WO2017090768A1 - 光電変換膜および光電変換装置 - Google Patents

光電変換膜および光電変換装置 Download PDF

Info

Publication number
WO2017090768A1
WO2017090768A1 PCT/JP2016/085159 JP2016085159W WO2017090768A1 WO 2017090768 A1 WO2017090768 A1 WO 2017090768A1 JP 2016085159 W JP2016085159 W JP 2016085159W WO 2017090768 A1 WO2017090768 A1 WO 2017090768A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
inorganic material
conversion film
film
polymer
Prior art date
Application number
PCT/JP2016/085159
Other languages
English (en)
French (fr)
Inventor
誠一郎 稲井
政志 齊藤
浩充 小川
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN201680069323.3A priority Critical patent/CN108292689B/zh
Priority to JP2017521174A priority patent/JP6175593B1/ja
Priority to US15/777,850 priority patent/US10580915B2/en
Publication of WO2017090768A1 publication Critical patent/WO2017090768A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to a photoelectric conversion film and a photoelectric conversion device.
  • quantum dots For the purpose of increasing their photoelectric conversion efficiency.
  • semiconductor nanoparticles having a size of about 10 nm are typical.
  • a passivation film for example, aluminum oxide
  • ALD atomic layer deposition
  • an inorganic material is formed between semiconductor nanoparticles by spraying a volatilized organometallic compound together with a gas such as oxygen from an integrated film formed by depositing semiconductor nanoparticles on a substrate. Yes (see Non-Patent Document 1, for example).
  • the semiconductor nanoparticles for forming the photoelectric conversion film are subjected to a surface treatment for enhancing dispersibility so as to be arranged at a high density when deposited on the substrate.
  • a surface treatment for enhancing dispersibility so as to be arranged at a high density when deposited on the substrate.
  • a compound obtained by attaching a low molecular weight organic molecule called a ligand to the surface of a semiconductor nanoparticle to form a composite is used.
  • an inorganic material is formed so as to fill the periphery of these semiconductor nanoparticles and organic molecules.
  • the photoelectric conversion film of the present disclosure has a plurality of semiconductor nanoparticles and a matrix phase existing around the semiconductor nanoparticles, and the matrix phase is a main phase composed of a complex of a polymer of organic molecules and an inorganic material. Is included.
  • a transparent conductive film, a photoelectric conversion layer, a semiconductor substrate, and an electrode layer are arranged on a light-transmitting substrate in the order of the transparent conductive film, the photoelectric conversion layer, the semiconductor substrate, and the electrode layer.
  • the photoelectric conversion layer is the above-described photoelectric conversion film.
  • (A) is a cross-sectional schematic diagram which shows one Embodiment of the photoelectric conversion film of this indication
  • (b) is sectional drawing to which a part of (a) was expanded. It is an evaporation curve when EDT which is an example of an organic molecule is heated. It is sectional drawing which shows partially the state in which an inorganic material exists in the middle of the thickness direction of a photoelectric converting film in a photoelectric converting film. It is a cross-sectional schematic diagram which shows the other aspect of the photoelectric converting film of this embodiment. It is a cross-sectional schematic diagram which shows one Embodiment of the photoelectric conversion apparatus of this indication.
  • (A) is a structure in which the inorganic material spreads over the entire integrated film
  • (b) is a structure in which the inorganic material occupies a part of the integrated film.
  • FIG. 1A is a schematic cross-sectional view showing an embodiment of the photoelectric conversion film of the present disclosure
  • FIG. 1B is an enlarged cross-sectional view of a part of FIG.
  • the photoelectric conversion film 10 of this embodiment includes a plurality of semiconductor nanoparticles 1a and a matrix phase 3 existing around the semiconductor nanoparticles 1a.
  • a structure in which a plurality of semiconductor nanoparticles 1 a are gathered is referred to as an integrated film 1.
  • the main phase of the matrix phase 3 constituting the photoelectric conversion film 10 is formed by a complex 9 of a polymer 5 of an organic molecule (hereinafter referred to as an organic molecular polymer 5) and an inorganic material 7. .
  • the main phase refers to a case where the volume ratio of the composite 9 occupying the matrix phase 3 is 60% or more.
  • the organic molecular polymer 5 is hereinafter referred to as an organic molecular polymer 5.
  • the organic molecular polymer 5 is a combination of a plurality of organic molecules 5a.
  • the volume ratio of the composite 9 occupying the matrix phase 3 is obtained by analyzing a photograph obtained by observing the cross section of the photoelectric conversion film 10 with a transmission electron microscope.
  • the area ratio obtained at this time corresponds to the volume ratio.
  • the existence state including the structure of the organic molecular polymer 5 and the inorganic material 7 constituting the matrix phase 3 includes an analyzer attached to the transmission electron microscope, total reflection Fourier transform infrared spectroscopy (FT-IR-ATR) and Confirm by any of gas chromatographic analysis (GC-MS) or a combination of these.
  • FT-IR-ATR total reflection Fourier transform infrared spectroscopy
  • GC-MS gas chromatographic analysis
  • FIG. 2 is an evaporation curve when ethanedithiol ((C 2 H 6 S 2 , hereinafter abbreviated as EDT)) as an example of the organic molecule 5a is heated. This is measured by gas chromatographic analysis. As shown in FIG. 2, EDT gradually evaporates from around 70 ° C., evaporates rapidly from 130 ° C. to 180 ° C., and evaporates at 200 ° C. or higher.
  • EDT ethanedithiol
  • Non-Patent Document 1 a conventional photoelectric conversion film has a temperature at which an inorganic material (here, aluminum oxide) is formed at 70 ° C. As can be seen from the evaporation curve shown in FIG. 2, EDT hardly evaporates at such temperatures. For this reason, in the conventional photoelectric conversion film disclosed in Non-Patent Document 1, organic molecules attached to the surface of the semiconductor nanoparticles exist in almost the same molecular weight as before the film formation by the ALD method. For this reason, the inorganic material formed by the ALD method becomes such that it enters the gap between the organic molecules extending from the adjacent semiconductor nanoparticles.
  • an inorganic material here, aluminum oxide
  • the organic molecules extending from the adjacent semiconductor nanoparticles 101a are entangled with each other and are not in a polymerized state. For this reason, there is a large variation in the interval between adjacent semiconductor nanoparticles.
  • the conventional photoelectric conversion film adjacent semiconductor nanoparticles are not in a strongly connected state.
  • an inorganic material is formed by the ALD method in a film in which semiconductor nanoparticles are integrated
