 1030.
  • the circuit board main body 10121C has at least one via 101214C, and the molding portion 1011 is immersed in the via 101214C.
  • Each of the via holes 101214C is provided in a molding region of the wiring board main body, and is disposed in coordination with the circuit component 10122C. It is to be noted that the via 101214C is disposed such that the molding portion 1011C is immersed in the wiring board main body 10121C at the time of molding, and the molding portion 1011C and the wiring board main body 10121C are reinforced. The bonding force between the molding portion 1011C and the wiring board main body 10121C is not easily detached, and the structural strength of the wiring board main body 10121C itself is enhanced, so that the wiring board main body 10121C can have a smaller thickness. .
  • the location and number of vias 101214C can be set as desired, and those skilled in the art will appreciate that the location and number of vias 101214C are not a limitation of the present invention.
  • the circuit board main body 10121C may further be provided with the inner groove 101211A or the passage 101212B, so that the molded circuit board assembly
  • the 1010C can have different advantages, such as smaller thickness and higher structural strength.
  • the arrangement of the via holes 101214C on the circuit board main body 10121C in the embodiment may bring some advantages, such as increasing the mode of the circuit board main body 10121C and the molding portion 1011C. Plastic bonding, reinforcing the structural strength of the circuit board main body 10121C, etc., of course, those skilled in the art should understand that the arrangement of the via hole 101214C of the circuit board main body 10121C is not a limitation of the present invention. That is, in other embodiments of the present invention, the vias 101214C may not be provided, or different layouts, different numbers of the vias 101214C may be provided as needed.
  • a conventional wiring board may be used as the wiring board main body 10121C, and the surface of the wiring board main body 10121C may be molded, such as by an injection molding machine, by insert molding ( Insert molding process).
  • the wiring board after the SMT process (Surface Mount Technology surface mount process) is molded to form the molding portion 1011C, or the molding portion 1011C is formed by a molding process commonly used in a semiconductor package.
  • the circuit board main body 10121C may be selected, for example, but not limited to, a soft and hard bonding board, a ceramic substrate (without a soft board), a PCB hard board (without a soft board), and the like.
  • the manner in which the molding portion 1011C is formed may be selected, for example, but not limited to, an injection molding process, a molding process, and the like.
  • the molding part 1011C may be selected from materials such as, but not limited to, nylon, LCP (Liquid Crystal Polymer), PP (Polypropylene, polypropylene), etc., and the molding process may be adopted. Resin. It should be understood by those skilled in the art that the foregoing alternatives and the materials that can be selected are merely illustrative of the embodiments of the invention and are not intended to be limiting.
  • the motor 1060 is mounted on the molding portion 1011C of the molded wiring board assembly 1010C, so that the molding portion 1011C is equivalent to the function of the bracket in the conventional camera module,
  • the motor 1060 provides a support, fixed position, but assembly is different from conventional COB processes.
  • the bracket of the camera module of the conventional COB process is fixed to the circuit board in a pasting manner, and the molding portion 1011C is fixed to the circuit board main body 10121C by a molding process, and does not need to be pasted and fixed, and the molding method is relatively pasted.
  • the fixing has better connection stability and controllability of the process, and there is no need to reserve AA-adjusted glue space between the main body of the circuit board in the molding part 1011C, thereby reducing the pre-adjustment of the conventional camera module AA.
  • the space is left to reduce the thickness of the camera module; on the other hand, the molding portion 1011C is wrapped around the circuit component 10122C, so that the conventional bracket function and circuit components can be spatially overlapped, without the need for
  • the camera module reserves a safe distance around the circuit device, so that the height of the molding portion 1011C having the bracket function can be set to a small range, thereby further providing a space in which the thickness of the camera module can be reduced.
  • the molding portion 1011C replaces the conventional bracket, avoiding the tilt error caused by the bracket during the sticking assembly, and reducing the cumulative tolerance of the assembly of the camera module.
  • the molding portion 1011C includes a support table 10111C adapted to mount the filter 1040 such that the filter 1040 is positioned above the photosensitive chip 1030. That is, the light entering the lens 1050 passes through the filter 1040 and reaches the photosensitive chip 40.
  • the filter 1040 can be implemented as, but not limited to, an infrared cut filter (IRCF).
  • the support table 10111C of the molding portion 1011C forms an inner ring groove 10113C for the filtering Sheet 1040 provides ample installation space. It is worth mentioning that the molding portion 1011C replaces the conventional bracket, and connects the motor 1060 with the filter 1040 while providing the mounting position of the filter 1040 so that the molding portion 1011C, the filter 1040 and the circuit component 10122C are reasonably arranged to fully utilize the remaining space outside the photosensitive area of the photosensitive chip 1030, so that the camera module is minimized. At the same time, by means of the molding process, the molding portion 1011C is provided with the flat support table 10111C, so that the filter 1040 can be mounted flat, ensuring the consistency of the optical path.
  • the inner ring groove 10113C has an L-shaped cross section and communicates with the through hole 101100C of the molding portion 1011C, so that the filter 1040 is supported and mounted on the photosensitive path of the photosensitive chip 1030. .
  • the photosensitive chip 1030 is connected to the wiring board main body 10121C through a series of leads 1031, and is electrically connected to the photosensitive circuit.
  • the lead 1031 can be implemented as, for example but not limited to, a gold wire, a copper wire, an aluminum wire, a silver wire.
  • the series of leads 1031 of the photosensitive chip 1030 may be connected to the circuit board body 10121C by a conventional COB method, such as, but not limited to, soldering. That is to say, the connection between the photosensitive chip 1030 and the circuit board main body 10121C can fully utilize the existing mature connection technology to reduce the cost of the improved technology, fully utilize the traditional process and equipment, and avoid waste of resources.
  • the connection between the photosensitive chip 1030 and the circuit board main body 10121C can also be realized by any other connection manner of the inventive object of the present invention, and the present invention is in this aspect. Unlimited.
  • the photosensitive chip 1030 is disposed on the upper surface of the wiring board main body 10121C, and the molding portion 1011C surrounds the outer side of the photosensitive chip,
  • different manufacturing sequences may be selected, for example, but not limited to, in one embodiment, the photosensitive chip 1030 may be first mounted on the circuit board main body 10121C, and then in the Outside the photosensitive chip 1030, the edge portion of the wiring board main body 10121C is molded to form the molding portion 1011C, and the circuit component 10122C protruding from the wiring board main body 10121C is wrapped therein.
  • the edge position of the circuit board main body 10121C may be first molded to form the molding portion 1011C, and the circuit protruding from the circuit board main body 10121C may be formed.
  • the element 10122C is wrapped inside, and then the photosensitive chip 1030 is mounted on the wiring board main body 10121C so as to be located inside the molding portion 1011C.
  • the camera module is a fixed focus camera module.
  • the camera module includes a molded circuit board assembly 1010D, a lens 1050D, and a photosensitive chip 1030D.
  • the lens 1050D is mounted over the molded wiring board assembly 1010D. Further, the molded wiring board assembly 1010D includes a molding portion 1011D and a wiring board portion 1012D, and the molding portion 1011D is molded to connect the wiring board portion 1012D.
  • the circuit board portion 1012D includes a circuit board main body 10121D, and the photo sensor chip 1030D is disposed on the circuit board main body 10121D and located inside the molding portion 1011D.
  • the lens 1050D is located in the photosensitive path of the photosensitive chip 1030D, thereby being in the When the camera module is used to capture an image of an object, the light reflected by the object can be further received by the sensor chip 1030D after being processed by the lens 1050D to be suitable for photoelectric conversion.
  • the circuit board portion 1012D includes a light sensing circuit and at least one circuit component 10122.
  • the photosensitive circuit is preset in the circuit board main body 10121D, and the circuit component 10122D is electrically connected to the photosensitive circuit and the photosensitive chip 1030D for the photosensitive operation process of the photosensitive chip 1030D.
  • the circuit component 10122D can be, for example but not limited to, a resistor, a capacitor, a diode, a triode, a potentiometer, a relay, a driver, a processor, a memory, and the like.
  • the molding portion 1011D wraps the circuit component 10122D inside, thus making the circuit component 10122D not directly exposed to the space, more specifically, not exposed to the photosensitive
  • the closed environment in which the chip 1030D communicates is different from the manner in which the circuit components in the conventional camera module exist, such as a container member, thereby preventing dust and debris from staying at the circuit component 10122D and contaminating the sensor chip 1030D.
  • the molding portion 1011D forms a through hole 101100D such that the molding portion 1011D surrounds the outside of the photosensitive chip 1030D and provides a light path of the lens 1050D and the photosensitive chip 1030D.
  • a conventional wiring board may be used as the wiring board main body 10121D, and the surface of the wiring board main body 10121D may be molded, such as by an injection molding machine, by insert molding.
  • An insert molding process is performed by molding a wiring board after performing an SMT process (Surface Mount Technology surface mount process) to form the molding portion 1011D, or forming the molding portion by a molding process commonly used in a semiconductor package. 1011D.
  • the circuit board main body 10121D may be selected, for example, but not limited to, a soft and hard bonding board, a ceramic substrate (without a soft board), a PCB hard board (without a soft board), and the like.
  • the manner in which the molding portion 1011D is formed may be selected, for example, but not limited to, an injection molding process, a molding process, and the like.
  • the molding part 1011D may be selected from materials such as, but not limited to, nylon, LCP (Liquid Crystal Polymer), PP (Polypropylene, polypropylene), etc., and the molding process may be adopted. Resin. It should be understood by those skilled in the art that the foregoing alternatives and the materials that can be selected are merely illustrative of the embodiments of the invention and are not intended to be limiting.
  • the lens 1050D is mounted on the molding portion 1011D of the molded wiring board assembly 1010D, so that the molding portion 1011D is equivalent to the function of the bracket in the conventional camera module.
  • the lens 1050D provides support, fixed position, but assembly is different from conventional COB processes.
  • the bracket of the camera module of the conventional COB process is fixed to the circuit board in a pasting manner, and the molding portion 1011D is fixed to the circuit board main body 10121D by a molding process, and does not need to be pasted and fixed, and the molding method is relatively pasted.
  • the fixing has better connection stability and controllability of the process, and there is no need to reserve AA-adjusted glue space between the molding part 1011D and the circuit board main body, thereby reducing the pre-adjustment of the conventional camera module AA.
  • the space is left to reduce the thickness of the camera module; on the other hand, the molding portion 1011D is wrapped around the circuit component 10122D, so that the conventional bracket function and the circuit component can be spatially overlapped, without the need for
  • the camera module reserves a safe distance around the circuit device, so that the height of the molding portion 1011D having the function of the bracket can be set in a small range, thereby further providing a space in which the thickness of the camera module can be reduced. A fixed-focus camera module with a smaller thickness.
  • the molding portion 1011D replaces the conventional bracket, avoiding the tilt error caused by the bracket during the assembly and assembly, and reducing the cumulative tolerance of the assembly of the camera module.
  • the molding portion 1011D includes a support table 10111D, and the support table 10111D is adapted to mount a filter 1040D such that the filter 1040D is positioned above the photosensitive chip 1030D. That is, the light entering the lens 1050D passes through the filter 1040D and reaches the photosensitive chip 40D.
  • the filter 1040D can be implemented as, but not limited to, an infrared cut filter (IRCF).
  • the support table 10111D of the molding portion 1011D forms an inner ring groove 10113D to provide a sufficient installation space for the filter 1040D.
  • the molding portion 1011D replaces the conventional bracket, and connects the lens 1050D with the wiring board portion 1012D while providing the mounting position of the filter 1040D, so that the molding portion The 1011D, the filter 1040D, and the circuit component 10122D are reasonably arranged to fully utilize the remaining space outside the photosensitive area of the photosensitive chip 1030D, thereby minimizing the camera module.
  • the molding portion 1011D is provided with the flat support table 10111D, so that the filter 1040D can be mounted flat, ensuring the consistency of the optical path.
  • the inner ring groove 10113D is L-shaped and communicates with the through hole 101100D of the molding portion 1011D so that the filter 1040D is supported to be mounted on the photosensitive path of the photosensitive chip 1030D.
  • the photosensitive chip 1030D is connected to the wiring board main body 10121D through a series of leads 1031D, and is electrically connected to the photosensitive circuit.
  • the lead 51D may be implemented as, for example but not limited to, a gold wire, a copper wire, an aluminum wire, a silver wire.
  • the series of leads 1031D of the photosensitive chip 1030D may be connected to the circuit board body 10121D by a conventional COB method, such as, but not limited to, soldering. That is to say, the connection between the photosensitive chip 1030D and the circuit board main body 10121D can fully utilize the existing mature connection technology to reduce the cost of the improved technology, fully utilize the traditional process and equipment, and avoid waste of resources.
  • the connection of the photosensitive chip 1030D to the circuit board main body 10121D can also be realized by any other connection manner of the inventive object of the present invention, and the present invention is in this aspect. Unlimited.
  • the traditional manufacturing process after the circuit board is finished with the SMT, the traditional COB package is applied, and then the chip is attached, the gold wire is attached, and the plastic bracket or the motor is attached by glue.
  • the molded portion 1011D is formed on the surface of the wiring board by a molding process, and then the chip is attached to the gold wire.
  • the photosensitive chip 121D is disposed on the upper surface of the wiring board main body 10121D, and the molding portion 1011D surrounds the outer side of the photosensitive chip,
  • the photosensitive chip 1030D may be first mounted on the circuit board main body 10121D, and then in the Outside the photosensitive chip 1030D, the edge position of the wiring board main body 10121D is molded to form the molding portion 1011D, and the circuit protruding from the wiring board main body 10121D Element 10122D is wrapped inside it.
  • the edge position of the circuit board main body 10121D may be first molded to form the molding portion 1011D, and the circuit protruding from the circuit board main body 10121D may be formed.
  • the element 10122D is wrapped inside, and then the photosensitive chip 1030D is mounted on the wiring board main body 10121D so as to be located inside the molding portion 1011D.
  • the lens 1050D can also be combined with different embodiments of the molded circuit assembly in the above preferred embodiment to be assembled into a fixed-focus camera module of different configurations, that is, the lens 1050D and the molding line, respectively.
  • the board assembly 1010A, the molded circuit board assembly 1010B, and the molded circuit board assembly 1010C are assembled to form different fixed focus camera modules.
  • the structure of the molded circuit board assembly can be referred to the above preferred embodiment. No longer.
  • the camera molding is a dynamic focus camera module including a molded circuit board assembly 1010E, a lens 1050E, and a motor 1060E.
  • the motor 1060E is mounted to the molded wiring board assembly 1010E, and the lens 1050E is mounted to the motor 1060E such that the lens 1050E is supported above the molded wiring board assembly 1010E.
  • the molded wiring board assembly 1010E includes a molding portion 1011E and a wiring board portion 1012E that is moldedly joined to the wiring board portion 1012E.
  • the circuit board portion 1012E includes a circuit board main body 10121E and a photo sensor chip 1030E.
  • the photo sensor chip 1030E is disposed on the circuit board main body 10121E and located inside the molding portion 1011E.
  • the motor 1060E is mounted on the molding portion 1011E of the wiring board assembly 10E, and is electrically connected to the wiring board portion 1012E, and the lens 1050E is mounted to the motor 1060E, and
  • the lens 1050 can be adapted to autofocus by the motor 1060E.
  • the lens 1050 is located in the photosensitive path of the photosensitive chip 1030E, so that when the camera module is used to collect an image of an object, the light reflected by the object can be further processed by the lens 1050E and then the photosensitive chip. 1030E is received to be suitable for photoelectric conversion.
  • the circuit board portion 1012E includes a light sensing circuit and at least one circuit component 10122E.
  • the photosensitive circuit is preset in the circuit board main body 10121E, and the circuit component 10122E is electrically connected to the photosensitive circuit and the photosensitive chip 1030E for the photosensitive operation process of the photosensitive chip 1030E.
  • the circuit component 10122E can be, for example but not limited to, a resistor, a capacitor, a diode, a triode, a potentiometer, a relay, a driver, a processor, a memory, and the like.
  • the motor 1060E when the image forming molding is assembled, the motor 1060E is electrically connected to the photosensitive circuit through a motor pin 1061E, and the wire is soldered to the wiring board Body 10121E.
  • the molding portion 1011E encloses the circuit component 10122E inside, thus making the circuit component 10122E not directly exposed to the space, more specifically, not exposed to the photosensitive In the closed environment in which the chip 1030E communicates, it is different from the existing circuit elements in the conventional camera module, such as a resisting container member, thereby preventing dust and debris from staying in the circuit components and contaminating the photosensitive chip.
  • the molding portion 1011E forms a through hole 101100E such that the molding portion surrounds the outside of the photosensitive chip 1030E and provides a light path of the lens 1050E and the photosensitive chip 1030E.
  • the circuit board main body 10121E has a passage 101212E, and a lower portion of the passage 101212E is adapted to mount the photosensitive chip 1030E.
  • the via 101212E causes the upper and lower sides of the wiring board main body 10121E to communicate with each other, so that when the photosensitive chip 1030E is mounted on the back surface of the wiring board main body 10121E and the photosensitive region is mounted upward on the wiring board main body 10121E,
  • the photosensitive area of the photosensitive chip 1030E is capable of receiving light entering by the lens 1050E.
  • the via 101212E has an outer ring groove 101213E that provides a mounting position of the photosensitive chip 1030E.
  • the photosensitive chip 1030E is mounted on the outer ring groove 101213, the outer surface of the photosensitive chip 1030E and the surface of the circuit board main body 10121E are in the same plane, thereby ensuring the molding line.
  • the via 101212E is stepped to facilitate mounting of the photosensitive chip 1030E, providing a stable mounting position for the photosensitive chip 1030E and exposing its photosensitive region to the inner space.
  • a different chip mounting method that is, a chip flipping method
  • the photosensitive chip 1030E is attached to the wiring board main body 10121E from the back surface direction of the wiring board main body 10121E, instead of being required from the front surface of the wiring board main body 10121, that is, from the wiring board as in the above embodiment.
  • the photosensitive region of the photosensitive chip 1030 is mounted on the wiring board main body 10121 upward.
  • Such a structure and mounting manner are such that the photosensitive chip 1030E and the molding portion 1011E are relatively independent, and the mounting of the photosensitive chip 1030E is not affected by the molding portion 1011E, and the molding of the molding portion 1011E The influence of the molding on the photosensitive chip 1030E is also small.
  • the photosensitive chip 1030E is embedded on the outer side surface of the circuit board main body 10121E, and does not protrude from the inner side surface of the circuit board main body 10121E, so that a larger space is left inside the circuit board main body 10121E.
  • the height of the molded portion 1011E is not limited by the height of the photosensitive chip 1030E, so that the molded portion 1011E can reach a smaller height.
  • a conventional wiring board may be used as the wiring board main body 10121E, and the surface of the wiring board main body 10121E may be molded, such as by an injection molding machine, by insert molding ( Insert molding process to form the molding portion 1011E by a wiring board after performing an SMT process (Surface Mount Technology surface mount process), or to form the molding portion 1011E by a molding process commonly used in a semiconductor package, and The via 101212E is opened on the wiring board main body 10121E.
  • the circuit board main body 10121E may be selected, for example, but not limited to, a soft and hard bonding board, a ceramic substrate (without a soft board), a PCE hard board (without a soft board), and the like.
  • the manner in which the molding portion 1011E is formed may be selected, for example, but not limited to, an injection molding process, a molding process, and the like.
  • the molding material 1011E may be selected from materials such as, but not limited to, nylon, LCP (Liquid Crystal Polymer), PP (Polypropylene, polypropylene), etc., and the molding process may be adopted. Resin. It should be understood by those skilled in the art that the foregoing alternative manufacturing methods and materials that can be selected are merely illustrative of the manner in which the present invention can be implemented, and are not limited by the present invention. system.
  • the motor 1060E is mounted on the molding portion 1011E of the circuit board assembly 10E, so that the molding portion 1011E is equivalent to the function of the bracket in the conventional camera module, Motor 1060E provides support, fixed position, but assembly is different from conventional COE processes.
  • the bracket of the camera module of the conventional COE process is fixed to the circuit board in a pasting manner, and the molding portion 1011E is fixed to the circuit board main body 10121E by a molding process, and the bonding process is not required, and the molding method is relatively pasted.
  • the fixing has better connection stability and controllability of the process, and there is no need to reserve AA-adjusted glue space between the molding parts 1011E between the circuit board bodies, thereby reducing the pre-adjustment of the conventional camera module AA.
  • the space is left to reduce the thickness of the camera module; on the other hand, the molding portion 1011E is wrapped around the circuit component 10122E, so that the conventional bracket function and the circuit component can be spatially overlapped, without the need for
  • the camera module reserves a safe distance around the circuit device, so that the height of the molding portion 1011E having the bracket function can be set to a small range, thereby further providing a space in which the thickness of the camera module can be reduced.
  • the molding portion 1011E replaces the conventional bracket, avoiding the tilt error caused by the bracket during the assembly and assembly, and reducing the cumulative tolerance of the assembly of the camera module.
  • the camera module includes a filter 1040E, and the filter 1040E is mounted on the circuit board body 10121E, above the sensor chip 1030E. That is, the upper port of the path 101212E of the circuit board main body 10121E is located such that the light entering by the lens 1050E passes through the filter 1040E first when passing through the path 101212E.
  • the molding portion 1011E does not need to provide the mounting position of the filter 1040E, and it is not necessary to provide the support table 10111, and the filter board body 11E is used for the filtering.
  • the sheet 1040E provides a mounting position that reduces the distance between the filter 1040E and the photosensitive chip 1030E, so that the height of the molded portion 1011E is further reduced.
  • the filter 1040E can be implemented as, but not limited to, an infrared cut filter (IRCF).
  • IRCF infrared cut filter
  • the filter 10140E can be mounted on the circuit board main body 10121E by means of the arrangement of the path 101212E in the FC chip flipping manner, thereby making
  • the circuit board assembly 10E and the camera module assembled by the circuit board assembly 10E have advantages brought by the FC mounting method and the mounting manner of the filter 1040E, such as facilitating assembly, reducing thickness, and the like.
  • the mounting position of the filter 1040E is not limited by the present invention. In other embodiments of the present invention, the filter 1040E may also be installed in different positions, for example. The but not limited to, the molded portion 1011, a bracket, a motor, or the like.
  • the molding portion 1011E connects the motor 1060E with the circuit board portion 1012E instead of the conventional bracket, and the circuit board portion 1012E provides the mounting position of the filter 1040E, so that The molding portion 1011E, the filter 1040E, and the circuit component 10122E are reasonably arranged to fully utilize the remaining space outside the photosensitive area of the photosensitive chip 1030E, thereby minimizing the camera module.
  • the molding portion 1011E is provided with a flat fixed position, so that the motor 1060E can be mounted flat, ensuring the consistency of the optical path.
  • the photosensitive chip 1030E is disposed on a lower surface of the circuit board main body 10121E, and the molding portion 1011E surrounds the circuit board main body.
  • different manufacturing sequences may be selected, such as, but not limited to, in one embodiment, the via 101212E may be first opened on the wiring board main body 10121E, and then The photosensitive chip 1030E is flip-chip mounted on the via 101212E of the wiring board main body 10121, and then the molding portion 1011E is molded at an edge position of the wiring board main body 10121E outside the photosensitive chip 1030E.
  • the via 101212E may be first formed on the wiring board main body 10121E, and then the molding portion 1011E is molded at an edge position of the wiring board main body 10121E, and The circuit component 10122E protruding from the circuit board main body 10121E is wrapped therein, and then the photosensitive chip 1030E is mounted on the circuit board main body 10121E so as to be located outside the circuit board main body 10121E. Ring groove 101213E.
  • the molding portion 1011E may be molded at an edge position of the wiring board main body 10121E, and the circuit component protruding from the wiring board main body 10121E may be formed.
  • 10122E is wrapped around the inside of the circuit board main body 10121E to open the path 101212E, and then the path 101212E is opened on the circuit board main body 10121E, and then the photosensitive chip 1030E is flip-chip mounted on the circuit board main body.
  • the path 101212E of 10121E is molded at an edge position of the wiring board main body 10121E, and the circuit component protruding from the wiring board main body 10121E may be formed.
  • 10122E is wrapped around the inside of the circuit board main body 10121E to open the path 101212E, and then the path 101212E is opened on the circuit board main body 10121E, and then the photosensitive chip 1030E is flip-chip mounted on the circuit board main body.
  • the path 101212E of 10121E is molded at an edge position of the wiring board main body 10121
  • the mounting manner of the molded circuit board assembly 1010E and the filter 1040E can also be applied to a fixed focus camera module.
  • the camera module further includes a bracket 1070 mounted to the molded wiring board assembly 1010, and the motor 1060 is mounted to the molding.
  • the lens 1050 is mounted to the motor 1060 to facilitate securing the lens 1050 over the molded wiring board assembly 1010. That is to say, the molded circuit board assemblies 1010, 1010A, 1010B, and 1010C can be combined with a conventional bracket to be assembled into different types of camera modules, such as a dynamic focus camera module and a fixed focus camera module.
  • the filter 1040 may be selectively mounted to the bracket 1070, the molding portion 1011, or the motor 1060.
  • the camera module adopting the molding process can increase the competitiveness of the product in the market, especially in the high-end products, the camera module mainly has the following advantages:
  • the length and width dimensions of the module can be reduced, and the molded part and the resistive container part can overlap in space;
  • the conventional solution bracket needs to be outside the capacitor, and a certain safety distance needs to be reserved.
  • the molding manufacturing method of the present invention can directly utilize the capacitor space and directly fill the plastic around the capacitor to form a bracket.
  • the capacitor top end distance bracket needs to reserve a safety gap to prevent interference.
  • the circuit components such as capacitors, can be directly filled with plastic, and no space gap is required.
  • the resistor capacitor parts can be wrapped by molding, which can avoid the bad black spots of the module, such as solder resist and dust, and improve the product yield.
  • the camera module includes a circuit board assembly 2010, a sensor chip 2030, and a lens 2050.
  • the photosensitive chip 2030 is mounted on the circuit board assembly 2010, the lens 2050 is located on the circuit board assembly 2010, and the lens 2050 is located in a photosensitive path of the photosensitive chip 2030.
  • the circuit board assembly 2010 can be coupled to the electronic device for use with the electronic device. It will be understood by those skilled in the art that the lens 2050 and the chip can cooperate with each other to capture an image. Specifically, light reflected by a subject, such as an object or a character, is received by the photosensitive chip 2030 for photoelectric conversion after passing through the lens 2050. In other words, the photosensitive chip 2030 can convert an optical signal into an electrical signal, and the electrical signal can be transmitted to the electronic device through the circuit board assembly 2010, thereby generating and capturing the object on the electronic device. Related images.
  • the circuit board assembly 2010 includes an encapsulation portion 2011 and a circuit board portion 2012 that are integrally packaged and connected to the circuit board portion 2012, such as moldedly connected to the circuit board portion 2012. More specifically, the encapsulation portion 2011 is molded and attached to the wiring board portion by molding in a mold (Molding On Board, MOB), and the molding process may be a process such as injection molding or molding.
  • a mold Molding On Board, MOB
  • the circuit board portion 2012 includes a circuit board main body 20121, and the package portion 2011 is integrally connected to the circuit board main body 20121.
  • the encapsulation portion 2011 forms a through hole 201100 such that the encapsulation portion 2011 surrounds the outside of the photosensitive chip 2030 and provides a light path of the lens 2050 and the photosensitive chip 2030.
  • the photosensitive chip 2030 is disposed on the circuit board main body 20121 at a position corresponding to the through hole 201100.
  • the circuit board portion 2012 includes a connection line 2031 and at least one circuit component 20122.
  • the connection line 2031 is preset to the circuit board main body 20121, and the circuit component 20122 is electrically connected to the connection circuit for The photosensitive operation process of the photosensitive chip 2030.
  • the circuit component 20122 can be, for example but not limited to, a resistor, a capacitor, a diode, a triode, a potentiometer, a relay, a driver, a processor, a memory, and the like.
  • the encapsulation portion 2011 can enclose the circuit component 20122 component inside, thus making the circuit component 20122 not directly exposed to the space, more specifically, not exposed to the
  • the photosensitive chip 2030 is in a closed environment in which it is connected.
  • the circuit device in different conventional camera modules exists in such a manner that the resisting container member protrudes from the circuit board, thereby preventing dust and debris from staying in the circuit component 20122 and contaminating the photosensitive chip 2030.
  • the circuit component 20122 is exemplified by the circuit board body 20121, and in other embodiments of the invention, the circuit component 20122 is embedded in the circuit.
  • the inside of the board main body 20121 does not protrude from the board main body 20121, and it will be understood by those skilled in the art that the structure, type, and position of the circuit element 20122 are not limited by the present invention. It can be understood that in the camera module of the transmission, the circuit device protrudes from the circuit board, and the base can only be mounted on the circuit component 20122. The outer side, therefore, both the circuit device and the base require a certain spatial position, and therefore the size of the circuit board in the lateral direction is relatively high.
  • the package portion 2011 is integrally packaged in the circuit board body 20121 and covers the circuit component 20122, and thus the package portion 2011 and the circuit component 20122
  • the spaces overlap each other, thereby increasing the space that the encapsulation portion 2011 can be disposed inward, reducing the external extension requirement of the circuit board main body 20121, thereby reducing the lateral dimension of the camera module, so that it can satisfy Equipment for miniaturization needs.
  • the encapsulation portion 2011 encapsulating the circuit component 20122 has the advantage of protecting the circuit component 20122 from being contaminated and being accidentally touched, and at the same time bringing advantages to the corresponding camera module.
  • the package portion 2011 is not limited to covering the circuit element 20122. That is, in other embodiments of the present invention, the package portion 2011 may be directly molded to the circuit board main body 20121 of the circuit component 20122 without protruding, or may be molded on the circuit component. The outside of 20122, around and other different locations.
  • the encapsulation portion 2011 is convexly surrounding the outer side of the photosensitive chip 2030, and in particular, the encapsulation portion 2011 is integrally closed and connected to have a good sealing property, so that when the lens 2050 is mounted on the photosensitive path of the photosensitive chip 2030, the photosensitive chip 2030 is sealed inside to form a corresponding closed inner space.
  • a conventional wiring board can be selected as the wiring board main body 20121, and molding is performed on the surface of the wiring board main body 20121.
  • the circuit board after the SMT process may be integrally packaged by an injection molding machine by an insert molding process, such as molding, to form the The encapsulation portion 2011 is formed by the encapsulation portion 2011, or by a molding process commonly used in semiconductor packaging.
  • each of the photosensitive chips 2030 is attached to the wiring board main body 20121, and then the photosensitive chips 2030 are electrically connected to the wiring board main body 20121, for example, by a gold wire.
  • the circuit board main body 20121 may be selected, for example, but not limited to, a soft and hard bonding board, a ceramic substrate (without a soft board), a PCB hard board (without a soft board), and the like.
  • the manner in which the encapsulation portion 2011 is formed may be selected, for example, but not limited to, an injection molding process, a molding process, and the like.
  • the encapsulating portion 2011 may be selected from materials such as, but not limited to, nylon, LCP (Liquid Crystal Polymer), PP (Polypropylene, polypropylene), etc. for the injection molding process, and the molding process may adopt a ring. Oxygen resin. It should be understood by those skilled in the art that the foregoing alternatives and the materials that can be selected are merely illustrative of the embodiments of the invention and are not intended to be limiting.
  • the process of manufacturing the circuit board assembly 2010 may be performed by first performing an SMT process on the circuit board main body 20121, and then mounting the photosensitive chip 2030 on the circuit board main body 20121. And electrically connecting the photosensitive chip 2030 to the circuit board main body 20121, such as a gold wire electrical connection, and then integrally packaging the circuit board main body 20121, such as a molded package, by insert molding.
  • the encapsulation portion 2011, or the encapsulation portion 2011 is formed by a molding process commonly used in a semiconductor package. It will be understood by those skilled in the art that the order of manufacture of the circuit board assembly 2010 is not a limitation of the present invention.
  • the camera module includes a filter 2040, and the filter 2040 is mounted on the package portion. 2011, in order to provide stable, flat mounting conditions for the filter 2040.
  • the filter 2040 is implemented as an Infra-Red Cut Filter (IRCF), which uses a precision optical coating.
  • IRCF Infra-Red Cut Filter
  • the technology alternately applies a high refractive index optical film on an optical substrate to realize a high-transmission, near-infrared (700-1100 nm) cut-off optical filter in the visible light region (400-630 nm), which can eliminate infrared light to the photosensitive chip.
  • imaging effects such as CCD or CMOS.
  • the photosensitive chip 2030 such as CCD or CMOS
  • the human eye can only see visible light in the 380-780 nm band, and the photosensitive chip 2030 can sense more.
  • Multi-bands such as infrared light and ultraviolet light, are especially sensitive to infrared light, so infrared light must be suppressed in the camera module, and high transmission of visible light is maintained, so that the sensing of the photosensitive chip 2030 is close.
  • the image captured by the camera module is also in line with the sensing of the eye, so the infrared cut filter is indispensable for the camera module.
  • the filter 2040 may be selected from the group consisting of a wafer level infrared cut filter, a narrow band filter, and a blue glass IRCF. It will be understood by those skilled in the art that the type of filter 2040 is not a limitation of the present invention.
  • the filter In the conventional COB assembled camera module, the filter is usually mounted on a plastic base, and the base is usually attached to the circuit board by bonding, so the plastic base and the corresponding mounting manner are not easily offset. Or tilting, and the surface of the plastic holder is poorly flat, so that the filter 2040 cannot be provided with good mounting conditions.
  • the filter 2040 is mounted to the encapsulation portion 2011, and based on the molding process, good surface flatness can be obtained, thereby providing a flattening of the filter 2040.
  • the mounting conditions and the manner of integral molding make the package portion 2011 less prone to offset and tilting, thereby reducing the cumulative tolerance when the filter 2040 is mounted.
  • the top surface 20112 of the encapsulation portion 2011 extends integrally planarly, and the filter 2040 is mounted to the top surface 20112 of the encapsulation portion 2011.
  • the filter 2040 may be bonded to the top surface 20112 of the package portion 2011 by bonding.
  • the camera module includes a motor 2060, such as a voice coil motor, a piezoelectric motor.
  • the lens 2050 is mounted on the motor 2060 to facilitate the movement of the lens 2050 by the motor 2060 to adjust the focal length of the camera module, that is, the camera module is a moving focus module ( Automatic Focus Module, AFM).
  • AFM Automatic Focus Module
  • the camera module may not have a driver, that is, the motor 2060 is not provided, and a certain focus camera module is formed.
  • the motor 2060 is mounted to the encapsulation portion 2011 of the circuit board assembly 2010, and further, the motor 2060 is mounted to the top surface 20112 of the encapsulation portion 2011, that is, the filter 2040 and the motor 2060 coordinately occupy the top surface 20112 of the package portion 2011.
  • the motor 2060 is electrically connected to the circuit board body 20121 through at least one motor pin 2061.
  • the lens 2050 is mounted on the motor 2060, and the motor 2060 and the filter 2040 are mounted on the package portion 2011, so that the package portion 2011 is equivalent to the base of the conventional camera module.
  • the function provides a supported, fixed position for the motor 2060 and the filter 2040, but is manufactured, assembled, and shaped differently than conventional COB processes.
  • the base of the camera module of the conventional COB process is fixed to the circuit board in an adhesive manner, and the package portion 2011 is fixed to the circuit board main body 20121 by molding on the circuit board, and does not require a bonding and fixing process.
  • the molding method has better connection stability and controllability of the process than the bonding and fixing method, and has high flatness, and provides good mounting conditions for the motor 2060 and the filter 2040, and the
  • the encapsulation portion 2011 and the circuit board main body 20121 do not have an AA-adjusted glue space, thereby eliminating the reserved space for the adjustment of the conventional camera module AA, so that the thickness of the camera module is reduced;
  • the encapsulation portion 2011 encloses the circuit component 20122, so that the conventional pedestal space and the circuit component 20122 installation space can be spatially overlapped, and there is no need to reserve a safe distance around the circuit device like a conventional camera module, thereby having a pedestal
  • the package portion 2011 of the function can be disposed in a small size, thereby further providing a space in which the thickness of the camera module can be reduced.
  • the encapsulation portion 2011 replaces the conventional base, avoiding the tilt error caused by the base during the assembly and assembly, and reducing the cumulative tolerance of the assembly of the camera module
  • the shape of the encapsulation portion 2011 can be determined as needed, for example, extending inwardly at the position of the circuit component 20122 to form a protrusion, thereby increasing the corresponding width of the encapsulation portion 2011, and In the position where the circuit component 20122 is absent, the package portion 2011 extends uniformly to form a relatively regular shape with a small width. It should be understood by those skilled in the art that the specific shape of the package portion 2011 is not a limitation of the present invention.
  • the photosensitive chip 2030 can be electrically connected to the circuit board main body 20121 through at least one connection line 2031, and can be electrically connected to the connection line.
  • the connecting line 2031 can be implemented as, for example but not limited to, a gold wire, a copper wire, an aluminum wire, a silver wire.
  • the connecting line 2031 of the photosensitive chip 2030 may be connected to the circuit board main body 20121 by a conventional COB method, for example, but not limited to, a soldering manner. That is to say, the connection between the photosensitive chip 2030 and the circuit board main body 20121 can fully utilize the existing mature connection technology to reduce the cost of the improved technology, fully utilize the traditional process and equipment, and avoid waste of resources.
  • the connection of the photosensitive chip 2030 to the circuit board main body 20121 can also be realized by any other connection manner of the inventive object of the present invention, and the present invention is in this aspect. Unlimited.
  • each of the photosensitive chips 2030 is disposed on an upper surface of the wiring board main body 20121, and the encapsulation portion 2011 surrounds an outer side of the photosensitive chip 2030.
  • the photosensitive chip 2030 may be first mounted on the circuit board main body 20121, and then in the Outside the photosensitive chip 2030, the package portion 2011 is molded on the wiring board main body 20121, and the circuit element 20122 protruding from the wiring board main body 20121 is covered inside.
  • the package portion 2011 may be molded on the circuit board main body 20121, and the circuit component 20122 protruding from the circuit board main body 20121 may be covered.
  • the photosensitive chip 2030 is then mounted on the wiring board main body 20121 so as to be located inside the package portion 2011.
  • FIG. 18A is another embodiment of a camera module according to a fifth preferred embodiment of the present invention.
  • the camera module may be a Fix Focus Module (FFM).
  • FFM Fix Focus Module
  • the lens 2050 is mounted on the top surface 20112 of the package portion 2011, that is, the focal length of the camera module cannot be freely adjusted.
  • the lens 2050 and the filter 2040 coordinately configure the top surface 20112 of the encapsulation portion 2011. It will be understood by those skilled in the art that the type of imaging molding is not a limitation of the present invention.
  • the encapsulation portion 2011 can be used to support the mounting of the filter 2040 and the lens 2050, having the function of a conventional base, and based on the advantages of molding,
  • the encapsulation portion 2011 can control the flatness and consistency of the encapsulation portion 2011 by means of a mold, thereby providing a flat and consistent installation environment for the filter color of the camera module and the lens 2050, thereby further It is easy to ensure the consistency of the optical axes of the lens 2050 and the filter 2040 and the photosensitive chip 2030, which is not easily achieved by the conventional camera module.
  • FIG. 18B is another embodiment of a camera module according to a fifth preferred embodiment of the present invention.
  • the camera module may be a Fix Focus Module (FFM).
  • FFM Fix Focus Module
  • the lens 2050 is mounted on a lens holder 2080, and the lens holder 2080 is mounted on the top surface 20112 of the package portion 2011, that is, the focal length of the camera module cannot be freely Adjustment.
  • the lens holder 2080 can be a threaded bracket on the inner wall or a bracket without a thread.
  • FIG. 18C is another embodiment of a camera module according to a fifth preferred embodiment of the present invention.
  • the camera module may be a Fix Focus Module (FFM).
  • FFM Fix Focus Module
  • the lens 2050 is mounted on a lens holder 2080.
  • the lens holder 2080 is mounted on a seat 2070.
  • the holder 2070 is mounted on a top side of the package portion 2011.
  • the package portion 2011 has a mounting groove 20113A, and the mounting groove 20113A communicates with the through hole 201100 to provide sufficient installation space for the filter 2040. That is, the top surface 20112 of the encapsulation portion 2011 has a stepped structure, and does not extend integrally. The steps of the top surface 20112 can be used to mount the filter 2040, the lens 2050 or The motor 2060.
  • the height of the mounting slot 20113A is greater than the thickness of the filter 2040, so that when the filter 2040 is mounted on the mounting slot 20113A, the filter 2040 does not protrude from the The top of the package part 2011.
  • the filter 2040 is square, and the shape of the mounting groove 20113A is adapted to the shape of the filter 2040. That is, the mounting groove 20113A has a square ring shape and communicates with the through hole 201100.
  • the mounting slot 20113A can be used to mount the filter 2040, while in other implementations of the invention, the mounting slot 20113A can be used to mount the installation.
  • the moving focus module is taken as an example for description, and in other embodiments of the present invention, the camera may be a certain focus module, It will be understood by those skilled in the art that the type of camera module is not a limitation of the present invention.
  • the camera module includes a seat 2070B for mounting the filter 2040.
  • the holder 2070B is mounted to the package portion 2011, the filter 2040 is mounted to the package portion 2011, and the motor 2060 or the lens 2050 is mounted to the holder 2070B.
  • the holder 2070B has a first seating groove 2071B and a second seating groove 2072B for mounting the filter 2040.
  • the surface of the filter 2040 does not protrude from the top end of the holder 2070B.
  • the second seating groove 2072B is mounted on the encapsulation portion 2011 such that the encapsulation portion 2011 extends upward along the support 2070, and the position of the filter 2040 is relatively downward, thereby reducing The back focal length of the camera module is small.
  • the holder 2070B extends into the through hole 201100 and extends downward to support the filter 2040 over the photosensitive chip 2030, and utilizes the space in the through hole 201100.
  • the filter 2040 When the filter 2040 is stably mounted, the filter 2040 does not occupy an external space.
  • the distance inwardly extending from the holder 2070B is outside the photosensitive area of the photosensitive chip 2030, that is, the holder 2070B does not block the photosensitive area of the photosensitive chip 2030.
  • the size of the holder 2070B can be designed according to specific needs.
  • a moving focus module is described as an example.
  • the lens 2050 is press-fitted to the motor 2060, and the motor 2060 is mounted to the holder 2070B. That is, the holder 2070 provides a mounting position for the filter 2040 and the motor 2060.
  • the camera module may also be a fixed focus module.
  • the lens 2050 is mounted to the holder 2070B, that is, the holder 2070B provides a mounting position for the filter 2040 and the lens 2050, as will be understood by those skilled in the art.
  • the specific structure of the support 2070B and the type of the camera module are not limitations of the present invention.
  • Figure 21 is a schematic cross-sectional view showing an image forming process based on a molding process in accordance with an eighth preferred embodiment of the present invention.
  • the package portion 2011 has a mounting groove 20113C, and the mounting groove 20113C communicates with the through hole 201100. That is to say, the top surface 20112 of the encapsulation portion 2011 has a stepped structure and does not extend integrally.
  • the camera module includes a seat 2070C for mounting the filter 2040.
  • the holder 2070C is mounted on the package portion 2011, the filter 2040 is mounted on the package portion 2011, and the motor 2060 or the lens 2050 is mounted on the package portion 2011.
  • the holder 2070C is mounted on the mounting groove 20113C of the package portion 2011, and the height of the mounting groove 20113C is greater than the mounting height of the holder 2070C, so that the holder 2070C does not protrude. Out of the end of the encapsulation portion 2011. That is, the support 2070C can be set It is placed inside the package portion 2011.
  • the holder 2070C has a first seating groove 2071C and a second seating groove 2072C for mounting the filter 2040.
  • the surface of the filter 2040 does not protrude from the top end of the holder 2070C.
  • the second seating groove 2072C is mounted on the encapsulation portion 2011 such that the encapsulation portion 2011 extends upward along the support 2070C, and the position of the filter 2040 is downward.
  • the back focus of the camera module is reduced.
  • the support 2070C may not have the second seat groove 2072C, and the flat bottom surface of the support 72C is directly attached to the package portion 2011.
  • the holder 2070C extends into the through hole 201100 and extends downward to support the filter 2040 over the photosensitive chip 2030, and utilizes the space in the through hole 201100.
  • the filter 2040 When the filter 2040 is stably mounted, the filter 2040 does not occupy an external space. Further, the holder 2070 is located outside the photosensitive area of the photosensitive chip 2030 so as not to block the photosensitive path of the photosensitive chip.
  • the distance inwardly extending from the holder 2070C is outside the photosensitive area of the photosensitive chip 2030, that is, the holder 2070C does not block the photosensitive chip 2030 to avoid affecting the object.
  • the photosensitive process of the photosensitive chip 2030, the size of the support 2070C can be designed according to specific needs.
  • the second seating groove 2072C and the mounting groove 20113C of the package cooperate with each other to form a matching snap-fit structure, so that the support 2070C can be stably installed.
  • the installation slot 20113C In contrast to the third preferred embodiment, the filter 2040 in this embodiment is smaller than the photosensitive chip 2030, and the camera module having a smaller back focus can be obtained.
  • a moving focus module is described as an example.
  • the lens 2050 is press-fitted to the motor 2060, and the motor 2060 is mounted to the holder 2070C. That is, the holder 2070C provides a mounting position for the filter 2040 and the motor 2060.
  • the camera module may also be a fixed focus module.
  • the lens 2050 is mounted to the holder 2070C, that is, the holder 2070C provides a mounting position for the filter 2040 and the lens 2050, as will be understood by those skilled in the art.
  • the specific structure of the support 2070 and the type of the camera module are not limitations of the present invention.
  • FIG. 22 it is a schematic cross-sectional view of a camera module based on a molding process in accordance with a ninth preferred embodiment of the present invention.
  • the filter 2040 is mounted to a motor 2060D that is mounted to the package portion 2011 so that no additional components need to be provided to mount the filter 2040. .
  • the motor 2060D includes a lower end 2062D that is adapted to be mounted to the filter 2040. That is, the lens 2050 is attached to the upper end of the motor 2060D, and the filter 2040 is attached to the lower end portion 2062D of the motor 2060D, below the lens 2050.
  • the filter 2040 is mounted to the motor 2060D so that no additional components need to be provided to mount the filter 2040, and the motor 2060D is directly mounted.
  • the motor 2060D is provided with flat mounting conditions.
  • the lens 2050E includes a lens barrel 2051E and at least one lens 2052E, and each of the lenses 2052E is mounted in the lens barrel 2051E.
  • the filter 2040 is mounted within the barrel 2051E below each of the lenses 2052E so that no additional components need to be provided to mount the filter 2040.
  • the lens barrel 2051E includes a bottom portion 20511E for mounting the filter 2040.
  • the base of the lens barrel 2051E is adapted to the shape of the filter 2040, that is, the base has a hollow square structure to facilitate mounting the filter 2040 therein.
  • the upper portion of the lens barrel 2051E is used to mount the lens 2052E, and the shape of the lens 2052E is adapted, and the lower portion is used to mount the filter 2040 and is adapted to the shape of the filter 2040.
  • the upper portion of the lens barrel 2051E is a circular tubular cylinder, and the inner portion of the lower portion is square, and the circular tube and the square are integrally connected.
  • the motor 2060 is mounted to the package portion 2011, and the filter 2040 is mounted to the lens barrel 2051E, so that it is not necessary to provide an additional component to mount the filter 2040.
  • the circuit board assembly 2010 includes a circuit board main body 20121F having a passage 201212F, and a lower portion of the passage 201212F is adapted to mount the photosensitive chip 2030.
  • Each of the paths causes the upper and lower sides of the circuit board main body 20121F to communicate, so that when the photosensitive chip 2030 is attached to the circuit board main body 20121F by the back surface of the circuit board main body 20121F and the photosensitive area is upward
  • the photosensitive area of the photosensitive chip 2030 is capable of receiving light entering by the lens 2050.
  • the circuit board main body 20121F has an outer groove 201213F, and the outer groove 201213F communicates with the corresponding path to provide a mounting position of the photosensitive chip 2030.
  • the outer surface of the photosensitive chip 2030 and the outer surface of the circuit board main body 20121F are in the same plane, thereby ensuring the circuit board. Surface flatness of component 2010.
  • the passage is stepped to facilitate mounting of the photosensitive chip 2030, providing a stable mounting position for the photosensitive chip 2030, and exposing its photosensitive region to the inner space.
  • a chip mounting method different from the conventional one that is, a flip chip (FC) is provided.
  • the photosensitive chip 2030 is attached to the wiring board main body 20121F from the back surface direction of the wiring board main body 20121F instead of the front surface of the wiring board main body 20121F, that is, from the wiring board as in the above embodiment.
  • the photosensitive region of the photosensitive chip 2030 is mounted on the wiring board main body 20121F upward.
  • the structure and the mounting manner are such that the photosensitive chip 2030 and the package portion 2011 are relatively independent, and the mounting of the photosensitive chip 2030 is not affected by the package portion 2011, and the molding portion of the package portion 2011 is molded.
  • the effect of the photosensitive chip 2030 is also small.
  • the photosensitive chip 2030 is embedded in the line
  • the outer side surface of the road board main body 20121F does not protrude from the inner side surface of the circuit board main body 20121F, so that a larger space is left inside the circuit board main body 20121F, so that the height of the encapsulation portion 2011 is not
  • the height of the photosensitive chip 2030 is limited, so that the package portion 2011 can reach a smaller height.
  • the filter 2040 is mounted on the upper end of the path, that is, the filter 2040 covers the path of the circuit board body 20121F.
  • the filter 2040 does not need to be mounted on the package portion 2011, thereby greatly reducing the back focus of the array camera module and reducing the height of the image.
  • the filter 2040 can be an embodiment of an infrared cut filter IRCF. That is, the filter 2040 is mounted to the wiring board main body 20121F without providing an additional component such as a holder.
  • the package portion 2011 has a mounting groove 20113G, and the mounting groove 20113G communicates with the through hole 201100. That is to say, the top surface 20112G of the encapsulation portion 2011 has a stepped structure and does not extend integrally.
  • the camera module includes a seat 2070G for mounting the filter 2040.
  • the holder 2070G is mounted to the package portion 2011, the filter 2040 is mounted to the holder 2070G, and the motor 2060 or the lens 2050 is mounted to the package portion 2011.
  • the holder 2070G can be fixedly mounted to the package portion 2011 by bonding.
  • the encapsulation portion 2011 has a convex step 20115G on at least two side faces of the top side, at least one side surface does not have the above-mentioned convex step 20115G, and a mounting groove 20113G is formed. That is, in this embodiment, the cross section of the mounting groove 20113G is not a closed structure, but a notch 201131G exists at least on one side. For the sake of smoothness, at least two symmetrical said raised steps 20115G may be provided, ie two symmetrical said mounting grooves 20113 are formed. For example, the number of the protrusion steps 20115G may be one, two, three or four.
  • the two sides of the symmetry may be selectively disposed on the two sides of the symmetry, and the other two sides are symmetrically formed by the notch 201131G; when the number of the protrusions 20115G is three Optionally, any three sides are disposed, and one of the notches 201131G is formed; when the number of the protruding steps 20115G is four, the notch 201131G is not formed, that is, the raised step 20115G is closed, The installation slot 20113G is closed.
  • the support 2070G and the protruding step 20115 of different structures and the mounting groove 201131G formed thereof are matched, when the support 2070G is mounted on the mounting groove 20113G,
  • the notch 201131G is filled to form a closed inner environment for the photosensitive chip 2030.
  • the mount 2070G can extend to the gap 201131G.
  • the shape of the protruding step 20115G may be a regular linear structure or an irregular bending structure.
  • the cross-sectional structure of the support 2070G may be a regular structure or an irregular bent structure.
  • the support 2070G includes at least one extended edge 2073G, and the extended edge 2073G corresponds to the notch 201131G of the mounting slot 20113G.
  • the number of positions of the extended sides 2073G corresponds to the number and position of the notches 201131G.
  • the extended side 2073G is not required to be provided, and each side of the support 2070 corresponds to the mounting groove 20113G.
  • the encapsulation portion 2011 may not be provided with the protruding step 20115G, that is, the encapsulation portion 2011 forms a platform structure, and the support 2070 is mounted on the The platform structure, and correspondingly, the support 2070G includes four extending sides 2073G, respectively adapted to be overlapped on the sides of the encapsulation portion 2011.
  • the width of each of the extended sides may be determined according to the width of the encapsulation portion 2011, and is not limited to a uniform width, that is, the support may have a wider extension edge 2073G, or may have a narrower The extended edge 2073G.
  • the holder 2070G is mounted on the mounting groove 20113G of the package portion 2011, and the height of the mounting groove 20113G is greater than the mounting height of the holder 2070G, so that the holder 2070G does not protrude.
  • the height of the mounting groove 20113G is 0.05 mm larger than the height of the support 2070G, so that when the motor 2060 is mounted on the package portion 2011, the bottom of the motor 2060 is not directly in contact with the The holder 2070G and the lens mounted in the motor 2060 are also not in contact with the holder 2070G.
  • a moving focus camera module is taken as an example, the motor is mounted on the package portion 2011, and in other embodiments of the present invention, The camera module may also be a fixed focus module.
  • the lens 2050 is mounted on the package portion 2011. In particular, the holder 2070G is not in direct contact with the lens barrel and the lens of the lens 2050.
  • the top portion of the encapsulation portion 2011 may form the convex step 20115 on three sides, and the other side without the convex step 20115 to directly support the support 2070G.
  • the left and right sides have the raised step 20115, and the inner side thereof is used to mount the holder 2070G.
  • the top surface of the encapsulation portion 2011 on the left side directly supports the support 2070G
  • the inner side of the convex step 20115 on the right side is used to perform the support 2070G on the right side.
  • the top surface of the raised step 20115 may be higher than the top surface of the support 2070G, such that the motor 2060 is attached to the raised step 20115, because the package portion 2011 The motor 2060 is only integrally formed with the convex step 20115 of the package portion 2011, so that the tilt of the motor 2060 can be reduced.
  • the circuit component 20122 may not be uniformly arranged on the circuit board main body 20121, so the position of the package portion 2011 reserved on the circuit board main body 20121 is not a regular symmetrical relationship. For example, a wider one is reserved on the side with the circuit element 20122, and the side without the circuit element 20122 is relatively narrow. In this case, there is a problem in that the package portion is narrow.
  • the mounting slot is more difficult to set, and in this embodiment of the invention, the mounting slot 20113G is U-shaped, that is, on the narrow side of the encapsulation portion 2011, the mounting slot 20113G The 113G is open to the outside, and the package portion 2011 is wider.
  • the mounting groove 20113G communicates only with the through hole 201100, and does not communicate with the external environment, thereby forming a U-shaped mounting groove 20113G.
  • the holder 2070G is mounted to the mounting groove 20113G, and stable support can be obtained in a wider or narrower region of the package portion 2011, so that the filter 2040 is stably mounted.
  • the extended side 2073G of the holder 2070G is filled in the opening of the U-shaped structure, so that the mounting groove 20113G is closed, and the top surface height of the package portion 2011 is relatively uniform for easy installation.
  • the motor 60 or the lens 50 is used to the mounting groove 20113G, and stable support can be obtained in a wider or narrower region of the package portion 2011, so that the filter 2040 is stably mounted.
  • the extended side 2073G of the holder 2070G is filled in the opening of the U-shaped structure, so that the mounting groove 20113G is closed, and the top surface height of the package portion 2011 is relatively uniform for easy installation.
  • the height of the mounting groove 20113G is greater than the height of the support 2070G, so in the U-shaped opening area of the mounting groove 20113G, when the support 2070G is When the mounting slot 20113G is mounted, there is a gap between the support 2070G and the side of the motor 2060, so in the camera module, the gap is sealed by a seal, so that the photosensitive The chip 2030 is isolated from the outside.
  • the seal is a gel. That is, after the camera module is assembled, the holder 2070G is attached to the package portion 2011 by the gel to seal.
  • the holder 2070G has a first seating groove 2071G and a second seating groove 2072G, and the first seating groove 2071G is used to mount the filter 2040.
  • the surface of the filter 2040 does not protrude from the top end of the holder 2070G.
  • the second seating groove 2072G is mounted to the encapsulation portion 2011 such that the encapsulation portion 2011 extends upward along the support 2070G, and the filter 2040 is positioned downwardly, thereby The back focus of the camera module is reduced.
  • the shape of the first seat groove 2071G matches the shape of the filter 2040, and the shape of the second seat groove 2072 matches the shape of the mounting groove 20113 of the package portion 2011.
  • the holder 2070G extends into the through hole 201100 and extends downward to support the filter 2040 over the photosensitive chip 2030, and utilizes the space in the through hole 201100.
  • the filter 2040 When the filter 2040 is stably mounted, the filter 2040 does not occupy an external space.
  • the distance inward of the holder 2070G is outside the photosensitive area of the photosensitive chip 2030, that is, the holder 2070G does not block the photosensitive chip 2030 to avoid affecting the object.
  • the photosensitive process of the photosensitive chip 2030, the size of the support 2070G can be designed according to specific needs.
  • the second seating groove 2072G and the mounting groove 20113G of the encapsulation portion 2011 cooperate to form a matching snap-fit structure, thereby stabilizing the support 2070G.
  • the filter 2040 in this embodiment is smaller than the photosensitive chip 2030, and the camera module having a smaller back focus can be obtained.
  • a moving focus module is described as an example.
  • the lens 2050 is press-fitted to the motor 2060, and the motor 2060 is mounted to the holder 2070G. That is, the holder 2070C provides a mounting position for the filter 2040 and the motor 2060.
  • the camera module may also be a fixed focus module.
  • the lens 2050 is mounted to the holder 2070G, that is, the holder 2070G provides a mounting position for the filter 2040 and the lens 2050, as will be understood by those skilled in the art. Support 2070G
  • the specific structure and type of the camera module are not limitations of the present invention.
  • the support 2070G can be designed as a different structure according to different needs, such as the support 1070 of the foregoing embodiment, the support 2070 and the subsequent support 3070G, the branch.
  • the seat 3070H facilitates the mounting of different components, such as the filter 2040, the motor 2060, the lens 2050, and the like.
  • the filter 2040 is mounted to the holder 2070G
  • the holder 2070G is mounted to the package portion 2011,
  • the lens 2050 is mounted to the motor 2060.
  • the bottom portion of the motor 2060 is supported by the package portion 2011, and the other portion is located above the support 2070G, for example, while being lapped to the support 2070G to form a moving focus module.
  • the bottom portion of the lens 2050 is supported by the package portion 2011, and the other portion is located above the support 2070G to form a certain focus module.
  • the filter 2040 is mounted to the holder 2070
  • the holder 2070 is mounted to the package portion 2011, and the lens is mounted to the motor 2060.
  • the motor 2060 is completely supported and mounted on the package portion 2011 without the support of the support 2070, that is, the support is completely inside the package portion 2011.
  • the lens 2050 is completely supported and mounted on the package portion 2011 to form a certain focus module.
  • the motor 2060 or the lens 2050 is fully supported and mounted on the holder 2070, that is, the holder 2070 is disposed on the package portion 2011 and the Between the motor 2060 or the lens 2050.
  • the filter 2040 is not mounted to the holder but is mounted to the photosensitive chip 2030 or the wiring board main body 20121.
  • the camera module may also be fixed-focus molding, and those skilled in the art. It should be understood that the type of camera module is not a limitation of the present invention. As shown in FIGS. 27 to 29, it is a camera module based on an integrated packaging process according to a thirteenth preferred embodiment of the present invention.
  • the camera module can be applied to various electronic devices to assist the electronic device to perform shooting activities through the camera module.
  • the camera module can be used to capture images or video images of objects or people. Wait.
  • the camera module can be applied to a mobile electronic device, for example, the mobile electronic device can be, but not limited to, a mobile phone or a tablet device.
  • the camera module includes an integrated base assembly 3010, a sensor chip 3030, and a lens 3050.
  • the photosensitive chip 3030 is mounted on the integrated base assembly 3010, the lens 3050 is located on the integrated base assembly 3010, and the lens 3050 is located in a photosensitive path of the photosensitive chip 3030.
  • the integral base assembly 3010 can be coupled to the electronic device for use with the electronic device. It should be understood by those skilled in the art that the lens 3050 and the photosensitive chip 3030 can cooperate with each other to capture an image. Specifically, light reflected by a subject, such as an object or a character, is received by the sensor chip 3030 for photoelectric conversion after passing through the lens 3050. In other words The sensor chip 3030 can convert an optical signal into an electrical signal, and the electrical signal can be transmitted to the electronic device through the integrated base assembly 3010, thereby generating and photographing on the electronic device. Object related image.
  • the unitary base assembly 3010 includes a base portion 3011 and a circuit board portion 3012 integrally connected to the circuit board portion 3012, such as moldedly connected to the circuit board portion 3012. . More specifically, the base portion 3011 is molded and connected to the wiring board portion 3012 by molding in a Molding On Board (MOB). That is, the base portion 3011 is directly connected to the circuit board portion 3012 instead of being connected by an intermediate such as glue, so that the base portion 3011 has a good connection with the circuit board portion 3012. Firmness.
  • MOB Molding On Board
  • the circuit board portion 3012 includes a circuit board main body 30121, and the base portion 3011 is integrally connected to the circuit board main body 30121.
  • the base portion 3011 defines a through hole 301100 such that the base portion 3011 surrounds the outside of the photosensitive chip 3030 and provides a light path of the lens 3050 and the photosensitive chip 3030.
  • the photosensitive chip 3030 is disposed on the circuit board main body 30121 at a position corresponding to the through hole 301100.
  • the circuit board portion 3012 includes a connection circuit and at least one circuit component 30122.
  • the connection circuit is preset to the circuit board main body 30121, and the circuit component 30122 is electrically connected to the connection circuit for the photo sensor chip.
  • the circuit component 30122 can be, for example but not limited to, a resistor, a capacitor, a diode, a transistor, a potentiometer, a relay, a driver, a processor, a memory, and the like.
  • the base portion 3011 can cover the circuit component 30122 inside, thus making the circuit component 30122 not directly exposed to the space, more specifically, not exposed to the
  • the photosensitive chip 3030 is in a closed environment in which it is connected.
  • the circuit device in different conventional camera modules exists in such a manner that the resisting container member protrudes from the circuit board, thereby preventing dust and debris from staying in the circuit component 30122 and contaminating the photosensitive chip 3030.
  • the circuit component 30122 is illustrated as being exemplified by the circuit board body 30121. In other embodiments of the invention, the circuit component 30122 is embedded in the circuit.
