WO2017126167A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2017126167A1
WO2017126167A1 PCT/JP2016/079734 JP2016079734W WO2017126167A1 WO 2017126167 A1 WO2017126167 A1 WO 2017126167A1 JP 2016079734 W JP2016079734 W JP 2016079734W WO 2017126167 A1 WO2017126167 A1 WO 2017126167A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gate
semiconductor device
trench gate
diode
Prior art date
Application number
PCT/JP2016/079734
Other languages
English (en)
French (fr)
Inventor
聡志 奥田
古川 彰彦
川上 剛史
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017562433A priority Critical patent/JP6407455B2/ja
Priority to CN201680078695.2A priority patent/CN108463888B/zh
Priority to DE112016006255.9T priority patent/DE112016006255T5/de
Priority to US15/774,109 priority patent/US10192978B2/en
Publication of WO2017126167A1 publication Critical patent/WO2017126167A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0658Vertical bipolar transistor in combination with resistors or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0664Vertical bipolar transistor in combination with diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate

Definitions

  • the present invention relates to a semiconductor device having a trench gate.
  • IGBT Insulated Gate Bipolar Transistor
  • the trench gate type IGBT is formed in a stripe shape on the surface of the semiconductor substrate having a p-type base layer formed in the surface layer portion of the n-type drift layer, and reaches the n-type drift layer through the p-type base layer. Having a trench gate formed on the substrate.
  • An n-type emitter layer is formed in contact with the side surface of some of the trench gates, and a channel is formed in a p-type base layer on the side surface of the trench gate in contact with the n-type emitter layer.
  • the n-type emitter layer is not formed on the side surface of the remaining trench gate, and holes are accumulated in the p-type base layer in contact with the side surface when the trench gate IGBT is turned on.
  • a trench gate in which no channel is formed on the side surface because the n-type emitter layer is not formed on the side surface is called a dummy trench gate.
  • a trench gate in which a channel is formed on the side surface is called an active trench gate because a gate voltage is applied by a gate driving circuit.
  • a dummy trench gate to which a gate voltage is applied by a gate driving circuit as in the active trench gate is referred to as an active dummy trench gate.
  • a part of a dummy trench gate is connected to a gate terminal to be an active dummy trench gate, and the rest is connected to an emitter terminal to be a dummy trench gate.
  • the parasitic capacitance between the gate and the collector is made larger than when the active dummy trench gate is not connected to the gate terminal.
  • the present invention has been made to solve the above-described problems, and suppresses the current for charging the gate-emitter capacitance without using the gate resistance, thereby improving the controllability of dV / dt by the gate resistance.
  • An object of the present invention is to provide a semiconductor device.
  • a semiconductor device includes a first conductivity type drift layer, a second conductivity type base layer provided on the surface side of the drift layer, and a first conductivity type provided selectively on the surface side of the base layer.
  • the second conductivity type collector layer is electrically connected to the trench gate electrode on the anode side, and the dummy trench gate electrode Cathode comprises electrically connected diodes, the.
  • the controllability of dV / dt by the gate resistance can be improved.
  • FIG. 1 It is a schematic cross section which shows the semiconductor device in Embodiment 1 of this invention. It is a schematic cross section which shows the other semiconductor device in Embodiment 1 of this invention. It is an expanded sectional structure figure showing an IGBT element which constitutes a semiconductor device in Embodiment 1 of the present invention. It is an expanded sectional view showing an IGBT element constituting a conventional semiconductor device. It is a circuit diagram which shows the equivalent circuit of the conventional semiconductor device and the semiconductor device in Embodiment 1 of this invention. It is a figure which shows the measurement result of the gate resistance of the IGBT element which comprises the conventional semiconductor device, and the relationship between dV / dt, and the gate-emitter voltage waveform at the time of turn-on.
  • FIG. 5 is an enlarged cross-sectional structure diagram showing an IGBT element that constitutes a semiconductor device having another configuration according to the first embodiment of the present invention. It is an expanded structure cross section which shows the IGBT element which comprises the semiconductor device in Embodiment 2 of this invention. It is an expanded structure section which shows an IGBT element which constitutes a semiconductor device of other composition in Embodiment 2 of the present invention. It is an expanded structure sectional view which shows the IGBT element which comprises the semiconductor device in Embodiment 3 of this invention. It is an expanded structure sectional view which shows the element peripheral part of the IGBT element which comprises the semiconductor device in Embodiment 3 of this invention.
  • FIG. 1 is a schematic cross-sectional view showing a semiconductor device according to Embodiment 1 of the present invention.
  • n and p represent semiconductor conductivity types.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • N ⁇ indicates that the impurity concentration is lower than n
  • n + indicates that the impurity concentration is higher than n.
  • p ⁇ indicates that the impurity concentration is lower than p
  • p + indicates that the impurity concentration is higher than p.
  • the semiconductor device 100 includes a trench gate type IGBT element 20, a diode 21, and a gate resistor 22.
  • the IGBT element 20, the diode 21, and the gate resistor 22 are joined on an electrode (not shown) patterned on the substrate 24.
  • the substrate 24 is fixed on an insulating material 25 formed of ceramic or resin, and the insulating material 25 is fixed on a metal plate 26 having a high thermal conductivity such as copper or aluminum.
  • a sealing resin 27 is sealed inside.
  • the case 28 is provided with a gate terminal 30, an emitter terminal 31, and a collector terminal 32 exposed to the outside of the case 28.
  • the IGBT element 20 and the diode 21 are connected by a wire 23a such as a wire or a plate made of a metal material having a high conductivity such as copper or aluminum, and the diode 21 and the gate resistor 22 are connected by a wire 23b. Further, the emitter electrode 4 and the emitter terminal 31 of the IGBT element 20 are connected by a wiring 23d, and the collector electrode 5 and the collector terminal 32 of the IGBT element 20 are connected by a wiring 23e. Further, the gate terminal 30 and the gate resistor 22 are connected by a wiring 23c.
  • the wirings 23a to 23e are not limited to wirings using wires or plates, but may be wirings patterned on the substrate 24.
  • the configuration in which the substrate 24, the insulating material 25, and the metal plate 26 are stacked is not limited to this, for example, a configuration in which the IGBT element 20 is directly bonded to the metal plate 26 and the IGBT element 20 is easily cooled. Other configurations may be used.
  • the semiconductor device 100 may be configured without the gate resistor 22 or may be the semiconductor device 100 configured such that the user uses a gate resistor connected to the gate terminal.
  • the diode 21 and the gate resistor 22 may be formed in the IGBT element 20.
  • the diode 21 may be formed in the IGBT element 20, and the gate resistor 22 may be connected to the gate terminal 30 outside the semiconductor device 100.
  • FIG. 2 is a schematic cross-sectional view showing another semiconductor device according to the first embodiment of the present invention. 2, the same reference numerals as those in FIG. 1 denote the same or corresponding components, and the description thereof is omitted. 2 shows a semiconductor device 100 when the diode 21 and the gate resistor 22 are formed in the IGBT element 20 or when the diode 21 is formed in the IGBT element 20 and the gate resistor 22 is provided outside the semiconductor device 100. It is sectional drawing which showed.
  • the collector electrode of the IGBT element 20 is joined to the metal plate 26, and the IGBT element 20 is fixed to the metal plate 26 and provided in the case 28.
  • a sealing resin 27 is sealed in the case 28.
  • the IGBT element 20 contains a diode and a gate resistor or only a diode. These diodes and gate resistors can be formed integrally with the IGBT element 20 by a semiconductor process. For example, a diode can be formed by forming a pn junction in the gate wiring portion in the IGBT element 20, and a gate resistance can be formed by adjusting the impurity concentration in the gate wiring portion in the IGBT element 20. .
  • FIG. 3 is an enlarged cross-sectional structure diagram showing the IGBT element constituting the semiconductor device according to the first embodiment of the present invention.
  • the semiconductor device 100 shown in FIG. 1 is shown in detail centering on the structure of the IGBT element 20, and the diode 21 and the gate resistor 22 are simplified by circuit symbols.
  • the IGBT element 20 shown in FIG. 3 is a cross-sectional view in a direction perpendicular to the longitudinal direction of the trench gate in the active region of the IGBT element.
  • a range between the broken line AA and the broken line BB in FIG. 3 is a unit IGBT, and the IGBT element 20 is configured by a plurality of unit IGBTs arranged side by side in the horizontal direction on the paper surface.
  • an IGBT element 20 has a p-type base layer 7 and an n-type carrier storage layer 8 formed on the surface side of an n ⁇ -type drift layer 10 made of an n ⁇ -type semiconductor substrate.
  • a plurality of trenches 16 are formed through the n-type carrier accumulation layer 8. Note that the n-type carrier storage layer 8 is not always necessary, and the n-type carrier storage layer 8 may be omitted.
  • a gate insulating film 14 is formed on the inner wall of each trench 16, and a trench gate electrode 15 made of polysilicon containing n-type impurities or p-type impurities is buried in each trench 16 via the gate insulating film 14. Constitutes a trench gate.
  • each trench gate, n - are provided through the interior of the mold semiconductor substrate - from the surface of the type semiconductor substrate n.
  • the surface layer refers to a region located on the surface of the surface of the n ⁇ -type semiconductor substrate on which the p-type base layer 7 is formed.
  • the trench gate is classified into a first control electrode 1 that is an active trench gate and a second control electrode 2 that is an active dummy trench gate.
  • a trench gate that does not function as a gate because a channel is not formed on a side surface is called a dummy trench gate, and among the dummy trench gates, a dummy to which a gate voltage is applied from a gate drive circuit in the same manner as an active trench gate.
  • the trench gate is called an active dummy trench gate.
  • a trench gate that has a channel formed on its side surface and functions as a gate is sometimes simply called a trench gate.
  • a gate voltage is applied from the gate drive circuit, it can be distinguished from a dummy trench gate or an active dummy trench gate. For clarity, it is called an active trench gate.
  • the trench gate electrode 15 of the active trench gate is the active trench gate electrode
  • the trench gate electrode 15 of the dummy trench gate is the dummy. This is called a trench gate electrode.
  • an active dummy trench gate electrode when it is necessary to distinguish the trench gate electrode 15 of the active dummy trench gate to which the gate voltage is applied, it is called an active dummy trench gate electrode.
  • n + -type emitter layer 6 The active trench gate is formed in contact with the side surface of the trench 16.
  • the trench gate having the trench 16 whose one or both side surfaces are in contact with the n + -type emitter layer 6 is the active trench gate.
  • the active trench gate is the first control electrode 1.
  • the n + -type emitter layer 6 is not formed on the side surface of the trench 16 of the active dummy trench gate.
  • the p-type base layer 7 includes a first p-type base layer 7a that is in contact with the first control electrode 1 that is an active trench gate, and a second control electrode that is not in contact with the first control electrode 1 and is an active dummy trench gate.
  • the second p-type base layer 7b surrounded by 2 is distinguished.
  • the p + type contact layer 9 is provided in contact with the n + type emitter layer 6.
  • p + is the -type contact layer 9 and the n + -type emitter layer 6 on the part of the surface of the emitter electrode 4 is provided, and the p + -type contact layer 9 and the n + -type emitter layer 6 in contact with the emitter electrode 4 Yes.
  • an interlayer insulating film 13 that is insulated from the emitter electrode 4 is formed.
  • the interlayer insulating film 13 is also formed on each trench gate composed of the first control electrode 1 and the second control electrode 2 and on the second p-type base layer 7b, and insulates them from the emitter electrode 4. .
  • n-type buffer layer 11 and a p-type collector layer 12 are formed on the back side of the n ⁇ -type drift layer 10 made of an n ⁇ -type semiconductor substrate. Further, a collector electrode 5 is formed on the p-type collector layer 12.
  • the first control electrode 1 is connected to a first gate pad (not shown) provided on the surface of the IGBT element 20, and the second control electrode 2 is a second gate pad (on the surface of the IGBT element 20).
  • the IGBT element 20 is configured.
  • a diode 21 is connected between the first gate pad and the second gate pad so that the first gate pad side is an anode and the second gate pad side is a cathode. That is, as shown in FIG. 3, the anode of the diode 21 is connected to the first control electrode 1 side, and the cathode of the diode 21 is connected to the second control electrode 2 side.
  • the first gate pad is connected to one end of the gate resistor 22.
  • the other end of the gate resistor 22 is connected to a gate terminal 30 provided in the case 28 of the semiconductor device 100. In the case where the semiconductor device 100 is configured not to have the gate resistor 22, the first gate pad is connected to the gate terminal 30.
  • the emitter electrode 4 is connected to an emitter terminal 31 provided in the case 28 of the semiconductor device 100, and the collector electrode 5 is connected to a collector terminal 32 provided in the case 28 of the semiconductor device 100.
  • the semiconductor device 100 is configured as described above.
  • a main voltage Vce is applied between the emitter terminal 31 and the collector terminal 32 of the semiconductor device 100 so that the collector terminal 32 side has a high voltage.
