WO2017130820A1 - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
WO2017130820A1
WO2017130820A1 PCT/JP2017/001592 JP2017001592W WO2017130820A1 WO 2017130820 A1 WO2017130820 A1 WO 2017130820A1 JP 2017001592 W JP2017001592 W JP 2017001592W WO 2017130820 A1 WO2017130820 A1 WO 2017130820A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
transport layer
group
conversion element
hole transport
Prior art date
Application number
PCT/JP2017/001592
Other languages
English (en)
French (fr)
Inventor
田中 裕二
剛 松山
遼太 新居
徳重 木野
重代 鈴木
直道 兼為
Original Assignee
株式会社リコー
田中 裕二
剛 松山
遼太 新居
徳重 木野
重代 鈴木
直道 兼為
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リコー, 田中 裕二, 剛 松山, 遼太 新居, 徳重 木野, 重代 鈴木, 直道 兼為 filed Critical 株式会社リコー
Priority to JP2017564193A priority Critical patent/JP6447754B2/ja
Priority to EP17744050.0A priority patent/EP3410506B1/en
Priority to CN201780007753.7A priority patent/CN108496258B/zh
Publication of WO2017130820A1 publication Critical patent/WO2017130820A1/ja
Priority to US16/043,876 priority patent/US10763050B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2018Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte characterised by the ionic charge transport species, e.g. redox shuttles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/92Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the nitrogen atom of at least one of the amino groups being further bound to a carbon atom of a six-membered aromatic ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2013Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte the electrolyte comprising ionic liquids, e.g. alkyl imidazolium iodide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element.
  • Non- Patent Document 1 Among solar cells, dye-sensitized solar cells announced by Graetzel et al. Of Lausanne University of Technology have been reported to have higher photoelectric conversion characteristics than amorphous silicon solar cells in a weak indoor light environment (non- Patent Document 1).
  • the illuminance of indoor light such as an LED light or a fluorescent lamp is about 200 Lux to 1000 Lux, which is very weak light compared to direct sunlight (approximately 100,000 Lux).
  • the location where the energy harvesting element is installed is often set on a wall or the like, not directly under room light. In that case, the light irradiated to the energy harvesting element further becomes weak light.
  • the walls of hallways and the like are about 10 Lux to 50 Lux, and high conversion efficiency is desired even in an ultra low light environment.
  • This solar cell has a structure in which a porous metal oxide semiconductor is provided on a transparent conductive glass substrate, a dye adsorbed on the surface thereof, an electrolyte having a redox couple, and a counter electrode.
  • a porous metal oxide semiconductor is provided on a transparent conductive glass substrate, a dye adsorbed on the surface thereof, an electrolyte having a redox couple, and a counter electrode.
  • Graetzel et al. Significantly improved the photoelectric conversion efficiency by making a metal oxide semiconductor electrode such as titanium oxide porous to increase the surface area and adsorbing a ruthenium complex as a dye on a single molecule basis (for example, Patent Documents). 1, Non-Patent Documents 2 and 3).
  • a dye-sensitized solar cell using a conventional electrolytic solution with high power generation performance has concerns about volatilization or leakage of the electrolytic solution. Therefore, when practical use is assumed, solidification of the electrolytic solution is desired. Conventionally, the following solid-state dye-sensitized solar cells with high power generation performance have been reported. 1) Using an inorganic semiconductor (for example, see Non-Patent Document 4) 2) A material using a low molecular weight organic hole transport material (for example, see Patent Document 2, Non-Patent Documents 5 and 6) 3) Using conductive polymer (for example, see Patent Document 3 and Non-Patent Document 7)
  • the solid dye-sensitized solar cell using an inorganic semiconductor in the hole transport layer described in Non-Patent Document 4 uses a ruthenium dye having a small extinction coefficient. Therefore, it is necessary to increase the thickness of the titanium oxide film to 6 ⁇ m or more, and there are an increase in the number of times the titanium oxide layer is fired, cracks in the titanium oxide layer associated with the increase in thickness, and the manufacturing cost increases.
  • Non-Patent Document 5 is a solid-type dye-sensitized solar cell using an organic dye having a large extinction coefficient and a spiro-type hole transport material.
  • 4-tertiarybutylpyridine is used, the power generation performance in sunlight is high, but the power generation performance in indoor light has not been reported. It has been reported that when weak light such as room light is converted into electricity, a loss current due to internal resistance in the photoelectric conversion element is significant (see Non-Patent Document 8).
  • the internal resistance is increased, the short circuit current density is deteriorated and the photoelectric conversion characteristics are deteriorated.
  • an open circuit voltage will worsen and a photoelectric conversion characteristic will deteriorate.
  • Non-Patent Document 9 A basic substance capable of obtaining a high open-circuit voltage has been reported (see Non-Patent Document 9).
  • the solar cell described in Non-Patent Document 6 uses a benzidine-type hole transport material and can be synthesized at a lower cost than the spiro-type hole transport material used in the solar cell described in Non-Patent Document 5. . Although it is a low-cost material, its power generation performance is inferior to that of spiro-type hole transport materials.
  • the solar cell described in Non-Patent Document 7 uses a thiophene polymer material, and it is difficult to fill the polymer material in the titanium oxide porous film. In addition, the light absorption wavelength of the thiophene polymer material overlaps with the light absorption wavelength of the sensitizing dye, which hinders power generation efficiency.
  • Non-Patent Document 1 environmental test results of liquid dye-sensitized solar cells have been reported, but solid dye-sensitized solar cells have not been reported.
  • an object of the present invention is to provide a photoelectric conversion element that can obtain good photoelectric conversion properties even in the case of weak irradiation light such as room light.
  • a photoelectric conversion element of the present invention has a first electrode, a hole blocking layer, an electron transport layer, a hole transport layer, and a second electrode, and the hole transport layer Includes a compound represented by the following general formula (1).
  • R 1 represents a methoxy group or an ethoxy group.
  • R 2 represents a hydrogen group or a methyl group.
  • R 3 represents a hydrogen group, a methyl group or a methoxy group.
  • R 4 represents a methoxy group.
  • X represents -CH 2 -, - CH 2 CH 2 -, - O- or -C (CH 2) 5 - represents a).
  • the present invention it is possible to provide a photoelectric conversion element capable of obtaining good photoelectric conversion properties even in the case of weak irradiation light such as room light.
  • the photoelectric conversion element according to the present invention will be described with reference to the drawings.
  • the present invention is not limited to the embodiments described below, and other embodiments, additions, modifications, deletions, and the like can be changed within a range that can be conceived by those skilled in the art, and any aspect is possible. As long as the functions and effects of the present invention are exhibited, the scope of the present invention is included.
  • the photoelectric conversion element of the present invention has a first electrode, a hole blocking layer, an electron transport layer, a hole transport layer, and a second electrode, and the hole transport layer has the following general formula (1). It is characterized by including the compound represented by these.
  • R 1 represents a methoxy group or an ethoxy group.
  • R 2 represents a hydrogen group or a methyl group.
  • R 3 represents a hydrogen group, a methyl group or a methoxy group.
  • R 4 represents a methoxy group.
  • X represents -CH 2 -, - CH 2 CH 2 -, - O- or -C (CH 2) 5 - represents a).
  • the photoelectric conversion element refers to an element that converts light energy into electric energy or an element that converts electric energy into light energy, and specifically includes a solar cell or a photodiode.
  • the photoelectric conversion element according to the present invention can be used as a solar cell or a photodiode.
  • FIG. 1 is a diagram schematically showing a cross section of an example of a photoelectric conversion element according to the present invention.
  • the first electrode 2 is formed on the substrate 1
  • the hole blocking layer 3 is formed on the first electrode 2
  • the electron transport layer 4 is formed on the hole blocking layer 3
  • An example of a configuration in which the photosensitizing compound 5 is adsorbed on the electron transporting material in the electron transport layer 4 and the hole transport layer 6 is sandwiched between the first electrode 2 and the second electrode 7 facing the first electrode 2 is illustrated.
  • FIG. 1 shows an example of a configuration in which lead lines 8 and 9 are provided so that the first electrode 2 and the second electrode 7 are electrically connected. Details will be described below.
  • the substrate 1 used in the present invention is not particularly limited, and a known substrate can be used.
  • the substrate 1 is preferably made of a transparent material, and examples thereof include glass, a transparent plastic plate, a transparent plastic film, and an inorganic transparent crystal.
  • the first electrode 2 used in the present invention is not particularly limited as long as it is a conductive material that is transparent to visible light, and is a known one that is used for ordinary photoelectric conversion elements, liquid crystal panels, and the like. Can be used.
  • the material for the first electrode examples include indium tin oxide (hereinafter referred to as ITO), fluorine-doped tin oxide (hereinafter referred to as FTO), antimony-doped tin oxide (hereinafter referred to as ATO), indium / tin oxide, and the like.
  • ITO indium tin oxide
  • FTO fluorine-doped tin oxide
  • ATO antimony-doped tin oxide
  • indium / tin oxide examples include zinc oxide, niobium / titanium oxide, and graphene, and these may be used alone or in a plurality of layers.
  • the thickness of the first electrode is preferably 5 nm to 10 ⁇ m, more preferably 50 nm to 1 ⁇ m.
  • the first electrode is preferably provided on the substrate 1 made of a material transparent to visible light in order to maintain a certain hardness.
  • the substrate include glass, a transparent plastic plate, a transparent plastic film, and an inorganic transparent material. A crystal or the like is used.
  • FTO-coated glass, ITO-coated glass, zinc oxide: aluminum-coated glass, FTO-coated transparent plastic film, ITO-coated transparent plastic film can be used.
  • Etc. a transparent electrode obtained by doping cations or anions with different valences into tin oxide or indium oxide, or a metal electrode having a structure capable of transmitting light, such as a mesh shape or a stripe shape, provided on a substrate such as a glass substrate But you can.
  • a metal lead wire or the like may be used in combination.
  • the material of the metal lead wire include metals such as aluminum, copper, silver, gold, platinum, and nickel.
  • the metal lead wire can be formed by a method in which deposition is performed on the substrate by vapor deposition, sputtering, pressure bonding, or the like, and ITO or FTO is provided thereon.
  • the hole blocking layer 3 used in the present invention is not particularly limited as long as it is transparent to visible light and is an electron transporting material, but titanium oxide is particularly preferable.
  • the hole blocking layer 3 is provided in order to suppress a reduction in power due to recombination (so-called reverse electron transfer) of holes in the electrolyte and electrons on the electrode surface when the electrolyte is in contact with the electrode.
  • the effect of the hole blocking layer 3 is particularly remarkable in the solid dye-sensitized solar cell.
  • a solid dye-sensitized solar cell using an organic hole transport material or the like recombines holes in the hole transport material and electrons on the electrode surface ( This is due to the high speed of reverse electron transfer.
  • the method for forming the hole blocking layer is not limited, but high internal resistance is required to suppress the loss current in room light, and the film forming method is also important.
  • a sol-gel method for forming a wet film can be mentioned, but the film current is low and the loss current cannot be sufficiently suppressed. For this reason, dry film formation such as sputtering is more preferable, and the film density is sufficiently high and loss current can be suppressed.
  • This hole blocking layer is also formed for the purpose of preventing electronic contact between the first electrode 2 and the hole transport layer 6.
  • the thickness of the hole blocking layer is not particularly limited, but is preferably 5 nm to 1 ⁇ m, more preferably 500 nm to 700 nm for wet film formation, and more preferably 10 nm to 30 nm for dry film formation.
  • the photoelectric conversion element of the present invention forms the porous electron transport layer 4 on the hole blocking layer 3 and preferably contains an electron transport material such as semiconductor fine particles.
  • the electron transport layer 4 may be a single layer or a multilayer. In the case of multiple layers, a dispersion of semiconductor fine particles having different particle diameters can be applied in multiple layers, or different types of semiconductors, and application layers having different compositions of resins and additives can be applied in multiple layers. Multi-layer coating is an effective means when the film thickness is insufficient with a single coating.
  • the thickness of the electron transport layer is preferably 100 nm to 100 ⁇ m.
  • the semiconductor is not particularly limited, and a known semiconductor can be used. Specifically, a single semiconductor such as silicon or germanium, a compound semiconductor typified by a metal chalcogenide, a compound having a perovskite structure, or the like can be given.
  • Metal chalcogenides include titanium, tin, zinc, iron, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, or tantalum oxides, cadmium, zinc, lead, silver, antimony, bismuth. Sulfide, cadmium, lead selenide, cadmium telluride and the like.
  • compound semiconductors are preferably phosphides such as zinc, gallium, indium, cadmium, gallium arsenide, copper-indium-selenide, copper-indium-sulfide, and the like.
  • phosphides such as zinc, gallium, indium, cadmium, gallium arsenide, copper-indium-selenide, copper-indium-sulfide, and the like.
  • strontium titanate, calcium titanate, sodium titanate, barium titanate, potassium niobate and the like are preferable.
  • oxide semiconductors are preferable, and titanium oxide, zinc oxide, tin oxide, and niobium oxide are particularly preferable, and they may be used alone or in combination of two or more.
  • the crystal type of these semiconductors is not particularly limited, and may be single crystal, polycrystal, or amorphous.
  • the size of the semiconductor fine particles is not particularly limited, but the average primary particle diameter is preferably 1 nm to 100 nm, more preferably 5 nm to 50 nm. Further, the efficiency can be improved by the effect of scattering incident light by mixing or laminating semiconductor fine particles having a larger average particle diameter. In this case, the average particle size of the semiconductor is preferably 50 nm to 500 nm.
  • the method for producing the electron transport layer is not particularly limited, and examples thereof include a method of forming a thin film in a vacuum such as sputtering and a wet film forming method. In consideration of manufacturing costs, etc., a wet film-forming method is particularly preferable, and a paste in which semiconductor fine particle powder or sol is dispersed is prepared and applied on a hole blocking layer on an electron collector electrode (first electrode) substrate. The method is preferred.
  • the coating method is not particularly limited, and can be performed according to a known method.
  • dip method, spray method, wire bar method, spin coating method, roller coating method, blade coating method, gravure coating method, and wet printing methods such as relief printing, offset, gravure, intaglio printing, rubber printing, screen printing, etc. Can be used.
  • a dispersion of semiconductor fine particles When a dispersion of semiconductor fine particles is prepared by mechanical pulverization or using a mill, it is formed by dispersing at least semiconductor fine particles alone or a mixture of semiconductor fine particles and a resin in water or an organic solvent.
  • the resin used at this time include polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, acrylic acid esters, and methacrylic acid esters, silicon resins, phenoxy resins, polysulfone resins, polyvinyl butyral resins, and polyvinyl resins.
  • Formal resins polyester resins, cellulose ester resins, cellulose ether resins, urethane resins, phenol resins, epoxy resins, polycarbonate resins, polyarylate resins, polyamide resins, polyimide resins and the like can be mentioned.
  • Examples of the solvent for dispersing the semiconductor fine particles include alcohol solvents such as water, methanol, ethanol, isopropyl alcohol, and ⁇ -terpineol, ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ethyl formate, ethyl acetate, or Ester solvents such as n-butyl acetate, ether solvents such as diethyl ether, dimethoxyethane, tetrahydrofuran, dioxolane, or dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, or N-methyl-2-pyrrolidone Amide solvents such as dichloromethane, chloroform, bromoform, methyl iodide, dichloroethane, trichloroethane, trichloroethylene, chlorobenzene, o-dichlorobenzen
  • the semiconductor fine particle paste obtained by the dispersion of the semiconductor fine particles or the sol-gel method may be prepared by using acids such as hydrochloric acid, nitric acid, acetic acid, polyoxyethylene (10) octylphenyl ether, Surfactants, chelating agents such as acetylacetone, 2-aminoethanol, and ethylenediamine can be added.
  • acids such as hydrochloric acid, nitric acid, acetic acid, polyoxyethylene (10) octylphenyl ether, Surfactants, chelating agents such as acetylacetone, 2-aminoethanol, and ethylenediamine can be added.
  • the semiconductor fine particles are preferably subjected to firing, microwave irradiation, electron beam irradiation, or laser light irradiation in order to bring the particles into electronic contact with each other after coating and to improve film strength and adhesion to the substrate. . These treatments may be performed alone or in combination of two or more.
  • the range of the firing temperature is not particularly limited, but if the temperature is raised too much, the resistance of the substrate may be increased or the substrate may be melted, and therefore it is preferably 30 ° C. to 700 ° C., preferably 100 ° C. to 600 ° C. Is more preferable.
  • the firing time is not particularly limited, but is preferably 10 minutes to 10 hours.
  • the microwave irradiation may be performed from the electron transport layer forming side or from the back side. Although there is no restriction
  • titanium trichloride For the purpose of increasing the surface area of the semiconductor fine particles after firing and increasing the efficiency of electron injection from the photosensitizing compound to the semiconductor fine particles, for example, chemical plating using titanium tetrachloride aqueous solution or mixed solution with organic solvent, titanium trichloride You may perform the electrochemical plating process using aqueous solution.
  • This nanoporous structure has a very high surface area, which can be expressed using a roughness factor.
  • the roughness factor is a numerical value representing the actual area inside the porous body relative to the area of the semiconductor fine particles applied to the substrate. Accordingly, the roughness factor is preferably as large as possible, but is also related to the film thickness of the electron transport layer, and is preferably 20 or more in the present invention.
  • the photosensitizing compound is adsorbed on the surface of the electron transporting semiconductor (electron transporting material) which is the electron transport layer 4 in order to further improve the conversion efficiency.
  • the photosensitizing compound 5 is not limited to the above as long as it is a compound that is photoexcited by the excitation light used, and specific examples thereof include the following compounds.
  • a method of adsorbing the photosensitizing compound 5 to the electron transport layer 4 a method of immersing an electron collector electrode (first electrode) containing semiconductor fine particles in a photosensitizing compound solution or dispersion, a solution or A method in which the dispersion is applied to the electron transport layer and adsorbed can be used.