  • the inside of the board main body 30121 does not protrude from the board main body 30121, and it should be understood by those skilled in the art that the structure, type, and position of the circuit element 30122 are not limited by the present invention. It can be understood that in the camera module of the transmission, the circuit device protrudes from the circuit board, and the base can only be mounted on the outer side of the circuit component 30122, so the circuit device and the base need to be fixed. The spatial position, therefore, requires a higher dimension in the lateral direction of the board.
  • the base portion 3011 is integrally packaged in the circuit board main body 30121, and covers the circuit component 30122, so the base portion 3011 and the circuit
  • the components 30122 overlap each other in space, thereby increasing the space that the base portion 3011 can be disposed inwardly, reducing the external extension requirement of the circuit board main body 30121, thereby reducing the lateral size of the camera module, so that It can meet the needs of miniaturization equipment.
  • the base portion 3011 enclosing the circuit component 30122 has the advantage of protecting the circuit component 30122 from being contaminated and being accidentally touched, and bringing the corresponding camera module.
  • the base portion 3011 is not limited to a covering Circuit element 30122. That is, in other embodiments of the present invention, the base portion 3011 may be directly molded to the circuit board main body 30121 of the circuit component 30122 that is not protruding, or may be molded on the circuit. Different positions such as the outer side and the periphery of the element 30122.
  • the base portion 3011 is convexly surrounding the outer side of the photosensitive chip 3030.
  • the base portion 3011 is integrally closed and connected to have a good sealing property.
  • the lens 3050 is mounted on the photosensitive path of the photosensitive chip 3030, the photosensitive chip 3030 is sealed inside to form a corresponding closed inner space.
  • a conventional wiring board can be selected as the wiring board main body 30121, and molding is performed on the surface of the wiring board main body 30121.
  • the circuit board after the SMT process may be integrally packaged by an injection molding machine by an insert molding process, such as molding, to form the The base portion 3011, or the base portion 3011 is formed by a molding process commonly used in a semiconductor package.
  • each of the photosensitive chips 3030 is attached to the wiring board main body 30121, and then the photosensitive chips 3030 and the wiring board main body 30121 are electrically connected, for example, by a gold wire.
  • the circuit board main body 30121 may be selected, for example, but not limited to, a soft and hard bonding board, a ceramic substrate (without a soft board), a PCB hard board (without a soft board), and the like.
  • the manner in which the base portion 3011 is formed may be selected, for example, but not limited to, an injection molding process, a molding process, and the like.
  • the material of the base portion 3011 can be selected, for example, but not limited to, nylon, LCP (Liquid Crystal Polymer), PP (Polypropylene, polypropylene), etc., and the molding process can be adopted. Epoxy resin. It should be understood by those skilled in the art that the foregoing alternatives and the materials that can be selected are merely illustrative of the embodiments of the invention and are not intended to be limiting.
  • the process of manufacturing the integrated base assembly 3010 may be performed by performing an SMT process on the circuit board main body 30121, and then mounting the photosensitive chip 3030 on the circuit board main body. 30121, and electrically connecting the photosensitive chip 3030 to the circuit board main body 30121, such as a gold wire electrical connection, and then integrally packaging the circuit board main body 30121, such as molding and packaging, by insert molding.
  • the base portion 3011 is formed, or the base portion 3011 is formed by a molding process commonly used in a semiconductor package. It will be understood by those skilled in the art that the order of manufacture of the unitary base assembly 3010 is not a limitation of the present invention.
  • the camera module includes a filter 3040 that is mounted to the base portion 3011 to provide stable, flat mounting conditions for the filter 3040.
  • the filter 3040 is implemented as an Infra-Red Cut Filter (IRCF), which uses a precision optical coating.
  • IRCF Infra-Red Cut Filter
  • the technology alternately applies a high refractive index optical film on an optical substrate to realize a high-transmission, near-infrared (700-1100 nm) cut-off optical filter in the visible light region (400-630 nm), which can eliminate infrared light to the photosensitive chip.
  • 3030 imaging effects such as CCD or CMOS.
  • the sensor chip 3030 such as CCD or CMOS
  • the sensing of light and Different from the human eye the human eye can only see visible light in the 380-780 nm band, and the photosensitive chip 3030 can sense more wavelength bands, such as infrared light and ultraviolet light, especially sensitive to infrared light, so in the imaging mode In the group, the infrared light must be suppressed, and the high transmittance of the visible light is kept, so that the sensing of the photosensitive chip 3030 is close to the human eye, so that the image captured by the camera module also conforms to the sensing of the eye, so
  • the infrared cut filter 3040 is indispensable for the camera module.
  • the filter 3040 may be selected from the group consisting of a wafer level infrared cut filter, a narrow band filter, and a blue glass IRCF. It will be understood by those skilled in the art that the type of filter 3040 is not a limitation of the present invention.
  • the filter In the conventional COB assembled camera module, the filter is usually mounted on a plastic base, and the base is usually attached to the circuit board by bonding, so the plastic base and the corresponding mounting manner are not easily offset. Or tilting, and the surface of the plastic bracket is poorly flat, so the filter 3040 cannot be provided with good mounting conditions.
  • the filter 3040 is mounted to the base portion 3011, and based on the molding process, good surface flatness can be obtained, thereby providing the filter 3040 with a flat surface.
  • the mounting conditions and the integrally formed manner make the base portion 3011 less prone to eccentricity and tilting, thereby reducing the cumulative tolerance when the filter 3040 is mounted.
  • the shape of the base portion 3011 can be determined as needed, for example, extending inwardly at the position of the circuit component 30122 to form a protrusion, thereby increasing the corresponding width of the base portion 3011. In the absence of the circuit component 30122, the base portion 3011 extends uniformly to form a relatively regular shape with a small width. It will be understood by those skilled in the art that the specific shape of the base portion 3011 is not a limitation of the present invention.
  • the base portion 3011 includes a covering portion 30114 and a filter mounting portion 30115.
  • the filter mounting portion 30115 is integrally molded and integrally connected to the covering portion 30114.
  • the covering portion 30114 Molded to the circuit board body 30121 for cladding the circuit component 30122.
  • the filter mounting section 30115 is for mounting the filter 3040.
  • the filter 3040 of the camera module is mounted to the filter mounting section 30115 such that the The filter 3040 is located on the corresponding photosensitive path of the photosensitive chip 3030, and does not require an additional filter 3040 mounting bracket.
  • the base portion 3011 has the function of a conventional mirror base here, but based on the advantages of the integrated packaging process, the top of the filter mounting section 30115 can be made to have a good process by means of a mold process.
  • the flatness is such that the filter 3040 is mounted flat, which is also superior to the conventional camera module.
  • the filter mounting portion 30115 forms a mounting slot 30113, and the mounting slot 30113 communicates with the through hole 301100 to provide sufficient installation space for the filter 3040, so that the filter 3040 It does not protrude from the top surface of the filter mounting section 30115. That is, the mounting groove 30113 is disposed at the upper end of the base portion 3011, so that the filter 3040 is stably mounted to the base portion 3011 and does not protrude from the base portion 3011. The top of the.
  • the mounting slot 30113 can be used to mount the filter 3040, while in other implementations of the invention, the mounting slot 30113 can be used for mounting.
  • the components of the motor or lens of the camera module those skilled in the art should understand that the use of the mounting slot 30113 is not a limitation of the present invention.
  • the base portion 3011 has the mounting groove 30113, and the mounting groove 30113 communicates with the through hole 301100 to provide a sufficient installation space for the filter 3040. That is, the top surface 30112 of the base portion 3011 has a stepped structure, and does not extend integrally. The steps of the top surface 30112 can be used to mount the filter 3040 and the lens 3050. Or the motor 3060.
  • the height of the mounting groove 30113 is greater than the thickness of the filter 3040, so that when the filter 3040 is mounted on the mounting groove 30113, the filter 3040 does not protrude from the The top end of the base portion 3011.
  • the filter 3040 has a square shape, and the shape of the mounting groove 30113 is adapted to the shape of the filter 3040. That is, the mounting groove 30113 has a square ring shape in cross section and communicates with the through hole 301100.
  • the mounting slot 30113 can be used to mount the filter 3040, while in other implementations of the invention, the mounting slot 30113 can be used to mount the device.
  • the camera module includes a motor 3060, such as a voice coil motor, and the lens 3050 is mounted to the motor 3060 to facilitate movement of the lens 3050 by the motor 3060. Adjusting the focal length of the camera module, that is, the camera module is an Automatic Focus Module (AFM).
  • the motor 3060 is electrically connected to the circuit board body 30121 through at least one motor pin 3061.
  • the moving focus module is taken as an example for description, and in other embodiments of the present invention, the camera may be a certain focus module, It will be understood by those skilled in the art that the type of camera module is not a limitation of the present invention.
  • the motor 3060 is mounted to the base portion 3011 of the unitary base assembly 3010. Further, the motor 3060 is mounted to the top surface 30112 of the base portion 3011, that is, the The filter 3040 and the motor 3060 coordinately occupy the top surface 30112 of the base portion 3011.
  • the motor 3060 is electrically connected to the circuit board body 30121 through at least one motor pin 3061.
  • the lens 3050 is mounted on the motor 3060, and the motor 3060 and the filter 3040 are mounted on the base portion 3011, so that the base portion 3011 functions as a base of a conventional camera module.
  • the motor 3060 and the filter 3040 are provided with a supported, fixed position, but the manufacturing, assembly, and form are different from the conventional COB process.
  • the base of the camera module of the conventional COB process is fixed to the circuit board in an adhesive manner, and the base portion 3011 is fixed to the circuit board main body 30121 by molding on the circuit board, and the bonding and fixing process is not required.
  • the molding method has better connection stability and controllability of the process with respect to the bonding and fixing manner, and has higher flatness, and provides good mounting conditions for the motor 3060 and the filter 3040, and
  • the base portion 3011 and the circuit board main body 30121 do not have an AA-adjusted glue space, thereby eliminating the reserved space of the conventional camera module AA adjustment.
  • the thickness of the camera module is reduced.
  • the base portion 3011 covers the circuit component 30122, so that the conventional base space and the circuit component 30122 installation space can be spatially overlapped.
  • a safe distance is reserved around the circuit device, so that the base portion 3011 having a base function can be disposed in a small size, thereby further providing a space in which the thickness of the camera module can be reduced.
  • the base portion 3011 replaces the conventional base, avoiding the tilt error caused by the base during the assembly and assembly, and reducing the cumulative tolerance of the assembly of the camera module.
  • the shape of the base portion 3011 can be more determined, for example, extending inwardly at the position of the circuit component 30122 to form a protrusion, thereby increasing the corresponding width of the base portion 3011. In the position where the circuit component 30122 is absent, the joined body molding portion uniformly extends to form a relatively regular shape with a small width. It will be understood by those skilled in the art that the shape of the base portion 3011 is not a limitation of the present invention.
  • the photosensitive chip 3030 can be electrically connected to the wiring board main body 30121 through at least one connection line 3031, and can be electrically connected to the connection line.
  • the connection line 3031 can be implemented as, for example but not limited to, a gold wire, a copper wire, an aluminum wire, a silver wire.
  • the connecting line 3031 of the photosensitive chip 3030 may be connected to the circuit board main body 30121 by a conventional COB method, for example, but not limited to, a soldering manner. That is to say, the connection between the photosensitive chip 3030 and the circuit board main body 30121 can fully utilize the existing mature connection technology to reduce the cost of the improved technology, fully utilize the traditional process and equipment, and avoid waste of resources.
  • the connection between the photosensitive chip 3030 and the circuit board main body 30121 can also be realized by any other connection manner of the inventive object of the present invention, and the present invention is in this aspect. Unlimited.
  • each of the photosensitive chips 3030 is disposed on an upper surface of the circuit board main body 30121, and the base portion 3011 surrounds an outer side of the photosensitive chip 3030.
  • different manufacturing sequences may be selected.
  • the photosensitive chip 3030 may be first mounted on the circuit board main body 30121, and then On the outer side of the photosensitive chip 3030, the base portion 3011 is molded on the wiring board main body 30121, and the circuit component 30122 protruding from the wiring board main body 30121 is covered inside.
  • the base portion 3011 may be molded on the circuit board main body 30121, and the circuit component 30122 protruding from the circuit board main body 30121 may be packaged.
  • the photosensitive chip 3030 is attached to the inside of the wiring board main body 30121 so as to be located inside the base portion 3011.
  • another embodiment of a camera module according to a thirteenth preferred embodiment of the present invention may be a Fix Focus Module (FFM).
  • FAM Fix Focus Module
  • the lens 3050 is mounted on the top surface 30112 of the base portion 3011, that is, the focal length of the camera module cannot be freely adjusted.
  • the lens 3050 and the filter 3040 coordinately configure the top surface 30112 of the base portion 3011, and the filter 3040 is mounted with the mounting groove 30113.
  • the type of imaging molding is not a limitation of the present invention.
  • the base portion 3011 can be used Supporting the mounting of the filter 3040 and the lens 3050, having the function of a conventional base, and based on the advantages of molding, the base portion 3011 can control the flatness and consistency of the base portion 3011 by means of a mold. Thereby providing a flat and consistent mounting environment for the filter 3040 and the lens 3050 of the camera module, thereby more easily ensuring the optical axis consistency of the lens 3050 and the filter 3040 and the sensor chip 3030. This is not easy to achieve with traditional camera modules.
  • the integrated base assembly 3010 of the camera module includes a motor connection structure 3013 for connecting the motor of the camera module. 3060.
  • the motor 3060 has at least one motor pin 3061.
  • the motor connection structure 3013 includes at least one lead 30131, and each of the leads 30131 is for electrically connecting the motor 3060 and the circuit board main body 30121.
  • Each of the leads 30131 is electrically connected to the board main body 30121. Further, each of the leads 30131 is electrically connected to a connection circuit of the circuit board main body 30121.
  • the lead wire 30131 is disposed to the base portion 3011 and extends to a top end of the base portion 3011.
  • the lead wire 30131 includes a motor connection end 3013111311 exposed at a top end of the base portion 3011 for electrically connecting the motor pin 3061 of the motor 3060. It is worth mentioning that the lead wire 30131 can be disposed in an embedded manner when the base portion 3011 is formed. In the conventional connection mode, components such as a drive motor are connected to the circuit board by providing separate wires, and the manufacturing process is relatively complicated, and the method of embedding the lead wires 30131 in the molding of the present invention can replace the conventional one. Processes such as motor welding and make the circuit connection more stable.
  • the lead wire 30131 is a wire that is embedded inside the base portion 3011.
  • the motor pin 3061 motor pin 3061 may be connected to the motor connection end 301311 through an anisotropic conductive film, or may be connected to the motor connection end 301311 by soldering.
  • the buried position of the lead 30131 and the position of the motor connecting end 301311 of the lead 30131 at the base portion 3011 can be set as needed, for example, in an embodiment of the invention.
  • the motor connection end 301311 of the lead wire 30131 may be disposed at a periphery of the base portion 3011, that is, a top surface of the base portion 3011, a top surface of the filter mounting portion 30115, and In another embodiment of the present invention, the motor connection end 301311 can be disposed on the inner circumference of the base portion 3011, that is, the bottom surface of the mounting groove 30113 of the base portion 3011, so that the motor can be provided. 3060 different installation locations.
  • the motor connection end 301311 is disposed on the peripheral top surface of the base portion, when the motor 3060 needs to be mounted to the mounting groove 30113.
  • the motor connecting end 301311 is disposed on the inner circumference of the base portion 3011, that is, the bottom surface of the mounting groove 30113.
  • each of the photosensitive chips 3030 may be attached to the wiring board main body 30121, and then the MOB manner is molded on the wiring board main body 30121.
  • a base portion 3011, and the lead wire 30131 may be disposed inside the base portion 3011 in a buried manner during molding, and the lead wire 30131 is electrically connected to the circuit board main body 30121, and the lead wire 30131 is caused
  • the motor connection end 301311 is displayed at a top end of the base portion to facilitate connection to the motor pin 3061 of the motor 3060.
  • each of the motor pins 3061 of the motor 3060 is soldered.
  • the method is connected to the motor connection end 301311 of the lead wire 30131, so that the motor 3060 is electrically connected to the circuit board main body 30121, and a separate wire is required to connect the motor 3060 and the circuit board main body 30121. And the length of the motor pin 3061 of the motor 3060 can be reduced.
  • FIG 31B is an equivalent embodiment of the motor connection structure in accordance with the above-described preferred embodiment of the present invention.
  • the motor connection structure 3013 includes a lead slot 30133 for receiving the motor pin 3061 motor pin 3061 of the motor 3060 of the camera module.
  • the lead groove 30133 is provided at an upper end of the base portion 3011.
  • the motor connection structure 3013 includes at least one lead 30134, each of the leads 30134 for electrically connecting the motor 3060 and the circuit board body 30121.
  • the lead wire 30134 is disposed to the base portion 3011 and extends upward to a groove bottom wall of the lead groove 30133 of the base portion 3011.
  • the lead 30134 includes a motor connection end 301341 exposed on the bottom wall of the pin slot 30133 of the base portion 3011 for electrically connecting the motor pin 3061 of the motor 3060 to the motor pin 3061.
  • the motor connection end 301341 can be implemented as a pad.
  • the lead wire 30134 may be implemented as a wire that is buried inside the base portion 3011.
  • the photosensitive chip 3030 is first mounted, and then the base portion 3011 is molded on the circuit board main body 30121 in an MOB manner, and preset
  • the lead groove 30133 of a predetermined length, and the lead wire 30134 may be disposed in a buried manner at the time of molding, and the lead wire 30134 is electrically connected to the circuit board main body 30121, and the motor of the lead wire 30134 is caused
  • a connection end 3013111341 is displayed on the bottom wall of the pin slot 30133 of the base portion 3011 to facilitate connection to the motor pin 3061 of the motor 3060.
  • each of the motor pins 3061 of the motor 3060 is inserted into the lead slot 30133, and is connected to the ground by soldering.
  • the motor connection end 3013111341 of the lead 30134 so that the motor 3060 is electrically connected to the circuit board main body 30121, and a separate wire is required to connect the motor 3060 and the circuit board main body 30121, and
  • the motor pin 3061 of the motor 3060 can be stably connected to prevent externally unneeded contact with the motor pin 3061.
  • the lead 30134 may be implemented as a wire that is embedded inside the base portion 3011.
  • the motor connection structure 3013 includes a lead slot 30135 for receiving the motor pin 3061 of the motor 3060 of the camera module.
  • the lead groove 30135 is provided to the base portion 3011.
  • the motor connection structure 3013 includes at least one circuit contact 30132 that is preset to the circuit board body 30121 and electrically connected to the connection line of the circuit board body 122. Further, each of the lead slots 30135 extends from the top end of the base portion 3011 to the board body 30121, and causes the circuit contacts 30132 to be displayed.
  • the motor pin 3061 is adapted to be inserted into the lead slot 30135 and may be soldered to the circuit contact 30132.
  • the pin slot 30135 is such that the circuit contact 30132 is shown through the pin slot 30135 to facilitate connection to the motor pin 3061 of the motor 3060.
  • each of the motor pins 3061 of the motor 3060 is inserted into the lead slot 30135 and connected to the line by soldering.
  • the motor connecting structure 3013 includes an engraving line 30136 for electrically connecting the connecting line on the board main body 30121, the photosensitive chip 3030, and a motor and the like.
  • the engraving line 30136 can be disposed by laser forming (LDS) when the base portion 3011 is formed.
  • LDS laser forming
  • components such as a drive motor are connected to the wiring board by providing separate wires, and the manufacturing process is relatively complicated, and the manner of providing the engraving line 30136 in the molding of the present invention can be replaced.
  • the engraving line 30136 may be formed by the fact that the base portion 3011 is now provided with an engraving groove, and then an electric circuit is provided in the engraving groove by electroplating.
  • the manner in which the motor 3060 of the camera module is coupled to the integrated base assembly 3010 can be freely combined with the connection manners corresponding to FIGS. 6A, 6B, 6C, and 6D, and is selected to be suitable.
  • the motor 3060 is connected in a manner such as the lead slot 30133 and the lead 30134, the lead slot 30135, and the circuit contact 30132.
  • the motor 3060 can be coupled to the unitary base assembly 3010 in a conventional manner, such as by welding. It will be understood by those skilled in the art that the manner in which the motor 3060 and the unitary base assembly 3010 are coupled is not a limitation of the present invention.
  • the unitary base assembly 3010 includes a circuit board body 30121A.
  • the circuit board main body 30121A includes two inner recesses 301211A, and each of the photosensor chips 3030 is disposed in the corresponding inner recess 301211A.
  • the photosensitive chip 3030 is disposed in the inner groove 301211A, and the photosensitive chip 3030 is accommodated therein, so that the photosensitive chip 3030 does not protrude significantly.
  • the upper surface of the circuit board main body 30121A reduces the height of the photosensitive chip 3030 relative to the base portion 3011, thereby reducing the height restriction of the photosensitive chip 3030 on the base portion 3011, and further reducing the height.
  • the possibility that the photosensitive chip 3030 is mounted in the inner groove 301211A can protect the photosensitive chip 3030, especially the connecting line 3031, from external components from being inadvertently touched by the photosensitive chip 3030.
  • the photosensitive chip 3030 is connected to the circuit board main body 30121 through the connection line 3031, and is electrically connected to the connection line.
  • the leads can be implemented, for example, but not limited to, Gold wire, copper wire, aluminum wire, silver wire. That is, the photosensitive chip 3030 and the connecting line 3031 are both located in the inner groove 301211A of the wiring board main body 30121A.
  • the inner groove 301211A needs to be disposed on the circuit board main body 30121A. That is, the inner groove 301211A is opened on a conventional wiring board to be adapted to accommodate the mounting of the photosensitive chip 3030.
  • Figure 33 is a cross-sectional view of a camera module and an integrated base assembly thereof in accordance with a sixteenth preferred embodiment of the present invention.
  • the integrated base assembly 3010 includes a circuit board body 30121B having a via 301212B, and a lower portion of the via 301212B is adapted to mount the photosensitive chip 3030.
  • the via 301212B causes the upper and lower sides of the wiring board main body 30121B to communicate, so that when the photosensitive chip 3030 is mounted on the back surface of the wiring board main body 30121B and the photosensitive area is mounted upward on the circuit board main body 30121B,
  • the photosensitive area of the photosensitive chip 3030 is capable of receiving light entering by the lens 3050.
  • the circuit board main body has an outer groove 301213B, and the outer groove 301213B communicates with the corresponding path 301212B to provide a mounting position of the photosensitive chip 3030.
  • the outer surface of the photosensitive chip 3030 and the surface of the circuit board main body 30121B are in the same plane, thereby ensuring the integrated base.
  • the via 301212B is stepped, thereby facilitating mounting of the photosensitive chip 3030, providing a stable mounting position for the photosensitive chip 3030, and displaying the photosensitive region therein. space.
  • a chip mounting method different from the conventional one that is, a flip chip (FC) is provided.
  • the photosensitive chip 3030 is attached to the wiring board main body 30121B from the back surface direction of the wiring board main body 30121B instead of being required from the front surface of the wiring board main body 30121B, that is, from the wiring board as in the above embodiment.
  • the photosensitive area of the photosensitive chip 3030 is attached to the wiring board main body 30121B upward.
  • the structure and the mounting manner are such that the photosensitive chip 3030 and the base portion 3011 are relatively independent, and the mounting of the photosensitive chip 3030 is not affected by the base portion 3011, and the mold of the base portion 3011 The influence of the molding on the photosensitive chip 3030 is also small.
  • the photosensitive chip 3030 is embedded on the outer side surface of the circuit board main body 30121B, and does not protrude from the inner side surface of the circuit board main body 30121B, so that a larger space is left inside the circuit board main body 30121B.
  • the height of the base portion 3011 is not limited by the height of the photosensitive chip 3030, so that the base portion 3011 can reach a smaller height.
  • the filter 3040 is mounted on the upper end of the via 301212B, that is, the filter 3040 does not need to be mounted on the base portion 3011. Thereby reducing the back focus of the camera module and reducing the height of the camera.
  • the filter 3040 can be an embodiment of an infrared cut filter IRCF.
  • the integrated base assembly 3010 includes a reinforcement layer 30123C that is laminatedly coupled to the bottom layer of the circuit board body 30121 to enhance the structural strength of the circuit board body 30121. That is, the reinforcing layer 30123C is placed on the underlayer of the base portion 3011 and the region where the photosensitive chip 3030 is located on the circuit board main body 30121, so that the circuit board main body 30121 stably and reliably supports the The base portion 3011 and the photosensitive chip 3030.
  • the reinforcing layer 30123C is a metal plate attached to the bottom layer of the circuit board main body 30121 to increase the structural strength of the circuit board main body 30121, and on the other hand, the integrated base assembly is added.
  • the heat dissipation performance can effectively dissipate the heat generated by the photosensitive chip 3030.
  • the circuit board main body 30121 can adopt an FPC (Flex Print Circuit), and the rigidity of the FPC by the reinforcing layer 30123C enables the FPC with good bending performance to satisfy.
  • the load bearing requirements of the integral base assembly that is to say, the circuit board body 30121 has a wider range of options, such as a PCB (Printed Circuit Board), FPC, RG (Rigid Flex, soft and hard board).
  • the structural strength of the circuit board main body 30121 is increased by the reinforcing layer 30123B and the heat dissipation performance is improved, so that the thickness of the circuit board main body 30121 can be reduced, so that the height of the integrated base assembly is further reduced, and The height of the assembled camera module is reduced.
  • Figure 35 is a cross-sectional view of a camera module and an integrated base assembly thereof in accordance with an eighteenth preferred embodiment of the present invention.
  • the circuit board main body 30121D has at least one reinforcing hole 301214D, and the base portion 3011 extends into the reinforcing hole 301214D, thereby enhancing the structural strength of the circuit board main body 30121D.
  • the position of the reinforcing hole 301214D can be selected according to needs, and is set according to the structural strength requirement of the circuit board, such as a symmetrical structure.
  • the structural strength of the circuit board main body 30121D is enhanced by the arrangement of the reinforcing holes 301214D, so that the thickness of the circuit board main body 30121D can be reduced, the thickness of the camera module assembled therefrom can be reduced, and the The heat dissipation performance of the integrated base assembly.
  • the reinforcing hole 301214D is in the shape of a groove, so that when the integral base assembly is manufactured, the molding material of the base portion 3011 does not leak out from the reinforcing hole 301214D.
  • Figure 36 is a cross-sectional view of a camera module and an integrated base assembly thereof in accordance with a nineteenth preferred embodiment of the present invention.
  • the circuit board main body 30121E has at least one reinforcing hole 301214E that extends into the reinforcing hole 301214E, thereby enhancing the structural strength of the circuit board main body 30121E.
  • the position of the reinforcing hole 301214E can be selected according to needs, and is set according to the structural strength requirement of the circuit board, such as a symmetrical structure.
  • the structural strength of the circuit board main body 30121E is enhanced by the arrangement of the reinforcing holes 301214E, so that the thickness of the circuit board main body 30121E can be reduced, the thickness of the camera module assembled thereby can be reduced, and the The heat dissipation performance of the integrated base assembly.
  • the reinforcing hole 301214E is a through hole, that is, through the circuit board main
  • the body 30121E is connected to both sides of the circuit board main body 30121E, so that when the integrated base assembly is manufactured, the molding material of the base portion 3011 is sufficiently combined with the circuit board main body 30121E to form a stronger body.
  • the composite structure, and the perforations are easier to manufacture relative to the groove-like structure.
  • Figure 37 is a cross-sectional view of a camera module and an integrated base assembly thereof in accordance with a twentieth preferred embodiment of the present invention.
  • the base portion 3011F includes a covering portion 30114F, a filter mounting portion 30115F and a lens mounting portion 30116F, the filter mounting portion 30115F and the lens mounting portion.
  • the 30116F is integrally molded and coupled to the cladding section 30114F, and the cladding section 30114F is molded and coupled to the wiring board body 30121 for covering the circuit component 30122 and the connection line 3031.
  • the filter mounting section 30115F is used to mount the filter 3040, that is, when the integrated base component is used to assemble the camera module, the filter 3040 of the camera module It is mounted to the filter mounting section 30115F such that the filter 3040 is located on the photosensitive path of the photosensitive chip 3030 without the need to provide an additional filter 3040 mounting bracket. That is, the base portion 3011F has the function of a conventional bracket here, but based on the advantages of the integrated packaging process, the top of the filter mounting portion 30115F can be well flattened by means of a mold-forming process. This makes the filter 3040 mounted flat, which is also superior to the conventional camera module.
  • the lens mounting section 30116F is used to mount the lens 3050, that is, when the integrated base assembly is used to assemble the camera module, the lens 3050 is mounted on the base portion 3011F.
  • the inside of the lens mounting section 113F is provided to provide a stable mounting position for the lens 3050.
  • the filter mounting portion 30115F has a mounting slot 30113F, and the mounting slot 30113F communicates with the corresponding through hole 301100F to provide sufficient installation space for each of the filters 3040.
  • the filter 3040 is stably mounted.
  • the lens mounting section 30116F has a lens mounting slot 301131F, and each of the lens mounting slots 301131F communicates with the corresponding through hole 301100F to provide sufficient mounting space for each of the lenses 3050.
  • the filter mounting section 30115F and the lens mounting section 30116F extend integrally upwardly, and a stepped structure is formed inside to provide a support fixing position for the filter 3040 and the lens 3050, respectively.
  • the base portion 3011 has two mounting slots, one of which is located at a lower position, and one of the mounting slots 30113F is located at a higher position to form a two-step stepped structure.
  • the mounting slot 30113F in the lower position is used to mount the filter 3040, and the mounting slot 301113F in the upper position is used to mount the lens 3050.
  • the lens mounting section 30116F has two lens inner walls 301161F, and each of the lens inner walls 301161F has a closed annular shape, which is suitable for providing a mounting space for the lens 3050. It is worth mentioning that each of the lens inner walls 301161F of the lens mounting section 301162F has a flat surface, so as to be suitable for mounting the unthreaded lens 3050 to form a fixed focus module. In particular, the lens 3050 can be fixed to the lens mounting segment 30116F by bonding.
  • the integral base assembly 3010 includes a shield layer 30124 that wraps the circuit board body 30121 and the base portion 3011 to enhance the circuit board body While the structural strength of 30121 is increased, the electromagnetic interference resistance of the integrated base assembly 3010 is enhanced.
  • the camera module includes at least one seat 3070G for mounting each of the filters 3040, each of the lenses 3050 or each of the motors 3060.
  • the holder 3070 is mounted to the base portion 3011, and each of the filters 3040 is mounted to the holder 3070, and each of the motors 3060 is mounted to the holder Block 3070.
  • the specific shape of the support 3070 can be set as needed, such as a boss is provided to facilitate the mounting of each of the filters.
  • the holder 3070G has a first holder groove 3071G and a second holder groove 3072G, and the first holder groove 3071G is used to mount the filter 3040.
  • the surface of the filter 3040 does not protrude from the top end of the holder 3070.
  • the second seat groove 3072G is mounted to the base portion 3011 such that the base portion 3011 extends upward along the support 3070G, and the position of the filter 3040 is downward. Thereby reducing the back focus of the camera module.
  • the holder 3070G extends into the through hole 301100 and extends downward to support the filter 3040 over the photosensitive chip 3030, and utilizes the space in the through hole 301100.
  • the filter 3040 When the filter 3040 is stably mounted, the filter 3040 does not occupy an external space.
  • the distance inward of the holder 3070G is outside the photosensitive area of the photosensitive chip 3030, that is, the holder 3070G does not block the photosensitive area of the photosensitive chip 3030.
  • the size of the holder 3070G can be designed according to specific needs.
  • a moving focus module is described as an example.
  • the lens 3050 is press-fitted to the motor 3060, and the motor 3060 is mounted to the holder 3070G. That is, the holder 3070G provides a mounting position for the filter 3040 and the motor 3060.
  • the camera module may also be a fixed focus module.
  • the lens 3050 is mounted to the holder 3070G, that is, the holder 3070G provides a mounting position for the filter 3040 and the lens 3050, as will be understood by those skilled in the art.
  • the specific structure of the support 3070 and the type of the camera module are not limitations of the present invention.
  • the camera module includes a seat 3070H for mounting the filter 3040.
  • the holder 3070H is attached to the base portion 3011, the filter 3040 is attached to the base portion 3011, and the motor 3060 or the lens 3050 is attached to the base portion 3011.
  • the support 3070H is mounted on the mounting groove 30113 of the base portion 3011, and the height of the mounting groove 30113 is greater than the mounting height of the support 3070H, so that the support 3070H does not Projecting from the top end of the base portion 3011.
  • the holder 3070H has a first holder groove 3071H and a second holder groove 3072H, and the first holder groove 3071H is used for mounting the filter 3040.
  • the surface of the filter 3040 does not protrude from the top end of the holder 3070H.
  • the second seat groove 3072H is for mounting on the base portion 3011 such that the base portion 3011 extends upward along the support 3070H, and the position of the filter 3040 is downward. Thereby reducing the back focus of the camera module.
  • the holder 3070H extends into the through hole 301100 and extends downward to support the filter 3040 over the photosensitive chip 3030, and utilizes the space in the through hole 301100.
  • the filter 3040 When the filter 3040 is stably mounted, the filter 3040 does not occupy an external space.
  • the distance inwardly extending from the holder 3070H is outside the photosensitive area of the photosensitive chip 3030, that is, the holder 3070H does not block the photosensitive chip 3030 to avoid affecting the object.
  • the photosensitive process of the photosensitive chip 3030, the size of the support 3070C can be designed according to specific needs.
  • the second seating groove 3072H and the mounting groove 30113 of the package cooperate with each other to form a matching snap-fit structure, so that the support 3070H can be stably installed in the seat. It is described in the installation groove 30113.
  • the filter 3040 in this embodiment is smaller than the photosensitive chip 3030, and the camera module having a smaller back focus can be obtained.
  • a moving focus module is described as an example.
  • the lens 3050 is press-fitted to the motor 3060, and the motor 3060 is mounted to the holder 3070H. That is, the holder 3070H provides a mounting position for the filter 3040 and the motor 3060.
  • the camera module may also be a fixed focus module.
  • the lens 3050 is mounted to the holder 3070H, that is, the holder 3070H provides a mounting position for the filter 3040 and the lens 3050, as will be understood by those skilled in the art.
  • the specific structure of the support 3070H and the type of the camera module are not limitations of the present invention.
  • FIG. 41 is a schematic diagram showing the structural strength comparison between an imaging and a conventional camera module based on an integrated packaging process according to the above preferred embodiment of the present invention.
  • the left side of FIG. 42 is a conventional camera module, and the right side is a camera module based on an integrated packaging process according to the present invention.
  • the thickness of the holder 3P of the conventional image pickup module is indicated by a1, and the thickness of the base portion 3011 of the image pickup module of the present invention is indicated by a2.
  • the bracket 3P is used to mount the filter 4P, the motor 5P or the lens 6P, and the bracket 3P is usually a plastic component formed by injection molding.
  • the bracket 3P is generally mounted on the outer side of the circuit device 11P, so that the installation space reserved for the bracket 3P is limited without increasing the lateral dimension of the circuit board body.
  • the thickness a1 of the bracket 3P can only be limited to a small range, such as 0.3 mm. At this time, the mutual bonding area of the bracket 3P and the circuit board 1P is small, so the connection stability is poor, That is, the bracket 3P is easily separated from the wiring board 1P or cracked when it is used for a long period of time or has a strong external force.
  • the base portion 3011 is integrally packaged in the circuit board main body 30121, and is packaged in the circuit board main body by molding. And covering the circuit component 30122, so the base portion 3011 is opposite to the
  • the bracket 3P has a larger configurable space and extends toward the inside of the board main body 30121, so that the outer size of the board main body is not expanded.
  • the base portion 3011 can reach a greater thickness a2, such as 0.6 mm.
  • the base portion 3011 has better support stability, and the base portion 3011 is more firmly connected to the circuit board main body 30121 by means of integral packaging, so that the camera module is in use. More stable and reliable.
  • the base portion 3011 is integrally packaged in the circuit board main body 30121, and the structural strength of the circuit board main body 30121 at the connection portion is increased, and the base portion 3011 serves to protect the circuit board main body.
  • the role of 30121 is provided.
  • FIG. 42 is a schematic diagram showing the horizontal dimension comparison of a camera module based on an integrated packaging process and a conventional camera module according to the above preferred embodiment of the present invention.
  • the left side of FIG. 43 is a conventional camera module, and the right side is a camera module based on an integrated packaging process according to the present invention.
  • the lateral cross-sectional dimension of the conventional camera module is indicated by b1
  • the transverse cross-sectional dimension of the camera module based on the integrated packaging process of the present invention is indicated by b2.
  • the bracket 3P is mounted on the outer side of the circuit device 11P, and the bracket 3P and the circuit device 11P are independent of each other in the installation space, and all need to occupy a certain space, and The circuit device 11P needs to reserve a certain safety distance around the circuit device 11P, for example, a safety distance of 0.35 mm is reserved.
  • the base portion 3011 is encapsulated in the circuit board main body 30121, and the base portion 3011 covers the circuit component 30122, so the base The portion 3011 satisfies the requirement of the basic strength, and only needs to cover the circuit component 30122 with a small size, such as 0.15 mm, and the base portion 3011 and the circuit component 30122 overlap each other to make full use of the installation space. Therefore, the lateral dimension B2 of the camera module is reduced.
  • the lateral dimension b2 of the camera module based on the integrated packaging process can be 0.2 mm smaller than the lateral dimension b1 of the conventional camera module.
  • FIG. 43 is a schematic diagram showing the height comparison between the camera module and the conventional camera module based on the integrated packaging process according to the above preferred embodiment of the present invention.
  • the left side of FIG. 44 is a conventional camera module, and the right side is a camera module based on an integrated packaging process according to the present invention.
  • the height of the conventional camera module is represented by c1
  • the height of the camera module based on the integrated package process of the present invention is represented by c2
  • the thickness of the circuit board 1P of the conventional camera module is represented by d1
  • the basis of the present invention is represented by d2.
  • the bracket 3P of the conventional camera module is bonded to the circuit board 1P, and in order to meet the AA adjustment requirement, the glue amount is large, the glue layer is thick, and the circuit device 11P also needs to be installed above. The distance thus makes the height c1 of the camera module large.
  • the bracket 3P is located outside the circuit device 11P and has a large lateral span. Therefore, the circuit board 1P is required to have a high strength to ensure the shape of the camera module, thereby requiring the circuit board 1P.
  • the thickness d1 is large, which also makes the overall height d1 of the camera module large.
  • the camera module based on the integrated packaging process according to the present invention wherein the pedestal 11 is integrally packaged in the circuit board main body 30121, does not require a glue bonding space, and does not need to reserve an AA adjustment space. There is no need to reserve a safe distance for the circuit component 30122, so the height c2 of the camera module based on the molding process is reduced.
  • the base portion 3011 covers the circuit component 30122 such that the base portion 3011 can extend inwardly, reducing the lateral span of the middle portion of the base portion 3011, and the shape of the same circuit board is more variable.
  • the base portion 3011 can enhance the structural strength of the circuit board main body 30121, so that the thickness d2 of the circuit board main body 30121 can be reduced. Therefore, the overall height c1 of the camera module based on the integrated packaging process is further reduced.
  • Figure 44 is a schematic illustration of the flatness of a camera module based on an integrated packaging process in accordance with the above-described preferred embodiment of the present invention.
  • the bracket 3P of the conventional camera module is manufactured by injection molding, and is assembled to the camera module by bonding. Therefore, the camera module is prone to tilting, eccentricity, and the like. Moreover, the surface flatness of the bracket 3P is poor, and it is not possible to provide flat mounting conditions for components such as filters, motors, or lenses.
  • the base portion 3011 is connected to the circuit board main body 30121 by integral packaging, and is, for example, moldedly connected to the circuit board main body 30121. Further, in manufacturing the integral base assembly, the base portion is formed by a molding die 1, and the surface flatness of the base portion 3011 is ensured by the molding die 1, and the base is made The top surface 30112 of the seat portion 3011 coincides with the surface of the attachment area 301216 of the photosensitive chip, and the filter 3040, the lens 3050 or the motor 3060 is subjected to flat mounting conditions, and the photosensitive chip 3030 is caused.
  • the optical axes of the filter 3040, the lens 3050, and the motor 3060 are identical.
  • FIG. 45 is a schematic diagram showing the comparison of imaging quality of a camera module based on an integrated packaging process and a conventional camera module according to the above preferred embodiment of the present invention.
  • the left side of FIG. 46 is a conventional camera module, and the right side is a camera module based on an integrated packaging process according to the present invention.
  • the circuit device 11P of the conventional camera module is exposed to a closed environment in which the photosensitive chip 2P communicates with each other, and when the camera module is assembled, dust is usually attached to the circuit device 11P, such as in soldering. a solder resist at the time of the motor, and the dust is hard to remove, and remains on the surface of the circuit device 11P. After the camera module is packaged, the dust moves freely, and when dust falls on the sensor chip, especially When the photosensitive area of the photosensitive chip is used, the camera module may appear black spots, thus making the imaging quality of the camera module poor.
  • the circuit component 30122 is covered by the base portion and is not exposed to the same environment as the sensor chip 3030, so even in the circuit component 11P has residual dust, such as solder resist, and does not fall into the photosensitive chip after the camera module is packaged, so that the stability of the imaging quality of the camera module can be ensured, and no black spots appear after the package. .
  • 46A and 46B are schematic diagrams showing a comparison of a manufacturing process of a camera module and a conventional camera module based on the integrated packaging process according to the above preferred embodiment of the present invention.
  • the assembly and manufacturing process of the conventional camera module is generally: manufacturing the bracket 3P by injection molding; cutting the entire circuit board, bonding the bracket 3P to the separate circuit board 1P; and then attaching the chip
  • components such as the filter 4P, the lens 6P or the motor 5P are mounted on the bracket 3P to be assembled into a fixed focus module or a moving focus module.
  • the bracket 3P is completed by injection molding, and only a small amount, such as 4 to 8, can be manufactured at a time, and then the separate brackets 3P are respectively bonded to the independent circuit boards 1P, which makes the camera module
  • the manufacturing efficiency of the group is low, and the consistency between the modules is difficult to control.
  • the assembly and manufacturing process of the camera module based on the integrated packaging process according to the present invention is generally: integrally molding a plurality of the base portions 3011 on the imposition circuit board 2 by molding; and then dividing the imposition Separating the imposition into a plurality of separate integral base assemblies; further mounting the photosensitive chip 3030 on the integrated base assembly, and then the filter 3040, the lens 3050 or the
  • the motor 3060 mounts the base portion to be assembled into a moving focus module or a fixed focus module.
  • This process is different from the traditional assembly method, the production mode of the camera module is greatly improved, and the consistency between the plurality of modules is more easily ensured.
  • 90 of the integral base assemblies can be formed at one time.
  • the molding process generally has injection molding and molding from the standpoint of the equipment. Injection molding can also be divided into injection molding and die casting.
  • Injection molding machine referred to as injection machine or injection molding machine
  • injection machine is the main molding equipment for making thermoplastic or thermosetting materials into plastic products of various shapes by using plastic molding die. Injection molding is realized by injection molding machine and mold. Molding is the abbreviation of compression molding, also known as compression molding.
  • a molding material such as a plastic or rubber compound is molded into an article by heating and pressurization in a closed cavity. Molding in the molding process is used in the present invention, but it will be understood by those skilled in the art that the present invention is not limited to the molding process, and other packaging processes, and the present invention is not limited thereto.
  • FIG. 47 shows a twenty-third preferred embodiment of a camera module based on an integrated packaging process according to the present invention, which adopts an MOB process.
  • the camera module based on the integrated packaging process includes a package photosensitive component 4010, a filter 4040, a lens 4050, and a motor 4060.
  • the motor 4060 may not be present in other embodiments, such as a fixed focus (FF) module, and the invention is not so limited. That is, this preferred embodiment of the present invention is exemplified by an autofocus (AF) module.
  • the package photosensitive unit 4010 includes a package portion 4011 and a photosensitive member 4012.
  • the photosensitive module 4012 further includes a photosensitive chip 4030, and a wiring board 40121, which is provided with a set of electronic components 40122 (for example, resistors, capacitors, drivers, etc., hereinafter referred to as ICs) and a set of leads 4031.
  • the lead wire 4031 is connected to connect the photosensitive chip 4030 and the circuit board 40121.
  • the photosensitive chip 4030 and the circuit board 40121 may have other conduction modes.
  • the lead 4031 can be implemented as a gold wire.
  • the encapsulation portion 4011 serves as a support for carrying the filter 4040.
  • the encapsulation portion 4011 may have electrical properties, such as an electrically engraved line electrically connected to the motor 4060 and the photosensitive member 4012, which can replace the conventional motor bonding wire. , reducing the traditional process.
  • the motor 4060 and the circuit board 40121 can also be turned on by conventional soldering.
  • the package portion 4011 encapsulates the circuit board 40121.
  • the package portion 4011 encapsulates the circuit board 40121 with the photo sensor 4030 and the A region other than the contact of the lead 4031 is described.
  • the encapsulation portion 4011 not only encapsulates the top surface 401215 of the circuit board 40121, but the package portion 4011 further The package encloses at least one side 401216 of the circuit board 40121. It can be understood that the encapsulation portion 4011 can also integrally package the electronic component 40122 during the packaging process.
  • the motor 4060 is electrically connected to the circuit board 40121 through at least one motor pin.
  • FIG. 49E A molding forming module in the comparative art is shown in Figs. 49A to 49E.
  • the portion on the left side of the package portion 4011P in FIG. 50A is flush with the wiring board 40121P, and the design of the side surface of the wiring board 40121P flush with the side surface of the package portion 4011P is also generally adopted by the comparative technology. Therefore, in order to achieve the above design requirements, as shown in FIG. 49B, the structure in the figure needs to be achieved before the module is assembled.
  • the circuit board 40121P is processed as shown in FIG. 49B, that is, two or more pieces are used.
  • the circuit boards 40121P are connected together, molded, and finally machine cut in the middle portion of Fig. 49B, but new cutting equipment is required.
  • the edge of the circuit board 40121P may not be flush with the package portion 4011P, so it can usually only be designed as As shown in Fig. 49C, the circuit board 40121P in the figure needs to protrude a section for mold pressing, and the length of the wiring board 40121P is usually 0.1 mm to 1 mm in value.
  • the camera module based on the integrated package process of the present invention retracts the circuit board 40121 so that the side of the package portion 4011 covers the circuit board 40121.
  • the side surface 401216 so that the side surface of the encapsulation portion 4011 and the circuit board 40121 still reserve a certain misalignment space, and the side surface is not protruded after the molding, the cutting process is reduced, and the product is improved. quality.
  • the encapsulation portion 4011 can encapsulate both sides of the circuit board 40121.
  • the right side since there are other elements on the right side, such as flexible circuit board connections, only the left side of the circuit board 40121, i.e., the side 401216, is packaged.
  • the package portion 4011 can not only encapsulate the side surface 401216 of the circuit board 40121, but in other embodiments, the circuit board 40121 can be packaged side by side at the same time.
  • the present invention is not limited by the partial or total area of the two sides.
  • FIG. 48 shows a twenty-fourth preferred embodiment of the camera module based on the integrated package process of the present invention, in order to ensure that the module after the molding process can be easily installed and positioned, and the flatness is improved
  • the camera module based on the integrated package process includes a package photosensitive component 4010A, a filter 4040A, a lens 4050A, and a motor 4060A.
  • the motor 4060A is disclosed, but in other FF modules, the motor 4060A may not be required, and the present invention is not limited thereto.
  • the package photosensitive member 4010A includes a package portion 4011A and a photosensitive member 4012A.
  • the photosensitive member 4012A further includes a photosensitive chip 4030A, and a wiring board 40121A configured with a set of electronic components 40122A and a set of leads 4031A.
  • the encapsulation portion 4011A serves as a support for carrying the filter 4040A, and the engraving line of the module portion 11A is electrically connected to the motor 4060A and the photosensitive member 4012A.
  • the circuit board 40121A and the electronic component 40122A are packaged, and the package covers the circuit board 40121A.
  • the package portion 4011A also molds a bottom portion 401217A of the wiring board 40121A. From After the molding is completed, the camera module based on the integrated packaging process has the flatness of the overall side and the bottom, and is also convenient to be installed and positioned on other tooling.
  • the encapsulation portion 4011A may encapsulate the entire bottom portion 401217A of the circuit board 40121A, or in other embodiments, package the circuit board 40121A according to different needs.
  • a portion of the bottom 401217A is not limited by the present invention.
  • the right side of the camera module can be connected to other components or other processing processes, the right side of the circuit board 40121A is The package is not encapsulated, but in other embodiments, the package portion 4011A can simultaneously package two or more sides of the circuit board 40121A, and simultaneously package the bottom 401217A of the circuit board 40121A.
  • the present invention is not limited by this or all of the regions.
  • the camera module 100 can be applied to various electronic devices 300, such as but not limited to smart phones, wearable devices, computer devices, televisions, vehicles, cameras, monitoring devices, and the like.
  • the electronic device implements image acquisition and reproduction of a target object.
  • the molded wiring board assembly 1010F of the camera module 100 is manufactured by a manufacturing apparatus 200.
  • the molding portion 1011F has a first inner side surface 10117F, a second inner side surface 10118F, and an outer side surface 10119F, the first inner side surface 10117F and the second inner portion.
  • the side faces 10118F are each closed to form the through hole 101100F to provide a light path for the photosensitive chip. That is, the molding portion 1011F forms a light window through the first inner side surface 10117F and the second inner side surface 10118F to provide a window for light entering the photosensitive chip, and a lower port of the light window
  • the shape is determined by the surrounding shape of the first inner side surface 10117F.
  • the first inner side surface 10117F surrounds the through hole 101100F or the lower end of the light window
  • the second inner side surface 10118F surrounds the through hole 101100F or the upper end of the light window.
  • the first inner side surface 10117F extends upward in an inclined shape, and has a trapezoidal shape with a cross section gradually increasing from a lower to an upper opening. That is, the cross section of the through hole 101100F or the lower end of the light window has a trapezoidal shape that gradually increases from the bottom to the upper opening.
  • the first inner side surface 10117F is surrounded and the inner diameter is gradually increased from bottom to top, that is, the lower end of the light window is gradually increased from the bottom to the inner diameter.
  • the first inner side surface 10117F may also be surrounded by other trapezoidal structures.
  • the surrounding shape of the first inner side 10117F is not a limitation of the present invention.
  • the surrounding shape of the first inner side surface 10117F may be determined according to the shape of the lens 50, the photosensitive chip 30, or the filter 40.
  • the cross-section pyramid is an approximate structure. In the actual manufacturing process, the corners of the pyramid are not sharp corners that meet straight lines, but are rounded corners.
  • the first inclination angle ⁇ is greater than 0°, that is, the first inner side surface 10117F and the central optical axis Y direction are not in a parallel state. Since the central optical axis Y is vertical In the circuit board main body 10121, therefore, in the embodiment of the present invention, the positional relationship between the first inner side surface 10117F and the circuit board main body 10121 is not in a vertical relationship.
  • the provision of the first angle of inclination a contributes to the forming of the molded part 1011F, which will be explained in connection with the subsequent manufacturing process for ease of understanding.
  • the setting of the first inclination angle ⁇ that is, the inclination of the first inner side surface 10117F, causes the incident angle of the light reaching the first inner side surface 10117F to decrease, and the corresponding reflection angle decreases.
  • the reflected light is moved away from the photosensitive chip 30, thereby reducing the influence of the reflected stray light of the molded portion 1011F on the image quality of the image pickup module.
  • the through hole 101100F or the light window is formed in a trapezoidal structure in which the opening gradually increases in cross section, thereby increasing the light flux, thereby further improving the imaging quality of the camera module.
  • the second inner side surface 10118F surrounds the through hole 101100F or the upper end of the light window, that is, the shape of the upper end of the light window is determined by the surrounding shape of the second inner side surface 10118F.
  • the second inner side surface 10118F extends obliquely upward, and the cross section forms a trapezoidal shape that gradually increases from the lower to the upper opening. That is, the cross section of the through hole 101100F or the upper end of the light window has a trapezoidal shape that gradually increases from bottom to top.
  • the second inner side 10118F surrounds forming a headless vertebral structure that gradually increases from bottom to top. That is, the upper end of the light window has a headless vertebral structure that gradually increases from bottom to top.
  • the second inner side surface 10118F may also be surrounded by other trapezoidal structures, such as a headless cone and a quadrangular pyramid. It will be understood by those skilled in the art that the surrounding shape of the second inner side 10118F is not a limitation of the present invention. The surrounding shape of the second inner side surface 10118F may be determined according to the shape of the lens, the photosensitive element, or the filter.
  • the second inclination angle ⁇ is greater than 0°, that is, the second inner side surface 10118F is not parallel to the central optical axis direction. Since the optical axis is perpendicular to the circuit board main body 10121, in the embodiment of the present invention, the positional relationship between the second inner side surface 10118F and the circuit board main body 10121 is not in a vertical relationship.
  • the provision of the second inclination angle ⁇ facilitates the forming of the molded body, which will be explained in connection with the subsequent manufacturing process for ease of understanding.
  • the molded body includes an outer side surface 10119F that surrounds the outside of the light window.
  • the outer side surface 10119F extends upward from the circuit board main body 10121 in an inclined manner, and has a trapezoidal shape formed in a cross section which is gradually reduced from a bottom to an upper opening.
  • Defining the outer side surface 10119F and the inclination angle as a third inclination angle ⁇ , that is, the angle between the outer side surface 10119F and the central optical axis Y direction of the molded camera module is a third inclination angle ⁇ .
  • the third inclination angle ⁇ is greater than 0°, that is, the outer side surface 10119F is not parallel to the central optical axis direction. Since the optical axis is perpendicular to the circuit board main body 10121, in the embodiment of the present invention, the positional relationship between the outer side surface 10119F and the circuit board main body 10121 is not in a vertical relationship.
  • the provision of the third inclination angle ⁇ facilitates the forming of the molded body, which will be explained in connection with the subsequent manufacturing process for ease of understanding.
  • the first angle of inclination a preferably ranges from 3[deg.] to 85[deg.].
  • the second inclination angle ⁇ preferably ranges from 3° to 45°.
  • the preferred range of the third inclination angle ⁇ is from 3° to 45°.
  • the first tilt angle ⁇ ranges from 3° to 45°, and in some embodiments, it may be 3° to 15°, or 15° to 20°, or 20°. ⁇ 30° or 45° to 60°.
  • the second angle of inclination ⁇ ranges from 3° to 45°, and in some embodiments, may range from 3° to 15°, or from 15° to 30°, or from 30° to 45°.
  • the third angle of inclination ⁇ ranges from 3° to 45°, and in some embodiments, it may range from 3° to 15°, or from 15° to 20°, or from 20° to 30°.
  • the first inner side surface 10117F, the first top surface, the second inner side surface 10118F, the second top surface, and the outer side surface 10119F forms a two-stepped step structure for respectively mounting different components, and in other embodiments of the present invention, there may be fewer steps or more steps, such as only the first inner side 10117F, second
  • the inner side surface 10118F and the outer side surface 10119F form a first step, or a top surface and an inner side surface are superposed to form a third step, as will be understood by those skilled in the art, the inner side surface, the top surface and the outer side surface 10119F
  • the number and the number of steps formed are not a limitation of the present invention.
  • first inner side surface 10117F, the first top surface, the second inner side surface 10118F, the second top surface and the outer side surface 10119F are each in a closed structure, so as to facilitate Providing a closed interior environment for the molded camera module.
  • a closed inner environment is formed for the photosensitive chip 1030 to isolate interference from external light.
  • a molded wiring board assembly manufacturing apparatus and manufacturing process of a molded image pickup module according to a first preferred embodiment of the present invention.
  • the manufacturing apparatus 200 is used to manufacture the molded wiring board assembly 1010F, and further, to manufacture the molded wiring board assembly 1010F by molding.
  • the manufacturing apparatus 200 of the molded wiring board assembly 1010F includes a molding die 210 and a feeding mechanism 220.
  • the feeding mechanism 220 is for supplying the molding material 400 to the molding die 210 so as to be molded by the molding die 210.
  • the molding material 400 may be selected from the group consisting of nylon, LCP (Liquid Crystal Polymer), PP (Polypropylene), epoxy resin, and the like.
  • the molding die 210 includes a first die 211 and a second die 212, and the first die 211 and the second die 212 are capable of opening and clamping. That is, the molding die 210 includes two states of mold opening and mold clamping.
  • the molding die 210 can control the opening and closing of the first mold 211 and the second mold 212 by a fixing device.
  • a fixing device Referring to FIGS. 54A, 54B, when the molding die 210 is in the mold clamping state, the first die 211 and the second die 212 form a molding cavity 213 and a supply passage 214, and the supply passage 214 is connected.
  • the molding chamber 213 is for accommodating the wiring board portion 1012F for conveying the molding material 400 into the molding cavity 213, and molding at a predetermined position on the wiring board portion 1012F.
  • the wiring board portion 1012F is placed in the second mold 212 in a state in which the molding die 210 is opened, and then the molding die 210 is in a mold clamping state, by the action of the feeding structure.
  • molding material 400 than The molding material 400 is transported into the molding cavity 213 through the supply passage 214 as a high pressure, and the remaining portion of the molding cavity 213 is filled by the molding material 400, thereby forming the molding portion 1011F. .
  • the first mold 211 includes a light window forming block 2111 for blocking the molding material 400 such that the molding material 400 forms a hollow through hole along the light window forming block 2111. 101100F or the light window.
  • the first mold 211 includes a plurality of molding faces respectively provided with the first inclination angle ⁇ , the second inclination angle ⁇ , and the third inclination angle ⁇ corresponding to the molding portion 1011F to facilitate formation.
  • the light window forming block 2111 includes a pressing surface 21111.
  • the pressing surface 21111 is pressed against the wiring board portion 1012F such that the position corresponding to the pressing surface 21111 on the wiring board portion 1012F is not filled with the molding material 400.
  • the light window connected to the wiring board portion 1012F is formed.
  • the molding cavity 213 includes a filling portion 2131 for filling the molding material 400, and a receiving portion 2132 for accommodating the wiring board main body 10121.
  • the filling portion 2131 is disposed on the first mold 211, and the receiving portion 2132 is disposed in the second mold 212. That is, in the molding process, the circuit board main body 10121 is placed in the accommodating portion 2132 of the second mold 212, and is formed in the circuit board main body 10121 and the first mold 211.
  • the filling portion 2131 is filled with the molding material 400 in a space, thereby molding the molding portion 1011F on the top surface of the wiring board portion 1012F.
  • circuit board portion 1012F is provided with the circuit component 10122F, that is, when the circuit board main body 10121 is placed in the housing portion 2132 of the molding cavity 213, the circuit The element 10122F is housed in the filling portion 2131.
  • the circuit component 10122F is covered by the molding material 400.
  • the demolding that is, the first mold 211 and the second During the process of separating the mold 212, the friction between the molding portion 1011F and the first mold 211 is reduced, and the first mold 211 is more easily pulled out of the molding portion 1011F so that The molded portion 1011F is in a preferred molded state.
  • the optical window forming block 2111 and the molding portion 1011F are relatively moved at the moment of demolding, and then the optical window forming block 2111 and the A gap is formed between the molding portions 1011F, so that during the subsequent movement, the optical window forming block 2111 and the molding portion 1011F are not in contact with each other to generate a frictional force, so that they can be smoothly pulled out.
  • the photosensitive chip 1030 may be connected to the wiring board main body 10121F through the lead 1031 before the molding process, and
  • the circuit board main body 10121F may be provided with an annular blocking member 1014G which is mounted or coated on the circuit board main body 10121 and has elasticity and is higher than the highest point of the lead 1031 so as to be in the molding process.
  • the light window forming block 2111 is pressed against the blocking member 1014G to prevent the light window forming block 214 from being pressed against the circuit board main body 10121F.
  • the body 10121F and the lead 1031 and the photosensitive chip 1030 are damaged.
  • the barrier element 1014G is in the form of a square ring and is implemented as a step glue.
  • the barrier element is at least partially encapsulated by the molding portion, spaced between at least a portion of the molding portion 1011F and the wiring board body 10121F
  • the circuit board portion 1012F includes at least one circuit component 10122G, and the circuit component 10122G is disposed on the circuit board main body 10121.
  • the circuit component 10122G protrudes from the wiring board main body 10121 and is located inside the molding portion 1011F.
  • the circuit component 10122G is located within the via 101100F. That is, the circuit component 10122G is not molded by the molding portion 1011F.
  • the light window forming block in the molding die has a groove inside, so that it is covered in the circuit component 10122G in the molding process, so that the formed molding portion 1011F can be not covered.
  • circuit component 10122G The circuit component 10122G.
  • the circuit component 10122F to be molded may also be provided, that is, a portion of the circuit component 10122F is molded while another portion of the circuit component 10122G is not molded. .
  • the integrated base assembly 3010 includes a shielding layer 30124A surrounding the inner side of the base portion 3011, thereby enhancing the structural strength of the circuit board main body 30121. At the same time, the electromagnetic interference resistance of the integrated base assembly 3010 is enhanced.
  • the shielding layer 30124A may be a metal mesh or a metal plate.
  • the molded portion, the structure of the base portion and the package portion may be combined with various structures of the camera module in other embodiments.
  • Features are arranged and combined.
  • the various preferred embodiments described above are merely illustrative of different ways in which the present invention may be implemented.
  • Various structural features in different embodiments may be combined in various arrangements to form a new embodiment.
  • the present invention is not limited to the implementation shown in the drawings. The manner is not limited to a single embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Studio Devices (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Lens Barrels (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

