WO2017084561A1 - 一种大尺寸氧化石墨烯或石墨烯的制备方法 - Google Patents

一种大尺寸氧化石墨烯或石墨烯的制备方法 Download PDF

Info

Publication number
WO2017084561A1
WO2017084561A1 PCT/CN2016/105943 CN2016105943W WO2017084561A1 WO 2017084561 A1 WO2017084561 A1 WO 2017084561A1 CN 2016105943 W CN2016105943 W CN 2016105943W WO 2017084561 A1 WO2017084561 A1 WO 2017084561A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
acid
graphite
graphene oxide
agent
Prior art date
Application number
PCT/CN2016/105943
Other languages
English (en)
French (fr)
Inventor
卢红斌
董雷
林姗
马晨
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学 filed Critical 复旦大学
Priority to US15/776,746 priority Critical patent/US20180339906A1/en
Publication of WO2017084561A1 publication Critical patent/WO2017084561A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/02Single layer graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area

Definitions

  • the invention belongs to the technical field of preparation of graphene oxide and graphene, and relates to a method for large-scale preparation of large-sized graphene oxide or graphene, in particular, graphite is used as a raw material, and a graphene oxide is obtained through intercalation, expansion and oxidation processes.
  • the aggregate is subjected to peeling under a gentle mechanical force to obtain a large-sized graphene oxide, which is then reduced to obtain a large-sized graphene.
  • the transparent conductive film has high light transmittance and excellent electrical conductivity, and has broad application prospects in fields such as liquid crystal displays, solar cells, light-emitting diodes and smart windows.
  • Indium tin oxide (ITO) greatly restricts its application on transparent conductive films due to its high cost and fragility.
  • Graphene is the thinnest two-dimensional material in which carbon atoms are closely packed into a single-layer honeycomb structure by sp 2 hybridization, and has excellent electrical conductivity, high specific surface area, high strength, high light transmittance, and high electron mobility. Performance, which has more advantages than ITO, has gradually developed into an ideal material for preparing transparent conductive films.
  • the graphene sheets produced by the currently disclosed technology are small in size, resulting in the internal composition of the transparent conductive film. More connection, the charge transmission resistance is larger, which seriously affects the conductivity of the conductive film.
  • the large-sized graphene sheets can effectively form a communication and bridge network structure in the matrix of the material to be built, thereby reducing interlayer adhesion and interface contact resistance. Therefore, the development of a large-scale, low-cost method for preparing large-sized graphene oxide and high-conductivity graphene is a key problem to be solved urgently.
  • high-quality graphene of about 10 ⁇ m can be prepared by micro-mechanical stripping method of transparent tape, but the yield of this method is low, and it is difficult to obtain a single graphene layer with a single atomic layer thickness, and is not suitable for large-scale production. And application.
  • the CVD method can achieve the growth of large-area graphene, but it is difficult to transfer graphene to other substrates.
  • the liquid phase stripping and other methods due to the mechanical force of ultrasonic waves and high-speed shearing, make the graphene oxide or graphene be subjected to strong impact and easily break into several micrometers or even nanometer-scale sheets, and it is difficult to obtain large-sized graphene oxide. And graphene sheets.
  • Redox is still the most effective method for preparing large-sized graphene oxide and graphene sheets.
  • the key challenge of this method is how to solve the difficulty in solid-liquid separation of high-viscosity graphene oxide suspensions, and Destruction of the sheet by external input energy during stripping. Therefore, how to obtain high-yield large-sized graphene oxide and graphene is still the key bottleneck for the current application of graphene.
  • the Brodie and Staudernmaie oxidation processes require a long-term oxidation process and a low degree of oxidation.
  • the Hummers method has a high degree of oxidation, it requires three stages, which require the graphene sheet to undergo severe and severe oxidation treatment and later stages.
  • the continuous centrifugal washing process inevitably destroys the lattice structure of graphene and introduces a large number of defects, resulting in a serious lack of intrinsic properties of graphene.
  • the Chinese patent "Preparation method for large-scale graphene oxide" (CN 103408000A) uses flake graphite as raw material, first intercalated with hydrogen peroxide, and then ultrasonic assisted The oxidation is carried out to prepare graphene oxide.
  • Patent "A method for preparing graphene fibers by self-assembly of large-layer graphene oxide” (CN103741264A), first intercalating graphite with strong acid, expanding at high temperature, and then oxidizing, centrifuging and dialysis using Hummers method to obtain graphene sheets
  • the radial dimension is small (20-80 ⁇ m), the preparation process is complicated, and the cost is high.
  • the present invention fundamentally solves the above-mentioned difficulties encountered in the preparation of large-sized graphene oxide and graphene. It is an object of the present invention to develop a method for producing large-sized graphene oxide and graphene at low cost and high efficiency.
  • the method has the advantages of simple operation flow, safety, high efficiency and low cost, and is especially suitable for large-scale industrial production, and has broad industrial application prospects.
  • a first aspect of the present invention provides a method for preparing a large-sized graphene oxide or graphene, which first intercalates graphite with an intercalating agent, and then expands the intercalated graphite with an expanding agent to release interlayer space and weaken
  • the interaction force between the layers is further oxidized by an oxidizing agent, which is peeled off under a gentle mechanical action to form a uniform graphene oxide dispersion, and finally reduced by a reducing agent or heat treatment to obtain a large-sized graphene. It is characterized by the following specific steps:
  • the graphene aggregate obtained in the step (1) is put into a mixture of an acid and an oxidizing agent, and immersed or refluxed at 0 to 130 ° C for 0.1 to 50 hours, filtered, and washed with deionized water to remove impurities. Oxidized graphene aggregates.
  • step (3) mixing the oxidized graphene aggregate obtained in the step (2) with deionized water, and performing peeling under a gentle mechanical action to obtain a graphene oxide dispersion liquid, which is reduced by a reducing agent or a heat treatment. After that, a large-size, high-conductivity graphene suspension is obtained, wherein the graphene oxide aggregate content in the suspension is 0.1-50 mg/ml; and the formed graphene oxide film is subjected to heat treatment to reduce the film thickness to 1 -25 microns.
  • the raw material graphite described in the step (1) means flake graphite, artificial graphite, expandable graphite, and expanded graphite, and has a carbon content of more than 95% and a radial dimension of less than 5 mm.
  • the intercalating agent described in the step (1) means ammonium persulfate, potassium dichromate, chromium trioxide, potassium permanganate, potassium ferrate, concentrated sulfuric acid, concentrated hydrochloric acid, concentrated nitric acid, perchloric acid.
  • the amount of intercalating agent is 0.1-20 times of the raw material graphite, concentrated sulfuric acid, concentrated hydrochloric acid, concentrated nitric acid, perchloric acid, concentrated phosphoric acid and glacial acetic acid are used. The concentration is 10-20 mol/L.
  • the expansion agent described in the step (1) means one or more of ammonium oxalate, oxalic acid, potassium oxalate, hydrogen peroxide, sodium carbonate or sodium hydrogencarbonate, and the molar concentration thereof is 0.1 to 10 mol/L.
  • the amount of the expansion agent is 1-500 times that of the raw material graphite.