  • an immersion method, a dip method, a roller method, an air knife method, or the like can be used.
  • a wire bar method, a slide hopper method, an extrusion method, a curtain method, a spin method, a spray method, or the like can be used. Further, it may be adsorbed in a supercritical fluid using carbon dioxide or the like.
  • a condensing agent When adsorbing the photosensitizing compound, a condensing agent may be used in combination.
  • the condensing agent has a catalytic action that seems to physically or chemically bind the photosensitizing material and the electron transport compound to the inorganic surface, or acts stoichiometrically to advantageously shift the chemical equilibrium. Any of them may be used.
  • a thiol or a hydroxy compound may be added as a condensation aid.
  • Examples of the solvent for dissolving or dispersing the photosensitizing compound include water, methanol, ethanol, alcohol solvents such as isopropyl alcohol, Ketone solvents such as acetone, methyl ethyl ketone, or methyl isobutyl ketone, Ester solvents such as ethyl formate, ethyl acetate, or n-butyl acetate, Ether solvents such as diethyl ether, dimethoxyethane, tetrahydrofuran, dioxolane, or dioxane; Amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, or N-methyl-2-pyrrolidone, Halogenated hydrocarbon solvents such as dichloromethane, chloroform, bromoform, methyl iodide, dichloroethane, trichloroethane, trichloroethylene, chlorobenzene, o-
  • an aggregation dissociator may be used in combination.
  • the aggregating and dissociating agent is preferably a steroid compound such as cholic acid or chenodeoxycholic acid, a long-chain alkyl carboxylic acid or a long-chain alkyl phosphonic acid, and is appropriately selected according to the dye used.
  • the addition amount of these aggregating and dissociating agents is preferably 0.01 to 500 parts by mass, more preferably 0.1 to 100 parts by mass with respect to 1 part by mass of the photosensitizing compound.
  • the temperature at which the photosensitizing compound and the aggregation / dissociation agent are adsorbed to the electron transport layer 4 using these is preferably ⁇ 50 ° C. or higher and 200 ° C. or lower. Moreover, this adsorption may be carried out while standing or stirring. Examples of the stirring method include, but are not limited to, a stirrer, a ball mill, a paint conditioner, a sand mill, an attritor, a disperser, and ultrasonic dispersion.
  • the time required for adsorption is preferably 5 seconds or more and 1000 hours or less, more preferably 10 seconds or more and 500 hours or less, and further preferably 1 minute or more and 150 hours. Further, the adsorption is preferably performed in a dark place.
  • ⁇ Hole transport layer> an electrolyte solution in which a redox couple is dissolved in an organic solvent, a gel electrolyte in which a liquid in which the redox couple is dissolved in an organic solvent is impregnated in a polymer matrix, a molten salt containing the redox couple, a solid
  • an electrolyte, an inorganic hole transport material, an organic hole transport material, and the like are used, and the hole transport layer 6 of the present invention contains an organic hole transport material such as a compound represented by the general formula (1). Specific exemplary compounds in the general formula (1) are described below.
  • the hole transport layer 6 of the present invention preferably contains an organic hole transport material such as a compound represented by the following general formula (2).
  • the compound represented by the general formula (1) is preferably contained in an amount of 40% by mass to 90% by mass with respect to the hole transport layer.
  • the hole transport layer 6 in the present invention may be a single layer structure or a laminated structure made of different compounds. In the case of a laminated structure, it is preferable to use a polymer material for the hole transport layer 6 near the second electrode 7.
  • the use of a polymer material excellent in film forming property for the hole transport layer 6 can further smooth the surface of the porous electron transport layer and improve the photoelectric conversion characteristics.
  • it is difficult for the polymer material to penetrate into the porous electron transport layer it is excellent in covering the surface of the porous electron transport layer and is effective in preventing a short circuit when an electrode is provided. Therefore, higher performance can be obtained.
  • a known organic hole transport compound may be used in addition to the compound represented by the general formula (1).
  • J. Am. Chem. Soc. , 133 (2011) 18042 describes 2,2 ', 7,7'-tetrakis (N, N-di-p-methoxyphenylamino) -9,9'-spirobifluorene.
  • Am. Chem. Soc. , 135 (2013) 7378 describes N, N, N ′, N′-tetrakis (4-methoxyphenyl) benzidine and describes that it exhibits excellent photoelectric conversion characteristics.
  • the organic hole transport material close to the second electrode 7 is preferably a polymer material as described above, and the polymer material may be a known hole transport polymer. Materials may be used.
  • polystyrene resin poly(2-n-hexylthiophene), poly (3-n-octyloxythiophene), poly (9,9′-dioctyl-fluorene-co-bithiophene), poly (3,3 ′′ '-Didodecyl-quarterthiophene), poly (3,6-dioctylthieno [3,2-b] thiophene), poly (2,5-bis (3-decylthiophen-2-yl) thieno [3,2-b Thiophene), poly (3,4-didecylthiophene-co-thieno [3,2-b] thiophene), poly (3,6-dioctylthieno [3,2-b] thiophene-co-thieno [3, 2-b] thiophene), poly (3,6-dioctylthieno [3,2-b] thiophene-co-thiophene),
  • Additives include iodine, lithium iodide, sodium iodide, potassium iodide, cesium iodide, calcium iodide, copper iodide, iron iodide, silver iodide and other metal iodides, Quaternary ammonium salts such as tetraalkylammonium iodide, pyridinium iodide, metal bromides such as lithium bromide, sodium bromide, potassium bromide, cesium bromide, calcium bromide, Bromine salts of quaternary ammonium compounds such as tetraalkylammonium bromide and pyridinium bromide, Metal chlorides such as copper chloride and silver chloride, metal acetates such as copper acetate, silver acetate and palladium acetate, Metal sulfates such as copper sulfate and zinc
  • lithium compound examples include lithium trifluoromethanesulfonylimide, lithium bistrifluoromethanesulfonylimide, and lithium diisopropylimide.
  • an ionic liquid imidazolium compound is preferable, and the compound is preferably used at a ratio of 1% by mass to 10% by mass with respect to the organic hole transporting material.
  • a particularly high open circuit voltage can be obtained by adding a basic compound represented by the following general formula (3) to the hole transport layer 6. Further, the internal resistance of the photoelectric conversion element is increased, and the loss current in weak light such as room light can be reduced. Therefore, an open circuit voltage higher than that of a conventional basic compound can be obtained.
  • R 5 and R 6 represent a substituted or unsubstituted alkyl group or an aromatic hydrocarbon group, and may be the same or different. R 5 and R 6 are bonded to each other and contain a nitrogen atom. (A substituted or unsubstituted heterocyclic group may be formed.)
  • the hole transport layer in the present invention uses an organic hole transport material, and is different from the hole transport model using the iodine electrolyte or the like. Therefore, the amount of decrease in the short-circuit current density is small, and a high open circuit voltage can be obtained, whereby excellent photoelectric conversion characteristics can be obtained. Furthermore, when photoelectric conversion was performed in weak light such as room light, which is rarely reported, it was verified that a particularly significant advantage appears.
  • the number means a compound number in the chemical substance database “Japanese Chemical Substance Dictionary” published by the Japan Science and Technology Agency.
  • the addition amount of the basic compound represented by the general formula (3) in the hole transport layer is preferably 1 part by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the organic hole transport material. More preferably, it is at least 15 parts by weight.
  • the oxidizing agent include tris (4-bromophenyl) aminium hexachloroantimonate, silver hexafluoroantimonate, nitrosonium tetrafluorate, silver nitrate, and a cobalt complex compound. It is not necessary for all organic hole transport materials to be oxidized by the addition of the oxidizing agent, and only a part of the hole transporting material needs to be oxidized. The added oxidizing agent may be taken out of the system after the addition or may not be taken out.
  • the hole transport layer 6 is preferably formed directly on the electron transport layer 4.
  • the method of forming a thin film in vacuum, such as vacuum deposition, and the wet film forming method are mentioned.
  • a wet film forming method is particularly preferable, and a method of coating on the electron transport layer is preferable.
  • the coating method is not particularly limited, and can be performed according to a known method. For example, dip method, spray method, wire bar method, spin coating method, roller coating method, blade coating method, gravure coating method, and wet printing methods such as relief printing, offset, gravure, intaglio printing, rubber printing, screen printing, etc. Can be used.
  • the film may be formed in a supercritical fluid or a subcritical fluid having a temperature and pressure lower than the critical point.
  • the supercritical fluid exists as a non-aggregating high-density fluid in a temperature / pressure region that exceeds the limit (critical point) at which gas and liquid can coexist, and does not aggregate even when compressed.
  • the limit critical point
  • supercritical fluids examples include ercol solvents such as carbon monoxide, carbon dioxide, ammonia, nitrogen, water, methanol, ethanol, n-butanol, ethane, propane, 2,3-dimethylbutane, benzene, toluene and the like. Hydrocarbon solvents, halogen solvents such as methylene chloride and chlorotrifluoromethane, and ether solvents such as dimethyl ether are preferred.
  • carbon dioxide is particularly preferable because it has a critical pressure of 7.3 MPa and a critical temperature of 31 ° C., so that it can easily create a supercritical state and is nonflammable and easy to handle.
  • These fluids may be used alone or in combination of two or more.
  • the subcritical fluid is not particularly limited as long as it exists as a high pressure liquid in a temperature and pressure region near the critical point, and can be appropriately selected according to the purpose.
  • the compound mentioned as a supercritical fluid mentioned above can be used conveniently also as a subcritical fluid.
  • the critical temperature and critical pressure of the supercritical fluid are not particularly limited and can be appropriately selected according to the purpose.
  • the critical temperature is preferably ⁇ 273 ° C. or higher and 300 ° C. or lower, particularly 0 ° C. or higher and 200 ° C. or lower. preferable.
  • an organic solvent or an entrainer can be used in combination. By adding an organic solvent and an entrainer, the solubility in the supercritical fluid can be adjusted more easily.
  • a ketone solvent such as acetone, methyl ethyl ketone, or methyl isobutyl ketone
  • Ester solvents such as ethyl formate, ethyl acetate, or n-butyl acetate
  • Ether solvents such as diisopropyl ether, dimethoxyethane, tetrahydrofuran, dioxolane, or dioxane
  • Amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, or N-methyl-2-pyrrolidone
  • Halogenated hydrocarbon solvents such as dichloromethane, chloroform, bromoform, methyl iodide, dichloroethane, trichloroethane, trichloroethylene, chlorobenzene, o-dichlorobenzene, flu
  • a pressing process may be performed.
  • the organic hole transport material is more closely attached to the porous electrode, so that the efficiency is improved.
  • the roll molding method using the press molding method using a flat plate represented by IR tablet shaping device, a roller, etc. can be mentioned.
  • the pressure is preferably 10 kgf / cm 2 or more, more preferably 30 kgf / cm 2 or more.
  • heat may be applied during the pressing process.
  • a release material may be sandwiched between the press and the electrode.
  • the release material include polytetrafluoroethylene, polychlorotrifluoride ethylene, tetrafluoroethylene hexafluoropropylene copolymer, perfluoroalkoxy fluoride resin, polyvinylidene fluoride, ethylene tetrafluoride ethylene copolymer, ethylene
  • fluororesins such as chlorotrifluoride ethylene copolymer and polyvinyl fluoride.
  • a metal oxide may be provided between the organic hole transport material and the second electrode.
  • the metal oxide include molybdenum oxide, tungsten oxide, vanadium oxide, and nickel oxide, and molybdenum oxide is particularly preferable.
  • the method of providing these metal oxides on the hole transport material is not particularly limited, and examples thereof include a method of forming a thin film in a vacuum such as sputtering and vacuum deposition, and a wet film forming method.
  • a method of forming a thin film in a vacuum such as sputtering and vacuum deposition
  • a wet film forming method it is preferable to prepare a paste in which a metal oxide powder or sol is dispersed and apply the paste on the hole transport layer.
  • the coating method is not particularly limited, and can be performed according to a known method.
  • dip method, spray method, wire bar method, spin coating method, roller coating method, blade coating method, gravure coating method, and wet printing methods such as relief printing, offset, gravure, intaglio printing, rubber printing, screen printing, etc.
  • the film thickness is preferably from 0.1 nm to 50 nm, more preferably from 1 nm to 10 nm.
  • the second electrode is newly applied after the hole transport layer is formed or on the metal oxide.
  • the same electrode as the above-mentioned first electrode can be usually used, and a support is not necessarily required in a configuration in which strength and sealability are sufficiently maintained.
  • the second electrode material include metals such as platinum, gold, silver, copper, and aluminum, carbon compounds such as graphite, fullerene, carbon nanotube, and graphene, and conductive metal oxides such as ITO, FTO, and ATO. , Conductive polymers such as polythiophene and polyaniline.
  • the film thickness of the second electrode layer is not particularly limited, and may be used alone or in combination of two or more.
  • the coating of the second electrode can be appropriately formed on the hole transport layer by a method such as coating, laminating, vapor deposition, CVD, or bonding depending on the type of material used and the type of hole transport layer.
  • a method in which the first electrode side is transparent and sunlight is incident from the first electrode side is preferable.
  • a material that reflects light on the second electrode side and glass, plastic, or metal thin film on which metal, conductive oxide is deposited is preferable. It is also effective to provide an antireflection layer on the sunlight incident side.
  • the photoelectric conversion element of the present invention can be applied to a solar cell and a power supply device provided with the solar cell.
  • any device can be used as long as it has conventionally used a solar cell or a power supply device using the solar cell.
  • examples of utilizing the characteristics of the photoelectric conversion element of the present invention include power supply devices such as a mobile phone, an electronic notebook, and electronic paper. It can also be used as an auxiliary power source for extending the continuous use time of a rechargeable or dry battery type electric appliance.
  • it can be used as an alternative to a primary battery combined with a secondary battery as a self-supporting power source for sensors.
  • R 1 represents a methoxy group or an ethoxy group.
  • R 2 represents a hydrogen group or a methyl group.
  • R 3 represents a hydrogen group, a methyl group or a methoxy group.
  • R 4 represents a methoxy group.
  • X represents -CH 2 -, - CH 2 CH 2 -, - O- or -C (CH 2) 5 - .
  • Y representing a represents a halogen element).
  • R 5 and R 6 represent a substituted or unsubstituted alkyl group or an aromatic hydrocarbon group, and may be the same or different. R 5 and R 6 are bonded to each other and contain a nitrogen atom. A substituted or unsubstituted heterocyclic group may be formed, and Z represents a halogen element.
  • Example 1 ⁇ Production of titanium oxide semiconductor electrode> A dense hole blocking layer 3 of titanium oxide was formed on the ITO glass substrate by reactive sputtering with oxygen gas using a target made of metallic titanium. Next, 3 g of titanium oxide (P90 manufactured by Nippon Aerosil Co., Ltd.), 0.2 g of acetylacetone, and 0.3 g of surfactant (polyoxyethylene octylphenyl ether manufactured by Wako Pure Chemical Industries, Ltd.) were mixed with 5.5 g of water and 1.0 g of ethanol in a bead mill. The treatment was applied for 12 hours. 1.2 g of polyethylene glycol (# 20,000) was added to the obtained dispersion to prepare a paste. This paste was applied on the hole blocking layer so as to have a film thickness of 1.5 ⁇ m, dried at room temperature, and then baked at 500 ° C. for 30 minutes in the air to form a porous electron transport layer 4.
  • titanium oxide P90 manufactured by Nippon Aerosil Co., Ltd
  • Organic hole transporting material represented by 1-1 183.1 mg of chlorobenzene solution: 1 ml; Lithium bis (trifluoromethanesulfonyl) imide manufactured by Kanto Chemical Co., Ltd .: 12.83 mg;
  • a hole transport layer 6 was formed on the semiconductor electrode carrying the photosensitizing compound 5 by spin coating from a solution obtained by adding 21.97 mg (film thickness: 300 nm). On this, silver was vacuum-deposited by 100 nm to produce a second electrode 7 to produce a photoelectric conversion element.
  • Example 1 Compound No. 1 in Example 1 A photoelectric conversion device was prepared and evaluated in the same manner as in Example 1 except that 1-1 and tertiary butylpyridine (tBP) were changed as shown in Table 1. The results are shown in Table 1.
  • tBP tertiary butylpyridine
  • Example 1 1-1 Compound No. 1 in Example 1 1-1 is an organic hole transport material (Merck Co., Ltd., Brand: 2,2 ′, 7,7′-tetrakis (N, N-di-p-methoxyphenyamino) -9,9′-spirobifluorene, product number: SHT-)
  • a photoelectric conversion element was produced and evaluated in the same manner as in Example 1 except that the change to 263) was made. The results are shown in Table 1.
  • Example 2 Compound No. 2 in Example 3 1-1 is an organic hole transport material (Merck Co., Ltd., Brand: 2,2 ′, 7,7′-tetrakis (N, N-di-p-methoxyphenyamino) -9,9′-spirobifluorene, product number: SHT-)
  • a photoelectric conversion element was produced and evaluated in the same manner as in Example 3 except that the change to 263) was made. The results are shown in Table 1.
  • the photoelectric conversion elements of Examples 1 to 15 have excellent power generation performance under an extremely weak illuminance environment (10 lux to 50 lux).
  • the power generation performance in a 10-lux environment is excellent.
  • the comparative example 2 is unpreferable for employ
  • the compound represented by the general formula (1) has a great advantage.
  • the wall In places with low illuminance such as a corridor in an indoor environment, the wall is often about 10 lux, and is considered to be a photoelectric conversion element useful as a self-supporting power source for sensors in the security field such as human sensors.
  • the photoelectric conversion element of the present invention exhibits excellent photoelectric conversion characteristics under extremely weak illuminance.
  • R 1 represents a methoxy group or an ethoxy group.
  • R 2 represents a hydrogen group or a methyl group.
  • R 3 represents a hydrogen group, a methyl group or a methoxy group.
  • R 4 represents a methoxy group.
  • X represents -CH 2 -, - CH 2 CH 2 -, - O- or -C (CH 2) 5 - represents a).
  • the said hole transport layer is a photoelectric conversion element as described in said ⁇ 1> containing the basic compound represented by following General formula (2).
  • X is -CH 2 -, - CH 2 CH 2 -, - O- or -C (CH 2) 5 - represents a.
  • ⁇ 3> The photoelectric conversion element according to ⁇ 1> or ⁇ 2>, wherein the hole transport layer includes a basic compound represented by the following general formula (3).
  • R 5, R 6 represents a substituted or unsubstituted alkyl group or an aromatic hydrocarbon group, may be the same or different.
  • the electron transport layer includes an electron transport material, and the electron transport material is at least one selected from the group consisting of titanium oxide, zinc oxide, tin oxide, and niobium oxide. 3>.
  • ⁇ 5> The photoelectric conversion element according to any one of ⁇ 1> to ⁇ 4>, wherein the hole blocking layer includes titanium oxide.
  • ⁇ 6> The photoelectric conversion element according to any one of ⁇ 1> to ⁇ 5>, wherein the hole transport layer further includes an imidazolium compound of an ionic liquid.

