JP4184725B2 - 単結晶半導体の製造方法、単結晶半導体の製造装置 - Google Patents

単結晶半導体の製造方法、単結晶半導体の製造装置 Download PDF

Info

Publication number
JP4184725B2
JP4184725B2 JP2002204178A JP2002204178A JP4184725B2 JP 4184725 B2 JP4184725 B2 JP 4184725B2 JP 2002204178 A JP2002204178 A JP 2002204178A JP 2002204178 A JP2002204178 A JP 2002204178A JP 4184725 B2 JP4184725 B2 JP 4184725B2
Authority
JP
Japan
Prior art keywords
seed crystal
melt
temperature difference
single crystal
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002204178A
Other languages
English (en)
Other versions
JP2004043252A5 (ja
JP2004043252A (ja
Inventor
進 前田
宏 稲垣
茂樹 川島
昇栄 黒坂
浩三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Sumco Techxiv Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Techxiv Corp filed Critical Sumco Techxiv Corp
Priority to JP2002204178A priority Critical patent/JP4184725B2/ja
Priority to TW092118822A priority patent/TW200415267A/zh
Priority to DE10392918T priority patent/DE10392918T5/de
Priority to PCT/JP2003/008744 priority patent/WO2004007814A1/ja
Publication of JP2004043252A publication Critical patent/JP2004043252A/ja
Priority to US11/005,180 priority patent/US7235128B2/en
Publication of JP2004043252A5 publication Critical patent/JP2004043252A5/ja
Application granted granted Critical
Publication of JP4184725B2 publication Critical patent/JP4184725B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/36Single-crystal growth by pulling from a melt, e.g. Czochralski method characterised by the seed, e.g. its crystallographic orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10S117/90Apparatus characterized by composition or treatment thereof, e.g. surface finish, surface coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CZ法(チョクラルスキー法)を用いて単結晶シリコンなどの単結晶半導体を製造するに際して、大口径、大重量の単結晶半導体を転位無しで製造することができる方法および装置に関するものである。
【0002】
【従来の技術】
単結晶シリコンの製造方法の1つにCZ法がある。
【0003】
図1はCZ法を用いた単結晶引上げ装置1の構成の一例を示している。
【0004】
単結晶引上げ用容器2つまりCZ炉2内には、黒鉛るつぼ11によって外側が覆われた石英るつぼ3が設けられている。石英るつぼ3内で多結晶シリコン(Si)が加熱され溶融される。溶融が安定化すると、引上げ機構4が動作し融液5から単結晶シリコン(単結晶シリコンインゴット)6が引き上げられる。すなわち引上げ軸4aが降下され引上げ軸4aの先端のシードチャック4cに把持された種結晶14が融液5に浸漬される。種結晶14を融液5になじませた後引上げ軸4aが上昇する。シードチャック4cに把持された種結晶14が上昇するに応じて単結晶シリコン6が成長する。引上げの際、石英るつぼ3は回転軸10によって回転する。また引上げ機構4の引上げ軸4aは回転軸10と逆方向あるいは同方向に回転する。
【0005】
単結晶引上げのプロセス(1バッチ)の間で、容器2内には種々の蒸発物が発生する。そこで単結晶引上げ用容器2にアルゴン(Ar)ガス7を供給して容器2外に蒸発物とともに排気して容器2内から蒸発物を除去しクリーンにしている。アルゴンガス7の供給流量は1バッチ中の各工程ごとに設定する。
【0006】
また石英るつぼ3の上方にあって、単結晶シリコン6の周囲には、単結晶引上げ容器2内のガス7を整流して融液5の表面5aに導くとともに、単結晶シリコン6を熱源から遮蔽する熱遮蔽板8(ガス整流塔)が設けられている。熱遮蔽板8の下端と融液表面5aとの間隙の距離(ギャップ)Gは適宜設定される。
【0007】
CZ法で単結晶シリコン6を成長させる際に避けられない問題の1つに、種結晶が融液に着液する際に種結晶内に発生する「転位」がある。この転位は、種結晶14が融液5に着液したとき種結晶14内に誘起される熱応力に起因して発生する。この転位が、引き続き種結晶14の下部に形成されるネッキング部中を伝播しネッキング部を拡大して製造される単結晶シリコン6に取り込まれると、この単結晶シリコン6を半導体デバイス用に用いることはできない。このため転位は、これを除去する必要がある。
【0008】
そこで、従来より融液着液時に種結晶14内に導入された転位を種結晶14外に除去すべく、種結晶14を融液5に着液させた後に、上述したネッキング部の径を3〜5mm程度まで徐々に絞るネッキング処理が引上げ工程の最初の工程で実施される。
【0009】
ところが近年、直径300mm以上の大径のシリコンウェーハ製造の要請があり、大径で大重量の単結晶シリコンインゴットを、問題なく引き上げられることが要求されており、ネッキング処理によってネッキング部の径を3〜5mm程度に細く絞ったとすると、転位は除去されるものの径が細すぎて大径、大重量の単結晶シリコンインゴットを結晶落下等の不具合なく製造することは不可能になるおそれがある。
【0010】
ここで補助的な把持装置を設け、この把持装置で単結晶シリコン6を把持しつつ引上げ、ネッキング部が破断することによる単結晶シリコンインゴットの落下を防止することが考えられる。
【0011】