  • the acid in the step (2) refers to one or more of concentrated sulfuric acid, concentrated nitric acid, perchloric acid, concentrated phosphoric acid, formic acid, oxalic acid or glacial acetic acid, and the acid amount is 1-200 of the raw graphite. Times.
  • the oxidizing agent in the step (2) means one of ammonium persulfate, potassium dichromate, potassium permanganate, potassium ferrate, sodium nitrate, potassium nitrate, concentrated nitric acid or they are mixed in any ratio.
  • the mixture is used in an amount of 0.1 to 10 times the mass of the raw material graphite.
  • the mass ratio of the oxidizing agent to the raw material graphite is from 0.1 to 10, preferably from 1.5 to 6.0, more preferably from 1.8 to 4.0, most preferably from 2.0 to 3.0.
  • the gentle mechanical action described in the step (3) refers to one of magnetic stirring, mechanical stirring, a mixing device, a shaker or an oscillator, and the rotation speed is 10-1000 rpm, and the time is 1-120 minutes. .
  • the reducing agent according to the step (3) refers to one of hydrazine hydrate, hydroiodic acid, lithium aluminum hydride, sodium borohydride, sodium hydroxide, sodium citrate and ascorbic acid or a mixture thereof in any ratio.
  • the reducing agent is used in an amount of 0.1-10 times that of the raw material graphite.
  • the heat treatment refers to a reduction treatment of graphene oxide at 200-2000 ° C for a treatment time of 1 second to 60 minutes.
  • the graphene oxide or graphene has a radial size ranging from 85 to 500 ⁇ m.
  • more than 75% of the graphene material is a single layer of graphene.
  • the mass of the graphite as a raw material is ⁇ 0.1 g, preferably ⁇ 0.5 g, more preferably ⁇ 5.0 g, most preferably ⁇ 100 g.
  • a second aspect of the present invention provides a graphene material having a radial size ranging from 85 to 500 ⁇ m, and a mass fraction of the single-layer graphene in the graphene material ⁇ 75% (preferably ⁇ 85) %, more preferably ⁇ 90%, optimally ⁇ 95%).
  • the graphene material has a conductivity of 500 to 10 5 S/cm, preferably 550 to 10 4 S/cm, more preferably 600 to 9000 S/cm, and most preferably 800 to 9000 s. /cm.
  • the large-sized graphene oxide and graphene prepared by the method of the invention have a radial size of 20-500 ⁇ m or more, and the reduced graphene conductivity can reach 600 S/cm or more.
  • an article comprising the graphene material according to the second aspect of the invention or the graphene material according to the second aspect of the invention.
  • a method for preparing graphene comprising the steps of:
  • step (d) mixing the oxidized graphene aggregate obtained in the step (c) with deionized water, and stripping to obtain graphene oxide;
  • the graphene oxide obtained in the step (d) is reduced by a reducing agent or a heat treatment to obtain a graphene suspension or a graphene film having a large size and a high conductivity.
  • the steps in the preparation method of the first aspect of the invention may all be used in the third aspect of the invention.
  • the invention has the following advantages:
  • the graphene oxide and graphene prepared by the technology of the invention have large size, good quality, uniform structure, close to 100% yield, single layer rate of more than 90%, and wide source of raw material graphite, low cost and convenient large-scale industrial production. .
  • the preparation process of the invention is simple, no expensive special equipment is needed, and high temperature expansion conditions such as a microwave reactor and a high temperature furnace are not required, thereby avoiding the problem of uneven expansion caused by rapid thermal expansion.
  • the present invention has a short reaction time and a low amount of oxidizing agent.
  • the present invention oxidizes so that the used acid and oxidant can be recycled and recycled to avoid environmental pollution of the spent acid.
  • the graphene oxide aggregate prepared by the invention can realize rapid solid-liquid separation, washing and stripping, and effectively solves the key problem in the preparation and purification process of graphene oxide.
  • the size of the graphene oxide and graphene sheets prepared by the present invention is much larger than that of the samples or products prepared by the methods disclosed or reported, and the oxygen-containing functional groups are more uniformly and controllable on the surface of the graphene.
  • the large-size graphene oxide and graphene prepared by the present invention have high peeling efficiency, and the yield is almost 100%, and graphene oxide or graphene having an average side surface size of 100 ⁇ m or more can be obtained without classification.
  • the invention has mild reaction conditions, simple process, low energy consumption, low production cost and high efficiency, and the prepared graphene has large size and high electrical conductivity, and is convenient for large-scale industrial production.
  • Figure 1 is a scanning electron microscope image (SEM) of oversized graphene oxide
  • 2 is an SEM image of (a) the appearance of the reduced graphene oxide film and (b) the thickness direction.
  • the "radial size”, ie, the “side dimension”, refers to the largest dimension in the XY plane except for the thickness direction (z direction).
  • the graphene oxide material of the present invention has a radial dimension in the range of from 85 to 500 ⁇ m, preferably from 100 to 470 ⁇ m, more preferably from 150 to 450 ⁇ m, most preferably from 200 to 400 ⁇ m.
  • the expanding agent expands the intercalated graphite to release the inter-layer space and weaken the inter-layer interaction force.
  • the expansion of the present invention is carried out at 0-80 ° C, using one or several expansion agents selected from the group consisting of ammonium oxalate, oxalic acid, potassium oxalate, hydrogen peroxide, sodium carbonate or sodium hydrogencarbonate, and the solvent may be water. Or other solvents well known to those skilled in the art.
  • the expansion of the present invention is liquid expansion rather than solid expansion, which is simple in operation and lower in cost.
  • graphene oxide As used herein, one skilled in the art can prepare graphene oxide as needed, and graphene after reduction by a reducing agent or high temperature reduction.
  • graphene oxide is used as an intermediate for the preparation of graphene.
  • the graphene after reduction exhibits a significantly elevated electrical conductivity.
  • the microscopic results show that the average radial size of the graphene oxide thus obtained can be more than 100 micrometers, and more than 90% is a single layer.
  • Figure 1 is an SEM image of a graphene oxide sheet obtained having a radial dimension of up to 450 microns.
  • Figure 2 shows the appearance (a) of the graphene film after reduction for 2 h at 60 ° C in hydriodic acid solution (57%) and the SEM image in the thickness direction, showing a thickness of -1.5 ⁇ m.
  • the four probe measurement results showed that the conductivity was above 600 S/cm.
  • Example 1 After the graphene oxide suspension obtained in Example 1 was filtered to form a film, it was heat-treated at 800 ° C for 60 minutes, and pressed at 20 MPa for 5 minutes. The four-probe measurement showed that the film conductivity was up to 600 S. /cm or more.
  • the obtained graphene oxide was subjected to reduction treatment in a hydroiodic acid solution (57%) at 60 ° C for 2 hours, and a large-sized graphene having a sheet having an average radial dimension of 100 ⁇ m or more and an electric conductivity of 600 S/cm or more was obtained.
  • the average radial size of the obtained graphene oxide can be more than 100 ⁇ m, and more than 90% is a single layer, after being reduced by hydrazine hydrate (64%) at 80 ° C for 2 h, The conductivity can reach more than 600S/cm.
  • the average radial size of the graphene oxide can reach 100 ⁇ m or more, and more than 90% is a single layer, which is reduced by hydriodic acid solution (57%) at 60 °C. After 2h, the conductivity is above 600S/cm.
  • Example 8 Same as Example 8, except that the chromium trioxide was 20 g, and 200 mL of hydrogen peroxide (30%) was not added. Specific as under:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