Abstract

第一の電極と、ホールブロッキング層と、電子輸送層と、ホール輸送層と、第二の電極とを有し、前記ホール輸送層は、下記一般式(1)で表される化合物を含む光電変換素子。(式中、Rはメトキシ基またはエトキシ基を表す。Rは水素基またはメチル基を表す。Rは水素基、メチル基またはメトキシ基を表す。Rはメトキシ基を表す。Xは-CH-、-CHCH-、-O-または-C(CH-を表す。)

Description

光電変換素子
 本発明は、光電変換素子に関する。
 近年、電子回路における駆動電力が非常に少なくなり、微弱な電力でもセンサ等の様々な電子部品を駆動することができるようになった。さらに、センサの活用に際し、その場で発電し消費できる自立電源(環境発電素子)への応用が期待されており、その中でも太陽電池は光があればどこでも発電できる素子として注目を集めている。小型な環境発電素子は、様々な場所に配置することが可能となり、二次電池と組合せることで、交換不要な一次電池となり得る。発電性能向上は、更なる小型や、センサ情報を無線通信にて送信する回数を増やすことが可能となる。
 太陽電池の中でも、スイスローザンヌ工科大学のGraetzelらが発表した色素増感型太陽電池は、微弱な室内光環境化においてアモルファスシリコン太陽電池以上の高い光電変換特性を有することが報告されている(非特許文献1参照)。通常、LEDライトや蛍光灯などの室内光の照度は200Luxから1000Lux程度であり、太陽の直射光(およそ100000Lux)と比較し、非常に微弱な光である。環境発電素子が設置される場所は、室内光の直下ではなく、壁等に設定されることが多い。その場合、環境発電素子に照射される光は、更に微弱光となる。廊下等の壁は、10Luxから50Lux程度であり、超微弱光環境下でも高い変換効率が望まれる。
 この太陽電池の構造は、透明導電性ガラス基板上に多孔質な金属酸化物半導体を設け、その表面に吸着した色素と、酸化還元対を有する電解質と、対向電極とからなる。Graetzelらは、酸化チタン等の金属酸化物半導体電極を多孔質化して表面積を大きくしたこと、並びに色素としてルテニウム錯体を単分子吸着させたことにより光電変換効率を著しく向上させた(例えば、特許文献1、非特許文献2、3参照)。
 発電性能が高い従来の電解液を用いた色素増感型太陽電池は、電解液の揮発や漏れ等の懸念がある。そこで、実用化を想定した際には、電解液の固体化が望まれる。従来から、次に示されるような発電性能の高い固体型色素増感型太陽電池の報告がされている。
1)無機半導体を用いたもの(例えば、非特許文献4参照)
2)低分子有機ホール輸送材料を用いたもの(例えば、特許文献2、非特許文献5、6参照)
3)導電性高分子を用いたもの(例えば、特許文献3、非特許文献7参照)
 非特許文献4に記載のホール輸送層に無機系半導体を用いた固体型色素増感太陽電池は、吸光係数の小さいルテニウム系色素を用いている。そのため、酸化チタン膜厚を6μm以上に厚くする必要があり、酸化チタン層の焼成回数増加や厚膜化に伴う酸化チタン層のクラック等があり、製造コストは高くなる。
 非特許文献5に記載の太陽電池は、吸光係数の大きな有機色素とスピロ型のホール輸送材料を用いた固体型色素増感太陽電池である。4-ターシャルブチルピリジンを用いており、太陽光における発電性能は高いが、室内光における発電性能は報告されていない。室内光のような微弱な光を電気に変換する際には、光電変換素子における内部抵抗による損失電流が顕著であることが報告されている(非特許文献8参照)。その内部抵抗を高くすると短絡電流密度が悪くなり、光電変換特性悪化する。また、内部抵抗を低くすると開放電圧が悪くなり、光電変換特性が悪化する。すなわち、内部抵抗を高くすることと、良好な光電変換性の両立は、非常に困難である。また、擬似太陽光と比べて、微弱な室内光においては、光電変換素子で得られる開放電圧が低くなる。そのため、電子回路を駆動する際に必要な出力電圧を得るためには、高い開放電圧を得る必要がある。高い開放電圧を得ることができる塩基性物質は従来報告されている(非特許文献9参照)。
 しかしながら、ヨウ素等の電解液型色素増感太陽電池においては、従来から用いられている4-ターシャルブチルピリジンより優れた光電変換性を得ることができる塩基性材料は存在しない。
 非特許文献6に記載の太陽電池は、ベンジジン型のホール輸送材料を用いており、非特許文献5に記載の太陽電池に用いられているスピロ型のホール輸送材料より安価に合成することができる。低コスト材料ではあるが、スピロ型のホール輸送材料より発電性能に劣る。
 非特許文献7に記載の太陽電池は、チオフェン系高分子材料を用いており、高分子材料を酸化チタン多孔質膜中に充填することは困難である。また、チオフェン系高分子材料の光吸収波長は、増感色素の光吸収波長と重なっており、発電効率を妨げる。
 以上、これまでに検討されてきた固体型光電変換素子は、何れも擬似太陽光における発電性能のみ報告されており、室内光における発電性能は報告されていない。また、非特許文献1において、液体型色素増感型太陽電池の環境試験結果は報告されているが、固体型色素増感型太陽電池は報告されていない。
特許第2664194号公報 特開平11-144773号公報 特開2000-106223号公報
パナソニック電工技報,56(2008)87 Nature,353(1991)737 J.Am.Chem.Soc.,115(1993)6382 Nature,485(2012)486 J.Am.Chem.Soc.,133(2011)18042 J.Am.Chem.Soc.,135(2013)7378 J.Phys.Chem.C,116(2012)25721 フジクラ技報,121(2011)42 Solar Energy Materials&Solar Cells,181(2004)87
 そこで、本発明は、室内光のような微弱な照射光の場合であっても、良好な光電変換性が得られる光電変換素子を提供することを目的とする。
 上記課題を解決するために、本発明の光電変換素子は、第一の電極と、ホールブロッキング層と、電子輸送層と、ホール輸送層と、第二の電極とを有し、前記ホール輸送層は、下記一般式(1)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000004
(式中、Rはメトキシ基またはエトキシ基を表す。Rは水素基またはメチル基を表す。Rは水素基、メチル基またはメトキシ基を表す。Rはメトキシ基を表す。Xは-CH-、-CHCH-、-O-または-C(CH-を表す。)
 本発明によれば、室内光のような微弱な照射光の場合であっても、良好な光電変換性が得られる光電変換素子を提供することができる。
本発明に係る光電変換素子の構造の一例を示す概略模式図である。
 以下、本発明に係る光電変換素子について図面を参照しながら説明する。なお、本発明は以下に示す実施形態に限定されるものではなく、他の実施形態、追加、修正、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。
 本発明の光電変換素子は、第一の電極と、ホールブロッキング層と、電子輸送層と、ホール輸送層と、第二の電極とを有し、前記ホール輸送層は、下記一般式(1)で表される化合物を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000005
(式中、Rはメトキシ基またはエトキシ基を表す。Rは水素基またはメチル基を表す。Rは水素基、メチル基またはメトキシ基を表す。Rはメトキシ基を表す。Xは-CH-、-CHCH-、-O-または-C(CH-を表す。)
 本発明によれば、室内光のような微弱な照射光、例えば10ルクス~50ルクス程度の場合であっても、良好な光電変換性が得られる。なお、本発明において光電変換素子とは、光エネルギーを電気エネルギーに変換する素子あるいは電気エネルギーを光エネルギーに変換する素子を表し、具体的には太陽電池あるいはフォトダイオード等が挙げられる。本発明に係る光電変換素子は太陽電池あるいはフォトダイオード等として用いることができる。
 光電変換素子の構成について図1に基づいて説明する。図1は本発明に係る光電変換素子の一例における断面を模式的に示す図である。
 図1に示す態様においては、基板1上に第一の電極2が形成され、第一の電極2上にホールブロッキング層3が形成され、ホールブロッキング層3上に電子輸送層4が形成され、電子輸送層4における電子輸送性材料に光増感化合物5が吸着し、第一の電極2と対向する第二の電極7との間にホール輸送層6が挟み込まれた構成の例が図示されている。また、図1では、第一の電極2と第二の電極7が導通するようにリードライン8、9が設けられている構成の例が図示されている。以下、詳細を説明する。
<基板>
 本発明に用いられる基板1としては、特に制限されるものではなく、公知のものを用いることができる。基板1は透明な材質のものが好ましく、例えばガラス、透明プラスチック板、透明プラスチック膜、無機物透明結晶体等が挙げられる。
<第一の電極>
 本発明に用いられる第一の電極2としては、可視光に対して透明な導電性物質であれば特に限定されるものではなく、通常の光電変換素子、あるいは液晶パネル等に用いられる公知のものを使用できる。
 第一の電極の材料としては、例えば、インジウム・スズ酸化物(以下、ITOと称す)、フッ素ドープ酸化スズ(以下、FTOと称す)、アンチモンドープ酸化スズ(以下、ATOと称す)、インジウム・亜鉛酸化物、ニオブ・チタン酸化物、グラフェン等が挙げられ、これらが単独あるいは複数積層されていてもよい。
 第一の電極の厚さは5nm~10μmが好ましく、50nm~1μmがさらに好ましい。
 また、第一の電極は一定の硬性を維持するため、可視光に透明な材質からなる基板1上に設けることが好ましく、基板としては、例えば、ガラス、透明プラスチック板、透明プラスチック膜、無機物透明結晶体などが用いられる。
 第一の電極と基板とが一体となっている公知のものを用いることもでき、例えば、FTOコートガラス、ITOコートガラス、酸化亜鉛:アルミニウムコートガラス、FTOコート透明プラスチック膜、ITOコート透明プラスチック膜等が挙げられる。
 また、酸化スズや酸化インジウムに原子価の異なる陽イオンもしくは陰イオンをドープした透明電極、メッシュ状、ストライプ状等、光が透過できる構造にした金属電極をガラス基板等の基板上に設けたものでもよい。
 これらは単独あるいは2種以上の混合、または積層したものでも構わない。また抵抗を下げる目的で、金属リード線等を併用してもよい。
 前記金属リード線の材質は、アルミニウム、銅、銀、金、白金、ニッケル等の金属が挙げられる。金属リード線は、基板に蒸着、スパッタリング、圧着等で設置し、その上にITOやFTOを設ける方法により形成できる。
<ホールブロッキング層>
 本発明で用いられるホールブロッキング層3としては、可視光に対して透明であり、かつ電子輸送性材料であれば特に限定されるものではないが、特に酸化チタンが好ましい。また、ホールブロッキング層3は、電解質が電極と接して、電解質中のホールと電極表面の電子が再結合(いわゆる逆電子移動)することによる電力低下を抑制するために設けられる。このホールブロッキング層3の効果は、固体型色素増感型太陽電池において特に顕著である。これは、電解液を用いた湿式色素増感太陽電池と比較し、有機ホール輸送材料等を用いた固体型色素増感型太陽電池はホール輸送材料中のホールと電極表面の電子の再結合(逆電子移動)速度が速いことに起因している。
 ホールブロッキング層の製膜方法は限定しないが、室内光における損失電流を抑制するためには、高い内部抵抗が必要であり、製膜方法も重要である。一般的には、湿式製膜となるゾルゲル法が挙げられるが、膜密度が低く十分に損失電流を抑制できない。そのため、より好ましくは、スパッタリング法などの乾式製膜であり、膜密度が十分に高く損失電流を抑制できる。
 このホールブロッキング層は、第一の電極2とホール輸送層6との電子的コンタクトを防ぐ目的でも形成される。このホールブロッキング層の膜厚は特に制限はないが、5nm~1μmが好ましく、湿式製膜では500nm~700nmがより好ましく、乾式製膜では10nm~30nmがより好ましい。
<電子輸送層>
 本発明の光電変換素子は、上記のホールブロッキング層3上に多孔質状の電子輸送層4を形成するものであり、半導体微粒子などの電子輸送性材料を含むことが好ましい。電子輸送層4は、単層であっても多層であってもよい。多層の場合、粒径の異なる半導体微粒子の分散液を多層塗布することも、種類の異なる半導体や、樹脂、添加剤の組成が異なる塗布層を多層塗布することもできる。一度の塗布で膜厚が不足する場合には、多層塗布は有効な手段である。
 一般的に、電子輸送層の膜厚が増大するほど単位投影面積当たりの担持光増感材料量(光増感化合物)も増えるため光の捕獲率が高くなるが、注入された電子の拡散距離も増えるため電荷の再結合によるロスも大きくなってしまう。したがって、電子輸送層の膜厚は100nm~100μmが好ましい。
 前記半導体としては特に限定されるものではなく、公知のものを使用することができる。
 具体的には、シリコン、ゲルマニウムのような単体半導体、あるいは金属のカルコゲニドに代表される化合物半導体、またはペロブスカイト構造を有する化合物等を挙げることができる。
 金属のカルコゲニドとしてはチタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、あるいはタンタルの酸化物、カドミウム、亜鉛、鉛、銀、アンチモン、ビスマスの硫化物、カドミウム、鉛のセレン化物、カドミウムのテルル化物等が挙げられる。