  • a positive voltage is applied to the gate terminal 30 of the semiconductor device 100 from a gate drive circuit provided outside the semiconductor device 100
  • the first p-type base layer 7 a in contact with the side surface of the trench 16 of the first control electrode 1 is applied.
  • An inversion layer is formed and the channel opens. Thereafter, electrons are injected from the n + -type emitter layer 6 into the n ⁇ -type drift layer 10, pass through the n-type buffer layer 11, and reach the p-type collector layer 12.
  • holes are injected from the p-type collector layer 12 into the n ⁇ -type drift layer 10.
  • a part of holes injected from the p-type collector layer 12 flows from the first p-type base layer 7 a through the p + -type contact layer 9 and out of the IGBT element 20 from the emitter electrode 4.
  • some holes that do not flow out of the IGBT element 20 from the emitter electrode 4 reach the second p-type base layer 7b and are accumulated in the second p-type base layer 7b. Part of the holes accumulated in the second p-type base layer 7b flows into the first p-type base layer 7a as a hole current. As a result, the carrier density of the channel portion of the first p-type base layer 7a is increased and the conductivity modulation effect is enhanced, so that the conduction loss of the IGBT element 20 is reduced.
  • the holes accumulated in the second p-type base layer 7b transiently raise the potential of the second p-type base layer 7b when the IGBT element 20 is turned on. Since the gate insulating film 14 is formed on the inner wall of the trench 16 of the second control electrode 2, the second p-type base layer 7b and the trench gate electrode 15 of the second control electrode 2 form a capacitance. For this reason, the displacement current accompanying the potential increase of the second p-type base layer 7 b tends to flow into the first control electrode 1 via the second control electrode 2. However, since the diode 21 is connected between the second control electrode 2 and the first control electrode 1 so that the second control electrode 2 side becomes a cathode, the first control is performed via the second control electrode 2.
  • Displacement current that attempts to flow into the electrode 1 is blocked by the diode 21 and cannot flow into the first control electrode 1.
  • the turn-on time of the IGBT element 20 can be controlled by the resistance value of the gate resistor 22. , Controllability can be increased. That is, the controllability at the time of turn-on of dV / dt, which is the time change rate of the collector voltage of the IGBT element 20, can be enhanced.
  • FIG. 4 is an enlarged sectional view showing an IGBT element constituting a conventional semiconductor device.
  • the diode 21 is removed from the semiconductor device 100 shown in FIG. 3, the first control electrode 1 and the second control electrode 2 are connected, and the gate resistor 22 is connected to this connection location.
  • the semiconductor device 100 is the same as the semiconductor device 100 of FIG. 3 except that the diode 21 is removed.
  • FIG. 5 is a circuit diagram showing an equivalent circuit of the conventional semiconductor device and the semiconductor device according to the first embodiment of the present invention.
  • 5 (a) to 5 (d) show the lower arm of the half bridge circuit.
  • FIG. 5A is an equivalent circuit in which the lower arm of the half-bridge circuit is configured by the conventional semiconductor device 200
  • FIG. 5C is the semiconductor device 100 of the present invention in which the lower arm of the half-bridge circuit is formed. It is a configured equivalent circuit.
  • FIG. 5B is a circuit diagram showing a state in which the potential increase of the second p-type base layer 7b occurs when the conventional semiconductor device 200 is turned on
  • FIG. 5D is the semiconductor device of the present invention.
  • FIG. 10 is a circuit diagram showing a state in which a potential increase of the second p-type base layer 7b occurs at 100 turn-on.
  • a free wheel diode 40 is connected in parallel to the IGBT element 20, and the anode of the free wheel diode 40 is connected to the emitter terminal 31 and the cathode of the free wheel diode 40 is the collector terminal. 32.
  • a main voltage Vce is applied between the emitter terminal 31 and the collector terminal 32 of the IGBT element 20 so that the collector terminal 32 side has a high potential.
  • a gate voltage Vge is applied between the emitter terminal 31 and the gate terminal 30 from the gate drive circuit outside the semiconductor device 200 and the semiconductor device 100 so that the gate terminal 30 side has a high potential.
  • the gate voltage Vge is applied between the emitter and gate of the IGBT element 20 via the gate resistor 22.
  • Cgc1 is a capacitance between the first control electrode 1 and the collector electrode 5.
  • Cgc2 is a capacitance between the second control electrode 2 and the collector electrode 5.
  • Cge is a capacitance between the first control electrode 1 and the emitter electrode 4.
  • ⁇ Vdp shown in FIG. 5B and FIG. 5D is a potential increase caused by accumulation of holes in the second p-type base layer 7b when the IGBT element 20 is turned on.
  • the conventional semiconductor device 200 of FIG. When a gate voltage Vge is applied from a gate drive circuit outside the semiconductor device 200, among the holes injected from the p-type collector layer 12 of FIG. 4, as in the semiconductor device 100 of the present invention shown in FIG. Holes that have not been discharged from the emitter electrode 4 to the outside of the IGBT element 20 accumulate in the second p-type base layer 7b, generating a potential increase ⁇ Vdp. As shown in FIG. 5B, ⁇ Vdp is equivalent to a DC power source connected between the parasitic capacitance Cgc2 and the collector electrode 5 of the IGBT element 20 so that the collector electrode 5 side has a low potential.
  • a displacement current Id for charging the parasitic capacitance Cgc2 flows from the collector of the IGBT element 20.
  • the displacement current Id passes through the parasitic capacitance Cgc2 and the gate wiring, charges the parasitic capacitance Cge, and flows out from the emitter of the IGBT element 20.
  • the channel of the first p-type base layer 7a in contact with the first control electrode 1 opens quickly, so that the turn-on of the IGBT element 20 is accelerated. Since the displacement current Id flows into the parasitic capacitance Cge without passing through the gate resistor 22, it becomes difficult to control the turn-on time of the IGBT element 20 by adjusting the resistance value of the gate resistor 22. That is, the holes accumulated in the second p-type base layer 7b flow the displacement current Id that charges the parasitic capacitance Cge between the gate and the emitter of the IGBT element 20 and accelerates the turn-on.
  • FIG. 6 is a graph showing the relationship between the gate resistance and dV / dt of an IGBT element constituting a conventional semiconductor device, and the measurement result of the gate-emitter voltage waveform at turn-on.
  • FIG. 6A shows the measurement result of dV / dt when the gate resistance value of the IGBT element, which is a conventional semiconductor device, is increased from 0 ⁇
  • the holes remaining in the second p-type base layer 7b when the IGBT element 20 is turned off may flow into the parasitic capacitance Cge as the displacement current Id in the same way as when the IGBT element 20 is turned on. There is a risk of false firing at turn-off.
  • the first control electrode 1 side is an anode
  • the second control electrode 2 side is a cathode. Since the diode 21 is connected in this manner, the equivalent circuit is as shown in FIG. With such a configuration, even when holes accumulate in the second p-type base layer 7b when the IGBT element 20 is turned on and a potential increase ⁇ Vdp of the second p-type base layer 7b occurs, it tends to be generated by ⁇ Vdp. The displacement current stops because it is blocked by the diode 21. As a result, as shown in FIG.
  • the displacement current for charging the parasitic capacitance Cge does not flow, and the charging current of the parasitic capacitance Cge can be controlled by the gate resistor 22. That is, dV / dt when the IGBT element 20 is turned on can be controlled by the gate resistor 22.
  • the manufacturer or user of the semiconductor device 100 can set the dV / dt of the IGBT element 20 by the gate resistance 22 built in the semiconductor device 100 or the external gate resistance connected to the gate terminal 30 of the semiconductor device 100. It becomes possible to set arbitrarily, and the usability of the semiconductor device 100 is improved.
  • the holes accumulated in the second p-type base layer 7b are not easily discharged from the second p-type base layer 7b, the number of holes flowing from the second p-type base layer 7b to the first p-type base layer 7a as a hole current increases.
  • the conductivity modulation effect is enhanced and the conduction loss of the IGBT element 20 is reduced.
  • the displacement current at the time of turn-off of the IGBT element 20 is also blocked, Cge is not charged by the displacement current, and the occurrence of false firing can be suppressed.
  • FIG. 5C passes through the parasitic capacitance Cgc2 of the IGBT element 20. Since the capacitance of the path is reduced, the displacement current Id that flows due to the potential increase ⁇ Vdp of the second p-type base layer 7b can be reduced. In particular, by using a small diode having a small parasitic capacitance as the diode 21, the parasitic capacitance of the diode 21 can be virtually ignored.
  • FIG. 7 is an enlarged cross-sectional structure diagram showing an IGBT element constituting a semiconductor device having another configuration according to the first embodiment of the present invention.
  • a plurality of second control electrodes 2 are connected, and the cathode of the diode 21 is connected to this connection location.
  • the semiconductor device 100 shown in FIG. The cathode of the diode 21 is connected to each of the control electrodes 2, and the first control electrode 1 is connected to the connection location where the anode of each diode 21 is connected.
  • the equivalent circuit of the semiconductor device 100 shown in FIG. 7 is as shown in FIGS. 5 (c) and 5 (d), and the same effect as that of the semiconductor device of the present invention shown in FIG. 3 can be obtained.
  • the configuration in which the diode 21 is provided in each second control electrode 2 is suitable for the semiconductor device 100 having a configuration in which the diode 21 is formed in the IGBT element 20 by a semiconductor process, for example.
  • the first control electrode 1 side is an anode
  • the second control electrode 2 side is a cathode.
  • a diode 21 was provided.
  • the displacement current Id is prevented from flowing into Cge due to the potential increase ⁇ Vdp of the second p-type base layer 7b, so that the controllability of the dV / dt at the turn-on time of the IGBT element 20 is enhanced, and the IGBT element 20 It is possible to prevent the occurrence of false ignition at turn-off.
  • FIG. FIG. 8 is an enlarged structural section showing an IGBT element constituting the semiconductor device according to the second embodiment of the present invention. 8, the same reference numerals as those in FIG. 1 denote the same or corresponding components, and the description thereof is omitted.
  • the first embodiment of the present invention is different from the first embodiment in that a plurality of diodes are connected in series.
  • portions different from the first embodiment of the present invention will be described, and description of the same or corresponding portions will be omitted.
  • the diode 21 is configured by connecting a plurality of diodes in series in the same direction. That is, the anode of the diode is connected to the cathode of another diode, and the anode of the other diode is further connected to the cathode of another diode. Therefore, the diode 21 configured by connecting a plurality of diodes in series has an anode at one end and a cathode at the other end.
  • the plurality of second control electrodes 2 are connected, and the cathode of a diode 21 in which a plurality of diodes are connected in series is connected to this connection location.
  • the first control electrode 1 is connected to the anode of the diode 21 in which a plurality of diodes are connected in series.
  • the diode 21 in which a plurality of diodes are connected in series can be prevented, so that the dV / dt controllability of the IGBT element 20 can be enhanced.
  • the diode 21 is configured by connecting a plurality of diodes in series, the total parasitic capacitance of the entire diode 21 due to the parasitic capacitance of each diode can be reduced, and the flow is made using the parasitic capacitance of the diode. More displacement current Id can be suppressed.
  • FIG. 9 is an enlarged structural cross section showing an IGBT element constituting a semiconductor device having another configuration according to the second embodiment of the present invention. 9, the same reference numerals as those in FIG. 8 denote the same or corresponding components, and the description thereof is omitted.
  • the semiconductor device of FIG. 9 is different from the semiconductor device of FIG. 8 in that a diode 21b is connected to each of the second control electrodes 2 apart from a diode formed by connecting a plurality of diodes 21a in series.
  • the cathode of the diode 21b is connected to each second control electrode 2 of the semiconductor device 100, and a plurality of diodes are connected in series at the connection location where the anodes of the plurality of diodes 21b are connected.
  • the cathode of the diode 21a is connected.
  • the first control electrode 1 is connected to the anode of a diode 21a formed by connecting a plurality of diodes in series.
  • a diode 21a in which a plurality of diodes are connected in series. Since the displacement current for charging the parasitic capacitance Cge can be prevented by the diodes 21b connected to the second control electrodes 2, the dV / dt controllability of the IGBT element 20 can be enhanced.
  • a plurality of diodes are connected in series to form the diode 21a, so that the combined parasitic capacitance of the diode 21a can be reduced. Furthermore, since the diode 21a is connected in series with the diode 21b connected to each second control electrode 2, the combined parasitic capacitance of the diode 21a and the diode 21b can be further reduced. As a result, the displacement current Id that tends to flow using the parasitic capacitance of the diode can be further suppressed.
  • the diode 21 is configured by directly connecting four diodes, but the number of diodes may be more or less as long as it is two or more.
  • the diode 21a is configured by connecting two diodes in series, but the number of diodes may be further increased.
  • the diode 21b connected to each second control electrode 2 in FIG. 9 may be a diode configured by connecting a plurality of diodes in series.
  • the semiconductor device since the plurality of diodes are connected in series and connected between the first control electrode 1 and the second control electrode 2, the second p-type base layer 7b. As a result, it is possible to increase the ability to prevent the displacement current generated by the potential increase of the current, and to further improve the dV / dt controllability of the IGBT element 20.