提供一种大尺寸氧化石墨烯或石墨烯的制备方法、石墨烯材料和制品。该方法包括:石墨在插层剂和膨胀剂的作用下,释放层间空间削弱层间相互作用力,得到石墨烯聚集体;采用氧化剂对其氧化后,采用柔和的机械作用在水中使其剥离,得到大片的氧化石墨烯分散液;采用还原剂或热处理对剥离的氧化石墨烯进行还原,得到高导电率的石墨烯。该方法避免了高能超声波、高速剪切或流体粉碎对氧化石墨烯晶体结构的破坏;得到的石墨烯尺寸大,电导率高,可用于高效热量管理、柔性显示、能源转化和储存等领域。

Description

一种大尺寸氧化石墨烯或石墨烯的制备方法 技术领域
本发明属于氧化石墨烯和石墨烯制备技术领域,涉及一种规模化制备大尺寸氧化石墨烯或石墨烯的方法,具体为以石墨为原料,经过插层、膨胀、氧化过程,得到氧化石墨烯聚集体,在柔和的机械力作用下,实现剥离,获得大尺寸氧化石墨烯,再经还原后得到大尺寸石墨烯。
背景技术
透明导电膜具有高的透光率和优良的导电性,在液晶显示器,太阳能电池,发光二极管和智能窗等领域具有广阔的应用前景。铟锡氧化物(ITO)由于价格昂贵和易脆等缺点,大大制约了其在透明导电膜上的应用。石墨烯是碳原子以sp2杂化紧密堆积成单层蜂窝状结构的最薄的二维材料,具有高导电性、高比表面积、高强度、高透光率及高电子迁移率等优异的性能,比ITO具有更多的优势,因而逐渐发展成为制备透明导电膜的理想材料。虽然,国内外研究者已投入大量的资金、人力致力于发展石墨烯的规模化制备技术,但是,目前公开的技术所制得的石墨烯片层尺寸较小,导致组成透明导电膜的内部搭接较多,电荷传输阻力较大,严重影响了导电膜的导电性能。而大尺寸的石墨烯片能有效地在所筑材料的基体内形成联通和搭桥式的网络结构,从而减少了层间搭接和界面接触电阻。因此,开发一种大规模、低成本制备大尺寸氧化石墨烯和高电导率石墨烯的方法是当前亟待解决的关键问题。
目前,采用透明胶带的微机械剥离法可制备10μm左右的高质量石墨烯,但是这种方法产率低,且不易得到独立的单原子层厚度的石墨烯片层,也不适合大规模的生产和应用。CVD法可实现大面积石墨烯的生长,但它较难将石墨烯转移到其他的基底上。而液相剥离等方法因超声波和高速剪切的机械力作用,使氧化石墨烯或石墨烯受到强大的冲击易于碎裂成几微米甚至是纳米级别的片层,难以获得大尺寸的氧化石墨烯和石墨烯片层。对于制备大尺寸的氧化石墨烯和石墨烯片层,氧化还原法仍是最为有效的方法,然而,该方法面临的关键挑战是如何解决高粘度氧化石墨烯悬浮液固液分离时的困难,以及剥离时外部输入能量对片层的破坏。因此,如何获得高产率的大尺寸氧化石墨烯和石墨烯仍然是目前制约石墨烯应用的关键瓶颈。
常用Brodie和Staudernmaie氧化法需要长时间的氧化过程,且氧化程度较低,Hummers法氧化程度虽然高,但是需要经过繁琐的三个阶段,这些方法都使石墨烯片经过苛刻剧烈的氧化处理和后期不断离心水洗过程,不可避免地破坏了石墨烯的晶格结构,引入大量缺陷,从而导致石墨烯本征性能的严重缺失。中国专利《大片氧化石墨烯的制备方法》(CN 103408000A)采用鳞片石墨为原料,先用双氧水插层,然后在超声辅 助下氧化制备氧化石墨烯。该法虽然有较高的氧化效率和剥离效率,但涉及超声辅助,难免在一定程度上削减了石墨烯的尺寸,而且,氧化石墨烯悬浮液固液分离的困难仍然无法得到解决。专利《一种通过大片层氧化石墨烯自组装制备石墨烯纤维的方法》(CN103741264A)先用强酸对石墨进行插层,高温膨胀,再用Hummers法进行氧化、离心、透析,所得石墨烯片层径向尺寸较小(20~80μm),制备工艺复杂,成本较高。2014年,Nature Communications报道了一种1h可制备单层氧化石墨烯的方法(DOI:10.1038/ncomms6716),然而,该方法虽然绿色环保,但仅适用于小尺寸的石墨原料。目前,如何高效率、高产率制备大尺寸氧化石墨烯和高电导率石墨烯的方法还未见公开和报道。
发明内容
本发明从根本上解决了上述制备大尺寸氧化石墨烯和石墨烯所遇到的困难。本发明的目的在于开发一种低成本、高效率制备大尺寸氧化石墨烯和石墨烯的方法。该方法具有操作流程简单、安全、高效、成本低等优点,尤其适合大规模工业化生产,具有广泛的工业应用前景。
本发明第一方面提供了一种大尺寸氧化石墨烯或石墨烯的制备方法,先用插层剂对石墨进行插层,随后采用膨胀剂对插层石墨进行膨胀,以释放层间空间、削弱层间相互作用力,进而通过氧化剂对其进行氧化,在柔和的机械作用下使其剥离并形成均匀的氧化石墨烯分散液,最后用还原剂或热处理对其进行还原,得到大尺寸的石墨烯;其特征在于具体步骤如下:
(1)将石墨与插层剂在0-130℃下搅拌反应5分钟-48小时,然后投入膨胀剂中,在0-80℃下浸泡1小时-7天,使层间空间充分释放,得到石墨烯聚集体。
(2)将步骤(1)得到的石墨烯聚集体投入到酸和氧化剂的混合体中,在0-130℃下浸泡或回流0.1-50小时后,过滤并用去离子水洗涤,除去杂质,得到氧化的石墨烯聚集体。
(3)将步骤(2)得到的氧化的石墨烯聚集体与去离子水混合,在柔和的机械作用下,实现剥离,得到氧化石墨烯分散液,所述氧化石墨烯经还原剂或热处理还原后,得到大尺寸、高电导率的石墨烯悬浮液,其中,悬浮液中的氧化石墨烯聚集体含量为0.1-50毫克/毫升;形成的氧化石墨烯薄膜经热处理还原后的薄膜厚度为1-25微米。
(4)将步骤(3)得到的氧化石墨烯分散液或还原后的石墨烯悬浮液进行离心或蒸发浓缩,得高固含量氧化石墨烯或石墨烯浆料;或者采用冷冻干燥或喷雾干燥方式制备相应的氧化石墨烯或石墨烯粉体。
需注意的是,上述机理性的描述不作为对本发明保护范围的限制,本发明中的制备方法主要由所述步骤进行限定。
本发明中,步骤(1)所述的原料石墨是指鳞片石墨、人造石墨、可膨胀石墨和膨胀石墨,碳含量大于95%,径向尺寸小于5毫米。
本发明中,步骤(1)所述的插层剂是指过硫酸铵、重铬酸钾、三氧化铬、高锰酸钾、高铁酸钾、浓硫酸、浓盐酸、浓硝酸、高氯酸、浓磷酸或冰醋酸中的一种或它们之间的任意组合,插层剂用量为原料石墨的0.1-20倍,所用浓硫酸、浓盐酸、浓硝酸、高氯酸、浓磷酸和冰醋酸的浓度为10-20mol/L。
本发明中,步骤(1)所述的膨胀剂是指草酸铵、草酸、草酸钾、双氧水、碳酸钠或碳酸氢钠水溶液中的一种或几种,其摩尔浓度为0.1-10mol/L,膨胀剂用量为原料石墨的1-500倍。
本发明中,步骤(2)所述的酸是指浓硫酸、浓硝酸、高氯酸、浓磷酸、甲酸、草酸或冰醋酸中的一种或几种,酸用量是原料石墨的1-200倍。
本发明中,步骤(2)所述的氧化剂是指过硫酸铵、重铬酸钾、高锰酸钾、高铁酸钾、硝酸钠、硝酸钾、浓硝酸中的一种或它们以任意比例混合的混合物,氧化剂用量为原料石墨质量的0.1-10倍。
在另一优选例中,所述氧化剂与原料石墨的质量比为0.1-10,较佳地为1.5-6.0,更佳地为1.8-4.0,最佳地为2.0-3.0。
本发明中,步骤(3)所述的柔和的机械作用是指磁力搅拌、机械搅拌、混匀装置、摇瓶机或振荡器中的一种,转速为10-1000rpm,时间为1-120分钟。
本发明中,步骤(3)所述的还原剂指水合肼、氢碘酸、氢化锂铝、硼氢化钠、氢氧化钠、柠檬酸钠和抗坏血酸中的一种或它们以任意比例混合的混合物,还原剂用量为原料石墨的0.1-10倍。所述的热处理是指在200-2000℃下对氧化石墨烯进行还原处理,处理时间为1秒-60分钟。
在另一优选例中,所述氧化石墨烯或石墨烯的径向尺寸范围为85-500μm。
在另一优选例中,所述石墨烯材料中75%以上为单层石墨烯。
在另一优选例中,所述步骤(1)中,作为原料的石墨的质量≥0.1g,较佳地≥0.5g,更佳地≥5.0g,最佳地≥100g。
本发明第二方面提供一种石墨烯材料,所述石墨烯材料的径向尺寸范围为85-500μm,且所述石墨烯材料中单层石墨烯的质量分数≥75%(较佳地≥85%,更佳地≥90%,最佳地≥95%)。
在另一优选例中,所述石墨烯材料的导电率为500-105S/cm,较佳地550-104S/cm,更佳地600-9000S/cm,最佳地800-9000S/cm。