  • the distance between the semiconductor nanoparticles is increased. It will be in a state where it has expanded by the length. Therefore, the thickness of the inorganic material formed between the semiconductor nanoparticles is also increased.
  • the function of the inorganic material formed around the semiconductor nanoparticles as a passivation film is degraded. For this reason, the photoelectric conversion film has a reduced carrier confinement effect and cannot improve the photoelectric conversion characteristics.
  • the temperature at which the inorganic material 7 is formed by the ALD method is higher than 70 ° C. as can be seen from a specific example described later.
  • the organic molecules 5a here, EDT
  • the organic molecules 5a are likely to evaporate.
  • a part of EDT is detached from the periphery of the semiconductor nanoparticles 1a.
  • the number of EDTs present between the semiconductor nanoparticles 1a is reduced.
  • the space h in which the inorganic material 7 can be formed increases.
  • the inorganic material 7 enters the space h.
  • the temperature for forming the inorganic material 7 is set to a temperature higher than 70 ° C.
  • sulfur (S) is removed from one side of the EDT, and the carbon chain is bonded. These carbon chains are bonded by polycondensation. Thereby, it will be in the state where organic molecules 5a were connected more firmly.
  • the organic molecular polymer 5 is formed by polycondensation of the organic molecules 5a as described above. Therefore, the molecular length of the organic molecule 5a extending so as to face the adjacent semiconductor nanoparticle 1a is shortened by the amount of sulfur desorbed from the organic molecule 5a and polycondensed.
  • the inorganic material 7 formed between the adjacent semiconductor nanoparticles 1a is formed with a thickness corresponding to the length of the organic molecular polymer 5 to be connected. For this reason, the thickness of the inorganic material 7 is thinner than that of Non-Patent Document 1. In the photoelectric conversion film 10 of this embodiment, this makes it easy for the carriers from the semiconductor nanoparticles 1a to bleed out and improves the photoelectric conversion characteristics.
  • Both the organic molecular polymer 5 and the inorganic material 7 constituting the composite 9 are preferably in contact with a plurality of adjacent semiconductor nanoparticles 1a as shown in FIG.
  • the organic molecular polymer 5 serves as a connecting member that firmly connects the adjacent semiconductor nanoparticles 1a. Will be responsible.
  • the organic molecular polymer 5 can exhibit a high function as a passivation film.
  • the composite 9 should have a larger area ratio of the inorganic material 7 than that of the organic molecular polymer 5 when the photoelectric conversion film 10 is viewed in cross section.
  • the area ratio of the inorganic material 7 in the composite 9 is larger than the area ratio of the organic molecular polymer 5, the bonding strength between the plurality of adjacent semiconductor nanoparticles 1a is further increased. As a result, a photoelectric conversion film having high mechanical strength and good durability can be obtained.
  • FIG. 3 is a cross-sectional view partially showing a state in which the inorganic material is present up to a position in the thickness direction of the photoelectric conversion film in the photoelectric conversion film.
  • reference numeral 3A denotes a region where both the organic molecular polymer 5 and the inorganic material 7 exist as the matrix phase 3 (coexistence region), and 3B denotes a region where only the organic molecular polymer exists (single region). It is.
  • the organic molecular polymer 5 and the inorganic material 7 have different occupied areas and occupied regions with respect to the total area of the integrated film 1.
  • the organic molecular polymer 5 and the inorganic material 7 are formed in a state of being systematically distinguished without being combined.
  • the organic molecular polymer 5 is present so as to bury the periphery of almost all the semiconductor nanoparticles 1a.
  • the inorganic material 7 is formed so as to stop at a position in the middle of the thickness direction from one main surface side of the integrated film 1. The region occupied by the inorganic material 7 is a range limited in the thickness direction, as shown in FIG.
  • the inorganic material 7 exists in a certain thickness range from one main surface side of the integrated film 1, and the inorganic material 7 does not exist in the remaining part of the integrated film 1.
  • the composite 9 includes a region 3A in which the organic molecule polymer 5 and the inorganic material 7 are mixed and a region 3B in which only the organic molecule polymer exists when the photoelectric conversion film 10 is viewed in cross section. It is good to form in layers.
  • the photoelectric conversion film 10 illustrated in FIG. 3 for example, when the composite 9 is formed by applying an n-type semiconductor to the inorganic material 7, the photoelectric conversion film 10 in which the inorganic material 7 functions as a current collector can be formed. it can.
  • the area ratio of the region 3 ⁇ / b> A where both the organic molecular polymer 5 and the inorganic material 7 are present is the area of the region 3 ⁇ / b> B where only the organic molecular polymer 5 is present. Greater than ratio is better. In this case, current collection is improved. This is because the ratio of the semiconductor nanoparticles 1a in contact with the inorganic material 7 serving as a current collector in the matrix phase 3 increases.
  • FIG. 4 is a schematic cross-sectional view showing another aspect of the photoelectric conversion film of the present embodiment.
  • FIG. 4 shows a part of the photoelectric conversion film 10.
  • the organic molecular polymer 5 is configured to be preferentially attached to the surface of the semiconductor nanoparticles 1a.
  • the inorganic material 7 exists in a region outside the organic molecular polymer 5.
  • Such an organic molecular polymer 5 is more easily formed as the temperature for forming the inorganic material 7 is higher. This is because the polycondensation of the organic molecules 5a proceeds due to the temperature rise.
  • the photoelectric conversion film 10 has a stacked portion in which the organic molecular polymer 7 and the inorganic material 5 are stacked as the composite 9 between the adjacent semiconductor nanoparticles 1a within a range in which the photoelectric conversion characteristics are not greatly deteriorated.
  • 9A may be formed.
  • the laminated portion 9A may have a three-layer structure in which the organic molecular polymer 7, the inorganic material 5, and the organic molecular polymer 7 are arranged in this order.
  • the organic molecular polymer 5 formed in the composite 9 that becomes the matrix phase 3 receives high energy during heating. For this reason, the organic molecular polymer 5 is in a state of being more strongly bonded to the inorganic material 7 together with the surface of the adjacent semiconductor nanoparticles 1a. Thereby, a photoelectric conversion film having high photoelectric conversion characteristics can be obtained.