 他の化合物半導体としては亜鉛、ガリウム、インジウム、カドミウム、等のリン化物、ガリウム砒素、銅-インジウム-セレン化物、銅-インジウム-硫化物等が好ましい。
 また、ペロブスカイト構造を有する化合物としては、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸ナトリウム、チタン酸バリウム、ニオブ酸カリウム等が好ましい。
 これらの中でも酸化物半導体が好ましく、特に酸化チタン、酸化亜鉛、酸化スズ、酸化ニオブが好ましく、単独、あるいは2種以上の混合で使用しても構わない。これらの半導体の結晶型は特に限定されるものではなく、単結晶でも多結晶でも、あるいは非晶質でも構わない。
 半導体微粒子のサイズに特に制限はないが、一次粒子の平均粒径は1nm~100nmが好ましく、5nm~50nmがより好ましい。
 また、より大きい平均粒径の半導体微粒子を混合あるいは積層して入射光を散乱させる効果により、効率を向上させることも可能である。この場合の半導体の平均粒径は50nm~500nmが好ましい。
 電子輸送層の作製方法には特に制限はなく、スパッタリング等の真空中で薄膜を形成する方法や湿式製膜法が挙げられる。製造コスト等を考慮した場合、特に湿式製膜法が好ましく、半導体微粒子の粉末あるいはゾルを分散したペーストを調製し、電子集電電極(第一の電極)基板上のホールブロッキング層上に塗布する方法が好ましい。
 この湿式製膜法を用いた場合、塗布方法は特に制限はなく、公知の方法にしたがって行うことができる。
 例えば、ディップ法、スプレー法、ワイヤーバー法、スピンコート法、ローラーコート法、ブレードコート法、グラビアコート法、また、湿式印刷方法として、凸版、オフセット、グラビア、凹版、ゴム版、スクリーン印刷等様々な方法を用いることができる。
 半導体微粒子の分散液を機械的粉砕、あるいはミルを使用して作製する場合、少なくとも半導体微粒子単独、あるいは半導体微粒子と樹脂の混合物を水あるいは有機溶剤に分散して形成される。
 このときに使用される樹脂としては、例えば、スチレン、酢酸ビニル、アクリル酸エステル、メタクリル酸エステル等によるビニル化合物の重合体や共重合体、シリコン樹脂、フェノキシ樹脂、ポリスルホン樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリエステル樹脂、セルロースエステル樹脂、セルロースエーテル樹脂、ウレタン樹脂、フェノール樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリアミド樹脂、ポリイミド樹脂等が挙げられる。
 半導体微粒子を分散する溶媒としては、例えば、水、メタノール、エタノール、イソプロピルアルコール、α-テルピネオール等のアルコール系溶媒、アセトン、メチルエチルケトン、あるいはメチルイソブチルケトン等のケトン系溶媒、ギ酸エチル、酢酸エチル、あるいは酢酸n-ブチル等のエステル系溶媒、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、あるいはジオキサン等のエーテル系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、あるいはN-メチル-2-ピロリドン等のアミド系溶媒、ジクロロメタン、クロロホルム、ブロモホルム、ヨウ化メチル、ジクロロエタン、トリクロロエタン、トリクロロエチレン、クロロベンゼン、o-ジクロロベンゼン、フルオロベンゼン、ブロモベンゼン、ヨードベンゼン、あるいは1-クロロナフタレン等のハロゲン化炭化水素系溶媒、n-ペンタン、n-ヘキサン、n-オクタン、1,5-ヘキサジエン、シクロヘキサン、メチルシクロヘキサン、シクロヘキサジエン、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、あるいはクメン等の炭化水素系溶媒を挙げることができる。これらは単独、あるいは2種以上の混合溶媒として用いることができる。
 半導体微粒子の分散液、あるいはゾル-ゲル法等によって得られた半導体微粒子のペーストは、粒子の再凝集を防ぐため、塩酸、硝酸、酢酸等の酸、ポリオキシエチレン(10)オクチルフェニルエーテル等の界面活性剤、アセチルアセトン、2-アミノエタノール、エチレンジアミン等のキレート化剤等を添加することができる。
 また、製膜性を向上させる目的で増粘剤を添加することも有効な手段である。
 このとき加える増粘剤としては、ポリエチレングリコール、ポリビニルアルコール等の高分子、エチルセルロース等の増粘剤等が挙げられる。
 半導体微粒子は、塗布した後に粒子同士を電子的にコンタクトさせ、膜強度の向上や基板との密着性を向上させるために焼成、マイクロ波照射、電子線照射、あるいはレーザー光照射を行うことが好ましい。これらの処理は単独で行ってもあるいは2種類以上組み合わせて行ってもよい。
 焼成する場合、焼成温度の範囲に特に制限はないが、温度を上げ過ぎると基板の抵抗が高くなったり、溶融したりすることもあるため、30℃~700℃が好ましく、100℃~600℃がより好ましい。また、焼成時間にも特に制限はないが、10分間~10時間が好ましい。
 前記マイクロ波照射は、電子輸送層形成側から照射しても、裏側から照射しても構わない。
 照射時間には特に制限がないが、1時間以内で行うことが好ましい。
 焼成後、半導体微粒子の表面積の増大や、光増感化合物から半導体微粒子への電子注入効率を高める目的で、例えば四塩化チタンの水溶液や有機溶剤との混合溶液を用いた化学メッキや三塩化チタン水溶液を用いた電気化学的メッキ処理を行ってもよい。
 直径が数十nmの半導体微粒子を焼結等によって積層した膜は、多孔質状態を形成する。このナノ多孔構造は、非常に高い表面積を持ち、その表面積はラフネスファクターを用いて表わすことができる。
 このラフネスファクターは、基板に塗布した半導体微粒子の面積に対する多孔質内部の実面積を表わす数値である。したがって、ラフネスファクターは大きいほど好ましいが、電子輸送層の膜厚との関係もあり、本発明においては20以上が好ましい。
<光増感化合物>
 本発明では変換効率のさらなる向上のため、光増感化合物を電子輸送層4である電子輸送性半導体(電子輸送性材料)の表面に吸着させることが好ましい。
 光増感化合物5は、使用される励起光により光励起される化合物であれば上記に限定されないが、具体的には以下の化合物も挙げられる。
 特表平7-500630号公報、特開平10-233238号公報、特開2000-26487号公報、特開2000-323191号公報、特開2001-59062号公報等に記載の金属錯体化合物、特開平10-93118号公報、特開2002-164089号公報、特開2004-95450号公報、J.Phys.Chem.C,7224,Vol.111(2007)等に記載のクマリン化合物、同特開2004-95450号公報、Chem.Commun.,4887(2007)等に記載のポリエン化合物、特開2003-264010号公報、特開2004-63274号公報、特開2004-115636号公報、特開2004-200068号、特開2004-235052号公報、J.Am.Chem.Soc.,12218,Vol.126(2004)、Chem.Commun.,3036(2003)、Angew.Chem.Int.Ed.,1923,Vol.47(2008)等に記載のインドリン化合物、J.Am.Chem.Soc.,16701,Vol.128(2006)、J.Am.Chem.Soc.,14256,Vol.128(2006)等に記載のチオフェン化合物、特開平11-86916号公報、特開平11-214730号公報、特開2000-106224号公報、特開2001-76773号公報、特開2003-7359号公報等に記載のシアニン色素、特開平11-214731号公報、特開平11-238905号公報、特開2001-52766号公報、特開2001-76775号公報、特開2003-7360号等に記載メロシアニン色素、特開平10-92477号公報、特開平11-273754号公報、特開平11-273755号公報、特開2003-31273号等に記載の9-アリールキサンテン化合物、特開平10-93118号公報、特開2003-31273号等に記載のトリアリールメタン化合物、特開平9-199744号公報、特開平10-233238号公報、特開平11-204821号公報、特開平11-265738号、J.Phys.Chem.,2342,Vol.91(1987)、J.Phys.Chem.B,6272,Vol.97(1993)、Electroanal.Chem.,31,Vol.537(2002)、特開2006-032260号公報、J.Porphyrins Phthalocyanines,230,Vol.3(1999)、Angew.Chem.Int.Ed.,373,Vol.46(2007)、Langmuir,5436,Vol.24(2008)等に記載のフタロシアニン化合物、ポルフィリン化合物等を挙げることができる。特にこの中で、金属錯体化合物、クマリン化合物、ポリエン化合物、インドリン化合物、チオフェン化合物を用いることが好ましい。更に好ましくは、三菱製紙社製の下記構造式(4)で表されるD131、下記構造式(5)で表されるD102、下記構造式(6)で表されるD358が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 電子輸送層4に光増感化合物5を吸着させる方法としては、光増感化合物溶液中あるいは分散液中に半導体微粒子を含有する電子集電電極(第一の電極)を浸漬する方法、溶液あるいは分散液を電子輸送層に塗布して吸着させる方法を用いることができる。
 前者の場合、浸漬法、ディップ法、ローラ法、エアーナイフ法等を用いることができる。
 後者の場合は、ワイヤーバー法、スライドホッパー法、エクストルージョン法、カーテン法、スピン法、スプレー法等を用いることができる。
 また、二酸化炭素などを用いた超臨界流体中で吸着させても構わない。
 光増感化合物を吸着させる際、縮合剤を併用してもよい。
 前記縮合剤は、無機物表面に物理的あるいは化学的に光増感材料と電子輸送化合物を結合すると思われる触媒的作用をするもの、または化学量論的に作用し、化学平衡を有利に移動させるものの何れであってもよい。
 さらに、縮合助剤としてチオールやヒドロキシ化合物を添加してもよい。
 光増感化合物を溶解、あるいは分散する溶媒としては、例えば、水、メタノール、エタノール、あるいはイソプロピルアルコール等のアルコール系溶媒、
 アセトン、メチルエチルケトン、あるいはメチルイソブチルケトン等のケトン系溶媒、
 ギ酸エチル、酢酸エチル、あるいは酢酸n-ブチル等のエステル系溶媒、
 ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、あるいはジオキサン等のエーテル系溶媒、
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、あるいはN-メチル-2-ピロリドン等のアミド系溶媒、
 ジクロロメタン、クロロホルム、ブロモホルム、ヨウ化メチル、ジクロロエタン、トリクロロエタン、トリクロロエチレン、クロロベンゼン、o-ジクロロベンゼン、フルオロベンゼン、ブロモベンゼン、ヨードベンゼン、あるいは1-クロロナフタレン等のハロゲン化炭化水素系溶媒、
 n-ペンタン、n-ヘキサン、n-オクタン、1,5-ヘキサジエン、シクロヘキサン、メチルシクロヘキサン、シクロヘキサジエン、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、あるいはクメン等の炭化水素系溶媒を挙げることができ、これらは単独、あるいは2種以上の混合として用いることができる。
 また、光増感化合物は、その種類によっては化合物間の凝集を抑制した方がより効果的に働くものが存在するため、凝集解離剤を併用しても構わない。
 前記凝集解離剤としては、コール酸、ケノデオキシコール酸などのステロイド化合物、長鎖アルキルカルボン酸または長鎖アルキルホスホン酸が好ましく、用いる色素に対して適宜選ばれる。
 これら凝集解離剤の添加量は、光増感化合物1質量部に対して0.01質量部~500質量部が好ましく、0.1質量部~100質量部がより好ましい。
 これらを用い、電子輸送層4に光増感化合物および凝集解離剤を吸着する際の温度としては、-50℃以上、200℃以下が好ましい。
 また、この吸着は静置しても攪拌しながら行っても構わない。
 前記攪拌する場合の方法としては、スターラー、ボールミル、ペイントコンディショナー、サンドミル、アトライター、ディスパーザー、あるいは超音波分散等が挙げられるが、これらに限定されるものではない。
 吸着に要する時間は、5秒間以上、1000時間以下が好ましく、10秒間以上、500時間以下がより好ましく、1分間以上、150時間がさらに好ましい。
 また、吸着は暗所で行うことが好ましい。
<ホール輸送層>
 一般的にホール輸送層としては、酸化還元対を有機溶媒に溶解した電解液、酸化還元対を有機溶媒に溶解した液体をポリマーマトリックスに含浸したゲル電解質、酸化還元対を含有する溶融塩、固体電解質、無機ホール輸送材料、有機ホール輸送材料等が用いられるが、本発明のホール輸送層6は、前記一般式(1)で表される化合物等の有機ホール輸送材料を含有する。前記一般式(1)における具体的な例示化合物を下記に記す。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 本発明のホール輸送層6は、下記一般式(2)で表される化合物等の有機ホール輸送材料を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000010