利用本发明所述的方法制备的大片氧化石墨烯和石墨烯径向尺寸为20-500μm以上,还原后的石墨烯电导率可达600S/cm以上。
本发明第三方面,提供一种制品,所述制品包含如本发明第二方面所述的石墨烯材料或由本发明第二方面所述的石墨烯材料制备。
本发明第四方面,提供一种制备石墨烯的方法,包括步骤:
(a)将石墨与插层剂在0-130℃下搅拌反应;
(b)将搅拌反应产物与膨胀剂混合,得到石墨烯聚集体;
(c)将步骤(b)得到的石墨烯聚集体与酸和氧化剂混合,得到氧化的石墨烯聚集体
(d)将步骤(c)得到的氧化的石墨烯聚集体与去离子水混合,剥离后得到氧化石墨烯;
(e)任选地,将步骤(d)所得的氧化石墨烯经还原剂或热处理还原后,得到大尺寸、高电导率的石墨烯悬浮液或石墨烯薄膜。
在另一优选例中,本发明第一方面所述的制备方法中的步骤可全部用于本发明第三方面。
本发明与现有技术相比具有以下优势:
(1)本发明技术制备的氧化石墨烯和石墨烯尺寸大、质量好、结构均匀、产率接近100%,单层率90%以上,且原料石墨来源广泛,成本低廉,便于大规模工业化生产。
(2)本发明制备过程简单,无需昂贵的特殊设备,也不需微波反应器、高温炉等高温膨胀条件,避免了快速热膨胀过程中产生的膨胀不均问题。
(3)本发明与传统氧化石墨烯制备方法相比,反应时间短,氧化剂用量低。
(4)本发明在氧化使所使用的酸和氧化剂可以回收,循环利用,避免废酸对环境的污染。
(5)本发明制备的氧化石墨烯聚集体可实现快速固液分离、洗涤和剥离,有效解决了氧化石墨烯制备、纯化过程中的关键难题。
(6)本发明制备的氧化石墨烯和石墨烯片层尺寸远大于现有公开或报道的方法所制备的样品或产品,且含氧官能团在石墨烯表面分布更为均匀、可控。
(7)本发明制备的大尺寸氧化石墨烯和石墨烯制备技术剥离效率高,产率几乎为100%,无需分级即可获得平均侧面尺寸100微米以上的氧化石墨烯或石墨烯。
(8)本发明反应条件温和,工序简单,能耗低、生产成本低廉,效率高,制备的石墨烯尺寸大,电导率高,便于进行大规模工业化生产。
附图说明
图1为超大尺寸氧化石墨烯的扫描电镜图像(SEM);
图2为(a)还原的氧化石墨烯薄膜外观和(b)厚度方向的SEM图像。
具体实施方式
下面结合附图和具体实施例对本发明做进一步阐述。以下实施例旨在对本发明进行理解,对发明内容本身不做任何限定。应该理解,本发明提到的一个或多个步骤不排斥在所述组合步骤前后还存在其它方法和步骤,或者这些明确提及的步骤之间还可以插入其它方法和步骤。还应理解,这些实例仅用于说明本发明而不用于限制本发明的范围。 除非另有说明,各方法步骤的编号仅为鉴别各方法步骤的目的,而非为限制每个方法的排列次序或限定本发明的实施范围,其相对关系的改变或调整,在无实质技术内容变更的条件下,当亦视为本发明可实施的范畴。
术语说明
径向尺寸
如本文所用,所述“径向尺寸”即Lateral Size,也称“侧面尺寸”,是指除厚度方向(z方向)外的XY平面内的最大尺寸。
在另一优选例中,本发明所述的氧化石墨烯材料的径向尺寸范围为85-500μm,较佳地为100-470μm,更佳地为150-450μm,最佳地为200-400μm。
膨胀剂
如本文所用,所述膨胀剂对插层石墨进行膨胀,以释放层间空间、削弱层间相互作用力。
本发明所述膨胀是在0-80℃条件下,采用选自下组一种或几种膨胀剂进行:草酸铵、草酸、草酸钾、双氧水、碳酸钠或碳酸氢钠溶液,溶剂可以为水或其它本领域技术人员熟知的溶剂。
本发明所述膨胀是液态膨胀而非固态膨胀,操作简便,成本更低。
氧化石墨烯与石墨烯
如本文所用,本领域技术人员可以根据需要制备氧化石墨烯、以及经还原剂还原或高温还原之后的石墨烯。
在另一优选例中,氧化石墨烯作为制备石墨烯的中间产物。
在另一优选例中,还原之后的石墨烯显示出显著升高的导电性能。
实施例1
将50mL浓硫酸与5g过硫酸铵在5℃条件下混合搅拌10min,加入1g鳞片石墨,在20℃水浴中连续搅拌10h后,得到插层石墨(GICs)。
然后缓慢投入200mL 0.1mol/L草酸溶液中,迅速于室温下反应2d后,过滤水洗,得到石墨烯聚集体。
接着,缓慢投入40mL浓硫酸和2g高锰酸钾混合物中,在35℃下静置6h后,过滤水洗。加入1L去离子水,于500rpm的振荡床下振荡10min,得到均匀的石墨烯分散液。
显微结果表明,由此获得的氧化石墨烯平均径向尺寸可达100微米以上,且90%以上为单层。
图1是得到的氧化石墨烯片层的SEM图像,其径向尺寸最大可达450微米。
图2给出了经60℃的氢碘酸溶液(57%)还原2h后的石墨烯薄膜外观(a)以及厚度方向的SEM图像,表明其厚度为~1.5微米。四探针测量结果显示其电导率在600S/cm以上。
实施例2
将实施例1中得到的氧化石墨烯悬浮液经过滤成膜后,将其在800℃下热处理60分钟,并在20MPa压力下压制5分钟,四探针测量结果显示其薄膜电导率可达600S/cm以上。
实施例3
将30mL浓硫酸与10mL浓硝酸在5℃冰水浴条件下混合搅拌10min,加入1g鳞片石墨,在20℃水浴中连续搅拌6h后,过滤,得到GICs。
然后,缓慢投入200mL0.1mol/L草酸溶液中,于室温下反应1d后,过滤水洗,得到石墨烯聚集体。
接着,缓慢投入40mL浓硫酸和2g高锰酸钾混合物中,在35℃下静置6h后,过滤水洗。加入1L去离子水,于500rpm的振荡床下振荡10min,得到的氧化石墨烯平均径向尺寸在100微米以上,且90%以上为单层,经60℃的氢碘酸溶液(57%)还原2h后,电导率达600S/cm以上。
实施例4
将1g鳞片石墨(碳含量>95%),5g三氧化铬与2g高锰酸钾混合,加入12mL冰醋酸(99.5%),在45℃水浴条件下搅拌反应2d后过滤,得到GICs。
然后加入200mL双氧水(30%),于室温下反应2d后,过滤,水洗,得到石墨烯聚集体。
接着,缓慢投入40mL浓硫酸和2g高锰酸钾混合物中,在35℃下静置6h后,过滤,水洗。加入1L去离子水,于500rpm的磁力搅拌下搅拌10min,得到的氧化石墨烯平均径向尺寸在100微米以上,且约90%为单层,经60℃的氢碘酸溶液(57%)还原2h后,电导率可达600S/cm以上。
实施例5
将1g鳞片石墨(碳含量95%以上)与20g三氧化铬混合,加入15mL浓盐酸(38%),在25℃水浴条件下搅拌反应。2h后,过滤,用水和丙酮重复洗多次,得到GICs。
然后,加入200mL双氧水(30%),于室温下反应2d后,过滤水洗,得到膨胀石墨。 接着,缓慢投入40mL浓硫酸和2g高锰酸钾。在常温下搅拌反应6h后,过滤水洗。加入1L去离子水,于500rpm的磁力搅拌下搅拌10min,得到氧化石墨烯悬浮液。
所得氧化石墨烯在60℃的氢碘酸溶液(57%)中还原处理2h后,得到大尺寸的石墨烯,其片层平均径向尺寸在100微米以上,电导率在600S/cm以上。
实施例6
将1g鳞片石墨(碳含量95%以上)与3g三氧化铬混合,加入10mL冰醋酸(99.5%),在122℃下回流2h,过滤,用水和丙酮重复洗涤,得到GICs。
然后加入200mL双氧水(30%),于室温下反应2d后,过滤水洗,得到石墨烯聚集体。
接着,缓慢投入40mL浓硫酸和2g高锰酸钾混合物中,在35℃下静置6h后,过滤水洗。加入1L去离子水,于500rpm的磁力搅拌下搅拌10min,得到的氧化石墨烯平均径向尺寸在100微米以上,且90%以上为单层,经60℃的氢碘酸溶液(57%)还原2h后,电导率可达600S/cm以上。
实施例7
将1g鳞片石墨(碳含量95%以上)与5g三氧化铬混合,加入50mL冰醋酸(99.5%),在80℃下反应2h,过滤,用水和丙酮重复洗多次,得到GICs。
然后加入200mL双氧水(30%),于室温下反应2d后,过滤,水洗,得到蠕虫状石墨烯聚集体。接着,缓慢投入40mL浓硫酸和2g高锰酸钾混合物中(事先混合好),在35℃下静置6h后,过滤水洗。加入1L去离子水,于500rpm的磁力搅拌下搅拌10min,得到的氧化石墨烯平均径向尺寸在100μm以上,且90%以上为单层,经60℃的氢碘酸溶液(57%)还原2h后,电导率可达600S/cm以上。
