WO2017082112A1 - シリコン単結晶の製造方法 - Google Patents

シリコン単結晶の製造方法 Download PDF

Info

Publication number
WO2017082112A1
WO2017082112A1 PCT/JP2016/082376 JP2016082376W WO2017082112A1 WO 2017082112 A1 WO2017082112 A1 WO 2017082112A1 JP 2016082376 W JP2016082376 W JP 2016082376W WO 2017082112 A1 WO2017082112 A1 WO 2017082112A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
raw material
single crystal
silicon
quartz crucible
Prior art date
Application number
PCT/JP2016/082376
Other languages
English (en)
French (fr)
Inventor
梶原 薫
良太 末若
田中 英樹
崇浩 金原
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to DE112016005199.9T priority Critical patent/DE112016005199B4/de
Priority to CN201680066198.0A priority patent/CN108350603B/zh
Priority to KR1020187011746A priority patent/KR102038960B1/ko
Priority to JP2017550269A priority patent/JP6547839B2/ja
Priority to US15/773,323 priority patent/US10724150B2/en
Publication of WO2017082112A1 publication Critical patent/WO2017082112A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • a multiple pulling method is also known as a method for producing a silicon single crystal by the CZ method (see, for example, Patent Document 1).
  • the multiple pulling method after pulling up the silicon single crystal, the silicon raw material is additionally supplied and melted in the same quartz crucible, and the silicon single crystal is pulled up from the obtained silicon melt.
  • the single crystal pulling step By repeating the single crystal pulling step, a plurality of silicon single crystals are manufactured from one quartz crucible. According to the multiple pulling method, it is possible to reduce the cost of the quartz crucible per silicon single crystal. In addition, since the frequency with which the chamber is disassembled and the quartz crucible is replaced can be reduced, it is possible to improve operational efficiency.
  • Patent Document 2 After the raw material is melted by the upper heater and the lower heater arranged outside the crucible, power is immediately supplied to the lower heater. A method is described in which a solid layer of a raw material is formed by reducing it to zero and a silicon single crystal is grown from a molten layer coexisting thereon.
  • Patent Document 3 the raw material in the crucible is melted in a short time by melting the raw material in the crucible using a divided heater composed of a side heater for heating the periphery of the crucible and a bottom heater for heating the bottom of the crucible. A method is disclosed.
  • Patent Document 4 in order to suppress power consumption for melting the silicon raw material, the output of the heater is kept low until the temperature of the silicon raw material exceeds the reference temperature in the range of 200 to 300 ° C. A method for increasing the output of the heater is described.
  • the increase in carbon concentration in the silicon single crystal is mainly caused by CO gas generated from a carbon heater.
  • CO gas When the SiO gas evaporated from the silicon melt reacts with the high-temperature heater, CO gas is generated. This CO gas adheres to the unmelted silicon raw material, and the carbon melts when the raw material melts, so that the carbon concentration in the melt is increased. Increases, and the carbon concentration in the silicon single crystal pulled up from the silicon melt also increases.
  • the carbon concentration in the single crystal increases as the number of pulling increases, so the problem of carbon contamination is significant.
  • Patent Document 5 proposes a method in which a rectifying member for increasing the flow rate of an inert gas is provided on an upper part of a carbon susceptor holding a quartz crucible.
  • the flow regulating member increases the flow rate of the inert gas, the CO gas generated from the heater can be efficiently discharged.
  • JP 2010-018506 A JP-A-6-227890 JP-A-2-221184 JP 2013-237586 A JP 2012-201564 A
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing a silicon single crystal capable of producing a silicon single crystal having a low carbon concentration.
  • the heater includes an upper heater and a lower heater that are separately arranged in the vertical direction, the upper heater includes the first portion, and the lower heater includes the second portion.
  • the upper end of the upper heater is located above the upper end of the quartz crucible, and the upper end of the lower heater is located below the upper end of the quartz crucible. According to this configuration, it is possible to easily and reliably carry out the suppression of the CO gas dissolution into the silicon raw material and the melting of the raw material using the upper heater and the lower heater that are separately arranged in the vertical direction.
  • an inert gas is introduced into the chamber containing the quartz crucible and the heater from above the quartz crucible, and the inert gas in the chamber from below the quartz crucible. Is preferably exhausted.
  • the maximum surface temperature of the second part of the heater is raised to 1500 ° C. or more, the generation of CO gas from the second part of the heater increases, but this CO gas is influenced by the inert gas flowing in the furnace. Therefore, even if the maximum surface temperature of the second portion of the heater is raised to 1500 ° C. or higher, a silicon single crystal having a low carbon concentration can be manufactured.
  • a method for producing a silicon single crystal capable of producing a silicon single crystal having a low carbon concentration can be provided.
  • FIG. 1 is a schematic side cross-sectional view showing the configuration of a single crystal manufacturing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a manufacturing process of a silicon single crystal.
  • FIG. 3 is a schematic diagram for explaining a method of heating the silicon raw material in the raw material melting step.
  • FIG. 4 is a graph showing the distribution of standard production Gibbs energy of two reactions of SiO and carbon, in which the horizontal axis represents temperature and the vertical axis represents Gibbs energy.
  • FIG. 5 is a schematic side sectional view showing the structure of the single crystal manufacturing apparatus according to the second embodiment of the present invention.
  • FIG. 6 is a schematic side sectional view showing the structure of the single crystal manufacturing apparatus according to the third embodiment of the present invention.
  • FIG. 1 is a schematic side cross-sectional view showing the configuration of a single crystal manufacturing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a manufacturing process of a silicon
  • the chamber 10 includes a main chamber 10a and an elongated cylindrical pull chamber 10b connected to the upper opening of the main chamber 10a.
  • the quartz crucible 11 and the heater 15 are provided in the main chamber 10a.
  • the pull chamber 10b is provided with a gas inlet 10c for introducing an inert gas (purge gas) such as argon gas into the chamber 10, and a gas exhaust for discharging argon gas is provided below the main chamber 10a.
  • An outlet 10d is provided.
  • a viewing window 10e is provided at the upper part of the main chamber 10a, and the state of the silicon melt in the quartz crucible 11 can be observed.
  • the heater 15 is provided to melt the silicon raw material filled in the quartz crucible 11 and maintain the molten state.
  • the heater 15 is a resistance heating type carbon heater and is provided so as to surround the entire circumference of the quartz crucible 11.
  • the heat insulating material 17 covers the inner side surface and the bottom surface of the main chamber 10a, thereby increasing the heating efficiency of the silicon raw material.
  • the heater 15 is a divided heater divided into two in the vertical direction, and is composed of an upper heater 15a and a lower heater 15b.
  • the upper heater 15a and the lower heater 15b can be controlled independently, and the power of the upper heater 15a can be made larger or smaller than the lower heater 15b.
  • both the upper heater 15a and the lower heater 15b constitute a so-called side heater disposed so as to face the side wall portion of the quartz crucible 11.
  • the heat shield 17 is a carbon member having a substantially inverted truncated cone shape that covers the quartz crucible 11 and optimizes the temperature gradient in the pulling axis direction near the solid-liquid interface.
  • the heat shield 17 has an opening 17a larger than the maximum diameter of the single crystal 6 to be pulled up, and the single crystal 6 is pulled upward through the opening 17a.
  • the susceptor 12, the rotating shaft 13, and the shaft driving mechanism 14 constitute a rotating and raising mechanism of the quartz crucible 11.
  • the lower end of the rotating shaft 13 passes through the center of the bottom of the main chamber 10a and is connected to a shaft drive mechanism 14 provided outside the main chamber 10a.
  • the wire 18 and the wire winding mechanism 19 constitute a crystal pulling mechanism.
  • the wire 18 is a pulling axis of the single crystal 6 and coincides with the rotation center axis of the quartz crucible 11.
  • the wire winding mechanism 19 is disposed above the pull chamber 10b, and the lower end of the wire 18 extends downward from the wire winding mechanism 19 through the pull chamber 10b and reaches the internal space of the main chamber 10a.
  • FIG. 1 shows a state where the single crystal 6 being grown is suspended from the wire 18.
  • FIG. 2 is a flowchart showing the manufacturing process of the silicon single crystal.
  • a raw material melting step S ⁇ b> 11 in which the silicon raw material in the quartz crucible 11 is heated to generate the melt 5, and the landing liquid for landing the seed crystal on the melt 5.
  • a part growing process S14, a body part growing process S15 for forming a body part maintained at a specified diameter, and a tail part growing process S16 for narrowing the diameter at the end of lifting and finally separating it from the liquid surface are sequentially performed. .
  • FIG. 3 is a schematic diagram for explaining a method of heating the silicon raw material in the raw material melting step S11.
  • the maximum surface temperature of the upper heater 15a is maintained below 1500 ° C., and the maximum surface temperature of the lower heater 15b is increased to 1500 ° C. or higher.
  • the vertical position of the quartz crucible 11 is positioned above the upper end 11a of the upper end 15a 1 of the upper heater 15a is quartz crucible 11, the upper end 15b 1 quartz crucible 11 of the lower heater 15b It is set so as to be located below the upper end 11a.
  • the maximum surface temperature of the upper heater 15a less than 1500 ° C.
  • the reaction between the upper heater 15a and the SiO gas can be suppressed, and the generation of CO gas can be suppressed, and the silicon raw material in the quartz crucible 11 can be reduced. Of CO gas can be prevented.
  • the maximum surface temperature of the lower heater 15b to 1500 ° C. or higher, the silicon raw material in the quartz crucible 11 can be sufficiently heated and melted.
  • carbon contamination of the silicon single crystal 6 is derived from CO gas generated from the heater 15. That is, the SiO gas evaporated from the silicon melt 5 reacts with the high-temperature heater 15 to generate CO gas, and this CO gas adheres to the surface of the unmelted silicon raw material. By dissolving in the melt, the carbon concentration in the melt increases, and the carbon concentration in the single crystal pulled from the melt also increases.
  • FIG. 4 is a graph showing the temperature change of the standard production Gibbs energy of the above two reactions, in which the horizontal axis represents temperature and the vertical axis represents Gibbs energy.
  • the standard production Gibbs energies of the reactions of the formulas (1) and (2) are both linear with respect to the temperature change.
  • the slope of the reaction graph of the formula (1) is small.
  • the slope of the reaction graph of equation (2) is large.
  • the temperature at the intersection of the two graphs is 1500 ° C.
  • the reaction of the formula (1) in which CO gas is generated out of the two reactions is predominant at 1500 ° C. or higher, whereas the CO gas is less than 1500 ° C.
  • the reaction of formula (2) that does not occur is dominant. Therefore, by setting the maximum surface temperature of the heater to less than 1500 ° C., it is possible to suppress the generation of CO gas that causes an increase in the carbon concentration, thereby suppressing the increase in the carbon concentration in the silicon single crystal.
  • the upper end 11a of the quartz crucible 11 lowers the quartz crucible 11 to the extent of not less than the lower end 15a 2 of the upper heater 15a is preferably (see Figure 3). If the maximum surface temperature of the lower heater 15b is made very high to make the lower heating dominant instead of keeping the maximum surface temperature of the upper heater 15a low, the temperature at the bottom of the crucible rises excessively and the heat load applied to the quartz crucible 11 is increased. There is a risk that the surface roughness and melting damage of the crucible surface will increase and the dislocation of the silicon single crystal may increase.