一摄像模组及其一体基座组件和制造方法,其中所述摄像模组包括:至少一镜头、至少一感光芯片、至少一滤光片、至少一一体基座组件;其中所述一体基座组件包括一基座部和一线路板部,所述基座部一体封装于所述线路板部,所述感光芯片被安装于所述线路板部,所述基座部形成至少一通孔,为所述感光芯片提供光线通路,所述镜头位于所述感光芯片的光线通路。

Description

基于一体封装工艺的摄像模组及其一体基座组件和制造方法 技术领域
本发明涉及摄像模组领域,更进一步,涉及一基于一体封装工艺的摄像模组及其一体基座组件和制造方法。
背景技术
COB(Chip on Board芯片封装)工艺是摄像模组组装制造过程中极为重要的一个工艺过程。传统的COB工艺制程的摄像模组的结构为线路板、感光芯片、镜座、马达驱动以及镜头等部件组装而成。
如图1所示,是传统COB工艺制造的一摄像模组示意图。该摄像模组包括一线路板1P、一感光芯片2P、一支架3P、一滤光片4P、一马达5P和一镜头6P。该感光芯片2P被安装于该线路板1P,该滤光片4P被安装于该支架3P,该镜头6P被安装于该马达5P,该马达5P被安装于该支架3P,以便于该镜头6P位于该感光芯片2P上方。
值得一提的是,在该线路板板1P上通常被安装有一些电路器件11P,比如电阻、电容等,这些电路器件11P凸出于该线路板1P表面,而该支架3P则需要被安装于具有该电路器件11P的该线路板1P上,而传统的COB工艺中该线路板1P、该电路器件11P以及该支架3P之间的组装配合关系具有一些不利因素,且在一定程度上限制了摄像模组向轻薄化的发展。
具体来说,首先,该电路器件11P直接暴露于该线路板1P的表面,因此在后续组装的过程中,比如粘贴该支架3P、焊接该马达5P等过程,不可避免的会受到影响,焊接时的阻焊剂、灰尘等容易黏着于该电路器件11P,而该电路器件11P与该感光芯片2P位于相互连通的一个空间内,因此灰尘污染物很容易影响感光芯片2P,这样的影响可能造成组装后的摄像模组存在乌黑点等不良现象,降低了产品良率。
其次,该支架3P位于该电路器件11P的外侧,因此在安装该镜座和该线路板1P时,需要在该支架3P和该电路器件11P之间预留一定的安全距离,且在水平方向以及向上的方向都需要预留安全距离,这在一定程度上增大了摄像模组厚度的需求量,使其厚度难以降低。
第三,在COB组装的过程中,该支架3P通过胶水等粘贴物被粘贴于该线路板1P,在粘贴时通常要进行AA(Active Arrangement自动校准)工艺,就是调整该支架3P、该线路板1P以及该马达5P的中心轴线,使其达到水平方向和竖直方向的一致,因此为了满足AA工艺,需要在该支架3P与该线路板1P以及该镜座与该马达5P之间都需要预设较多的胶水,使得相互之间留有调整空间,而 这个需求一方面在一定程度上又增加了对摄像模组的厚度需求,使其厚度难以降低,另一方面,多次粘贴组装过程很容易造成组装的倾斜不一致,且对该
镜座3P、该线路板1P以及该马达5P的平整性要求较高。
此外,传统的COB工艺中,该线路板1P提供最基本的固定、支撑载体,因此,对于该线路板1P本身要求具备一定的结构强度,这个要求使得该线路板1P具有较大的厚度,从而从另一方面又预加了摄像模组的厚度需求。
随着各种电子产品、智能设备的发展,摄像模组也越来越向高性能、轻薄化方向发展,而面对高像素、高成像质量等各种高性能的发展要求,电路中的电子元器件越来越多、芯片的面积越来越大、驱动电阻、电容等被动元器件相应增多,这使得电子器件的规格越来越大、组装难度不断增大、摄像模组的整体尺寸越来越大,而从上述来看,镜座、线路板以及电路元件等的传统组装方式在一定程度上也是摄像模组轻薄化发展的极大限制。
发明内容
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中该线路板组件包括一模塑部和一线路板部,该模塑部模塑成型于该线路板部。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中该模塑线路板组件包括至少一电路元件,该电路元件被包裹于该线路板组件内,不会直接暴露于外部环境。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中该电路元件被通过模塑方式一体地包裹于该模塑线路板组件。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中该模塑电路板组件包括一模塑部和一线路板部,该模塑部模塑于该线路板部,并且将被设置于该线路部的该电路元件模塑地包裹。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中该线路板部包括一线路板主体和一感光芯片,该芯片被设置于该线路板内表面,该模塑部围绕于该感光芯片外侧。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中该线路板主体具有一内环槽,该感光芯片被设置于该内环槽内,从而可以降低对该模塑部的高度要求。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中该线路板主体具有一芯片通道,适于该感光芯片从该线路板主体的背面被安装,且该感光芯片的感光区朝向正面,提供更加方便的该感光芯片倒装的安装方式。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中一滤光片被安装于该线路板主体的该芯片通道的内口,从而不需要提供额外的安装该滤光片的位置。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中该线路主体具有至少一加固孔,该模塑部延伸于该加固孔,从而增加该模塑部与该线路板部的粘结力,并且通过该模塑部增加该线路板主体的结构强度。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中该模塑部包括一支撑台,适于支撑该滤光片,从而提供该滤光片的安装位置。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中一该模塑部上适于被安装一马达组件或一镜头,可以作为传统的支架,提供该马达组件或该镜头的支撑固定位置。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中该模塑部替代传统的支架,从而在组装时不需要支架与线路板的粘贴组装过程,增加工艺精度。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中该摄像模组由该模塑线路板组件组装而成,可以得到更小厚度以及具有更优良性能的摄像模组。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中该摄像模组采用模塑的方式进行组装制造,从而改变传统摄像模组的COB工艺。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中所述摄像模组包括一支座,所述支座被安装于所述模塑部,所述滤光片被安装于所述支座。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,所述镜头包括一镜筒,所述滤光片被安装于所述镜筒内,从而不需要提供额外的部件来安装所述滤光片。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中所述滤光片被安装于所述芯片通路上端,从而减小所述摄像模组的后焦距。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中所述基座部一体封装地连接于所述线路板部,且所述模塑部可以度较小的厚度达到结构强度要求,从而可以减小所述摄像模组的纵向尺寸。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中在制造所述摄像模组时,多个所述模塑同时一体封装于一整拼板,从而实现所述摄像模组的拼板作业,提高生产效率。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中所述线路板部包括一加固层,被叠层地设置于所述线路板主体底部,以增强所述线路板主体的结构强度和散热性能。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组 件和制造方法,其中所述模塑部包括一镜头安装段,适于安装所述摄像模组的一镜头,从而为所述镜头提供稳定的安装位置。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件和制造方法,其中所述模塑部模塑所述线路板主体的侧面和底面,增强所述摄像模组的结构强度。
本发明的一个目的在于提供一基于模塑工艺的摄像模组及其模塑线路板组件
本发明的一方面提供一摄像模组,其包括:
至少一镜头;
至少一感光芯片;
至少一滤光片;
至少一一体基座组件;和
至少一支座;
其中所述一体基座组件包括一基座部和一线路板部,所述基座部一体封装于所述线路板部,所述感光芯片被安装于所述线路板部,所述基座部形成至少一通孔,为所述感光芯片提供光线通路,所述镜头位于所述感光芯片的光线通路,所述支座被安装于所述基座部,所述滤光片被安装于所述支座,且位于所述感光芯片的光线通路。
在一些实施例中,所述支座在顶侧具有一第一支座槽,所述第一支座槽连通于所述通孔,所述滤光片被安装于所述第一支座槽。
在一些实施例中,所述支座在底侧具有一第二支座槽,以与所述基座部顶端接合。
在一些实施例中,所述基座部具有一安装槽,所述安装槽连通于所述通孔,所述支座被安装于所述安装槽。
在一些实施例中,所述基座部具有一安装槽,所述安装槽连通于所述通孔。
在一些实施例中,所述基座部形成一平台,所述支座被安装于所述平台。
在一些实施例中,所述安装槽具有至少一缺口,连通所述通孔与外部,所述支座包括至少一延伸边,所述延伸边适于搭接于所述缺口。
在一些实施例中,所述安装槽具有至少一缺口,形成一U型结构,所述支座部包括至少一延伸边,所述延伸边填充所述U型结构的开口。
在一些实施例中,所述一体基座组件包括至少一电路元件,所述基座部包覆所述电路元件。
在一些实施例中,所述镜头至少部分被安装于所述支座。
在一些实施例中,所述摄像模组包括至少一马达,所述镜头被安装于所述马达,所述马达至少部分被安装于所述支座。
在一些实施例中,所述镜头被安装于所述基座部。
在一些实施例中,所述摄像模组包括至少一马达,所述镜头被安装于所述马达,所述马达被安装于所述基座部或被安装于所述支座。
在一些实施例中,所述一体封装的方式为模塑的一体封装方式。
在一些实施例中,所述一体基座组件包括一环形的阻隔元件,其被设置于所述线路板部,并且所述阻隔元件至少部分地被所述基座部一体封装。
在一些实施例中,所述基座部具有至少一第一内侧面,其一体地延伸于所述线路板部,环绕形成至少部分所述通孔,所述第一内侧面呈倾斜状地向上延伸。
在一些实施例中,所述第一内侧面与所述摄像模组的光轴之间具有一倾斜角α,其中α的大小范围是3°~85°。
在一些实施例中,所述第一内侧面环绕形成所述通孔的下端,所述通孔下端内径呈由下至上逐渐增大。
在一些实施例中,所述基座部具有一第二内侧面,所述第二侧面由所述第一内侧面弯折延伸而来,所述第二内侧面环绕形成所述通孔的上端,所述第二内侧面呈倾斜状地向上延伸。
在一些实施例中,所述第二内侧面与所述摄像模组的光轴之间具有一倾斜角β,其中β的大小范围是3°~45°。
在一些实施例中,所述基座部具有一外侧面,由所述线路板部一体地向上倾斜延伸,且与所述摄像模组的光轴之间具有一倾斜角γ,其中γ的大小范围是3°~45°。
根据本发明的另外一方面,本发明提供一摄像模组,其包括:
至少一镜头;
至少一感光芯片;和
至少一一体基座组件;
其中所述一体基座组件包括一基座部和一线路板部,所述基座部一体地连接于所述线路板部,所述感光芯片被安装于所述线路板部,所述基座部形成至少一通孔,为所述感光芯片提供光线通路,所述镜头位于所述感光芯片的光线通路,所述基座部具有至少一第一内侧面,环绕形成至少部分所述通孔,所述第一内侧面呈倾斜状地向上延伸。
根据本发明的另外一方面,本发明提供一摄像模组,其包括:
至少一镜头;
至少一感光芯片;和
至少一一体基座组件;
其中所述一一体基座组件包括一基座部和一线路板部,所述基座部模塑于所述线路板部,所述基座部形成至少一通孔,为所述感光芯片和所述镜头提供一光线通路。
在一些实施例中,所述基座部具有一顶表面,平面地延伸。
在一些实施例中,所述基座部具有一安装槽,所述安装槽连通于所述通孔,所基座部包括至少一凸起台阶,所述凸起台阶形成所述安装槽。
在一些实施例中,所述线路板部包括至少一侧面,所述基座包覆所述线路板部的至少一所述侧面。
在一些实施例中,所述基座部进一步地包覆所述线路板部的底部。
在一些实施例中,所述基座部沿所述摄像模组的光轴方向依次具有两安装槽,各所述安装槽连通于所述通孔,使得所述基座部内部形成台阶结构。
在一些实施例中,所述摄像模组包括至少一滤光片,所述滤光片被安装于所述顶表面,以使得所述滤光片被平整地安装。
在一些实施例中,所述镜头被安装于所述顶表面。
在一些实施例中,所述摄像模组包括至少一马达,所述镜头被安装于所述马达,所述马达被安装于所述基座部的所述顶表面。
在一些实施例中,所述摄像模组包括至少一滤光片,所述滤光片被安装于所述安装槽。
在一些实施例中,所述镜头被安装于所述凸起台阶。
在一些实施例中,所述摄像模组包括至少一马达,所述镜头被安装于所述马达,所述马达被安装于所述凸起台阶。
在一些实施例中,所述摄像模组包括一滤光片,所述滤光片被安装于较低位置的所述安装槽。
在一些实施例中,所述镜头被安装于所述较高位置的所述安装槽。
在一些实施例中,所述基座部自较高位置的所述安装槽一体地向上延伸形成一镜头内壁。
在一些实施例中,所述镜头内壁表面平整,适于安装一无螺纹镜头。
在一些实施例中,还包括至少一镜头支架,其安装于所述基座部,所述镜头支架适于安装所述镜头。
在一些实施例中,所述摄像模组包括至少一支座和至少一滤光片,所述支座被安装于所述安装槽,所述滤光片被安装于所述支座。
在一些实施例中,所述线路板部具有一内凹槽,连通于所述通孔,所述感光芯片被容纳于所述内凹槽。
在一些实施例中,所述镜头包括一镜筒和至少一镜片,各所述镜片被安装于所述镜筒,所述滤光片被安装于所述镜筒,位于所述镜片的下方。
在一些实施例中,所述摄像模组包括至少一马达和至少一滤光片,所述滤光片被安装于所述马达,所述镜头被安装于所述马达,位于所述滤光片的上方。
在一些实施例中,所述一体基座组件包括至少一电路元件,所述基座部包覆所述电路元件。
在一些实施例中,所述电路元件选自组合:电阻、电容、二极管、三极管、电位器、继电器、驱动器、处理器、和存储器中的其中一种或多种。
在一些实施例中,所述线路板部具有至少一通路,连通所述线路板部的两侧,所述感光芯片被安装于所述通路。
在一些实施例中,所述线路板部具有一加固孔,所述基座部延伸进入所述加固孔。
在一些实施例中,所述线路板部包括一加固层,叠层设置于所述线路板部底 部。
在一些实施例中,所述线路板部包括一屏蔽层,包裹于所述摄像模组外部。
在一些实施例中,所述线路板部包括一屏蔽层,环绕于所述基座部内侧。
在一些实施例中,所述线路板部包括一线路板主体,所述线路板主体材质选自组合:软硬结合板、陶瓷基板和PCB硬板中的一种。
在一些实施例中,所述基座部材料选自组合::尼龙、LCP、PP和树脂中的一种或多种。
在一些实施例中,所述模塑部模塑工艺为嵌入成型或模压加工。
在一些实施例中,所述感光芯片通过至少一连接线电连接于所述线路板部。
根据本发明的另外一方面,本发明提供一摄像模组,其包括:
至少一镜头;
至少一感光芯片;
至少一体基座组件;和
至少一马达;
其中所述一体基座组件包括一基座部和一线路板部,所述基座部一体封装于所述线路板部,所述感光芯片被安装于所述线路板部,所述镜头位于所述感光芯片的感光路径,所述基座部形成一通孔,为所述感光芯片提供光线通路;
所述一体基座组件包括至少一马达连接结构,所述马达连接结构被预设于所述基座部,所述马达通过所述马达连接结构电连接于所述线路板部,所述镜头被安装于所述马达,以便于通过所述马达调节所述镜头。
在一些实施例中,所述线路板部包括一线路板主体,所述基座部以模塑的方式一体成型于所述线路板主体。
在一些实施例中,所述马达连接结构包括至少一引线和至少一引脚槽,所述引线被设置于所述基座部,且电连接于所述线路板主体,所述引脚槽被设置于所述基座部上端部,所述引线包括一马达连接端,所述马达连接端显露于所述槽底壁,以便于所述马达的至少一马达引脚插接于所述引脚槽时电连接于所述马达连接端。
在一些实施例中,所述马达连接结构包括至少一引脚槽和至少一电路接点,所述电路接点电连接于所述线路板主体,所述引脚槽被设置于所述基座部,由所述线路板主体延伸至所述基座部的顶端,且所述电路接点显露于所述引脚槽,以便于所述马达的至少一马达引脚插接于所述引脚槽时电连接于所述电路接点。
在一些实施例中,所述马达连接结构包括至少一雕刻线路,所述雕刻线路设置于所述基座部,电连接于所述线路板主体,以便于电连接一马达引脚。
在一些实施例中,所述基座部的厚度范围为:0.3~1.2mm。
在一些实施例中,所述摄像模组的横向截面尺寸范围为:5~20mm。
在一些实施例中,所述摄像模组的高度范围为:3~6mm。
在一些实施例中,所述线路板部的厚度范围为:0.15~0.5mm。
在一些实施例中,所述基座部比邻围绕于所述感光芯片外侧,从而扩展所述 基座部厚度,使得所述基座部与所述线路板部具有更强的连接牢固性。
根据本发明的另外一方面,本发明提供一体基座组件,应用一摄像模组,其包括:
一基座部;和
一线路板部;
所述基座部一体封装于所述线路板部,所述摄像模组的一感光芯片适于被安装于所述线路板部,所述基座部形成至少一通孔,为所述感光芯片提供光线通路,所述镜头位于所述感光芯片的光线通路。
在一些实施例中,所述一体基座组件包括至少一电路元件,所述基座部包覆所述电路元件。
在一些实施例中,所述一体基座组件包括至少一电路元件,且所述电路元件位于所述基座部的内侧,所述基座部不包覆所述电路元件。
附图说明
图1是传统COB封装工艺的摄像模组剖视图。
图2是根据本发明的第一个优选实施例的摄像模组剖视示意图。
图3是根据本发明的第一个优选实施例的摄像模组爆炸示意图。
图4是根据本发明的第一个优选实施例的摄像模组部分放大图。
图5是根据本发明的第一个优选实施例的摄像模组的模塑线路组件形成过程示意图。
图6A是根据不发明的第一个优选实施例的摄像模组的模塑线路板组件的第一个变形实施例剖视示意图。
图6B是根据本发明的第一个优选实施例的摄像模组的模塑线路板组件的第一个变形实施例部分放大示意图。
图7A是根据本发明的第一个优选实施例的摄像模组的模塑线路板组件的第二个变形实施例剖视示意图。
图7B是根据本发明的第一个优选实施例的摄像模组的线路板组件的第二个变形实施例部分放大示意图。
图8A是根据本发明的第一个优选实施例的摄像模组的线路板组件的第三个变形实施例的剖视图。
图8B是根据本发明的第一个优选实施的摄像模组的线路板组件的第三个变形实施例的部分放大图。
图9是根据本发明的第二个优选实施例的摄像模组剖视示意图。
图10是根据本发明的第二个优选实施例的摄像模组爆炸示意图。
图11是根据本发明的第二个优选实施例的摄像模组部分放大图。
图12是根据本发明的第三个优选实施例的摄像模组剖视图。
图13是根据本发明的第三个优选实施例的摄像模组的模塑线路组件形成过程示意图。
图14是根据本发明的第四个优选实施例的摄像模组剖视示意图。
图15是根据本发明的第四个优选实施例的摄像模组的爆炸图。
图16是根据本发明的第五个优选实施例的基于模塑工艺的摄像模组剖视示意图。
图17是根据本发明的第五个优选实施例的基于模塑工艺的摄像模组立体分解示意图。
图18A是根据本发明的第五个优选实施例的基于模塑工艺的摄像模组的另一实施方式。
图18B是根据本发明的第五个优选实施例的基于模塑工艺的摄像模组的另一实施方式。
图18C是根据本发明的第五个优选实施例的基于模塑工艺的摄像模组的另一实施方式。
图19是根据本发明的第六个优选实施例的基于模塑工艺的摄像模组剖视示意图。
图20是根据本发明的第七个优选实施例的基于模塑工艺的摄像模组剖视示意图。
图21是根据本发明的第八个优选实施例的基于模塑工艺的摄像模塑剖视示意图。
图22是根据本发明的第九个优选实施例的基于模塑工艺的摄像模组剖视示意图。
图23是根据本发明的第十个优选实施例的基于模塑工艺的摄像模组剖视示意图。
图24是根据本发明的第十一个优选实施例的基于模塑工艺的摄像模组剖视示意图。
图25A、25B是根据本发明的第十二个优选实施例的基于模塑工艺的摄像模组不同角度剖视示意图。
图26是根据本发明的第十二个优选实施例的基于模塑工艺的摄像模组的部分立体图。
图27是根据本发明的第十三个优选实施例的基于一体封装工艺的摄像模组剖视示意图。
图28是根据本发明的第十三个优选实施例的一体基座组件制造过程示意图。
图29是根据本发明的第十三个优选实施例的一体基座组件制造方法示意图。
图30是根据本发明的第十三个优选实施例的基于一体封装工艺的摄像模组另一实施方式。
图31A、31B、31C和31D是根据本发明的第十四个优选实施例的基于一体封装工艺的摄像模组及其马达连接结构的不同实施例。
图32是是根据本发明的第十五个优选实施例的基于一体封装工艺的摄像模组及其一体基座组件的剖视示意图。
图33是根据本发明的第十六个优选实施例的基于一体封装工艺的摄像模组及其一体基座组件的剖视示意图。
图34是根据本发明的第十七个优选实施例的基于一体封装工艺的摄像模组及其一体基座组件的剖视示意图。
图35是根据本发明的第十八个优选实施例的基于一体封装工艺的摄像模组及其一体基座组件的剖视示意图。
图36是根据本发明的第十九个优选实施例的基于一体封装工艺的摄像模组及其一体基座组件的剖示图。
图37是根据本发明的第二十个优选实施例的基于一体封装工艺的摄像模组及其一体基座组件的剖视示意图。
图38是根据本发明的第二十一个优选实施例的基于一体封装工艺的摄像模组及其一体基座组件的剖视示意图。
图39是根据本发明的第二十二个优选实施例的基于一体封装工艺的摄像模组及其一体基座组件的剖视示意图。
图40是根据本发发明的第二十二个优选实施例的基于一体封装工艺的摄像模组的另一实施方式。
图41是根据本发明的上述优选实施例的基于一体封装工艺的摄像与传统摄像模组结构强度比较示意图。
图42是根据本发明的上述优选实施例的基于一体封装工艺的摄像模组与传统摄像模组的横向尺寸比较示意图。
图43是根据本发明上述优选实施例的基于一体封装工艺的摄像模组与传统摄像模组的高度比较示意图。
图44是根据本发明的上述优选实施例的基于一体封装工艺的摄像模组的平整度示意图。
图45是根据本发明的上述优选实施例的基于一体封装工艺的摄像模组与传统摄像模组的成像质量比较示意图。
图46A和46B是根据本发明的上述优选实施例的基于一体封装工艺的摄像模组与传统摄像模组制造过程比较示意图。
图47是根据本发明的第二十三个优选实施例的基于一体封装工艺的摄像模组的侧面剖视图。
图48是根据本发明的第二十四优选实施例基于一体封装工艺的摄像模组的的侧面剖视图。
图49A是对比技术形成的模塑形成摄像模组示意图。
图49B是对比技术中传统的模塑形成摄像模组示意图。
图49C是对比技术中传统的模塑形成摄像模组示意图。
图49D是对比技术中传统的模塑形成摄像模组示意图。
图49E是对比技术中传统的模塑形成摄像模组示意图。
图50是本发明的第二十五个优选实施例的摄像模组剖视图。
图51是根据本发明的第二十五个优选实施例的摄像模组的一模塑线路板组件的立体图。
图52是根据本发明的第二十五个优选实施例的摄像模组的一模塑线路板组件倾斜角示意。
图53是根据本发明的第二十五个优选实施例的摄像模组的光线示意图。
图54A和54B是根据本发明的第二十五个优选实施例的一模塑线路板组件的制造过程示意图。
图55是根据本发明的第二十五个优选实施例的一模塑线路板组件的脱模过程示意图。
图56是根据本发明的第二十五个优选实施例的模塑线路板组件的一变形实施方式。
图57是根据本发明的第二十五个优选实施例的模塑线路板组件的另一变形实施方式。
图58是根据本发明的第二十五个优选实施例的摄像模组的一应用示意图。
图59是根据本发明的第二十一个优选实施例的摄像模组的变形实施方式。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
如图2至图5所示,是根据本发明的第一个优选实施例基于模塑工艺的摄像模组。所述摄像模组可以被应用于各种电子设备,以辅助使用可以通过所述摄像模组进行拍摄活动,例如所述摄像模组可以被用于拍摄物体或人物的图像或视频影像等。优选地,所述摄像模组可以被应用一移动电子设备,例如所述移动电子设备可以是但不限于手机、平板电脑设备、电视、智能交通工具、智能监控装置等。
如图2至图5所示,是根据本发明的第一个优选实施例的摄像模组。所述摄像模组可以是一动焦摄像模组,其包括一模塑线路板组件1010、一镜头1050、一马达1060和一感光芯片1030。当然,可以理解的是,在这个实施例以及下述 具有驱动器(马达)的实施例的变形方式中,所述摄像模组都可以变形实施为定焦摄像模组,其没有所述马达。所述镜头可以安装于一个镜头支架,然后安装于所述模塑线路板组件。
所述马达1060被安装于所述模塑线路板组件1010,所述镜头1050被安装于所述马达1060,以使得所述镜头1050被支撑于所述模塑线路板组件1010上方。
更进一步,所述模塑线路板组件1010包括一模塑部1011和一线路板部1012,所述模塑部1011模塑地连接所述线路板部1012。
所述线路板部1012包括一线路板主体10121,所述感光芯片1030被设置于所述线路板主体10121,且位于所述模塑部1011内侧。
具体地,所述马达1060被安装于所述模塑线路板组件1010的所述模塑部1011上,且电连接于所述线路板部1012,所述镜头1050被安装于所述马达1060,并且所述镜头1050可以被所述马达1060以适于自动对焦。所述镜头1050位于所述感光芯片1030的感光路径,从而在所述摄像模组用于采集物体的影像时,所述物体反射的光线能够藉由所述镜头1050处理之后进一步被所述感光芯片1030接收以适于进行光电转化。
更进一步,所述线路板部1012包括一感光电路和至少一电路元件10122。所述感光电路预设于所述线路板主体10121内,所述电路元件10122电连接于所述感光电路以及所述感光芯片1030,以供所述感光芯片1030的感光工作过程。所述电路元件10122可以是,举例地但不限于,电阻、电容、二极管、三级管、电位器、继电器、驱动器、处理器、存储器等。
特别地,在本发明的一实施例中,在组装所述摄像模塑时,所述马达1060通过至少一马达引脚1061电连接于所述感光电路,且所述马达引脚1061被焊接于所述线路板主体10121。
值得一提的是,所述模塑部1011可以将所述电路元件10122包裹于内部,因此使得所述电路元件10122不会直接暴露于空间内,更具体地说,不会暴露于与所述感光芯片1030相通的封闭环境中,不同于传统的摄像模组中电路元件的存在方式,如阻容器件,从而防止灰尘、杂物停留于电路元件,污染感光芯片。所述模塑部1011形成一通孔101100,以使得所述模塑部1011围绕于所述感光芯片1030外侧,并且提供所述镜头1050与所述感光芯片1030的光线通路。换句话说,所述模塑部为所述感光芯片形成一光窗,在所述摄像模组中,通过所述镜头1050的光线进一步穿过所述光窗到达所述感光芯片。
值得一提的是,所述模塑部1011包裹所述电路元件10122具有保护所述电路元件10122的优势以及相应的摄像模组性能改进等优势,但是本领域技术人员应当理解的是,所述模塑部1011不限于包裹所述电路元件10122。也就是说,在本发明的其它实施例中,所述模塑部1011可以直接模塑于没有凸出的所述电路元件10122的线路板,也可以是模塑于所述电路元件10122的外侧、周围等不同位置,或者被嵌于所述线路板主体10121的内部。
值得一提的是,在本发明的一实施例中,所述模塑部1011凸起地围绕于所述感光芯片1030外侧,特别地,所述模塑部1011一体地闭合连接,使其具有良好的密封性,从而当所述马达1060被安装于所述模塑部1011时,所述感光芯片1030被密封于内部,形成一封闭内空间。
具体地,在制造所述模塑线路板组件时,可以在一传统的线路板作为所述线路板主体10121,在所述线路板主体10121表面进行模塑,如用注塑机,通过嵌入成型(insert molding)工艺将进行SMT工艺(Surface Mount Technology表面贴装工艺)后的线路板进行模塑形成所述模塑部1011,或用半导体封装中常用的模压工艺形成所述模塑部1011。所述线路板主体10121可以选择为,举例地但不限于,软硬结合板、陶瓷基板(不带软板)、PCB硬板(不带软板)等。所述模塑部1011形成的方式可以选择为,举例地但不限于,注塑工艺、模压工艺等。所述模塑部1011可以选择的材料为,举例地但不限于,注塑工艺可以选择尼龙、LCP(Liquid Crystal Polymer,液晶高分子聚合物)、PP(Polypropylene,聚丙烯)等,模压工艺可以采用树脂。本领域技术人员应当理解的是,前述可以选择的制造方式以及可以选择的材料,仅作为举例说明本发明的可以实施的方式,并不是本发明的限制。
还值得一提的是,所述马达1060被安装于所述模塑线路板组件1010的所述模塑部1011,从而所述模塑部1011相当于传统摄像模组中的支架的功能,为所述马达1060提供支撑、固定位置,但是组装却不同于传统COB工艺过程。传统COB工艺的摄像模组的支架以粘贴的方式固定于线路板,而所述模塑部1011通过模塑工艺固定于所述线路板主体10121,不需要粘贴固定过程,模塑方式相对于粘贴固定具有更好的连接稳定性以及工艺过程的可控性,且在模塑部1011与所述线路板主体10121之间不需要预留AA调整的胶水空间,因此减小了传统摄像模组AA调整的预留空间,使得摄像模组的厚度得以减小;另一方面,所述模塑部1011包裹于所述电路元件10122,使得传统的支架功能和电路元件可以在空间上重叠设置,不需要像传统摄像模组,在电路器件周围预留安全距离,从而使得具有支架功能的所述模塑部1011的高度可以设置在较小的范围,从而进一步提供了摄像模组厚度可以减小的空间。此外,所述模塑部1011代替传统的支架,避免了支架在粘贴组装时带来的倾斜误差,减小了摄像模组组装的累积公差。
更进一步,所述模塑部1011包括一支撑台10111,所述支撑台10111适于安装一滤光片1040,使得所述滤光片1040位于所述感光芯片1030上方。也就是说,进入所述镜头1050的光线经过所述滤光片1040的作用后到达所述感光芯片1030。所述滤光片1040可以被实施为但不限于红外截止滤光片(IRCF)。
所述模塑部1011的所述支撑台10111形成一内环槽10113,为所述滤光片1040提供充足的安装空间。值得一提的是,所述模塑部1011替代传统的支架,将所述马达1060与所述滤光片1040进行连接,同时提供所述滤光片1040的安装位置,使得所述模塑部1011、所述滤光片1040以及所述电路元件10122合理地布置,充分地利用所述感光芯片1030的感光区域外的剩余空间,使得摄像模 组最小化。同时借助模塑工艺,使得所述模塑部1011提供平整的所述支撑台10111,使得所述滤光片1040能够被平整地安装,保证光路的一致性。
更具体地,所述内环槽10113竖截面呈L环形,连通于所述模塑部1011的所述通孔101100,以便于所述滤光片1040被支撑安装于所述感光芯片1030的感光路径。
根据本发明的这个实施例,所述感光芯片1030通过一系列引线1031连接于所述线路板主体10121,并且电连接于所述感光电路。所述引线1031可以被实施为,举例地但不限于,金线、铜线、铝线、银线。特别地,所述感光芯片1030的所述系列引线1031可以通过传统的COB方式连接于所述线路板主体10121,举例地但不限于,焊接的方式。也就是说,所述感光芯片1030与所述线路板主体10121的连接可充分利用已有的成熟连接技术,以降低改进技术的成本,对传统的工艺和设备进行充分利用,避免资源浪费。当然,本领域的技术人员应当可以理解的是,所述感光芯片1030与所述线路板主体10121的连接也可以通过其它任何能够实现的本发明的发明目的的连接方式实现,本发明在这方面不受限制。
值得一提的是,在本发明个的这个实施例中,所述感光芯片1030被设置于所述线路板主体10121的上表面,比如贴附于上表面,所述模塑部1011围绕于所述感光芯片1030的外侧,在制造所述模塑线路板组件1010时,可以选择不同制造顺序,举例地但不限于,在一种实施方式中,可以先在所述线路板主体10121上安装所述感光芯片1030,而后在所述感光芯片1030外侧,所述线路板主体10121的边缘位置,模塑形成所述模塑部1011,并且将凸出于所述线路板主体10121的所述电路元件10122包裹于其内部。而在本发明的另一种实施方式中,可以先将所述线路板主体10121的边缘位置,模塑形成所述模塑部1011,并且将凸出于所述线路板主体10121的所述电路元件10122包裹于其内部,继而将所述感光芯片1030安装于所述线路板主体10121,使其位于所述模塑部1011的内侧。
如图6A、图6B所示,是根据本发明的第一个优选实施例的摄像模组的模塑线路板组件的第一个变形实施例。所述模塑线路板组件1010A包括一模塑部1011A和一线路板部1012A,所述模塑部1011A模塑地连接所述线路板部1012A。
所述线路板部1012A包括一线路板主体10121A,所述感光芯片1030被设置于所述线路板主体10121A,且位于所述模塑部1011A内侧。
具体地,所述马达1060被安装于所述线路板组件10A的所述模塑部1011A上,且电连接于所述线路板部1012A,所述镜头1050被安装于所述马达1060,并且所述镜头1050可以被所述马达1060调节以适于自动对焦。所述镜头1050位于所述感光芯片1030的感光路径,从而在所述摄像模组用于采集物体的影像时,所述物体反射的光线能够藉由所述镜头1050处理之后进一步被所述感光芯片1030接收以适于进行光电转化。
更进一步,所述线路板部1012A包括一感光电路和至少一电路元件10122A。所述感光电路预设于所述线路板主体10121A内,所述电路元件10122A电连接 于所述感光电路以及所述感光芯片1030,以供所述感光芯片1030的感光工作过程。所述电路元件10122A可以是,具体地但不限于,电阻、电容、二极管、三级管、电位器、继电器、驱动器、处理器、存储器等。
特别地,在本发明的一实施例中,在组装所述摄像模塑时,所述马达1060通过至少一马达引脚1061A电连接于所述感光电路,且所述马达引脚1061A被焊接于所述线路板主体10121。
值得一提的是,所述模塑部1011A将所述电路元件10122A包裹于内部,因此使得所述电路元件10122A不会直接暴露于空间内,更具体地说,不会暴露于与所述感光芯片1030相通的封闭环境中,不同于传统的摄像模组中电路元件的存在方式,如阻容器件,从而防止灰尘、杂物停留于电路元件,污染感光芯片。所述模塑部1011A形成一通孔101100A,以使得所述模塑部围绕于所述感光芯片1030外侧,并且提供所述镜头1050与所述感光芯片1030的光线通路。
进一步,所述线路板主体10121A包括一内凹槽101211A,所述感光芯片1030被设置于所述内凹槽101211A内。不同于上述实施例中模塑线路板组件,所述线路板主体10121A内设置所述内凹槽101211A,并将所述感光芯片1030容纳于其中,可以使得所述感光芯片1030不会明显凸出于所述线路板主体10121A的上表面,使得所述感光芯片1030相对所述模塑部1011A的高度降低,从而减小所述感光芯片1030对所述模塑部1011A的高度限制,提供进一步降低高度的可能性。
具体地,在制造所述模塑线路板组件1010时,可以在一传统的线路板作为所述线路板主体10121A,在所述线路板主体10121A表面进行模塑,如用注塑机,通过嵌入成型(insert molding)工艺将进行SMT工艺(Surface Mount Technology表面贴装工艺)后的线路板进行模塑形成所述模塑部1011A,或用半导体封装中常用的模压工艺形成所述模塑部1011A。特别地,在一实施例中,需要先对所述线路板主体10121A开所述内凹槽101211。也就是说,在传统的线路板上开设内凹槽101211A,使其适于容纳安装所述感光芯片1030。所述线路板主体10121A可以选择为,举例地但不限于,软硬结合板、陶瓷基板(不带软板)、PCB硬板(不带软板)等。所述模塑部1011A形成的方式可以选择为,举例地但不限于,注塑工艺、模压工艺等。所述模塑部1011A可以选择的材料为,举例地但不限于,注塑工艺可以选择尼龙、LCP(Liquid Crystal Polymer,液晶高分子聚合物)、PP(Polypropylene,聚丙烯)等,模压工艺可以采用树脂。本领域技术人员应当理解的是,前述可以选择的制造方式以及可以选择的材料,仅作为举例说明本发明的可以实施的方式,并不是本发明的限制。
还值得一提的是,所述马达1060被安装于所述模塑线路板组件1010A的所述模塑部1011A,从而所述模塑部1011A相当于传统摄像模组中的支架的功能,为所述马达1060提供支撑、固定位置,但是组装却不同于传统COB工艺过程。传统COB工艺的摄像模组的支架以粘贴的方式固定于线路板,而所述模塑部1011A通过模塑工艺固定于所述线路板主体10121A,不需要粘贴固定过程,模 塑方式相对于粘贴固定具有更好的连接稳定性以及工艺过程的可控性,且在模塑部1011A与线路板主体之间不需要预留AA调整的胶水空间,因此减小了传统摄像模组AA调整的预留空间,使得摄像模组的厚度得以减小;另一方面,所述模塑部1011A包裹于所述电路元件10122A,使得传统的支架功能和电路元件可以在空间上重叠设置,不需要像传统摄像模组,在电路器件周围预留安全距离,从而使得具有支架功能的所述模塑部1011A的高度可以设置在较小的范围,从而进一步提供了摄像模组厚度可以减小的空间。此外,所述模塑部1011A代替传统的支架,避免了支架在粘贴组装时带来的倾斜误差,减小了摄像模组组装的累积公差。
更进一步,所述模塑部1011A包括一支撑台10111A,所述支撑台10111A适于安装所述滤光片1040,使得所述滤光片1040位于所述感光芯片1030上方。也就是说,进入所述镜头1050的光线经过所述滤光片1040的作用后到达所述感光芯片1030。所述滤光片1040可以比实施为但不限于红外截止滤光片(IRCF)。
所述模塑部1011A的所述支撑台10111A形成一内环槽10113A,为所述滤光片1040提供充足的安装空间。值得一提的是,所述模塑部1011替代传统的支架,将所述马达1060与所述滤光片1040进行连接,同时提供所述滤光片1040的安装位置,使得所述模塑部1011A、所述滤光片1040以及所述电路元件10122A合理地布置,充分地利用所述感光芯片1030的感光区域外的剩余空间,使得摄像模组最小化。同时借助模塑工艺,使得所述模塑部1011A提供平整的所述支撑台10111A,使得所述滤光片1040能够被平整地安装,保证光路的一致性。
更具体地,所述内环槽10113A截面可以呈L环形,连通于所述模塑部1011A的所述通孔101100A,以便于所述滤光片1040被支撑安装于所述感光芯片1030的感光路径。
根据本发明的这个实施例,所述感光芯片1030通过一系列引线1031A连接于所述线路板主体10121A,并且电连接于所述感光电路。所述引线51A可以被实施为,举例地但不限于,金线、铜线、铝线、银线。特别地,所述感光芯片1030的所述系列引线1031A可以通过传统的COB方式连接于所述线路板主体10121A,举例地但不限于,焊接的方式。也就是说,所述感光芯片1030与所述线路板主体10121A的连接可充分利用已有的成熟连接技术,以降低改进技术的成本,对传统的工艺和设备进行充分利用,避免资源浪费。当然,本领域的技术人员应当可以理解的是,所述感光芯片1030与所述线路板主体10121A的连接也可以通过其它任何能够实现的本发明的发明目的的连接方式实现,本发明在这方面不受限制。
值得一提的是,在本发明个的这个实施例中,所述感光芯片1030被设置于所述线路板主体10121A的所述内凹槽101211A,所述模塑部1011A围绕于所述感光芯片1030的外侧。在制造所述模塑线路板组件时,可以选择不同制造顺序,举例地但不限于,在一种实施方式中,可以先在所述线路板主体10121A上开所述内凹槽101211A,继而在所述线路板主体10121的所述内槽内12110A内安装 所述感光芯片1030,而后在所述感光芯片1030外侧、所述线路板主体10121A的边缘位置,模塑形成所述模塑部1011A,并且将凸出于所述线路板主体10121A的所述电路元件10122A包裹于其内部。而在本发明的另一种实施例中,可以先在所述线路板主体10121A上开设所述内凹槽101211A,继而在所述线路板主体10121A的边缘位置,模塑形成所述模塑部1011A,并且将凸出于所述线路板主体10121A的所述电路元件10122A包裹于其内部,继而将所述感光芯片1030安装于所述线路板主体10121A的所述内凹槽101211A内,使其位于所述模塑部1011A的内侧。
如图7A、7B所示,是根据本发明的第一个优选实施例的摄像模组的模塑线路板组件的第二个变形实施例。所述模塑线路板组件1010B包括一模塑部1011B和一线路板部1012B,所述模塑部1011B模塑地连接所述线路板部1012B。
所述线路板部1012B包括一线路板主体10121B,所述感光芯片1030被设置于所述线路板主体10121B,且位于所述模塑部1011B内侧。
具体地,所述马达1060被安装于所述线路板组件10B的所述模塑部1011B上,且电连接于所述线路板部1012B,所述镜头1050被安装于所述马达1060,并且所述镜头1050可以被所述马达1060以适于自动对焦。所述镜头1050位于所述感光芯片1030的感光路径,从而在所述摄像模组用于采集物体的影像时,所述物体反射的光线能够藉由所述镜头1050处理之后进一步被所述感光芯片1030接收以适于进行光电转化。
更进一步,所述线路板部1012B包括一感光电路(图中未示出)和至少一电路元件10122B。所述感光电路预设于所述线路板主体10121B内,所述电路元件10122B电连接于所述感光电路以及所述感光芯片1030,以供所述感光芯片1030的感光工作过程。所述电路元件10122B可以是,举例地但不限于,电阻、电容、二极管、三级管、电位器、继电器、驱动器、处理器和存储器等。
特别地,在本发明的一实施例中,在组装所述摄像模塑时,所述马达1060通过至少一马达引脚1061电连接于所述感光电路,且所述导线被焊接于所述线路板主体10121B。
值得一提的是,所述模塑部1011B将所述电路元件10122B包裹于内部,因此使得所述电路元件10122B不会直接暴露于空间内,更具体地说,不会暴露于与所述感光芯片1030相通的封闭环境中,不同于传统的摄像模组中电路元件的存在方式,如阻容器件,从而防止灰尘、杂物停留于电路元件,污染感光芯片。所述模塑部1011B形成一通孔101100B,以使得所述模塑部围绕于所述感光芯片1030外侧,并且提供所述镜头1050与所述感光芯片1030的光线通路。
进一步,所述线路板主体10121B具有一通路101212B,所述通路101212B的下部适于安装所述感光芯片1030。所述通路101212B使得所述线路板主体10121B上下两侧相连通,从而当所述感光芯片1030由所述线路板主体10121B的背面、并且感光区朝上地安装于所述线路板主体10121B时,所述感光芯片1030的感光芯片1030B能够接收到由所述镜头1050进入的光线。
更进一步,所述通路101212B在底侧具有一外环槽101213B,提供所述感光芯片1030的安装位置。特别地,当所述感光芯片1030被安装于底侧的所述外环槽101213时,所述感光芯片1030的底表面和所述线路板主体10121B的表面一致,位于同一平面,也可以是所述感光芯片1030的底表面相对于所述线路板主体10121B的表面向内凹进,即所述感光芯片1030的底表面可以不凸出所述线路板主体10121B的底表面,从而保证所述模塑线路板组件1010B的表面平整性。
在本发明的这个实施例中,所述通路101212B呈台阶状,从而便于安装所述感光芯片1030,为所述感光芯片1030提供稳定的安装位置,并使其感光区展现于内空间。
值得一提的是,在本发明的这个实施例中,提供一种不同于传统的芯片安装方式,即,芯片倒装方式FC(Flip Chip)。将所述感光芯片1030从所述线路板主体10121B的背面方向安装于所述线路板主体10121B,而不是像上述实施例中需要从所述线路板主体10121的正面,即,从所述线路板主体10121的上方,且所述感光芯片1030的感光区朝上地安装于所述线路板主体10121。这样的结构以及安装方式,使得所述感光芯片1030和所述模塑部1011B相对独立,所述感光芯片1030的安装不会受到所述模塑部1011B的影响,所述模塑部1011B的模塑成型对所述感光芯片1030的影响也较小。此外,所述感光芯片1030嵌于所述线路板主体10121B的外侧面,且不会凸出于所述线路板主体10121B的内侧面,从而使得所述线路板主体10121B内侧留出更大的空间,使得所述模塑部1011B的高度不会受到所述感光芯片1030的高度限制,使得所述模塑部1011B能够达到更小的高度。