しかし既存の単結晶引上げ装置1に、新たに補助的な把持装置を新たに設けることは部品点数の増加を招き装置コストを上昇させる。また単結晶シリコン6を確実に把持する技術は未だ確立されておらず技術的に困難なことが予測される。さらに機械的な把持装置を設けることにすると、金属粉等の汚染物がCZ炉2内に導入されるおそれがあり、CZ炉2内のクリーンな環境が確保されなくなるおそれがある。
【0012】
したがって補助的な保持装置を設けることで大径、大重量の単結晶シリコンインゴットを引き上げることは望ましくない。
【0013】
特開平11−189488号公報には、ネッキング部を細くせずとも大径、大重量の単結晶シリコンインゴットを引き上げることができる下記に掲げる技術が記載されている。
【0014】
a)熱遮蔽板8の下端と融液表面5aとの間隙の距離(ギャップ)Gを大きくすることで、石英るつぼ3内の融液5を加熱するヒータからの輻射熱を種結晶14に多量に加えて、種結晶14の温度を上昇させ、種結晶14と融液5との温度差を小さくし、熱応力によって種結晶14に導入される転位を減少させる。
【0015】
b)黒鉛るつぼ11にスリットを設けることで、石英るつぼ3内の融液5を加熱するヒータからの輻射熱を種結晶14に多量に加えて、種結晶14の温度を上昇させ、種結晶14と融液5との温度差を小さくし、熱応力によって種結晶14に導入される転位を減少させる。
【0016】
c)移動機構によって上下に移動可能な補助加熱装置を設け、ネッキング処理の工程で補助加熱装置を種結晶14の側方に位置させ、補助加熱装置によって種結晶14を加熱して、種結晶14の温度を1380゜C〜1480゜Cまで上昇させ、種結晶14と融液5との温度差を小さくし、熱応力によって種結晶14に導入される転位を減少させる。この結果、種結晶14の直径が8mm、14mmのときにネッキング部は破断しなかったという実験結果が得られた。
【0017】
【発明が解決しようとする課題】
しかし上記a)、b)によれば、種結晶14の温度を上昇させればよいことがわかるが、どの程度まで種結晶14の温度を上昇させるべきか定量的な値は何ら示されていない。
【0018】
また上記c)によれば種結晶14の温度を1380゜C〜1480゜Cまで上昇させているが、このような高温まで種結晶14の温度を上昇させると、種結晶14が融液5に着液する前に溶解し、着液前の種結晶14の径が縮小するおそれがある。またこの場合溶解した種結晶先端部が融液5に滴下し融液5中のドーパント濃度が変化して狙いの結晶抵抗率から外れるおそれがある。さらにこのような高温の状態にすると石英るつぼが変形し引上げ中に結晶が変形したり結晶が有転位化してしてしまう危険性が高まる。つまり種結晶14の温度を1380゜C〜1480゜Cまで上昇させるのは、転位を除去する上でオーバースペックな数値であるといえる。
【0019】
また上記c)によれば、種結晶14の直径が8mm、14mmのときに種結晶14の温度を1380゜C〜1480゜Cまで上昇させればネッキング部は破断しなかったことはわかるが、ネッキング部が破断しない種結晶14の直径と種結晶14の温度との臨界的な関係というものは明確に示されていない。
【0020】
また上記a)によれば、熱遮蔽板8の下端と融液表面5aとの間隙の距離Gを大きくしているが、この距離Gは、融液表面5aから蒸発する酸素の量を制限するパラメータであり、ギャップGの大きさによって、単結晶シリコン6に取り込まれる酸素濃度が影響を受ける。このためギャップGを大きくすることによって単結晶シリコン6に導入される転位を除去できるものの単結晶シリコン6内の酸素濃度も影響を受け素子、デバイスの特性に重大な影響を与えるおそれがある。またギャップGの大きさを変化することによって融液5の温度も影響を受ける。このためギャップGを調整する技術を採用することは望ましくない。
【0021】
また上記b)によれば、黒鉛るつぼ11にスリットを設けることによって融液5の温度が上昇するおそれがある。このため黒鉛るつぼ11にスリットを設ける技術を採用することは望ましくない。
【0022】
また上記c)によれば、既存の単結晶引上げ装置1に、新たに移動機構、補助加熱装置を設けことによって、部品点数が増加し装置コストが上昇する。このため種結晶14を加熱するためだけに、新たに移動機構、補助加熱装置を設けるという技術を採用することは望ましくない。
【0023】
そこで、本発明は、既存の装置に大きな変更を加えることなく、単結晶半導体の酸素濃度、融液の温度に影響を与えることなく、必要以上に種結晶の温度を上昇させることなく、大径、大重量の単結晶半導体を引き上げるようにすることを、解決課題とするものである。
【0024】
【課題を解決するための手段および作用、効果】
第1発明は、
種結晶を融液に着液させ、前記種結晶を引き上げることにより単結晶半導体を製造する単結晶半導体の製造方法において、
着液する際の種結晶と融液との温度差が、種結晶中の熱応力が臨界分解剪断応力を越えることにより、種結晶中に転位が導入されることのない上限の温度差である許容温度差になるように、許容温度差と種結晶の直径との関係を予め設定し、
前記関係に基づいて、着液しようとする種結晶の直径に対応する許容温度差を求め、
種結晶が融液に着液する際に、種結晶と融液との温度差が、求めた許容温度差以内になるように、るつぼの外側に設けられ、当該るつぼに対する加熱量を独立して調整される複数の加熱手段の加熱量を制御する方法および熱遮蔽板の下端と融液表面との間隙の距離を大きくする方法のうちのいずれかまたは両方の方法を用いて温度を調整すること
を特徴とする。
【0025】
第1発明によれば、図5に示すように、着液する際の種結晶14と融液5との温度差が、種結晶14中に転位が導入されない許容温度差ΔTになるように、許容温度差ΔTと種結晶14の直径Dとの関係L1、L2、L3が予め設定される。
【0026】
そして関係L1、L2、L3に基づいて、着液しようとする種結晶14の直径Dに対応する許容温度差ΔTが求められる。
【0027】
そして種結晶14が融液5に着液する際に、種結晶14と融液5との温度差が、求めた許容温度差△T以内になるように、複数の加熱手段の各出力を制御する方法および熱遮蔽板8の下端と融液表面5aとの間隙の距離Gを大きくする方法のうちいずれかまたは両方の方法を用いて温度が調整される。
【0028】
第1発明によれば、種結晶14に転位を導入させないための許容温度差ΔTの臨界的な数値が、関係L1、L2、L3として明確に定められているので、許容温度差ΔTを必要以上に小さくすることなく、つまり種結晶14の温度を必要以上に上昇させることなく種結晶14への転位の導入を防ぐことができる。このため種結晶14が融液5に着液する前に溶解することを防止できる。また石英るつぼ3への熱負荷を低減することができる。
【0029】
第2発明は、
不純物が添加された種結晶を融液に着液させ、前記種結晶を引き上げることにより単結晶半導体を製造する単結晶半導体の製造方法において、
着液する際の種結晶と融液との温度差が、種結晶中の熱応力が臨界分解剪断応力を越えることにより、種結晶中に転位が導入されることのない上限の温度差である許容温度差になるように、許容温度差と種結晶の直径と種結晶中の不純物濃度との関係を予め設定し、
前記関係に基づいて、着液しようとする種結晶の直径、種結晶中の不純物濃度に対応する許容温度差を求め、