  • the heating efficiency of the silicon raw material can be increased. Therefore, the silicon raw material can be melted without making the maximum surface temperature of the lower heater 15b very high, and the temperature rise at the bottom of the crucible can be suppressed to suppress the dislocation of the single crystal.
  • the maximum surface temperature of the lower heater 15b is 1500 ° C. or higher, the generation of CO gas from the lower heater 15b increases.
  • the lower heater 15b is positioned below the upper end of the quartz crucible 11, and further, a flow of argon gas is generated in the chamber 10 from the upper side to the lower side thereof, so that CO gas generated from the lower heater 15b is generated. Is difficult to enter the quartz crucible 11 under the influence of the flow of argon gas. Therefore, there is no problem even if the maximum surface temperature of the lower heater 15b is 1500 ° C. or higher, and the silicon raw material can be reliably melted by increasing the maximum surface temperature of the lower heater 15b.
  • the entire surface temperature of the upper heater 15a may be less than 1500 ° C., and the maximum surface temperature of the upper portion 15au (see FIG. 3) of the upper heater 15a that is above the height position of the upper end 11a of the quartz crucible 11. May be less than 1500 ° C. If at least the maximum surface temperature of the upper part 15au of the upper heater 15a is less than 1500 ° C., the probability that the CO gas generated by the reaction between the upper heater 15a and the SiO gas will dissolve into the silicon raw material in the quartz crucible 11 is sufficiently reduced. Can do. When the entire surface temperature of the upper heater 15a is less than 1500 ° C, there is no problem because the maximum surface temperature of the upper portion 15au of the upper heater 15a is also less than 1500 ° C.
  • the minimum surface temperature of the upper heater 15a is preferably 1300 ° C. or higher. This is because when the minimum surface temperature of the upper heater 15a is lower than 1300 ° C., it takes a long time to melt the raw material, leading to a decrease in productivity.
  • the maximum surface temperature of the lower heater 15b is preferably 1850 ° C. or less, and the maximum of the lower part (the lower part 15al (second part) of the upper heater 15a) than the upper part 15au (first part) of the upper heater 15a.
  • the surface temperature is also preferably 1850 ° C. or lower, like the lower heater 15b.
  • the raw material in the quartz crucible 11 can be melted in a short time by increasing the surface temperature of the heater, the quartz crucible 11 is softened and deformed when the temperature exceeds 1600 ° C. Therefore, the lower heater 15b and the lower part 15al of the upper heater 15a are preferably set to 1850 ° C. or lower.
  • the maximum surface temperature of the lower heater 15b is 1500 ° C. or higher. Since the maximum surface temperature of at least the upper part 15au of the upper heater 15a is less than 1500 ° C., it is mainly radiant heat from the lower heater 15b that melts the raw material in the quartz crucible 11, and the melting point of the silicon raw material is 1412 ° C. Therefore, the silicon raw material cannot be made higher than the melting point unless the maximum surface temperature of the lower heater 15b is 1500 ° C. or higher. In order to shorten the raw material melting time and improve the productivity, the temperature of the entire surface of the lower heater 15b is preferably set to 1500 ° C. or higher.
  • the SiO gas evaporated from the silicon melt 5 reacts with the high-temperature heater 15 to generate CO gas, but is taken into the single crystal.
  • the raw material can be dissolved in a short time while reducing the carbon concentration.
  • the upper heater 15a may have a temperature distribution in which the surface temperature of the lower end 15a 2 is always higher than that of the upper end 15a 1 .
  • the heating control in the raw material melting step can be performed relatively easily.
  • the power required for the upper heater 15a and the lower heater 15b to obtain a predetermined surface temperature can be obtained from a thermal simulation of the single crystal manufacturing apparatus. By supplying the power calculated from the simulation result to the upper heater 15a and the lower heater 15b, respectively, the upper heater 15a and the lower heater 15b can actually generate heat at a predetermined surface temperature.
  • the surface temperatures of the upper heater 15a and the lower heater 15b are not particularly limited. This is because carbon in the CO gas hardly dissolves in silicon in a liquid state, and the carbon concentration in the silicon melt is hardly affected by the CO gas. Accordingly, the maximum surface temperatures of the upper heater 15a and the lower heater 15b can both be 1500 ° C. or higher. Alternatively, the maximum surface temperatures of the upper heater 15a and the lower heater 15b may be both maintained below 1500 ° C.
  • the silicon single crystal manufacturing method maintains the maximum surface temperature of the upper heater 15a below 1500 ° C. and the maximum surface temperature of the lower heater 15b above 1500 ° C. in the raw material melting step S11. Since the temperature is raised, the generation of a large amount of CO gas due to the reaction of the upper heater 15a with the SiO gas can be suppressed, whereby the increase in the carbon concentration in the silicon single crystal 6 can be suppressed.
  • FIG. 5 is a schematic side sectional view showing the structure of the single crystal manufacturing apparatus according to the second embodiment of the present invention.
  • the maximum surface temperature of at least the upper heater 15a is maintained below 1500 ° C., and the maximum surface temperature of the lower heater 15b is increased to 1500 ° C. or higher.
  • FIG. 6 is a schematic side sectional view showing a configuration of a single crystal manufacturing apparatus according to the third embodiment of the present invention.
  • the single crystal manufacturing apparatus 2 is characterized in that the heater 15 is a combination of an upper heater 15a and a first lower heater 15b 1 and a second lower heater 15b 2 disposed below the upper heater 15a. It is characterized by that.
  • the second lower heater 15b 2 are located below the first lower heater 15b 1, the first lower heater 15b 1 is a side heater, lower heater 15b 2 of the second constitute respectively the bottom heater. Note that the second lower heater 15b 2 may be configured as a side heater.
  • the present invention can also be applied to a raw material melting step using a multistage heater having three or more stages.
  • the maximum surface temperature of the heater portion at least above the upper end of the quartz crucible of the uppermost heater (upper heater) is maintained below 1500 ° C.
  • the maximum surface temperature of the other heater (lower heater) is 1500 ° C. What is necessary is just to heat up above.
  • FIG. 7 is a diagram for explaining the configuration and operation of a single crystal manufacturing apparatus according to a fourth embodiment of the present invention.
  • the method of heating a silicon raw material using a single heater is described as the temperature distribution of the heater. It is a schematic diagram for demonstrating with it.
  • the single crystal manufacturing apparatus 4 is characterized in that a single heater 15 (side heater) that can have a temperature gradient in the vertical direction is used.
  • the upper end 15z 1 of the heater 15 is located above the upper end 11a of the quartz crucible 11
  • the lower end 15z 2 of the heater 15 is located below the upper end 11a of the quartz crucible 11. Therefore, the heater 15 includes a first portion (upper portion) 15zu above the upper end 11a of the quartz crucible 11, and a second portion (lower portion) 15zl below the upper end 11a of the quartz crucible 11.
  • the maximum surface temperature of the first portion 15zu of the heater 15 is maintained below 1500 ° C.
  • the maximum surface temperature of the second portion 15zl of the heater 15 is preferably raised to 1500 ° C. or higher. Therefore, for example, the temperature distribution of the heater 15 changes linearly within the range of, for example, 1600 ° C. to 1400 ° C. from the lower end 15z 2 to the upper end 15z 1 of the heater 15 as shown in the graph TG 1 and is a position Pz where the temperature becomes 1500 ° C. Is located below the upper end 11 a of the quartz crucible 11.
  • the maximum surface temperature of the second portion 15zl of the heater 15 is preferably 1500 ° C. or higher consistently from the beginning to the end of the raw material melting step.
  • the maximum surface temperature of the second portion 15zl of the heater 15 is less than 1500 ° C. at the start of the raw material melting step as in the temperature distribution graph TG 2 , for example, and gradually increases as the raw material melting step proceeds. it may reach 1500 ° C. or higher (e.g., 1600 ° C.) as the graph TG 1 in the middle or end of the raw material melting process.
  • the maximum surface temperature of the second portion 15zl of the heater 15 may always be kept below 1500 ° C. from the beginning to the end of the raw material melting step.
  • the silicon single crystal manufacturing method provides the first heater 15 positioned above the upper end 11a of the quartz crucible 11 in the raw material melting step S11 using the single heater 15. Since the maximum surface temperature of the portion 15 zu is maintained below 1500 ° C., generation of a large amount of CO gas due to the reaction of the heater 15 with SiO gas can be suppressed, thereby increasing the carbon concentration in the silicon single crystal 6. Can be suppressed.
  • the maximum surface temperature of the lower heater 15b is raised to 1500 ° C. or higher.
  • the maximum surface temperature of the lower heater 15b may not be 1500 ° C. or higher, and the power of the lower heater 15b may be increased. What is necessary is just to make it larger than the power of 15a. By doing so, it is possible to compensate for the shortage of the output of the entire heater by suppressing the maximum surface temperature of the upper heater 15a, and it is possible to melt the silicon raw material by increasing the heating by the lower heater 15b.
  • the carbon concentration in the silicon single crystal grown by changing the surface temperature condition of the heater 15 to the following conditions 1 to 4 was evaluated.
  • the single crystal manufacturing apparatus shown in FIG. 1 was used for pulling up the silicon single crystal.
  • the maximum surface temperature of the upper part 15au of the upper heater 15a under condition 1 was 1406 ° C.
  • the surface temperature of the lower heater 15b was 1421 to 1445. ° C.
  • condition 2 the maximum surface temperature of the upper portion 15au of the upper heater 15a was 1527 ° C.
  • the surface temperature of the lower heater 15b was 1537 to 1549 ° C.
  • a silicon single crystal ingot having a diameter of about 300 mm was pulled up from the silicon melt produced in the raw material melting step by the CZ method, and the carbon concentration at the lowermost end of the silicon single crystal ingot was measured by the FT-IR method.
  • the reason for measuring the carbon concentration at the bottom end of the silicon single crystal ingot is that the carbon concentration in the silicon single crystal ingot is the highest at the bottom end in the pulling axis direction due to segregation, and the carbon concentration is most easily evaluated. It is.
  • condition 1 Comparative Example 1
  • condition 2 Comparative Example 2
  • the maximum surface temperature of the upper portion 15au of the upper heater 15a was high, and the carbon concentration in the silicon single crystal was relatively high.
  • condition 3 Example 1
  • the maximum surface temperature of the upper part 15au of the upper heater 15a was less than 1500 ° C.
  • the minimum surface temperature of the lower heater 15b was 1500 ° C. or higher.
  • the carbon concentration relative to Condition 2 was 91.
  • condition 4 the maximum surface temperature of the upper part 15au of the upper heater 15a was less than 1500 ° C., as in condition 3, but the lowest surface temperature of the lower heater 15b was less than 1500. However, since the maximum surface temperature of the lower heater 15b was 1573 ° C. (1500 ° C. or higher), the raw material could be melted and a silicon single crystal could be grown. The carbon concentration in the silicon single crystal was further lower than that in Condition 3, and the relative value of the carbon concentration with respect to Condition 2 was 84.
  • the carbon concentration in the silicon single crystal when the maximum surface temperature of the upper part 15au of the upper heater 15a is less than 1500 ° C. and the maximum surface temperature of the lower heater 15b is 1500 ° C. or higher in the raw material melting step is It has become clear that the maximum surface temperature of the upper portion 15au of the heater 15a is lower than that when 1500 ° C. or higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】炭素濃度が低いシリコン単結晶を製造することが可能なシリコン単結晶の製造方法を提供する。 【解決手段】チョクラルスキー法によるシリコン単結晶の製造方法であって、カーボンヒータ15を用いて石英ルツボ11内のシリコン原料を加熱してシリコン融液5を生成する原料融解工程と、原料融解工程により生成されたシリコン融液5から単結晶を引き上げる結晶引き上げ工程とを備える。原料融解工程では、石英ルツボ11の上端11aよりも上方にあるヒータ15の第1の部分15zuの最高表面温度を1500℃未満に維持して、シリコン原料を加熱する。