实施例8
将1g鳞片石墨(碳含量95%以上)与8.5g三氧化铬混合,加入7mL浓盐酸(38%),在25℃水浴条件下搅拌反应。2h后,过滤,用水和丙酮重复洗多次,得到GICs。
然后加入200mL双氧水(30%),于室温下反应2d后,过滤,水洗,得到蠕虫状石墨烯聚集体。接着,缓慢投入40mL浓硫酸和2g高锰酸钾混合物中,在35℃下静置6h后,过滤水洗。加入1L去离子水,于500rpm的振荡床下振荡10min,得到的氧化石墨烯平均径向尺寸在100μm以上,且90%以上为单层,经60℃的氢碘酸溶液(57%)还原2h后,电导率可达650S/cm以上。
实施例9
将1g鳞片石墨(碳含量95%以上)与8.5g三氧化铬混合,加入7mL浓盐酸(38%),在25℃水浴条件下搅拌反应。2h后过滤,用水和丙酮重复洗多次,得到GICs。
然后加入200mL双氧水(30%),于室温下反应2d后,过滤水洗,得到蠕虫状石墨烯聚集体。
接着,缓慢投入40mL浓硫酸和2g高锰酸钾混合物中,在35℃下静置6h后,过滤,水洗。加入1L去离子水,于500rpm的振荡床下振荡10min,得到的氧化石墨烯平均径向尺寸可达100μm以上,且90%以上为单层,经80℃的水合肼(64%)还原2h后,电导率可达600S/cm以上。
实施例10
将1g鳞片石墨(碳含量95%以上)与8.5g三氧化铬混合,加入7mL浓盐酸(38%),在25℃水浴条件下搅拌反应。2h后,过滤,用水和丙酮重复洗多次,得到GICs。
然后加入200mL双氧水(30%),于室温下反应2d后,过滤,水洗,得到蠕虫状石墨烯聚集体。
接着,缓慢投入40mL浓硫酸和2g高锰酸钾混合物中,在35℃下静置6h后,过滤,水洗。加入1L去离子水,于300rpm的混匀仪混匀10min后,得到的氧化石墨烯平均径向尺寸可达100μm以上,且90%以上为单层,经60℃的氢碘酸溶液(57%)还原2h后,电导率在600S/cm以上。
实施例11
将1g鳞片石墨(碳含量95%以上)与8.5g三氧化铬混合,加入7mL浓盐酸(38%),在25℃水浴条件下搅拌反应。2h后,过滤,用水和丙酮重复洗多次,得到GICs。
然后加入200mL双氧水(30%),于室温下反应2d后,过滤,水洗,得到蠕虫状石墨烯聚集体。
接着,缓慢投入50mL浓硝酸和2g高氯酸钾混合物中,在35℃下静置6h后,过滤水洗。加入1L去离子水,于500rpm的振荡床下振荡10min,得到的氧化石墨烯平均径向尺寸可达100μm以上,且90%以上为单层,经60℃的氢碘酸溶液(57%)还原2h后,电导率在600S/cm以上。
实施例12
将50mL浓硫酸与5g过硫酸铵在5℃条件下混合搅拌10min,加入1g鳞片石墨(碳含量95%以上),在25℃水浴中连续搅拌10h后,得到GICs。
然后缓慢投入200mL0.1mol/L草酸溶液中,迅速于室温下反应2d后,过滤,水洗,得到蠕虫状石墨烯聚集体。接着,缓慢投入40mL浓硫酸(98%)和浓硝酸(16M)混合物(3:1)中,加热回流1小时,过滤,水洗。加入1L去离子水,于500rpm的振荡床下振荡10min,得到的氧化石墨烯平均径向尺寸可达100微米以上,且90%以上为单层,经60℃的氢碘酸溶液(57%)还原2h后,电导率在600S/cm以上。
实施例13
将50mL浓硫酸与5g过硫酸铵在5℃条件下混合搅拌10min,加入1g人造石墨(碳含量95%以上),在20℃水浴中连续搅拌10h后,得到GICs。
然后缓慢投入200mL0.1mol/L草酸溶液中,迅速于室温下反应2d后,过滤水洗,得到石墨烯聚集体。
接着,缓慢投入40mL浓硫酸和2g高锰酸钾混合物中,在35℃下静置6h后,过滤水洗。加入1L去离子水,于500rpm的振荡床下振荡10min。得到的氧化石墨烯平均径向尺寸可达100微米以上,且90%以上为单层,经60℃的氢碘酸溶液(57%)还原2h后,电导率在600S/cm以上。
实施例14
将50mL浓硫酸与5g过硫酸铵在5℃条件下混合搅拌10min,加入1g膨胀石墨(碳含量95%以上),在20℃水浴中连续搅拌5h后,得到GICs。
然后缓慢投入200mL0.1mol/L草酸溶液中,迅速于室温下反应2d后,过滤水洗,得到石墨烯聚集体。
接着,缓慢投入40mL浓硫酸和2g高锰酸钾混合物中,在35℃下静置6h后,过滤水洗。加入1L去离子水,于500rpm的振荡床下振荡10min。得到的氧化石墨烯平均径向尺寸在100微米以上,且约90%为单层,经60℃的氢碘酸溶液(57%)还原2h后,电导率可达600S/cm以上。
实施例15
将50mL浓硫酸与5g过硫酸铵在5℃条件下混合搅拌10min,加入1g可膨胀石墨(碳含量95%以上),在20℃水浴中连续搅拌6h后,得到GICs。
然后缓慢投入200mL0.1mol/L草酸溶液中,迅速于室温下反应2d后,过滤水洗,得到石墨烯聚集体。
接着,缓慢投入40mL浓硫酸和2g高锰酸钾混合物中,在35℃下静置6h后,过滤水洗。加入1L去离子水,于500rpm的振荡床下振荡10min。得到的氧化石墨烯平均径向尺寸在100微米以上,且90%以上为单层,经60℃的氢碘酸溶液(57%)还原2h后,电导率可达600S/cm以上。
对比例1
同实施例1,不同之处在于,不包括步骤:“缓慢投入40mL浓硫酸和2g高锰酸钾混合物中,在35℃下静置6h后,过滤水洗”。具体如下:
将50mL浓硫酸与5g过硫酸铵在5℃条件下混合搅拌10min,加入1g鳞片石墨, 在20℃水浴中连续搅拌10h后,得到GICs。
然后缓慢投入200mL0.1mol/L草酸溶液中,于室温下反应2d后,过滤水洗,得到石墨烯聚集体。然后,加入1L去离子水,于500rpm的振荡床下振荡10min。结果发现,没有观察到聚集体剥离。
说明高锰酸钾和浓硫酸对石墨烯聚集体的再次氧化是促使石墨烯聚集体自发剥离的关键环节。
对比例2
将30mL浓硫酸与10mL浓硝酸在5℃冰水浴条件下混合搅拌10min,加入1g人造石墨,在20℃水浴中连续搅拌6h后,过滤,得到GICs。
然后,缓慢投入40mL浓硫酸和2g高锰酸钾混合物中,在35℃下静置6h后,过滤水洗。加入1L去离子水,于500rpm的振荡床下振荡10min。氧化的石墨无显著剥离,且部分剥离的氧化石墨烯片层尺寸较小。
结果表明,不加入膨胀剂,仅通过插层以及对GIC的再次氧化无法实现氧化石墨烯的充分剥离。
对比例3
将1g鳞片石墨缓慢投入40mL浓硫酸和2g高锰酸钾混合物中,在35℃下静置6h后,过滤,水洗。加入1L去离子水,于500rpm的振荡床下振荡10min,发现石墨仍呈颗粒状沉入瓶底,说明未能成功实现石墨的氧化。
结果表明,低含量高锰酸钾虽然可以有效氧化膨胀后的石墨烯聚集体,但无法有效氧化鳞片石墨。
对比例4
同实施例8,不同之处在于,三氧化铬为20g。具体如下:
将1g鳞片石墨(碳含量95%以上)与20g三氧化铬混合,加入7mL浓盐酸(38%),在25℃水浴条件下搅拌反应。2h后,过滤,用水和丙酮重复洗多次,得到GICs。然后加入200mL双氧水(30%),于室温下反应2d后,过滤,水洗,得到蠕虫状石墨烯聚集体。接着,缓慢投入40mL浓硫酸和2g高锰酸钾混合物中(事先混合好),在35℃下搅拌6h后,过滤,水洗。加入1L去离子水,于500W的水浴超声中超声30min,结果表明,得到的氧化石墨烯径向尺寸小于2μm。说明氧化的石墨烯聚集体在较强外场作用下(如强超声处理)会导致氧化石墨烯片层尺寸的显著降低,无法获得大尺寸氧化石墨烯。
对比例5
同实施例8,不同之处在于,三氧化铬为20g,不加入200mL双氧水(30%)。具体如 下:
将1g鳞片石墨(碳含量95%以上)与20g三氧化铬混合,加入7mL浓盐酸(38%),在25℃水浴条件下搅拌反应。2h后,过滤,用水和丙酮重复洗多次,得到GICs。接着,缓慢投入40mL浓硫酸和2g高锰酸钾混合物中,在35℃下静置6h后,过滤,水洗。加入1L去离子水,于500rpm的磁力搅拌下搅拌10min后,结果表明,大部分石墨仍呈颗粒状,说明未成功剥离。表明未经膨胀剂膨胀的插层石墨再次氧化后无法实现石墨烯的成功剥离。