  • FIG. 10 is an enlarged structural sectional view showing an IGBT element constituting the semiconductor device according to the third embodiment of the present invention.
  • FIG. 11 is an enlarged structural sectional view showing an element peripheral portion of the IGBT element constituting the semiconductor device according to the third embodiment of the present invention. 10 and 11, the same reference numerals as those in FIG. 3 denote the same or corresponding components, and the description thereof is omitted.
  • the first embodiment of the present invention is different from the first embodiment in that a built-in gate resistor 33 is provided between the first control electrode 1 and the anode of the diode 21.
  • FIG. 11 is a cross-sectional view of the first control electrode 1.
  • the built-in gate resistor 33 is formed in the element peripheral portion of the trench gate electrode 15 of the active trench gate constituting the first control electrode 1. Specifically, the impurity concentration of the trench gate electrode 15 is set higher than that of the active region between the trench gate electrode 15 formed in the active region of the IGBT element and the first gate pad to which the first control electrode 1 is connected. By forming the reduced region, the built-in gate resistor 33 is manufactured.
  • the trench gate electrode 15 constituting the first control electrode 1 of the IGBT element 20 is pulled up to the upper part of the element at the periphery of the element to form a gate wiring portion, and the gate of the trench gate electrode 15 is formed.
  • the wiring part is connected to the first gate pad 18.
  • a region in which the n-type or p-type impurity concentration contained in the polysilicon is reduced from the impurity concentration in the active region is formed. It is composed.
  • a p-type well layer 17 is formed below the gate wiring portion of the trench gate electrode 15 in the peripheral portion of the device and below the built-in gate resistor 33 in order to perform the termination function of the IGBT device 20. A depletion layer extending from the active region to the periphery of the device is terminated.
  • the resistance value of the built-in gate resistor 33 can be arbitrarily set by adjusting the impurity concentration contained in the polysilicon in the trench gate electrode 15. Alternatively, it can be arbitrarily set by adjusting the length of the region in which the built-in gate resistor 33 is formed. The resistance value of the built-in gate resistor 33 is adjusted to be equal to the resistance component due to the forward voltage drop of the diode 21.
  • the cathode of the diode 21 is connected to the second control electrode 2, the anode of the diode 21 and the first control electrode 1 are connected, and the gate resistance is connected to this connection location.
  • One end of the gate resistor 22 is connected, and the other end of the gate resistor 22 is connected to the gate terminal 30. Therefore, a resistance component corresponding to the forward voltage drop of the diode 21 is added between the gate terminal 30 and the second control electrode 2 in addition to the gate resistance 22.
  • the gate resistor 22 since only the gate resistor 22 is connected between the gate terminal 30 and the first control electrode 1, the gate applied to the gate terminal 30 in the first control electrode 1 and the second control electrode 2.
  • the charge / discharge speed due to the voltage is different. As a result, the electric field concentrates on the bottom of the gate insulating film 14 formed on the inner wall of some of the trenches 16, so that the reliability of the withstand voltage of the gate insulating film 14 may be lowered.
  • the resistance value of the built-in gate resistor 33 is adjusted to be equal to the resistance component due to the forward voltage drop of the diode 21,
  • the charge / discharge speeds of the first control electrode 1 and the second control electrode 2 are equal, and the electric field concentration on the bottom of the gate insulating film 14 formed on the inner wall of a part of the trench 16 is reduced.
  • the effect that the reliability of the withstand voltage of the gate insulating film 14 can be made high is acquired.
  • FIG. FIG. 12 is an enlarged structural sectional view showing an IGBT element constituting the semiconductor device in the fourth embodiment of the present invention. 12, the same reference numerals as those in FIG. 3 denote the same or corresponding components, and the description thereof is omitted.
  • the first embodiment of the present invention is different from the first embodiment in that a part of the dummy trench gate is connected to the emitter terminal 31 and is not an active dummy trench gate.
  • the third control electrode 3 which is a dummy trench gate adjacent to the first control electrode 1, is connected to the emitter terminal 31. For this reason, compared with the semiconductor device shown in FIG. 3 of the first embodiment, the number of second control electrodes 2 which are active dummy trench gates connected to the cathode of the diode 21 is reduced.
  • the dummy trench gate connected to the emitter terminal 31 is referred to as the third control electrode 3, and the third control electrode 3 is not limited to the dummy trench gate adjacent to the first control electrode 1, but is any dummy trench gate. Also good. Further, the number of the third control electrodes 3 connected to the emitter terminal 31 may be any number, and at least one of the dummy trench gates is not connected to the emitter terminal 31 and a gate voltage is applied.
  • the second control electrode 2 may be an active dummy trench gate.
  • the third control electrode 3 is connected to the emitter terminal 31 to reduce the gate-collector capacitance and the gate-emitter capacitance of the IGBT element 20.
  • the switching speed can be increased and the switching loss can be reduced.
  • the number of control electrodes connected to the gate terminal 30 is reduced, the amount of gate current required to charge / discharge each control electrode can be reduced.
  • the output capacity of the gate drive circuit provided outside the semiconductor device 100 can be reduced, and the effect of reducing the size of a device on which peripheral circuits such as the semiconductor device 100 and the gate drive circuit are mounted can be obtained.
  • FIG. 13 is an enlarged structural sectional view showing an IGBT element constituting the semiconductor device according to the fifth embodiment of the present invention.
  • the same reference numerals as those in FIG. 3 denote the same or corresponding components, and the description thereof is omitted.
  • the first embodiment of the present invention is different from the first embodiment in that a second n ⁇ type base layer 7c is provided instead of the second p type base layer.
  • the trench gate in contact with the second n ⁇ -type base layer 7c is also a dummy trench gate, and is called an active dummy gate when a gate voltage is applied.
  • the role of the second control electrode 2a which is an active dummy trench gate is the same as that of the second control electrode 2 described in the first to fifth embodiments.
  • the second n ⁇ type base layer 7c is provided on a part of the surface side of the n ⁇ type drift layer 10 made of an n ⁇ type semiconductor substrate, and the second n ⁇ type base layer 7c is an active dummy trench. It is in contact with the second control electrode 2a which is a gate. That is, the region of the second p-type base layer 7b shown in FIG. 3 of the first embodiment is the second n ⁇ -type base layer 7c in FIG.
  • the n-type impurity concentration of the second n ⁇ -type base layer 7 c is the same as that of the n ⁇ -type drift layer 10.
  • the second n ⁇ -type base layer 7c is provided by performing photolithography process when forming the first p-type base layer 7a and not ion-implanting p-type impurities in the region where the second n ⁇ -type base layer 7c is provided. be able to.
  • all the base layers that contact only the second control electrode 2a and do not contact the first control electrode 1 that is the active trench gate are the second n ⁇ -type base layer 7c.
  • the second p-type base layer 7b may be formed by performing ion implantation of p-type impurities into a part of the base layer in contact with only the electrode 2a. That is, at least one of the base layers in contact with only the second control electrode 2a may be the second n ⁇ type base layer 7c.
  • the semiconductor device 100 according to the fifth embodiment as shown in FIG. 13, the 2n - without ion implantation of p-type impurity in a region type base layer 7c is provided, the 2n - -type base layer 7c Therefore, it is difficult for holes to enter the second n ⁇ -type base layer 7c when the IGBT 20 is turned on. As a result, more holes flow into the first p-type base layer 7a, the conductivity modulation effect is increased, and the conduction loss of the IGBT element 20 is reduced.
  • the magnitude of the potential increase ⁇ Vdp generated when the IGBT element 20 is turned on also decreases.
  • the magnitude of the displacement current Id that can be generated by the potential increase ⁇ Vdp is also reduced, so that the controllability of dV / dt at turn-on can be further increased, and erroneous firing at turn-off can be further suppressed.
  • the amount of holes accumulated in the entire base layer in contact with only the second control electrode 2a is reduced. Therefore, the controllability of dV / dt at turn-on can be further enhanced, and erroneous firing at turn-off can be further suppressed.
  • the configuration corresponding to the first embodiment has been described.
  • the configuration described in the second to fifth embodiments is the same as the second n ⁇ type base layer 7c and the dummy trench described in the present invention.
  • the present invention may be applied to a semiconductor device provided with a gate, and the same effects as those of the semiconductor device described in Embodiments 2 to 5 can be obtained.
  • FIG. 14 is an enlarged structural sectional view showing an element peripheral portion of an IGBT element constituting the semiconductor device according to the sixth embodiment of the present invention. 14, the same reference numerals as those in FIG. 3 denote the same or corresponding components, and the description thereof is omitted.
  • the configuration in which the diode 21 is integrally formed with the IGBT element 20 is different from the first embodiment of the present invention.
  • 14 is a cross-sectional view of the second control electrode 2 unlike FIG. 11 of the third embodiment.
  • the trench gate made of the first control electrode 1 and the second control electrode 2 is a trench gate electrode 15a made of n-type polysilicon. It consists of On the other hand, a wiring portion 15b made of p-type polysilicon is formed in a part of the gate wiring portion in the peripheral portion of the IGBT element 20. As a result, a pn junction is formed at the junction between the trench gate electrode 15 a made of n-type polysilicon and the wiring 15 b made of p-type polysilicon in the gate wiring portion, and this pn junction constitutes the diode 21. Then, the second gate pad 19 is formed on the wiring portion 15b made of p-type polysilicon in the gate wiring portion, and the wiring portion 15b and the second gate pad 19 are connected.
  • the p-type polysilicon as described above is not formed in the gate wiring portion of the trench gate electrode 15a made of n-type polysilicon of the first control electrode 1, and the wiring of the trench gate electrode 15a made of n-type polysilicon is formed.
  • a first gate pad is formed on the part, and the wiring part of the first control electrode and the first gate pad are connected.
  • the first gate pad and the second gate pad 19 are connected, and one end of the gate resistor 22 is connected to this connection location.
  • the cathode of the diode 21 is connected to each second control electrode 2 and the anode of the diode 21 is connected to the first control electrode 1 as in the configuration shown in FIG.
  • the semiconductor device 100 having a configuration in which one end of the gate resistor 22 is connected to the location is obtained.
  • FIG. 15 is an enlarged structural cross-sectional view showing an element peripheral portion of an IGBT element constituting a semiconductor device having another configuration according to the sixth embodiment of the present invention.
  • the semiconductor device 100 of FIG. 15 is different from the semiconductor device of FIG. 14 in that a plurality of diodes connected in series to the polysilicon gate wiring portion of the second control electrode 2 are formed.
  • FIG. 15 is a cross-sectional view of the second control electrode 2 as in FIG.
  • the semiconductor device 100 includes a plurality of (three places) wiring portions 15 b made of p-type polysilicon in the gate wiring portion of the trench gate electrode 15 a made of n-type polysilicon constituting the second control electrode 2. And a wiring portion 15c made of n-type polysilicon.
  • the wiring portion 15c is formed integrally with the trench gate electrode 15a made of n-type polysilicon.
  • a region between the wiring parts 15b made of p-type polysilicon is a wiring part 15c made of n-type polysilicon.
  • the second gate pad 19 is formed on the wiring part 15b made of p-type polysilicon, and the second gate pad 19 and the wiring part 15b are connected.
  • the cathode of the diode 21 in which a plurality of diodes are connected in series is connected to each second control electrode 2, and the anode of the diode 21 in which the plurality of diodes are connected in series is the first.
  • a semiconductor device 100 is obtained which is connected to the control electrode 1 and has one end of the gate resistor 22 connected to this connection location.
  • the semiconductor device shown in FIGS. 14 and 15 can be manufactured, for example, by the following process. After the trench gate electrode 15a made of n-type polysilicon is deposited on the n ⁇ -type semiconductor substrate, a photoengraving process is performed to open only a predetermined region of the gate wiring portion of the second control electrode 2, and boron ( A wiring portion 15b made of p-type polysilicon can be formed by ion implantation of a p-type impurity such as B).
  • the diode 21 provided between the first control electrode 1 and the second control electrode 2 can be incorporated in the IGBT element 20.
  • the controllability of dV / dt when the IGBT element 20 is turned on can be improved without increasing the number of components, and erroneous firing at the time of turn-off can be suppressed.
  • the semiconductor device can be downsized, and a highly reliable semiconductor device in which the wiring between the IGBT element 20 and the diode 21 does not break can be obtained.
  • the material of the semiconductor substrate is silicon, but the material of the semiconductor substrate is not limited to this.
  • gallium nitride, silicon carbide, aluminum nitride, diamond, gallium oxide Etc. may be used.