Description

シリコン単結晶の製造方法
 本発明は、チョクラルスキー法(以下、CZ法という)によるシリコン単結晶の製造方法に関し、特に、シリコン融液を生成する原料融解工程におけるシリコン原料の加熱方法に関するものである。
 半導体デバイスの基板材料となるシリコン単結晶の多くはCZ法により製造されている。CZ法では石英ルツボ内に多結晶シリコンなどの原料を充填し、チャンバー内で原料を加熱して融解する。次に、引き上げ軸の下端に取り付けられた種結晶を石英ルツボの上方から降下させてシリコン融液に浸漬し、種結晶およびルツボを回転させながら種結晶を徐々に上昇させることにより、種結晶の下端に大きなシリコン単結晶を成長させる。
 CZ法によるシリコン単結晶の製造方法としてマルチプリング法も知られている(例えば、特許文献1参照)。マルチプリング法では、シリコン単結晶を引き上げた後、同一の石英ルツボ内にシリコン原料を追加供給して融解し、得られたシリコン融液からシリコン単結晶の引き上げを行い、このような原料供給工程と単結晶引き上げ工程を繰り返すことにより、一つの石英ルツボから複数本のシリコン単結晶を製造する。マルチプリング法によれば、シリコン単結晶一本当たりの石英ルツボの原価コストを低減することが可能である。またチャンバーを解体して石英ルツボを交換する頻度を低減できるため、操業効率を向上させることが可能である。
 シリコン原料の加熱方法には様々な方法があるが、例えば特許文献2には、ルツボの外側に配置された上側ヒータおよび下側ヒータにより原料を融解した後、下側ヒータへの電力供給を直ちに零に減少させて原料の固体層を形成し、その上に共存する溶融層からシリコン単結晶を成長させる方法が記載されている。また特許文献3には、ルツボの周囲を加熱するサイドヒータとルツボの底部を加熱するボトムヒータとで構成される分割ヒータを用いてルツボ内の原料を溶融することにより、原料を短時間で溶融する方法が開示されている。さらに特許文献4には、シリコン原料を溶融するための消費電力を抑制するため、シリコン原料の温度が200~300℃の範囲の基準温度を超えるまではヒータの出力を低く抑え、基準温度を超えてからヒータの出力を上げる方法が記載されている。
 シリコン単結晶中の炭素濃度の低減は重要な課題の一つである。シリコン単結晶中の炭素は酸素析出を促進させることが知られており、酸素析出物は電流リークの増加などのデバイス性能に影響を与えるからである。例えば、IGBT(Insulated Gate Bipolar Transistor)においてキャリアライフタイムが電子ビーム放射およびアニールによって制御されるとき、炭素は飽和電圧などのデバイス特性に悪影響があることが報告されている。
 シリコン単結晶中の炭素濃度の上昇は、主にカーボン製のヒータから発生したCOガスによって引き起こされるものと考えられている。シリコン融液から蒸発したSiOガスが高温のヒータと反応することによりCOガスが発生し、このCOガスが未溶融のシリコン原料に付着し、原料融解時にカーボンが溶け込むことにより融液中のカーボン濃度が上昇し、このシリコン融液から引き上げられるシリコン単結晶中のカーボン濃度も上昇する。特に、上述したマルチプリング法では引き上げ回数が増えるほど単結晶中の炭素濃度が上昇するため、炭素汚染の問題が顕著である。
 炭素濃度が低いシリコン単結晶を引き上げるため、例えば特許文献5は、石英ルツボを保持するカーボン製のサセプタの上部に不活性ガスの流速を速める整流部材を設ける方法を提案している。整流部材が不活性ガスの流速を速めることにより、ヒータから発生するCOガスを効率よく排出させることが可能となる。
特開2010-018506号公報 特開平6-227890号公報 特開平2-221184号公報 特開2013-237586号公報 特開2012-201564号公報
 しかしながら、特許文献5に記載の方法では、整流部材によってサセプタの高さが増すため、実際には石英ルツボを上昇させた時に整流部材がチャンバー内の構造体と衝突する可能性が高い。すなわち、単結晶の引き上げが進んで石英ルツボ内のシリコン融液が減少した時、液面レベルが一定に維持されるように石英ルツボを上昇させる制御が行われるが、このとき石英ルツボと一緒に上昇するサセプタに取り付けられた整流部材がチャンバー内の構造体に干渉するため、石英ルツボを上昇させることが不可能となる。
 本発明は上記課題を解決するためになされたものであり、本発明の目的は、炭素濃度が低いシリコン単結晶を製造することが可能なシリコン単結晶の製造方法を提供することにある。
 上記課題を解決するため、本発明によるシリコン単結晶の製造方法は、カーボン製のヒータを用いて石英ルツボ内のシリコン原料を加熱してシリコン融液を生成する原料融解工程と、前記原料融解工程により生成された前記シリコン融液から単結晶を引き上げる結晶引き上げ工程とを備え、前記原料融解工程では、少なくとも前記石英ルツボの上端よりも上方にある前記ヒータの第1の部分の最高表面温度を1500℃未満に維持して、前記シリコン原料を加熱することを特徴とする。
 本発明によれば、石英ルツボの上端よりも上方に位置するヒータの第1の部分からのCOガスの発生を抑制することができ、石英ルツボ内のシリコン原料へのCOガスの溶け込みを抑制することができる。したがって、カーボン濃度が低いシリコン単結晶を製造することができる。
 本発明において、前記原料融解工程では、前記石英ルツボの上端よりも下方にある前記ヒータの第2の部分の最高表面温度を1500℃以上に昇温して、前記シリコン原料を加熱することが好ましい。ヒータの第2の部分の最高表面温度を1500℃以上に昇温することにより、石英ルツボ内のシリコン原料を十分に加熱して融解することができる。ヒータの第2の部分の最高表面温度、特に第2の部分全体の表面温度を1500℃以上とした場合、ヒータからのCOガスの発生は増加するが、石英ルツボの下方で発生するので石英ルツボ内に入り込みにくい。よってヒータの第2の部分の最高表面温度、あるいは第2の部分全体の表面温度を1500℃以上に昇温したとしてもカーボン濃度が低いシリコン単結晶を製造することができる。
 本発明において、前記ヒータは、上下方向にそれぞれ分割配置された上部ヒータと下部ヒータとを含み、前記上部ヒータは前記第1の部分を含み、前記下部ヒータは前記第2の部分を含むことが好ましい。この場合、前記上部ヒータの上端は前記石英ルツボの上端よりも上方に位置し、前記下部ヒータの上端は前記石英ルツボの上端よりも下方に位置することが好ましい。この構成によれば、上下方向にそれぞれ分割配置された上部ヒータと下部ヒータとを用いてシリコン原料へのCOガスの溶け込みの抑制と原料の融解とを容易かつ確実に実施することができる。
 本発明の前記原料融解工程において、前記石英ルツボの上端は、前記上部ヒータの上端と下端との間であって前記上端よりも前記下端に近い位置に配置されることが好ましい。上部ヒータの出力を抑えて下部加熱を優勢にすると、石英ルツボの底部の温度が上昇して石英ルツボにかかる熱負荷が増大し、ルツボ表面の荒れや溶損が加速し、シリコン単結晶の有転位化が増加するおそれがある。しかし、石英ルツボの上端が上部ヒータの下端よりも下方に配置することでルツボの底部の温度上昇を抑えることができ、単結晶の有転位化を抑制することができる。
 本発明の前記原料融解工程において、前記石英ルツボの上方から前記石英ルツボおよび前記ヒータが収容されたチャンバー内に不活性ガスを導入すると共に、前記石英ルツボの下方から前記チャンバー内の前記不活性ガスを排気することが好ましい。ヒータの第2の部分の最高表面温度を1500℃以上に昇温した場合、ヒータの第2の部分からのCOガスの発生は増加するが、このCOガスは炉内を流れる不活性ガスの影響を受けて石英ルツボ内に入り込みにくいので、ヒータの第2の部分の最高表面温度を1500℃以上に昇温したとしてもカーボン濃度が低いシリコン単結晶を製造することができる。
 本発明は、前記原料融解工程と前記結晶引き上げ工程とを交互に繰り返すことにより、同一の石英ルツボを用いて複数本のシリコン単結晶を製造するマルチプリング方法によるシリコン単結晶の製造方法であって、複数の原料融解工程の各々では、前記ヒータの前記第1の部分の最高表面温度を1500℃未満に維持して、前記シリコン原料を加熱することが好ましい。マルチプリング法では引き上げ回数が増えるほど単結晶中の炭素濃度が上昇するため、炭素汚染の問題が顕著である。しかし、原料融解工程中のヒータの第1の部分の最高表面温度を1500℃未満に維持することにより、炭素汚染を抑制することができ、マルチプリング法において顕著な効果を奏することができる。