種結晶が融液に着液する際に、種結晶と融液との温度差が、求めた許容温度差以内になるように、るつぼの外側に設けられ、当該るつぼに対する加熱量を独立して調整される複数の加熱手段の加熱量を制御する方法および熱遮蔽板の下端と融液表面との間隙の距離を大きくする方法のうちのいずれかまたは両方の方法を用いて温度を調整すること
を特徴とする。
【0030】
第2発明によれば、図5に示すように、着液する際の種結晶14と融液5との温度差が、種結晶14中に転位が導入されない許容温度差ΔTになるように、許容温度差ΔTと種結晶14の直径Dと種結晶14中の不純物濃度Cとの関係L1、L2、L3が予め設定される。種結晶14の直径Dが同じであれば不純物濃度CがC1、C2、C3と高くなるに応じてL1、L2、L3と変化し、許容温度差ΔTが大きくなる。
【0031】
そして関係L1、L2、L3に基づいて、着液しようとする種結晶14の直径D、種結晶14中の不純物濃度Cに対応する許容温度差ΔTが求められる。
【0032】
そして種結晶14が融液5に着液する際に、種結晶14と融液5との温度差が、求めた許容温度差△T以内になるように、複数の加熱手段の各出力を制御する方法および熱遮蔽板8の下端と融液表面5aとの間隙の距離Gを大きくする方法のうちいずれかまたは両方の方法を用いて温度が調整される。
【0033】
第2発明によれば、種結晶14に転位を導入させないための許容温度差ΔTの臨界的な数値が、関係L1、L2、L3として明確に定められているので、許容温度差ΔTを必要以上に小さくすることなく、つまり種結晶14の温度を必要以上に上昇させることなく種結晶14への転位の導入を防ぐことができる。さらに石英るつぼ3への熱負荷を低減することができる。このため種結晶14が融液5に着液する前に溶解することを防止できる。また第2発明によれば、種結晶14の直径Dが同じであれば種結晶14中の不純物(たとえばボロンB)の濃度を高くすることによって許容温度差ΔTを大きくすることができる。このため種結晶14の温度の上昇をより一層低く抑えつつ転位導入を防ぐことができる。
【0039】
第3発明は、第1発明または第2発明において、
種結晶を融液に着液させた後に、単結晶半導体の直径を徐々に絞るネッキング処理を施すことなく単結晶半導体を成長させること
を特徴とする。
【0040】
第4発明によれば、種結晶14を図5に示す直径Dよりも小さく細くすることなく転位導入を防ぐことができるので、ネッキング処理の工程は不要となる。このため単結晶シリコンインゴット6の製造時間が短縮され、大径、大重量のシリコン単結晶を保持できる強度がネッキング部だけで維持される。
【0043】
第4発明は、第1発明乃至第3発明において、
前記複数の加熱手段は、るつぼの外側の上下方向の各位置に設けられた加熱手段であり、下側の加熱手段の出力を低減若しくはオフにすることにより、種結晶が融液に着液する際の種結晶と融液との温度差を、許容温度差以内にすること
を特徴とする。
【0046】
第4発明によれば、図1に示すように、石英るつぼ3の側方に、主ヒータ9が設けられ、石英るつぼ3の底部に、補助ヒータ(ボトムヒータ)19が設けられ、これら各ヒータ9、19の出力は独立して制御される。これら主ヒータ9、補助ヒータ19は、大径、大重量の単結晶シリコンインゴット6を製造する単結晶引上げ装置1には、るつぼ3の底部の融液5の固化を防止し、単結晶シリコン6の酸素濃度分布を制御するために、通常、備えられている。これら主ヒータ9、補助ヒータ19は、融液5の温度が目標温度となるように各出力が制御される。
【0047】
種結晶14が融液5に着液される際には、図6に示すように補助ヒータ19の出力がオフ(0kW)にされる。これにより融液5の温度を目標温度に維持するために、主ヒータ9の出力が上昇する。このため種結晶14の温度が上昇し、種結晶14と融液5との温度差が、図5に示す関係から求められた許容温度差ΔT以下に調整される。
【0048】
第4発明によれば、既存の単結晶引上げ装置1に通常備えられている加熱手段9、19をそのまま利用することができ、種結晶14を加熱するだけのために新たに加熱装置等を追加する必要がないので部品点数の増加を抑制し装置コストを低減させることができる。
【0049】
また種結晶14の温度を上昇させるのみであり融液5の温度変動には影響はない。
【0050】
第5発明は、第1発明乃至第4発明において、
さらに熱反射板を、シードチャックに取り付けることにより種結晶の温度を調整することを特徴とする。
【0054】
第5発明によれば、図3に示すように、種結晶14の近傍にあるシードチャック4cに熱反射板4dが取り付けられ、熱反射板4dによって融液5やヒータ9等からの輻射熱が種結晶14に集中して与えられ種結晶14からの放熱が抑制されるので、種結晶14の温度が上昇するのみで、融液5の温度変動に対する影響は小さい。
【0055】
【発明の実施の形態】
以下図面を参照して実施形態の装置について説明する。
【0056】
図1は実施形態の構成を側面からみた図である。
【0057】
同図1に示すように、実施形態の単結晶引上げ装置1は、単結晶引上げ用容器としてのCZ炉(チャンバ)2を備えている。図1の単結晶引上げ装置1は、大径、大重量の単結晶シリコンインゴット6を製造するに好適な装置である。
【0058】
CZ炉2内には、多結晶シリコンの原料を溶融して融液5として収容する石英るつぼ3が設けられている。石英るつぼ3は、その外側が黒鉛るつぼ11によって覆われている。石英るつぼ3の外側にあって側方には、石英るつぼ3内の多結晶シリコン原料を加熱して溶融する主ヒータ9が設けられている。石英るつぼ3の底部には、石英るつぼ底面を補助的に加熱して、石英るつぼ3の底部の融液5の固化を防止する補助ヒータ(ボトムヒータ)19が設けられている。主ヒータ9、補助ヒータ19はそれらの出力(パワー;kW)は独立して制御され、融液5に対する加熱量が独立して調整される。たとえば、融液5の温度が検出され、検出温度をフィードバック量とし融液5の温度が目標温度になるように、主ヒータ9、補助ヒータ10の各出力が制御される。
【0059】
なお実施形態ではヒータ9、19によって融液5を外部より加熱しているが、加熱手段としてはヒータに限定されるものではなく、いかなる加熱手段を使用してもよい。たとえば電磁加熱による方法、レーザ照射による加熱を採用してもよい。
【0060】
主ヒータ9とCZ炉2の内壁との間には、保温筒13が設けられている。
【0061】
石英るつぼ3の上方には引上げ機構4が設けられている。引上げ機構4は、引上げ軸4aと引上げ軸4aの先端のシードチャック4cを含む。シードチャック4cによって種結晶14が把持される。
【0062】
石英るつぼ3内で多結晶シリコン(Si)が加熱され溶融される。融液5の温度が安定化すると、引上げ機構4が動作し融液5から単結晶シリコン(単結晶シリコンインゴット)6が引き上げられる。すなわち引上げ軸4aが降下され引上げ軸4aの先端のシードチャック4cに把持された種結晶14が融液5に浸漬される。種結晶14を融液5になじませた後引上げ軸4aが上昇する。シードチャック4cに把持された種結晶14が上昇するに応じて単結晶シリコン6が成長する。引上げの際、石英るつぼ3は回転軸10によって回転速度ω1で回転する。また引上げ機構4の引上げ軸4aは回転軸10と逆方向にあるいは同方向に回転速度ω2で回転する。
【0063】
また回転軸10は鉛直方向に駆動することができ、石英るつぼ3を上下動させ任意の位置に移動させることができる。