Abstract

半導体装置は、n型ドリフト層(10)の表面側に設けられたp型ベース層(7a、7b)と、p型ベース層(7a)の表面側に設けられたn型エミッタ層(6)と、n型エミッタ層(6)の表層からn型ドリフト層(10)に達するように埋設されたトレンチゲート電極(15)を有する第1制御電極(1)と、p型ベース層(7b)からn型ドリフト層(10)に達するように埋設されたトレンチゲート電極(15)を有する第2制御電極(2)と、n型ドリフト層(10)の裏面側に設けられたp型コレクタ層(12)と、第1制御電極1にアノード側が、第2制御電極2にカソード側が接続されたダイオード(21)と、を備える。ゲート抵抗によるdV/dtの制御性を向上させることができる。

Description

半導体装置
 本発明は、トレンチゲートを有する半導体装置に関する。
 産業用インバータや家庭用電気機器などには、パワー半導体素子を搭載したパワーモジュールなどの半導体装置が用いられている。特にトレンチゲート型IGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)を搭載した半導体装置は、優れた制御性や省エネルギー性を有しているため広く用いられている。
 トレンチゲート型IGBTは、n型ドリフト層の表層部に形成されたp型ベース層を有する半導体基板の表面にストライプ状に形成され、p型ベース層を貫通してn型ドリフト層に到達するように形成されたトレンチゲートを有する。一部のトレンチゲートの側面に接してn型エミッタ層が形成され、n型エミッタ層に接するトレンチゲートの側面のp型ベース層にチャネルが形成される。残りのトレンチゲートの側面にはn型エミッタ層は形成されず、側面に接するp型ベース層には、トレンチゲート型IGBTがオン状態になるとホール(正孔)が蓄積される。側面にn型エミッタ層が形成されないために側面にチャネルが形成されないトレンチゲートはダミートレンチゲートと呼ばれる。また、側面にチャネルが形成されるトレンチゲートはゲート駆動回路によりゲート電圧が印加されるためアクティブトレンチゲートと呼ばれる。さらに、ダミートレンチゲートのうち、アクティブトレンチゲートと同様にゲート駆動回路によりゲート電圧が印加されるダミートレンチゲートをアクティブダミートレンチゲートと呼ぶ。
 従来の半導体装置であるトレンチゲート型IGBTでは、ダミートレンチゲートの一部をゲート端子に接続してアクティブダミートレンチゲートとし、残りをエミッタ端子に接続してダミートレンチゲートとしていた。これにより、アクティブダミートレンチゲートをゲート端子に接続しない場合よりも、ゲート-コレクタ間の寄生容量を大きくしていた。この結果、IGBTのターンオン時のコレクタ電圧の時間変化であるdV/dtが従来と同等となるようにゲート抵抗を小さくして、コレクタ電流の時間変化であるdI/dtを小さくし、dV/dt一定下でのターンオン損失を低減していた(例えば、特許文献1参照)。
国際公開第2015/162811号
 特許文献1に記載された従来の半導体装置にあっては、アクティブダミートレンチゲートを、側面にチャネルが形成されたアクティブトレンチゲートと共にゲート端子に接続したので、同一のdV/dtでターンオンさせる場合にゲート抵抗を小さくすることができていた。しかしながら、ゲート-コレクタ間の寄生容量のうち、アクティブダミートレンチゲートに起因する寄生容量に蓄積された電荷による電流が、IGBTのターンオン時にゲート抵抗を介さずにゲート-エミッッタ間容量を充電するため、dV/dtが過大になる場合があり、ゲート抵抗によるdV/dtの制御性が悪くなるといった問題点があった。
 本発明は、上述のような問題を解決するためになされたもので、ゲート抵抗を介さずにゲート-エミッタ間容量を充電する電流を抑制し、ゲート抵抗によるdV/dtの制御性を向上させた半導体装置を提供することを目的とする。
 本発明に係る半導体装置は、第1導電型のドリフト層と、前記ドリフト層の表面側に設けられた第2導電型のベース層と、前記ベース層の表面側に選択的に設けられた第1導電型のエミッタ層と、前記エミッタ層の表層から前記ドリフト層に達するように埋設されたトレンチゲート電極がゲート絶縁膜を介して前記エミッタ層、前記ベース層および前記ドリフト層に接するトレンチゲートと、前記ベース層の表層から前記ドリフト層に達するように埋設されたダミートレンチゲート電極がゲート絶縁膜を介して前記ベース層および前記ドリフト層に接するダミートレンチゲートと、前記ドリフト層の裏面側に設けられた第2導電型のコレクタ層と、前記トレンチゲート電極にアノード側が電気的に接続され、前記ダミートレンチゲート電極にカソード側が電気的に接続されたダイオードと、を備える。
 本発明に係る半導体装置によれば、ゲート抵抗を介さずにゲート-エミッタ間容量を充電する電流を抑制するので、ゲート抵抗によるdV/dtの制御性を向上させることができる。
本発明の実施の形態1における半導体装置を示す模式断面図である。 本発明の実施の形態1における他の半導体装置を示す模式断面図である。 本発明の実施の形態1における半導体装置を構成するIGBT素子を示す拡大断面構造図である。 従来の半導体装置を構成するIGBT素子を示す拡大断面構造図である。 従来の半導体装置と本発明の実施の形態1における半導体装置の等価回路を示す回路図である。 従来の半導体装置を構成するIGBT素子のゲート抵抗とdV/dtとの関係およびターンオン時のゲート-エミッタ間電圧波形の測定結果を示す図である。 本発明の実施の形態1における他の構成の半導体装置を構成するIGBT素子を示す拡大断面構造図である。 本発明の実施の形態2における半導体装置を構成するIGBT素子を示す拡大構造断面である。 本発明の実施の形態2における他の構成の半導体装置を構成するIGBT素子を示す拡大構造断面である。 本発明の実施の形態3における半導体装置を構成するIGBT素子を示す拡大構造断面図である。 本発明の実施の形態3における半導体装置を構成するIGBT素子の素子周辺部を示す拡大構造断面図である。 本発明の実施の形態4における半導体装置を構成するIGBT素子を示す拡大構造断面図である。 本発明の実施の形態5における半導体装置を構成するIGBT素子を示す拡大構造断面図である。 本発明の実施の形態6における半導体装置を構成するIGBT素子の素子周辺部を示す拡大構造断面図である。 本発明の実施の形態6における他の構成の半導体装置を構成するIGBT素子の素子周辺部を示す拡大構造断面図である。
実施の形態1.
 まず、本発明の実施の形態1における半導体装置の構成を説明する。図1は、本発明の実施の形態1における半導体装置を示す模式断面図である。
 以下の説明において、nおよびpは半導体の導電型を示し、本発明においては、第1導電型をn型、第2導電型をp型として説明する。また、nは不純物濃度がnよりも低濃度であることを示し、nは不純物濃度がnよりも高濃度であることを示す。同様に、pは不純物濃度がpよりも低濃度であることを示し、pは不純物濃度がpよりも高濃度であることを示す。
 図1において、半導体装置100は、トレンチゲート型のIGBT素子20と、ダイオード21と、ゲート抵抗22とを備えている。IGBT素子20とダイオード21とゲート抵抗22とは、基板24上にパターン形成された電極(図示せず)上に接合されている。基板24はセラミックや樹脂で形成された絶縁材25上に固定され、絶縁材25は銅やアルミなど熱伝導率が高い金属板26上に固定され、これら全体をケース28で覆い、ケース28の内部には封止樹脂27が封入されている。さらに、ケース28には、ケース28の外部に露出したゲート端子30、エミッタ端子31、コレクタ端子32が設けられている。IGBT素子20とダイオード21とは銅やアルミなどの高導電率の金属材料からなるワイヤやプレートなどの配線23aにより接続されており、ダイオード21とゲート抵抗22とは配線23bにより接続されている。また、IGBT素子20のエミッタ電極4とエミッタ端子31とは配線23dにより接続されており、IGBT素子20のコレクタ電極5とコレクタ端子32とは配線23eにより接続されている。さらに、ゲート端子30とゲート抵抗22とは配線23cにより接続されている。
 なお、図1に示すように、配線23a~配線23eはワイヤやプレートなどによる配線に限らず、基板24にパターンニングされた配線であってもよい。また、基板24、絶縁材25、金属板26を積層した構成はこれに限るものではなく、例えば、IGBT素子20を直接金属板26に接合して、IGBT素子20を冷却し易くした構成など、他の構成であってもよい。さらに、ゲート抵抗22が無い構成の半導体装置100であってもよく、使用者がゲート端子にゲート抵抗を接続して使用する構成の半導体装置100であってもよい。
 また、ダイオード21とゲート抵抗22とは、IGBT素子20内に形成してもよい。あるいは、ダイオード21をIGBT素子20内に形成して、ゲート抵抗22は、半導体装置100の外部でゲート端子30に接続して設けてもよい。
 図2は本発明の実施の形態1における他の半導体装置を示す模式断面図である。図2において、図1と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。図2は、ダイオード21とゲート抵抗22とをIGBT素子20内に形成した場合や、ダイオード21をIGBT素子20内に形成して、ゲート抵抗22を半導体装置100の外部に設ける場合の半導体装置100を示した断面図である。
 IGBT素子20のコレクタ電極が金属板26に接合され、IGBT素子20が金属板26に固定され、ケース28内に設けられている。ケース28内には封止樹脂27が封入されている。IGBT素子20内にはダイオードおよびゲート抵抗、あるいはダイオードのみが内蔵されている。これらのダイオードやゲート抵抗は、半導体プロセスでIGBT素子20と一体的に形成することができる。例えば、IGBT素子20内のゲート配線部にpn接合を形成することでダイオードを形成することができ、IGBT素子20内のゲート配線部の不純物濃度を調整することでゲート抵抗を形成することができる。
 図3は、本発明の実施の形態1における半導体装置を構成するIGBT素子を示す拡大断面構造図である。図3では、図1に示した半導体装置100を、IGBT素子20の構造を中心に詳細に示し、ダイオード21およびゲート抵抗22は回路記号で簡略化して示した。図3に示すIGBT素子20は、IGBT素子の活性領域における、トレンチゲートの長手方向に対して垂直な方向の断面図である。また、図3の破線A-Aと破線B-Bとで挟まれた範囲が単位IGBTであり、IGBT素子20は、紙面左右方向に単位IGBTが複数並んで形成されることで構成される。
 図3において、IGBT素子20は、n型半導体基板からなるn型ドリフト層10の表面側に、p型ベース層7とn型キャリア蓄積層8とが形成され、p型ベース層7およびn型キャリア蓄積層8を貫通して複数のトレンチ16が形成されている。なお、n型キャリア蓄積層8は必ずしも必要ではなく、n型キャリア蓄積層8が無い構成であってもよい。各トレンチ16の内壁にはゲート絶縁膜14が形成され、各トレンチ16の内部にはゲート絶縁膜14を介してn型不純物またはp型不純物を含むポリシリコンからなるトレンチゲート電極15が埋設されて、トレンチゲートを構成している。すなわち、各トレンチゲートは、n型半導体基板の表層からn型半導体基板の内部に貫通して設けられている。なお、本発明において、表層とは、n型半導体基板のp型ベース層7が形成された側の面の表面に位置する領域をいう。図3に示すように、トレンチゲートは、アクティブトレンチゲートである第1制御電極1と、アクティブダミートレンチゲートである第2制御電極2とに区別される。