 本発明によれば、炭素濃度が低いシリコン単結晶を製造することが可能なシリコン単結晶の製造方法を提供することができる。
図1は、本発明の第1の実施の形態による単結晶製造装置の構成を示す略側面断面図である。 図2は、シリコン単結晶の製造工程を示すフローチャートである。 図3は、原料融解工程におけるシリコン原料の加熱方法を説明するための模式図である。 図4は、SiOとカーボンとの2つの反応の標準生成ギブスエネルギーの分布を示すグラフであり、横軸は温度、縦軸はギブスエネルギーをそれぞれ示している。 図5は、本発明の第2の実施の形態による単結晶製造装置の構成を示す略側面断面図である。 図6は、本発明の第3の実施の形態による単結晶製造装置の構成を示す略側面断面図である。 図7は、本発明の第4の実施の形態による単結晶製造装置の構成及び動作を説明するための図であって、特に単一のヒータを用いたシリコン原料の加熱方法をヒータの温度分布と共に説明するための模式図である。
 以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
 図1は、本発明の第1の実施の形態による単結晶製造装置の構成を示す略側面断面図である。
 図1に示すように、単結晶製造装置1は、チャンバー10と、チャンバー10内に設置された石英ルツボ11と、石英ルツボ11を支持するカーボン製のサセプタ12と、サセプタ12の底部に接続された回転シャフト13と、回転シャフト13を回転および昇降駆動するシャフト駆動機構14と、石英ルツボ11内のシリコン原料を加熱するヒータ15と、チャンバー10の内側に設けられた断熱材17と、石英ルツボ11の上方に設けられた熱遮蔽体17と、石英ルツボ11の中央の上方に吊設された単結晶引き上げ用ワイヤ18と、チャンバー10の上方に配置されたワイヤ巻き取り機構19とを備えている。
 チャンバー10は、メインチャンバー10aと、メインチャンバー10aの上部開口に連結された細長い円筒状のプルチャンバー10bとで構成されており、石英ルツボ11およびヒータ15はメインチャンバー10a内に設けられている。プルチャンバー10bにはチャンバー10内にアルゴンガス等の不活性ガス(パージガス)を導入するためのガス導入口10cが設けられており、メインチャンバー10aの下部にはアルゴンガスを排出するためのガス排出口10dが設けられている。また、メインチャンバー10aの上部には覗き窓10eが設けられており、石英ルツボ11内のシリコン融液の状態を観察可能となっている。
 ヒータ15は、石英ルツボ11内に充填されたシリコン原料を融解して溶融状態を維持するために設けられている。ヒータ15は抵抗加熱式のカーボンヒータであり、石英ルツボ11の全周を取り囲むように設けられている。断熱材17はメインチャンバー10aの内側の側面および底面を覆っており、これによりシリコン原料の加熱効率が高められている。
 本実施形態によるヒータ15は、上下方向に2分割された分割ヒータであり、上部ヒータ15aと下部ヒータ15bとで構成されている。上部ヒータ15aおよび下部ヒータ15bはそれぞれ独立に制御可能であり、上部ヒータ15aのパワーを下部ヒータ15bよりも大きくしたり小さくしたりすることができる。また、上部ヒータ15aと下部ヒータ15bは共に石英ルツボ11の側壁部と対向するように配置されたいわゆるサイドヒータを構成している。
 熱遮蔽体17は石英ルツボ11の上方を覆う略逆円錐台形状のカーボン製の部材であり、固液界面付近の引き上げ軸方向の温度勾配の最適化が図られている。熱遮蔽体17は引き上げられる単結晶6の最大直径よりも大きな開口17aを有し、単結晶6は開口17aを通過して上方に引き上げられる。
 サセプタ12、回転シャフト13およびシャフト駆動機構14は石英ルツボ11の回転昇降機構を構成している。回転シャフト13の下端部はメインチャンバー10aの底部中央を貫通しており、メインチャンバー10aの外側に設けられたシャフト駆動機構14に接続されている。
 ワイヤ18およびワイヤ巻き取り機構19は結晶引き上げ機構を構成している。ワイヤ18は単結晶6の引き上げ軸であり、石英ルツボ11の回転中心軸と一致している。ワイヤ巻き取り機構19はプルチャンバー10bの上方に配置されており、ワイヤ18の下端はワイヤ巻き取り機構19からプルチャンバー10b内を通って下方に延びてメインチャンバー10aの内部空間まで達している。図1は、育成途中の単結晶6がワイヤ18に吊設された状態を示している。
 シリコン単結晶6の製造工程では、まずサセプタ12内にセットされた石英ルツボ11内に多結晶シリコンなどの原料を充填し、ワイヤ18の下端にシードチャック(不図示)を介して種結晶を取り付ける。次に石英ルツボ11内のシリコン原料をヒータ15で加熱して融液5を生成する。次に種結晶を降下させて融液5に着液させた後、種結晶および石英ルツボ11をそれぞれ回転さながら、種結晶をゆっくり上昇させることにより、略円柱状のシリコン単結晶6を成長させる。シリコン単結晶6の直径は、その引き上げ速度やヒータ15のパワーを制御することにより制御される。
 単結晶の製造工程中、チャンバー10内は減圧状態に保たれている。チャンバー10内には石英ルツボ11の上方に設けられたガス導入口10cからアルゴンガスが供給され、石英ルツボ11の下方に設けられたガス排出口10dからアルゴンガスが排気され、チャンバー10内の上方から下方に向かってアルゴンガスの流れが発生している。チャンバー10内で発生したSiOガスやCOガスはアルゴンガスと共にガス排出口10dから排気される。
 図2は、シリコン単結晶の製造工程を示すフローチャートである。
 図2に示すように、シリコン単結晶6の製造では、石英ルツボ11内のシリコン原料を加熱して融液5を生成する原料融解工程S11と、種結晶を融液5に着液させる着液工程S12と、結晶直径が細く絞られたネック部を形成するネッキング工程S13と、規定の直径(例えば約300mm)の単結晶を得るために結晶直径が徐々に広げられたショルダ部を形成するショルダ部育成工程S14と、規定の直径に維持されたボディ部を形成するボディ部育成工程S15と、引き上げ終了時に直径を細く絞り、最終的に液面から切り離すテール部育成工程S16が順に実施される。
 図3は、原料融解工程S11におけるシリコン原料の加熱方法を説明するための模式図である。
 図3に示すように、シリコン融液5を生成する原料融解工程S11では、上部ヒータ15aの最高表面温度を1500℃未満に維持すると共に、下部ヒータ15bの最高表面温度を1500℃以上に昇温する。また原料融解工程S11において、石英ルツボ11の高さ方向の位置は、上部ヒータ15aの上端15aが石英ルツボ11の上端11aよりも上方に位置し、下部ヒータ15bの上端15bが石英ルツボ11の上端11aよりも下方に位置するように設定される。このように、上部ヒータ15aの最高表面温度を1500℃未満にすることで上部ヒータ15aとSiOガスとの反応を抑えてCOガスの発生を抑制することができ、石英ルツボ11内のシリコン原料へのCOガスの溶け込みを防止することができる。また下部ヒータ15bの最高表面温度を1500℃以上にすることにより、石英ルツボ11内のシリコン原料を十分に加熱して融解することができる。
 上記のように、シリコン単結晶6の炭素汚染はヒータ15から発生したCOガスに由来する。すなわち、シリコン融液5から蒸発したSiOガスが高温のヒータ15と反応してCOガスが発生し、このCOガスが未溶融のシリコン原料の表面に付着し、原料融解時にカーボンがシリコン融液中に溶け込むことにより、融液中のカーボン濃度が上昇し、融液から引き上げられる単結晶中のカーボン濃度も上昇する。
 チャンバー10内でのSiOとカーボンの反応には2つの反応があり、一つは(1)式で示すSiOとカーボンからSiCとCOガスが発生する反応であり、もう一つは(2)式で示すSiOとカーボンからSiCとSiOが発生する反応である。
  SiO+2C=SiC+CO        ・・・(1)
  SiO+1/2・C=1/2・SiC+1/2・SiO  ・・・(2)