【0064】
CZ炉2内と外気を遮断することで炉2内は真空(たとえば20Torr程度)に維持される。すなわちCZ炉2には不活性ガスとしてのアルゴンガス7が供給され、CZ炉2の排気口からポンプによって排気される。これにより炉2内は所定の圧力に減圧される。
【0065】
単結晶引上げのプロセス(1バッチ)の間で、CZ炉2内には種々の蒸発物が発生する。そこでCZ炉2にアルゴンガス7を供給してCZ炉2外に蒸発物とともに排気してCZ炉2内から蒸発物を除去しクリーンにしている。アルゴンガス7の供給流量は1バッチ中の各工程ごとに設定する。
【0066】
単結晶シリコン6の引上げに伴い融液5が減少する。融液5の減少に伴い融液5と石英るつぼ3との接触面積が変化し石英るつぼ3からの酸素溶解量が変化する。この変化が、引き上げられる単結晶シリコン6中の酸素濃度分布に影響を与える。そこで、これを防止するために、融液5が減少した石英るつぼ3内に多結晶シリコン原料または単結晶シリコン原料を引上げ後あるいは引上げ中に追加供給してもよい。
【0067】
石英るつぼ3の上方にあって、単結晶シリコン6の周囲には、略逆円錐台形状の熱遮蔽板8(ガス整流筒)が設けられている。熱遮蔽板8は、保温筒13に支持されている。熱遮蔽板8は、CZ炉2内に上方より供給されるキャリアガスとしてのアルゴンガス7を、融液表面5aの中央に導き、さらに融液表面5aを通過させて融液表面5aの周縁部に導く。そして、アルゴンガス7は、融液5から蒸発したガスとともに、CZ炉2の下部に設けた排気口から排出される。このため液面上のガス流速を安定化することができ、融液5から蒸発する酸素を安定な状態に保つことができる。
【0068】
また熱遮蔽板8は、種結晶14および種結晶14により成長される単結晶シリコン6を、石英るつぼ3、融液5、主ヒータ9などの高温部で発生する輻射熱から、断熱、遮蔽する。また熱遮蔽板8は、単結晶シリコン6に、炉内で発生した不純物(たとえばシリコン酸化物)等が付着して、単結晶育成を阻害することを防止する。熱遮蔽板8の下端と融液表面5aとの間隙のギャップGの大きさは、回転軸10を上昇下降させ、石英るつぼ3の上下方向位置を変化させることで調整することができる。また熱遮蔽板8を昇降装置により上下方向に移動させてギャップGを調整してもよい。
【0069】
また図1の単結晶引上げ装置1に代えて図2に示す単結晶引上げ装置1を使用してもよい。
【0070】
図2に示す装置では、補助ヒータ19の配設が省略され、主ヒータ9が石英るつぼ3の上下方向に沿って、上下2段のヒータ9a、9bに分割されている。ヒータ9a、9bは、石英るつぼ3に対する加熱量、つまり出力を独立して調整することができる。上側ヒータ9a、下側ヒータ9bの出力の比率を調整することによって、石英るつぼ3の底部の融液5の固化が防止されるとともに、引き上げられる単結晶シリコン6の酸素濃度分布が制御される。実施形態装置では、ヒータ9を2段に分割しているが、3以上に分割してもよい。
【0071】
(第1実施例)
図5は、種結晶14の直径D(mm)を横軸にとり、着液する際の種結晶14の先端の温度と融液5の温度との許容温度差ΔT(K)を縦軸にとり、直径Dと許容温度差ΔTの間の対応関係を特性L1、L2、L3にて示している。特性L1、L2、L3に示すように、種結晶直径Dと許容温度差ΔTとの間にはほぼ反比例の関係が成立する。つまり種結晶直径Dが大きくなるに伴い、着液時に種結晶14に印加される熱衝撃応力は大きくなり、それに応じて許容温度差ΔTを小さくする必要がある。
【0072】
ここで許容温度差ΔTとは、種結晶14中に転位が導入されない上限の温度差のことである。
【0073】
特性L1、L2、L3は、種結晶14の機械的強度の指標の一つである臨界分解煎断応力(CRSS;MPa)の大きさの違いを示している。臨界分解煎断応力(CRSS)とは、この応力を超えると種結晶14に転位が導入される臨界的な応力のことである。図中で特性L1が臨界分解煎断応力(CRSS)が最も小さく(5MPa)、特性L2が特性L1よりも臨界分解煎断応力(CRSS)が大きく(10MPa)、特性L3が臨界分解煎断応力(CRSS)が最も大きい(15MPa)。
【0074】
臨界分解煎断応力(CRSS)は、種結晶14に添加される不純物の種類、濃度Cによって変化する。本実施形態では不純物の種類としてボロンBを想定している。
【0075】
種結晶14に添加される不純物の濃度Cが高くなるに応じて臨界分解煎断応力(CRSS)が大きくなる。種結晶14に添加される不純物の濃度CがC1、C2、C3と高くなるに応じて特性がL1、L2、L3と変化する。なお図5では不純物の濃度Cが3種類の場合を代表して示しているが、不純物の濃度Cが、より多段階に、また連続的に変化するに応じて、特性は多段階に、あるいは連続的に変化する。
【0076】
このため種結晶14の直径Dがたとえば同じ値D′3であれば不純物濃度CがC1、C2、C3と高くなるに応じてL1、L2、L3と変化するので、許容温度差ΔTは大きくなる。また許容温度差ΔTがたとえば同じ値ΔT0であれば種結晶14の直径DがD1、D2、D3と大きくなるに応じてL1、L2、L3と変化するので、不純物濃度CをC1、C2、C3と大きくすればよい。
【0077】
不純物の種類がボロンBの場合について説明したが、ボロンB以外のゲルマニウムGe、インジウムIn等の各種不純物を種結晶14に添加する場合にも同様の関係が成立し得る。
【0078】
つぎに図5に示す関係を用いて図1に示す主ヒータ9、補助ヒータ19の各出力を制御する処理の手順を説明する。
【0079】
まず種結晶5に添加されている不純物の濃度Cに対応する特性が図5に示す特性L1、L2、L3の中から選択される。たとえば不純物濃度CがC3の場合には特性L3が選択される。つぎに種結晶5の直径Dに対応する許容温度差ΔTが、選択された特性L3から求められる。たとえば種結晶5の直径DがD′3であれば特性L3上の対応する点から許容温度差ΔT1が求められる。なお種結晶5の直径D′3としては大径、大重量の単結晶シリコンインゴット6を引上げ中あるいは引上げ後の冷却から取り出しに至るまでの間、破断による落下等の不具合がなく把持装置等を使用せずネッキング部のみで保持できる太さに設定される。
【0080】
図4は、種結晶14が融液5に着液される前の状態を示している。シードチャック4cに把持された種結晶14が融液5に浸漬される直前に、引上げ軸4aの降下を停止して種結晶14の先端と融液表面5aとの距離を一定距離たとえば10mmに保持する。
【0081】
つぎに補助ヒータ19の出力がオフ(0kW)にされる。
【0082】
図6は、横軸に種結晶14の先端から種結晶14の各部までの中心軸c上の距離をとり、縦軸に、種結晶14の中心軸14c上の温度をとり、補助ヒータ19の出力が通常の40kWに維持されている場合の種結晶14の各部の温度分布L4と、補助ヒータ19の出力をオフ(0kW)した場合の種結晶14の各部の温度分布L5とを比較して示している。同図6は種結晶14の先端と融液表面5aとの距離が10mmに保持されているときの温度分布L4、L5を示している。
【0083】