(式中、Xは-CH-、-CHCH-、-O-または-C(CH-を表す。)
 また、前記一般式(1)で表される化合物はホール輸送層に対して40質量%~90質量%含まれることが好ましい。
 本発明におけるホール輸送層6は、単層構造でも異なる化合物からなる積層構造でも構わない。積層構造の場合、第二の電極7に近いホール輸送層6に高分子材料を用いることが好ましい。
 ホール輸送層6に製膜性に優れる高分子材料を用いることで多孔質状の電子輸送層の表面をより平滑化することができ、光電変換特性を向上することができるためである。
 また、高分子材料は多孔質状の電子輸送層内部へ浸透することが困難であるため、逆に多孔質状の電子輸送層表面の被覆にも優れ、電極を設ける際の短絡防止にも効果を発揮するため、より高い性能を得ることが可能となる。
 単層構造において用いられる有機ホール輸送材料としては、前記一般式(1)で表される化合物の他に公知の有機ホール輸送性化合物を用いてもよい。
 その具体例としては特公昭34-5466号公報等に示されているオキサジアゾール化合物、特公昭45-555号公報等に示されているトリフェニルメタン化合物、特公昭52-4188号公報等に示されているピラゾリン化合物、特公昭55-42380号公報等に示されているヒドラゾン化合物、特開昭56-123544号公報等に示されているオキサジアゾール化合物、特開昭54-58445号公報に示されているテトラアリールベンジジン化合物、特開昭58-65440号公報あるいは特開昭60-98437号公報に示されているスチルベン化合物等を挙げることができる。
 また、J.Am.Chem.Soc.,133(2011)18042には2,2’,7,7’-tetrakis(N,N-di-p-methoxyphenylamino)-9,9’-spirobifluoreneが記載されており、J.Am.Chem.Soc.,135(2013)7378にはN,N,N’,N’-tetrakis(4-methoxyphenyl)benzidineが記載されており、優れた光電変換特性を示すことが記載されている。
 ホール輸送層6が積層構造である場合、第二の電極7に近い有機ホール輸送性材料としては、前記のように高分子材料が好ましく、該高分子材料としては、公知のホール輸送性高分子材料を用いてもよい。
 その具体例としては、ポリ(3-n-ヘキシルチオフェン)、ポリ(3-n-オクチルオキシチオフェン)、ポリ(9,9’-ジオクチル-フルオレン-コ-ビチオフェン)、ポリ(3,3’’’-ジドデシル-クォーターチオフェン)、ポリ(3,6-ジオクチルチエノ[3,2-b]チオフェン)、ポリ(2,5-ビス(3-デシルチオフェン-2-イル)チエノ[3,2-b]チオフェン)、ポリ(3,4-ジデシルチオフェン-コ-チエノ[3,2-b]チオフェン)、ポリ(3,6-ジオクチルチエノ[3,2-b]チオフェン-コ-チエノ[3,2-b]チオフェン)、ポリ(3,6-ジオクチルチエノ[3,2-b]チオフェン-コ-チオフェン)、ポリ(3.6-ジオクチルチエノ[3,2-b]チオフェン-コ-ビチオフェン)等のポリチオフェン化合物、
 ポリ[2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン]、ポリ[2-メトキシ-5-(3,7-ジメチルオクチルオキシ)-1,4-フェニレンビニレン]、ポリ[(2-メトキシ-5-(2-エチルフェキシルオキシ)-1,4-フェニレンビニレン)-コ-(4,4’-ビフェニレンービニレン)]等のポリフェニレンビニレン化合物、
 ポリ(9,9’-ジドデシルフルオレニル-2,7-ジイル)、ポリ[(9,9-ジオクチル-2,7-ジビニレンフルオレン)-alt-コ-(9,10-アントラセン)]、ポリ[(9,9-ジオクチル-2,7-ジビニレンフルオレン)-alt-コ-(4,4’-ビフェニレン)]、ポリ[(9,9-ジオクチル-2,7-ジビニレンフルオレン)-alt-コ-(2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレン)]、ポリ[(9,9-ジオクチル-2,7-ジイル)-コ-(1,4-(2,5-ジヘキシルオキシ)ベンゼン)]等のポリフルオレン化合物、
 ポリ[2,5-ジオクチルオキシ-1,4-フェニレン]、ポリ[2,5-ジ(2-エチルヘキシルオキシ-1,4-フェニレン]等のポリフェニレン化合物、
 ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-alt-コ-(N,N’-ジフェニル)-N,N’-ジ(p-ヘキシルフェニル)-1,4-ジアミノベンゼン]、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-alt-コ-(N,N’-ビス(4-オクチルオキシフェニル)ベンジジン-N,N’-(1,4-ジフェニレン)]、ポリ[(N,N’-ビス(4-オクチルオキシフェニル)ベンジジン-N,N’-(1,4-ジフェニレン)]、ポリ[(N,N’-ビス(4-(2-エチルヘキシルオキシ)フェニル)ベンジジン-N,N’-(1,4-ジフェニレン)]、ポリ[フェニルイミノ-1,4-フェニレンビニレン-2,5-ジオクチルオキシ-1,4-フェニレンビニレン-1,4-フェニレン]、ポリ[p-トリルイミノ-1,4-フェニレンビニレン-2,5-ジ(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン-1,4-フェニレン]、ポリ[4-(2-エチルヘキシルオキシ)フェニルイミノ-1,4-ビフェニレン]等のポリアリールアミン化合物、
 ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-alt-コ-(1,4-ベンゾ(2,1’,3)チアジアゾール]、ポリ(3,4-ジデシルチオフェン-コ-(1,4-ベンゾ(2,1’,3)チアジアゾール)等のポリチアジアゾール化合物を挙げることができる。
 この中で、キャリア移動度やイオン化ポテンシャルを考慮するとポリチオフェン化合物とポリアリールアミン化合物が特に好ましい。
 また、上記に示した有機ホール輸送材料に各種添加剤を加えても構わない。
 添加剤としては、ヨウ素、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化セシウム、ヨウ化カルシウム、ヨウ化銅、ヨウ化鉄、ヨウ化銀等の金属ヨウ化物、
 ヨウ化テトラアルキルアンモニウム、ヨウ化ピリジニウム等の4級アンモニウム塩、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化セシウム、臭化カルシウム等の金属臭化物、
 臭化テトラアルキルアンモニウム、臭化ピリジニウム等の4級アンモニウム化合物の臭素塩、
 塩化銅、塩化銀等の金属塩化物、酢酸銅、酢酸銀、酢酸パラジウム等の酢酸金属塩、
 硫酸銅、硫酸亜鉛等の金属硫酸塩、フェロシアン酸塩-フェリシアン酸塩、フェロセン-フェリシニウムイオン等の金属錯体、
 ポリ硫化ナトリウム、アルキルチオール-アルキルジスルフィド等のイオウ化合物、
 ビオロゲン色素、ヒドロキノン等、ヨウ化1,2-ジメチル-3-n-プロピルイミダゾイニウム塩、ヨウ化1-メチル-3-n-ヘキシルイミダゾリニウム塩、1,2-ジメチル-3-エチルイミダゾリウムトリフロオロメタンスルホン酸塩、1-メチル-3-ブチルイミダゾリウムノナフルオロブチルスルホン酸塩、1-メチル-3-エチルイミダゾリウムビス(トリフルオロメチル)スルホニルイミド、1-n-ヘキシル-3-メチルイミダゾリニウムビス(トリフルオロメチルスルホニル)イミド等のInorg.Chem.35(1996)1168に記載のイオン液体、ピリジン、4-t-ブチルピリジン、ベンズイミダゾール等の塩基性化合物、
 リチウムトリフルオロメタンスルホニルイミド、リチウムビストリフルオロメタンスルホニルイミド、リチウムジイソプロピルイミド等のリチウム化合物を挙げることができる。
 中でも、イオン液体のイミダゾリウム化合物が好ましく、該化合物は、有機ホール輸送性材料に対し、1質量%~10質量%の割合で使用するのが好ましい。
 本発明においては、ホール輸送層6に下記一般式(3)で表される塩基性化合物を添加することで、特に高い開放電圧を得ることができる。
 また、光電変換素子における内部抵抗が高まり、室内光等の微弱光における損失電流を低減することができる。よって、従来の塩基性化合物より高い開放電圧を得られる。
Figure JPOXMLDOC01-appb-C000011
(式中、R、Rは置換もしくは無置換のアルキル基または芳香族炭化水素基を表し、同一でも異なっていてもよい。また、R、Rは互いに結合し、窒素原子を含む置換もしくは無置換の複素環基を形成してもよい。)
 従来から前記一般式(3)と類似構造である下記に表される塩基性化合物に分類される化合物自体は知られている。また、その一部の化合物は、ヨウ素電解液型色素増感太陽電池においては、塩基性化合物として用いることが知られている。しかし、これは開放電圧が高いが、短絡電流密度が大幅に減少し、光電変換特性は著しく悪化することは報告されている。
 本発明におけるホール輸送層は、有機ホール輸送性材料を用いるものであり、前記ヨウ素電解液等による正孔輸送モデルとは異なるものである。したがって、短絡電流密度の低下量が少なく、高い開放電圧が得られることで、優れた光電変換特性を得ることができる。さらに、報告例が少ない室内光等の微弱光における光電変換する際に、特に際立って優位性が現れることを検証することができた。
 以下に前記一般式(3)における具体的な例示化合物を下記に記すが、何らこれらに限定されるものではない。なお、下記構造式の横に番号がある場合、該番号は独立行政法人科学技術振興機構が公開している化学物質データベース「日本化学物質辞書」中の化合物番号を意味する。
Figure JPOXMLDOC01-appb-C000012
 前記一般式(3)で表される塩基性化合物のホール輸送層中の添加量は、有機ホール輸送材料100質量部に対して、1重量部以上20重量部以下であることが好ましく、5重量部以上15重量部以下であることがより好ましい。
 また導電性を向上させる目的で、有機ホール輸送材料の一部をラジカルカチオンにするための酸化剤を添加しても構わない。
 その酸化剤としては、ヘキサクロロアンチモン酸トリス(4-ブロモフェニル)アミニウム、ヘキサフルオロアンチモネート銀、ニトロソニウムテトラフルオボラート、硝酸銀、コバルト錯体系化合物等が挙げられる。
 この酸化剤の添加によって全ての有機ホール輸送材料が酸化される必要はなく、一部のみが酸化されていればよい。また添加した酸化剤は添加した後、系外に取り出しても、取り出さなくてもよい。
 ホール輸送層6は電子輸送層4の上に直接形成するのが好ましい。ホール輸送層6の作製方法には特に制限はなく、真空蒸着等の真空中で薄膜を形成する方法や湿式製膜法が挙げられる。製造コスト等を考慮した場合、特に湿式製膜法が好ましく、電子輸送層上に塗布する方法が好ましい。
 この湿式製膜法を用いた場合、塗布方法は特に制限はなく、公知の方法にしたがって行うことができる。例えば、ディップ法、スプレー法、ワイヤーバー法、スピンコート法、ローラーコート法、ブレードコート法、グラビアコート法、また、湿式印刷方法として、凸版、オフセット、グラビア、凹版、ゴム版、スクリーン印刷等様々な方法を用いることができる。また、超臨界流体あるいは臨界点より低い温度・圧力の亜臨界流体中で製膜してもよい。
 前記超臨界流体は、気体と液体が共存できる限界(臨界点)を超えた温度・圧力領域において非凝集性高密度流体として存在し、圧縮しても凝集せず、臨界温度以上、かつ臨界圧力以上の状態にある流体である限り特に制限はなく、目的に応じて適宜選択することができるが、臨界温度が低いものが好ましい。
 超臨界流体としては、例えば、一酸化炭素、二酸化炭素、アンモニア、窒素、水、メタノール、エタノール、n-ブタノールなどのエルコール系溶媒、エタン、プロパン、2,3-ジメチルブタン、ベンゼン、トルエンなどの炭化水素系溶媒、塩化メチレン、クロロトリフロロメタンなどのハロゲン系溶媒、ジメチルエーテルなどのエーテル系溶媒が好適である。これらの中でも、二酸化炭素は、臨界圧力7.3MPa、臨界温度31℃であることから、容易に超臨界状態をつくり出せるともに、不燃性で取扱いが容易であり、特に好ましい。
 また、これらの流体は、単独であっても2種以上の混合であっても構わない。
 前記亜臨界流体としては、臨界点近傍の温度及び圧力領域において、高圧液体として存在する限り特に制限はなく、目的に応じて適宜選択することができる。
 上述した超臨界流体として挙げられる化合物は、亜臨界流体としても好適に使用することができる。
 超臨界流体の臨界温度及び臨界圧力は特に制限はなく、目的に応じて適宜選択することができるが、臨界温度としては、-273℃以上300℃以下が好ましく、0℃以上200℃以下が特に好ましい。
 さらに、上述の超臨界流体及び亜臨界流体に加え、有機溶媒やエントレーナーを併用することもできる。