 上記のように、(1)式(第1の反応式)の反応ではCOガスが発生するが、(2)式(第2の反応式)の反応ではCOガスが発生しない。そのため、前者よりも後者の反応を優勢にすることによってCOガスの増加を抑え、これにより単結晶中のカーボン濃度を低減することが可能となる。2つの反応の優劣は各々の標準生成ギブスエネルギーから知ることができ、標準生成ギブスエネルギーが低いほうの反応が優勢となる。
 図4は、上記2つの反応の標準生成ギブスエネルギーの温度変化を示すグラフであり、横軸は温度、縦軸はギブスエネルギーをそれぞれ示している。
 図4に示すように、(1)式および(2)式の反応の標準生成ギブスエネルギーはともに温度変化に対してリニアなグラフとなり、特に、(1)式の反応のグラフの傾きは小さく、(2)式の反応のグラフの傾きは大きい。2つのグラフの交点の位置の温度は1500℃であり、1500℃以上では2つの反応のうちCOガスが発生する(1)式の反応が優勢であるのに対し、1500℃未満ではCOガスが発生しない(2)式の反応が優勢であることが分かる。したがって、ヒータの最高表面温度を1500℃未満にすることでカーボン濃度上昇の原因となるCOガスの発生を抑えることができ、これによりシリコン単結晶中のカーボン濃度上昇を抑えることが可能となる。
 原料融解工程S11では、石英ルツボ11の上端11aが上部ヒータ15aの下端15aを下回らない程度まで石英ルツボ11を降下させることが好ましい(図3参照)。上部ヒータ15aの最高表面温度を低く抑える代わりに下部ヒータ15bの最高表面温度を非常に高くして下部加熱を優勢にすると、ルツボ底部の温度が過度に上昇して石英ルツボ11にかかる熱負荷が増大し、ルツボ表面の荒れや溶損が加速し、シリコン単結晶の有転位化が増加するおそれがある。しかし、石英ルツボ11の上端11aが上部ヒータ15aの下端15aを下回らない程度まで石英ルツボ11を下方に引き下げた場合には、上部ヒータ15aからの輻射熱が石英ルツボ11内のシリコン原料に直接照射されるようになるので、シリコン原料の加熱効率を高めることができる。したがって、下部ヒータ15bの最高表面温度を非常に高くすることなくシリコン原料を融解することができ、ルツボ底部の温度上昇を抑えて単結晶の有転位化を抑制することができる。
 下部ヒータ15bの最高表面温度を1500℃以上した場合、下部ヒータ15bからのCOガスの発生は増加する。しかし、下部ヒータ15bは石英ルツボ11の上端よりも下方に位置し、さらにチャンバー10内にはその上方から下方に向かってアルゴンガスの流れが発生しているので、下部ヒータ15bから発生するCOガスはアルゴンガスの流れの影響を受けて石英ルツボ11内に入り込みにくい。したがって、下部ヒータ15bの最高表面温度を1500℃以上したとしても問題はなく、下部ヒータ15bの最高表面温度を高くすることでシリコン原料を確実に融解することができる。
 上部ヒータ15aは、その全体の表面温度が1500℃未満であってもよく、石英ルツボ11の上端11aの高さ位置よりも上方にある上部ヒータ15aの上部15au(図3参照)の最高表面温度が1500℃未満であってもよい。少なくとも上部ヒータ15aの上部15auの最高表面温度が1500℃未満であれば、上部ヒータ15aとSiOガスとの反応によって発生するCOガスが石英ルツボ11内のシリコン原料に溶け込む確率を十分に低減することができる。また上部ヒータ15aの全体の表面温度が1500℃未満である場合には、上部ヒータ15aの上部15auの最高表面温度も1500℃未満となるので問題はない。
 上部ヒータ15aの最低表面温度は1300℃以上であることが好ましい。上部ヒータ15aの最低表面温度が1300℃よりも低い場合には原料の融解に長時間を要し、生産性の低下を招くからである。
 下部ヒータ15bの最高表面温度は1850℃以下であることが好ましく、上部ヒータ15aの上部15au(第1の部分)よりも下方の部分(上部ヒータ15aの下部15al(第2の部分))の最高表面温度も下部ヒータ15bと同様に1850℃以下であることが好ましい。ヒータの表面温度を高くすることにより石英ルツボ11内の原料を短時間で融解することができるが、石英ルツボ11はその温度が1600℃を超えると軟化して変形する。そのため、下部ヒータ15bおよび上部ヒータ15aの下部15alは1850℃以下とすることが好ましい。
 本実施形態において下部ヒータ15bの最高表面温度が1500℃以上であることは重要である。上部ヒータ15aの少なくとも上部15auの最高表面温度を1500℃未満としているため、石英ルツボ11内の原料を融解するのは主に下部ヒータ15bからの輻射熱であり、シリコン原料の融点が1412℃であるため、下部ヒータ15bの最高表面温度が1500℃以上でなければシリコン原料を融点以上にすることができないからである。原料融解時間を短縮して生産性を向上させるためには、下部ヒータ15bの表面全体の温度を1500℃以上とすることが好ましい。すなわち、下部ヒータ15bの最低表面温度を1500℃とすることにより、シリコン融液5から蒸発したSiOガスが高温のヒータ15と反応してCOガスが発生するにもかかわらず、単結晶に取り込まれるカーボン濃度を低下しつつ、原料溶解を短時間に行うことができる。
 上部ヒータ15aは上端15aよりも下端15aの表面温度のほうが常に高くなる温度分布をもつものであってもよい。上部ヒータ15aがそのような温度分布を持つ場合には、原料融解工程における上記加熱制御を比較的簡単に実施することができる。
 なお上部ヒータ15aおよび下部ヒータ15bが所定の表面温度を得るために必要なパワーは単結晶製造装置の熱シミュレーションから求めることができる。シミュレーション結果から算出したパワーを上部ヒータ15aおよび下部ヒータ15bにそれぞれ供給することにより、上部ヒータ15aおよび下部ヒータ15bの各々を所定の表面温度で実際に発熱させることができる。
 原料融解工程S11の終了後(着液工程S12以降)において、上部ヒータ15aおよび下部ヒータ15bの表面温度は特に限定されない。COガス中の炭素は液体状態のシリコンに溶け込みにくく、シリコン融液中のカーボン濃度はCOガスの影響をほとんど受けないからである。したがって、上部ヒータ15aおよび下部ヒータ15bの最高表面温度を共に1500℃以上にすることも可能である。あるいは、上部ヒータ15aおよび下部ヒータ15bの最高表面温度を共に1500℃未満に維持してもよい。
 原料融解工程とその後の結晶引き上げ工程とを交互に繰り返すことにより、同一の石英ルツボを用いて複数本のシリコン単結晶を製造するマルチプリング方法を実施する場合、複数の原料融解工程の各々で上部ヒータ15aの最高表面温度を1500℃未満に維持すると共に、下部ヒータ15bの最高表面温度を1500℃以上に昇温して、シリコン原料を加熱すればよい。上記のように、マルチプリング法では引き上げ回数が増えるほど単結晶中の炭素濃度が上昇するため、炭素汚染の問題が顕著である。しかし、本実施形態のように原料融解工程中の上部ヒータ15aの最高表面温度を1500℃未満に維持することにより、炭素汚染を抑制することができ、マルチプリング法において顕著な効果を奏することができる。
 以上説明したように、本実施形態によるシリコン単結晶の製造方法は、原料融解工程S11において上部ヒータ15aの最高表面温度を1500℃未満に維持し、下部ヒータ15bの最高表面温度を1500℃以上に昇温するので、上部ヒータ15aがSiOガスと反応することによる多量のCOガスの発生を抑制することができ、これによりシリコン単結晶6中のカーボン濃度の上昇を抑えることができる。
 図5は、本発明の第2の実施の形態による単結晶製造装置の構成を示す略側面断面図である。
 図5に示すように、この単結晶製造装置2の特徴は、ヒータ15の上部ヒータ15aが石英ルツボ11の側壁部と対向するように配置されたいわゆるサイドヒータを構成しており、下部ヒータ15bが石英ルツボ11の底部と対向するように配置されたボドムヒータを構成している点にある。また、上部ヒータ15aは図1に示した上部ヒータ15aよりも高さ方向の幅が広く、広範囲を加熱できるようになっている。その他の構成は第1の実施の形態と同様である。