具体地,在制造所述模塑线路板组件时,可以在一传统的线路板作为所述线路板主体10121B,在所述线路板主体10121B表面进行模塑,如用注塑机,通过嵌入成型(insert molding)工艺将进行SMT工艺(Surface Mount Technology表面贴装工艺)后的线路板进行模塑形成所述模塑部1011B,或用半导体封装中常用的模压工艺形成所述模塑部1011B,并且在所述线路板主体10121B上开所述通路101212B。所述线路板主体10121B可以选择为,举例地但不限于,软硬结合板、陶瓷基板(不带软板)、PCB硬板(不带软板)等。所述模塑部1011B形成的方式可以选择为,举例地但不限于,注塑工艺、模压工艺等。所述模塑部1011B可以选择的材料为,举例地但不限于,注塑工艺可以选择尼龙、LCP(Liquid Crystal Polymer,液晶高分子聚合物)、PP(Polypropylene,聚丙烯)等,模压工艺可以采用树脂。本领域技术人员应当理解的是,前述可以选择的制造方式以及可以选择的材料,仅作为举例说明本发明的可以实施的方式,并不是本发明的限制。
还值得一提的是,所述马达1060被安装于所述模塑线路板组件1010B的所述模塑部1011B,从而所述模塑部1011B相当于传统摄像模组中的支架的功能,为所述马达1060提供支撑、固定位置,但是组装却不同于传统COB工艺过程。传统COB工艺的摄像模组的支架以粘贴的方式固定于线路板,而所述模塑部 1011通过模塑工艺固定于所述线路板主体10121B,不需要粘贴固定过程,模塑方式相对于粘贴固定具有更好的连接稳定性以及工艺过程的可控性,且在模塑部1011于线路板主体之间不需要预留AA调整的胶水空间,因此减小了传统摄像模组AA调整的预留空间,使得摄像模组的厚度得以减小;另一方面,所述模塑部1011B包裹于所述电路元件10122B,使得传统的支架功能和电路元件可以在空间上重叠设置,不需要像传统摄像模组,在电路器件周围预留安全距离,从而使得具有支架功能的所述模塑部1011B的高度可以设置在较小的范围,从而进一步提供了摄像模组厚度可以减小的空间。此外,所述模塑部1011B代替传统的支架,避免了支架在粘贴组装时带来的倾斜误差,减小了摄像模组组装的累积公差。
更进一步,所述模塑部1011B包括一支撑台10111B,所述支撑台10111B适于安装所述滤光片1040,使得所述滤光片1040位于所述感光芯片1030上方。也就是说,进入所述镜头1050的光线经过所述滤光片1040的作用后到达所述感光芯片40。所述滤光片1040可以比实施为但不限于红外截止滤光片(IRCF)。
所述模塑部1011B的所述支撑台10111B形成一内环槽10113B,为所述滤光片1040提供充足的安装空间。值得一提的是,所述模塑部1011B替代传统的支架,将所述马达1060与所述滤光片1040进行连接,同时提供所述滤光片1040的安装位置,使得所述模塑部1011B、所述滤光片1040以及所述电路元件10122B合理地布置,充分地利用所述感光芯片1030的感光区域外的剩余空间,使得摄像模组最小化。同时借助模塑工艺,使得所述模塑部1011B提供平整的所述支撑台10111B,使得所述滤光片1040能够被平整地安装,保证光路的一致性。
更具体地,所述内环槽10113B的竖截面呈L环形,连通于所述模塑部1011B的所述通孔101100B,以便于所述滤光片1040被支撑安装于所述感光芯片1030的感光路径。
值得一提的是,在本发明个的这个实施例中,所述感光芯片1030被设置于所述线路板主体10121B的下表面,所述模塑部1011B围绕于所述线路板主体10121B的外边缘。在制造所述模塑线路板组件1010B时,可以选择不同制造顺序,举例地但不限于,在一种实施方式中,可以先在所述线路板主体10121B上开所述通路101212B,继而将所述感光芯片1030倒装地安装于所述线路板主体10121的所述通路101212B,而后在所述感光芯片1030外侧,所述线路板主体10121B的边缘位置,模塑形成所述模塑部1011B,并且将凸出于所述线路板主体10121B的所述电路元件10122B包裹于其内部。而在本发明的另一种实施例中,可以先在所述线路板主体10121B上开所述通路101212B,继而在所述线路板主体10121B的边缘位置模塑形成所述模塑部1011B,并且将凸出于所述线路板主体10121B的所述电路元件10122B包裹于其内部,继而将所述感光芯片1030安装于所述线路板主体10121B,使其位于所述线路板主体10121B的所述外环槽101213B。在本发明的另一种实施例中,可以先在所述线路板主体10121B的边缘位置,模塑形成所述模塑部1011B,并且将凸出于所述线路板主体10121B的所述电路元件10122B包裹于其内部所述线路板主体10121B上开所述通路 101212B,继而在所述线路板主体10121B上开设所述通路101212B,继而将所述感光芯片1030倒装地安装于所述线路板主体10121B的所述通路101212B。
如图8A、8B所示,是根据本发明的第一个优选实施例的摄像模组的模塑线路组件的第三种变形实施例。所述模塑线路板组件1010C包括一模塑部1011C和一线路板部1012C,所述模塑部1011C模塑地连接所述线路板部1012C。
所述线路板部1012C包括一线路板主体10121C,所述感光芯片1030被设置于所述线路板主体10121C,且位于所述模塑部1011C内侧。
具体地,所述马达1060被安装于所述线路板组件10C的所述模塑部1011C上,且电连接于所述线路板部1012C,所述镜头1050被安装于所述马达1060,并且所述镜头1050可以被所述马达50以适于自动对焦。所述镜头1050位于所述感光芯片1030的感光路径,从而在所述摄像模组用于采集物体的影像时,所述物体反射的光线能够藉由所述镜头1050处理之后进一步被所述感光芯片1030接收以适于进行光电转化。
更进一步,所述线路板部1012C包括一感光电路(图中未示出)和至少一电路元件10122C。所述感光电路预设于所述线路板主体10121C内,所述电路元件10122C电连接于所述感光电路以及所述感光芯片1030,以供所述感光芯片1030的感光工作过程。所述电路元件10122C可以是,举例地但不限于,电阻、电容、二极管、三级管、电位器、继电器、驱动器、处理器和存储器等。
特别地,在本发明的一实施例中,在组装所述摄像模塑时,所述马达1060通过一马达引脚1061电连接于所述感光电路,且所述1马达引脚106被焊接于所述线路板主体10121C。
值得一提的是,所述模塑部1011C将所述电路元件10122C包裹于内部,因此使得所述电路元件10122C不会直接暴露于空间内,更具体地说,不会暴露于与所述感光芯片1030相通的封闭环境中,不同于传统的摄像模组中电路元件的存在方式,如阻容器件,从而防止灰尘、杂物停留于电路元件,污染感光芯片。所述模塑部1011C形成一通孔101100C,以使得所述模塑部围绕于所述感光芯片1030外侧,并且提供所述镜头1050与所述感光芯片1030的光线通路。
进一步,所述线路板主体10121C具有至少一过孔101214C,所述模塑部1011浸入所述过孔101214C。各过孔101214C设置于所述线路板主体的模塑区域,与所述电路元件10122C协调配置。值得一提的是,所述过孔101214C的设置,使得所述模塑部1011C在模塑成型时得以浸入所述线路板主体10121C,增强所述模塑部1011C与所述线路板主体10121C之间的粘结力,使得所述模塑部1011C与所述线路板主体10121C不易脱离,同时增强了所述线路板主体10121C自身的结构强度,使得所述线路板主体10121C可以具有更小的厚度。所述过孔101214C的位置和数量,可以根据需要设置,本领域的技术人员应当理解的是,所述过孔101214C的位置和数量不是本发明的限制。
值得一提的是,在本发明的其它实施例中,所述线路板主体10121C还可以设置所述内凹槽101211A或所述通路101212B,以使得所述模塑线路板组件 1010C可以具备不同的优势,比如厚度更小、结构强度更高。
值得一提的是,所述实施例中的所述线路板主体10121C上所述过孔101214C的设置可以带来一些优势,诸如,增加所述线路板主体10121C和所述模塑部1011C的模塑粘接性、增强所述线路板主体10121C的结构强度等,当然本领域的技术人员应当理解的是,所述线路板主体10121C的所述过孔101214C的设置并不是本发明的限制,也就是说,在本发明的其它实施例中,可以不设置所述过孔101214C,或者根据需要设置不同布局、不同数量的所述过孔101214C。
具体地,在制造所述模塑线路板组件时,可以在一传统的线路板作为所述线路板主体10121C,在所述线路板主体10121C表面进行模塑,如用注塑机,通过嵌入成型(insert molding)工艺将进行SMT工艺(Surface Mount Technology表面贴装工艺)后的线路板进行模塑形成所述模塑部1011C,或用半导体封装中常用的模压工艺形成所述模塑部1011C。所述线路板主体10121C可以选择为,举例地但不限于,软硬结合板、陶瓷基板(不带软板)、PCB硬板(不带软板)等。所述模塑部1011C形成的方式可以选择为,举例地但不限于,注塑工艺、模压工艺等。所述模塑部1011C可以选择的材料为,举例地但不限于,注塑工艺可以选择尼龙、LCP(Liquid Crystal Polymer,液晶高分子聚合物)、PP(Polypropylene,聚丙烯)等,模压工艺可以采用树脂。本领域技术人员应当理解的是,前述可以选择的制造方式以及可以选择的材料,仅作为举例说明本发明的可以实施的方式,并不是本发明的限制。
还值得一提的是,所述马达1060被安装于所述模塑线路板组件1010C的所述模塑部1011C,从而所述模塑部1011C相当于传统摄像模组中的支架的功能,为所述马达1060提供支撑、固定位置,但是组装却不同于传统COB工艺过程。传统COB工艺的摄像模组的支架以粘贴的方式固定于线路板,而所述模塑部1011C通过模塑工艺固定于所述线路板主体10121C,不需要粘贴固定过程,模塑方式相对于粘贴固定具有更好的连接稳定性以及工艺过程的可控性,且在模塑部1011C于线路板主体之间不需要预留AA调整的胶水空间,因此减小了传统摄像模组AA调整的预留空间,使得摄像模组的厚度得以减小;另一方面,所述模塑部1011C包裹于所述电路元件10122C,使得传统的支架功能和电路元件可以在空间上重叠设置,不需要像传统摄像模组,在电路器件周围预留安全距离,从而使得具有支架功能的所述模塑部1011C的高度可以设置在较小的范围,从而进一步提供了摄像模组厚度可以减小的空间。此外,所述模塑部1011C代替传统的支架,避免了支架在粘贴组装时带来的倾斜误差,减小了摄像模组组装的累积公差。
更进一步,所述模塑部1011C包括一支撑台10111C,所述支撑台10111C适于安装所述滤光片1040,使得所述滤光片1040位于所述感光芯片1030上方。也就是说,进入所述镜头1050的光线经过所述滤光片1040的作用后到达所述感光芯片40。所述滤光片1040可以比实施为但不限于红外截止滤光片(IRCF)。
所述模塑部1011C的所述支撑台10111C形成一内环槽10113C,为所述滤光 片1040提供充足的安装空间。值得一提的是,所述模塑部1011C替代传统的支架,将所述马达1060与所述滤光片1040进行连接,同时提供所述滤光片1040的安装位置,使得所述模塑部1011C、所述滤光片1040以及所述电路元件10122C合理地布置,充分地利用所述感光芯片1030的感光区域外的剩余空间,使得摄像模组最小化。同时借助模塑工艺,使得所述模塑部1011C提供平整的所述支撑台10111C,使得所述滤光片1040能够被平整地安装,保证光路的一致性。
更具体地,所述内环槽10113C截面呈L环形,连通于所述模塑部1011C的所述通孔101100C,以便于所述滤光片1040被支撑安装于所述感光芯片1030的感光路径。
根据本发明的这个实施例,所述感光芯片1030通过一系列引线1031连接于所述线路板主体10121C,并且电连接于所述感光电路。所述引线1031可以被实施为,举例地但不限于,金线、铜线、铝线、银线。特别地,所述感光芯片1030的所述系列引线1031可以通过传统的COB方式连接于所述线路板主体10121C,举例地但不限于,焊接的方式。也就是说,所述感光芯片1030与所述线路板主体10121C的连接可充分利用已有的成熟连接技术,以降低改进技术的成本,对传统的工艺和设备进行充分利用,避免资源浪费。当然,本领域的技术人员应当可以理解的是,所述感光芯片1030与所述线路板主体10121C的连接也可以通过其它任何能够实现的本发明的发明目的的连接方式实现,本发明在这方面不受限制。
值得一提的是,在本发明个的这个实施例中,所述感光芯片1030被设置于所述线路板主体10121C的上表面,所述模塑部1011C围绕于所述感光芯片的外侧,在制造所述模塑线路板组件时,可以选择不同制造顺序,举例地但不限于,在一种实施方式中,可以先在所述线路板主体10121C上安装所述感光芯片1030,而后在所述感光芯片1030外侧,所述线路板主体10121C的边缘位置,模塑形成所述模塑部1011C,并且将凸出于所述线路板主体10121C的所述电路元件10122C包裹于其内部。而在本发明的另一种实施例中,可以先将所述线路板主体10121C的边缘位置,模塑形成所述模塑部1011C,并且将凸出于所述线路板主体10121C的所述电路元件10122C包裹于其内部,继而将所述感光芯片1030安装于所述线路板主体10121C,使其位于所述模塑部1011C的内侧。
如图9至图11所示,是根据本发明的第二个优选实施例的摄像模组。所述摄像模组为一定焦摄像模组。所述摄像模组包括一模塑线路板组件1010D、一镜头1050D和一感光芯片1030D。
所述镜头1050D被安装于所述模塑线路板组件1010D上方。更进一步,所述模塑线路板组件1010D包括一模塑部1011D和一线路板部1012D,所述模塑部1011D模塑地连接所述线路板部1012D。
所述线路板部1012D包括一线路板主体10121D,所述感光芯片1030D被设置于所述线路板主体10121D,且位于所述模塑部1011D内侧。
具体地,所述镜头1050D位于所述感光芯片1030D的感光路径,从而在所 述摄像模组用于采集物体的影像时,所述物体反射的光线能够藉由所述镜头1050D处理之后进一步被所述感光芯片1030D接收以适于进行光电转化。
更进一步,所述线路板部1012D包括一感光电路和至少一电路元件10122。所述感光电路预设于所述线路板主体10121D内,所述电路元件10122D电连接于所述感光电路以及所述感光芯片1030D,以供所述感光芯片1030D的感光工作过程。所述电路元件10122D可以是,举例地但不限于,电阻、电容、二极管、三级管、电位器、继电器、驱动器、处理器和存储器等。
值得一提的是,所述模塑部1011D将所述电路元件10122D包裹于内部,因此使得所述电路元件10122D不会直接暴露于空间内,更具体地说,不会暴露于与所述感光芯片1030D相通的封闭环境中,不同于传统的摄像模组中电路元件的存在方式,如阻容器件,从而防止灰尘、杂物停留于所述电路元件10122D,污染所述感光芯片1030D。所述模塑部1011D形成一通孔101100D,以使得所述模塑部1011D围绕于所述感光芯片1030D外侧,并且提供所述镜头1050D与所述感光芯片1030D的光线通路。
具体地,在制造所述模塑线路板组件时,可以在一传统的线路板作为所述线路板主体10121D,在所述线路板主体10121D表面进行模塑,如用注塑机,通过夹物模压嵌入成型(insert molding)工艺将进行SMT工艺(Surface Mount Technology表面贴装工艺)后的线路板进行模塑形成所述模塑部1011D,或用半导体封装中常用的模压工艺形成所述模塑部1011D。所述线路板主体10121D可以选择为,举例地但不限于,软硬结合板、陶瓷基板(不带软板)、PCB硬板(不带软板)等。所述模塑部1011D形成的方式可以选择为,举例地但不限于,注塑工艺、模压工艺等。所述模塑部1011D可以选择的材料为,举例地但不限于,注塑工艺可以选择尼龙、LCP(Liquid Crystal Polymer,液晶高分子聚合物)、PP(Polypropylene,聚丙烯)等,模压工艺可以采用树脂。本领域技术人员应当理解的是,前述可以选择的制造方式以及可以选择的材料,仅作为举例说明本发明的可以实施的方式,并不是本发明的限制。
还值得一提的是,所述镜头1050D被安装于所述模塑线路板组件1010D的所述模塑部1011D,从而所述模塑部1011D相当于传统摄像模组中的支架的功能,为所述镜头1050D提供支撑、固定位置,但是组装却不同于传统COB工艺过程。传统COB工艺的摄像模组的支架以粘贴的方式固定于线路板,而所述模塑部1011D通过模塑工艺固定于所述线路板主体10121D,不需要粘贴固定过程,模塑方式相对于粘贴固定具有更好的连接稳定性以及工艺过程的可控性,且在模塑部1011D于线路板主体之间不需要预留AA调整的胶水空间,因此减小了传统摄像模组AA调整的预留空间,使得摄像模组的厚度得以减小;另一方面,所述模塑部1011D包裹于所述电路元件10122D,使得传统的支架功能和电路元件可以在空间上重叠设置,不需要像传统摄像模组,在电路器件周围预留安全距离,从而使得具有支架功能的所述模塑部1011D的高度可以设置在较小的范围,从而进一步提供了摄像模组厚度可以减小的空间,获得厚度更小的定焦摄像模组。此 外,所述模塑部1011D代替传统的支架,避免了支架在粘贴组装时带来的倾斜误差,减小了摄像模组组装的累积公差。
更进一步,所述模塑部1011D包括一支撑台10111D,所述支撑台10111D适于安装一滤光片1040D,使得所述滤光片1040D位于所述感光芯片1030D上方。也就是说,进入所述镜头1050D的光线经过所述滤光片1040D的作用后到达所述感光芯片40D。所述滤光片1040D可以比实施为但不限于红外截止滤光片(IRCF)。
所述模塑部1011D的所述支撑台10111D形成一内环槽10113D,为所述滤光片1040D提供充足的安装空间。值得一提的是,所述模塑部1011D替代传统的支架,将所述镜头1050D与所述线路板部1012D进行连接,同时提供所述滤光片1040D的安装位置,使得所述模塑部1011D、所述滤光片1040D以及所述电路元件10122D合理地布置,充分地利用所述感光芯片1030D的感光区域外的剩余空间,使得摄像模组最小化。同时借助模塑工艺,使得所述模塑部1011D提供平整的所述支撑台10111D,使得所述滤光片1040D能够被平整地安装,保证光路的一致性。
更具体地,所述内环槽10113D呈L环形,连通于所述模塑部1011D的所述通孔101100D,以便于所述滤光片1040D被支撑安装于所述感光芯片1030D的感光路径。
根据本发明的这个实施例,所述感光芯片1030D通过一系列引线1031D连接于所述线路板主体10121D,并且电连接于所述感光电路。所述引线51D可以被实施为,举例地但不限于,金线、铜线、铝线、银线。特别地,所述感光芯片1030D的所述系列引线1031D可以通过传统的COB方式连接于所述线路板主体10121D,举例地但不限于,焊接的方式。也就是说,所述感光芯片1030D与所述线路板主体10121D的连接可充分利用已有的成熟连接技术,以降低改进技术的成本,对传统的工艺和设备进行充分利用,避免资源浪费。当然,本领域的技术人员应当可以理解的是,所述感光芯片1030D与所述线路板主体10121D的连接也可以通过其它任何能够实现的本发明的发明目的的连接方式实现,本发明在这方面不受限制。
值得一提的是,在传统制造过程中,线路板来料SMT贴完阻容器件后,进行传统的COB封装,然后贴附芯片,打金线,再通过胶水贴附塑料支架或者马达,而在本发明的一种制造方式中,在SMT后,通过模塑工艺在线路板表面形成所述模塑部1011D,而后进行芯片贴附,打金线。
值得一提的是,在本发明个的这个实施例中,所述感光芯片121D被设置于所述线路板主体10121D的上表面,所述模塑部1011D围绕于所述感光芯片的外侧,在制造所述模塑线路板组件时,可以选择不同制造顺序,举例地但不限于,在一种实施方式中,可以先在所述线路板主体10121D上安装所述感光芯片1030D,而后在所述感光芯片1030D外侧,所述线路板主体10121D的边缘位置,模塑形成所述模塑部1011D,并且将凸出于所述线路板主体10121D的所述电路 元件10122D包裹于其内部。而在本发明的另一种实施例中,可以先将所述线路板主体10121D的边缘位置,模塑形成所述模塑部1011D,并且将凸出于所述线路板主体10121D的所述电路元件10122D包裹于其内部,继而将所述感光芯片1030D安装于所述线路板主体10121D,使其位于所述模塑部1011D的内侧。
值得一体的是,所述镜头1050D还可以与上述优选实施例中模塑线路组件的不同实施例组合,组装为不同结构的定焦摄像模组,即所述镜头1050D分别与所述模塑线路板组件1010A、所述模塑线路板组件1010B以及所述模塑线路板组件1010C组装,组成不同的定焦摄像模组,所述模塑线路板组件的结构可以参照上述优选实施例,在此不再赘述。
如图12、图13所示,是根据本发明的第三个优选实施例的摄像模组。所述摄像模塑为动焦摄像模组,其包括一模塑线路板组件1010E、一镜头1050E和一马达1060E。
所述马达1060E被安装于所述模塑线路板组件1010E,所述镜头1050E被安装于所述马达1060E,以使得所述镜头1050E被支撑于所述模塑线路板组件1010E上方。
所述模塑线路板组件1010E包括一模塑部1011E和一线路板部1012E,所述模塑部1011E模塑地连接所述线路板部1012E。
所述线路板部1012E包括一线路板主体10121E和一感光芯片1030E,所述感光芯片1030E被设置于所述线路板主体10121E,且位于所述模塑部1011E内侧。
具体地,所述马达1060E被安装于所述线路板组件10E的所述模塑部1011E上,且电连接于所述线路板部1012E,所述镜头1050E被安装于所述马达1060E,并且所述镜头1050可以被所述马达1060E以适于自动对焦。所述镜头1050位于所述感光芯片1030E的感光路径,从而在所述摄像模组用于采集物体的影像时,所述物体反射的光线能够藉由所述镜头1050E处理之后进一步被所述感光芯片1030E接收以适于进行光电转化。
更进一步,所述线路板部1012E包括一感光电路和至少一电路元件10122E。所述感光电路预设于所述线路板主体10121E内,所述电路元件10122E电连接于所述感光电路以及所述感光芯片1030E,以供所述感光芯片1030E的感光工作过程。所述电路元件10122E可以是,举例地但不限于,电阻、电容、二极管、三级管、电位器、继电器、驱动器、处理器和存储器等。
特别地,在本发明的一实施例中,在组装所述摄像模塑时,所述马达1060E通过一马达引脚1061E电连接于所述感光电路,且所述导线被焊接于所述线路板主体10121E。
值得一提的是,所述模塑部1011E将所述电路元件10122E包裹于内部,因此使得所述电路元件10122E不会直接暴露于空间内,更具体地说,不会暴露于与所述感光芯片1030E相通的封闭环境中,不同于传统的摄像模组中电路元件的存在方式,如阻容器件,从而防止灰尘、杂物停留于电路元件,污染感光芯片。 所述模塑部1011E形成一通孔101100E,以使得所述模塑部围绕于所述感光芯片1030E外侧,并且提供所述镜头1050E与所述感光芯片1030E的光线通路。
进一步,所述线路板主体10121E具有一通路101212E,所述通路101212E的下部适于安装所述感光芯片1030E。所述通路101212E使得所述线路板主体10121E上下两侧相连通,从而当所述感光芯片1030E由所述线路板主体10121E的背面、并且感光区朝上地安装于所述线路板主体10121E时,所述感光芯片1030E的感光区能够接收到由所述镜头1050E进入的光线。
更进一步,所述通路101212E具有一外环槽101213E,提供所述感光芯片1030E的安装位置。特别地,当所述感光芯片1030E被安装于所述外环槽101213时,所述感光芯片1030E的外表面和所述线路板主体10121E的表面一致,位于同一平面,从而保证所述模塑线路板组件1010E的表面平整性。
在本发明的这个实施例中,所述通路101212E呈台阶状,从而便于安装所述感光芯片1030E,为所述感光芯片1030E提供稳定的安装位置,并使其感光区展现于内空间。
值得一提的是,在本发明的这个实施例中,提供一种不同于传统的芯片安装方式,即,芯片倒装方式。将所述感光芯片1030E从所述线路板主体10121E的背面方向安装于所述线路板主体10121E,而不是像上述实施例中需要从所述线路板主体10121的正面,即,从所述线路板主体10121的上方,且所述感光芯片1030的感光区朝上地安装于所述线路板主体10121。这样的结构以及安装方式,使得所述感光芯片1030E和所述模塑部1011E相对独立,所述感光芯片1030E的安装不会受到所述模塑部1011E的影响,所述模塑部1011E的模塑成型对所述感光芯片1030E的影响也较小。此外,所述感光芯片1030E嵌于所述线路板主体10121E的外侧面,且不会凸出于所述线路板主体10121E的内侧面,从而使得所述线路板主体10121E内侧留出更大的空间,使得所述模塑部1011E的高度不会受到所述感光芯片1030E的高度限制,使得所述模塑部1011E能够达到更小的高度。
具体地,在制造所述模塑线路板组件时,可以在一传统的线路板作为所述线路板主体10121E,在所述线路板主体10121E表面进行模塑,如用注塑机,通过嵌入成型(insert molding)工艺将进行SMT工艺(Surface Mount Technology表面贴装工艺)后的线路板进行模塑形成所述模塑部1011E,或用半导体封装中常用的模压工艺形成所述模塑部1011E,并且在所述线路板主体10121E上开所述通路101212E。所述线路板主体10121E可以选择为,举例地但不限于,软硬结合板、陶瓷基板(不带软板)、PCE硬板(不带软板)等。所述模塑部1011E形成的方式可以选择为,举例地但不限于,注塑工艺、模压工艺等。所述模塑部1011E可以选择的材料为,举例地但不限于,注塑工艺可以选择尼龙、LCP(Liquid Crystal Polymer,液晶高分子聚合物)、PP(Polypropylene,聚丙烯)等,模压工艺可以采用树脂。本领域技术人员应当理解的是,前述可以选择的制造方式以及可以选择的材料,仅作为举例说明本发明的可以实施的方式,并不是本发明的限 制。
还值得一提的是,所述马达1060E被安装于所述线路板组件10E的所述模塑部1011E,从而所述模塑部1011E相当于传统摄像模组中的支架的功能,为所述马达1060E提供支撑、固定位置,但是组装却不同于传统COE工艺过程。传统COE工艺的摄像模组的支架以粘贴的方式固定于线路板,而所述模塑部1011E通过模塑工艺固定于所述线路板主体10121E,不需要粘贴固定过程,模塑方式相对于粘贴固定具有更好的连接稳定性以及工艺过程的可控性,且在模塑部1011E于线路板主体之间不需要预留AA调整的胶水空间,因此减小了传统摄像模组AA调整的预留空间,使得摄像模组的厚度得以减小;另一方面,所述模塑部1011E包裹于所述电路元件10122E,使得传统的支架功能和电路元件可以在空间上重叠设置,不需要像传统摄像模组,在电路器件周围预留安全距离,从而使得具有支架功能的所述模塑部1011E的高度可以设置在较小的范围,从而进一步提供了摄像模组厚度可以减小的空间。此外,所述模塑部1011E代替传统的支架,避免了支架在粘贴组装时带来的倾斜误差,减小了摄像模组组装的累积公差。
值得一提的是,不同上述优选实施例的是,所述摄像模组包括一滤光片1040E,所述滤光片1040E被安装于所述线路板主体10121E,位于所述感光芯片1030E的上方,即位于所述线路板主体10121E的所述通路101212E的上口,使得由所述镜头1050E进入的光线,在经由所述通路101212E时,先经过所述滤光片1040E的作用。不同于上述实施例的是,所述模塑部1011E不需要提供所述滤光片1040E的安装位置,不需要设置所述支撑台10111,转而由所述线路板主体11E为所述滤光片1040E提供安装位置,减小所述滤光片1040E和所述感光芯片1030E之间的距离,使得所述模塑部1011E的高度得以进一步减小。
所述滤光片1040E可以被实施为但不限于红外截止滤光片(IRCF)。
值得一提的是,在本发明的这个实施例中,借助FC芯片倒装方式中所述通路101212E的设置,使得所述滤光片1040E能够被安装于所述线路板主体10121E上,从而使得所述线路板组件10E以及由所述线路板组件10E组装的所述摄像模组具有由FC安装方式以及所述滤光片1040E的安装方式带来的优势,比如方便组装、减小厚度等,但是本领域的技术人员应当理解是,所述滤光片1040E的安装位置并不是本发明的限制,在本发明的其它实施例中,所述滤光片1040E还可以被安装于不同位置,举例地但不限于,所述模塑部1011,支架、马达等。
值得一提的是,所述模塑部1011E替代传统的支架,将所述马达1060E与所述线路板部1012E进行连接,所述线路板部1012E提供所述滤光片1040E的安装位置,使得所述模塑部1011E、所述滤光片1040E以及所述电路元件10122E合理地布置,充分地利用所述感光芯片1030E的感光区域外的剩余空间,使得摄像模组最小化。同时借助模塑工艺,使得所述模塑部1011E提供平整的固定位置,使得所述马达1060E能够被平整地安装,保证光路的一致性。
值得一提的是,在本发明个的这个实施例中,所述感光芯片1030E被设置于所述线路板主体10121E的下表面,所述模塑部1011E围绕于所述线路板主体 10121E的外边缘。在制造所述模塑线路板组件1010E时,可以选择不同制造顺序,举例地但不限于,在一种实施方式中,可以先在所述线路板主体10121E上开所述通路101212E,继而将所述感光芯片1030E倒装地安装于所述线路板主体10121的所述通路101212E,而后在所述感光芯片1030E外侧,所述线路板主体10121E的边缘位置,模塑形成所述模塑部1011E,并且将凸出于所述线路板主体10121E的所述电路元件10122E包裹于其内部。而在本发明的另一种实施例中,可以先在所述线路板主体10121E上开设所述通路101212E,继而在所述线路板主体10121E的边缘位置模塑形成所述模塑部1011E,并且将凸出于所述线路板主体10121E的所述电路元件10122E包裹于其内部,继而将所述感光芯片1030E安装于所述线路板主体10121E,使其位于所述线路板主体10121E的所述外环槽101213E。在本发明的另一种实施例中,可以先在所述线路板主体10121E的边缘位置,模塑形成所述模塑部1011E,并且将凸出于所述线路板主体10121E的所述电路元件10122E包裹于其内部所述线路板主体10121E上开所述通路101212E,继而在所述线路板主体10121E上开所述通路101212E,继而将所述感光芯片1030E倒装地安装于所述线路板主体10121E的所述通路101212E。
值得一提的是,所述模塑线路板组件1010E以及所述滤光片1040E的安装方式还可以应用于定焦摄像模组。
如图14和15是根据本发明的第四个优选实施例的摄像模组。不同于上述第一个优选实施例的是,所述摄像模组还包括一支架1070,所述支架1070被安装于所述模塑线路板组件1010,所述马达1060被安装于所述模塑线路板组件1010上,所述镜头1050被安装于所述马达1060,以便于将所述镜头1050支撑固定于所述模塑线路板组件1010上方。也就是说,所述模塑线路板组件1010、1010A、1010B、1010C可以与传统的支架组合,组装为不同类型的摄像模组,如动焦摄像模组、定焦摄像模组。所述滤光片1040可以选择性地被安装于所述支架1070、所述模塑部1011或所述马达1060。
由上述优选实施例可以看到,采用模塑(molding)工艺的摄像模组,可以增加产品在市场的竞争力,特别是在高端产品中,所述摄像模组主要具有以下优点:
1、可以减小模组的长宽尺寸,模塑部分与阻容器件部分空间上可以重叠;
传统方案支架需在电容外侧,且需要预留一定安全距离,本发明的模塑制造方法可以直接利用电容空间,直接在电容周围充填塑胶形成支架。
2、降低模组倾斜,模塑部分可替代现有塑料支架设计,减小累计公差。
3、模塑提升线路板结构强度,同等结构强度下,因为模塑部分可以起到支撑作用,可以增加强度,线路板可以做的更薄,降低模组高度。
4、在高度空间上,传统方案电容与支架需要预留组装安全空间,模塑工艺可以不预留,降低模组高度。
传统方案电容顶端距离支架需要预留安全间隙,防止干涉,本发明中可以直接在电路元件,如电容,周围充填塑胶,不需要预留空间间隙。
5、电阻电容器件可以通过模塑包裹起来,可以避免阻容器件区域阻焊剂、灰尘等所点来的模组污黑点不良,提升产品良率。
6、适合高效率大规模量产。如图14至图18C所示,是根据本发明第五个优选实施例的摄像模组。所述摄像模组包括一线路板组件2010、一感光芯片2030和一镜头2050。
进一步,所述感光芯片2030被安装于所述线路板组件2010,所述镜头2050位于所述线路板组件2010上,且所述镜头2050位于所述感光芯片2030的感光路径。所述线路板组件2010可以被耦接至所述电子设备,从而与所述电子设备配合使用。本领域的技术人员应当理解的是,所述镜头2050和所述芯片可以相互配合拍摄影像。具体地,被拍摄对象,如物体或人物反射的光线在通过所述镜头2050之后,被所述感光芯片2030接收以进行光电转化。换言之,所述感光芯片2030可以将光信号转化为电信号,并且所述电信号能够通过所述线路板组件2010被传送至所述电子设备,从而在所述电子设备上生成与所述拍摄对象相关的影像。
所述线路板组件2010包括一封装部2011和一线路板部2012,所述封装部2011一体地封装连接于所述线路板部2012,如模塑地连接于所述线路板部2012。更具体地,所述封装部2011通过模塑于线路板的方式(Molding On Board,MOB)模塑连接于所述线路板部,模塑工艺可以是注塑或模压等工艺。
所述线路板部2012包括一线路板主体20121,所述封装部2011一体连接于所述线路板主体20121。所述封装部2011形成一通孔201100,以使得所述封装部2011围绕于所述感光芯片2030外侧,并且提供所述镜头2050和所述感光芯片2030的光线通路。所述感光芯片2030被设置于所述通孔201100对应位置的所述线路板主体20121。
所述线路板部2012包括一连接线2031路和至少一电路元件20122,所述连接线2031路预设于所述线路板主体20121,所述电路元件20122电连接于所述连接电路,以供所述感光芯片2030的感光工作过程。所述电路元件20122可以是,举例地但不限于,电阻、电容、二极管、三极管,电位器,继电器、驱动器、处理器和存储器等。
值得一提的是,所述封装部2011可以将所述电路元件20122元件包覆于内部,因此使得所述电路元件20122不会直接暴露于空间内,更具体地说,不会暴露于与所述感光芯片2030相连通的封闭环境中。不同传统的摄像模组中电路器件的存在方式,如阻容器件凸出于线路板的方式,从而防止灰尘、杂物停留于所述电路元件20122而污染所述感光芯片2030。在本发明的这个实施例中,以所述电路元件20122凸出于所述线路板主体20121为例进行说明,而在本发明的其他实施例中,所述电路元件20122被埋设于所述线路板主体20121内部,而不凸出所述线路板主体20121,本领域的技术人员应当理解的是,所述电路元件20122的结构、类型和被设置的位置并不是本发明的限制。可以理解的是,在传动的摄像模组中,电路器件凸出于所述线路板,而底座只能被安装于所述电路元件20122 的外侧,因此所述电路器件和所述底座都需要一定的空间位置,因此对线路板在横向的尺寸要求较高。而对于本发明的基于模塑工艺的摄像模组,所述封装部2011一体封装于所述线路板主体20121,且包覆所述电路元件20122,因此所述封装部2011和所述电路元件20122在空间相互重叠,从而增加了所述封装部2011可以向内设置的空间,减小了对所述线路板主体20121外部延伸需求,从而减小所述摄像模组的横向尺寸,使其可以满足小型化需求的设备。
值得一提的是,所述封装部2011包覆所述电路元件20122具有保护所述电路元件20122,使其免于被污染以及被误碰触的优势,同时对相应的摄像模组带来优势,但是本领域的技术人员应当理解的是,所述封装部2011不限于包覆所述电路元件20122。也就是说,在本发明的其他实施例中,所述封装部2011可以直接模塑于没有凸出的所述电路元件20122的所述线路板主体20121,也可以是模塑于所述电路元件20122的外侧,周围等不同位置。
在本发明这个实施例中,所述封装部2011凸起地围绕于所述感光芯片2030外侧,特别地,所述封装部2011一体地闭合连接,使其具有良好的密封性,从而当所述镜头2050被安装于所述感光芯片2030的感光路径时,所述感光芯片2030被密封于内部,从而形成对应的封闭内空间。
具体地,在制造所述线路板组件2010时,可以选择一传统的线路板作为所述线路板主体20121,在所述线路板主体20121表面进行模塑。比如,在一实施例中,可以用注塑机,通过嵌入成型(Insert Molding)工艺将进行SMT工艺(Surface Mount Technology表面贴装工艺)后的线路板进行一体封装,比如模塑封装,形成所述封装部2011,或通过半导体封装中常用的模压工艺形成所述封装部2011。进一步,将各所述感光芯片2030贴装于所述线路板主体20121,继而将各所述感光芯片2030与所述线路板主体20121进行电连接,比如打金线电连接。所述线路板主体20121可以选择为,举例地但不限于,软硬结合板、陶瓷基板(不带软板)、PCB硬板(不带软板)等。所述封装部2011形成的方式可以选择为,举例地但不限于,注塑工艺、模压工艺等。所述封装部2011可以选择的材料为,举例地但不限于,注塑工艺可以选择尼龙、LCP(Liquid Crystal Polymer,液晶高分子聚合物)、PP(Polypropylene,聚丙烯)等,模压工艺可以采用环氧树脂。本领域技术人员应当理解的是,前述可以选择的制造方式以及可以选择的材料,仅作为举例说明本发明的可以实施的方式,并不是本发明的限制。
在本发明的其他实施例中,制造所述线路板组件2010的过程还可以是,先对所述线路板主体20121进行SMT工艺,进而将所述感光芯片2030贴装于所述线路板主体20121,并且将所述感光芯片2030与所述线路板主体20121进行电连接,比如打金线电连接,继而将对所述线路板主体20121进行一体封装,比如模塑封装,通过嵌入成型的方式形成所述封装部2011,或通过半导体封装中常用的模压工艺形成所述封装部2011。本领域的技术人员应当理解的是,所述线路板组件2010的制造顺序并不是本发明的限制。
所述摄像模组包括一滤光片2040,所述滤光片2040被安装于所述封装部 2011,以便于为所述滤光片2040提供稳定、平整的安装条件。
更具体地,在本发明的一实施例中,所述滤光片2040被实施为一红外截止滤光片(Infra-Red Cut Filter,IRCF),所述红外截止滤光片是利用精密光学镀膜技术在光学基片上交替镀上高折射率的光学膜,实现可见光区(400-630nm)高透,近红外(700-1100nm)截止的光学滤光片,其可以消除红外光线对所述感光芯片2030的成像影响,如CCD或CMOS。通过在所述摄像模组的成像系统中加入所述红外截止滤光片,阻挡成像系统部分干扰成像质量的红外光,使得所述摄像模组所成影像更加符合人眼的最佳感觉。
值得一提的是,由于所述感光芯片2030,如CCD或CMOS,对光的感应和人眼不同,人眼只能看到380-780nm波段的可见光,而所述感光芯片2030则可以感应更多波段,如红外光和紫外光,尤其对红外光十分敏感,因此在所述摄像模组中必须要将红外光加以抑制,并保持可见光的高透过,使得所述感光芯片2030的感应接近于人眼,从而使得所述摄像模组拍摄的图像也符合眼睛的感应,因此所述红外截止滤光片对于所述摄像模组是不可或缺的。
特别地,在本发明的实施例中,所述滤光片2040可以选自组合:晶圆级红外截止滤光片、窄带滤光片、蓝玻璃IRCF。本领域的技术人员应当理解的是,所述滤光片2040的类型并不是本发明的限制。
在传统的COB组装的摄像模组中,滤光片通常被安装于塑料底座,且底座通常是通过粘接的方式安装于线路板,因此这种塑料底座以及相应的安装方式不容易出现偏移或倾斜,且塑料支架的表面平整度较差,因此不能为所述滤光片2040提供良好的安装条件。根据本发明这个优选实施例,所述滤光片2040被安装于所述封装部2011,且基于模塑工艺,能够得到良好的表面平针性,因此能够为所述滤光片2040提供平整的安装条件,且一体成型的方式,使得所述封装部2011不易出现偏移、倾斜现象,从而减小所述滤光片2040安装时的累积公差。
在本发明的这个实施例中,所述封装部2011的顶表面20112一体平面延伸,所述滤光片2040被安装于所述封装部2011的所述顶表面20112。特别地,所述滤光片2040可以通过粘接的方式连接于所述封装部2011的所述顶表面20112。
在本发明的这个实施例中,所述摄像模组包括一马达2060,如音圈马达,压电马达。所述镜头2050被安装于所述马达2060,以便于通过所述马达2060驱动所述镜头2050运动,调节所述摄像模组的焦距,也就是说,所述摄像模组为一动焦模组(Automatic Focus Module,AFM)。当然,所述摄像模组也可以不具有驱动器,即不具有上述马达2060,而形成一定焦摄像模组。
所述马达2060被安装于所述线路板组件2010的所述封装部2011,进一步,所述马达2060被安装于所述封装部2011的所述顶表面20112,也就是说,所述滤光片2040和所述马达2060相互协调占用所述封装部2011的所述顶表面20112。所述马达2060通过至少一马达引脚2061电连于所述线路板主体20121。
所述镜头2050被安装于所述马达2060,所述马达2060和所述滤光片2040被安装于所述封装部2011,从而所述封装部2011相当于传统摄像模组的底座的 功能,为所述马达2060和所述滤光片2040提供支撑、固定的位置,但是制造、组装以及形态却不同于传统COB工艺。传统的COB工艺的摄像模组的底座以粘接的方式固定于线路板,而所述封装部2011通过模塑于线路板的方式固定于所述线路板主体20121,不需要粘接固定过程,模塑方式相对于粘接固定方式具有更好的连接稳定性以及工艺过程的可控制性,平整性较高,为所述马达2060和所述滤光片2040提供良好的安装条件,且所述封装部2011和所述线路板主体20121不存在AA调整的胶水空间,因此省去了传统摄像模组AA调整的预留空间,使得所述摄像模组的厚度得以减小;另一方面,所述封装部2011包覆所述电路元件20122,使得传统底座空间和电路元件20122安装空间可以在空间上重叠,不需要像传统的摄像模组,在电路器件周围预留安全距离,从而使得具有底座功能的所述封装部2011可以设置在较小的尺寸,从而进一步提供了摄像模组厚度可以减小的空间。此外,所述封装部2011代替传统的底座,避免了底座在粘贴组装时带来的倾斜误差,减小了所述摄像模组组装的累积公差。
还值得一提的是,所述封装部2011的形状可以根据需要确定,比如在所述电路元件20122所在位置向内延伸,形成一凸出部,从而增加所述封装部2011对应的宽度,而在没有所述电路元件20122的位置,所述封装部2011一致地延伸,形成比较规则的形状,且宽度较小。本领域的技术人员应当理解的是,所述封装部2011具体形状并不是本发明的限制。
根据本发明的这个实施例,所述感光芯片2030通过至少一连接线2031可通电连接于所述线路板主体20121,并且可通电连接于所述连接线路。所述连接线2031可以被实施为,举例地但不限于,金线、铜线、铝线、银线。特别地,所述感光芯片2030的所述连接线2031可以通过传统的COB方式连接于所述线路板主体20121,举例地但不限于,焊接的方式。也就是说,所述感光芯片2030与所述线路板主体20121的连接可充分利用已有的成熟连接技术,以降低改进技术的成本,对传统的工艺和设备进行充分利用,避免资源浪费。当然,本领域的技术人员应当可以理解的是,所述感光芯片2030与所述线路板主体20121的连接也可以通过其它任何能够实现的本发明的发明目的的连接方式实现,本发明在这方面不受限制。
值得一提的是,在本发明个的这个实施例中,各所述感光芯片2030被设置于所述线路板主体20121的上表面,所述封装部2011围绕于所述感光芯片2030的外侧。在制造所述线路板组件2010时,可以选择不同制造顺序,举例地但不限于,在一种实施方式中,可以先在所述线路板主体20121上安装所述感光芯片2030,而后在所述感光芯片2030外侧,所述线路板主体20121上模塑形成所述封装部2011,并且将凸出于所述线路板主体20121的所述电路元件20122包覆于其内部。而在本发明的另一种实施方式中,可以先在所述线路板主体20121上模塑形成所述封装部2011,并且将凸出于所述线路板主体20121的所述电路元件20122包覆于其内部,继而将所述感光芯片2030安装于所述线路板主体20121,使其位于所述封装部2011的内侧。
参照图18A,是根据本发明的第五个优选实施例的摄像模组的另一实施方式,所述摄像模组可以是一定焦模组(Fix Focus Module,FFM)。在所述摄像模组中,所述镜头2050被安装于所述封装部2011的顶表面20112,即所述摄像模组的焦距不可以被自由地调整。所述镜头2050和所述滤光片2040协调配置所述封装部2011的所述顶表面20112。本领域的技术人员应当理解的是,所述摄像模塑的类型并不是本发明的限制。