 有機溶媒及びエントレーナーの添加により、超臨界流体中での溶解度の調整をより容易に行うことができる。
 このような有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができる。
 例えば、アセトン、メチルエチルケトン、あるいはメチルイソブチルケトン等のケトン系溶媒、
 ギ酸エチル、酢酸エチル、あるいは酢酸n-ブチル等のエステル系溶媒、
 ジイソプロピルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、あるいはジオキサン等のエーテル系溶媒、
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、あるいはN-メチル-2-ピロリドン等のアミド系溶媒、
 ジクロロメタン、クロロホルム、ブロモホルム、ヨウ化メチル、ジクロロエタン、トリクロロエタン、トリクロロエチレン、クロロベンゼン、o-ジクロロベンゼン、フルオロベンゼン、ブロモベンゼン、ヨードベンゼン、あるいは1-クロロナフタレン等のハロゲン化炭化水素系溶媒、
 n-ペンタン、n-ヘキサン、n-オクタン、1,5-ヘキサジエン、シクロヘキサン、メチルシクロヘキサン、シクロヘキサジエン、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、あるいはクメン等の炭化水素系溶媒などが挙げられる。
 本発明では、第一の電極上にホール輸送層6を設けた後、プレス処理工程を施しても構わない。このプレス処理を施すことによって、有機ホール輸送材料がより多孔質電極と密着するため効率が改善すると考えている。
 プレス処理方法に特に制限はないが、IR錠剤整形器に代表されるような平板を用いたプレス成型法、ローラーなどを用いたロールプレス法を挙げることができる。
 圧力としては10kgf/cm以上が好ましく、30kgf/cm以上がより好ましい。プレス処理する時間に特に制限はないが、1時間以内で行うことが好ましい。また、プレス処理時に熱を加えても構わない。
 また、上述のプレス処理の際、プレス機と電極間に離型材を挟んでも構わない。
 前記離型材としては、ポリ四フッ化エチレン、ポリクロロ三フッ化エチレン、四フッ化エチレン六フッ化プロピレン共重合体、ペルフルオロアルコキシフッ化樹脂、ポリフッ化ビニリデン、エチレン四フッ化エチレン共重合体、エチレンクロロ三フッ化エチレン共重合体、ポリフッ化ビニルなどのフッ素樹脂を挙げることができる。
 上記プレス処理工程を行った後、対極を設ける前に、有機ホール輸送材料と第二の電極に間に金属酸化物を設けても良い。設けてもよい金属酸化物としては、酸化モリブデン、酸化タングステン、酸化バナジウム、酸化ニッケルを挙げることができ、特に酸化モリブデンが好ましい。
 これら金属酸化物をホール輸送材料上に設ける方法としては特に制限はなく、スパッタリングや真空蒸着等の真空中で薄膜を形成する方法や湿式成膜法が挙げることができる。 湿式製膜法においては、金属酸化物の粉末あるいはゾルを分散したペーストを調製し、ホール輸送層上に塗布する方法が好ましい。
 この湿式成膜法を用いた場合、塗布方法は特に制限はなく、公知の方法にしたがって行うことができる。
 例えば、ディップ法、スプレー法、ワイヤーバー法、スピンコート法、ローラーコート法、ブレードコート法、グラビアコート法、また、湿式印刷方法として、凸版、オフセット、グラビア、凹版、ゴム版、スクリーン印刷等様々な方法を用いることができる。膜厚としては0.1nm~50nmが好ましく、1nm~10nmがより好ましい。
<第二の電極>
 第二の電極は、ホール輸送層形成後あるいは上述の金属酸化物上に新たに付与される。
 また第二の電極としては、通常前述の第一の電極と同様のものを用いることができ、強度や密封性が充分に保たれるような構成では支持体は必ずしも必要ではない。
 第二の電極材料の具体例としては、白金、金、銀、銅、アルミニウム等の金属、グラファイト、フラーレン、カーボンナノチューブ、グラフェン等の炭素系化合物、ITO、FTO、ATO等の導電性金属酸化物、ポリチオフェン、ポリアニリン等の導電性高分子が挙げられる。
 第二の電極層の膜厚には特に制限はなく、また単独あるいは2種以上の混合で用いても構わない。
 第二の電極の塗設については、用いられる材料の種類やホール輸送層の種類により、適宜ホール輸送層上に塗布、ラミネート、蒸着、CVD、貼り合わせ等の手法により形成可能である。
 色素増感型太陽電池として動作するためには、第一の電極と第二の電極の少なくとも一方は実質的に透明でなければならない。
 本発明の光電変換素子においては、第一の電極側が透明であり、太陽光を第一の電極側から入射させる方法が好ましい。この場合、第二の電極側には光を反射させる材料を使用することが好ましく、金属、導電性酸化物を蒸着したガラス、プラスチック、あるいは金属薄膜が好ましい。
 また、太陽光の入射側に反射防止層を設けることも有効な手段である。
<用途>
 本発明の光電変換素子は、太陽電池及びこれを備えた電源装置に応用できる。
 応用例としては、従来から太陽電池やそれを用いた電源装置を利用している機器類であれば、いずれのものでも可能である。
 例えば電子卓上計算機や腕時計用の太陽電池に用いてもよいが、本発明の光電変換素子の特徴を活用する一例として、携帯電話、電子手帳、電子ペーパー等の電源装置が挙げられる。また充電式や乾電池式の電気器具の連続使用時間を長くするための補助電源として用いることもできる。更には、センサ用の自立型電源として、二次電池と組み合わせた一次電池代替としても用いることができる。
<本発明で使用される前記一般式(1)で表される化合物の合成例>
 有機合成による報告例(J.Org.Chem.Soc.,67(2002)3029)と同様に下記ルートから容易に合成することができる。
Figure JPOXMLDOC01-appb-C000013
(式中、Rはメトキシ基またはエトキシ基を表す。Rは水素基またはメチル基を表す。Rは水素基、メチル基またはメトキシ基を表す。Rはメトキシ基を表す。Xは-CH-、-CHCH-、-O-または-C(CH-を表す。Yはハロゲン元素を表す。)
<本発明で使用される塩基性材料の合成例>
 有機合成による報告例(J.Org.Chem.Soc.,67(2002)3029)と同様に下記ルートから容易に合成することができる。
Figure JPOXMLDOC01-appb-C000014
(式中、R、Rは置換もしくは無置換のアルキル基または芳香族炭化水素基を表し、同一でも異なっていてもよい。また、R、Rは互いに結合し、窒素原子を含む置換もしくは無置換の複素環基を形成してもよい。Zは、ハロゲン元素を表す。)
 以下、本発明を実施例により詳細に説明するが、本発明は下記実施例に限定されるものではない。
(実施例1)
<酸化チタン半導体電極の作製>
 金属チタンからなるターゲットを用いた酸素ガスによる反応性スパッタにより、ITO系ガラス基板上に酸化チタンの緻密なホールブロッキング層3を形成した。
 次に、酸化チタン(日本エアロジル社製P90)3g、アセチルアセトン0.2g、界面活性剤(和光純薬社製ポリオキシエチレンオクチルフェニルエーテル)0.3gを水5.5g、エタノール1.0gと共にビーズミル処理を12時間施した。
 得られた分散液にポリエチレングリコール(#20,000)1.2gを加えてペーストを作製した。
 このペーストを、上記ホールブロッキング層上に膜厚1.5μmになるように塗布し、室温で乾燥後、空気中500℃で30分間焼成し、多孔質状の電子輸送層4を形成した。
<光電変換素子の作製>
 上記酸化チタン半導体電極を、光増感化合物5として前記構造式(5)で表される三菱製紙社製D102(0.5mM、アセトニトリル/t-ブタノール(体積比1:1)溶液)に浸漬し、1時間暗所にて静置し、光増感化合物5を吸着させた。
 光増感化合物5を担持した酸化チタン半導体電極上に、例示化合物No.1-1で表される有機ホール輸送材料:183.1mgをクロロベンゼン溶液:1mlに、関東化学社製リチウムビス(トリフルオロメタンスルホニル)イミド:12.83mg、アルドリッチ社製ターシャルブチルピリジン(tBP):21.97mgを加えて得た溶液を、光増感化合物5を担持した半導体電極上にスピンコートにてホール輸送層6を成膜した(膜厚300nm)。この上に銀を100nm真空蒸着して第二の電極7を作製し、光電変換素子を作製した。
<光電変換素子の評価>
 得られた光電変換素子の白色LED照射下(50ルクス:12.5μW/cm、10ルクス:2.5μW/cm)における光電変換効率を測定した。白色LEDはコスモテクノ社製デスクランプCDS-90α(スタディーモード)、評価機器はNF回路設計ブロック社製太陽電池評価システムAs-510-PV03にて測定した。その結果を表1に示す。
(実施例2~14)
 実施例1における化合物No.1-1とターシャルブチルピリジン(tBP)を表1に示すように変更した以外は実施例1と同様にして光電変換素子を作製し、評価した。その結果を表1に示す。
(比較例1)
 実施例1における化合物No.1-1を有機ホール輸送材料(メルク株式会社製、銘柄:2,2’,7,7’-tetrakis(N,N-di-p-methoxyphenylamino)-9,9’-spirobifluorene、品番:SHT-263)に変更した以外は、実施例1と同様にして光電変換素子を作製し、評価した。その結果を表1に示す。
(比較例2)
 実施例3における化合物No.1-1を有機ホール輸送材料(メルク株式会社製、銘柄:2,2’,7,7’-tetrakis(N,N-di-p-methoxyphenylamino)-9,9’-spirobifluorene、品番:SHT-263)に変更した以外は、実施例3と同様にして光電変換素子を作製し、評価した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000015
(実施例15)
 実施例1における、リチウムビス(トリフルオロメタンスルホニル)イミドを1-n-ヘキシル-3-メチルイミダゾリニウムビス(トリフルオロメチルスルホニル)イミドに変更した以外は、実施例1と同様にして光電変換素子を作製し、評価した。50ルクスにおける結果は、開放電圧=0.701V、短絡電流密度=3.02μA/cm、形状因子=0.72、変換効率=12.12%という優れた特性を示した。10ルクスにおける結果は、開放電圧=0.648V、短絡電流密度=0.591μA/cm、形状因子=0.64、変換効率=9.80%を示した。
 実施例1~15の光電変換素子は、超微弱な照度環境下(10ルクス~50ルクス)において、優れた発電性能を有していることが明らかになった。特に、比較例1及び2で用いられた有機ホール輸送材料(SHT-263)と比べて、10ルクス環境下における発電性能に優れている。また、比較例2は実施例3と比べて、50ルクスと10ルクスの性能差が大きいため、採用するには好ましくない。さらに、SHT263の材料コストを考えると、前記一般式(1)で表される化合物の方が大きな優位性がある。
 室内環境下において廊下などの照度が低い場所においては、壁は10ルクス程度であることが多く、人感センサ等のセキュリティー分野におけるセンサ用自立電源として有用な光電変換素子であると考えられる。
 以上明らかなように、本発明の光電変換素子は超微弱な照度下における優れた光電変換特性を示すことがわかる。
 本発明の態様としては、例えば、以下のとおりである。
 <1> 第一の電極と、ホールブロッキング層と、電子輸送層と、ホール輸送層と、第二の電極とを有し、前記ホール輸送層は、下記一般式(1)で表される化合物を含むことを特徴とする光電変換素子である。
Figure JPOXMLDOC01-appb-C000016
(式中、Rはメトキシ基またはエトキシ基を表す。Rは水素基またはメチル基を表す。Rは水素基、メチル基またはメトキシ基を表す。Rはメトキシ基を表す。Xは-CH-、-CHCH-、-O-または-C(CH-を表す。)
 <2> 前記ホール輸送層は、下記一般式(2)で表される塩基性化合物を含む前記<1>に記載の光電変換素子である。
Figure JPOXMLDOC01-appb-C000017
(式中、Xは-CH-、-CHCH-、-O-または-C(CH-を表す。)
 <3> 前記ホール輸送層は、下記一般式(3)で表される塩基性化合物を含む前記<1>または<2>に記載の光電変換素子である。
Figure JPOXMLDOC01-appb-C000018
(式中、R、Rは置換もしくは無置換のアルキル基または芳香族炭化水素基を表し、同一でも異なっていてもよい。また、R、Rは互いに結合し、窒素原子を含む置換もしくは無置換の複素環基を形成してもよい。)
 <4> 前記電子輸送層は電子輸送性材料を含み、前記電子輸送性材料が、酸化チタン、酸化亜鉛、酸化スズ及び酸化ニオブの群から選択される少なくとも1つである前記<1>から<3>のいずれかに記載の光電変換素子である。
 <5> 前記ホールブロッキング層は、酸化チタンを含む前記<1>から<4>のいずれかに記載の光電変換素子である。
 <6> 前記ホール輸送層は、イオン液体のイミダゾリウム化合物を更に含む前記<1>から<5>のいずれかに記載の光電変換素子。
 <7> 太陽電池として用いる前記<1>から<6>のいずれかに記載の光電変換素子である。
1 基板
2 第一の電極
3 ホールブロッキング層
4 電子輸送層
5 光増感化合物
6 ホール輸送層
7 第二の電極
8、9 リードライン