 本実施形態においても、原料融解工程S11において上部ヒータ15aの少なくとも上部の最高表面温度を1500℃未満に維持し、下部ヒータ15bの最高表面温度を1500℃以上に昇温する。また石英ルツボ11の上端11aが上部ヒータ15aの下端15aを下回らない程度まで石英ルツボ11を降下させた位置においてシリコン原料の融解を実施する。このようにすることで、上部ヒータ15aがSiOガスと反応することによるCOガスの発生を抑制することができ、これによりシリコン単結晶中のカーボン濃度の上昇を抑えることができる。
 図6は、本発明の第3の実施の形態による単結晶製造装置の構成を示す略側面断面図である。
 図6に示すように、この単結晶製造装置2の特徴は、ヒータ15が上部ヒータ15aとその下方に配置された第1の下部ヒータ15bおよび第2の下部ヒータ15bとの組み合わせからなることを特徴としている。第2の下部ヒータ15bは第1の下部ヒータ15bの下方に位置しており、第1の下部ヒータ15bはサイドヒータ、第2の下部ヒータ15bはボトムヒータをそれぞれ構成している。なお第2の下部ヒータ15bをサイドヒータとして構成してもよい。
 このように、本発明は3段以上の多段ヒータを用いた原料融解工程に適用することも可能である。この場合、少なくとも最上段のヒータ(上部ヒータ)の石英ルツボの上端よりも上方にあるヒータ部分の最高表面温度を1500℃未満に維持し、その他のヒータ(下部ヒータ)の最高表面温度を1500℃以上に昇温すればよい。
 図7は、本発明の第4の実施の形態による単結晶製造装置の構成及び動作を説明するための図であって、特に単一のヒータを用いたシリコン原料の加熱方法をヒータの温度分布と共に説明するための模式図である。
 図7に示すように、この単結晶製造装置4の特徴は、上下方向に温度勾配を持たせることができる単一のヒータ15(サイドヒータ)を用いる点にある。原料融解工程において、ヒータ15の上端15zは石英ルツボ11の上端11aよりも上方に位置し、ヒータ15の下端15zは石英ルツボ11の上端11aよりも下方に位置する。そのため、ヒータ15は、石英ルツボ11の上端11aよりも上方にある第1の部分(上側部分)15zuと、石英ルツボ11の上端11aよりも下方にある第2の部分(下側部分)15zlとを有する。
 原料融解工程において、ヒータ15の第1の部分15zuの最高表面温度は1500℃未満に維持される。また、原料融解工程において、ヒータ15の第2の部分15zlの最高表面温度は1500℃以上に昇温されることが好ましい。したがって、例えば、ヒータ15の温度分布はグラフTGのようにヒータ15の下端15zから上端15zに向かって例えば1600℃~1400℃の範囲内でリニアに変化し、1500℃となる位置Pzは石英ルツボ11の上端11aよりも下方に位置している。
 ヒータ15の第2の部分15zlの最高表面温度は、原料融解工程の最初から最後まで一貫して1500℃以上であることが好ましい。あるいは、ヒータ15の第2の部分15zlの最高表面温度は、例えば温度分布のグラフTGのように原料融解工程の開始時には1500℃未満であるが、原料融解工程の進行と共に徐々に上昇し、原料融解工程の中盤又は終盤でグラフTGのように1500℃以上(例えば1600℃)に達してもよい。さらに原料の融解が可能である限り、ヒータ15の第2の部分15zlの最高表面温度は、原料融解工程の最初から最後まで常に1500℃未満を維持してもかまわない。
 以上説明したように、本実施形態によるシリコン単結晶の製造方法は、単一のヒータ15を用いた原料融解工程S11において、石英ルツボ11の上端11aよりも上方に位置するヒータ15の第1の部分15zuの最高表面温度を1500℃未満に維持するので、ヒータ15がSiOガスと反応することによる多量のCOガスの発生を抑制することができ、これによりシリコン単結晶6中のカーボン濃度の上昇を抑えることができる。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
 例えば、上記実施形態においては、下部ヒータ15bの最高表面温度を1500℃以上に昇温したが、下部ヒータ15bの最高表面温度は1500℃以上でなくてもよく、下部ヒータ15bのパワーを上部ヒータ15aのパワーよりも大きくすればよい。このようにすることで上部ヒータ15aの最高表面温度を抑えることによるヒータ全体の出力不足を補うことができ、下部ヒータ15bによる加熱を強めることでシリコン原料の融解が可能となる。
 原料融解工程においてヒータ15の表面温度条件を以下の条件1~4まで変えて育成したシリコン単結晶中のカーボン濃度を評価した。シリコン単結晶の引き上げには図1に示した単結晶製造装置を用いた。条件1~4におけるヒータの表面温度をシミュレーションから求めたところ、表1に示すように、条件1における上部ヒータ15aの上部15auの最高表面温度は1406℃、下部ヒータ15bの表面温度は1421~1445℃であった。また条件2における上部ヒータ15aの上部15auの最高表面温度は1527℃、下部ヒータ15bの表面温度は1537~1549℃であった。また、条件3における上部ヒータ15aの上部15auの最高表面温度は1482℃、下部ヒータ15bの表面温度は1507~1590℃であった。さらにまた、条件4における上部ヒータ15aの上部15auの最高表面温度は1464℃、下部ヒータ15bの表面温度は1489~1573℃であった。
 次に、原料融解工程で生成されたシリコン融液から直径約300mmのシリコン単結晶インゴットをCZ法により引き上げ、シリコン単結晶インゴットの最下端部のカーボン濃度をFT-IR法により測定した。なおシリコン単結晶インゴットの最下端部のカーボン濃度を測定する理由は、シリコン単結晶インゴット中のカーボン濃度は偏析によって引き上げ軸方向の最下端の濃度が最も高くなり、カーボン濃度を最も評価しやすいからである。
 表1に示すように、条件1(比較例1)では、上部ヒータ15aのみならず下部ヒータ15bの表面温度が1500℃未満と低すぎたため、原料を融解させることができず、シリコン単結晶を育成することができなかった。また条件2(比較例2)では、上部ヒータ15aの上部15auの最高表面温度が高く、シリコン単結晶中のカーボン濃度が相対的に高くなった。
 一方、条件3(実施例1)では、上部ヒータ15aの上部15auの最高表面温度が1500℃未満であり、下部ヒータ15bの最低表面温度が1500℃以上であったため、シリコン単結晶中のカーボン濃度を相対的に低くすることができ、条件2に対するカーボン濃度の相対値は91となった。
 また、条件4(実施例2)では、上部ヒータ15aの上部15auの最高表面温度が条件3と同様に1500℃未満であったが、下部ヒータ15bの最低表面温度が1500未満であった。しかし、下部ヒータ15bの最高表面温度が1573℃(1500℃以上)であったため、原料を融解することができ、シリコン単結晶を育成することができた。そしてシリコン単結晶中のカーボン濃度は条件3よりもさらに低くなり、条件2に対するカーボン濃度の相対値は84となった。
Figure JPOXMLDOC01-appb-T000001
 以上の結果から、原料融解工程において上部ヒータ15aの上部15auの最高表面温度を1500℃未満とし、下部ヒータ15bの最高表面温度を1500℃以上とした場合のシリコン単結晶中のカーボン濃度は、上部ヒータ15aの上部15auの最高表面温度を1500℃以上とした場合よりも低くなることが明らかとなった。
1,2,3,4  単結晶製造装置
5  シリコン融液
6  シリコン単結晶
10  チャンバー
10a  メインチャンバー
10b  プルチャンバー
10c  ガス導入口
10d  ガス排出口
10e  覗き窓
11  石英ルツボ
11a  石英ルツボの上端
12  サセプタ
13  回転シャフト
14  シャフト駆動機構
15  ヒータ(カーボンヒータ)
15a  上部ヒータ
15au  上部ヒータの上部
15al  上部ヒータの下部
15a  上部ヒータの上端
15a  上部ヒータの下端
15b  下部ヒータ
15b  上部ヒータの上端
15b  上部ヒータの下端
15z  ヒータ15の上端
15z  ヒータ15の下端
15zu  ヒータの第1の部分(上側部分)
15zl  ヒータの第2の部分(下側部分)
16  断熱材
17  熱遮蔽体
17a  熱遮蔽体の開口
18  ワイヤ
19  ワイヤ巻き取り機構