值得一提的是,根据本发明的这个优选实施例,所述封装部2011可以用来支撑安装所述滤光片2040和所述镜头2050,具有传统底座的功能,而基于模塑的优势,所述封装部2011可以借助模具来控制所述封装部2011的平整性和一致性,从而为所述摄像模组的所述滤色和所述镜头2050提供平整的且一致的安装环境,从而更容易保证镜头2050和滤光片2040以及感光芯片2030的光轴的一致性,这一点是传统的摄像模组不容易达到的。
参照图18B,是根据本发明的第五个优选实施例的摄像模组的另一实施方式,所述摄像模组可以是一定焦模组(Fix Focus Module,FFM)。在所述摄像模组中,所述镜头2050被安装于一镜头支架2080,所述镜头支架2080安装于所述封装部2011的顶表面20112,即所述摄像模组的焦距不可以被自由地调整。可以理解的是,所述镜头支架2080可以是内壁带有螺纹的支架,也可以是不带螺纹的支架。
参照图18C,是根据本发明的第五个优选实施例的摄像模组的另一实施方式,所述摄像模组可以是一定焦模组(Fix Focus Module,FFM)。在所述摄像模组中,所述镜头2050被安装于一镜头支架2080,所述镜头支架2080安装于一支座2070,所述支座2070安装于所述封装部2011的顶侧。
如图19所示,是根据本发明的第六个优选实施例的摄像模组。不同于上述优选实施例的是,所述封装部2011具有一安装槽20113A,所述安装槽20113A连通于所述通孔201100,以便为所述滤光片2040提供充足的安装空间。也就是说,所述封装部2011的所述顶表面20112呈台阶状结构,而并不是一体延伸,所述顶表面20112的各台阶上可用于安装所述滤光片2040、所述镜头2050或所述马达2060。
进一步,所述安装槽20113A的高度大于所述滤光片2040的厚度,以使得所述滤光片2040被安装于所述安装槽20113A时,所述滤光片2040不会凸出于所述封装部2011的顶端。
特别地,根据本发明的这个实施例,所述滤光片2040呈方形,所述安装槽20113A的形状与所述滤光片2040的形状相适应。也就是说,所述安装槽20113A呈方环形,连通于所述通孔201100。
值得一提的是,在本发明的这个实施例中,所述安装槽20113A可以用于安装所述滤光片2040,而在本发明的其他实施中,所述安装槽20113A可以用来安装所述摄像模组的马达2060或所述镜头2050等部件,本领域的技术人员应当理解的是,所述安装槽20113的用途并不是本发明的限制。
还值得一提的是,在本发明的这个实施例中,附图中以动焦模组为例进行说明,而在本发明的其他实施例中,所述摄像可以是一定焦模组,本领域的技术人员应当理解的是,所述摄像模组的类型并不是本发明的限制。
如图20所示,是根据本发明的第七个优选实施例的基于模塑工艺的摄像模组剖视示意图。不同于上述优选实施例的是,所述摄像模组包括一支座2070B,所述支座2070B用于安装所述滤光片2040。所述支座2070B被安装于所述封装部2011,所述滤光片2040被安装于所述封装部2011,所述马达2060或所述镜头2050被安装于所述支座2070B。
根据本发明的这个实施例,所述支座2070B具有一第一支座槽2071B和一第二支座槽2072B,所述第一支座槽2071B用于安装所述滤光片2040,使得所述滤光片2040的表面不会凸出于所述支座2070B的顶端。所述第二支座槽2072B,用于安装于所述封装部2011,以使得所述封装部2011沿所述支座2070向上延伸,而所述滤光片2040的位置相对向下,从而减小所述摄像模组的后焦距。
换句话说,所述支座2070B向所述通孔201100内延伸,且向下延伸,从而将所述滤光片2040支撑于所述感光芯片2030上方,且利用所述通孔201100内的空间,使得滤光片2040被稳定安装的同时,所述滤光片2040不会占用外部空间。
值得一提的是,所述支座2070B向内延伸的距离位于所述感光芯片2030的感光区之外,也就是说,所述支座2070B不会遮挡所述感光芯片2030的所述感光区,以避免影响所述感光芯片2030的感光过程,所述支座2070B的尺寸可以具体需求设计。
在本发明的这个实施例以及相应附图中,以动焦模组为例进行说明,所述镜头2050被按安装于所述马达2060,所述马达2060被安装于所述支座2070B。也就是说,所述支座2070为所述滤光片2040和所述马达2060提供安装位置。而在本本发明的其他实施例中,所述摄像模组还可以是一定焦模组。所述镜头2050被安装于所述支座2070B,也就是说,所述支座2070B为所述滤光片2040和所述镜头2050提供安装位置,本领域的技术人员应当理解的是,所述支座2070B的具体结构和所述摄像模组的类型并不是本发明的限制。
如图21所示,是根据本发明的第八个优选实施例的基于模塑工艺的摄像模塑剖视示意图。不同于上述优选实施例的是,所述封装部2011具有一安装槽20113C,所述安装槽20113C连通于所述通孔201100。也就是说,所述封装部2011的所述顶表面20112呈台阶状结构,而并不是一体延伸。
所述摄像模组包括一支座2070C,所述支座2070C用于安装所述滤光片2040。所述支座2070C被安装于所述封装部2011,所述滤光片2040被安装于所述封装部2011,所述马达2060或所述镜头2050被安装于所述封装部2011。
进一步,所述支座2070C被安装于所述封装部2011的所述安装槽20113C,且所述安装槽20113C的高度大于所述支座2070C的安装高度,从而使得所述支座2070C不会凸出于所述封装部2011的所述端部。即所述支座2070C可以被设 置在所述封装部2011的内部。
根据本发明的这个实施例,所述支座2070C具有一第一支座槽2071C和一第二支座槽2072C,所述第一支座槽2071C用于安装所述滤光片2040,使得所述滤光片2040的表面不会凸出于所述支座2070C的顶端。所述第二支座槽2072C,用于安装于所述封装部2011,以使得所述封装部2011沿所述支座2070C向上延伸,而所述滤光片2040的位置性对向下,从而减小所述摄像模组的后焦距。可以理解的是,在其他变形实施例中,所述支座2070C也可以没有上述第二支座槽2072C,所述支座72C的平整底表面直接贴装于所述封装部2011。
换句话说,所述支座2070C向所述通孔201100内延伸,且向下延伸,从而将所述滤光片2040支撑于所述感光芯片2030上方,且利用所述通孔201100内的空间,使得滤光片2040被稳定安装的同时,所述滤光片2040不会占用外部空间。进一步,所述支座2070位于所述感光芯片2030的感光区外侧,从而不会阻挡所述感光芯片的感光路径。
值得一提的是,所述支座2070C向内延伸的距离位于所述感光芯片2030的感光区之外,也就是说,所述支座2070C不会遮挡所述感光芯片2030,以避免影响所述感光芯片2030的感光过程,所述支座2070C的尺寸可以具体需求设计。
不同于第三个优选实施例的是,所述第二支座槽2072C和所述封装的所述安装槽20113C相互配合,形成匹配的卡接结构,从而使得所述支座2070C得以稳定的安装于所述安装槽20113C内。相对第三个优选实施例,这个实施例中的所述滤光片2040距离所述感光芯片2030更小,可以获得具有更小后焦距的所述摄像模组。
在本发明的这个实施例以及相应附图中,以动焦模组为例进行说明,所述镜头2050被按安装于所述马达2060,所述马达2060被安装于所述支座2070C。也就是说,所述支座2070C为所述滤光片2040和所述马达2060提供安装位置。而在本发明的其他实施例中,所述摄像模组还可以是一定焦模组。所述镜头2050被安装于所述支座2070C,也就是说,所述支座2070C为所述滤光片2040和所述镜头2050提供安装位置,本领域的技术人员应当理解的是,所述支座2070的具体结构和所述摄像模组的类型并不是本发明的限制。
如图22所示,是根据本发明的第九个优选实施例的基于模塑工艺的摄像模组剖视示意图。不同于上述优选实施例的是,所述滤光片2040被安装于一马达2060D,所述马达2060D被安装于所述封装部2011,从而不需要提供额外的部件来安装所述滤光片2040。
所述马达2060D包括一下端部2062D,所述下端部2062D适于安装于所述滤光片2040。也就是说,所述镜头2050被安装于所述马达2060D的上端,所述滤光片2040被安装于所述马达2060D的所述下端部2062D,位于所述镜头2050的下方。
本发明的这个实施例中,所述滤光片2040被安装于所述马达2060D,从而不需要提供额外的部件来安装所述滤光片2040,且所述马达2060D被直接安装 于所述封装部2011,为所述马达2060D提供平整的安装条件。
如图23所示,是根据本发明的第十个优选实施例的基于模塑工艺的摄像模组剖视示意图。不同于上述优选实施例的是,所述镜头2050E包括一镜筒2051E和至少一镜片2052E,各所述镜片2052E被安装于所述镜筒2051E内。
根据本发明的这个实施例,所述滤光片2040被按安装于所述镜筒2051E内,位于各所述镜片2052E的下方,从而不需要提供额外的部件来安装所述滤光片2040。
更具体地,所述镜筒2051E包括一底部20511E,所述底部20511E用于安装所述滤光片2040。所述镜筒2051E的底座与所述滤光片2040的形状相适应,也就是说,所述底座呈中空方形结构,以便于将所述滤光片2040安装于其中。所述镜筒2051E上部用于安装所述镜片2052E,且所述镜片2052E的形状相适应,而下部用于安装所述滤光片2040,且与所述滤光片2040的形状相适应,因此,所述镜筒2051E整体上部呈圆管状柱体,而下部的内部呈方形,且所述圆管和所述方形一体连接。
所述马达2060被安装于所述封装部2011,所述滤光片2040被安装于所述镜筒2051E,从而不需要提供额外的部件来安装所述滤光片2040。
如图24所示,是根据本发明的第十一个优选实施例的基于模塑工艺的摄像模组剖视示意图。不同于上述优选实施例的是,所述线路板组件2010包括一线路板主体20121F,所述线路板主体20121F具有一通路201212F,所述通路201212F的下部适于安装所述感光芯片2030。各所述通路使得所述线路板主体20121F上下两侧相连通,从而当所述感光芯片2030由所述线路板主体20121F的背面、并且感光区朝上地安装于所述线路板主体20121F时,所述感光芯片2030的感光区能够接收到由所述镜头2050进入的光线。
更进一步,所述线路板主体20121F具有一外凹槽201213F,所述外凹槽201213F连通于对应的所述通路,提供所述感光芯片2030的安装位置。特别地,当所述感光芯片2030被安装于所述外凹槽201213F时,所述感光芯片2030的外表面和所述线路板主体20121F的外表面一致,位于同一平面,从而保证所述线路板组件2010的表面平整性。
在本发明的这个实施例中,所述通路呈台阶状,从而便于安装所述感光芯片2030,为所述感光芯片2030提供稳定的安装位置,并使其感光区展现于内空间。
值得一提的是,在本发明的这个实施例中,提供一种不同于传统的芯片安装方式,即,芯片倒装方式(Flip Chip,FC)。将所述感光芯片2030从所述线路板主体20121F的背面方向安装于所述线路板主体20121F,而不是像上述实施例中需要从所述线路板主体20121F的正面,即,从所述线路板主体20121F的上方,且所述感光芯片2030的感光区朝上地安装于所述线路板主体20121F。这样的结构以及安装方式,使得所述感光芯片2030和所述封装部2011相对独立,所述感光芯片2030的安装不会受到所述封装部2011的影响,所述封装部2011的模塑成型对所述感光芯片2030的影响也较小。此外,所述感光芯片2030嵌于所述线 路板主体20121F的外侧面,且不会凸出于所述线路板主体20121F的内侧面,从而使得所述线路板主体20121F内侧留出更大的空间,使得所述封装部2011的高度不会受到所述感光芯片2030的高度限制,使得所述封装部2011能够达到更小的高度。
值得一提的是,在本发明的这个实施例中,所述通路的上端安装所述滤光片2040,也就是说,所述滤光片2040覆盖于所述线路板主体20121F的所述通路,不需要将所述滤光片2040安装于所述封装部2011,从而极大地减小所述阵列摄像模组的后焦距,减小所述摄像的高度。特别地,所述滤光片2040可以被实施例为红外截止滤光片IRCF。也就是说,所述滤光片2040被安装于所述线路板主体20121F,而不需要提供额外的部件,如支座。
如图25A至26所示,是根据本发明的第十二个优选实施例的基于模塑工艺的摄像模组。不同于上述优选实施例的是,所述封装部2011具有一安装槽20113G,所述安装槽20113G连通于所述通孔201100。也就是说,所述封装部2011的所述顶表面20112G呈台阶状结构,而并不是一体延伸。
进一步,所述摄像模组包括一支座2070G,所述支座2070G用于安装所述滤光片2040。所述支座2070G被安装于所述封装部2011,所述滤光片2040被安装于所述支座2070G,所述马达2060或所述镜头2050被安装于所述封装部2011。举例地,所述支座2070G可以通过粘接的方式固定安装于所述封装部2011
进一步,所述封装部2011在顶侧的至少两侧面具有凸起台阶20115G,至少一侧面没有上述凸起台阶20115G,并且形成安装槽20113G。也就是说,在这个实施例中,所述安装槽20113G的横截面并不是一个闭合结构,而是至少在一侧存在缺口201131G。为了平稳性,可以设置至少两个对称的所述凸起台阶20115G,即形成两条对称的所述安装槽20113。举例地,所述凸起台阶20115G可以设置的数量为一个、两个、三个或四个。当所述凸起台阶20115G设置数量为两个时,可选择性地设置于对称的两边,且形成另外两侧对称的所述缺口201131G;当所述凸起台阶20115G的设置数量为三个时,选择性地设置任意三边,且形成一个所述缺口201131G;当所述凸起台阶20115G的数量为四个时,没有所述缺口201131G,也就是说,所述凸起台阶20115G形成闭合、封闭的所述安装槽20113G。在不同实施例中,所述支座2070G和不同结构的所述凸起台阶20115以及其形成的所述安装槽201131G相匹配,当所述支座2070G被安装于所述安装槽20113G时,所述缺口201131G被填充,从而为所述感光芯片2030形成封闭的内环境。换句话说,所述支座2070G可延伸至所述缺口201131G。
值得一提的是,所述凸起台阶20115G的形状可以为规则的线性结构,也可以为不规则的弯折结构。相应地,所述支座2070G的截面结构可以为规则的结构,也可以为不规则的弯折结构。
进一步,所述支座2070G包括至少一延伸边2073G,所述延伸边2073G对应所述安装槽20113G的所述缺口201131G。特别地,所述延伸边2073G的数量好位置和所述缺口201131G的数量及位置对应。当然,当所述凸起台阶20115G 的数量为四个,形成一闭合结构时,不需要设置所述延伸边2073G,所述支座2070的每一边都与所述安装槽20113G对应。当然在本发明的另一实施例中,所述封装部2011可以不设置所述凸起台阶20115G,也就是说,所述封装部2011形成一平台结构,所述支座2070被安装于所述平台结构,而相应地,所述支座2070G包括四个延伸边2073G,分别适于搭接于所述封装部2011的各边。各所述延伸边的宽度可以根据所述封装部2011的宽度来确定,而不限于一致的宽度,也就是说,所述支座可以具有较宽的所述延伸边2073G,也可以具有较窄的所述延伸边2073G。
所述支座2070G被安装于所述封装部2011的所述安装槽20113G,且所述安装槽20113G的高度大于所述支座2070G的安装高度,从而使得所述支座2070G不会凸出于所述封装部2011的顶端。比如,所述安装槽20113G的高度比所述支座2070G的高度大0.05mm,从而当所述马达2060被安装于所述封装部2011时,所述马达2060的底部不会直接接触于所述支座2070G,且被安装一所述马达2060内的所述镜头也不会接触于所述支座2070G。值得一提的是,在本发明的这个实施例中,以动焦摄像模组为例进行说明,所述马达被安装于所述封装部2011,而在本发明的其他实施例中,所述摄像模组还可以是定焦模组,所述镜头2050被安装于所述封装部2011,特别地,所述支座2070G与所述镜头2050的镜筒以及镜片均不直接接触。
可以理解的是,当所述感光芯片2030尺寸较大,而所述封装部2011壁厚较小时,上述设计依然能够使所述封装部2011提供空间以安装所述支座2070G,从而以供安装所述滤光片。如图11A至图12中所示,所述封装部2011的顶部可以在三个侧面形成所述凸起台阶20115,另一侧没有所述凸起台阶20115而直接用于支撑所述支座2070G。如图25A中所示的剖示图,可以看出左右两侧都有所述凸起台阶20115,其内侧用于安装所述支座2070G。而图25B所示的另外的剖视图中,左侧所述封装部2011的顶表面直接支撑所述支座2070G,而右侧的所述凸起台阶20115的内侧用于对所述支座2070G进行限位。
而且,这个实施例中,所述凸起台阶20115的顶表面可以高于所述支座2070G的顶表面,这样所述马达2060贴装于所述凸起台阶20115,从而因为所述封装部2011一体成形,并且所述马达2060只与所述封装部2011的所述凸起台阶20115接触,从而可以减小所述马达2060的倾斜。
值得一提的是,所述电路元件20122可以不是均匀地布置于所述线路板主体20121,因此在所述线路板主体20121上预留的设置所述封装部2011的位置并不是规则的对称关系,比如在带有所述电路元件20122的一侧预留的较宽,而没有所述电路元件20122的一侧相对较窄,在这种情况下存在的问题是,在所述封装部较窄的位置较难设置所述安装槽,而在本发明的这个实施例中,所述安装槽20113G呈U型,也就是说,在所述封装部2011较窄的侧边,所述安装槽20113G连113G通于外部,而在所述封装部2011较宽,所述安装槽20113G仅连通于所述通孔201100,而并不连通于外部环境,从而形成一个U型的所述安装槽20113G。 所述支座2070G被安装于所述安装槽20113G,且在所述封装部2011较宽或较窄的区域都可以得到稳定的支撑,从而使得所述滤光片2040被稳定地安装。换句话说,所述支座2070G的所述延伸边2073G填充于所述U型结构的开口,从而使得所述安装槽20113G闭合,且所述封装部2011的顶面高度相对一致,以便于安装所述马达60或所述镜头50。
值得一提的是,根据本发明的一实施例,所述安装槽20113G的高度大于所述支座2070G的高度,因此在所述安装槽20113G的U型开口区域,当所述支座2070G被安装于所述安装槽20113G时,所述支座2070G与所述马达2060的侧面之间存在间隙,因此在所述摄像模组中,通过一密封物将所述间隙进行密封,使得所述感光芯片2030与外部相互隔离。特别地,在一实施例中,所述密封物为胶体。也就是说,在组装完所述摄像模组后,通过所述胶体将所述支座2070G安装于所述封装部2011进行密封。
根据本发明的这个实施例,所述支座2070G具有一第一支座槽2071G和一第二支座槽2072G,所述第一支座槽2071G用于安装所述滤光片2040,使得所述滤光片2040的表面不会凸出于所述支座2070G的顶端。所述第二支座槽2072G,用于安装于所述封装部2011,以使得所述封装部2011沿所述支座2070G向上延伸,而所述滤光片2040的位置性对向下,从而减小所述摄像模组的后焦距。
所述第一支座槽2071G的形状与所述滤光片2040的形状相匹配,所述第二支座槽2072的形状与所述封装部2011的所述安装槽20113的形状相匹配。
换句话说,所述支座2070G向所述通孔201100内延伸,且向下延伸,从而将所述滤光片2040支撑于所述感光芯片2030上方,且利用所述通孔201100内的空间,使得滤光片2040被稳定安装的同时,所述滤光片2040不会占用外部空间。
值得一提的是,所述支座2070G向内延伸的距离位于所述感光芯片2030的感光区之外,也就是说,所述支座2070G不会遮挡所述感光芯片2030,以避免影响所述感光芯片2030的感光过程,所述支座2070G的尺寸可以根据具体需求设计。
不同于第七个优选实施例的是,所述第二支座槽2072G和所述封装部2011的所述安装槽20113G相互配合,形成匹配的卡接结构,从而使得所述支座2070G得以稳定的安装于所述安装槽20113G内。相对第三个优选实施例,这个实施例中的所述滤光片2040距离所述感光芯片2030更小,可以获得具有更小后焦距的所述摄像模组。
在本发明的这个实施例以及相应附图中,以动焦模组为例进行说明,所述镜头2050被按安装于所述马达2060,所述马达2060被安装于所述支座2070G。也就是说,所述支座2070C为所述滤光片2040和所述马达2060提供安装位置。而在本发明的其他实施例中,所述摄像模组还可以是一定焦模组。所述镜头2050被安装于所述支座2070G,也就是说,所述支座2070G为所述滤光片2040和所述镜头2050提供安装位置,本领域的技术人员应当理解的是,所述支座2070G 的具体结构和所述摄像模组的类型并不是本发明的限制。
值得一提的是,根据不同需求,所述支座2070G可以被设计为不同结构,比如前述实施例的所述支座1070、所述支座2070以及后续的所述支座3070G、所述支座3070H,方便安装不同部件,比如所述滤光片2040、所述马达2060、所述镜头2050等部件。在本发明的这个实施例中,所述滤光片2040被安装于所述支座2070G,所述支座2070G被安装于所述封装部2011,所述镜头2050被安装于所述马达2060,而所述马达2060底部部分被支撑于所述封装部2011,而另一部分,位于所述支座2070G上方,比如一边搭接于所述支座2070G,形成一动焦模组。而在本发明的另一实施方式中,所述镜头2050底部部分被支撑于所述封装部2011,而另一部分位于所述支座2070G上方,形成一定焦模组。在本发明的另一实施例中,所述滤光片2040被安装于所述支座2070,所述支座2070被安装于所述封装部2011,所述镜头被安装于所述马达2060,而所述马达2060完全被支撑安装于所述封装部2011,而不要所述支座2070的支撑,也就是说,所述支座完全位于所述封装部2011内侧。在本发明的另一实施例中,所述镜头2050完全被支撑安装于所述封装部2011,形成一定焦模组。在本发明的另一实施例中,所述马达2060或所述镜头2050被完全支撑安装于所述支座2070上,也就是说,所述支座2070被设置于所述封装部2011和所述马达2060或所述镜头2050之间。在本发明的另一实施例中,所述滤光片2040不被安装于所述支座,而被安装于所述感光芯片2030或所述线路板主体20121。
本领域的技术人员应当理解的是,本发明的这个实施例中的所述封装部2011和所述支座2070G的结构特征可以组合应用于本发明的其他实施例中,而不限于本发明的这个实施例。
上述实施例以及附图中,以动焦模组为例进行说明本发明的原理,而在本发明的其他实施例中,所述摄像模组还可以是定焦模塑,本领域的技术人员应当理解的是,所述摄像模组的类型并不是本发明的限制。如图27至图29所示,是根据本发明的第十三个优选实施例基于一体封装工艺的摄像模组。所述摄像模组可以被应用于各种电子设备,以辅助所述电子设备可以通过所述摄像模组进行拍摄活动,例如所述摄像模组可以被用于拍摄物体或人物的图像或视频影像等。优选地,所述摄像模组可以被应用一移动电子设备,例如所述移动电子设备可以是但不限于手机或平板电脑设备。
如图27至图29所示,所述摄像模组包括一一体基座组件3010、一感光芯片3030和一镜头3050。
进一步,所述感光芯片3030被安装于所述一体基座组件3010,所述镜头3050位于所述一体基座组件3010上,且所述镜头3050位于所述感光芯片3030的感光路径。所述一体基座组件3010可以被耦接至所述电子设备,从而与所述电子设备配合使用。本领域的技术人员应当理解的是,所述镜头3050和所述感光芯片3030可以相互配合拍摄影像。具体地,被拍摄对象,如物体或人物反射的光线在通过所述镜头3050之后,被所述感光芯片3030接收以进行光电转化。换言 之,所述感光芯片3030可以将光信号转化为电信号,并且所述电信号能够通过所述一体基座组件3010被传送至所述电子设备,从而在所述电子设备上生成与所述拍摄对象相关的影像。
所述一体基座组件3010包括一基座部3011和一线路板部3012,所述基座部3011一体封装地连接于所述线路板部3012,如模塑地连接于所述线路板部3012。更具体地,所述基座部3011通过模塑于线路板的方式(Molding On Board,MOB)模塑连接于所述线路板部3012。也就是说,所述基座部3011直接地连接于所述线路板部3012,而不是通过中间物连接,如胶水,因此所述基座部3011与所述线路板部3012具有较好的连接牢固性。
所述线路板部3012包括一线路板主体30121,所述基座部3011一体连接于所述线路板主体30121。所述基座部3011形成一通孔301100,以使得所述基座部3011围绕于所述感光芯片3030外侧,并且提供所述镜头3050和所述感光芯片3030的光线通路。所述感光芯片3030被设置于所述通孔301100对应位置的所述线路板主体30121。
所述线路板部3012包括一连接电路和至少一电路元件30122,所述连接线路预设于所述线路板主体30121,所述电路元件30122电连接于所述连接电路,以供所述感光芯片3030的感光工作过程。所述电路元件30122可以是,举例地但不限于,电阻、电容、二极管、三极管、电位器、继电器、驱动器、处理器和存储器等。
值得一提的是,所述基座部3011可以将所述电路元件30122包覆于内部,因此使得所述电路元件30122不会直接暴露于空间内,更具体地说,不会暴露于与所述感光芯片3030相连通的封闭环境中。不同传统的摄像模组中电路器件的存在方式,如阻容器件凸出于线路板的方式,从而防止灰尘、杂物停留于所述电路元件30122而污染所述感光芯片3030。在本发明的这个实施例中,以所述电路元件30122凸出于所述线路板主体30121为例进行说明,而在本发明的其他实施例中,所述电路元件30122被埋设于所述线路板主体30121内部,而不凸出所述线路板主体30121,本领域的技术人员应当理解的是,所述电路元件30122的结构、类型和被设置的位置并不是本发明的限制。可以理解的是,在传动的摄像模组中,电路器件凸出于所述线路板,而底座只能被安装于所述电路元件30122的外侧,因此所述电路器件和所述底座都需要一定的空间位置,因此对线路板在横向的尺寸要求较高。而对于本发明的基于一体封装工艺的摄像模组,所述基座部3011一体封装于所述线路板主体30121,且包覆所述电路元件30122,因此所述基座部3011和所述电路元件30122在空间相互重叠,从而增加了所述基座部3011可以向内设置的空间,减小了对所述线路板主体30121外部延伸需求,从而减小所述摄像模组的横向尺寸,使其可以满足小型化需求的设备。
值得一提的是,所述基座部3011包覆所述电路元件30122具有保护所述电路元件30122,使其免于被污染以及被误碰触的优势,同时对相应的摄像模组带来优势,但是本领域的技术人员应当理解的是,所述基座部3011不限于包覆所 述电路元件30122。也就是说,在本发明的其他实施例中,所述基座部3011可以直接模塑于没有凸出的所述电路元件30122的所述线路板主体30121,也可以是模塑于所述电路元件30122的外侧、周围等不同位置。
在本发明这个实施例中,所述基座部3011凸起地围绕于所述感光芯片3030外侧,特别地,所述基座部3011一体地闭合连接,使其具有良好的密封性,从而当所述镜头3050被安装于所述感光芯片3030的感光路径时,所述感光芯片3030被密封于内部,从而形成对应的封闭内空间。
具体地,在制造所述一体基座组件3010时,可以选择一传统的线路板作为所述线路板主体30121,在所述线路板主体30121表面进行模塑。比如,在一实施例中,可以用注塑机,通过嵌入成型(Insert Molding)工艺将进行SMT工艺(Surface Mount Technology表面贴装工艺)后的线路板进行一体封装,比如模塑封装,形成所述基座部3011,或通过半导体封装中常用的模压工艺形成所述基座部3011。进一步,将各所述感光芯片3030贴装于所述线路板主体30121,继而将各所述感光芯片3030与所述线路板主体30121进行电连接,比如打金线电连接。所述线路板主体30121可以选择为,举例地但不限于,软硬结合板、陶瓷基板(不带软板)、PCB硬板(不带软板)等。所述基座部3011形成的方式可以选择为,举例地但不限于,注塑工艺、模压工艺等。所述基座部3011可以选择的材料为,举例地但不限于,注塑工艺可以选择尼龙、LCP(Liquid Crystal Polymer,液晶高分子聚合物)、PP(Polypropylene,聚丙烯)等,模压工艺可以采用环氧树脂。本领域技术人员应当理解的是,前述可以选择的制造方式以及可以选择的材料,仅作为举例说明本发明的可以实施的方式,并不是本发明的限制。
在本发明的其他实施例中,制造所述一体基座组件3010的过程还可以是,先对所述线路板主体30121进行SMT工艺,进而将所述感光芯片3030贴装于所述线路板主体30121,并且将所述感光芯片3030与所述线路板主体30121进行电连接,比如打金线电连接,继而将对所述线路板主体30121进行一体封装,比如模塑封装,通过嵌入成型的方式形成所述基座部3011,或通过半导体封装中常用的模压工艺形成所述基座部3011。本领域的技术人员应当理解的是,所述一体基座组件3010的制造顺序并不是本发明的限制。
所述摄像模组包括一滤光片3040,所述滤光片3040被安装于所述基座部3011,以便于为所述滤光片3040提供稳定、平整的安装条件。
更具体地,在本发明的一实施例中,所述滤光片3040被实施为一红外截止滤光片(Infra-Red Cut Filter,IRCF),所述红外截止滤光片是利用精密光学镀膜技术在光学基片上交替镀上高折射率的光学膜,实现可见光区(400-630nm)高透,近红外(700-1100nm)截止的光学滤光片,其可以消除红外光线对所述感光芯片3030的成像影响,如CCD或CMOS。通过在所述摄像模组的成像系统中加入所述红外截止滤光片3040,阻挡成像系统部分干扰成像质量的红外光,使得所述摄像模组所成影像更加符合人眼的最佳感觉。
值得一提的是,由于所述感光芯片3030,如CCD或CMOS,对光的感应和 人眼不同,人眼只能看到380-780nm波段的可见光,而所述感光芯片3030则可以感应更多波段,如红外光和紫外光,尤其对红外光十分敏感,因此在所述摄像模组中必须要将红外光加以抑制,并保持可见光的高透过,使得所述感光芯片3030的感应接近于人眼,从而使得所述摄像模组拍摄的图像也符合眼睛的感应,因此所述红外截止滤光片3040对于所述摄像模组是不可或缺的。
特别地,在本发明的实施例中,所述滤光片3040可以选自组合:晶圆级红外截止滤光片、窄带滤光片、蓝玻璃IRCF。本领域的技术人员应当理解的是,所述滤光片3040的类型并不是本发明的限制。
在传统的COB组装的摄像模组中,滤光片通常被安装于塑料底座,且底座通常是通过粘接的方式安装于线路板,因此这种塑料底座以及相应的安装方式不容易出现偏移或倾斜,且塑料支架的表面平整度较差,因此不能为滤光片3040提供良好的安装条件。根据本发明这个优选实施例,所述滤光片3040被安装于所述基座部3011,且基于模塑工艺,能够得到良好的表面平整度,因此能够为所述滤光片3040提供平整的安装条件,且一体成型的方式,使得所述基座部3011不易出现偏心、倾斜现象,从而减小所述滤光片3040安装时的累积公差。
还值得一提的是,所述基座部3011的形状可以根据需要确定,比如在所述电路元件30122所在位置向内延伸,形成一凸出部,从而增加所述基座部3011对应的宽度,而在没有所述电路元件30122的位置,所基座部3011一致地延伸,形成比较规则的形状,且宽度较小。本领域的技术人员应当理解的是,所述基座部3011的具体形状并不是本发明的限制。
进一步,所述基座部3011包括一包覆段30114和一滤光片安装段30115,所述滤光片安装段30115模塑地一体连接于所述包覆段30114,所述包覆段30114模塑连接于所述线路板主体30121,用于包覆所述电路元件30122。所述滤光片安装段30115用于安装所述滤光片3040。
也就是说,当所述一体基座组件3010被用于组装所述摄像模组时,所述摄像模组的所述滤光片3040被安装于所述滤光片安装段30115,使得所述滤光片3040位于对应的所述感光芯片3030的感光路径上,且不需要提供额外的滤光片3040安装支架。也就是说,所述基座部3011在此处具有传统镜座的功能,但是基于一体封装工艺的优势,所述滤光片安装段30115顶部可以借助模具化的工艺方式,使其具有良好的平整性,从而使得所述滤光片3040被平整地安装,这一点也是优于传统的摄像模组。
更进一步,所述滤光片安装段30115形成一安装槽30113,所述安装槽30113连通于所述通孔301100,为所述滤光片3040提供充足的安装空间,使得所述滤光片3040不会凸出于滤光片安装段30115的顶表面。也就是说,所述基座部3011上端设置所述安装槽30113,从而各将所述滤光片3040稳定的安装于所述基座部3011,且不会凸出于所述基座部3011的顶端。
值得一提的是,在本发明的这个实施例中,所述安装槽30113可以用于安装所述滤光片3040,而在本发明的其他实施中,所述安装槽30113可以用来安装 所述摄像模组的马达或镜头等部件,本领域的技术人员应当理解的是,所述安装槽30113的用途并不是本发明的限制。
换句话说,所述基座部3011具有所述安装槽30113,所述安装槽30113连通于所述通孔301100,以便为所述滤光片3040提供充足的安装空间。也就是说,所述基座部3011的所述顶表面30112呈台阶状结构,而并不是一体延伸,所述顶表面30112的各台阶上可用于安装所述滤光片3040、所述镜头3050或所述马达3060。
进一步,所述安装槽30113的高度大于所述滤光片3040的厚度,以使得所述滤光片3040被安装于所述安装槽30113时,所述滤光片3040不会凸出于所述基座部3011的顶端。
特别地,根据本发明的这个实施例,所述滤光片3040呈方形,所述安装槽30113的形状与所述滤光片3040的形状相适应。也就是说,所述安装槽30113的横截面呈方环形,连通于所述通孔301100。
值得一提的是,在本发明的这个实施例中,所述安装槽30113可以用于安装所述滤光片3040,而在本发明的其他实施中,所述安装槽30113可以用来安装所述摄像模组的马达3060或所述镜头3050等部件,本领域的技术人员应当理解的是,所述安装槽30113的用途并不是本发明的限制。
在本发明的这个实施例中,所述摄像模组包括一马达3060,如音圈马达,所述镜头3050被安装于所述马达3060,以便于通过所述马达3060驱动所述镜头3050运动,调节所述摄像模组的焦距,也就是说,所述摄像模组为一动焦模组(Automatic Focus Module,AFM)。所述马达3060通过至少一马达引脚3061电连接于所述线路板主体30121。
还值得一提的是,在本发明的这个实施例中,附图中以动焦模组为例进行说明,而在本发明的其他实施例中,所述摄像可以是一定焦模组,本领域的技术人员应当理解的是,所述摄像模组的类型并不是本发明的限制。
所述马达3060被安装于所述一体基座组件3010的所述基座部3011,进一步,所述马达3060被安装于所述基座部3011的所述顶表面30112,也就是说,所述滤光片3040和所述马达3060相互协调占用所述基座部3011的所述顶表面30112。所述马达3060通过至少一马达引脚3061电连接于所述线路板主体30121。
所述镜头3050被安装于所述马达3060,所述马达3060和所述滤光片3040被安装于所述基座部3011,从而所述基座部3011相当于传统摄像模组的底座的功能,为所述马达3060和所述滤光片3040提供支撑、固定的位置,但是制造、组装以及形态却不同于传统COB工艺。传统的COB工艺的摄像模组的底座以粘接的方式固定于线路板,而所述基座部3011通过模塑于线路板的方式固定于所述线路板主体30121,不需要粘接固定过程,模塑方式相对于粘接固定方式具有更好的连接稳定性以及工艺过程的可控制性,平整性较高,为所述马达3060和所述滤光片3040提供良好的安装条件,且所述基座部3011和所述线路板主体30121不存在AA调整的胶水空间,因此省去了传统摄像模组AA调整的预留空 间,使得所述摄像模组的厚度得以减小;另一方面,所述基座部3011包覆所述电路元件30122,使得传统底座空间和电路元件30122安装空间可以在空间上重叠,不需要像传统的摄像模组,在电路器件周围预留安全距离,从而使得具有底座功能的所述基座部3011可以设置在较小的尺寸,从而进一步提供了摄像模组厚度可以减小的空间。此外,所述基座部3011代替传统的底座,避免了底座在粘贴组装时带来的倾斜误差,减小了所述摄像模组组装的累积公差。
还值得一提的是,所述基座部3011的形状可以更加需要确定,比如在所述电路元件30122所在位置向内延伸,形成一凸出部,从而增加所述基座部3011对应的宽度,而在没有所述电路元件30122的位置,所述连体模塑部一致地延伸,形成比较规则的形状,且宽度较小。本领域的技术人员应当理解的是,所述基座部3011的形状并不是本发明的限制。
根据本发明的这个实施例,所述感光芯片3030通过至少一连接线3031可通电连接于所述线路板主体30121,并且可通电连接于所述连接线路。所述连接线3031可以被实施为,举例地但不限于,金线、铜线、铝线、银线。特别地,所述感光芯片3030的所述连接线3031可以通过传统的COB方式连接于所述线路板主体30121,举例地但不限于,焊接的方式。也就是说,所述感光芯片3030与所述线路板主体30121的连接可充分利用已有的成熟连接技术,以降低改进技术的成本,对传统的工艺和设备进行充分利用,避免资源浪费。当然,本领域的技术人员应当可以理解的是,所述感光芯片3030与所述线路板主体30121的连接也可以通过其它任何能够实现的本发明的发明目的的连接方式实现,本发明在这方面不受限制。
值得一提的是,在本发明个的这个实施例中,各所述感光芯片3030被设置于所述线路板主体30121的上表面,所述基座部3011围绕于所述感光芯片3030的外侧。在制造所述一体基座组件3010时,可以选择不同制造顺序,举例地但不限于,在一种实施方式中,可以先在所述线路板主体30121上安装所述感光芯片3030,而后在所述感光芯片3030外侧,所述线路板主体30121上模塑形成所述基座部3011,并且将凸出于所述线路板主体30121的所述电路元件30122包覆于其内部。而在本发明的另一种实施方式中,可以先在所述线路板主体30121上模塑形成所述基座部3011,并且将凸出于所述线路板主体30121的所述电路元件30122包覆于其内部,继而将所述感光芯片3030安装于所述线路板主体30121,使其位于所述基座部3011的内侧。
参照图30,是根据本发明的第十三个优选实施例的摄像模组的另一实施方式,所述摄像模组可以是一定焦模组(Fix Focus Module,FFM)。在所述摄像模组中,所述镜头3050被安装于所述基座部3011的顶表面30112,即所述摄像模组的焦距不可以被自由地调整。所述镜头3050和所述滤光片3040协调配置所述基座部3011的所述顶表面30112,所述滤光片3040被安装所述安装槽30113。本领域的技术人员应当理解的是,所述摄像模塑的类型并不是本发明的限制。
值得一提的是,根据本发明的这个优选实施例,所述基座部3011可以用来 支撑安装所述滤光片3040和所述镜头3050,具有传统底座的功能,而基于模塑的优势,所述基座部3011可以借助模具来控制所述基座部3011的平整性和一致性,从而为所述摄像模组的所述滤光片3040和所述镜头3050提供平整的且一致的安装环境,从而更容易保证镜头3050和滤光片3040以及感光芯片3030的光轴的一致性,这一点是传统的摄像模组不容易达到的。
参照图31A,根据本发明的第十四个优选实施例的摄像模组,所述摄像模组的所述一体基座组件3010包括一马达连接结构3013,用于连接所述摄像模组的马达3060。所述马达3060具有至少一马达引脚3061。所述马达连接结构3013包括至少一引线30131,各所述引线30131用于电连接所述马达3060和所述线路板主体30121。各所述引线30131电连接于线路板主体30121。进一步,各所述引线30131电连接于所述线路板主体30121的连接电路。所述引线30131被设置于所述基座部3011,并且延伸至所述基座部3011的顶端。所述引线30131包括一马达连接端3013111311,显露于所述基座部3011的顶端,用于电连接所述马达3060的所述马达引脚3061。值得一提的是,所述引线30131可以在形成所述基座部3011时埋设方式设置。在传统的连接方式中,诸如驱动马达等部件都是通过设置单独的导线来连接于线路板,制造工艺相对复杂,而在本发明的这种模塑时埋设所述引线30131的方式可以取代传统的马达焊接等工艺过程,并且使得电路连接更加稳定。特别地,在本发明的一实施中,所述引线30131为一导线,被埋设于所述基座部3011内部。举例地,所述马达引脚3061马达引脚3061可以通过异方性导电胶膜连接于所述马达连接端301311,也可以通过焊接的方式连接于所述马达连接端301311。
值得一提的是,所述引线30131的埋设位置以及所述引线30131的所述马达连接端301311在所述基座部3011显示的位置可以根据需要设置,比如,在本发明的一实施例中,所述引线30131的所述马达连接端301311可以被设置于所述基座部3011的外围,即所述基座部3011的顶表面,所述滤光片安装段30115的顶表面,而在本发明的另一实施例中,所述马达连接端301311可以被设置于所述基座部3011的内围,即所述基座部3011的所述安装槽30113底面,从而可以提供所述马达3060不同的安装位置。换句话说,当所述马达3060需要安装至所述基座部顶部时,所述马达连接端301311设置于所述基座部外围顶表面,当所述马达3060需要安装至所述安装槽30113时,所述马达连接端301311设置于所述基座部3011的内围,即所述安装槽30113底面。
也就是说,在制造所述一体基座组件3010时,可以先贴装各所述感光芯片3030至所述线路板主体30121,而后在所述线路板主体30121上以MOB的方式模塑所述基座部3011,且在模塑时可以以埋设方式在所述基座部3011内部设置所述引线30131,并且使得所述引线30131电连接于所述线路板主体30121,且使得所述引线30131的所述马达连接端301311显示于所述基座部的顶端,以便于连接于所述马达3060的所述马达引脚3061。举例地,在所述一体基座组件3010被用于组装所述摄像模塑时,所述马达3060的各所述马达引脚3061通过焊接的 方式连接于所述引线30131的所述马达连接端301311,从而使得所述马达3060电连接于所述线路板主体30121,且需要设置单独的导线将所述马达3060和所述线路板主体30121连接,且使得所述马达3060的所述马达引脚3061的长度可以减小。
参照图31B是根据本发明的上述优选实施例的所述马达连接结构的一等效实施例。所述马达连接结构3013包括一引脚槽30133,所述引脚槽30133用于容纳所述摄像模组的所述马达3060的所述马达引脚3061马达引脚3061。所述引脚槽30133被设置于所述基座部3011上端。所述马达连接结构3013包括至少一引线30134各所述引线30134用于电连接所述马达3060和所述线路板主体30121。所述引线30134被设置于所述基座部3011,并且向上延伸至所述基座部3011的所述引脚槽30133的槽底壁。所述引线30134包括一马达连接端301341,显露于所述基座部3011的所述引脚槽30133的槽底壁,用于电连接所述马达3060的所述马达引脚3061马达引脚3061。特别地,在一种实施方式中,所述马达连接端301341可以被实施为一焊盘。所述引线30134可以被实施为一导线,被埋设于所述基座部3011内部。
也就是说,在制造所述一体基座组件3010时,先贴装所述感光芯片3030,而后在所述线路板主体30121上,以MOB的方式模塑所述基座部3011,并且预设预定长度的所述引脚槽30133,且在模塑时可以埋设方式设置所述引线30134,并且使得所述引线30134电连接于所述线路板主体30121,且使得所述引线30134的所述马达连接端3013111341显示于所述基座部3011的所述引脚槽30133的槽底壁,以便于连接于所述马达3060的所述马达引脚3061。举例地,在所述一体基座组件3010被用于组装所述摄像模塑时,所述马达3060的各所述马达引脚3061插入所述引脚槽30133,且通过焊接的方式连接于所述引线30134的所述马达连接端3013111341,从而使得所述马达3060电连接于所述线路板主体30121,且需要设置单独的导线将所述马达3060和所述线路板主体30121连接,且使得所述马达3060的所述马达引脚3061的可以稳定地连接,防止外部不需要的碰触所述马达引脚3061。特别地,所述引线30134可以被实施为一导线,被埋设于所述基座部3011内部。