同図6に示すように補助ヒータ19の出力を40kWの状態からオフ(0kW)に切り換えると、融液5の温度を目標温度に維持するために、主ヒータ9の出力が上昇する。このため主ヒータ9の上昇した出力によって、種結晶14には、より多くの輻射熱量が与えられ、種結晶14の温度が上昇する。このため種結晶14の中心軸14cに沿った各部温度は上昇し温度分布はL4からL5に変化する。このため種結晶14の先端の温度と融液5の温度との温度差が、図5に示す関係から求めた許容温度差ΔT1に調整される。たとえば保護管により被覆された熱電対によって、あるいはカーボン球等の耐熱部材を融液5上の種結晶先端位置に設置し、この温度を放射温度計により測定することによって種結晶14の温度が検出され、一方で融液5の温度が検出される。融液5の温度センサは、ヒータ9、19の出力の制御に使用される既存のセンサを使用することができる。そして種結晶14の検出温度と融液5の検出温度との温度差が実際の温度差ΔTとして求められる。あるいは計算機シミュレーションにより種結晶14の先端温度と融液5の温度を算出し、これにより実際の温度差ΔTを求めてもよい。この場合、シミュレーションによって求めた値と、実際の温度差ΔTが実施上問題のない範囲で一致していることを事前に確認しておく必要がある。こうして計測された実際の温度差ΔTが許容温度差ΔT1に達しているかどうかが見極められる。
【0084】
また図6では補助ヒータ19をオフしているが、補助ヒータ19を通常の出力(40kW)よりも低減させてもよい。この場合、計測された実際の温度差ΔTと許容温度差ΔT1との差をフィードバック量として、図5に示す関係から求めた許容温度差ΔT1が目標値として得られるように、補助ヒータ19の出力の低減量が制御される。
【0085】
着液前の種結晶14の先端の温度と融液5の温度との温度差が、図5に示す関係から求めた許容温度差ΔT1に一致したならば、引上げ軸4aを降下させ種結晶14が融液5に浸漬させる。種結晶14を融液5になじませた後引上げ軸4aが上昇する。シードチャック4cに把持された種結晶14が上昇するに応じて単結晶シリコン6が成長する。この場合ネッキング処理を施すことなく、つまり種結晶14をより細くする処理を施すことなく、肩付け工程、直胴工程、テール工程を経て単結晶シリコンインゴット6が製造される。
【0086】
以上のように、本実施例によれば、種結晶14に転位を導入させないための許容温度差ΔTの臨界的な数値が、特性L1、L2、L3として明確に予め設定されており、この特性L1、L2、L3に基づき許容温度差ΔT1を求め、この許容温度差ΔT1が得られるように、主ヒータ9、補助ヒータ19の各出力を制御するようにしたので、温度差ΔTを必要以上に小さくすることなく、つまり種結晶14の温度をオーバースペックな値まで上昇させることなく種結晶14への転位の導入を防ぐことができる。このため種結晶14が融液5に着液する前に溶解することを防止することができ、着液前の種結晶14の径の縮小を抑制できる。また石英るつぼ3への熱負荷を低減できる。
【0087】
また図5に示すように、種結晶14の直径Dが値D′3で同じであれば種結晶14中の不純物(たとえばボロンB)の濃度Cを高くすることによって許容温度差ΔT1を大きくすることができる。このため種結晶14の不純物濃度を高めることによって、種結晶14の温度の上昇をより一層低く抑えつつ転位導入を防ぐことができる。
【0088】
また本実施例では、既存の単結晶引上げ装置1に通常備えられているヒータ9、19をそのまま利用することができ、種結晶14を加熱するだけのために新たに加熱装置等を追加する必要がないので部品点数の増加を抑制し装置コストを低減させることができる。
【0089】
(第2実施例)
上述した第1実施例では補助ヒータ19の出力をオフするか減少させる制御を行うことで転位導入を防ぐようにしているが、このような制御を行うことなく、種結晶14の不純物濃度Cを調整することにより転位導入を防ぐようにしてもよい。
【0090】
すなわち図5に示すように、種結晶14の先端温度と融液5の温度との温度差がΔT0であれば、種結晶14中の不純物濃度CをC1、C2、C3と高くすることによって、種結晶14の直径DをD1、D2、D3と大きくすることができる。
【0091】
そこで温度差ΔT0と種結晶5の直径D3に対応する特性L3が、図5に示す特性L1、L2、L3の中から選択される。ここで温度差ΔT0は、たとえば図6に示すように補助ヒータ19の出力を通常の40kWに維持しているときの種結晶14の先端温度と融液5の温度との温度差である。また種結晶14の直径D3としては大径、大重量の単結晶シリコンインゴット6を引上げ中あるいは引上げ後の冷却から取り出しに至るまでの間、破断による落下等の不具合がなく把持装置等を使用せずネッキング部のみで保持できる太さに設定される。
【0092】
つぎに種結晶14中の不純物濃度Cが、選択された特性L3に対応する不純物濃度C3になるように種結晶14に不純物が添加される。
【0093】
つぎに濃度C3の不純物が添加された種結晶14を用いて通常のCZ法で単結晶シリコン6が引き上げられる。
【0094】
本実施例によれば温度差ΔTを制御することなく種結晶14の不純物濃度Cを調整するだけで、着液時に種結晶14中への転位の導入を防ぐことができるとともに、大径、大重量の単結晶シリコンインゴット6を引き上げることができる。
【0095】
(第3実施例)
上述した第1実施例では、図1に示す装置の構成を前提として説明したが、図2に示す装置構成に、第1実施例の制御内容を適用してもよい。
【0096】
この場合、図1の側方ヒータ9、底部ヒータ19をそれぞれ、図2における上側ヒータ9a、下側ヒータ9bに代えて、第1実施例と同様の制御が実行される。すなわち下側ヒータ9bの出力をオフするか減少させる制御を行うことによって上側ヒータ9aの出力を上昇させ種結晶14の温度を上昇させて、種結晶14の先端温度と融液5との温度差ΔTを、図5に示す関係から求めた許容温度差ΔT1に調整する。
【0097】
(第4実施例)
第1実施例、第3実施例では、複数のヒータの各出力を制御することによって、図5に示す関係から求めた許容温度差ΔT1になるように調整しているが、図1の単結晶引上げ装置1が、磁場印加引上げ法を用いて単結晶シリコン6を引き上げる装置の場合には、融液5に印加する磁場を制御することによって、図5に示す関係から求めた許容温度差ΔT1になるように調整してもよい。
【0098】
すなわち単結晶シリコン6に取り込まれる酸素濃度は、融液5内で発生する対流に影響されることが、当業者の間で知られている。石英るつぼ3内での対流の発生を抑制する技術として、磁場印加引上げ法と呼ばれる技術がある。これは融液5に磁場を印加することによって融液5中の対流を抑制して、安定した結晶成長を行うという方法である。
【0099】
そこで図4に示すように種結晶14が融液5に着液される前の状態で、融液5に磁場を印加し、融液5内の対流を抑制する。このため融液5内で熱伝達が抑制され、融液5の温度が低下するので融液5の温度を目標温度に維持すべく主ヒータ9の出力が上昇する。この結果第1実施例と同様にして種結晶14の先端温度が上昇し種結晶先端温度と融液温度との温度差が図5に示す関係から求めた許容温度差ΔT1に調整される。
【0100】
(第5実施例)
第1実施例、第3実施例では、加熱手段の出力を制御することによって、図5に示す関係から求めた許容温度差ΔT1に一致するように調整しているが、もちろん許容温度差ΔT1を下回るように調整してもよい。
【0101】