Claims (6)

  1.  チョクラルスキー法によるシリコン単結晶の製造方法であって、
     カーボン製のヒータを用いて石英ルツボ内のシリコン原料を加熱してシリコン融液を生成する原料融解工程と、
     前記原料融解工程により生成された前記シリコン融液から単結晶を引き上げる結晶引き上げ工程とを備え、
     前記原料融解工程では、
     少なくとも前記石英ルツボの上端よりも上方にある前記ヒータの第1の部分の最高表面温度を1500℃未満に維持して、前記シリコン原料を加熱することを特徴とするシリコン単結晶の製造方法。
  2.  前記原料融解工程では、
     前記石英ルツボの上端よりも下方にある前記ヒータの第2の部分の最高表面温度を1500℃以上に昇温して、前記シリコン原料を加熱する、請求項1に記載のシリコン単結晶の製造方法。
  3.  前記ヒータは、上下方向にそれぞれ分割配置された上部ヒータと下部ヒータとを含み、
     前記上部ヒータは前記第1の部分を含み、
     前記下部ヒータは前記第2の部分を含む、請求項2に記載のシリコン単結晶の製造方法。
  4.  前記原料融解工程において、前記石英ルツボの上端は、前記上部ヒータの上端と下端との間であって前記上端よりも前記下端に近い位置に配置される、請求項1に記載のシリコン単結晶の製造方法。
  5.  前記原料融解工程において、前記石英ルツボの上方から前記石英ルツボおよび前記ヒータが収容されたチャンバー内に不活性ガスを導入すると共に、前記石英ルツボの下方から前記チャンバー内の前記不活性ガスを排気する、請求項1または2に記載のシリコン単結晶の製造方法。
  6.  前記原料融解工程と前記結晶引き上げ工程とを交互に繰り返すことにより、同一の石英ルツボを用いて複数本のシリコン単結晶を製造するマルチプリング方法によるシリコン単結晶の製造方法であって、
     複数の原料融解工程の各々では、前記ヒータの前記第1の部分の最高表面温度を1500℃未満に維持して、前記シリコン原料を加熱する、請求項1ないし5のいずれか一項に記載のシリコン単結晶の製造方法。
PCT/JP2016/082376 2015-11-13 2016-11-01 シリコン単結晶の製造方法 WO2017082112A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112016005199.9T DE112016005199B4 (de) 2015-11-13 2016-11-01 Verfahren zur Herstellung eines Silicium-Einkristalls
CN201680066198.0A CN108350603B (zh) 2015-11-13 2016-11-01 单晶硅的制造方法
KR1020187011746A KR102038960B1 (ko) 2015-11-13 2016-11-01 실리콘 단결정 제조 방법
JP2017550269A JP6547839B2 (ja) 2015-11-13 2016-11-01 シリコン単結晶の製造方法
US15/773,323 US10724150B2 (en) 2015-11-13 2016-11-01 Method of manufacturing silicon single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015223287 2015-11-13
JP2015-223287 2015-11-13

Publications (1)

Publication Number Publication Date
WO2017082112A1 true WO2017082112A1 (ja) 2017-05-18

Family

ID=58695347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082376 WO2017082112A1 (ja) 2015-11-13 2016-11-01 シリコン単結晶の製造方法