参照图31C,是根据本发明的上述优选实施例的马达连接结构的另一等效实施例。所述马达连接结构3013包括一引脚槽30135,所述引脚槽30135用于容纳所述摄像模组的所述马达3060的所述马达引脚3061。所述引脚槽30135被设置于所述基座部3011。所述马达连接结构3013包括至少一电路接点30132,所述电路接点30132预设于所述线路板主体30121,并且电连接于所述线路板主体内122的所述连接线路。更进一步,各所述引脚槽30135由所述基座部3011的顶端延伸至所述线路板主体30121,并且使得所述电路接点30132显示。在一种实施例方式中,所述马达引脚3061适于插入所述引脚槽30135,并且可以与所述电路接点30132焊接连接。
也就是说,在制造所述一体基座组件3010时,在所述线路板主体30121上 预设各所述电路接点30132,进而贴装所述感光芯121片,而后在所述线路板主体30121上,以MOB的方式模塑所述基座部3011,并且预设预定长度的所述引脚槽30135,且使得所述电路接点30132通过所述引脚槽30135显示,以便于连接于所述马达3060的所述马达引脚3061。举例地,在所述一体基座组件3010被用于组装所述摄像模塑时,所述马达3060的各所述马达引脚3061插入所述引脚槽30135,且通过焊接的方式连接于线路板主体30121上的所述电路接点30132,从而使得所述马达3060电连接于所述线路板主体30121,且使得所述马达3060的所述马达引脚3061可以稳定地连接,防止外部不需要的碰触所述马达引脚3061。
参照图31D,是根据本发明的上述优选实施里马达连接结构的另一等效实施例。所述马达连接结构3013包括一雕刻线路30136,所述雕刻线路30136用于电连接所述线路板主体30121上的所述连接线路、所述感光芯片3030以及马达等部件。举例地但不限于,所述雕刻线路30136可以通过激光成型(LDS)的方式在形成所述基座部3011时设置。在传统的连接方式中,诸如驱动马达等部件都是通过设置单独的导线来连接于线路板,制造工艺相对复杂,而在本发明的这种模塑时设置所述雕刻线路30136的方式可以取代传统的马达焊接等工艺过程,并且使得电路连接更加稳定。更具体地,所述雕刻线路30136的形成过程可以是,现在所述基座部3011设置雕刻槽,而后在所述雕刻槽内以电镀的方式设置电路。
在本发明的不同实施例中,所述摄像模组的所述马达3060连接于所述一体基座组件3010的方式可以和图6A、6B、6C以及6D对应的连接方式进行自由结合,选择适合方式连接所述马达3060,如采用所述引脚槽30133与引线30134、所述引脚槽30135和所述电路接点30132。而在本发明的一实施例中,参照图2,所述马达3060可以通过传统的方式连接于所述一体基座组件3010,比如通过焊接的方式。本领域的技术人员应当理解的是,所述马达3060和所述一体基座组件3010的连接方式并不是本发明限制。
如图32所示,是根据本发明的第十五个优选实施例的摄像模组及其一体基座组件。与上述优选实施例不同的是,所述一体基座组件3010包括一线路板主体30121A。所述线路板主体30121A包括两内凹槽301211A,各所述感光芯片3030被设置于对应的所述内凹槽301211A内。不同于上述实施例中一体基座组件3010,所述感光芯片3030被设置所述内凹槽301211A内,并将所述感光芯片3030容纳于其中,使得所述感光芯片3030不会明显凸出于所述线路板主体30121A的上表面,使得所述感光芯片3030相对所述基座部3011的高度降低,从而减小所述感光芯片3030对所述基座部3011的高度限制,提供进一步降低高度的可能性,且所述感光芯片3030被贴装于所述内凹槽301211A内,可以防护所述感光芯片3030,尤其是所述连接线3031,防止外部部件误碰触所述感光芯片3030。
进一步,所述感光芯片3030通过所述连接线3031连接于所述线路板主体30121,并且电连接于所述连接线路。所述引线可以被实施为,举例地但不限于, 金线、铜线、铝线、银线。也就是说,所述感光芯片3030和所述连接线3031都位于所述线路板主体30121A的所述内凹槽301211A内。在一实施例中,在制造所述一体基座组件3010时,需要先在所述线路板主体30121A上设置所述内凹槽301211A。也就是说,在传统的线路板上开所述内凹槽301211A,使其适于容纳安装所述感光芯片3030。
图33是根据本发明的第十六个优选实施例的摄像模组及其一体基座组件的剖示图。
不同于上述优选实施例的是,所述一体基座组件3010包括一线路板主体30121B,所述线路板主体30121B具有一通路301212B,所述通路301212B的下部适于安装所述感光芯片3030。所述通路301212B使得所述线路板主体30121B上下两侧相连通,从而当所述感光芯片3030由所述线路板主体30121B的背面、并且感光区朝上地安装于所述线路板主体30121B时,所述感光芯片3030的感光区能够接收到由所述镜头3050进入的光线。
更进一步,所述线路板主具有一外凹槽301213B,所述外凹槽301213B连通于对应的所述通路301212B,提供所述感光芯片3030的安装位置。特别地,当所述感光芯片3030被安装于所述外凹槽301213B时,所述感光芯片3030的外表面和所述线路板主体30121B的表面一致,位于同一平面,从而保证所述一体基座组件3010的表面平整性。
也就是说,在本发明的这个实施例中,所述通路301212B呈台阶状,从而便于安装所述感光芯片3030,为所述感光芯片3030提供稳定的安装位置,并使其感光区展现于内空间。
值得一提的是,在本发明的这个实施例中,提供一种不同于传统的芯片安装方式,即,芯片倒装方式(Flip Chip,FC)。将所述感光芯片3030从所述线路板主体30121B的背面方向安装于所述线路板主体30121B,而不是像上述实施例中需要从所述线路板主体30121B的正面,即,从所述线路板主体30121B的上方,且所述感光芯片3030的感光区朝上地安装于所述线路板主体30121B。这样的结构以及安装方式,使得所述感光芯片3030和所述基座部3011相对独立,所述感光芯片3030的安装不会受到所述基座部3011的影响,所述基座部3011的模塑成型对所述感光芯片3030的影响也较小。此外,所述感光芯片3030嵌于所述线路板主体30121B的外侧面,且不会凸出于所述线路板主体30121B的内侧面,从而使得所述线路板主体30121B内侧留出更大的空间,使得所述基座部3011的高度不会受到所述感光芯片3030的高度限制,使得所述基座部3011能够达到更小的高度。
值得一提的是,在本发明的其它实施例中,所述通路301212B的上端安装所述滤光片3040,也就是说,不需要将所述滤光片3040安装于所述基座部3011,从而减小所述摄像模组的后焦距,减小所述摄像的高度。特别地,所述滤光片3040可以被实施例为红外截止滤光片IRCF。
图34是根据本发明的第十七个优选实施例的摄像模组及其一体基座组件的 剖示图。
所述一体基座组件3010包括一加固层30123C,所述加固层30123C叠层地连接于所述线路板主体30121底层,以便于加强所述线路板主体30121的结构强度。也就是说,在所述线路板主体30121上所述基座部3011以及所述感光芯片3030所在的区域底层贴装所述加固层30123C,从而使得所述线路板主体30121稳定可靠地支撑所述基座部3011和所述感光芯片3030。
进一步,所述加固层30123C为一金属板,所述金属板贴附于所述线路板主体30121的底层,增加所述线路板主体30121的结构强度,另一方面,增加所述一体基座组件的散热性能,能有效散失所述感光芯片3030发出的热量。
值得一提的是,所述线路板主体30121可以采用FPC(Flex Print Circuit,挠性印制电路板),而通过所述加固层30123C所述FPC的刚性,使得具有良好弯曲性能的FPC能够满足所述一体基座组件的承载要求。也就是说,所述线路板主体30121的可选择范围更加广泛,例如PCB(Printed Circuit Board,刚性印制电路板),FPC,RG(Rigid Flex,软硬结合板)。通过所述加固层30123B增加所述线路板主体30121的结构强度并且提高散热性能,从而可以减小所述线路板主体30121的厚度,使得所述一体基座组件的高度进一步减小,以及由其组装得到的摄像模组的高度减小。
图35是根据本发明的第十八个优选实施例的摄像模组及其一体基座组件的剖示图。
不同于上述优选实施例的是,所述线路板主体30121D具有至少一加固孔301214D,所述基座部3011延伸进入所述加固孔301214D内,从而增强所述线路板主体30121D的结构强度。
所述加固孔301214D的位置可以根据需要选择,以及根据所述线路板的结构强度需求来设置,比如呈对称的结构。借由所述加固孔301214D的设置使得所述线路板主体30121D的结构强度增强,从而可以减小所述线路板主体30121D的厚度,减小由其组装的摄像模组的厚度,且提高所述一体基座组件的散热性能。
值得一提的是,所述加固孔301214D为凹槽状,从而制造所述一体基座组件时,所述基座部3011的模塑材料不会由所述加固孔301214D漏出。
图36是根据本发明的第十九个优选实施例的摄像模组及其一体基座组件的剖示图。
不同于上述优选实施例的是,所述线路板主体30121E具有至少一加固孔301214E,所述基座部3011延伸进入所述加固孔301214E内,从而增强所述线路板主体30121E的结构强度。
所述加固孔301214E的位置可以根据需要选择,以及根据所述线路板的结构强度需求来设置,比如呈对称的结构。借由所述加固孔301214E的设置使得所述线路板主体30121E的结构强度增强,从而可以减小所述线路板主体30121E的厚度,减小由其组装的摄像模组的厚度,且提高所述一体基座组件的散热性能。
值得一提的是,所述加固孔301214E为穿孔,也就是说,穿过所述线路板主 体30121E的,使得所述线路板主体30121E的两侧连通,从而制造所述一体基座组件时,所述基座部3011的模塑材料充分地与所述线路板主体30121E结合,形成更加牢固的复合材料结构,且相对所述凹槽状的结构,所述穿孔更容易加工制造。
图37是根据本发明的第二十个优选实施例的摄像模组及其一体基座组件的剖示图。
不同于上述优选实施例的是,所述基座部3011F包括一包覆段30114F、一滤光片安装段30115F和一镜头安装段30116F,所述滤光片安装段30115F和所述镜头安装段30116F依次一体地模塑连接于所述包覆段30114F,所述包覆段30114F模塑连接于所述线路板主体30121,用于包覆所述电路元件30122和所述连接线3031。所述滤光片安装段30115F用于安装所述滤光片3040,也就是说,当所述一体基座组件被用于组装所述摄像模组时,所述摄像模组的滤光片3040被安装于所述滤光片安装段30115F,使得所述滤光片3040位于所述感光芯片3030的感光路径上,且不需要提供额外的滤光片3040安装支架。也就是说,所述基座部3011F在此处具有传统支架的功能,但是基于一体封装工艺的优势,所述滤光片安装段30115F顶部可以借助模具化的工艺方式,使其具有良好的平整性,从而使得所述滤光片3040平整地被安装,这一点也是优于传统的摄像模组。所述镜头安装段30116F用于安装所述镜头3050,也就是说,当所述一体基座组件被用于组装所述摄像模组时,所述镜头3050被安装于所述基座部3011F的所述镜头安装段113F内侧,以便于为所述镜头3050提供稳定的安装位置。
更进一步,所述滤光片安装段30115F具有一安装槽30113F,所述安装槽30113F连通于对应的所述通孔301100F,为各所述滤光片3040提供充足的安装空间,使得各所述滤光片3040稳定安装。所述镜头安装段30116F具有一镜头安装槽301131F,各所述镜头安装槽301131F连通于对应的所述通孔301100F,分别为各所述镜头3050提供充足的安装空间。
换句话说,所述滤光片安装段30115F和所述镜头安装段30116F一体地向上延伸,且内部形成台阶状结构,分别为所述滤光片3040和所述镜头3050提供支撑固定位置,从而不需要提供额外的部件来安装所述滤光片3040和所述镜头3050。也就是说,所述基座部3011具有两安装槽,其中一个所述安装槽30113F位于较低的位置,一个所述安装槽30113F位于较高的位置,形成两阶台阶结构。其中较低位置的所述安装槽30113F用于安装所述滤光片3040,较高位置的所述安装槽301113F用于安装所述镜头3050。
所述镜头安装段30116F具有两镜头内壁301161F,各所述镜头内壁301161F分别呈闭合环形,适于镜头3050提供安装空间。值得一提的是,所述镜头安装段301162F的各所述镜头内壁301161F表面平整,从而适于安装无螺纹的所述镜头3050,形成定焦模组。特别地,所述镜头3050可以通过粘接的方式固定于所述镜头安装段30116F。
参照图38,是根据本发明的第二十一个优选实施例的一体基座组件和摄像 模组。不同于上述优选实施例的是,所述一体基座组件3010包括一屏蔽层30124,所述屏蔽层30124包裹所述线路板主体30121和所述基座部3011,从而在增强所述线路板主体30121的结构强度的同时,增强所述一体基座组件3010的抗电磁干扰能力。
参照图39,根据本发明的第二十二个优选实施例的摄像模组及其一体基座组件。不同于上述优选实施例的是,所述摄像模组包括至少一支座3070G,用于安装各所述滤光片3040、各所述镜头3050或各所述马达3060。根据本发明的这个实施例,所述支座3070被安装于所述基座部3011,各所述滤光片3040被安装于所述支座3070,各所述马达3060被安装于所述支座3070。所述支座3070的具体形状可以根据需要设置,比如设置凸台,以便于安装各所述滤光片。
根据本发明的这个实施例,所述支座3070G具有一第一支座槽3071G和一第二支座槽3072G,所述第一支座槽3071G用于安装所述滤光片3040,使得所述滤光片3040的表面不会凸出于所述支座3070的顶端。所述第二支座槽3072G,用于安装于所述基座部3011,以使得所述基座部3011沿所述支座3070G向上延伸,而所述滤光片3040的位置性对向下,从而减小所述摄像模组的后焦距。
换句话说,所述支座3070G向所述通孔301100内延伸,且向下延伸,从而将所述滤光片3040支撑于所述感光芯片3030上方,且利用所述通孔301100内的空间,使得滤光片3040被稳定安装的同时,所述滤光片3040不会占用外部空间。
值得一提的是,所述支座3070G向内延伸的距离位于所述感光芯片3030的感光区之外,也就是说,所述支座3070G不会遮挡所述感光芯片3030的所述感光区,以避免影响所述感光芯片3030的感光过程,所述支座3070G的尺寸可以具体需求设计。
在本发明的这个实施例以及相应附图中,以动焦模组为例进行说明,所述镜头3050被按安装于所述马达3060,所述马达3060被安装于所述支座3070G。也就是说,所述支座3070G为所述滤光片3040和所述马达3060提供安装位置。而在本本发明的其他实施例中,所述摄像模组还可以是一定焦模组。所述镜头3050被安装于所述支座3070G,也就是说,所述支座3070G为所述滤光片3040和所述镜头3050提供安装位置,本领域的技术人员应当理解的是,所述支座3070的具体结构和所述摄像模组的类型并不是本发明的限制。
参照图40,根据本发明的第二十二个优选实施例的摄像模组的另一实施方式。不同于上述优选实施例的是,所述摄像模组包括一支座3070H,所述支座3070H用于安装所述滤光片3040。所述支座3070H被安装于所述基座部3011,所述滤光片3040被安装于所述基座部3011,所述马达3060或所述镜头3050被安装于所述基座部3011。
进一步,所述支座3070H被安装于所述基座部3011的所述安装槽30113,且所述安装槽30113的高度大于所述支座3070H的安装高度,从而使得所述支座3070H不会凸出于所述基座部3011的顶端。
根据本发明的这个实施例,所述支座3070H具有一第一支座槽3071H和一第二支座槽3072H,所述第一支座槽3071H用于安装所述滤光片3040,使得所述滤光片3040的表面不会凸出于所述支座3070H的顶端。所述第二支座槽3072H,用于安装于所述基座部3011,以使得所述基座部3011沿所述支座3070H向上延伸,而所述滤光片3040的位置性对向下,从而减小所述摄像模组的后焦距。
换句话说,所述支座3070H向所述通孔301100内延伸,且向下延伸,从而将所述滤光片3040支撑于所述感光芯片3030上方,且利用所述通孔301100内的空间,使得滤光片3040被稳定安装的同时,所述滤光片3040不会占用外部空间。
值得一提的是,所述支座3070H向内延伸的距离位于所述感光芯片3030的感光区之外,也就是说,所述支座3070H不会遮挡所述感光芯片3030,以避免影响所述感光芯片3030的感光过程,所述支座3070C的尺寸可以具体需求设计。
不同于上述优选实施例的是,所述第二支座槽3072H和所述封装的所述安装槽30113相互配合,形成匹配的卡接结构,从而使得所述支座3070H得以稳定的安装于所述安装槽30113内。相对第三个优选实施例,这个实施例中的所述滤光片3040距离所述感光芯片3030更小,可以获得具有更小后焦距的所述摄像模组。
在本发明的这个实施例以及相应附图中,以动焦模组为例进行说明,所述镜头3050被按安装于所述马达3060,所述马达3060被安装于所述支座3070H。也就是说,所述支座3070H为所述滤光片3040和所述马达3060提供安装位置。而在本本发明的其他实施例中,所述摄像模组还可以是一定焦模组。所述镜头3050被安装于所述支座3070H,也就是说,所述支座3070H为所述滤光片3040和所述镜头3050提供安装位置,本领域的技术人员应当理解的是,所述支座3070H的具体结构和所述摄像模组的类型并不是本发明的限制。
图41是根据本发明的上述优选实施例的基于一体封装工艺的摄像与传统摄像模组结构强度比较示意图。图42左侧是传统摄像模组,右侧是根据本发明的基于一体封装工艺的摄像模组。以a1表示传统摄像模组的所述支架3P的厚度,a2表示本发明的摄像模组的所述基座部3011的厚度。
传统摄像模组中所述支架3P用来安装所述滤光片4P、所述马达5P或所述镜头6P,且所述支架3P通常是通过注塑的方式形成的塑料部件。传统摄像模组中,所述支架3P通常被安装于所述电路器件11P的外侧,因此在不增加所述线路板主体的横向尺寸的情况下,为所述支架3P预留的安装空间有限,所述支架3P的厚度a1也只能限制在较小的范围,比如0.3mm,这时,所述支架3P和所述线路板1P的相互粘接面积较小,因此连接稳定性较差,也就是说,在长期使用或有较强外力作用时,所述支架3P容易和所述线路板1P相互分离或出现裂纹。
而根据本发明的优选实施例的基于一体封装工艺的摄像模组,所述基座部3011一体封装于所述线路板主体30121,如通过模塑(Molding)的方式封装于所述线路板主体,且覆盖所述电路元件30122,因此所述基座部3011相对于所 述支架3P具有更大的可设置空间,且向所述线路板主体30121内部延伸,因此不会扩展所述线路板主体的外围尺寸。根据本发明的这个实施例,所述基座部3011可以达到较大的厚度a2,如0.6mm。所述基座部3011具有更好的支撑稳定性,且通过一体封装的方式,所述基座部3011更牢固地连接于所述线路板主体30121,使得所述摄像模组在使用的过程中更加稳定可靠。另一方面,所述基座部3011一体封装于所述线路板主体30121的方式,增加了连接部位所述线路板主体30121的结构强度,所述基座部3011起到保护所述线路板主体30121的作用。
图42是根据本发明的上述优选实施例的基于一体封装工艺的摄像模组与传统摄像模组的横向尺寸比较示意图。图43左侧是传统摄像模组,右侧是根据本发明的基于一体封装工艺的摄像模组。以b1表示传统摄像模组的横向截面尺寸,以b2表示本发明的基于一体封装工艺的摄像模组的横向截面尺寸。
传统COB工艺中的摄像模组中所述支架3P被安装于所述电路器件11P的外侧,所述支架3P和所述电路器件11P在安装空间上相互独立,都需要占据一定空间,且为了防护所述电路器件11P,在所述电路器件11P的周围需要预留一定的安全距离,如预留0.35mm的安全距离,这些因素都使得所述摄像模组的横向尺寸b1较大,横向尺寸减小的可能性较小,不能满足对于摄像模组小尺寸的需求。
而根据本发明的基于一体封装工艺的摄像模组,所述基座部3011一封装于所述线路板主体30121,且所述基座部3011包覆所述电路元件30122,因此所述基座部3011在满足基本强度的要求的基础上,只需要较小的尺寸将所述电路元件30122包覆,如0.15mm,所述基座部3011和所述电路元件30122相互重叠,充分利用安装空间,因此所述摄像模组的横向尺寸B2得以减小。特别地,根据本发明的一实施例,所述基于一体封装工艺的摄像模组的横向尺寸b2可以达到比传统摄像模组的横向尺寸b1单边小0.2mm。
图43是根据本发明上述优选实施例的基于一体封装工艺的摄像模组与传统摄像模组的高度比较示意图。图44左侧是传统摄像模组,右侧是根据本发明的基于一体封装工艺的摄像模组。以c1表示传统摄像模组的高度,以c2表示本发明的基于一体封装工艺的摄像模组的高度,以d1表示传统摄像模组的所述线路板1P的厚度,以d2表示本发明的基于一体封装工艺的摄像模组的所述线路板主体30121的厚度。传统摄像模组的所述支架3P通过粘接于所述线路板1P,且为了满足AA调整要求,施胶量较大,胶水层较厚,且在所述电路器件11P上方也需要预留安装距离,因此使得所述摄像模组的高度c1较大。另一方面,所述支架3P位于所述电路器件11P外侧,横向跨度较大,因此所述线路板1P要求具有较高的强度来保证所述摄像模组的形状,从而要求所述线路板1P的厚度d1较大,这也使得所述摄像模组的整体高度d1较大。
而根据本发明的基于一体封装工艺的摄像模组,其中所述基座11一体封装于所述线路板主体30121,不需要胶水粘接空间,且不需要预留AA调整空间, 且不需要为所述电路元件30122预留安全距离,因此所述基于模塑工艺摄像模组的高度c2得以减小。另一方面,所述基座部3011包覆所述电路元件30122,使得所述基座部3011可以向内延伸,减小所述基座部3011中间的横向跨度,同等线路板的形变量更小,因此减小对所述线路板主体30121的强度要求,且所述基座部3011可以增强所述线路板主体30121的结构强度,从而使得所述线路板主体30121的厚度d2可以减小,从而使得所述基于一体封装工艺的摄像模组的整体高度c1进一步降低。
图44是根据本发明的上述优选实施例的基于一体封装工艺的摄像模组的平整度示意图。
传统摄像模组的所述支架3P通过注塑的方式制造,且通过粘接的方式组装于所述摄像模组,因此所述摄像模组的容易出现倾斜、偏心等现象。且所述支架3P的表面平整度较差,不能为滤光片、马达或镜头等部件提供平整的安装条件。
而根据本发明的基于一体封装工艺的摄像模组,所述基座部3011通过一体封装方式连接于所述线路板主体30121,如模塑地连接于所述线路板主体30121。更进一步,在制造所述一体基座组件是,通过一模塑模具1形成所述基座部,通过所述模塑模具1保证所述基座部3011的表面平整性,且使得所述基座部3011的顶表面30112与所述感光芯片的贴附区301216表面一致,为所述滤光片3040、所述镜头3050或所述马达3060通过平整的安装条件,且使得所述感光芯片3030、所述滤光片3040、所述镜头3050以及所述马达3060的光轴一致。
图45是根据本发明的上述优选实施例的基于一体封装工艺的摄像模组与传统摄像模组的成像质量比较示意图。图46左侧是传统摄像模组,右侧是根据本发明的基于一体封装工艺的摄像模组。传统摄像模组的所述电路器件11P暴露于与所述感光芯片2P相互连通的封闭环境中,而在组装所述摄像模组时,所述电路器件11P上通常会附着一些灰尘,比如在焊接所述马达时的阻焊剂,而这些灰尘较难清除,残留在所述电路器件11P表面,在所述摄像模组被封装后,灰尘会自由移动,而当灰尘落到所述感光芯片,尤其是所述感光芯片的感光区时,所述摄像模组就会出现乌黑点,因此使得所述摄像模组的成像质量较差。
而根据本发明的基于一体封装工艺的摄像模组,所述电路元件30122被所述基座部包覆,不会暴露于与所述感光芯片3030相同的环境中,因此即使在所述电路元件11P有残留的灰尘,如阻焊剂,也不会所述摄像模组封装后落到所述感光芯片,因此可以保证所述摄像模组的成像质量的稳定性,不会在封装后出现乌黑点。
图46A和46B是根据本发明的上述优选实施例的基于一体封装工艺的摄像模组与传统摄像模组制造过程比较示意图。
传统摄像模组的组装制造过程通常是:通过注塑的方式制造所述支架3P;切割整块线路板,将所述支架3P粘接于单独的所述线路板1P;而后将所述芯片贴附于所述线路板1P;进而将滤光片4P、所述镜头6P或所述马达5P等部件安装于所述支架3P,从而组装为定焦模组或动焦模组。在这个制造组装过程中, 所述支架3P通过注塑的方式完成,一次只能制造较少量,如4至8个,而后将单独的所述支架3P分别粘接于独立的所述线路板1P,这些使得所述摄像模组的制造效率较低,且各模组之间的一致性较难控制。
而根据本发明的基于一体封装工艺的摄像模组的组装制造过程通常是:通过模塑的方式在拼版线路板2上一次一体成型多个所述基座部3011;而后对所述拼版进行分割,将所述拼版分割为多个单独的所述一体基座组件;进而在所述一体基座组件上贴装所述感光芯片3030,而后将所述滤光片3040、所述镜头3050或所述马达3060安装所述基座部,从而组装为动焦模组或定焦模组。这个过程不同于传统的组装方式,拼版作业的方式大大提高的所述摄像模组的生产效率,且更容易保证多个模组之间的一致性。比如,拼版作业时,可以一次成型90个所述一体基座组件。由于本发明的所述模组是基于封装工艺一体封装形成,在本发明的各实施例中,以封装工艺中的模塑工艺为例说明。因此,为了更清楚地揭露本发明的内容,首先对模塑工艺作简要的说明。此外,模塑工艺一般从设备的不同上来说有注塑和模压。注塑还可分注塑成型模压法和压铸法。注射成型机(简称注射机或注塑机)是将热塑性塑料或热固性料利用塑料成型模具制成各种形状的塑料制品的主要成型设备,注射成型是通过注塑机和模具来实现的。模压是压缩模塑的简称,又称压塑。模压材料例如塑料或橡胶胶料在闭合模腔内借助加热、加压而成型为制品。在本发明中采用模塑工艺中的模压来说明,但是本领域的技术人员可以理解的是,本发明并不仅仅局限于模压工艺,还有其他封装工艺,本发明并不受此限制。
如图47所示为本发明的一基于一体封装工艺的摄像模组的第二十三个优选实施例,采用的为MOB工艺。所述基于一体封装工艺的摄像模组包括一封装感光组件4010、一滤光片4040、一镜头4050和一马达4060。本领域的技术人员可以理解的是,所述马达4060在其他实施例例如涉及定焦(FF)模组中可以没有,本发明并不受此限制。也就是说,本发明的这个优选实施例中是以自动对焦(AF)模组为例。在所述封装感光组件4010包括一封装部4011和一感光组件4012。所述感光组件4012进一步包括一感光芯片4030、和一线路板40121、其配置有一组电子元器件40122(例如电阻、电容、驱动等,后面简称为IC)和一组引线4031。所述引线4031连接并将所述感光芯片4030和所述线路板40121导通,当然所述感光芯片4030和所述线路板40121也可以有其他导通方式。在本发明的这个优选实施例中,所述引线4031可以被实施为金线。所述封装部4011作为承载所述滤光片4040的支架,所述封装部4011可以具有电气性能,如可以雕刻线路通电连通所述马达4060和所述感光组件4012,能够取代传统的马达焊线,减少传统的工艺制程。当然,所述马达4060和所述线路板40121也可以通过传统的马焊脚焊接而导通。在封装过程中,所述封装部4011将所述线路板40121进行封装,在本发明的这个优选实施例中,所述封装部4011封装所述线路板40121上除与所述感光芯片4030以及所述引线4031接触以外的区域。所述封装部4011不仅封装所述线路板40121的顶表面401215,所述封装部4011还 封装包覆所述线路板40121的至少一侧面401216。可以理解的是,在封装过程中,所述封装部4011也可以将所述电子元器件40122一体封装。所述马达4060通过至少一马达引脚电连接于所述线路板40121。
如图49A至图49E所示为对比技术中的模塑形成模组。图50A中封装部4011P左侧的部分和线路板40121P齐平,此种线路板40121P的侧面与封装部4011P侧面齐平的设计通常也为对比技术所采纳的。因此,为达到以上设计要求,如图49B所示,在模组组装前需要达到图中的结构,在模塑时所述线路板40121P做如图49B的处理,也就是将两片以上的所述线路板40121P连接在一起,进行模塑,最后在图49B中间部分用机器切割,但是就需要新增切割设备。如果不用图49B中的方式,考虑到所述线路板40121P与模具对位有一定的偏差,所述线路板40121P的边缘不可能与所述封装部4011P齐平设计,所以通常只能设计成如图49C所示,图中所述线路板40121P需要凸出一段用于模具压合,所述线路板40121P凸出长度在数值上通常为0.1mm~1mm。
因此,和对比技术相比,本发明的所述基于一体封装工艺的摄像模组,对所述线路板40121进行内缩设计,使所述封装部4011的侧面包覆所述线路板40121的所述侧面401216,从而所述封装部4011的侧面与所述线路板40121仍预留一定错位空间,在模塑完之后侧面没有所述线路板40121凸出的情况,减少切割工序,提高了产品的质量。
值得一提的是,所述封装部4011可以对所述线路板40121的两个侧边都进行封装包覆。本发明的这个优选实施中,由于右侧还有其他元件如柔性线路板连接,因此,仅封装了所述线路板40121的左侧边,即所述侧面401216。但是,本领域的技术人员可以理解的是,所述封装部4011不仅可以封装所述线路板40121的所述侧面401216,在其他实施例中,还可以同时侧面封装包覆所述线路板40121的两个侧面的局部或全部区域,本发明并不受此限制。
如图48所示为本发明的所述基于一体封装工艺的摄像模组的第二十四个优选实施例,为了保证模塑工艺之后的模组能够便于装机和定位,并提高平整度,同样是采用MOB形式,所述基于一体封装工艺的摄像模组包括一封装感光组件4010A、一滤光片4040A、一镜头4050A和一马达4060A。同样地,由于以AF模组为例,因此揭露了所述马达4060A,但是在其他FF模组中,可以不需要所述马达4060A,本发明并不受此限制。
具体地,所述封装感光组件4010A包括一封装部4011A和一感光组件4012A。所述感光组件4012A进一步包括一感光芯片4030A、和一线路板40121A、其配置有一组电子元器件40122A和一组引线4031A。所述封装部4011A作为承载所述滤光片4040A的支架,所述模组部11A雕刻线路通电连通所述马达4060A和所述感光组件4012A。与本发明的上述优选实施例相比,在模塑过程中,除了所述封装部4011A将所述线路板40121A和所述电子元器件40122A进行封装,且封装包覆所述线路板40121A的所述顶面1221A和至少一侧面401216A以外,所述封装部4011A对所述线路板40121A的一底部401217A也进行模塑封装。从 而保证了模塑完成后,所述基于一体封装工艺的摄像模组从整体上的侧面和底部的平整性,也便于安装定位在其他工装上。
值得一提的是,所述封装部4011A可以封装包覆所述线路板40121A的整个所述底部401217A,也可以在其他实施例中,根据不同的需要,封装包覆所述线路板40121A的所述底部401217A的一部分,本发明并不受此限制。
值得一提的是,本发明的这个优选实施例中,由于所述摄像模组的图中示意的右侧还可以连接其他元件或者进行其他加工工艺,因此所述线路板40121A的右侧面并没有进行封装,但是在其他实施例中,所述封装部4011A能够同时封装包覆所述线路板40121A的两个或者多个侧面,且同时封装包覆所述线路板40121A的所述底部401217A的全部或者部分区域,本发明并不受此限制。
如图50至55以及58所示,是根据本发明的第二十五个优选实施例的摄像模组。所述摄像模组100可以被应用于各种电子设备300,举例地但不限于智能手机、可穿戴设备、电脑设备、电视机、交通工具、照相机、监控装置等,所述摄像模组配合所述电子设备实现对目标对象的图像采集和再现。
所述摄像模组100的所述模塑线路板组件1010F通过一制造设备200制造成型。
不同于第一个优选实施例的是,所述模塑部1011F具有一第一内侧面10117F、一第二内侧面10118F和一外侧面10119F,所述第一内侧面10117F和所述第二内侧面10118F各自闭合形成所述通孔101100F,为所述感光芯片提供光线通路。也就是说,所述模塑部1011F通过所述第一内侧面10117F和所述第二内侧面10118F形成一光窗,为所述感光芯片提供光线进入的窗口,而所述光窗的下端口形状由所述第一内侧面10117F的环绕形状决定。所述第一内侧面10117F环绕形成所述通孔101100F或所述光窗的下端,所述第二内侧面10118F环绕形成所述通孔101100F或所述光窗的上端。
所述第一内侧面10117F呈倾斜状的向上延伸,截面呈由下至上开口逐渐增大的梯形。即,所述通孔101100F或所述光窗的下端的截面呈由下至上开口逐渐增大的梯形。定义所述第一内侧面10117F的倾斜角为第一倾斜角α,也就是说,所述第一内侧面10117F与所述模塑摄像模组的中心光轴Y方向的夹角为第一倾斜角α。
在一实施例中,所述第一内侧面10117F环绕并且内径由下至上逐渐增加,即所述光窗下端呈由下至上内径逐渐增大。当然在本发明的其他实施例中,所述第一内侧面10117F还可以环绕为其他截面呈梯形的结构。本领域的技术人员应当理解的是,所述第一内侧面10117F的环绕形状并不是本发明的限制。所述第一内侧面10117F的环绕形状可以根据所述镜头50、所述感光芯片30或所述滤光片40的形状而确定。值得一提的是,截面棱锥形为近似结构,在实际制造过程中,棱锥的棱角并不是直线相接的尖角,而是呈弧形的圆角。
根据本发明的实施例,所述第一倾斜角α大于0°,也就是说,所述第一内侧面10117F与所述中心光轴Y方向并不是平行状态。由于所述中心光轴Y垂直 于所述线路板主体10121,因此,在本发明的实施例中,所述第一内侧面10117F与所述线路板主体10121的位置关系并不是垂直关系。所述第一倾斜角α的设置有助于所述模塑部1011F的成型制造,为了便于理解,这一点将结合后续的制造过程进行说明。
值得一提是,所述第一倾斜角α的设置,即所述第一内侧面10117F的倾斜设置,使得到达所述第一内侧面10117F的光线的入射角减小,相应反射角减小,从而使得反射光线远离所述感光芯片30,因此减少了所述模塑部1011F的反射杂散光对所述摄像模组的成像质量的影响。另一方面,所述通孔101100F或所述光窗由开口逐渐增大的截面呈梯形的结构形成,因此增大了光线通量,从而进一步提高所述摄像模组的成像质量。
进一步,所述第二内侧面10118F环绕形成所述通孔101100F或所述光窗的上端,也就是说,所述光窗的上端形状由所述第二内侧面10118F的环绕形状决定。所述第二内侧面10118F倾斜地向上延伸,截面形成由下至上开口逐渐增大的梯形。也就是说,所述通孔101100F或所述光窗的上端的截面呈由下至上逐渐增大的梯形。定义所述第二内侧面10118F的倾斜角为第二倾斜角β,也就是说,所述第二内侧面10118F与所述模塑摄像模组的中心光轴Y方向的夹角为第二倾斜角β。
在一实施例中,所述第二内侧面10118F环绕形成由下至上逐渐增加的无头椎体结构。即,所述光窗上端呈由下至上逐渐增大的无头椎体结构。当然在本发明的其他实施例中,所述第二内侧面10118F还可以环绕为其他截面呈梯形的结构,比如无头圆锥、四棱锥。本领域的技术人员应当理解的是,所述第二内侧面10118F的环绕形状并不是本发明的限制。所述第二内侧面10118F的环绕形状可以根据所述镜头、所述感光元件或所述滤光片的形状而确定。
根据本发明的实施例,所述第二倾斜角β大于0°,也就是说,所述第二内侧面10118F与所述中心光轴方向并不是平行状态。由于所述光轴垂直于所述线路板主体10121,因此,在本发明的实施例中,所述第二内侧面10118F与所述线路板主体10121的位置关系并不是垂直关系。所述第二倾斜角β的设置有助于所述模塑体的成型制造,为了便于理解,这一点将结合后续的制造过程进行说明。
进一步,所述模塑体包括一外侧面10119F,所述外侧面10119F环绕于所述光窗外部。所述外侧面10119F呈倾斜状由所述线路板主体10121向上延伸,截面形成一由下至上开口逐渐缩小的梯形。定义所述外侧面10119F与所述的倾斜角为第三倾斜角γ,也就是说,所述外侧面10119F与所述模塑摄像模组的中心光轴Y方向的夹角为第三倾斜角γ。
根据本发明的实施例,所述第三倾斜角γ大于0°,也就是说,所述外侧面10119F与所述中心光轴方向并不是平行状态。由于所述光轴垂直于所述线路板主体10121,因此,在本发明的实施例中,所述外侧面10119F与所述线路板主体10121的位置关系并不是垂直关系。所述第三倾斜角γ的设置有助于所述模塑体的成型制造,为了便于理解,这一点将结合后续的制造过程进行说明。
举例地但不限于,所述第一倾斜角α优选范围为3°~85°。所述第二倾斜角β优选范围为3°~45°。所述第三倾斜角γ的优选范围为3°~45°。
在本发明的这个实施例中,所述第一倾斜角α范围是3°~45°,在一些具体实施例中,其可以是3°~15°,或15°~20°,或20°~30°或45°~60°。所述第二倾斜角β范围是3°~45°,在一些具体实施例中,其可以是3°~15°,或15°~30°,或30°~45°。所述第三倾斜角γ范围是3°~45°,在一些具体实施例中,其可以是3°~15°,或15°~20°,或20°~30°。
值得一提的是,在本发明的这个实施例中,由所述第一内侧面10117F、所述第一顶面、所述第二内侧面10118F、所述第二顶面以及所述外侧面10119F形成一两阶梯形台阶结构,分别用于安装不同的部件,而在本发明的其他实施例,也可以为更少台阶或更多台阶,比如仅有所述第一内侧面10117F、第二内侧面10118F和外侧面10119F形成一级台阶,或者叠加一顶面和内侧面形成三阶台阶,本领域的技术人员应当理解的是,所述内侧面、所述顶面和所述外侧面10119F的数量以及形成的台阶数量,并不是本发明的限制。
还值得一提的是,所述第一内侧面10117F、所述第一顶面、所述第二内侧面10118F、所述第二顶面以及所述外侧面10119F各自呈闭合的结构,以便于为所述模塑摄像模组提供封闭的内环境。当所述镜头1050或所述马达1060与所述镜头50被安装于所述模塑线路板组件1010F上时,为所述感光芯片1030形成一封闭的内环境,隔离外部光线的干扰。
如图54A和54B所示,是根据本发明第一个优选实施例的模塑摄像模组的模塑线路板组件制造设备和制造过程。所述制造设备200用于制造所述模塑线路板组件1010F,进一步地,用于通过模塑的方式制造所述模塑线路板组件1010F。
所述模塑线路板组件1010F的制造设备200包括一成型模具210和一供料机构220。所述供料机构220用于向所述成型模具210供应模塑材料400,以便于通过所述成型模具210模塑成型。所述模塑材料400可以选择尼龙、LCP(Liquid Crystal Polymer,液晶高分子聚合物)、PP(Polypropylene,聚丙烯)、环氧树脂等。
所述成型模具210包括一第一模具211和一第二模具212,所述第一模具211和所述第二模具212能够进行开模和合模。也就是说,所述成型模具210包括开模和合模两种状态。
在一实施例中,所述成型模具210可以通过一固定装置来控制所述第一模具211和所述第二模具212的开模和合模。参照图54A,54B,当所述成型模具210处于合模状态时,所述第一模具211和所述第二模具212形成一成型腔213和一供料通道214,所述供料通道214连通于所述成型腔213。所述成型腔213用于容纳所述线路板部1012F,所述供料通道214用于向所述成型腔213内输送模塑材料400,在所述线路板部1012F上预定位置模塑成型。也就是说,在所述成型模具210开模的状态将所述线路板部1012F放置于所述第二模具212,而后使得所述成型模具210处于合模状态,通过所述供料结构的作用于模塑材料400,比 如高压作用,将模塑材料400通过所述供料通道214输送至所述成型腔213内,通过所述模塑材料400填充所述成型腔213的剩余部分,从而形成所述模塑部1011F。
所述第一模具211包括一光窗成型块2111,所述光窗成型块2111用于阻隔模塑材料400,使得模塑材料400沿所述光窗成型块2111形成一中空的所述通孔101100F或所述光窗。
所述第一模具211包括多个成型面,分别设置与所述模塑部1011F对应的所述第一倾斜角α、所述第二倾斜角β以及所述第三倾斜角γ,以便于形成所述第一内侧面10117F、所述第二内侧面10118F和所述外侧面10119F。
进一步,所述光窗成型块2111包括一压合面21111。在模塑成型过程中,所述压合面21111压合于所述线路板部1012F,从而使得所述线路板部1012F上所述压合面21111所对应的位置不被模塑材料400填充,形成连通至所述线路板部1012F的所述光窗。
进一步,所述成型腔213包括一填充部2131和一容纳部2132,所述填充部2131用于填充模塑材料400,所述容纳部2132用于容纳所述线路板主体10121。在本发明的一实施例中,所述填充部2131被设置于所述第一模具211,所述容纳部2132被设置于所述第二模具212。也就是说,在成型的过程中,将所述线路板主体10121放置于所述第二模具212的所述容纳部2132,而在所述线路板主体10121和所述第一模具211围成的所述填充部2131空间内填充所述模塑材料400,从而在所述线路板部1012F的顶面模塑形成所述模塑部1011F。
值得一提的是,所述线路板部1012F带有所述电路元件10122F,也就是说,当所述线路板主体10121被放置于所述成型腔213的所述容纳部2132时,所述电路元件10122F被容纳于所述填充部2131。当所述模塑材料400填充于所述成型腔213的所述填充部2131时,所述电路元件10122F被所述模塑材料400包覆。
可以理解的是,由于所述第一倾斜角α、所述第二倾斜角β以及所述第三倾斜角γ的设置,从而使得在脱模,即所述第一模具211和所述第二模具212分开的过程中,所述模塑部1011F与所述第一模具211之间的摩擦力减小,所述第一模具211更加容易拔出而脱离所述模塑部1011F,以使得所述模塑部1011F得到较佳的成型状态。参照图55,更具体地,在脱模的过程中,所述光窗成型块2111与所述模塑部1011F之间在脱模瞬间产生相对运动,随即在所述光窗成型块2111和所述模塑部1011F之间形成间隙,因此在后续的运动过程中,所述光窗成型块2111和所述模塑部1011F之间不会接触而产生摩擦力,从而能够顺畅地拔出。
如图56所示,根据本发明第二十五个实施例的变形实施方式,在模塑工艺前,所述感光芯片1030可以与所述线路板主体10121F通过所述引线1031连接,并且所述线路板主体10121F上可以设置有一环形的阻隔元件1014G,其贴装或涂于所述线路板主体10121,并且具有弹性,而且高于所述引线1031的最高点的位置,从而在模塑工艺中,所述光窗成型块2111压合于所述阻隔元件1014G,以防止所述光窗成型块214在压合于所述线路板主体10121F时对所述线路板主 体10121F和所述引线1031以及所述感光芯片1030的损伤。在一个具体示例中,所述阻隔元件1014G呈方环状,并且实施为台阶胶。换句话说,所述阻隔元件被所述模塑部至少部分地封装,间隔于至少部分所述模塑部1011F与所述线路板主体10121F之间
如图57所示,是根据本发明的第二十五个实施例的另一变形实施方式。不同于上述优选实施例的是,所述线路板部1012F包括至少一电路元件10122G,所述电路元件10122G被设置于所述线路板主体10121。所述电路元件10122G凸出于所述线路板主体10121,且位于所述模塑部1011F的内侧。换句话说,所述电路元件10122G位于所述通孔101100F内。也就是说,所述电路元件10122G并没有被所述模塑部1011F模塑。在模塑成型时,成型模具中的光窗成型块内部有凹槽,这样其在模塑工艺中,罩设在所述电路元件10122G,从而可以使形成的所述模塑部1011F不包覆所述电路元件10122G。当然,在本发明的其他实施例中,也可以设置被模塑的所述电路元件10122F,也就是说,一部分所述电路元件10122F被模塑,而另一部分所述电路元件10122G不被模塑。
如图59所示,是根据本发明的第二十一个优选实施例的一体基座组件和摄像模组的一变形实施方式。不同于上述优选实施例的是,所述一体基座组件3010包括一屏蔽层30124A,所述屏蔽层30124A环绕于所述基座部3011内侧,从而在增强所述线路板主体30121的结构强度的同时,增强所述一体基座组件3010的抗电磁干扰能力。所述屏蔽层30124A可以是一金属网或金属板。
本领域的技术人员应当理解的是,本发明的不同实施例中所述模塑部,所述基座部和所述封装部的结构可以与其他实施例中所述摄像模组的各种结构特征进行排列组合。上述各优选实施例仅作为举例来说明本发明可以实现的不同方式,不同实施例中的各种结构特征可以进行各种排列组合而构成新的实施方式,本发明不限于图中所示的实施方式,不限于单独的一个实施例。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (103)