また加熱手段の出力を制御するだけで、図5に示す関係から求めた許容温度差ΔT1以下に入らない場合には、他の諸条件を変更して許容温度差ΔT1以下に入るように調整することができる。たとえば補助ヒータ19をオフしただけでは許容温度差ΔT1以下にならない場合には、上述したように融液5に磁場を印加することによって許容温度差ΔT1以下に入るように調整することができる。また、石英るつぼ3を下降させ、ギャップGを大きくすることによって、種結晶14に効率よく主ヒータ9からの輻射熱を伝熱させて、許容温度差ΔT1以下に入るように調整することができる。また回転軸10の回転速度ω1、引上げ軸4aの回転速度ω2を変更することによって(回転軸10、引上げ軸4aの回転を停止させることによって)、許容温度差ΔT1以下に入るように調整することができる。
【0102】
ただし、種結晶14が融液5に浸漬され単結晶シリコン6として引き上げられる際には、これら変更した諸条件は引上げに適した値に戻すことが望ましい。
【0103】
(第6実施例)
上述した第1実施例、第2実施例では、加熱手段の出力を制御することによって許容温度差ΔTになるように調整しているが、図3に示すように、種結晶14の近傍に熱を反射する反射板4dを設け、この反射板4dによって許容温度差ΔTになるように調整してもよい。
【0104】
図3は、種結晶14が融液5に着液される前の状態を示している。シードチャック4cには、石英るつぼ3、融液5、主ヒータ9などの高温部から発生する輻射熱を反射して種結晶14に集中して加えるとともに種結晶14からの放熱を抑制する反射板4dが取り付けられている。反射板4dの材料としては高強度で高断熱性能を有する材料、たとえばカーボンコンポジット材が使用される。またシードチャック4cの材料としても高強度で高断熱性能を有する材料、たとえばカーボンコンポジット材を使用することが望ましい。
【0105】
種結晶14に加えられる熱量つまり種結晶14の先端の温度は、反射板4dの幅2Wに応じて増加するものと考えられる。
【0106】
図7は反射板4dの幅2Wの大きさに応じて種結晶14の先端部14aの温度が変化する様子を示すシミュレーション結果を示す。図7は種結晶14の先端と融液表面5aとの距離を一定距離たとえば10mmに保持した場合を示している。
【0107】
図7においてA1はシードチャック4cに反射板4dが取り付けられていない場合であり、種結晶14の先端部14aの温度が最も低くなっているのがわかる。A2はシードチャック4cに、幅2Wの小さな反射板4′dが取り付けられた場合であり、種結晶14の先端部14aの温度がA1よりも高くなっているのがわかる。またA3はシードチャック4cにA2よりも幅2Wが大きい反射板4dが取り付けられた場合であり、種結晶14の先端部14aの温度が最も高くなっているのがわかる。
【0108】
こうしたシミュレーション結果から、種結晶14の先端温度を上昇させ種結晶先端温度と融液温度との温度差を、図5に示す関係から求めた許容温度差ΔT1にするに適した幅2Wの反射板4dが作成され、シードチャック4cに取り付けられる。
【0109】
そこで図3に示すように、シードチャック4cに把持された種結晶14が融液5に浸漬される直前に、引上げ軸4aの降下を停止して種結晶14の先端と融液表面5aとの距離を一定距離たとえば10mmに保持する。
【0110】
このため反射板4dによって種結晶14の先端の温度が上昇し種結晶14の先端温度と融液5の温度との温度差が、図5に示す関係から求めた許容温度差ΔT1に一致する。なお許容温度差ΔT1になったことは熱電対等の温度センサで検出してもよく、また温度センサで検出することなく一定時間経過をもって許容温度差ΔT1に達したものとみなしてもよい。
【0111】
着液前の種結晶14の先端の温度と融液5の温度との温度差が、図5に示す関係から求めた許容温度差ΔT1に一致したならば、引上げ軸4aを降下させ種結晶14が融液5に浸漬させる。種結晶14を融液5になじませた後引上げ軸4aが上昇する。シードチャック4cに把持された種結晶14が上昇するに応じて単結晶シリコン6が成長する。この場合ネッキング処理を施すことなく、つまり種結晶14をより細くする処理を施すことなく、肩付け工程、直胴工程、テール工程を経て単結晶シリコンインゴット6が製造される。
【0112】
なお反射板4dはシードチャック4cに取り付けるようにしているが、取付場所は任意であり、種結晶14の近傍に、ヒータ9等からの輻射熱を種結晶14に集中して与え種結晶14からの放熱を抑制できる態様で取り付けることができればよい。
【0113】
また種結晶14の先端を目視で確認するために図8に示すように反射板4dの一部に切欠き4eを形成してもよい。CZ炉2に設けた覗き窓、反射板4dの切欠き4eを通して種結晶14の着液前の状態、着液する様子を視認することができる。
【0114】
以上のように、本実施例によれば、種結晶14の近傍に取り付けた反射板4dによって、ヒータ9等からの輻射熱を種結晶14に集中して与え種結晶14からの放熱を抑制するようにしているので、種結晶14の温度が上昇するのみで、融液5の温度変動に与える影響は少ない。
【0115】
なお以上説明した実施形態では単結晶シリコンを引き上げる場合を想定しているが、引き上げられる単結晶はシリコン以外の半導体でもよい。
【0116】
ところで、表面が{100}結晶面となっているシリコンウェーハ(<100>軸結晶)を製造する場合については、従来よりすべり転位を除去する技術が確立されている。すなわち<100>結晶方位が種結晶の軸方向と一致するように、種結晶を引き上げる際には、種結晶を融液に着液させた後に、単結晶シリコンの直径を徐々に絞るネッキング処理を施すことで、すべり転位を単結晶シリコンから容易に除去することができる。
【0117】
しかし、表面が{110}結晶面となっているシリコンウェーハ(<110>軸結晶)を製造する場合、つまり<110>結晶方位が種結晶の軸方向と一致するように引き上げる場合には、すべり転位を除去することは困難であることが判明し、すべり転位を除去する技術は未だ確立されていない。
【0118】
<110>結晶方位が種結晶の軸方向と一致するように引き上げる場合には、ネッキング工程で、単結晶シリコンの径を相当絞ったとしても、結晶中心部に転位が残存し易く、半導体デバイス不良の要因になる。単結晶シリコンの径を<100>軸結晶を引き上げるときよりも相当細く絞らないと、すべり転位を除去することができない。
【0119】
そこで<110>軸結晶の単結晶シリコン6を引き上げる場合に、上述した第1実施例〜第6実施例を適用して、径を太くした状態で引き上げるようにしてもよい。
【図面の簡単な説明】
【図1】図1は実施形態の単結晶引上げ装置を示す図である。
【図2】図2は図1とは異なる単結晶引上げ装置を示す図である。
【図3】図3は反射板の取付例を示す図である。
【図4】図4は種結晶が融液に浸漬される前の状態を示す図である。
【図5】図5は種結晶の直径と許容温度差の関係を示す図である。
【図6】図6は、種結晶先端からの距離と種結晶中心軸上の温度との関係を示す図である。
【図7】図7は、反射板の幅に応じて種結晶の先端の温度が変化する様子を示す図である。
【符号の説明】
3 石英るつぼ
4d 反射板
5 融液
6 単結晶シリコン
8 熱遮蔽板(ガス整流塔)
9、9a、9b、19 ヒータ
14 種結晶