Claims (16)

  1. 一种大尺寸氧化石墨烯或石墨烯的制备方法,其特征在于,
    先用插层剂对石墨进行插层,随后采用膨胀剂对插层石墨进行膨胀,以释放层间空间、削弱层间相互作用力,进而通过氧化剂对其进行氧化,在柔和的机械作用下使其剥离并形成均匀的氧化石墨烯分散液,最后采用还原剂或热处理对其进行还原,得到大尺寸的石墨烯;包括步骤:
    (1)将石墨与插层剂在0-130℃下搅拌反应5分钟-48小时,然后投入膨胀剂中,在0-80℃下浸泡1小时-7天,使层间空间充分释放,得到石墨烯聚集体;
    (2)将步骤(1)得到的石墨烯聚集体投入到酸和氧化剂的混合体中,在0-130℃下浸泡或回流0.1-50小时后,过滤并用去离子水洗涤,除去杂质,得到氧化的石墨烯聚集体;
    (3)将步骤(2)得到的氧化的石墨烯聚集体与去离子水混合,在柔和的机械作用下,实现剥离,得到氧化石墨烯分散液,所述氧化石墨烯经还原剂或热处理还原后,得到大尺寸、高电导率的石墨烯悬浮液或石墨烯薄膜,其中,悬浮液中的氧化石墨烯聚集体含量为0.1-50毫克/毫升,石墨烯薄膜厚度为1-25微米;
    (4)将步骤(3)得到的氧化石墨烯分散液或还原后的石墨烯悬浮液进行离心或蒸发浓缩,得高固含量氧化石墨烯或石墨烯浆料;或者采用冷冻干燥或喷雾干燥方式制备相应的氧化石墨烯或石墨烯粉体。
  2. 根据权利要求1所述的一种大尺寸氧化石墨烯或石墨烯的制备方法,其特征在于,所述的原料石墨是指鳞片石墨、人造石墨、可膨胀石墨或膨胀石墨中任一种,碳含量大于95%,径向尺寸小于5毫米。
  3. 根据权利要求1所述的制备方法,其特征在于,所述的插层剂是指过硫酸铵、重铬酸钾、三氧化铬、高锰酸钾、高铁酸钾、浓硫酸、浓盐酸、浓硝酸、高氯酸、浓磷酸或冰醋酸中的一种或它们之间的任意组合,插层剂用量为原料石墨质量的0.1-20倍,所用浓硫酸、浓盐酸、浓硝酸、高氯酸、浓磷酸和冰醋酸的浓度分别为10-20mol/L。
  4. 根据权利要求1所述的制备方法,其特征在于,所述的膨胀剂是指草酸铵、草酸、草酸钾、双氧水、碳酸钠或碳酸氢钠水溶液中的一种或几种,其摩尔浓度为0.1-10mol/L,膨胀剂用量为原料石墨的1-500倍。
  5. 根据权利要求1所述的制备方法,其特征在于,所述的酸是指浓硫酸、浓硝酸、高氯酸、浓磷酸、甲酸、草酸、冰醋酸中的一种或几种,酸用量是原料石墨质量的1-200倍。
  6. 根据权利要求1所述的制备方法,其特征在于,所述的氧化剂是指过硫酸铵、重铬酸钾、高锰酸钾、高铁酸钾、硝酸钠、硝酸钾或浓硝酸中的一种或它们以任意比例混合的混合物。
  7. 根据权利要求1所述的制备方法,其特征在于,所述氧化剂与原料石墨的质量比为0.1-10,较佳地为1.5-6.0,更佳地为1.8-4.0,最佳地为2.0-3.0。
  8. 根据权利要求1所述的制备方法,其特征在于,所述的柔和的机械作用是指磁力搅拌、机械搅拌、混匀装置、摇瓶机或振荡器中的一种,转速为10-1000rpm,时间为1-120min。
  9. 根据权利要求1所述的制备方法,其特征在于,所述的还原剂指水合肼、氢碘酸、氢化锂铝、硼氢化钠、氢氧化钠、柠檬酸钠或抗坏血酸中的一种或它们以任意比例混合的混合物,还原剂用量为原料石墨质量的0.1-10倍,所述的热处理是指在200-2000℃下对氧化石墨烯进行还原处理,处理时间为1秒-60分钟。
  10. 根据权利要求1所述的制备方法,其特征在于,所述氧化石墨烯或石墨烯的径向尺寸范围为85-500μm。
  11. 根据权利要求1所述的制备方法,其特征在于,所述氧化石墨烯或石墨烯中单层石墨烯的质量分数≥75%。
  12. 根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中,作为原料的石墨的质量≥0.1g。
  13. 一种石墨烯材料,其特征在于,所述石墨烯材料的径向尺寸范围为85-500μm,且所述石墨烯材料中单层石墨烯的质量分数≥75%。
  14. 如权利要求10所述的石墨烯材料,其特征在于,所述石墨烯材料的导电率为500-105S/cm,较佳地550-104S/cm,更佳地600-9000S/cm,最佳地800-9000S/cm。
  15. 一种制品,其特征在于,所述制品包含如权利要求13所述的石墨烯材料或由权利要求13所述的石墨烯材料制备。
  16. 一种制备石墨烯的方法,包括步骤:
    (a)将石墨与插层剂在0-130℃下搅拌反应;
    (b)将搅拌反应产物与膨胀剂混合,得到石墨烯聚集体;
    (c)将步骤(b)得到的石墨烯聚集体与酸和氧化剂混合,得到氧化的石墨烯聚集体
    (d)将步骤(c)得到的氧化的石墨烯聚集体与去离子水混合,剥离后得到氧化石墨烯;
    (e)任选地,将步骤(d)所得的氧化石墨烯经还原剂或热处理还原后,得到大尺寸、高电导率的石墨烯悬浮液或石墨烯薄膜。
PCT/CN2016/105943 2015-11-16 2016-11-15 一种大尺寸氧化石墨烯或石墨烯的制备方法 WO2017084561A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/776,746 US20180339906A1 (en) 2015-11-16 2016-11-15 Preparation method for large-size graphene oxide or graphene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510777025.7 2015-11-16
CN201510777025.7A CN105293476B (zh) 2015-11-16 2015-11-16 一种大尺寸氧化石墨烯或石墨烯的制备方法

Publications (1)

Publication Number Publication Date
WO2017084561A1 true WO2017084561A1 (zh) 2017-05-26

Family

ID=55191423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105943 WO2017084561A1 (zh) 2015-11-16 2016-11-15 一种大尺寸氧化石墨烯或石墨烯的制备方法