  • organic molecule 5a for forming the organic molecular polymer 5 carbon such as tetrabutylammonium iodide (TBAI) and the above EDT is used because the interval between the semiconductor nanoparticles 1a can be shortened.
  • the number is 40 or less. In this case, linear organic molecules 5a having 5 or less carbon atoms are even better.
  • the inorganic material 7 one kind of element selected from the group of Al, Zn, Si, Ti, Cu, Ga, S, In and Se and one kind of element selected from the group of O, C and N are used. Combined is good.
  • the inorganic material 7 formed by the ALD method for example, AlOx, AlNx, ZnOx, SiOx, SiNx, TiOx, TiNx, CuOx, GaOx, GaNx, GaSex, InSx, and InSx (x is a film forming). Any number based on the atmosphere of time, for example, 0.1 to 3) can be mentioned.
  • the number of anions, such as oxygen may become indefinite.
  • the semiconductor nanoparticles 1a constituting the photoelectric conversion film a material having a band gap (Eg) of 0.15 to 2.0 eV is selected.
  • Specific materials of the semiconductor nanoparticles 1a include germanium (Ge), silicon (Si), gallium (Ga), indium (In), arsenic (As), antimony (Sb), copper (Cu), iron (Fe ), Sulfur (S), lead (Pb), tellurium (Te) and selenium (Se), or a compound semiconductor thereof may be used.
  • one selected from the group of Si, GaAs, InAs, PbS, PbSe, CdSe, CdTe, CuInGaSe, CuInGaS, CuZnGaSe, and CuZnGaS is preferable.
  • the ratio of the semiconductor nanoparticles 1a in the integrated film 1 is preferably 60% or more in terms of the area ratio obtained from cross-sectional observation of the integrated film 1.
  • the particle size distribution is preferably within a range of 5 nm when the maximum diameter is 10 nm.
  • FIG. 5 is a schematic cross-sectional view showing an embodiment of the photoelectric conversion device of the present disclosure.
  • (A) is a structure in which the inorganic material spreads over the entire integrated film
  • (b) is a structure in which the inorganic material occupies a part of the integrated film.
  • the photoelectric conversion device 20 of this embodiment has the above-described photoelectric conversion film as the photoelectric conversion layer 15 on the main surface of the semiconductor substrate 11.
  • the electrode layer 17 is disposed on the lower surface of the semiconductor substrate 11.
  • a transparent conductive film 19 and a glass substrate 21 are arranged in this order on the upper surface of the photoelectric conversion layer 15.
  • the photoelectric conversion layer 15 is formed by the photoelectric conversion film 10 described above. That is, the matrix phase 3 includes the composite 9 of the organic molecular polymer 5 and the inorganic material 7 as the main phase. Thereby, since the matrix phase 3 occupying the space between the semiconductor nanoparticles 1a firmly connects the adjacent semiconductor nanoparticles 1a, it has a high function as a passivation film, so that high photoelectric conversion characteristics can be obtained.
  • the photoelectric conversion device 20 shown in FIG. 5B is obtained by applying the photoelectric conversion film shown in FIG. 3 as the photoelectric conversion layer 15.
  • a current collecting layer 23 is provided between the semiconductor substrate 11 and the photoelectric conversion layer 15.
  • the current collecting layer 23 may be the same material (main component) as the inorganic material 7.
  • zinc oxide is included up to the entire current collecting layer 23 and a position in the middle of the photoelectric conversion layer 15 in the thickness direction.
  • the photoelectric conversion layer 15 preferably contains zinc oxide at a position of 50 to 90% of the thickness.
  • zinc oxide is preferably formed in a film shape in the current collecting layer 23, and in the photoelectric conversion layer 15 in a columnar shape when viewed in cross section so as to fill the periphery of the semiconductor nanoparticles 1a.
  • the current collecting layer 23 and the inorganic material 7 may be in an integrated state. Thereby, a photoelectric conversion device having a high short-circuit current density and a high open-circuit voltage can be obtained.
  • PbS particles lead sulfide particles in a state of being dispersed in a polyoxyethylene solution having a molecular weight of about 200 were prepared.
  • the average particle size is about 10 nm.
  • EDT was added to the solution containing the PbS particles, and the mixture was stirred at room temperature for about 24 hours.
  • polyoxyethylene was replaced with EDT on the surface of the PbS particle, and a nanocomposite material in which EDT was bonded to the PbS particle could be obtained.
  • an inorganic material was formed around the PbS particles in the integrated film 1 by the ALD method.
  • the pressure of the supplied oxygen (O) gas was 5 Pa, and the substrate temperature was changed within the range shown in Table 1.
  • a photoelectric conversion film having a composite phase of EDT and ZnOx as a matrix phase could be formed in the PbS particle integrated film formed on the silicon substrate.
  • the ZnOx film was formed so as to be formed from the upper surface of the integrated film to a position approximately 3/4 by controlling the film formation time and the number of cycles.
  • a sample in which a zinc oxide current collecting layer was formed between the semiconductor substrate and the photoelectric conversion film was formed by applying a zinc oxide solution to the surface of the semiconductor substrate in advance and heating at about 100 ° C.
  • a transparent conductive film indium tin oxide: ITO
  • a glass substrate is attached, while an electrode layer (gold: Au) is deposited on the lower surface of the silicon substrate.
  • the samples (Sample Nos. 2 and 3) prepared by setting the film forming temperature when performing the ALD method to 130 ° C. and 150 ° C. have a short-circuit current density of 29 to 32 mA / It becomes cm 2 or more, the short-circuit current density between 1.3 and 1.5 times is obtained as compared with the short-circuit current density of 22mA / cm 2 of the sample set temperature of 70 ° C. (sample No.1).
  • the samples in which the film formation temperature of the ALD method was set to 130 ° C. and 150 ° C. were both in a state where EDT was polymerized.
  • the sample with a temperature of 70 ° C. was not in a state where EDT was polymerized.
  • the sample with the set temperature of 180 ° C. all the EDT had evaporated.
  • the samples prepared by setting the film formation temperature when performing the ALD method to 130 ° C. and 150 ° C.
  • the EDT (polymer) and ZnOx constituting the composite were both in contact with at least two PbS particles, and the area ratio of ZnOx was larger than the area ratio of EDT (polymer).
  • Photoelectric conversion film 20 ... Photoelectric conversion device 1... Integrated film 1 a. Nanoparticle 3 ... Matrix phase 5 ... Organic molecular polymer 5a ... Organic molecule 7 ... ... Inorganic material 9 ... Composite 11 ... Semiconductor substrate 15 ... Photoelectric conversion layer 17 ... ... Electrode layer 19 ... Transparent conductive film 21 ... Glass substrate