  1. 一摄像模组,其特征在于,包括:
    至少一镜头;
    至少一感光芯片;
    至少一滤光片;
    至少一一体基座组件;和
    至少一支座;
    其中所述一体基座组件包括一基座部和一线路板部,所述基座部一体封装于所述线路板部,所述感光芯片被安装于所述线路板部,所述基座部形成至少一通孔,为所述感光芯片提供光线通路,所述镜头位于所述感光芯片的光线通路,所述支座被安装于所述基座部,所述滤光片被安装于所述支座,且位于所述感光芯片的光线通路。
  2. 根据权利要求1所述的摄像模组,其中所述支座在顶侧具有一第一支座槽,所述第一支座槽连通于所述通孔,所述滤光片被安装于所述第一支座槽。
  3. 根据权利要求2所述的摄像模组,其中所述支座在底侧具有一第二支座槽,以与所述基座部顶端接合。
  4. 根据权利要求2所述的摄像模组,其中所述基座部具有一安装槽,所述安装槽连通于所述通孔,所述支座被安装于所述安装槽。
  5. 根据权利要求3所述的摄像模组,其中所述基座部具有一安装槽,所述安装槽连通于所述通孔。
  6. 根据权利要求3所述的摄像模组,其中所述基座部形成一平台,所述支座被安装于所述平台。
  7. 根据权利要求4所述的摄像模组,其中所述安装槽具有至少一缺口,连通所述通孔与外部,所述支座包括至少一延伸边,所述延伸边适于搭接于所述缺口。
  8. 根据权利要求4所述的摄像模组,其中所述安装槽具有至少一缺口,形成一U型结构,所述支座部包括至少一延伸边,所述延伸边填充所述U型结构的开口。
  9. 根据权利要求1至8任一所述的摄像模组,其中所述一体基座组件包括 至少一电路元件,所述基座部包覆所述电路元件。
  10. 根据权利要求1至8任一所述的摄像模组,其中所述镜头至少部分被安装于所述支座。
  11. 根据权利要求1至8任一所述的摄像模组,其中所述摄像模组包括至少一马达,所述镜头被安装于所述马达,所述马达至少部分被安装于所述支座。
  12. 根据权利要求1至6任一所述的摄像模组,其中所述镜头被安装于所述基座部。
  13. 根据权利要求1至6任一所述的摄像模组,其中所述摄像模组包括至少一马达,所述镜头被安装于所述马达,所述马达被安装于所述基座部或被安装于所述支座。
  14. 根据权利要求1至8任一所述的摄像模组,其中所述一体封装的方式为模塑的一体封装方式。
  15. 根据权利要求1至8任一所述的摄像模组,其中所述一体基座组件包括一环形的阻隔元件,其被设置于所述线路板部,并且所述阻隔元件至少部分地被所述基座部一体封装。
  16. 根据权利要求1至8任一所述的摄像模组,其中所述基座部具有至少一第一内侧面,其一体地延伸于所述线路板部,环绕形成至少部分所述通孔,所述第一内侧面呈倾斜状地向上延伸。
  17. 根据权利要求16所述的摄像模组,其中所述第一内侧面与所述摄像模组的光轴之间具有一倾斜角α,其中α的大小范围是3°~85°。
  18. 根据权利要求16所述的摄像模组,其中所述第一内侧面环绕形成所述通孔的下端,所述通孔下端内径呈由下至上逐渐增大。
  19. 根据权利要求16所述的摄像模组,其中所述基座部具有一第二内侧面,所述第二侧面由所述第一内侧面弯折延伸而来,所述第二内侧面环绕形成所述通孔的上端,所述第二内侧面呈倾斜状地向上延伸。
  20. 根据权利要求19所述的摄像模组,其中所述第二内侧面与所述摄像模组的光轴之间具有一倾斜角β,其中β的大小范围是3°~45°。
  21. 根据权利要求16所述的摄像模组,其中所述基座部具有一外侧面,由所述线路板部一体地向上倾斜延伸,且与所述摄像模组的光轴之间具有一倾斜角γ,其中γ的大小范围是3°~45°。
  22. 一摄像模组,其特征在于,包括:
    至少一镜头;
    至少一感光芯片;和
    至少一一体基座组件;
    其中所述一体基座组件包括一基座部和一线路板部,所述基座部一体地连接于所述线路板部,所述感光芯片被安装于所述线路板部,所述基座部形成至少一通孔,为所述感光芯片提供光线通路,所述镜头位于所述感光芯片的光线通路,所述基座部具有至少一第一内侧面,环绕形成至少部分所述通孔,所述第一内侧面呈倾斜状地向上延伸。
  23. 根据权利要求22所述的摄像模组,其中所述第一内侧面与所述摄像模组的光轴之间具有一倾斜角α,其中α的大小范围是3°~85°。
  24. 根据权利要求23所述的摄像模组,其中所述倾斜角α的数值选自3°~30°、30°~45°、45°~60°或60~85°。
  25. 根据权利要求22所述的摄像模组,其中所述第一内侧面环绕形成所述通孔的下端,使得所述通孔下端的内径由下至上逐渐增大。
  26. 根据权利要求22所述的摄像模组,其中所述基座部具有一第二内侧面,所述第二侧面由所述第一内侧面弯折延伸而来,所述第二内侧面环绕形成所述通孔的上端,所述第二内侧面呈倾斜状地向上延伸。
  27. 根据权利要求26所述的摄像模组,其中所述基座部具有一安装槽,连通于所述通孔,所述第一内侧面弯折延伸至所述第二内侧面形成所述安装槽。
  28. 根据权利要求23所述的摄像模组,其中所述第二内侧面与所述摄像模组的光轴之间具有一倾斜角β,其中β的大小范围是3°~45°。
  29. 根据权利要求28所述的摄像模组,其中β的数值选自3°~15°、15°~20°、20°~30°或30°~45°。
  30. 根据权利要求28所述的摄像模组,其中所述第一内侧面与所述摄像模组的光轴之间具有一倾斜角α,其中α的大小范围是3°~85°。
  31. 根据权利要求28所述的摄像模组,其中所述第一内侧面环绕形成所述通孔的下端,使得所述通孔下端的内径由下至上逐渐增大。
  32. 根据权利要求23所述的摄像模组,其中所述基座部具有一外侧面,所述外侧面由所述线路板部倾斜地向上延伸,且与所述摄像模组的光轴之间具有一 倾斜角γ,其中γ的大小范围是3°~45°。
  33. 根据权利要求32所述的摄像模组,其中γ的数值选自3°~15°、15°~30°或30°~45°。
  34. 根据权利要求22至32任一所述的摄像模组,其中所述一体基座组件包括至少一电路元件,所述基座部包覆所述电路元件。
  35. 一摄像模组,其特征在于,包括:
    至少一镜头;
    至少一感光芯片;和
    至少一一体基座组件;
    其中所述一一体基座组件包括一基座部和一线路板部,所述基座部模塑于所述线路板部,所述基座部形成至少一通孔,为所述感光芯片和所述镜头提供一光线通路。
  36. 根据权利要求35所述的摄像模组,其中所述基座部具有一顶表面,平面地延伸。
  37. 根据权利要求35所述的摄像模组,其中所述基座部具有一安装槽,所述安装槽连通于所述通孔,所基座部包括至少一凸起台阶,所述凸起台阶形成所述安装槽。
  38. 根据权利要求35所述的摄像模组,其中所述线路板部包括至少一侧面,所述基座包覆所述线路板部的至少一所述侧面。
  39. 根据权利要求35所述的摄像模组,其中所述基座部进一步地包覆所述线路板部的底部。
  40. 根据权利要求35所述的摄像模组,其中所述基座部沿所述摄像模组的光轴方向依次具有两安装槽,各所述安装槽连通于所述通孔,使得所述基座部内部形成台阶结构。
  41. 根据权利要求36所述的摄像模组,其中所述摄像模组包括至少一滤光片,所述滤光片被安装于所述顶表面,以使得所述滤光片被平整地安装。
  42. 根据权利要求41所述的摄像模组,其中所述镜头被安装于所述顶表面。
  43. 根据权利要求41所述的摄像模组,其中所述摄像模组包括至少一马达,所述镜头被安装于所述马达,所述马达被安装于所述基座部的所述顶表面。
  44. 根据权利要求37所述的摄像模组,其中所述摄像模组包括至少一滤光 片,所述滤光片被安装于所述安装槽。
  45. 根据权利要求44所述的摄像模组,其中所述镜头被安装于所述凸起台阶。
  46. 根据权利要求44所述的摄像模组,其中所述摄像模组包括至少一马达,所述镜头被安装于所述马达,所述马达被安装于所述凸起台阶。
  47. 根据权利要求38所述的摄像模组,其中所述摄像模组包括一滤光片,所述滤光片被安装于较低位置的所述安装槽。
  48. 根据权利要求47所述的摄像模组,其中所述镜头被安装于所述较高位置的所述安装槽。
  49. 根据权利要求48所述的摄像模组,其中所述基座部自较高位置的所述安装槽一体地向上延伸形成一镜头内壁。
  50. 根据权利要求49所述的摄像模组,其中所述镜头内壁表面平整,适于安装一无螺纹镜头。
  51. 根据权利要求35所述的摄像模组,还包括至少一镜头支架,其安装于所述基座部,所述镜头支架适于安装所述镜头。
  52. 根据权利要求37所述的摄像模组,其中所述摄像模组包括至少一支座和至少一滤光片,所述支座被安装于所述安装槽,所述滤光片被安装于所述支座。
  53. 根据权利要求52所述的摄像模组,其中所述镜头至少部分被安装于所述基座部。
  54. 根据权利要求52所述的摄像模组,其中所述镜头至少部分被安装于所述支座。
  55. 根据权利要求52所述的摄像模组,其中所述摄像模组包括一马达,所述镜头被安装于所述马达,所述马达至少部分地被安装于所述基座部。
  56. 根据权利要求52所述的摄像模组,其中所述摄像模组包括一马达,所述镜头被安装于所述马达,所述马达至少部分地被安装于所述支座。
  57. 根据权利要求35至40任一所述的摄像模组,其中所述线路板部具有一内凹槽,连通于所述通孔,所述感光芯片被容纳于所述内凹槽。
  58. 根据权利要求35至40任一所述的摄像模组,其中所述镜头包括一镜筒和至少一镜片,各所述镜片被安装于所述镜筒,所述滤光片被安装于所述镜筒,位于所述镜片的下方。
  59. 根据权利要求35至40任一所述的摄像模组,其中所述摄像模组包括至少一马达和至少一滤光片,所述滤光片被安装于所述马达,所述镜头被安装于所述马达,位于所述滤光片的上方。
  60. 根据权利要求35至40任一所述的摄像模组,其中所述一体基座组件包括至少一电路元件,所述基座部包覆所述电路元件。
  61. 根据权利要求60所述的摄像模组,其中所述电路元件选自组合:电阻、电容、二极管、三极管、电位器、继电器、驱动器、处理器、和存储器中的其中一种或多种。
  62. 根据权利要求35至40任一所述摄像模组,其中所述线路板部具有至少一通路,连通所述线路板部的两侧,所述感光芯片被安装于所述通路。
  63. 根据权利要求35至40任一所述的摄像模组,其中所述线路板部具有一加固孔,所述基座部延伸进入所述加固孔。
  64. 根据权利要求35至40任一所述的摄像模组,其中所述线路板部包括一加固层,叠层设置于所述线路板部底部。
  65. 权利要求35至40任一所述的摄像模组,其中所述线路板部包括一屏蔽层,包裹于所述摄像模组外部。
  66. 要求35至40任一所述的摄像模组,其中所述线路板部包括一屏蔽层,环绕于所述基座部内侧。
  67. 根据权利要求35至40任一所述的摄像模组,其中所述线路板部包括一线路板主体,所述线路板主体材质选自组合:软硬结合板、陶瓷基板和PCB硬板中的一种。
  68. 根据权利要求35至40任一所述的摄像模组,其中所述基座部材料选自组合::尼龙、LCP、PP和树脂中的一种或多种。
  69. 根据权利要求35至40任一所述的摄像模组,其中所述模塑部模塑工艺为嵌入成型或模压加工。
  70. 根据权利要求35至40任一所述的摄像模组,其中所述感光芯片通过至少一连接线电连接于所述线路板部。
  71. 一摄像模组,其特征在于,包括:
    至少一镜头;
    至少一感光芯片;
    至少一体基座组件;和
    至少一马达;
    其中所述一体基座组件包括一基座部和一线路板部,所述基座部一体封装于所述线路板部,所述感光芯片被安装于所述线路板部,所述镜头位于所述感光芯片的感光路径,所述基座部形成一通孔,为所述感光芯片提供光线通路;
    所述一体基座组件包括至少一马达连接结构,所述马达连接结构被预设于所述基座部,所述马达通过所述马达连接结构电连接于所述线路板部,所述镜头被安装于所述马达,以便于通过所述马达调节所述镜头。
  72. 根据权利要求70所述的摄像模组,其中所述线路板部包括一线路板主体,所述基座部以模塑的方式一体成型于所述线路板主体。
  73. 根据权利要求71所述的摄像模组,其中所述马达连接结构包括至少一引线和至少一引脚槽,所述引线被设置于所述基座部,且电连接于所述线路板主体,所述引脚槽被设置于所述基座部上端部,所述引线包括一马达连接端,所述马达连接端显露于所述槽底壁,以便于所述马达的至少一马达引脚插接于所述引脚槽时电连接于所述马达连接端。
  74. 根据权利要求71所述的摄像模组,其中所述马达连接结构包括至少一引脚槽和至少一电路接点,所述电路接点电连接于所述线路板主体,所述引脚槽被设置于所述基座部,由所述线路板主体延伸至所述基座部的顶端,且所述电路接点显露于所述引脚槽,以便于所述马达的至少一马达引脚插接于所述引脚槽时电连接于所述电路接点。
  75. 根据权利要求71所述的摄像模组,其中所述马达连接结构包括至少一雕刻线路,所述雕刻线路设置于所述基座部,电连接于所述线路板主体,以便于电连接一马达引脚。
  76. 根据权利要求71至74任一所述的摄像模组,其中所述基座部的厚度范围为:0.3~1.2mm。
  77. 根据权利要求71至74任一所述的摄像模组,其中所述摄像模组的横向截面尺寸范围为:5~20mm。
  78. 根据权利要求71至74任一所述的摄像模组,其中所述摄像模组的高度范围为:3~6mm。
  79. 根据权利要求71至74任一所述的摄像模组,其中所述线路板部的厚 度范围为:0.15~0.5mm。
  80. 根据权利要求71至74任一所述的摄像模组,其中所述基座部比邻围绕于所述感光芯片外侧,从而扩展所述基座部厚度,使得所述基座部与所述线路板部具有更强的连接牢固性。
  81. 根据权利要求71至74任一所述的摄像模组,其中所述基座部以模塑的方式一体成型于所述线路板主体。
  82. 根据权利要求71至74任一所述的摄像模组,其中所述一体基座组件包括至少一电路元件,所述基座部包覆所述电路元件。
  83. 一体基座组件,应用一摄像模组,其特征在于,包括:
    一基座部;和
    一线路板部;
    所述基座部一体封装于所述线路板部,所述摄像模组的一感光芯片适于被安装于所述线路板部,所述基座部形成至少一通孔,为所述感光芯片提供光线通路,所述镜头位于所述感光芯片的光线通路。
  84. 根据权利要求83所述的一体基座组件,其中所述基座部具有一顶表面,平面地延伸。
  85. 根据权利要求83所述的一体基座组件,其中所述基座部具有一安装槽,所述安装槽连通于所述通孔,所基座部包括至少一凸起台阶,所述凸起台阶形成所述安装槽。
  86. 根据权利要求83所述的一体基座组件,其中所述基座部具有两安装槽,各所述安装槽连通于所述通孔,使得所述基座部内部形成台阶结构。
  87. 根据权利要求86所述的一体基座组件,其中较高位置的所述安装槽一体地向上延伸形成一镜头内壁。
  88. 根据权利要求87所述的一体基座组件,其中所述镜头内壁表面平整,适于安装一无螺纹镜头。
  89. 根据权利要求83所述的一体基座组件,其中所述线路板部包括至少一侧面,所述基座包覆所述线路板部的至少一所述侧面。
  90. 根据权利要求83所述的一体基座组件,其中所述基座部进一步地包覆所述线路板部的所述底部。
  91. 根据权利要求83至90任一所述的一体基座组件,其中所述一体基座 组件包括至少一电路元件,所述基座部包覆所述电路元件。
  92. 根据权利要求91所述的一体基座组件,其中所述电路元件选自组合:电阻、电容、二极管、三极管、电位器、继电器、驱动器、处理器、和存储器中的其中一种或多种
  93. 根据权利要求83至90任一所述一体基座组件,其中所述基座部具有至少一第一内侧面,环绕形成至少部分所述通孔,所述第一内侧面呈倾斜状地向上延伸于所述线路板部。
  94. 根据权利要求93所述的一体基座组件,其中所述第一内侧面与所述摄像模组的光轴之间具有一倾斜角α,其中α的大小范围是3°~85°。
  95. 根据权利要求94所述的一体基座组件,其中所述基座部具有一第二内侧面,所述第二侧面由所述第一内侧面弯折延伸而来,所述第二内侧面环绕形成所述通孔的上端,所述第二内侧面呈倾斜状地向上延伸。
  96. 根据权利要求95所述的一体基座组件,其中所述第二内侧面与所述摄像模组的光轴之间具有一倾斜角β,其中β的大小范围是3°~45°。
  97. 根据权利要求99任一所述的一体基座组件,其中所述基座部具有一外侧面,所述外侧面由所述线路板部倾斜地向上延伸,且与所述摄像模组的光轴之间具有一倾斜角γ,其中γ的大小范围是3°~45°。
  98. 根据权利要求83所述的一体基座组件,其中所述一体基座组件包括一马达连接结构,所述马达连接结构被预设于所述基座部,所述马达通过所述马达连接结构电连接于所述线路板部,所述摄像模组的一马达适于通过所述马达连接结构电连接于所述线路板部。
  99. 根据权利要求98所述的一体基座组件,其中所述马达连接结构包括至少一引线和至少一引脚槽,所述引线被设置于所述基座部,且电连接于所述线路板主体,所述引脚槽被设置于所述基座部上端部,所述引线包括一马达连接端,所述马达连接端显露于所述槽底壁,以便于所述马达的至少一马达引脚插接于所述引脚槽时电连接于所述马达连接端。
  100. 根据权利要求98所述的一体基座组件,其中所述马达连接结构包括至少一引脚槽和至少一电路接点,所述电路接点电连接于所述线路板主体,所述引脚槽被设置于所述基座部,由所述线路板部延伸至所述基座部的顶端,且所述电路接点显露于所述引脚槽,以便于所述马达的至少一马达引脚插接于所述引脚 槽时电连接于所述电路接点。
  101. 根据权利要求98所述的一体基座组件,其中所述马达连接结构包括至少一雕刻线路,所述雕刻线路设置于所述基座部,电连接于所述线路板部,以便于电连接所述马达的一马达引脚。
  102. 根据权利要求83至90任一所述的一体基座组件,其中所述一体基座组件包括至少一电路元件,所述基座部包覆所述电路元件。
  103. 根据权利要求83至90任一所述的一体基座组件,其中所述一体基座组件包括至少一电路元件,且所述电路元件位于所述基座部的内侧,所述基座部不包覆所述电路元件。
PCT/CN2016/092020 2016-02-18 2016-07-28 基于一体封装工艺的摄像模组及其一体基座组件和制造方法 WO2017140092A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187026982A KR102282687B1 (ko) 2016-02-18 2016-07-28 일체형 패키징 공정 기반 카메라 모듈, 그 일체형 기저 부품 및 그 제조 방법
JP2018543321A JP6829259B2 (ja) 2016-02-18 2016-07-28 一体パッケージングプロセスベースのカメラモジュール、その一体ベース部品、およびその製造方法
EP16890320.1A EP3419275A4 (en) 2016-02-18 2016-07-28 CAMERA MODULE BASED ON INTEGRAL PACKING METHOD, INTEGRAL BASE COMPONENT THEREOF AND PRODUCTION METHOD THEREFOR
US15/999,858 US11877044B2 (en) 2016-02-18 2016-07-28 Integral packaging process-based camera module, integral base component of same, and manufacturing method thereof
KR1020217023290A KR102465474B1 (ko) 2016-02-18 2016-07-28 일체형 패키징 공정 기반 카메라 모듈, 그 일체형 기저 부품 및 그 제조 방법
CN201690000252.7U CN208353432U (zh) 2016-02-18 2016-07-28 基于一体封装工艺的摄像模组及其一体基座组件