 本発明においては、側面にチャネルが形成されないためにゲートとしては機能しないトレンチゲートをダミートレンチゲートと呼び、ダミートレンチゲートのうち、アクティブトレンチゲートと同様にゲート駆動回路からゲート電圧が印加されるダミートレンチゲートをアクティブダミートレンチゲートと呼ぶ。一方、側面にチャネルが形成されてゲートとして機能するトレンチゲートは単にトレンチゲートと呼ぶ場合もあるが、ゲート駆動回路からゲート電圧が印加されるので、ダミートレンチゲートやアクティブダミートレンチゲートとの区別を明確にする場合には、アクティブトレンチゲートと呼ぶ。
 また、アクティブトレンチゲートとダミートレンチゲートとでトレンチゲート電極15を特に区別する必要がある場合には、アクティブトレンチゲートのトレンチゲート電極15をアクティブトレンチゲート電極、ダミートレンチゲートのトレンチゲート電極15をダミートレンチゲート電極と呼ぶ。さらに、ゲート電圧が印加されるアクティブダミートレンチゲートのトレンチゲート電極15を区別する必要がある場合にはアクティブダミートレンチゲート電極と呼ぶ。
 p型ベース層7の第1制御電極1に接する表層部の一部の領域には、n型エミッタ層6とp型コンタクト層9とが形成されており、n型エミッタ層6は、アクティブトレンチゲートのトレンチ16の側面に接して形成されている。すなわち、n型エミッタ層6に片側もしくは両側の側面が接するトレンチ16を有するトレンチゲートがアクティブトレンチゲートであり、本実施の形態1ではアクティブトレンチゲートは第1制御電極1である。一方、アクティブダミートレンチゲートのトレンチ16の側面には、n型エミッタ層6が形成されていない。すなわち、n型エミッタ層6に接するトレンチ16を有さないトレンチゲートがアクティブダミートレンチゲートであり、本実施の形態1ではアクティブダミートレンチゲートが第2制御電極2である。また、p型ベース層7は、アクティブトレンチゲートである第1制御電極1に接する第1p型ベース層7aと、第1制御電極1には接せずにアクティブダミートレンチゲートである第2制御電極2に囲まれた第2p型ベース層7bとに区別される。
 p型コンタクト層9は、n型エミッタ層6に接して設けられる。p型コンタクト層9およびn型エミッタ層6の一部の表面上にはエミッタ電極4が設けられ、p型コンタクト層9とn型エミッタ層6とはエミッタ電極4に接触している。p型コンタクト層9およびn型エミッタ層6の残りの表面上には、エミッタ電極4と絶縁する層間絶縁膜13が形成されている。層間絶縁膜13は、第1制御電極1と第2制御電極2とからなる各トレンチゲート上、および、第2p型ベース層7b上にも形成され、これらとエミッタ電極4とを絶縁している。
 n型半導体基板からなるn型ドリフト層10の裏面側には、n型バッファ層11およびp型コレクタ層12が形成される。さらに、p型コレクタ層12上にはコレクタ電極5が形成される。
 第1制御電極1は、IGBT素子20の表面に設けられた第1ゲートパッド(図示せず)に接続され、第2制御電極2は、IGBT素子20の表面に設けられた第2ゲートパッド(図示せず)に接続され、IGBT素子20が構成される。
 第1ゲートパッドと第2ゲートパッドとの間には、第1ゲートパッド側がアノード、第2ゲートパッド側がカソードとなるようにダイオード21が接続される。すなわち、図3に示すように、第1制御電極1側にダイオード21のアノードが接続され、第2制御電極2側にダイオード21のカソードが接続される。また、第1ゲートパッドはゲート抵抗22の一端に接続される。ゲート抵抗22の他端は、半導体装置100のケース28に設けられたゲート端子30に接続される。なお、半導体装置100がゲート抵抗22を有しない構成の場合には、第1ゲートパッドがゲート端子30に接続される。
 また、エミッタ電極4は、半導体装置100のケース28に設けられたエミッタ端子31に接続され、コレクタ電極5は、半導体装置100のケース28に設けられたコレクタ端子32に接続される。
 以上のように半導体装置100は構成される。
 次に、半導体装置100の動作について説明する。
 半導体装置100のエミッタ端子31とコレクタ端子32との間には、コレクタ端子32側が高電圧となるように主電圧Vceが印加される。半導体装置100のゲート端子30に、半導体装置100の外部に設けられたゲート駆動回路から正電圧が印加されると、第1制御電極1のトレンチ16の側面に接した第1p型ベース層7aに反転層が形成され、チャネルが開く。その後、電子がn型エミッタ層6からn型ドリフト層10へ注入され、n型バッファ層11を通り、p型コレクタ層12に到達する。この際、電荷中性条件を満たすために、ホール(正孔)がp型コレクタ層12から、n型ドリフト層10へ注入される。p型コレクタ層12から注入されたホールの一部は、第1p型ベース層7aからp型コンタクト層9を通り、エミッタ電極4からIGBT素子20の外部に流出される。
 一方、エミッタ電極4からIGBT素子20の外部に流出されない一部のホールは第2p型ベース層7bへと到達し、第2p型ベース層7b内に蓄積される。第2p型ベース層7b内に蓄積されたホールの一部は、ホール電流として第1p型ベース層7aに流れ込む。この結果、第1p型ベース層7aのチャネル部分のキャリア密度が増加し、伝導度変調効果が増強されるため、IGBT素子20の導通損失が低減する。
 しかしながら、第2p型ベース層7b内に蓄積されたホールは、IGBT素子20のターンオン時に過渡的に第2p型ベース層7bの電位を上昇させる。第2制御電極2のトレンチ16の内壁にはゲート絶縁膜14が形成されているので、第2p型ベース層7bと第2制御電極2のトレンチゲート電極15とは静電容量を形成する。このため、第2p型ベース層7bの電位上昇に伴う変位電流が、第2制御電極2を介して第1制御電極1に流れ込もうとする。しかし、第2制御電極2と第1制御電極1との間には、第2制御電極2側がカソードとなるようにダイオード21が接続されているので、第2制御電極2を介して第1制御電極1に流れ込もうとする変位電流は、ダイオード21に阻止され第1制御電極1に流れ込むことができなくなる。この結果、第1制御電極1に流れ込む電流はゲート端子30を通して外部のゲート駆動回路から供給される電流のみとなるため、IGBT素子20のターンオン時間をゲート抵抗22の抵抗値で制御することができ、制御性を高くすることができる。すなわち、IGBT素子20のコレクタ電圧の時間変化率であるdV/dtのターンオン時の制御性を高くすることができる。
 次に、本発明の半導体装置100の作用効果について、第1制御電極1と第2制御電極2との間にダイオード21を接続していない従来の半導体装置と比較してさらに詳しく説明する。
 図4は、従来の半導体装置を構成するIGBT素子を示す拡大断面構造図である。図4の半導体装置200は、図3に示した半導体装置100からダイオード21を除去し、第1制御電極1と第2制御電極2とを接続して、この接続箇所にゲート抵抗22を接続した構成をしている。ダイオード21を除去したこと以外は、図3の半導体装置100と同一である。
 図5は、従来の半導体装置と本発明の実施の形態1における半導体装置の等価回路を示す回路図である。図5(a)~(d)はそれぞれハーフブリッジ回路の下側アームを示している。図5(a)は、ハーフブリッジ回路の下側アームを従来の半導体装置200で構成した等価回路であり、図5(c)は、ハーフブリッジ回路の下側アームを本発明の半導体装置100で構成した等価回路である。また、図5(b)は、従来の半導体装置200のターンオン時における第2p型ベース層7bの電位上昇が発生した様子を示す回路図であり、図5(d)は、本発明の半導体装置100のターンオン時における第2p型ベース層7bの電位上昇が発生した様子を示す回路図である。
 図5(a)~(d)のそれぞれにおいて、IGBT素子20と並列にフリーホイルダイオード40が接続されており、フリーホイルダイオード40のアノードがエミッタ端子31に、フリーホイルダイオード40のカソードがコレクタ端子32に接続されている。IGBT素子20のエミッタ端子31とコレクタ端子32との間には、コレクタ端子32側が高電位となるように主電圧Vceが印加されている。半導体装置200および半導体装置100の外部のゲート駆動回路から、エミッタ端子31とゲート端子30との間に、ゲート端子30側が高電位となるようにゲート電圧Vgeが印加される。ゲート電圧Vgeは、ゲート抵抗22を介してIGBT素子20のエミッタ-ゲート間に印加される。
 図5(a)~(d)のそれぞれにおいて、IGBT素子20の寄生容量成分を破線の配線で示した。Cgc1は、第1制御電極1とコレクタ電極5との間の静電容量である。また、Cgc2は第2制御電極2とコレクタ電極5との間の静電容量である。さらに、Cgeは、第1制御電極1とエミッタ電極4との間の静電容量である。また、図5(b)および図5(d)に示したΔVdpは、IGBT素子20のターンオン時に、第2p型ベース層7bにホールが蓄積して発生する電位上昇である。
 まず、図5(a)の従来の半導体装置200について説明する。半導体装置200の外部のゲート駆動回路からゲート電圧Vgeが印加されると、図3で示した本発明の半導体装置100と同様に、図4のp型コレクタ層12から注入されたホールのうち、エミッタ電極4からIGBT素子20の外部に排出されなかったホールが第2p型ベース層7b内に蓄積し、電位上昇ΔVdpを発生する。図5(b)に示すように、ΔVdpは寄生容量Cgc2とIGBT素子20のコレクタ電極5との間に、コレクタ電極5側が低電位となるように接続された直流電源と等価となる。
 図5(b)に示すように、IGBT素子20のターンオン時に電位上昇ΔVdpが発生すると、IGBT素子20のコレクタから寄生容量Cgc2を充電する変位電流Idが流れる。変位電流Idは、寄生容量Cgc2とゲート配線とを通り、寄生容量Cgeを充電して、IGBT素子20のエミッタから流出する。
 変位電流Idにより寄生容量Cgeに流入する電流量が増加すると、第1制御電極1に接した第1p型ベース層7aのチャネルが速く開くため、IGBT素子20のターンオンが高速化される。変位電流Idは、ゲート抵抗22を通らずに寄生容量Cgeに流入するため、ゲート抵抗22の抵抗値調整によるIGBT素子20のターンオン時間の制御が困難になる。すなわち、第2p型ベース層7bに蓄積されるホールが、IGBT素子20のゲート-エミッタ間の寄生容量Cgeを充電してターンオンを速くする変位電流Idを流すため、ゲート抵抗22によるIGBT素子20のコレクタ電圧の時間変化率であるdV/dtの制御性が低下するという問題が生じる。dV/dtが大き過ぎると、ノイズやサージの原因となるため、dV/dtはゲート抵抗22により適正に制御される必要がある。
 図6は、従来の半導体装置を構成するIGBT素子のゲート抵抗とdV/dtとの関係およびターンオン時のゲート-エミッタ間電圧波形の測定結果を示す図である。図6(a)は、従来の半導体装置であるIGBT素子のゲート抵抗値を0Ωから増加していった場合のdV/dtの測定結果を示したものであり、図6(b)は、図6(a)に示すdV/dtが極小値を示すゲート抵抗値よりも大きなゲート抵抗値、すなわちdV/dtが極小値から増大し始めるゲート抵抗値におけるターンオン時のゲート-エミッタ間電圧波形の測定結果を示したものである。