Claims (5)

  1. 種結晶を融液に着液させ、前記種結晶を引き上げることにより単結晶半導体を製造する単結晶半導体の製造方法において、
    着液する際の種結晶と融液との温度差が、種結晶中の熱応力が臨界分解剪断応力を越えることにより、種結晶中に転位が導入されることのない上限の温度差である許容温度差になるように、許容温度差と種結晶の直径との関係を予め設定し、
    前記関係に基づいて、着液しようとする種結晶の直径に対応する許容温度差を求め、
    種結晶が融液に着液する際に、種結晶と融液との温度差が、求めた許容温度差以内になるように、るつぼの外側に設けられ、当該るつぼに対する加熱量を独立して調整される複数の加熱手段の加熱量を制御する方法および熱遮蔽板の下端と融液表面との間隙の距離を大きくする方法のうちのいずれかまたは両方の方法を用いて温度を調整すること
    を特徴とする単結晶半導体の製造方法。
  2. 不純物が添加された種結晶を融液に着液させ、前記種結晶を引き上げることにより単結晶半導体を製造する単結晶半導体の製造方法において、
    着液する際の種結晶と融液との温度差が、種結晶中の熱応力が臨界分解剪断応力を越えることにより、種結晶中に転位が導入されることのない上限の温度差である許容温度差になるように、許容温度差と種結晶の直径と種結晶中の不純物濃度との関係を予め設定し、
    前記関係に基づいて、着液しようとする種結晶の直径、種結晶中の不純物濃度に対応する許容温度差を求め、
    種結晶が融液に着液する際に、種結晶と融液との温度差が、求めた許容温度差以内になるように、るつぼの外側に設けられ、当該るつぼに対する加熱量を独立して調整される複数の加熱手段の加熱量を制御する方法および熱遮蔽板の下端と融液表面との間隙の距離を大きくする方法のうちのいずれかまたは両方の方法を用いて温度を調整すること
    を特徴とする単結晶半導体の製造方法。
  3. 種結晶を融液に着液させた後に、単結晶半導体の直径を徐々に絞るネッキング処理を施すことなく単結晶半導体を成長させること
    を特徴とする請求項1または2記載の単結晶半導体の製造方法。
  4. 前記複数の加熱手段は、るつぼの外側の上下方向の各位置に設けられた加熱手段であり、下側の加熱手段の出力を低減若しくはオフにすることにより、種結晶が融液に着液する際の種結晶と融液との温度差を、許容温度差以内にすること
    を特徴とする請求項1乃至3いずれか記載の単結晶半導体の製造方法。
  5. さらに熱反射板を、シードチャックに取り付けることにより種結晶の温度を調整することを特徴とする請求項1乃至4いずれか記載の単結晶半導体の製造方法
JP2002204178A 2002-07-12 2002-07-12 単結晶半導体の製造方法、単結晶半導体の製造装置 Expired - Lifetime JP4184725B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002204178A JP4184725B2 (ja) 2002-07-12 2002-07-12 単結晶半導体の製造方法、単結晶半導体の製造装置
TW092118822A TW200415267A (en) 2002-07-12 2003-07-10 Process for producing single-crystal semiconductor and apparatus for producing single-crystal semiconductor
DE10392918T DE10392918T5 (de) 2002-07-12 2003-07-10 Verfahren zur Herstellung eines Einkristallhalbleiters und Vorrichtung zur Herstellung eines Einkristallhalbleiters
PCT/JP2003/008744 WO2004007814A1 (ja) 2002-07-12 2003-07-10 単結晶半導体の製造方法、単結晶半導体の製造装置
US11/005,180 US7235128B2 (en) 2002-07-12 2004-12-06 Process for producing single-crystal semiconductor and apparatus for producing single-crystal semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002204178A JP4184725B2 (ja) 2002-07-12 2002-07-12 単結晶半導体の製造方法、単結晶半導体の製造装置