Country Status (3)

Country Link
US (1) US20180339906A1 (zh)
CN (1) CN105293476B (zh)
WO (1) WO2017084561A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107161977A (zh) * 2017-06-05 2017-09-15 东南大学 一种碳纳米结构修饰片状有序介孔碳材料及其制备方法
CN110980724A (zh) * 2019-12-31 2020-04-10 东华大学 一种磁性氧化石墨及其制备方法及应用
CN111892043A (zh) * 2020-08-06 2020-11-06 昆明理工大学 一种一锅法制备还原氧化石墨烯的方法
CN113213469A (zh) * 2021-05-31 2021-08-06 杭州高烯科技有限公司 一种制备均匀小尺寸氧化石墨烯的设备
CN114132922A (zh) * 2020-09-03 2022-03-04 江苏天奈科技股份有限公司 一种规模化制备石墨烯的方法
CN115465860A (zh) * 2022-07-06 2022-12-13 山东海科创新研究院有限公司 一种低氧、高剥离氧化石墨烯的制备方法及所得产品的应用

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105293476B (zh) * 2015-11-16 2018-07-10 复旦大学 一种大尺寸氧化石墨烯或石墨烯的制备方法
CN105692602A (zh) * 2016-03-08 2016-06-22 上海大学 一种简易快速制备薄层石墨烯的方法
CN105776197B (zh) * 2016-04-22 2017-09-15 泰山学院 一种表面多孔石墨烯材料及其制备方法
CN105819437B (zh) * 2016-05-06 2018-01-30 成都新柯力化工科技有限公司 一种规模化清洁制备石墨烯的方法
CN105869903B (zh) * 2016-05-25 2021-03-02 全球能源互联网研究院 一种石墨烯制备方法
CN106115669B (zh) * 2016-06-20 2019-02-12 山东欧铂新材料有限公司 一种氧化石墨烯的制备方法
CN106145102B (zh) * 2016-07-25 2018-10-26 华侨大学 一种制备膨胀石墨或石墨烯的方法
CN106169573A (zh) * 2016-10-06 2016-11-30 电子科技大学 一种石墨烯包覆硫族单质的复合材料的制备方法
CN106328961B (zh) * 2016-10-19 2019-05-17 天津大学 一种用于生物质碱性燃料电池的阳极材料及其制备方法
CZ2016732A3 (cs) * 2016-11-24 2017-12-27 Masarykova Univerzita Způsob přípravy grafenoidů a grafenoid připravitelný tímto způsobem
CN106744910A (zh) * 2017-01-16 2017-05-31 王奉瑾 一种氧化石墨烯的制备方法
CN106802295B (zh) * 2017-03-16 2020-01-10 合肥学院 一种对痕量tnt检测的石墨烯量子点荧光探针的化学制备方法
CN107017036B (zh) * 2017-04-21 2019-05-07 安徽南洋新材料科技股份有限公司 一种高强度石墨烯稀土铝合金导线
CN111341997B (zh) * 2017-10-13 2021-05-28 南京旭羽睿材料科技有限公司 石墨烯膜电极制备方法
CN109666370B (zh) * 2017-10-16 2021-08-24 山东欧铂新材料有限公司 一种含有石墨烯的导电防腐涂料及其制备方法
CN107792851A (zh) * 2017-10-18 2018-03-13 复旦大学 一种天然石墨散热膜的简易制备方法
CN107697911B (zh) * 2017-10-18 2021-12-28 复旦大学 一种氧化石墨制备天然石墨散热膜的方法
CN107867685A (zh) * 2017-10-18 2018-04-03 复旦大学 一种高热导率的天然石墨散热膜的制备方法
CN110015654A (zh) * 2018-01-09 2019-07-16 新奥(内蒙古)石墨烯材料有限公司 煤基石墨烯及其制备方法
CN108117069B (zh) * 2018-01-23 2020-10-23 杭州高烯科技有限公司 一种大片氧化石墨烯溶液的浓缩方法及装置
CN108545726A (zh) * 2018-04-28 2018-09-18 芜湖盛创新材料科技有限公司 一种高性能导热材料的制备方法
WO2019220177A1 (en) * 2018-05-16 2019-11-21 Arcelormittal A method for the manufacture of reduced graphene oxide from kish graphite
WO2019220176A1 (en) * 2018-05-16 2019-11-21 Arcelormittal A method for the manufacture of graphene oxide from kish graphite
WO2019224579A1 (en) 2018-05-23 2019-11-28 Arcelormittal A method for the manufacture of reduced graphene oxide from electrode graphite scrap
WO2019224578A1 (en) 2018-05-23 2019-11-28 Arcelormittal A method for the manufacture of graphene oxide from electrode graphite scrap
CN110550621B (zh) * 2018-05-30 2021-07-09 中国石油化工股份有限公司 石墨烯及其制备方法
CN110550620B (zh) * 2018-05-30 2021-06-11 中国石油化工股份有限公司 石墨烯及其制备方法
CN108795393B (zh) * 2018-06-08 2021-01-29 东莞市鸿亿导热材料有限公司 一种碳纤维柔性石墨片的制作方法
CN108557813B (zh) * 2018-07-26 2020-06-05 杭州高烯科技有限公司 一步法制备超大尺寸单层氧化石墨烯的方法
CN109181374A (zh) * 2018-08-23 2019-01-11 广东思泉新材料股份有限公司 一种制备具有高热辐射石墨烯涂料的方法
CN108928815B (zh) * 2018-09-10 2020-04-03 明德润和新材料(珠海)有限公司 一种用多步骤弱氧化-还原法制备高性能石墨烯的方法
CN109192529B (zh) * 2018-09-13 2020-09-01 复旦大学 一种二氧化锰-还原氧化石墨烯复合材料的制备方法与应用
CN109110752A (zh) * 2018-10-31 2019-01-01 新疆烯金石墨烯科技有限公司 多级低温反应法制备氧化石墨烯、石墨烯及其制备方法
CN109280425A (zh) * 2018-11-02 2019-01-29 杭州超探新材料科技有限公司 一种地暖电热板的制备方法
CN109627004B (zh) * 2018-12-19 2022-01-07 重庆大学 一种导热导电石墨烯薄膜及其制备方法
CN109534335A (zh) * 2018-12-29 2019-03-29 中国科学院上海微系统与信息技术研究所 一种大尺寸氧化石墨烯的制备方法以及由此得到的大尺寸氧化石墨烯
WO2020229882A1 (en) * 2019-05-16 2020-11-19 Arcelormittal A method for the manufacture of reduced graphene oxide from expanded kish graphite
EP3972950A4 (en) * 2019-05-23 2023-09-06 Georgia Tech Research Corporation MEMBRANES, SYSTEMS AND METHODS FOR CONCENTRATING CAUSE STREAMS IN CONNECTION WITH BIOMASS DISTRIBUTION
CN110980717A (zh) * 2019-10-29 2020-04-10 广东墨睿科技有限公司 一种采用蠕虫石墨制备氧化石墨烯的方法
CN111422857B (zh) * 2020-01-14 2022-02-01 昂星新型碳材料常州有限公司 石墨烯纳米气泡材料及其制备方法和应用、吸附剂、催化剂、光学材料、储能材料
CN111661839A (zh) * 2020-06-04 2020-09-15 内蒙古中科四维热管理材料有限公司 石墨烯浆料的制备方法、设备及利用其制备散热膜的方法
CN111573661B (zh) * 2020-06-04 2022-07-15 内蒙古中科四维热管理材料有限公司 石墨烯浆料的制备方法及其设备
CN112110441B (zh) * 2020-09-24 2021-10-29 东莞钜蕾实业有限公司 一种石墨烯高能催化物理剥离制备装置及方法
CN114477148B (zh) * 2020-10-27 2023-10-27 山东海科创新研究院有限公司 一种石墨烯微片聚集体及其制备方法、高浓度石墨烯水溶液的制备方法
KR20230084575A (ko) * 2020-11-18 2023-06-13 아르셀러미탈 자립형 그래핀 산화물 또는 환원된 그래핀 산화물 필름의 제조 방법
CN112500584B (zh) * 2020-12-18 2023-07-21 青岛科技大学 一种石墨烯/纤维素水分散液及其制备方法
CN112875692A (zh) * 2021-02-07 2021-06-01 张标 一种基于鳞片状石墨烯制备大片径氧化石墨烯的方法
CN112830480B (zh) * 2021-02-25 2022-09-23 陕西汉唐森源实业发展集团有限责任公司 石墨烯优化制备方法
US11814292B2 (en) * 2021-07-23 2023-11-14 Nanotech Energy, Inc. Methods of graphene production and compositions thereof
CN113387351B (zh) * 2021-07-27 2023-10-13 辽宁聚泰鑫新材料研究有限公司 一种低成本制备三维多孔石墨烯的制备工艺
CN114171726A (zh) * 2021-10-20 2022-03-11 广西大学 水系锌离子电池金属锌负极的制备方法及应用
CN114314576B (zh) * 2021-11-30 2024-03-29 西安近代化学研究所 一种氧化石墨烯羧基功能化改性的方法
CN114171706B (zh) * 2021-12-08 2024-02-13 深圳市华星光电半导体显示技术有限公司 阴极、柔性有机发光二极管及其制备方法
CN114572977B (zh) * 2022-02-11 2023-07-18 中国科学技术大学先进技术研究院 光谱监测制备氧化石墨烯的系统及方法
CN114957833A (zh) * 2022-05-24 2022-08-30 沈阳化工大学 一种高性能石墨烯/聚乙烯导热管的制备方法
CN115072712A (zh) * 2022-06-21 2022-09-20 西南科技大学 一种具有大片径和高导电性石墨烯及其制备方法
CN115215332B (zh) * 2022-07-19 2023-11-03 厦门福华技术有限公司 一种改善土壤质量的石墨烯增效溶胶的制备方法
CN115353100A (zh) * 2022-08-08 2022-11-18 广西博世科环保科技股份有限公司 一种废旧电池阴极石墨回收及利用方法
WO2024091109A1 (en) * 2022-10-27 2024-05-02 Nanomalaysia Berhad Method for preparing synthetic graphite and its derivatives from biomass waste
CN115709992A (zh) * 2022-11-23 2023-02-24 深圳市贝特瑞新能源技术研究院有限公司 氧化石墨烯、其制备方法及包含其的复合膜
CN115849359A (zh) * 2022-11-28 2023-03-28 内蒙古大学 一种单层氧化石墨烯的制备方法
CN115893395B (zh) * 2022-11-29 2024-09-20 广东墨睿科技有限公司 一种高比表面积还原氧化石墨烯/碳管复合粉体、其制备方法和应用
CN118419921B (zh) * 2024-07-05 2024-09-06 德州学院 一种宏量制备高质量少层石墨烯的方法
CN118496667B (zh) * 2024-07-18 2024-09-13 四川大学 一种导热复合薄膜及其制备方法、以及用于制造导热复合薄膜的前驱体浆料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897757A (zh) * 2012-10-16 2013-01-30 清华大学 一种单层氧化石墨烯的制备方法
CN103183334A (zh) * 2013-03-11 2013-07-03 上海理工大学 一种尺寸可控石墨烯的制备方法
CN104058396A (zh) * 2014-07-14 2014-09-24 复旦大学 一种层数可控的大尺寸、高质量石墨烯制备方法
CN104386679A (zh) * 2014-11-13 2015-03-04 苏州经贸职业技术学院 氧化石墨烯及石墨烯的制备方法
CN104445169A (zh) * 2014-12-03 2015-03-25 安徽百特新材料科技有限公司 一种水相剪切剥离制备石墨烯的方法
CN105293476A (zh) * 2015-11-16 2016-02-03 复旦大学 一种大尺寸氧化石墨烯或石墨烯的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570012B (zh) * 2013-10-29 2016-04-27 安徽百特新材料科技有限公司 一种石墨烯的制备方法
CN103910354B (zh) * 2014-03-25 2017-01-11 安徽百特新材料科技有限公司 一种规模化水相制备石墨烯的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897757A (zh) * 2012-10-16 2013-01-30 清华大学 一种单层氧化石墨烯的制备方法
CN103183334A (zh) * 2013-03-11 2013-07-03 上海理工大学 一种尺寸可控石墨烯的制备方法
CN104058396A (zh) * 2014-07-14 2014-09-24 复旦大学 一种层数可控的大尺寸、高质量石墨烯制备方法
CN104386679A (zh) * 2014-11-13 2015-03-04 苏州经贸职业技术学院 氧化石墨烯及石墨烯的制备方法
CN104445169A (zh) * 2014-12-03 2015-03-25 安徽百特新材料科技有限公司 一种水相剪切剥离制备石墨烯的方法
CN105293476A (zh) * 2015-11-16 2016-02-03 复旦大学 一种大尺寸氧化石墨烯或石墨烯的制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107161977A (zh) * 2017-06-05 2017-09-15 东南大学 一种碳纳米结构修饰片状有序介孔碳材料及其制备方法
CN107161977B (zh) * 2017-06-05 2019-02-19 东南大学 一种碳纳米结构修饰片状有序介孔碳材料及其制备方法
CN110980724A (zh) * 2019-12-31 2020-04-10 东华大学 一种磁性氧化石墨及其制备方法及应用
CN110980724B (zh) * 2019-12-31 2022-11-25 东华大学 一种磁性氧化石墨及其制备方法及应用
CN111892043A (zh) * 2020-08-06 2020-11-06 昆明理工大学 一种一锅法制备还原氧化石墨烯的方法
CN114132922A (zh) * 2020-09-03 2022-03-04 江苏天奈科技股份有限公司 一种规模化制备石墨烯的方法
CN113213469A (zh) * 2021-05-31 2021-08-06 杭州高烯科技有限公司 一种制备均匀小尺寸氧化石墨烯的设备
CN115465860A (zh) * 2022-07-06 2022-12-13 山东海科创新研究院有限公司 一种低氧、高剥离氧化石墨烯的制备方法及所得产品的应用