Abstract

本開示の光電変換膜は、複数の半導体ナノ粒子1aと、該半導体ナノ粒子1aの周囲に設けられたマトリックス相3とを有し、マトリックス相3が有機分子重合体5と無機質材料7との複合体9を主相として含む。光電変換装置は、ガラス基板21上に、透明導電膜19、上記の光電変換膜からなる光電変換層15および半導体基板11および電極層17がこの順に積層されて構成されている。

Description

光電変換膜および光電変換装置
 本開示は、光電変換膜および光電変換装置に関する。
 近年、太陽電池および半導体レーザなどの光電変換装置は、その光電変換効率を高めることを目的に量子ドットを利用することが提案されている。太陽電池などの光電変換装置に利用される量子ドットとしては、サイズが約10nm程度の半導体ナノ粒子が代表的なものである。半導体ナノ粒子を太陽電池用の量子ドットとして適用しようとすると、半導体ナノ粒子の表面にはパッシベーション膜(例えば、酸化アルミニウム)が必要となる。
 このような無機質のパッシベーション膜を形成する方法の一つとして、例えば、原子層堆積法(ALD : Atomic Layer Deposition、以下、ALD法と表記する。)がある。
 ALD法は、基板上に半導体ナノ粒子を堆積させて形成した集積膜の上から、揮発させた有機金属化合物を酸素などの気体とともに吹き付けて、半導体ナノ粒子間に無機質材料を形成するというものである(例えば、非特許文献1を参照)。
 この場合、光電変換膜を形成するための半導体ナノ粒子としては、基板上に堆積させた際に高密度に配列するように、分散性を高めるための表面処理が行われる。例えば、半導体ナノ粒子の表面にリガンドと称する低分子量の有機分子を付着させて複合化したものが用いられる。さらに、これら半導体ナノ粒子および有機分子の周囲を埋めるように無機質材料が形成される。
ヤオ・リウ(Yao Liu)著,「ロブスト,ファンクショナル ナノクリスタル ソリッド バイ インフィリング ウイズ アトミックレイヤデポジション(Robust functional Nanocrystal Solids by Infilling with Atomic Layer Deposition)」,(米国),Nano Lett. 2011,11,5349-5355
 本開示の光電変換膜は、複数の半導体ナノ粒子と、該半導体ナノ粒子の周囲に存在するマトリックス相とを有し、前記マトリックス相が有機分子の重合体と無機質材料との複合体を主相として含むものである。
 本開示の光電変換装置は、光透過性の基板上に、透明導電膜、光電変換層、半導体基板および電極層が、前記透明導電膜、前記光電変換層、前記半導体基板および前記電極層の順に積層されて構成されており、前記光電変換層が上記の光電変換膜であるものである。
(a)は、本開示の光電変換膜の一実施形態を示す断面模式図であり、(b)は、(a)の一部を拡大した断面図である。 有機分子の一例であるEDTを加熱したときの蒸発曲線である。 光電変換膜の中で、無機質材料が光電変換膜の厚み方向の途中の位置まで存在している状態を部分的に示す断面図である。 本実施形態の光電変換膜の他の態様を示す断面模式図である。 本開示の光電変換装置の一実施形態を示す断面模式図である。(a)は、無機質材料が集積膜の全体に広がっている構造、(b)は無機質材料が集積膜の一部を占めている構造である。
 図1(a)は、本開示の光電変換膜の一実施形態を示す断面模式図であり、(b)は、(a)の一部を拡大した断面図である。
 本実施形態の光電変換膜10は、複数の半導体ナノ粒子1aと、半導体ナノ粒子1aの周囲に存在するマトリックス相3とを備えたものである。ここでは、便宜上、複数の半導体ナノ粒子1aが集まった構造体のことを集積膜1とする。
 光電変換膜10を構成しているマトリックス相3は、その主相が有機分子の重合体5(以下、有機分子重合体5と記す。)と無機質材料7との複合体9によって形成されている。ここで、主相とは、マトリックス相3を占める複合体9の体積比率が60%以上である場合を言う。有機分子の重合体5は、以下、有機分子重合体5と記す。有機分子重合体5は複数の有機分子5aが結合したものである。
 マトリックス相3に占める複合体9の体積比率は光電変換膜10の断面を透過型電子顕微鏡により観察して得られる写真の解析によって求められる。このとき得られる面積比率は体積比率に対応するものとする。
 マトリックス相3を構成する有機分子重合体5および無機質材料7の組織を含めた存在状態は、透過型電子顕微鏡に付設の分析器、全反射フーリエ変換赤外分光法(FT-IR-ATR)およびガスクロマト分析(GC-MS)のうちのいずれかまたはこれらを組み合わせた分析によって確認する。
 ここで、本実施形態の光電変換膜10と上記した非特許文献1に開示された従来の光電変換膜とを比較する。図2は、有機分子5aの一例となるエタンジチオール((C、以下、EDTと略す。))を加熱したときの蒸発曲線である。これはガスクロマトグラフ分析により測定したものである。図2に示すように、EDTは70℃を超えた辺りから徐々に蒸発が起こり、130℃から180℃にかけて急激に蒸発し、200℃以上では蒸発が終了した状態となる。
 従来の光電変換膜は、非特許文献1によれば、無機質材料(ここでは酸化アルミニウム)を形成する温度が70℃となっている。図2に示した蒸発曲線から分かるように、このような温度ではEDTはほとんど蒸発しない。そのため非特許文献1に開示された従来の光電変換膜では、半導体ナノ粒子の表面に付着した有機分子は、ALD法による成膜を行う前とほとんど同じ分子量の状態で存在している。このためALD法によって形成される無機質材料は、隣接する半導体ナノ粒子から伸びた有機分子の隙間に入り込む程度となる。
 つまり、従来の光電変換膜の場合、半導体ナノ粒子の集積膜内にALD法によって無機質材料を形成する段階においても、半導体ナノ粒子間には低分子量の有機分子が多く残っている。そのため半導体ナノ粒子の周囲に無機質材料が形成され難く、パッシベーション膜としての機能および集電膜としての性能が低くなる。このため光電変換特性を高められない。
 また、従来の光電変換膜では、隣接する半導体ナノ粒子101aから伸びた有機分子同士が絡み合っているだけで重合した状態ではない。このため隣接している半導体ナノ粒子同士の間隔にも大きなバラツキがある。
 さらに、従来の光電変換膜においては、隣接する半導体ナノ粒子同士が強固に連結された状態では無い。このため半導体ナノ粒子が集積された膜内にALD法によって無機質材料を形成した場合には、無機質材料が半導体ナノ粒子の隙間に形成されるときに半導体ナノ粒子同士の間隔も伸びた有機分子の長さの分だけ広がった状態となる。そのため半導体ナノ粒子間に形成される無機質材料の厚みも同様に大きくなる。その結果、半導体ナノ粒子の周囲に形成される無機質材料のパッシベーション膜としての機能が低下してしまう。このため、光電変換膜はキャリアの閉じ込め効果が低下し、光電変換特性を高めることができない。