 図6(a)に示すように、ゲート抵抗22の抵抗値を0Ωから大きくしていくに従い、dV/dtは小さくなるが、dV/dtは、あるゲート抵抗値で極小値となり、その後はゲート抵抗値を大きくしていくに従いdV/dtは大きくなった。このように従来の半導体装置200では、ゲート抵抗22の抵抗値を調整しても十分にdV/dtを制御できないという結果が得られた。図6(b)に示すように、ターンオン開始からのゲート-エミッタ間寄生容量の充電に伴い、ゲート-エミッタ間電圧は徐々に増加していくが、ゲート抵抗22の抵抗値を大きくしてもdV/dtが小さくならないゲート抵抗値では、図6(b)中の波線で囲った領域が示すように、ゲート-エミッタ間電圧の急峻な電圧上昇が発生することが確認された。この現象は、上述したように、変位電流Idにより寄生容量Cgeが充電されることによって発生するものであり、この急激なゲート-エミッタ間電圧の変化が大きなdV/dtを発生させているものと考えられる。つまり、従来の半導体装置200では変位電流Idにより寄生容量Cgeが充電されることを阻止することができないため、ゲート抵抗22によるdV/dtの制御性が低下するという問題が生じる。
 また、従来の半導体装置200では、IGBT素子20のターンオフ時に第2p型ベース層7bに残留したホールが、ターンオン時と同様に変位電流Idとして寄生容量Cgeに流入する場合があり、IGBT素子20のターンオフ時に誤点弧が発生する恐れがある。
 一方、図3に示すように、本発明の半導体装置100は、第2制御電極2と第1制御電極1との間に、第1制御電極1側がアノード、第2制御電極2側がカソードとなるようにダイオード21を接続しているので、等価回路は図5(c)のようになる。このような構成とすることで、IGBT素子20のターンオン時に第2p型ベース層7bにホールが蓄積して、第2p型ベース層7bの電位上昇ΔVdpが発生しても、ΔVdpにより発生しようとする変位電流は、ダイオード21により阻止されるため流れなくなる。この結果、図5(d)に示すように、寄生容量Cgeを充電する変位電流は流れず、寄生容量Cgeの充電電流をゲート抵抗22で制御できるようになる。すなわち、IGBT素子20のターンオン時のdV/dtをゲート抵抗22によって制御できるようになる。この結果、半導体装置100の製造者や使用者は、半導体装置100に内蔵されたゲート抵抗22、あるいは半導体装置100のゲート端子30に接続する外部のゲート抵抗によって、IGBT素子20のdV/dtを任意に設定することが可能になり、半導体装置100の使い勝手が向上する。
 加えて、第2p型ベース層7bに蓄積されたホールが、第2p型ベース層7bから排出されにくくなるため、ホール電流として第2p型ベース層7bから第1p型ベース層7aに流れ込むホールが増加し、伝導度変調効果が増強されてIGBT素子20の導通損失が低下する。さらに、IGBT素子20のターンオフ時の変位電流も阻止するため、Cgeが変位電流により充電されなくなり、誤点弧の発生を抑制することができる。
 なお、厳密に言えば、ダイオード21に逆電圧となるΔVdpが印加された場合、アノード電極とカソード電極との間に寄生容量を有する。しかし、図5(a)と図5(c)を比較して分かるように、ダイオード21の寄生容量を考慮しても、図5(c)の方が、IGBT素子20の寄生容量Cgc2を通る経路の静電容量が小さくなるので、第2p型ベース層7bの電位上昇ΔVdpによって流れる変位電流Idを小さくすることができる。特に、ダイオード21に寄生容量が小さい小型のダイオードを使用することで、事実上、ダイオード21の寄生容量を無視することができる。
 図7は、本発明の実施の形態1における他の構成の半導体装置を構成するIGBT素子を示す拡大断面構造図である。図3に示した半導体装置は、複数の第2制御電極2を接続して、この接続箇所にダイオード21のカソードを接続していたが、図7に示した半導体装置100は、個々の第2制御電極2のそれぞれにダイオード21のカソードを接続し、各ダイオード21のアノードを接続した接続箇所に第1制御電極1を接続している。
 図7に示す半導体装置100も等価回路は図5(c)および図5(d)に示す通りであり、図3に示した本発明の半導体装置と同様の作用効果が得られる。図7に示すように、各第2制御電極2にそれぞれダイオード21を設ける構成は、例えば、ダイオード21を半導体プロセスによりIGBT素子20内に形成した構成の半導体装置100に適している。
 以上のように本実施の形態1の半導体装置100によれば、第2制御電極2と第1制御電極1との間に、第1制御電極1側がアノード、第2制御電極2側がカソードとなるようにダイオード21を設けた。この構成により、第2p型ベース層7bの電位上昇ΔVdpによる変位電流IdのCgeへの流入を阻止するので、IGBT素子20のターンオン時のdV/dtの制御性を高くしつつ、IGBT素子20のターンオフ時の誤点弧の発生を防止することができるといった効果が得られる。また、第1p型ベース層7aに流れ込むホールが増加してIGBT素子20の導通損失が少なくなるといった効果が得られる。この結果、省エネルギー性に優れると共に、使い勝手が高く、信頼性が高い半導体装置を得ることができる。
実施の形態2.
 図8は、本発明の実施の形態2における半導体装置を構成するIGBT素子を示す拡大構造断面である。図8において、図1と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1とは、ダイオードを複数直列に接続した構成が相違している。本発明の実施の形態2では、本発明の実施の形態1と相違する部分について説明し、同一または対応する部分についての説明は省略する。
 図8において、ダイオード21は、複数のダイオードが同一方向に直列に接続されて構成されている。すなわち、ダイオードのアノードは他のダイオードのカソードと接続され、他のダイオードのアノードはさらに他のダイオードのカソードと接続されている。従って、複数のダイオードが直列に接続されて構成されたダイオード21は、一端にアノードを有し、他端にカソードを有する。
 複数の第2制御電極2は接続されて、この接続箇所に複数のダイオードを直列接続したダイオード21のカソードが接続される。また、複数のダイオードを直列接続したダイオード21のアノードには第1制御電極1が接続される。
 図8に示した半導体装置100においても、実施の形態1で説明したように、第2p型ベース層7bに蓄積したホールにより電位上昇ΔVdpが発生しても、複数のダイオードを直列接続したダイオード21により、寄生容量Cgeを充電する変位電流を阻止することができるので、IGBT素子20のdV/dtの制御性を高くすることができる。
 さらに、複数のダイオードが直列に接続されてダイオード21は構成されるので、各ダイオードの寄生容量によるダイオード21全体の合成寄生容量を小さくすることができ、ダイオードの寄生容量を利用して流れようとする変位電流Idをより多く抑制することができる。
 図9は、本発明の実施の形態2における他の構成の半導体装置を構成するIGBT素子を示す拡大構造断面である。図9において、図8と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。図9の半導体装置は、図8の半導体装置とは、複数のダイオード21aを直列接続して構成したダイオードとは別に、各第2制御電極2のそれぞれにダイオード21bを接続した構成が相違する。
 図9において、半導体装置100の各第2制御電極2にはそれぞれダイオード21bのカソードが接続されており、複数のダイオード21bのアノードを接続した接続箇所に、複数のダイオードを直列接続して構成したダイオード21aのカソードが接続されている。また、第1制御電極1が、複数のダイオードを直列接続して構成したダイオード21aのアノードに接続されている。
 図9に示した半導体装置100においても、実施の形態1で説明したように、第2p型ベース層7bに蓄積したホールにより電位上昇ΔVdpが発生しても、複数のダイオードを直列接続したダイオード21a、および、各第2制御電極2に接続されたダイオード21bにより、寄生容量Cgeを充電する変位電流を阻止することができるので、IGBT素子20のdV/dtの制御性を高くすることができる。
 また、図8に示した半導体装置と同様に、複数のダイオードが直列接続されてダイオード21aは構成されているので、ダイオード21aの合成寄生容量を小さくすることができる。さらに、ダイオード21aは各第2制御電極2に接続されたダイオード21bと直列に接続されるので、ダイオード21aとダイオード21bとの合成寄生容量をさらに小さくすることができる。この結果、ダイオードの寄生容量を利用して流れようとする変位電流Idをより多く抑制することができる。
 本実施の形態2に係る半導体装置100にあっては、第1制御電極1と第2制御電極2との間に接続される複数のダイオードの接続のされ方は、図8および図9に示した構成に限られない。例えば、図8においてダイオード21は4個のダイオードを直接接続して構成したが、ダイオードの数は2個以上であれば、さらに多くても少なくてもよい。同様に、図9においてダイオード21aは2個のダイオードを直列接続して構成したが、ダイオードの数はさらに多くてもよい。また、図9において各第2制御電極2に接続されたダイオード21bが、複数のダイオードを直列接続して構成されたダイオードであってもよい。
 以上のように本実施の形態2に係る半導体装置によれば、複数のダイオードを直列接続して第1制御電極1と第2制御電極2との間に接続したので、第2p型ベース層7bの電位上昇によって発生する変位電流の阻止能力を高めることができ、IGBT素子20のdV/dtの制御性をさらに高くすることができるといった効果が得られる。
実施の形態3.
 図10は、本発明の実施の形態3における半導体装置を構成するIGBT素子を示す拡大構造断面図である。また、図11は、本発明の実施の形態3における半導体装置を構成するIGBT素子の素子周辺部を示す拡大構造断面図である。図10および図11において、図3と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1とは、第1制御電極1とダイオード21のアノードとの間に内蔵ゲート抵抗33が設けられた構成が相違している。なお、図11は第1制御電極1における断面図である。
 図10において、内蔵ゲート抵抗33は、第1制御電極1を構成するアクティブトレンチゲートのトレンチゲート電極15の素子周辺部に形成されている。具体的には、IGBT素子の活性領域に形成されたトレンチゲート電極15と、第1制御電極1が接続される第1ゲートパッドとの間に、トレンチゲート電極15の不純物濃度を活性領域よりも低減させた領域を形成することで、内蔵ゲート抵抗33は作製される。
 図11に示すように、IGBT素子20の第1制御電極1を構成するトレンチゲート電極15は、素子周辺部で素子上部に引き上げられてゲート配線部を形成しており、トレンチゲート電極15のゲート配線部が第1ゲートパッド18に接続されている。トレンチゲート電極15のゲート配線部の一部には、ポリシリコンが含むn型あるいはp型の不純物濃度を活性領域における不純物濃度よりも低減させた領域が形成され、この領域が内蔵ゲート抵抗33を構成している。なお、図11において、素子周辺部のトレンチゲート電極15のゲート配線部および内蔵ゲート抵抗33の下側には、IGBT素子20の終端機能を果たすためにp型ウェル層17が形成されており、活性領域から素子周辺部に伸びる空乏層を終端させている。
 内蔵ゲート抵抗33の抵抗値は、トレンチゲート電極15内のポリシリコンが含む不純物濃度を調整することで任意に設定することができる。あるいは、内蔵ゲート抵抗33を形成する領域の長さを調整することで任意に設定することができる。内蔵ゲート抵抗33の抵抗値は、ダイオード21の順方向電圧降下による抵抗成分と同等となるように調整されている。