Claims (7)

  1.  第一の電極と、ホールブロッキング層と、電子輸送層と、ホール輸送層と、第二の電極とを有し、前記ホール輸送層は、下記一般式(1)で表される化合物を含むことを特徴とする光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rはメトキシ基またはエトキシ基を表す。Rは水素基またはメチル基を表す。Rは水素基、メチル基またはメトキシ基を表す。Rはメトキシ基を表す。Xは-CH-、-CHCH-、-O-または-C(CH-を表す。)
  2.  前記ホール輸送層は、下記一般式(2)で表される塩基性化合物を含む請求項1に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Xは-CH-、-CHCH-、-O-または-C(CH-を表す。)
  3.  前記ホール輸送層は、下記一般式(3)で表される塩基性化合物を含む請求項1または2に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R、Rは置換もしくは無置換のアルキル基または芳香族炭化水素基を表し、同一でも異なっていてもよい。また、R、Rは互いに結合し、窒素原子を含む置換もしくは無置換の複素環基を形成してもよい。)
  4.  前記電子輸送層は電子輸送性材料を含み、前記電子輸送性材料が、酸化チタン、酸化亜鉛、酸化スズ及び酸化ニオブの群から選択される少なくとも1つである請求項1から3のいずれかに記載の光電変換素子。
  5.  前記ホールブロッキング層は、酸化チタンを含む請求項1から4のいずれかに記載の光電変換素子。
  6.  前記ホール輸送層は、イオン液体のイミダゾリウム化合物を更に含む請求項1から5のいずれかに記載の光電変換素子。
  7.  太陽電池として用いる請求項1から6のいずれかに記載の光電変換素子。
PCT/JP2017/001592 2016-01-25 2017-01-18 光電変換素子 WO2017130820A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017564193A JP6447754B2 (ja) 2016-01-25 2017-01-18 光電変換素子
EP17744050.0A EP3410506B1 (en) 2016-01-25 2017-01-18 Photoelectric conversion element
CN201780007753.7A CN108496258B (zh) 2016-01-25 2017-01-18 光电转换元件
US16/043,876 US10763050B2 (en) 2016-01-25 2018-07-24 Photoelectric conversion element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-011564 2016-01-25
JP2016011564 2016-01-25
JP2016171886 2016-09-02
JP2016-171886 2016-09-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/043,876 Continuation US10763050B2 (en) 2016-01-25 2018-07-24 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
WO2017130820A1 true WO2017130820A1 (ja) 2017-08-03

Family

ID=59397736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001592 WO2017130820A1 (ja) 2016-01-25 2017-01-18 光電変換素子

Country Status (5)

Country Link
US (1) US10763050B2 (ja)
EP (1) EP3410506B1 (ja)
JP (1) JP6447754B2 (ja)
CN (1) CN108496258B (ja)
WO (1) WO2017130820A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212364A (ja) * 2016-05-26 2017-11-30 株式会社リコー ホール輸送材料及び、光電変換素子並びに太陽電池
WO2019126548A1 (en) * 2017-12-22 2019-06-27 Energy Everywhere, Inc. Fused and cross-linkable ionic hole transport materials for perovskite solar cells
WO2020036069A1 (ja) * 2018-08-16 2020-02-20 東京化成工業株式会社 新規化合物及びペロブスカイト太陽電池用正孔輸送層形成組成物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090768A1 (ja) * 2015-11-27 2017-06-01 京セラ株式会社 光電変換膜および光電変換装置
JP7037149B2 (ja) 2018-03-15 2022-03-16 株式会社リコー 有機材料および光電変換素子
EP3769327A1 (en) 2018-03-19 2021-01-27 Ricoh Company, Ltd. Photoelectric conversion device, process cartridge, and image forming apparatus
JP2019165073A (ja) 2018-03-19 2019-09-26 株式会社リコー 太陽電池モジュール
EP3547339A1 (en) 2018-03-30 2019-10-02 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion element module, electronic device, and power supply module
US10727428B1 (en) * 2019-02-01 2020-07-28 Natioinal Technology & Engineering Solutions Of Sa Organic-semiconducting hybrid solar cell
JP7198688B2 (ja) * 2019-03-04 2023-01-11 シャープ株式会社 ハイブリッド粒子、光電変換素子、感光体及び画像形成装置

Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS45555B1 (ja) 1966-03-24 1970-01-09
JPS524188B2 (ja) 1973-01-15 1977-02-02
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5542380B2 (ja) 1977-10-17 1980-10-30
JPS56123544A (en) 1980-03-03 1981-09-28 Hitachi Ltd Composite type electrophotographic plate and electrophotographic method using it
JPS5865440A (ja) 1981-09-18 1983-04-19 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6098437A (ja) 1983-11-04 1985-06-01 Ricoh Co Ltd 電子写真用感光体
JPH07500630A (ja) 1992-08-21 1995-01-19 エコール ポリテクニーク フェデラル ドゥ ローザンヌ (エーペーエフエル) 有機化合物
JPH09199744A (ja) 1996-01-12 1997-07-31 Yamamoto Chem Inc フタロシアニン化合物、及びこれを用いる湿式太陽電池
JP2664194B2 (ja) 1988-02-12 1997-10-15 エコル ポリテクニク フェデラル ドゥ ローザンヌ 光電気化学電池・その製法及び使用法
JPH1092477A (ja) 1996-09-12 1998-04-10 Agency Of Ind Science & Technol 有機色素増感型酸化物半導体電極及びそれを含む太陽電池
JPH1093118A (ja) 1996-09-12 1998-04-10 Agency Of Ind Science & Technol 有機色素増感型酸化物半導体電極及びそれを含む太陽電池
JPH10233238A (ja) 1996-12-16 1998-09-02 Fuji Xerox Co Ltd 光半導体電極、光電変換装置及び光電変換方法
JPH1186916A (ja) 1997-07-15 1999-03-30 Fuji Photo Film Co Ltd 半導体微粒子、光電変換素子および光化学電池
JPH11144773A (ja) 1997-09-05 1999-05-28 Fuji Photo Film Co Ltd 光電変換素子および光再生型光電気化学電池
JPH11204821A (ja) 1998-01-09 1999-07-30 Fuji Xerox Co Ltd 光半導体電極、光電変換装置及び光電変換方法
JPH11214730A (ja) 1997-07-18 1999-08-06 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JPH11214731A (ja) 1997-07-18 1999-08-06 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JPH11238905A (ja) 1998-02-20 1999-08-31 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JPH11265738A (ja) 1998-01-13 1999-09-28 Fuji Xerox Co Ltd 光半導体電極、およびそれを用いた光電池
JPH11273755A (ja) 1999-01-18 1999-10-08 Agency Of Ind Science & Technol 有機色素増感型ニオブ酸化物半導体電極及びそれを含む太陽電池
JPH11273754A (ja) 1999-01-18 1999-10-08 Agency Of Ind Science & Technol 有機色素増感型酸化物半導体電極及びそれを含む太陽電池
JP2000026487A (ja) 1998-07-15 2000-01-25 Agency Of Ind Science & Technol 増感剤として有用な金属錯体、酸化物半導体電極及び太陽電池
JP2000106224A (ja) 1998-09-29 2000-04-11 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2000106223A (ja) 1998-09-29 2000-04-11 Fuji Photo Film Co Ltd 光電変換素子
JP2000323191A (ja) 1999-05-14 2000-11-24 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに金属錯体色素
JP2001052766A (ja) 1999-06-02 2001-02-23 Agency Of Ind Science & Technol 有機色素増感型多孔質酸化物半導体電極及びそれを用いた太陽電池
JP2001059062A (ja) 1999-06-14 2001-03-06 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに金属錯体色素
JP2001076775A (ja) 1999-09-07 2001-03-23 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2001076773A (ja) 1999-08-31 2001-03-23 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに新規スクアリリウムシアニン色素
JP2002164089A (ja) 2000-11-28 2002-06-07 National Institute Of Advanced Industrial & Technology 有機色素を光増感剤とする半導体薄膜電極、光電変換素子
JP2003007359A (ja) 2001-06-20 2003-01-10 Mitsubishi Paper Mills Ltd 光電変換素子
JP2003007360A (ja) 2001-06-26 2003-01-10 Mitsubishi Paper Mills Ltd 光電変換素子
JP2003031273A (ja) 2001-07-13 2003-01-31 Mitsubishi Paper Mills Ltd 光電変換素子
JP2003264010A (ja) 2002-03-07 2003-09-19 Mitsubishi Paper Mills Ltd 光電変換素子
JP2004063274A (ja) 2002-07-29 2004-02-26 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極、並びにそれを用いた光電変換素子
JP2004095450A (ja) 2002-09-02 2004-03-25 National Institute Of Advanced Industrial & Technology 有機色素を光増感剤とする半導体薄膜電極、光電変換素子及び光電気化学太陽電池
JP2004115636A (ja) 2002-09-26 2004-04-15 Mitsubishi Paper Mills Ltd メロシアニン色素
JP2004200068A (ja) 2002-12-19 2004-07-15 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極、並びにそれを用いた光電変換素子
JP2004235052A (ja) 2003-01-31 2004-08-19 Mitsubishi Paper Mills Ltd 光電変換材料、並びにそれを用いた光電変換素子
JP2006032260A (ja) 2004-07-21 2006-02-02 Kyocera Corp 光電変換装置およびそれを用いた光発電装置
CN104844464A (zh) * 2015-03-13 2015-08-19 中节能万润股份有限公司 一种9,9′-螺二芴类树枝状化合物及制备方法和应用
WO2015125587A1 (ja) * 2014-02-24 2015-08-27 株式会社リコー 光電変換素子及び太陽電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254671A (ja) * 2009-03-31 2010-11-11 Semiconductor Energy Lab Co Ltd カルバゾール誘導体、発光素子用材料、発光素子、発光装置、電子機器、及び照明装置
KR101410716B1 (ko) * 2012-05-10 2014-06-24 경북대학교 산학협력단 금 나노입자를 포함하는 유기발광소자 및 그 제조방법
JP6194614B2 (ja) * 2012-12-18 2017-09-13 株式会社リコー 光電変換素子
WO2015084256A1 (en) * 2013-12-02 2015-06-11 Nanyang Technological University Hole transporting molecules and their use in solar cells
CN104030995B (zh) * 2014-06-19 2016-07-06 孔庆刚 由三苯胺构建的主体大环和多侧枝三苯胺空穴传输材料
JP6579480B2 (ja) 2015-03-18 2019-09-25 株式会社リコー 光電変換素子及び二次電池
CN105037179B (zh) * 2015-05-29 2017-08-25 中山大学 一种新型空穴传输材料及其制备方法和应用
CN105061309B (zh) * 2015-08-31 2017-09-12 苏州大学 芴螺三苯胺衍生物及其钙钛矿电池、用途
CN105153085B (zh) * 2015-09-18 2017-05-03 中节能万润股份有限公司 一种二苯并呋喃的衍生物及其制备方法和应用

Patent Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS45555B1 (ja) 1966-03-24 1970-01-09
JPS524188B2 (ja) 1973-01-15 1977-02-02
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5542380B2 (ja) 1977-10-17 1980-10-30
JPS56123544A (en) 1980-03-03 1981-09-28 Hitachi Ltd Composite type electrophotographic plate and electrophotographic method using it
JPS5865440A (ja) 1981-09-18 1983-04-19 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6098437A (ja) 1983-11-04 1985-06-01 Ricoh Co Ltd 電子写真用感光体
JP2664194B2 (ja) 1988-02-12 1997-10-15 エコル ポリテクニク フェデラル ドゥ ローザンヌ 光電気化学電池・その製法及び使用法
JPH07500630A (ja) 1992-08-21 1995-01-19 エコール ポリテクニーク フェデラル ドゥ ローザンヌ (エーペーエフエル) 有機化合物
JPH09199744A (ja) 1996-01-12 1997-07-31 Yamamoto Chem Inc フタロシアニン化合物、及びこれを用いる湿式太陽電池
JPH1092477A (ja) 1996-09-12 1998-04-10 Agency Of Ind Science & Technol 有機色素増感型酸化物半導体電極及びそれを含む太陽電池
JPH1093118A (ja) 1996-09-12 1998-04-10 Agency Of Ind Science & Technol 有機色素増感型酸化物半導体電極及びそれを含む太陽電池
JPH10233238A (ja) 1996-12-16 1998-09-02 Fuji Xerox Co Ltd 光半導体電極、光電変換装置及び光電変換方法
JPH1186916A (ja) 1997-07-15 1999-03-30 Fuji Photo Film Co Ltd 半導体微粒子、光電変換素子および光化学電池
JPH11214730A (ja) 1997-07-18 1999-08-06 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JPH11214731A (ja) 1997-07-18 1999-08-06 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JPH11144773A (ja) 1997-09-05 1999-05-28 Fuji Photo Film Co Ltd 光電変換素子および光再生型光電気化学電池
JPH11204821A (ja) 1998-01-09 1999-07-30 Fuji Xerox Co Ltd 光半導体電極、光電変換装置及び光電変換方法
JPH11265738A (ja) 1998-01-13 1999-09-28 Fuji Xerox Co Ltd 光半導体電極、およびそれを用いた光電池
JPH11238905A (ja) 1998-02-20 1999-08-31 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2000026487A (ja) 1998-07-15 2000-01-25 Agency Of Ind Science & Technol 増感剤として有用な金属錯体、酸化物半導体電極及び太陽電池
JP2000106224A (ja) 1998-09-29 2000-04-11 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2000106223A (ja) 1998-09-29 2000-04-11 Fuji Photo Film Co Ltd 光電変換素子
JPH11273755A (ja) 1999-01-18 1999-10-08 Agency Of Ind Science & Technol 有機色素増感型ニオブ酸化物半導体電極及びそれを含む太陽電池
JPH11273754A (ja) 1999-01-18 1999-10-08 Agency Of Ind Science & Technol 有機色素増感型酸化物半導体電極及びそれを含む太陽電池
JP2000323191A (ja) 1999-05-14 2000-11-24 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに金属錯体色素
JP2001052766A (ja) 1999-06-02 2001-02-23 Agency Of Ind Science & Technol 有機色素増感型多孔質酸化物半導体電極及びそれを用いた太陽電池
JP2001059062A (ja) 1999-06-14 2001-03-06 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに金属錯体色素
JP2001076773A (ja) 1999-08-31 2001-03-23 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに新規スクアリリウムシアニン色素
JP2001076775A (ja) 1999-09-07 2001-03-23 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2002164089A (ja) 2000-11-28 2002-06-07 National Institute Of Advanced Industrial & Technology 有機色素を光増感剤とする半導体薄膜電極、光電変換素子
JP2003007359A (ja) 2001-06-20 2003-01-10 Mitsubishi Paper Mills Ltd 光電変換素子
JP2003007360A (ja) 2001-06-26 2003-01-10 Mitsubishi Paper Mills Ltd 光電変換素子
JP2003031273A (ja) 2001-07-13 2003-01-31 Mitsubishi Paper Mills Ltd 光電変換素子
JP2003264010A (ja) 2002-03-07 2003-09-19 Mitsubishi Paper Mills Ltd 光電変換素子
JP2004063274A (ja) 2002-07-29 2004-02-26 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極、並びにそれを用いた光電変換素子
JP2004095450A (ja) 2002-09-02 2004-03-25 National Institute Of Advanced Industrial & Technology 有機色素を光増感剤とする半導体薄膜電極、光電変換素子及び光電気化学太陽電池
JP2004115636A (ja) 2002-09-26 2004-04-15 Mitsubishi Paper Mills Ltd メロシアニン色素
JP2004200068A (ja) 2002-12-19 2004-07-15 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極、並びにそれを用いた光電変換素子
JP2004235052A (ja) 2003-01-31 2004-08-19 Mitsubishi Paper Mills Ltd 光電変換材料、並びにそれを用いた光電変換素子
JP2006032260A (ja) 2004-07-21 2006-02-02 Kyocera Corp 光電変換装置およびそれを用いた光発電装置
WO2015125587A1 (ja) * 2014-02-24 2015-08-27 株式会社リコー 光電変換素子及び太陽電池
CN104844464A (zh) * 2015-03-13 2015-08-19 中节能万润股份有限公司 一种9,9′-螺二芴类树枝状化合物及制备方法和应用

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED., vol. 46, 2007, pages 373
ANGEW. CHEM. INT. ED., vol. 47, 2008, pages 1923
BOZIC-WEBER B. ET AL.: "Hole-transport functionalized copper (I) dye sensitized solar cells", PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 15, no. 13, 25 February 2013 (2013-02-25), pages 1 - 14, XP055507525 *
CHEM. COMMUN., vol. 3036, 2003
CHEM. COMMUN., vol. 4887, 2007
ELECTROANAL. CHEM., vol. 537, 2002, pages 31
FUJIKURA TECHNICAL REPORT, vol. 121, 2011, pages 42
INORG. CHEM., vol. 35, 1996, pages 1168
J. AM. CHEM. SOC., vol. 115, 1993, pages 6382
J. AM. CHEM. SOC., vol. 126, 2004, pages 12218
J. AM. CHEM. SOC., vol. 128, 2006, pages 14256
J. AM. CHEM. SOC., vol. 128, 2006, pages 16701
J. AM. CHEM. SOC., vol. 133, 2011, pages 18042
J. AM. CHEM. SOC., vol. 135, 2013, pages 7378
J. ORG. CHEM. SOC., vol. 67, 2002, pages 3029
J. PHYS. CHEM. B, vol. 97, 1993, pages 6272
J. PHYS. CHEM. C, vol. 111, 2007, pages 7224
J. PHYS. CHEM. C, vol. 116, 2012, pages 25721
J. PHYS. CHEM., vol. 91, 1987, pages 2342
J. PORPHYRINS PHTHALOCYANINES, vol. 3, 1999, pages 230
LANGMUIR, vol. 24, 2008, pages 5436
NATURE, vol. 353, 1991, pages 737
NATURE, vol. 485, 2012, pages 486
PANASONIC TECHNICAL REPORT, vol. 56, 2008, pages 87
SOLAR ENERGY MATERIALS & SOLAR CELLS, vol. 181, 2004, pages 87
SVEN Y. BRAUCHLI ET AL.: "Factors controlling the photoresponse of copper (I) diimine dyes containing hole-transporting dendrons in dye- sensitized solar cells: substituent and solvent effects", RSC ADVANCES, vol. 4, no. 66, 2014, pages 34801 - 34815, XP055507521 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212364A (ja) * 2016-05-26 2017-11-30 株式会社リコー ホール輸送材料及び、光電変換素子並びに太陽電池
WO2019126548A1 (en) * 2017-12-22 2019-06-27 Energy Everywhere, Inc. Fused and cross-linkable ionic hole transport materials for perovskite solar cells
WO2020036069A1 (ja) * 2018-08-16 2020-02-20 東京化成工業株式会社 新規化合物及びペロブスカイト太陽電池用正孔輸送層形成組成物

Also Published As

Publication number Publication date
EP3410506A1 (en) 2018-12-05
JP6447754B2 (ja) 2019-01-09
US20180330890A1 (en) 2018-11-15
CN108496258B (zh) 2022-04-26
EP3410506B1 (en) 2022-03-30
EP3410506A4 (en) 2018-12-26
CN108496258A (zh) 2018-09-04
JPWO2017130820A1 (ja) 2018-12-06
US10763050B2 (en) 2020-09-01

Similar Documents

Publication Publication Date Title
JP6447754B2 (ja) 光電変換素子
JP6874790B2 (ja) 光電変換素子及び光電変換素子の製造方法
JP2021005723A (ja) 光電変換素子及び太陽電池
JP6249093B2 (ja) 光電変換素子
JP6880748B2 (ja) 光電変換素子及び太陽電池
JP2011065751A (ja) 光電変換素子
JP6776665B2 (ja) 光電変換素子及び太陽電池
JP6579480B2 (ja) 光電変換素子及び二次電池
JP6641599B2 (ja) ホール輸送材料及び、光電変換素子並びに太陽電池
JP6850435B2 (ja) 3級アミン化合物、光電変換素子、及び太陽電池
JP6740621B2 (ja) 光電変換素子
JP6657841B2 (ja) 光電変換素子及び太陽電池
JP7003387B2 (ja) 光電変換素子、太陽電池及び合成方法
JP2017011066A (ja) 光電変換素子
JP6899083B2 (ja) 光電変換素子及び二次電池
JP6677078B2 (ja) ホール輸送材料及び、光電変換素子並びに太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744050

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017564193

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017744050

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017744050

Country of ref document: EP

Effective date: 20180827