 これに対し、本実施形態の光電変換膜10は、後述する具体例から分かるように、ALD法によって無機質材料7を形成する温度が70℃よりも高い温度である。無機質材料7を形成する温度が70℃よりも高い温度では、有機分子5a(ここでは、EDT)が蒸発しやすい。このため半導体ナノ粒子1aの周囲から一部のEDTが脱離することになる。これにより半導体ナノ粒子1a間に存在するEDTの数が減少する。その結果、無機質材料7を形成することのできる空間hが増える。この空間hに無機質材料7が入ることになる。
 また、無機質材料7を形成する温度を70℃よりも高い温度に設定した場合には、EDTは、その一方から硫黄(S)が抜けて炭素鎖が結合する。こうした炭素鎖が重縮合によって結合することになる。これにより有機分子5a同士がより強固に連結された状態になる。
 有機分子重合体5は、上述のように、有機分子5aが重縮合することによって形成されたものである。このため隣接する半導体ナノ粒子1aから対向するように伸びた有機分子5aは、有機分子5aから硫黄が抜けて重縮合した分だけ分子長が短くなる。
 本実施形態の光電変換膜10において、隣接する半導体ナノ粒子1a間に形成される無機質材料7は、連結する有機分子重合体5の長さに相当する厚みで形成される。このため無機質材料7は、非特許文献1の場合よりもその厚みが薄くなる。本実施形態の光電変換膜10では、これにより半導体ナノ粒子1aからのキャリアの浸みだしが容易となり光電変換特性が向上する。
 複合体9を構成する有機分子重合体5および無機質材料7は、図1(b)に示すように、両方とも隣接する複数の半導体ナノ粒子1aに接触しているのが良い。有機分子重合体5および無機質材料7が、隣接する複数の半導体ナノ粒子1aに接触していると、有機分子重合体5は、隣接する半導体ナノ粒子1a同士を強固に連結する接続部材としての役割を担うものとなる。こうして有機分子重合体5にパッシベーション膜として高い機能を発揮させることができる。
 この場合、複合体9は、光電変換膜10を断面視したときに、無機質材料7の面積比率が有機分子重合体5の面積比率よりも大きい方が良い。複合体9の中で無機質材料7の面積比率が有機分子重合体5の面積比率よりも大きいと、隣接する複数の半導体ナノ粒子1a間における結合強度がより高まる。その結果、機械的強度が高く、耐久性の良い光電変換膜を得ることができる。
 図3は、光電変換膜の中で、無機質材料が光電変換膜の厚み方向の途中の位置まで存在している状態を部分的に示す断面図である。図3において、符号3Aはマトリックス相3として有機分子重合体5および無機質材料7が両方存在している領域(共存領域)、3Bは有機分子重合体のみが存在している領域(単一領域)である。図3に示す光電変換膜10の共存領域3Aと単一領域3Bとでは、有機分子重合体5と無機質材料7とは集積膜1の全面積に対する占有面積および占有する領域が異なる。
 図3に示す光電変換膜10では、有機分子重合体5と無機質材料7とは化合することなしに組織的に区別された状態で形成されている。 本実施形態の光電変換膜10において、有機分子重合体5は、ほぼ全ての半導体ナノ粒子1aの周囲を埋めるように存在している。一方、無機質材料7は集積膜1の一方の主面側から厚み方向の途中の位置に止まるように形成されている。無機質材料7が占める領域は、図3に示しているように、厚み方向に限定された範囲となっている。
 言い換えると、無機質材料7は集積膜1の一方の主面側から一定の厚みの範囲まで存在し、集積膜1の残りの部分には無機質材料7が存在しない構成である。この場合、複合体9は、光電変換膜10を断面視したときに、有機分子の重合体5と無機質材料7とが混在した領域3Aと、有機分子の重合体のみが存在する領域3Bとが層状に形成されているのが良い。
 図3に示した光電変換膜10として、例えば、無機質材料7にn型半導体を適用して複合体9を形成すると、無機質材料7が集電体として機能する光電変換膜10を形成することができる。
 ここで、光電変換膜10において、有機分子重合体5および無機質材料7の両方が存在している符号3Aの領域の面積比率が有機分子重合体5のみが存在している符号3Bの領域の面積比率よりも大きい方が良い。この場合、集電性が向上する。これはマトリックス相3中に集電体となる無機質材料7が接触した半導体ナノ粒子1aの割合が増えるためである。
 図4は、本実施形態の光電変換膜の他の態様を示す断面模式図である。図4は光電変換膜10の一部分に示している。図4に示した光電変換膜10では、有機分子重合体5が半導体ナノ粒子1aの表面に優先的に貼り付いた構成を成している。この場合、無機質材料7は、その有機分子重合体5の外側の領域に存在している。このような有機分子重合体5は、無機質材料7を形成する温度が高いほど形成されやすい。これは温度上昇によって有機分子5a同士の重縮合が進むことに起因する。
 この場合、光電変換膜10には、光電変換特性を大きく低下させない範囲で、隣接する半導体ナノ粒子1a間に、複合体9として有機分子重合体7と無機質材料5とが積層状態にある積層部9Aが形成されていても良い。積層部9Aには、有機分子重合体7、無機質材料5および有機分子重合体7がこの順で配置された3層構造であっても良い。
 図4に示した光電変換膜10の場合、マトリックス相3となる複合体9の中に形成されている有機分子重合体5は加熱時に高いエネルギーを受けている。このため有機分子重合体5は隣接する半導体ナノ粒子1aの表面とともに、無機質材料7に対してもより強固に結合した状態となっている。これにより光電変換特性の高い光電変換膜を得ることができる。
 ここで、有機分子重合体5を形成するための有機分子5aとしては、半導体ナノ粒子1a同士の間隔を短くすることができるという理由から、ヨウ化テトラブチルアンモニウム(TBAI)および上記のEDTなど炭素数が40以下であるものが良い。この場合、炭素数が5以下の直鎖状の有機分子5aがさらに良い。
 無機質材料7としては、Al、Zn、Si、Ti、Cu、Ga、S、InおよびSeの群から選ばれる1種の元素と、O、CおよびNの群から選ばれる1種の元素とを化合させたものが良い。ここで、ALD法によって形成される無機質材料7の具体例としては、例えば、AlOx、AlNx、ZnOx、SiOx、SiNx、TiOx、TiNx、CuOx、GaOx、GaNx、GaSex、InSxおよびInSex(xは成膜時の雰囲気に基づく任意の数、例えば、0.1~3)等を挙げることができる。なお、上記した無機質材料7については、酸素などの陰イオンの数が不定比となっても良い。
 また、光電変換膜を構成する半導体ナノ粒子1aとしては、バンドギャップ(Eg)が0.15~2.0eVを有する材料を選択する。半導体ナノ粒子1aの具体的な材料としては、ゲルマニウム(Ge)、シリコン(Si)、ガリウム(Ga)、インジウム(In)、ヒ素(As)、アンチモン(Sb)、銅(Cu)、鉄(Fe)、硫黄(S)、鉛(Pb)、テルル(Te)およびセレン(Se)から選ばれるいずれか1種またはこれらの化合物半導体を用いるのが良い。この中で、Si、GaAs、InAs、PbS、PbSe、CdSe、CdTe、CuInGaSe、CuInGaS、CuZnGaSeおよびCuZnGaSの群から選ばれる1種が良い。