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN201610091489.7 2016-02-18
CN201610091489.7A CN105611134B (zh) 2016-02-18 2016-02-18 基于模塑工艺的摄像模组及其模塑线路板组件及制造方法
CN201610202500.2 2016-04-01
CN201620269534.9 2016-04-01
CN201620269534.9U CN205545597U (zh) 2016-04-01 2016-04-01 基于一体封装工艺的摄像模组
CN201610202500.2A CN105721754B (zh) 2016-04-01 2016-04-01 基于一体封装工艺的摄像模组
CN201610250836.6A CN105898120B (zh) 2016-04-21 2016-04-21 基于模塑工艺的摄像模组
CN201610250836.6 2016-04-21
CN201620336842.9U CN205792878U (zh) 2016-04-21 2016-04-21 基于模塑工艺的摄像模组
CN201620336842.9 2016-04-21
CN201620422525.9 2016-05-11
CN201610311232.8A CN105847645B (zh) 2016-05-11 2016-05-11 基于一体封装工艺的摄像模组及其一体基座组件及制造方法
CN201620422525.9U CN205792880U (zh) 2016-05-11 2016-05-11 基于一体封装工艺的摄像模组的一体基座组件
CN201610311232.8 2016-05-11

Publications (1)

Publication Number Publication Date
WO2017140092A1 true WO2017140092A1 (zh) 2017-08-24

Family

ID=59625568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092020 WO2017140092A1 (zh) 2016-02-18 2016-07-28 基于一体封装工艺的摄像模组及其一体基座组件和制造方法

Country Status (5)

Country Link
US (1) US11877044B2 (zh)
EP (1) EP3419275A4 (zh)
JP (2) JP6829259B2 (zh)
KR (2) KR102282687B1 (zh)
WO (1) WO2017140092A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110533008A (zh) * 2019-09-18 2019-12-03 上海菲戈恩微电子科技有限公司 光学生物识别模组及制备方法、显示装置和电子设备
TWI706180B (zh) * 2017-09-28 2020-10-01 大陸商寧波舜宇光電信息有限公司 減少雜散光的攝像模組及其感光組件和電子設備

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107466159B (zh) * 2016-06-06 2022-07-19 宁波舜宇光电信息有限公司 摄像模组的模塑电路板及其制造设备和制造方法
CN107466160B (zh) * 2016-06-06 2022-04-29 宁波舜宇光电信息有限公司 摄像模组的模塑电路板的制造设备及其制造方法
US10659664B2 (en) * 2016-08-01 2020-05-19 Ningbo Sunny Opotech Co., Ltd. Camera module and molded circuit board assembly and manufacturing method thereof
US10979610B2 (en) 2017-02-08 2021-04-13 Ningbo Sunny Opotech Co., Ltd. Camera module, molding photosensitive assembly thereof, manufacturing method and electronic device
CN217546538U (zh) * 2022-02-15 2022-10-04 诚瑞光学(南宁)有限公司 摄像模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140071327A1 (en) * 2012-09-13 2014-03-13 Apple Inc. Compact Optic Design for Digital Image Capture Devices
CN103700634A (zh) * 2013-11-06 2014-04-02 南昌欧菲光电技术有限公司 相机模组及其封装结构和封装方法
CN105611134A (zh) * 2016-02-18 2016-05-25 宁波舜宇光电信息有限公司 基于模塑工艺的摄像模组及其模塑线路板组件及制造方法
CN105704354A (zh) * 2016-03-12 2016-06-22 宁波舜宇光电信息有限公司 摄像模组及其感光组件和制造方法
CN105721754A (zh) * 2016-04-01 2016-06-29 宁波舜宇光电信息有限公司 基于一体封装工艺的摄像模组
CN105744130A (zh) * 2016-03-12 2016-07-06 宁波舜宇光电信息有限公司 摄像模组及其感光组件和制造方法

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155671A (ja) 1989-08-28 1991-07-03 Toshiba Corp 固体撮像装置
JPH0383456A (ja) 1989-08-28 1991-04-09 Fuji Photo Film Co Ltd カメラ
JP3155671B2 (ja) 1994-12-26 2001-04-16 シャープ株式会社 液晶表示装置
JP3582634B2 (ja) 1998-04-10 2004-10-27 松下電器産業株式会社 固体撮像装置
WO2001091193A2 (en) * 2000-05-23 2001-11-29 Atmel Corporation Integrated ic chip package for electronic image sensor die
KR100343432B1 (ko) 2000-07-24 2002-07-11 한신혁 반도체 패키지 및 그 패키지 방법
US6704131B2 (en) * 2000-11-16 2004-03-09 Texas Instruments Incorporated MEMS enclosure
TW548843B (en) * 2001-02-28 2003-08-21 Fujitsu Ltd Semiconductor device and method for making the same
US6949808B2 (en) * 2001-11-30 2005-09-27 Matsushita Electric Industrial Co., Ltd. Solid-state imaging apparatus and manufacturing method thereof
US7382043B2 (en) * 2002-09-25 2008-06-03 Maxwell Technologies, Inc. Method and apparatus for shielding an integrated circuit from radiation
JP4441211B2 (ja) * 2003-08-13 2010-03-31 シチズン電子株式会社 小型撮像モジュール
US7872686B2 (en) 2004-02-20 2011-01-18 Flextronics International Usa, Inc. Integrated lens and chip assembly for a digital camera
JP2006148473A (ja) * 2004-11-18 2006-06-08 Shinko Electric Ind Co Ltd カメラモジュール及びその製造方法
JP2006245246A (ja) 2005-03-02 2006-09-14 Sharp Corp 固体撮像装置
JP4855001B2 (ja) * 2005-07-25 2012-01-18 Hoya株式会社 撮像モジュール
US20070040932A1 (en) 2005-08-19 2007-02-22 Wen-Ching Chen Image sensor module
CN100483655C (zh) * 2005-09-09 2009-04-29 鸿富锦精密工业(深圳)有限公司 数码相机模组的制程
CN100531308C (zh) 2005-12-02 2009-08-19 鸿富锦精密工业(深圳)有限公司 数码相机模组
TWI314666B (en) * 2006-01-10 2009-09-11 Lite On Technology Corp Camera module and method for forming the camera module
US8092102B2 (en) 2006-05-31 2012-01-10 Flextronics Ap Llc Camera module with premolded lens housing and method of manufacture
JP2008011144A (ja) * 2006-06-29 2008-01-17 Matsushita Electric Ind Co Ltd 撮像装置
KR100815325B1 (ko) * 2006-07-31 2008-03-19 삼성전기주식회사 모바일 기기용 카메라 모듈
US20100315546A1 (en) 2007-02-21 2010-12-16 Masashi Saito Imaging Device and Manufacturing method therefor
JP4340698B2 (ja) 2007-04-27 2009-10-07 シャープ株式会社 光学ユニットおよびそれを備えた固体撮像装置並びに電子機器
CN100561736C (zh) 2007-05-25 2009-11-18 鸿富锦精密工业(深圳)有限公司 影像感测器封装结构及其应用的成像模组
JP4182253B2 (ja) 2007-08-10 2008-11-19 富士通マイクロエレクトロニクス株式会社 カメラモジュール
US7964945B2 (en) * 2007-09-28 2011-06-21 Samsung Electro-Mechanics Co., Ltd. Glass cap molding package, manufacturing method thereof and camera module
JP2009188720A (ja) 2008-02-06 2009-08-20 Panasonic Corp 固体撮像装置およびその製造方法
JP2010016744A (ja) * 2008-07-07 2010-01-21 Konica Minolta Opto Inc 撮像装置及び携帯端末
JP2010219696A (ja) 2009-03-13 2010-09-30 Sharp Corp 固体撮像装置およびそれを備えた電子機器
SE534271C2 (sv) 2009-03-30 2011-06-21 Niklas Barringer Strålningstålig kamera
JP5277105B2 (ja) * 2009-07-29 2013-08-28 富士フイルム株式会社 カメラモジュール
TWI398949B (zh) 2009-07-29 2013-06-11 Kingpak Tech Inc 模造成型之影像感測器封裝結構製造方法及封裝結構
CN102782574B (zh) 2010-01-11 2016-11-09 弗莱克斯电子有限责任公司 具有成型带倒装成像器底座的照相机模块及制造方法
US8891007B2 (en) 2011-03-07 2014-11-18 Digitaloptics Corporation Camera module with protective air ventilation channel
JP2012199844A (ja) 2011-03-23 2012-10-18 Tdk Corp 電子部品実装用基板
JP2013038628A (ja) 2011-08-09 2013-02-21 Sony Corp カメラモジュール、製造装置、及び製造方法
CN103246038B (zh) 2012-02-01 2015-04-08 信利光电股份有限公司 一种镜头底座及摄像头模组
JP5959332B2 (ja) 2012-06-18 2016-08-02 オリンパス株式会社 光コネクタ
CN103903991A (zh) 2012-12-28 2014-07-02 上海裕晶半导体有限公司 一种光电传感器芯片的封装方法
KR102131011B1 (ko) 2013-07-12 2020-07-07 엘지이노텍 주식회사 카메라 모듈
US9748459B2 (en) 2013-08-16 2017-08-29 Lumens Co., Ltd. Method for manufacturing improved chip-on-board type light emitting device package and such manufactured chip-on-board type light emitting device package
TWI650016B (zh) * 2013-08-22 2019-02-01 新力股份有限公司 成像裝置、製造方法及電子設備
US9766424B2 (en) * 2013-09-13 2017-09-19 Lg Innotek Co., Ltd. Camera module
JP2015099262A (ja) 2013-11-19 2015-05-28 ソニー株式会社 固体撮像装置およびカメラモジュール、並びに電子機器
CN203722701U (zh) 2014-01-27 2014-07-16 南昌欧菲光电技术有限公司 便携式电子装置及其相机模组
CN104811589A (zh) 2014-01-27 2015-07-29 南昌欧菲光电技术有限公司 便携式电子装置及其相机模组
US20160006908A1 (en) 2014-07-03 2016-01-07 Delphi Technologies, Inc. Molded camera
CN205792878U (zh) 2016-04-21 2016-12-07 宁波舜宇光电信息有限公司 基于模塑工艺的摄像模组
CN110708454B (zh) 2016-04-21 2021-10-08 宁波舜宇光电信息有限公司 基于模塑工艺的摄像模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140071327A1 (en) * 2012-09-13 2014-03-13 Apple Inc. Compact Optic Design for Digital Image Capture Devices
CN103700634A (zh) * 2013-11-06 2014-04-02 南昌欧菲光电技术有限公司 相机模组及其封装结构和封装方法
CN105611134A (zh) * 2016-02-18 2016-05-25 宁波舜宇光电信息有限公司 基于模塑工艺的摄像模组及其模塑线路板组件及制造方法
CN105704354A (zh) * 2016-03-12 2016-06-22 宁波舜宇光电信息有限公司 摄像模组及其感光组件和制造方法
CN105744130A (zh) * 2016-03-12 2016-07-06 宁波舜宇光电信息有限公司 摄像模组及其感光组件和制造方法
CN105721754A (zh) * 2016-04-01 2016-06-29 宁波舜宇光电信息有限公司 基于一体封装工艺的摄像模组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3419275A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI706180B (zh) * 2017-09-28 2020-10-01 大陸商寧波舜宇光電信息有限公司 減少雜散光的攝像模組及其感光組件和電子設備
CN110533008A (zh) * 2019-09-18 2019-12-03 上海菲戈恩微电子科技有限公司 光学生物识别模组及制备方法、显示装置和电子设备

Also Published As

Publication number Publication date
KR102282687B1 (ko) 2021-07-28
US11877044B2 (en) 2024-01-16
JP2019509512A (ja) 2019-04-04
KR102465474B1 (ko) 2022-11-09
US20210392251A1 (en) 2021-12-16
JP2021073520A (ja) 2021-05-13
JP6829259B2 (ja) 2021-02-10
KR20210095227A (ko) 2021-07-30
JP7508380B2 (ja) 2024-07-01
KR20180122360A (ko) 2018-11-12
EP3419275A4 (en) 2019-12-18
EP3419275A1 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
TWI648587B (zh) Camera module based on integrated packaging process and integrated base assembly and manufacturing thereof method
WO2017140092A1 (zh) 基于一体封装工艺的摄像模组及其一体基座组件和制造方法
TWI703715B (zh) 陣列攝像模組及其模塑感光元件和製造方法以及電子設備
JP7071926B2 (ja) カメラモジュール及びその感光性部品並びにその製造方法
CN105847645B (zh) 基于一体封装工艺的摄像模组及其一体基座组件及制造方法
CN110708454B (zh) 基于模塑工艺的摄像模组
US20220375978A1 (en) Camera module and molded photosensitive assembly and manufacturing method thereof, and electronic device
CN110324516B (zh) 摄像模组及其感光组件和制造方法
WO2017140118A1 (zh) 阵列摄像模组及其模塑感光组件、线路板组件和制造方法以及电子设备
US11653079B2 (en) Camera module, circuit board assembly and manufacturing method thereof, and electronic device with camera module
CN109510932B (zh) 基于模塑工艺的摄像模组及其模塑线路板组件及制造方法
TWI657306B (zh) 陣列攝像模組及其模塑感光組件、線路板組件和製造方法以及電子設備
CN107566691B (zh) 感光组件和摄像模组及其制造方法
WO2017220015A1 (zh) 定焦摄像模组及其制造方法
US11729483B2 (en) Photosensitive component, and camera module and manufacturing method therefor
WO2018113794A2 (zh) 摄像模组及其电路板组件和制造方法以及带有摄像模组的电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543321

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187026982

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016890320

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016890320

Country of ref document: EP

Effective date: 20180918