 実施の形態1の図3に示した半導体装置では、第2制御電極2にダイオード21のカソードを接続し、ダイオード21のアノードと第1制御電極1とを接続して、この接続箇所にゲート抵抗22の一端を接続し、ゲート抵抗22の他端をゲート端子30に接続していた。このため、ゲート端子30と第2制御電極2との間には、ゲート抵抗22に加えてダイオード21の順方向電圧降下分の抵抗成分が加わることになる。一方、ゲート端子30と第1制御電極1との間には、ゲート抵抗22のみが接続されているので、第1制御電極1と第2制御電極2とでは、ゲート端子30に印加されたゲート電圧による充放電速度が異なることになる。この結果、一部のトレンチ16の内壁に形成されたゲート絶縁膜14の底部に電界が集中するので、ゲート絶縁膜14の絶縁耐圧の信頼性が低下する可能性がある。
 一方、本実施の形態3に係る半導体装置100では、内蔵ゲート抵抗33の抵抗値が、ダイオード21の順方向電圧降下による抵抗成分と同等に調整して作製しているので、ゲート端子30にゲート電圧が印加された際の、第1制御電極1と第2制御電極2との充放電速度が同等となり、一部のトレンチ16の内壁に形成されたゲート絶縁膜14の底部への電界集中が緩和される。このため、ゲート絶縁膜14の絶縁耐圧の信頼性を高くすることができるといった効果が得られる。
実施の形態4.
 図12は、本発明の実施の形態4における半導体装置を構成するIGBT素子を示す拡大構造断面図である。図12において、図3と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1とは、ダミートレンチゲートの一部がエミッタ端子31に接続され、アクティブダミートレンチゲートとしていない構成が相違している。
 図12において、第1制御電極1の隣のダミートレンチゲートである第3制御電極3は、エミッタ端子31に接続されている。このため、実施の形態1の図3に示した半導体装置に比べ、ダイオード21のカソードに接続されるアクティブダミートレンチゲートである第2制御電極2の数は減少している。
 なお、エミッタ端子31に接続されるダミートレンチゲートを第3制御電極3と呼び、第3制御電極3は、第1制御電極1の隣のダミートレンチゲートに限らず、どのダミートレンチゲートであってもよい。また、エミッタ端子31に接続される第3制御電極3の数は、いくつであってもよく、ダミートレンチゲートのうちの少なくとも1つが、エミッタ端子31に接続されずに、ゲート電圧が印加されるアクティブダミートレンチゲートである第2制御電極2であればよい。
 本実施の形態4の半導体装置100は、第3制御電極3をエミッタ端子31に接続したことにより、IGBT素子20のゲート-コレクタ間の静電容量とゲート-エミッタ間の静電容量とを低減することができるので、スイッチング速度を増加し、スイッチング損失を低減することができる。また、ゲート端子30に接続される制御電極の数が減少するため、各制御電極を充放電するのに必要なゲート電流量を低減することができる。この結果、半導体装置100の外部に設けられるゲート駆動回路の出力容量を小さくすることができ、半導体装置100およびゲート駆動回路などの周辺回路を搭載した機器を小型化できるといった効果が得られる。
実施の形態5.
 図13は、本発明の実施の形態5における半導体装置を構成するIGBT素子を示す拡大構造断面図である。図13において、図3と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1とは、第2p型ベース層の代わりに第2n型ベース層7cを設けた構成が相違している。なお、第2n型ベース層7cに接するトレンチゲートもダミートレンチゲートであり、ゲート電圧が印加される場合、アクティブダミーゲートと呼ぶ。アクティブダミートレンチゲートである第2制御電極2aの役割は、上記実施の形態1~5で説明した第2制御電極2と同じである。
 図13において、第2n型ベース層7cは、n型半導体基板からなるn型ドリフト層10の表面側の一部に設けられており、第2n型ベース層7cは、アクティブダミートレンチゲートである第2制御電極2aに接している。すなわち、実施の形態1の図3で示した第2p型ベース層7bの領域が、図12では第2n型ベース層7cになっている。第2n型ベース層7cのn型不純物濃度は、n型ドリフト層10と同一である。第2n型ベース層7cは、第1p型ベース層7aを形成する際に、写真製版処理を行い、第2n型ベース層7cを設ける領域にp型不純物のイオン注入を行わないことで設けることができる。
 なお、本実施の形態5では、第2制御電極2aのみに接し、アクティブトレンチゲートである第1制御電極1には接しないベース層を全て第2n型ベース層7cとしたが、第2制御電極2aのみに接するベース層の一部にp型不純物のイオン注入を行い、第2p型ベース層7bを形成してもよい。すなわち、第2制御電極2aのみに接するベース層のうち少なくとも1つのベース層が第2n型ベース層7cであればよい。
 本実施の形態5に係る半導体装置100は、図13に示すように、第2n型ベース層7cが設けられた領域にp型不純物のイオン注入を行わずに、第2n型ベース層7cとしたので、IGBT20のターンオン時に第2n型ベース層7cにホールが入りにくくなる。この結果、ホールは第1p型ベース層7aにより多く流れ込むようになり、伝導度変調効果が増大され、IGBT素子20の導通損失が低減する。
 さらに、第2制御電極2aのみに接する第2n型ベース層7cに蓄積されるホールの量が減少するので、IGBT素子20のターンオン時に発生する電位上昇ΔVdpの大きさも低下する。この結果、電位上昇ΔVdpにより発生し得る変位電流Idの大きさも低減するので、ターンオン時のdV/dtの制御性をさらに高めることができ、ターンオフ時の誤点弧をさらに抑制することができる。なお、第2制御電極2aのみに接するベース層の一部が第2p型ベース層7bである場合も同様に、第2制御電極2aのみに接するベース層全体に蓄積されるホールの量が減少するので、ターンオン時のdV/dtの制御性をさらに高めることができ、ターンオフ時の誤点弧をさらに抑制することができる。
 なお、本実施の形態5では、実施の形態1に対応した構成について説明したが、上記実施の形態2~5で説明した構成を、本発明で説明した第2n型ベース層7cおよびダミートレンチゲートを備えた半導体装置に適用してよく、上記実施の形態2~5で説明した半導体装置と同様の効果が得られる。
実施の形態6.
 図14は、本発明の実施の形態6における半導体装置を構成するIGBT素子の素子周辺部を示す拡大構造断面図である。図14において、図3と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1とは、ダイオード21をIGBT素子20と一体に形成した構成が相違している。なお、図14は、実施の形態3の図11とは異なり、第2制御電極2における断面図である。
 図14に示すように、本実施の形態6に係る半導体装置100のIGBT素子20では、第1制御電極1および第2制御電極2からなるトレンチゲートが、n型ポリシリコンからなるトレンチゲート電極15aで構成されている。一方、IGBT素子20の素子周辺部のゲート配線部の一部に、p型ポリシリコンからなる配線部15bが形成されている。この結果、ゲート配線部においてn型ポリシリコンからなるトレンチゲート電極15aとp型ポリシリコンからなる配線部15bとの接合部にpn接合が形成され、このpn接合がダイオード21を構成する。そして、ゲート配線部のp型ポリシリコンからなる配線部15b上に第2ゲートパッド19が形成され、配線部15bと第2ゲートパッド19とが接続される。
 一方、第1制御電極1のn型ポリシリコンからなるトレンチゲート電極15aのゲート配線部には、上記のようなp型ポリシリコンは形成されず、n型ポリシリコンからなるトレンチゲート電極15aの配線部上に第1ゲートパッドが形成され、第1制御電極の配線部と第1ゲートパッドとが接続される。第1ゲートパッドと第2ゲートパッド19とは接続され、この接続箇所にゲート抵抗22の一端が接続される。この結果、実施の形態1の図7に示した構成と同様に、各第2制御電極2にダイオード21のカソードが接続され、ダイオード21のアノードが第1制御電極1に接続されて、この接続箇所にゲート抵抗22の一端が接続された構成の半導体装置100が得られる。
 図15は、本発明の実施の形態6における他の構成の半導体装置を構成するIGBT素子の素子周辺部を示す拡大構造断面図である。図15の半導体装置100は、図14の半導体装置とは、第2制御電極2のポリシリコンのゲート配線部に直列接続された複数のダイオードを形成した構成が相違する。図15は、図14と同様、第2制御電極2における断面図である。
 図15に示すように、半導体装置100は、第2制御電極2を構成するn型ポリシリコンからなるトレンチゲート電極15aのゲート配線部に複数(3箇所)のp型ポリシリコンからなる配線部15bとn型ポリシリコンからなる配線部15cとが形成されている。配線部15cは、n型ポリシリコンからなるトレンチゲート電極15aと同時に一体的に形成したものである。各p型ポリシリコンからなる配線部15bの間の領域はn型ポリシリコンからなる配線部15cとなっている。この結果、p型ポリシリコンとn型ポリシリコンとの接合部であるpn接合が3箇所形成され、3個のダイオードを直列接続した構成のダイオード21が構成される。第2ゲートパッド19は、p型ポリシリコンからなる配線部15b上に形成されて、第2ゲートパッド19と配線部15bとが接続されている。
 第1制御電極1のn型ポリシリコンからなるトレンチゲート電極15aのゲート配線部には、p型ポリシリコンは形成されず、図14の半導体装置と同一の構成となっている。この結果、図14の半導体装置と同様に、複数のダイオードが直列接続されたダイオード21のカソードが各第2制御電極2に接続され、複数のダイオードが直列接続されたダイオード21のアノードが第1制御電極1に接続されて、この接続箇所にゲート抵抗22の一端が接続された構成の半導体装置100が得られる。このような構成により、図14の半導体装置に比べ、複数のダイオードが直列接続されることによりダイオード21の寄生容量を小さくすることができる。
 図14および図15に示した半導体装置は、例えば、以下の工程により製造することができる。n型半導体基板にn型ポリシリコンからなるトレンチゲート電極15aを堆積後、写真製版処理を行うことで、第2制御電極2のゲート配線部の所定領域のみを開口させ、この領域にホウ素(B)などのp型不純物をイオン注入することでp型ポリシリコンからなる配線部15bを形成することができる。
 以上のように本実施の形態6に係る半導体装置によれば、第1制御電極1と第2制御電極2との間に設けるダイオード21を、IGBT素子20に内蔵することができる。この結果、部品数を増加させることなく、IGBT素子20のターンオン時のdV/dtの制御性を高めることができ、ターンオフ時の誤点弧を抑制することができる。さらに、半導体装置の小型化が可能となり、IGBT素子20とダイオード21との配線の断線が起こらない信頼性が高い半導体装置を得ることができる。
 なお、上記実施の形態1~6では、半導体基板の材料がシリコンであるとして説明したが、半導体基板の材料はこれに限定せず、例えば、窒化ガリウム、炭化珪素、窒化アルミニウム、ダイヤモンド、酸化ガリウム等の材料であってもよい。
 1 第1制御電極
 2、2a 第2制御電極
 3 第3制御電極
 6 n型エミッタ層
 7 p型ベース層
 7a 第1p型ベース層、7b 第2p型ベース層、7c 第2n型ベース層
 9 p型コンタクト層
 10 n型ドリフト層
 12 p型コレクタ層
 14 ゲート絶縁膜
 15、15a トレンチゲート電極、15b、15c 配線部
 16 トレンチ
 20 IGBT素子
 21、21a、21b ダイオード
 22 ゲート抵抗
 100 半導体装置