 このような半導体材料が適用される集積膜1としては、集積膜1に占める半導体ナノ粒子1aの割合が集積膜1の断面観察から得られる面積比で60%以上となっているのが良い。因みに、半導体ナノ粒子1aの占める面積比を60%以上にする場合には、最大径が10nmであるときに、粒度分布が5nm以内の範囲であるのが良い。
 図5は、本開示の光電変換装置の一実施形態を示す断面模式図である。(a)は、無機質材料が集積膜の全体に広がっている構造、(b)は無機質材料が集積膜の一部を占めている構造である。本実施形態の光電変換装置20は、半導体基板11の主面上に、光電変換層15として、上記した光電変換膜を有する。図5(a)に示す例は、半導体基板11の下面に電極層17が配置されている。一方、光電変換層15の上面には透明導電膜19およびガラス基板21がこの順に配置されている。この光電変換装置20は、光電変換層15が上記した光電変換膜10により形成されている。つまり、マトリックス相3が有機分子重合体5と無機質材料7との複合体9を主相として含むものである。これにより半導体ナノ粒子1a間を占めるマトリックス相3が隣接する半導体ナノ粒子1a同士を強固に連結するものとなるため、パッシベーション膜として高い機能を有することから高い光電変換特性を得ることができる。
 また、図5(b)に示す光電変換装置20は、光電変換層15として図3に示した光電変換膜を適用したものである。この光電変換装置20では、半導体基板11と光電変換層15との間に集電層23が設けられている。この場合、集電層23は無機質材料7と同じ材料(主成分)であるのが良い。集電層23および無機質材料7の材料としては、例えば酸化亜鉛が良い。言い換えると、図5(b)に示した光電変換装置20では、集電層23の全体と、光電変換層15の厚み方向の途中の位置まで酸化亜鉛が含まれているのが良い。つまり、光電変換層15の方は、厚みの50~90%までの位置に酸化亜鉛が含まれているのが良い。このとき酸化亜鉛は集電層23では膜状であり、光電変換層15では半導体ナノ粒子1aの周囲を埋めるように、断面視したときに柱状に形成されているのが良い。集電層23と無機質材料7とは一体化された状態であるのが良い。これにより光電変換装置の短絡電流密度および開放電圧の高い光電変換装置を得ることができる。
 次に、本実施形態の光電変換膜および光電変換装置を製造する方法について、半導体ナノ粒子1として、硫黄化鉛(PbS)を適用した例を基に説明する。
 まず、分子量が約200のポリオキシエチレンの溶液中に分散された状態の硫化鉛の粒子(以下、PbS粒子とする。)を準備した。平均粒径は約10nmである。
 次に、このPbS粒子を含む溶液にEDTを加え、室温にて約24時間の撹拌を行った。この操作により、PbS粒子の表面でポリオキシエチレンがEDTに置き換わり、PbS粒子にEDTが結合したナノ複合材料を得ることができた。
 次に、得られたナノ複合材料の分散溶液を、面積が10mm×10mm、厚み0.3mmのシリコン基板上に塗布した後、洗浄および加熱によって余分の有機分子および水分を除去し、集積膜1を形成した。集積膜の厚みは約0.1μmであった。
 次に、ALD法によって、集積膜1中のPbS粒子の周囲に無機質材料を形成した。このときALD法の条件としては、供給する酸素(O)ガスの圧力を5Paとし、基板温度を表1に示す範囲で変化させた。こうしてシリコン基板上に形成したPbS粒子の集積膜内にEDTとZnOxとの複合体をマトリックス相とする光電変換膜を形成することができた。この場合、ZnOxの膜は、成膜の時間およびサイクル数を制御して、集積膜の上面からおおよそ3/4の位置まで形成されている状態となるようにした。半導体基板と光電変換膜との間に酸化亜鉛の集電層を形成した試料については、半導体基板の表面に予め酸化亜鉛の溶液を塗布し、約100℃にて加熱して形成した。
 次に、作製した光電変換膜の内部組織を透過電子顕微鏡により観察した。また、有機分子(EDT)が重合している状態を全反射フーリエ変換赤外分光法(FT-IR-ATR)により確認した。
 次に、光電変換膜の表面に透明導電膜(インジウム錫酸化物:ITO)を形成し、次いで、ガラス基板を貼り付け、一方、シリコン基板の下層面に電極層(金:Au)を蒸着法により形成して、光電変換装置を作製した。
 次に、作製した光電変換装置について短絡電流密度を評価した。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、ALD法を行うときの成膜温度を130℃および150℃に設定して作製した試料(試料No.2、3)は、短絡電流密度が29~32mA/cm以上となり、設定温度を70℃とした試料(試料No.1)の短絡電流密度が22mA/cmに比べて1.3~1.5倍の短絡電流密度が得られた。
 各試料の光電変換膜をFT-IR-ATR分析した結果、ALD法の成膜温度を130℃および150℃に設定した試料は、いずれもEDTが重合している状態となっていたが、設定温度を70℃とした試料はEDTが重合した状態ではなかった。設定温度を180℃とした試料はEDTが全て蒸発していた。
 各試料の光電変換膜を透過電子顕微鏡観察したところ、ALD法を行うときの成膜温度を130℃および150℃に設定して作製した試料(試料No.2、3)は、光電変換膜内で複合体を構成するEDT(重合体)とZnOxとが両方とも少なくとも2個のPbS粒子に接触した状態であり、また、ZnOxの面積比率がEDT(重合体)の面積比率よりも大きかった。
 また、試料No.3の光電変換装置の試料について、図5(b)に示す構成の光電変換装置を作製して同様に評価したところ、短絡電流密度が36mA/cmであった。この試料は、断面視したときに、有機分子の重合体と無機質材料とが混在した領域と、有機分子の重合体のみが存在する領域とが層状に形成されていた。また、有機分子の重合体および無機質材料の両方が存在している領域の面積比率が有機分子重合体のみが存在している領域の面積比率よりも大きかった。さらに、この試料における複合体はその一部に有機分子重合体、無機質材料および有機分子重合体がこの順に配置された積層膜の構造が見られた。
10・・・・・・・・・光電変換膜
20・・・・・・・・・光電変換装置
1・・・・・・・・・・集積膜
1a・・・・・・・・・半導体ナノ粒子
3・・・・・・・・・・マトリックス相
5・・・・・・・・・・有機分子重合体
5a・・・・・・・・・有機分子
7・・・・・・・・・・無機質材料
9・・・・・・・・・・複合体
11・・・・・・・・・半導体基板
15・・・・・・・・・光電変換層
17・・・・・・・・・電極層
19・・・・・・・・・透明導電膜
21・・・・・・・・・ガラス基板