Also Published As

Publication number Publication date
US20180339906A1 (en) 2018-11-29
CN105293476A (zh) 2016-02-03
CN105293476B (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
WO2017084561A1 (zh) 一种大尺寸氧化石墨烯或石墨烯的制备方法
Huang et al. A facile, high‐yield, and freeze‐and‐thaw‐assisted approach to fabricate MXene with plentiful wrinkles and its application in on‐chip micro‐supercapacitors
JP6640881B2 (ja) 超柔軟性高熱伝導性グラフェン膜及びその製造方法
WO2017128929A1 (zh) 一种制备石墨烯分散液的方法及其制品
CN104386680B (zh) 规模化制备大片石墨烯的方法
WO2017084606A1 (zh) 一种常温常压下直接制备膨胀石墨或石墨烯的方法
US10472243B2 (en) Industrial method for preparing large-sized graphene
CN106882796B (zh) 一种三维石墨烯结构体/高质量石墨烯的制备方法
CN111799464A (zh) 一种MXene/石墨烯复合纳米片及其制备方法和应用、电极极片及其应用
CN105883781B (zh) 一种大面积还原氧化石墨烯膜的制备方法
JP2011032156A (ja) グラフェンまたは薄膜グラファイトの製造方法
JP6283508B2 (ja) 薄片化黒鉛分散液及び薄片化黒鉛の製造方法
Song et al. Graphene functionalization: a review
CN104058399B (zh) 一种高纯度高质量石墨烯的直接制备方法
CN104386677A (zh) 一种微氧化石墨烯及其制备方法
WO2023197682A1 (zh) 一种高效制备氮化硼纳米片的方法
Wen et al. Preparation of graphene by exfoliation and its application in lithium-ion batteries
CN108383115A (zh) 一种常温大批量制备高质量石墨烯的方法
KR102413334B1 (ko) 팽창성 흑연(expandable graphite)을 사용한 전도성 박막의 제조방법
CN108314027B (zh) 一种高导电率的羟基/环氧基外修饰石墨烯透明导电薄膜的制备方法
CN105776190B (zh) 一种螺杆机发泡膨胀拉伸制备石墨烯微片的方法
CN104355308A (zh) 一种大比表面积石墨烯的制备方法
CN108314024B (zh) 一种石墨烯透明导电薄膜的等离子体制备方法
CN106477560A (zh) 一种石墨烯的制备方法
CN108314022B (zh) 一种离子液体直接剥离制备石墨烯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865738

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15776746

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865738

Country of ref document: EP

Kind code of ref document: A1