Country Status (7)

Country Link
US (1) US10724150B2 (ja)
JP (1) JP6547839B2 (ja)
KR (1) KR102038960B1 (ja)
CN (1) CN108350603B (ja)
DE (1) DE112016005199B4 (ja)
TW (1) TWI625431B (ja)
WO (1) WO2017082112A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045258A (ja) * 2018-09-20 2020-03-26 グローバルウェーハズ・ジャパン株式会社 シリコン単結晶の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6777908B1 (ja) * 2019-11-19 2020-10-28 Ftb研究所株式会社 単結晶成長装置、該単結晶成長装置の使用方法および単結晶成長方法
EP4244412A1 (en) * 2020-11-12 2023-09-20 GlobalWafers Co., Ltd. Ingot puller apparatus having a heat shield disposed below a side heater and methods for preparing an ingot with such apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172292A (ja) * 1982-03-30 1983-10-11 Ibiden Co Ltd シリコン単結晶引上げ装置用黒鉛発熱体
JPH05294782A (ja) * 1992-04-15 1993-11-09 Kawasaki Steel Corp シリコン単結晶の製造装置
WO2003029533A1 (fr) * 2001-09-28 2003-04-10 Komatsu Denshi Kinzoku Kabushiki Kaisha Appareil et procede de fabrication d'un semi-conducteur monocristallin et lingot monocristallin
JP2009286650A (ja) * 2008-05-28 2009-12-10 Sumco Corp 分割式ヒーターおよびこれを用いた単結晶引上げ装置
JP2011121827A (ja) * 2009-12-11 2011-06-23 Siltronic Japan Corp 黒鉛ルツボ及びシリコン単結晶製造装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418988A (en) * 1987-07-13 1989-01-23 Sony Corp Single crystal growth unit
JPH02221184A (ja) 1989-02-20 1990-09-04 Osaka Titanium Co Ltd 単結晶製造方法及びその装置
JPH0774116B2 (ja) * 1989-10-05 1995-08-09 信越半導体株式会社 Si単結晶中の酸素濃度調整方法およびその装置
JPH06227890A (ja) 1993-02-05 1994-08-16 Sumitomo Metal Ind Ltd 単結晶成長装置及びこの装置を用いた単結晶成長方法
US5474020A (en) 1994-05-06 1995-12-12 Texas Instruments Incorporated Oxygen precipitation control in czochralski-grown silicon cyrstals
JP3128795B2 (ja) * 1995-06-09 2001-01-29 信越半導体株式会社 チョクラルスキー法による結晶製造装置および製造方法
KR100588425B1 (ko) 2003-03-27 2006-06-12 실트로닉 아게 실리콘 단결정, 결정된 결함분포를 가진 실리콘 단결정 및 실리콘 반도체 웨이퍼의 제조방법
TWI281695B (en) * 2004-03-31 2007-05-21 Sumco Techxiv Corp Semiconductor single crystal manufacturing equipment and graphite crucible
CN200974872Y (zh) 2006-11-01 2007-11-14 新疆新能源股份有限公司 一种具有保护气控制装置的直拉单晶炉
JP5051033B2 (ja) 2008-07-14 2012-10-17 株式会社Sumco シリコン単結晶の製造方法
JP5131170B2 (ja) * 2008-12-05 2013-01-30 信越半導体株式会社 単結晶製造用上部ヒーターおよび単結晶製造装置ならびに単結晶製造方法
KR101105547B1 (ko) * 2009-03-04 2012-01-17 주식회사 엘지실트론 단결정 제조용 흑연 히터, 이를 포함하는 단결정 제조 장치및 방법
JP5417965B2 (ja) * 2009-04-21 2014-02-19 株式会社Sumco 単結晶成長方法
CN101724899B (zh) 2009-09-08 2014-11-19 任丙彦 少子寿命大于等于1000微秒的n型太阳能硅单晶生长工艺
JP5708171B2 (ja) * 2010-04-26 2015-04-30 株式会社Sumco シリコン単結晶引き上げ装置及びシリコン単結晶の製造方法
JP5561785B2 (ja) 2011-03-25 2014-07-30 グローバルウェーハズ・ジャパン株式会社 シリコン単結晶引上装置及びそれを用いたシリコン単結晶の引上げ方法
JP5794200B2 (ja) 2012-05-15 2015-10-14 信越半導体株式会社 シリコン原料の溶融方法
CN105378156B (zh) * 2013-06-30 2018-01-30 胜高股份有限公司 氧化硅玻璃坩埚
JP6090391B2 (ja) 2015-08-21 2017-03-08 株式会社Sumco シリコン単結晶の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172292A (ja) * 1982-03-30 1983-10-11 Ibiden Co Ltd シリコン単結晶引上げ装置用黒鉛発熱体
JPH05294782A (ja) * 1992-04-15 1993-11-09 Kawasaki Steel Corp シリコン単結晶の製造装置
WO2003029533A1 (fr) * 2001-09-28 2003-04-10 Komatsu Denshi Kinzoku Kabushiki Kaisha Appareil et procede de fabrication d'un semi-conducteur monocristallin et lingot monocristallin
JP2009286650A (ja) * 2008-05-28 2009-12-10 Sumco Corp 分割式ヒーターおよびこれを用いた単結晶引上げ装置
JP2011121827A (ja) * 2009-12-11 2011-06-23 Siltronic Japan Corp 黒鉛ルツボ及びシリコン単結晶製造装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045258A (ja) * 2018-09-20 2020-03-26 グローバルウェーハズ・ジャパン株式会社 シリコン単結晶の製造方法
JP7082550B2 (ja) 2018-09-20 2022-06-08 グローバルウェーハズ・ジャパン株式会社 シリコン単結晶の製造方法

Also Published As

Publication number Publication date
TWI625431B (zh) 2018-06-01
CN108350603A (zh) 2018-07-31
JP6547839B2 (ja) 2019-07-24
US20180320288A1 (en) 2018-11-08
TW201730383A (zh) 2017-09-01
DE112016005199T5 (de) 2018-07-26
DE112016005199B4 (de) 2021-01-14
CN108350603B (zh) 2020-11-13
JPWO2017082112A1 (ja) 2018-07-26
US10724150B2 (en) 2020-07-28
KR20180054842A (ko) 2018-05-24
KR102038960B1 (ko) 2019-10-31

Similar Documents

Publication Publication Date Title
US8123855B2 (en) Device and process for growing Ga-doped single silicon crystals suitable for making solar cells
JP6090391B2 (ja) シリコン単結晶の製造方法
JP2009114054A (ja) 酸素濃度特性が改善した半導体単結晶の製造方法
WO2017082112A1 (ja) シリコン単結晶の製造方法
JP2008019125A (ja) 半導体ウェーハ素材の溶解方法及び半導体ウェーハの結晶育成方法
US20240035197A1 (en) Crystal Puller, Method for Manufacturing Monocrystalline Silicon Ingots and Monocrystalline Silicon Ingots
JP2024520845A (ja) 石英坩堝及び結晶引上げ炉
JP4184725B2 (ja) 単結晶半導体の製造方法、単結晶半導体の製造装置
JP5007596B2 (ja) 単結晶の成長方法および単結晶の引き上げ装置
JP6257483B2 (ja) シリコン単結晶製造方法
WO2023051616A1 (zh) 一种用于拉制单晶硅棒的拉晶炉
JP5375636B2 (ja) シリコン単結晶の製造方法
JP5223513B2 (ja) 単結晶の製造方法
JP4396505B2 (ja) シリコン単結晶の製造方法
JP6597857B1 (ja) 熱遮蔽部材、単結晶引き上げ装置及び単結晶の製造方法
JP2019014637A (ja) シリコン単結晶引上げ装置及び単結晶シリコンインゴットの製造方法
JP6699620B2 (ja) シリコン単結晶の製造方法
US20240018689A1 (en) Crystal Puller for Pulling Monocrystalline Silicon Ingots
JP7184029B2 (ja) 単結晶シリコンインゴットの製造方法
CN114959880B (zh) 一种用于生产单晶硅棒的石英坩埚、坩埚组件及拉晶炉
JP2013193942A (ja) 単結晶製造装置およびそれを用いた単結晶製造方法
JP2006219310A (ja) 半導体単結晶製造装置及び製造方法
JP5077280B2 (ja) シリコン単結晶の引き上げ方法
JP2020045258A (ja) シリコン単結晶の製造方法
JP2005145729A (ja) 単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017550269

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187011746

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15773323

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016005199

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864075

Country of ref document: EP

Kind code of ref document: A1