Claims (11)

  1.  複数の半導体ナノ粒子と、該半導体ナノ粒子の周囲に存在するマトリックス相とを有し、前記マトリックス相が有機分子の重合体と無機質材料との複合体を主相として含むことを特徴とする光電変換膜。
  2.  前記複合体は、前記有機分子の重合体と前記無機質材料とが共に、隣接する複数の前記半導体ナノ粒子に接触していることを特徴とする請求項1に記載の光電変換膜。
  3.  前記複合体は、断面視したときに、前記無機質材料の面積比率が前記有機分子の重合体の面積比率よりも大きいことを特徴とする請求項1または2に記載の光電変換膜。
  4.  前記マトリックス相には、前記無機質材料が、一方の主面側から厚み方向の途中の位置まで存在していることを特徴とする請求項1乃至3のうちいずれかに記載の光電変換膜。
  5.  前記マトリックス相は、断面視したときに、前記有機分子の重合体と前記無機質材料とが混在した領域と、前記有機分子の重合体のみが存在する領域とが層状を成していることを特徴とする請求項1乃至4のうちいずれかに記載の光電変換膜。
  6.  前記有機分子の重合体および前記無機質材料の両方が存在している領域の面積比率が前記有機分子の重合体のみが存在している領域の面積比率よりも大きいことを特徴とする請求項5に記載の光電変換膜。
  7.  隣接する前記半導体ナノ粒子の間に、前記有機分子の重合体と前記無機質材料との積層部を有していることを特徴とする請求項1乃至6のうちいずれかに記載の光電変換膜。
  8.  前記有機分子は、炭素数が40以下であることを特徴とする請求項1乃至7のうちいずれかに記載の光電変換膜。
  9.  前記有機分子が、炭素数が5以下で直鎖状であることを特徴とする請求項1乃至7のうちいずれかに記載の光電変換膜。
  10.  前記無機質材料が、Al、Zn、Si、Ti、Cu、Ga、S、InおよびSeの群から選ばれる1種の元素と、O、CおよびNの群から選ばれる1種の元素とを化合させたものであることを特徴とする請求項1乃至9のうちいずれかに記載の光電変換膜。
  11.  光透過性の基板上に、透明導電膜、光電変換層、半導体基板および電極層が、前記透明導電膜、前記光電変換層、前記半導体基板および前記電極層の順に積層されて構成されており、前記光電変換層が請求項1乃至10のうちいずれかに記載の光電変換膜であることを特徴とする光電変換装置。
PCT/JP2016/085159 2015-11-27 2016-11-28 光電変換膜および光電変換装置 WO2017090768A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680069323.3A CN108292689B (zh) 2015-11-27 2016-11-28 光电转换膜和光电转换装置
JP2017521174A JP6175593B1 (ja) 2015-11-27 2016-11-28 光電変換膜および光電変換装置
US15/777,850 US10580915B2 (en) 2015-11-27 2016-11-28 Photoelectric conversion film and photoelectric conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015231935 2015-11-27
JP2015-231935 2015-11-27

Publications (1)

Publication Number Publication Date
WO2017090768A1 true WO2017090768A1 (ja) 2017-06-01

Family

ID=58763601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085159 WO2017090768A1 (ja) 2015-11-27 2016-11-28 光電変換膜および光電変換装置

Country Status (4)

Country Link
US (1) US10580915B2 (ja)
JP (1) JP6175593B1 (ja)
CN (1) CN108292689B (ja)
WO (1) WO2017090768A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI625866B (zh) * 2017-08-22 2018-06-01 絜靜精微有限公司 結合電化學及奈米轉印之薄膜太陽能電池磊晶法
WO2021075495A1 (ja) * 2019-10-15 2021-04-22 国立大学法人京都大学 導電膜、分散体とこれらの製造方法、及び導電膜を含むデバイス

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109671848B (zh) * 2018-12-12 2020-05-19 华中科技大学 CuPbSbS3新型薄膜太阳能电池及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211418A (ja) * 2012-03-30 2013-10-10 Kyocera Corp 太陽電池
WO2015172019A1 (en) * 2014-05-09 2015-11-12 Massachusetts Institute Of Technology Energy level modification of nanocrystals through ligand exchange