Claims (7)

  1.  第1導電型のドリフト層と、
     前記ドリフト層の表面側に設けられた第2導電型のベース層と、
     前記ベース層の表面側に選択的に設けられた第1導電型のエミッタ層と、
     前記エミッタ層の表層から前記ドリフト層に達するように埋設されたトレンチゲート電極がゲート絶縁膜を介して前記エミッタ層、前記ベース層および前記ドリフト層に接するトレンチゲートと、
     前記ベース層の表層から前記ドリフト層に達するように埋設されたダミートレンチゲート電極がゲート絶縁膜を介して前記ベース層および前記ドリフト層に接するダミートレンチゲートと、
     前記ドリフト層の裏面側に設けられた第2導電型のコレクタ層と、
     前記トレンチゲート電極にアノード側が電気的に接続され、前記ダミートレンチゲート電極にカソード側が電気的に接続されたダイオードと、
     を備えた半導体装置。
  2.  第1導電型のドリフト層と、
     前記ドリフト層の表面側に選択的に設けられた第2導電型のベース層と、
     前記ベース層の表面側に設けられた第1導電型のエミッタ層と、
     前記エミッタ層の表層から前記ドリフト層に達するように埋設されたトレンチゲート電極がゲート絶縁膜を介して前記エミッタ層、前記ベース層および前記ドリフト層に接するトレンチゲートと、
     前記ドリフト層の表層から前記ドリフト層の内部に埋設されたダミートレンチゲート電極がゲート絶縁膜を介して前記ドリフト層に接するダミートレンチゲートと、
     前記ドリフト層の裏面側に設けられた第2導電型のコレクタ層と、
     前記トレンチゲート電極にアノード側が電気的に接続され、前記ダミートレンチゲート電極にカソード側が電気的に接続されたダイオードと、
     を備えた半導体装置。
  3.  前記ダミートレンチゲートを複数有し、複数の前記ダミートレンチゲート電極のうち一部は前記エミッタ層上に設けられたエミッタ電極に電気的に接続され、残部は前記ダイオードのカソード側に電気的に接続された請求項1または2に記載の半導体装置。
  4.  前記ダミートレンチゲート電極は、第1導電型の半導体で構成され、前記ドリフト層の表面側に設けられた第2ゲートパッドに接続された配線部を有し、
     前記ダイオードは、前記配線部の一部に設けられた第2導電型の半導体と前記第1導電型の半導体とのpn接合で構成された請求項1から3のいずれか1項に記載の半導体装置。
  5.  前記ダイオードは、直列接続された複数のダイオードである請求項1から4のいずれか1項に記載の半導体装置。
  6.  前記トレンチゲート電極は、抵抗を介して前記ダイオードのアノード側に接続された請求項1から5のいずれか1項に記載の半導体装置。
  7.  前記トレンチゲート電極は、不純物を含有する半導体で構成され、前記ドリフト層の表面側に設けられた第1ゲートパッドと接続された配線部を有し、
     前記抵抗は、前記配線部に設けられた前記トレンチゲート内よりも不純物濃度が低い領域で構成された請求項6に記載の半導体装置。
PCT/JP2016/079734 2016-01-19 2016-10-06 半導体装置 WO2017126167A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017562433A JP6407455B2 (ja) 2016-01-19 2016-10-06 半導体装置
CN201680078695.2A CN108463888B (zh) 2016-01-19 2016-10-06 半导体装置
DE112016006255.9T DE112016006255T5 (de) 2016-01-19 2016-10-06 Halbleitervorrichtung
US15/774,109 US10192978B2 (en) 2016-01-19 2016-10-06 Semiconductor apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016007858 2016-01-19
JP2016-007858 2016-01-19

Publications (1)

Publication Number Publication Date
WO2017126167A1 true WO2017126167A1 (ja) 2017-07-27

Family

ID=59362701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079734 WO2017126167A1 (ja) 2016-01-19 2016-10-06 半導体装置

Country Status (5)

Country Link
US (1) US10192978B2 (ja)
JP (1) JP6407455B2 (ja)
CN (1) CN108463888B (ja)
DE (1) DE112016006255T5 (ja)
WO (1) WO2017126167A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187509A1 (ja) * 2018-03-28 2019-10-03 三菱電機株式会社 半導体装置
US11276686B2 (en) 2019-05-15 2022-03-15 Fuji Electric Co., Ltd. Semiconductor device
JP7434848B2 (ja) 2019-05-15 2024-02-21 富士電機株式会社 半導体装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226090B (zh) * 2015-11-10 2018-07-13 株洲中车时代电气股份有限公司 一种绝缘栅双极晶体管及其制作方法
DE102016117264B4 (de) * 2016-09-14 2020-10-08 Infineon Technologies Ag Leistungshalbleiterbauelement mit Steuerbarkeit von dU/dt
JP6589817B2 (ja) * 2016-10-26 2019-10-16 株式会社デンソー 半導体装置
JP6844228B2 (ja) * 2016-12-02 2021-03-17 富士電機株式会社 半導体装置および半導体装置の製造方法
US10256331B2 (en) * 2017-03-03 2019-04-09 Pakal Technologies, Inc. Insulated gate turn-off device having low capacitance and low saturation current
JP6729452B2 (ja) * 2017-03-06 2020-07-22 株式会社デンソー 半導体装置
CN109524396B (zh) * 2017-09-20 2023-05-12 株式会社东芝 半导体装置
JP6946219B2 (ja) * 2018-03-23 2021-10-06 株式会社東芝 半導体装置
JP7250473B2 (ja) * 2018-10-18 2023-04-03 三菱電機株式会社 半導体装置
JP7222758B2 (ja) * 2019-03-11 2023-02-15 株式会社東芝 半導体装置
JP7184681B2 (ja) * 2019-03-18 2022-12-06 株式会社東芝 半導体装置およびその制御方法
JP7346170B2 (ja) 2019-08-30 2023-09-19 株式会社東芝 半導体装置及び半導体モジュール
JP7331720B2 (ja) * 2020-02-06 2023-08-23 三菱電機株式会社 半導体装置
DE102020120679A1 (de) 2020-08-05 2022-02-10 Infineon Technologies Ag Eine vielzahl von gräben enthaltende halbleitervorrichtung
CN114551570B (zh) * 2022-02-18 2023-05-26 电子科技大学 一种低功耗功率器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327806A (ja) * 2004-05-12 2005-11-24 Fuji Electric Device Technology Co Ltd 絶縁ゲート型バイポーラトランジスタ
JP2011176244A (ja) * 2010-02-25 2011-09-08 Fuji Electric Co Ltd 半導体装置
JP2013251466A (ja) * 2012-06-01 2013-12-12 Fuji Electric Co Ltd 半導体装置、半導体装置の制御方法および半導体装置の評価方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285100A (en) * 1988-07-22 1994-02-08 Texas Instruments Incorporated Semiconductor switching device
JP4867140B2 (ja) * 2004-07-01 2012-02-01 富士電機株式会社 半導体装置
JP5989689B2 (ja) * 2014-01-27 2016-09-07 トヨタ自動車株式会社 半導体装置
JP6253769B2 (ja) 2014-04-21 2017-12-27 三菱電機株式会社 電力用半導体装置
US10217738B2 (en) * 2015-05-15 2019-02-26 Smk Corporation IGBT semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327806A (ja) * 2004-05-12 2005-11-24 Fuji Electric Device Technology Co Ltd 絶縁ゲート型バイポーラトランジスタ
JP2011176244A (ja) * 2010-02-25 2011-09-08 Fuji Electric Co Ltd 半導体装置
JP2013251466A (ja) * 2012-06-01 2013-12-12 Fuji Electric Co Ltd 半導体装置、半導体装置の制御方法および半導体装置の評価方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187509A1 (ja) * 2018-03-28 2019-10-03 三菱電機株式会社 半導体装置
CN111954931A (zh) * 2018-03-28 2020-11-17 三菱电机株式会社 半导体装置
JPWO2019187509A1 (ja) * 2018-03-28 2020-12-03 三菱電機株式会社 半導体装置
US11373998B2 (en) 2018-03-28 2022-06-28 Mitsubishi Electric Corporation Semiconductor device with differences in crystallinity between components
CN111954931B (zh) * 2018-03-28 2023-11-10 三菱电机株式会社 半导体装置
US11276686B2 (en) 2019-05-15 2022-03-15 Fuji Electric Co., Ltd. Semiconductor device
US11631666B2 (en) 2019-05-15 2023-04-18 Fuji Electric Co., Ltd. Semiconductor device
JP7434848B2 (ja) 2019-05-15 2024-02-21 富士電機株式会社 半導体装置

Also Published As

Publication number Publication date
JP6407455B2 (ja) 2018-10-17
US10192978B2 (en) 2019-01-29
CN108463888A (zh) 2018-08-28
DE112016006255T5 (de) 2018-10-04
CN108463888B (zh) 2021-03-26
JPWO2017126167A1 (ja) 2018-06-07
US20180323294A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6407455B2 (ja) 半導体装置
JP6896673B2 (ja) 半導体装置
JP5216801B2 (ja) 半導体装置
US6667515B2 (en) High breakdown voltage semiconductor device
JP7379327B2 (ja) 半導体デバイス
JP7250473B2 (ja) 半導体装置
JP2015065420A (ja) 半導体装置
JP2015179705A (ja) トレンチmos型半導体装置
JP2020053466A (ja) 半導体装置
JP2019024138A (ja) 半導体装置
JP2013115223A (ja) 半導体装置
CN111341772A (zh) 半导体装置
JP5487956B2 (ja) 半導体装置
JP6302767B2 (ja) 半導体装置及びそれを用いた電力変換装置
JP2019106409A (ja) 半導体装置およびその製造方法
JP2016058428A (ja) 半導体装置
JP2013211512A (ja) 絶縁ゲート型バイポーラトランジスタ
JP2019075502A (ja) 半導体装置
JP6391863B2 (ja) トレンチmos型半導体装置
US9553178B2 (en) Semiconductor component with an emitter control electrode
JP2017157673A (ja) 半導体装置
JP6995722B2 (ja) 半導体装置
US11309386B2 (en) Semiconductor device
JP6806213B2 (ja) 半導体素子
WO2023053439A1 (ja) 電力用半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562433

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15774109

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016006255

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886407

Country of ref document: EP

Kind code of ref document: A1