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9557635B2 (en) * 2007-10-18 2017-01-31 Gearbox, Llc Ionizing-radiation-responsive compositions, methods, and systems
US11235062B2 (en) * 2009-03-06 2022-02-01 Metaqor Llc Dynamic bio-nanoparticle elements
JP2012113942A (ja) * 2010-11-24 2012-06-14 Ricoh Co Ltd 多層型光電変換素子およびその製造方法
US20120263793A1 (en) * 2011-04-14 2012-10-18 Franco Vitaliano Bio-nano-plasmonic elements and platforms
WO2014017536A1 (ja) * 2012-07-27 2014-01-30 株式会社ダイセル 光電変換層用組成物および光電変換素子
CA2901335A1 (en) * 2013-03-06 2014-09-12 Jx Nippon Oil & Energy Corporation Method of manufacturing member having relief structure, and member having relief structure manufactured thereby
JP6206037B2 (ja) * 2013-09-26 2017-10-04 株式会社リコー 光電変換素子
JP2015128105A (ja) * 2013-12-27 2015-07-09 ソニー株式会社 半導体ナノ粒子分散体、光電変換素子および撮像装置
JP6652053B2 (ja) * 2014-06-11 2020-02-19 コニカミノルタ株式会社 半導体ナノ粒子集積体およびその製造方法
CN104861958B (zh) * 2015-05-14 2017-02-15 北京理工大学 一种钙钛矿/聚合物复合发光材料及其制备方法
CN107921738A (zh) * 2015-08-12 2018-04-17 富士胶片株式会社 层叠膜
JP6509091B2 (ja) * 2015-10-20 2019-05-08 富士フイルム株式会社 波長変換積層フィルム
WO2017130820A1 (ja) * 2016-01-25 2017-08-03 株式会社リコー 光電変換素子
JP2018060921A (ja) * 2016-10-05 2018-04-12 キヤノン株式会社 光電変換装置及びシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211418A (ja) * 2012-03-30 2013-10-10 Kyocera Corp 太陽電池
WO2015172019A1 (en) * 2014-05-09 2015-11-12 Massachusetts Institute Of Technology Energy level modification of nanocrystals through ligand exchange

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HYE-MI SO ET AL.: "Atomic layer deposition effect on the electrical properties of Al_20_3-passivated PbS quantum dot field-effect transistors", APPL. PHYS. LETT., vol. 106, 2015, pages 093507, XP012195320, DOI: doi:10.1063/1.4914304 *
YAO LIU ET AL.: "PbSe Quantum Dot Field-Effect Transistors with Air-Stable Electron Mobilities above 7cm^2V^-1s^-1", NANO LETT., vol. 13, 2013, pages 1578 - 1587, XP055347889, DOI: doi:10.1021/nl304753n *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI625866B (zh) * 2017-08-22 2018-06-01 絜靜精微有限公司 結合電化學及奈米轉印之薄膜太陽能電池磊晶法
WO2021075495A1 (ja) * 2019-10-15 2021-04-22 国立大学法人京都大学 導電膜、分散体とこれらの製造方法、及び導電膜を含むデバイス

Also Published As

Publication number Publication date
CN108292689A (zh) 2018-07-17
JPWO2017090768A1 (ja) 2017-11-24
CN108292689B (zh) 2021-07-20
US10580915B2 (en) 2020-03-03
JP6175593B1 (ja) 2017-08-02
US20180351016A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
CN104937722B (zh) 利用处理量子点溶液制造的中间带半导体、异质结和光电设备,及其相关方法
Liu et al. MXenes for optoelectronic devices
Schornbaum et al. Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near‐infrared photoresponse
Lu et al. Synthesis and applications of wide bandgap 2D layered semiconductors reaching the green and blue wavelengths
JP6637526B2 (ja) ヘテロ構造及び該ヘテロ構造に由来する電子デバイス
JP5460706B2 (ja) X線検出器
Sulaman et al. Interlayer of PMMA doped with Au nanoparticles for high-performance tandem photodetectors: A solution to suppress dark current and maintain high photocurrent
JP5955305B2 (ja) 半導体膜、半導体膜の製造方法、太陽電池、発光ダイオード、薄膜トランジスタ、および、電子デバイス
JP6175593B1 (ja) 光電変換膜および光電変換装置
Peng et al. PbS Quantum Dots/2D Nonlayered CdS x Se1–x Nanosheet Hybrid Nanostructure for High-Performance Broadband Photodetectors
US10714648B2 (en) Solar cell with graphene-silicon quantum dot hybrid structure and method of manufacturing the same
Sulaman et al. Enhanced performance of solution-processed broadband photodiodes by epitaxially blending MAPbBr3 quantum dots and ternary PbSxSe1− x quantum dots as the active layer
Yang et al. Suppressed interfacial charge recombination of PbS quantum dot photovoltaics by graphene incorporated into ZnO nanoparticles
Wang et al. Two-dimensional hybrid perovskite-based van der Waals heterostructures
Luo et al. Micron-Scale Photodetectors Based on One-Dimensional Single-Crystalline Sb2–x Sn x Se3 Microrods: Simultaneously Improving Responsivity and Extending Spectral Response Region
Zhang et al. Multifunctional VI–VI binary heterostructure-based self-powered pH-sensitive photo-detector
Kim et al. Organic Light-Dependent Resistors with Near Infrared Light-Absorbing Conjugated Polymer Films
US10256355B2 (en) Photoelectric converter with a multi-layered quantum dot film
CN105210198A (zh) 捕光天线复合物
JP7356157B2 (ja) 光電変換素子、光電変換装置、光の検出方法、および光電変換素子の製造方法
Huang et al. Interfacial engineering of high-performance, solution-processed Sb2S3 phototransistors
JP6196418B2 (ja) 光電変換装置
Tsay et al. Photoresponse of solution-processed transparent heterojunction ultraviolet photodetectors composed of n-type ZTO and p-type NiO-based semiconductor thin films
Validžić et al. Amorphous non-doped and Se-, Cu-, and Zn-doped Sb2S3 nanoparticles prepared by a hot-injection method: bandgap tuning and possible observation of the quantum size effect
KR101633451B1 (ko) 핵-껍질 구조의 금속산화물 반도체-플러렌 양자점을 이용한 색 변환 발광소자와 그 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017521174

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868711

Country of ref document: EP

Kind code of ref document: A1