Publications (3)

Publication Number Publication Date
JP2004043252A JP2004043252A (ja) 2004-02-12
JP2004043252A5 JP2004043252A5 (ja) 2005-10-27
JP4184725B2 true JP4184725B2 (ja) 2008-11-19

Family

ID=30112701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002204178A Expired - Lifetime JP4184725B2 (ja) 2002-07-12 2002-07-12 単結晶半導体の製造方法、単結晶半導体の製造装置

Country Status (5)

Country Link
US (1) US7235128B2 (ja)
JP (1) JP4184725B2 (ja)
DE (1) DE10392918T5 (ja)
TW (1) TW200415267A (ja)
WO (1) WO2004007814A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7396406B2 (en) 2004-02-09 2008-07-08 Sumco Techxiv Corporation Single crystal semiconductor manufacturing apparatus and method
JP4683184B2 (ja) * 2004-11-04 2011-05-11 信越半導体株式会社 単結晶引上げ装置のシードチャック
JP4753308B2 (ja) 2006-07-13 2011-08-24 Sumco Techxiv株式会社 半導体ウェーハ素材の溶解方法及び半導体ウェーハの結晶育成方法
JP2008088045A (ja) * 2006-09-05 2008-04-17 Sumco Corp シリコン単結晶の製造方法およびシリコンウェーハの製造方法
JP5445631B2 (ja) * 2006-09-05 2014-03-19 株式会社Sumco シリコンウェーハの製造方法
JP5070916B2 (ja) * 2007-04-23 2012-11-14 株式会社Sumco シリコン単結晶およびシリコンウェーハ
JP5182234B2 (ja) * 2009-06-22 2013-04-17 株式会社Sumco シリコン単結晶の製造方法
DE102010029741B4 (de) * 2010-06-07 2013-02-28 Solarworld Innovations Gmbh Verfahren zum Herstellen von Silizium-Wafern, Silizium Wafer und Verwendung eines Silizium-Wafer als Silizium-Solarzelle
JP5801730B2 (ja) * 2012-01-20 2015-10-28 トヨタ自動車株式会社 単結晶の製造装置に用いられる種結晶保持軸及び単結晶の製造方法
KR101623641B1 (ko) * 2014-08-04 2016-05-23 주식회사 엘지실트론 잉곳성장장치
JP6428461B2 (ja) * 2015-04-17 2018-11-28 株式会社Sumco 種結晶の温度測定方法、および単結晶の製造方法
CN107151817A (zh) * 2016-03-03 2017-09-12 上海新昇半导体科技有限公司 单晶硅的生长方法及其制备的单晶硅锭
JP6579046B2 (ja) * 2016-06-17 2019-09-25 株式会社Sumco シリコン単結晶の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294783A (ja) * 1992-04-15 1993-11-09 Kawasaki Steel Corp シリコン単結晶の製造装置
JP3907727B2 (ja) * 1995-12-26 2007-04-18 信越半導体株式会社 単結晶引き上げ装置
KR100293095B1 (ko) 1996-02-29 2001-10-25 고지마 마타오 단결정향상방법과 단결정향상장치
US6042646A (en) * 1997-01-29 2000-03-28 Komatsu Electric Metals Co., Ltd. Simple method for detecting temperature distributions in single crystals and method for manufacturing silicon single crystals by employing the simple method
US6042644A (en) * 1997-07-25 2000-03-28 Komatsu Electronic Metals Co., Ltd. Single crystal pulling method
JP3267225B2 (ja) 1997-12-26 2002-03-18 住友金属工業株式会社 単結晶引き上げ方法、及び単結晶引き上げ装置
JPH11302096A (ja) 1998-02-18 1999-11-02 Komatsu Electronic Metals Co Ltd 単結晶製造用種結晶、単結晶製造用種結晶の製造方法、及び単結晶製造方法
JP2001106593A (ja) 1999-10-08 2001-04-17 Komatsu Electronic Metals Co Ltd 単結晶製造方法

Also Published As

Publication number Publication date
US7235128B2 (en) 2007-06-26
US20050139149A1 (en) 2005-06-30
TWI294924B (ja) 2008-03-21
JP2004043252A (ja) 2004-02-12
TW200415267A (en) 2004-08-16
WO2004007814A1 (ja) 2004-01-22
DE10392918T5 (de) 2005-06-30

Similar Documents

Publication Publication Date Title
JP4184725B2 (ja) 単結晶半導体の製造方法、単結晶半導体の製造装置
JP4791073B2 (ja) シリコンウェーハの製造方法
JP3724571B2 (ja) シリコン単結晶の製造方法及びシリコン単結晶の製造装置
JP4780705B2 (ja) 単結晶半導体の製造装置および製造方法
JP2008189525A (ja) 単結晶引上装置
JP4209325B2 (ja) 単結晶半導体の製造装置および製造方法
WO2017159028A1 (ja) シリコン単結晶の製造方法
JP2009114054A (ja) 酸素濃度特性が改善した半導体単結晶の製造方法
JP2008019125A (ja) 半導体ウェーハ素材の溶解方法及び半導体ウェーハの結晶育成方法
JP6631460B2 (ja) シリコン単結晶の製造方法およびシリコン単結晶
JP5170061B2 (ja) 抵抗率計算プログラム及び単結晶の製造方法
EP2322696A1 (en) Method of manufacturing silicon single crystal
JP4758338B2 (ja) 単結晶半導体の製造方法
WO2017082112A1 (ja) シリコン単結晶の製造方法
JP5724226B2 (ja) シリコン単結晶の育成方法
WO2005075715A1 (ja) 単結晶半導体の製造方法
JP2009274928A (ja) 分割式ヒーターならびにこれを用いた単結晶引上げ装置および引上げ方法
WO2021095324A1 (ja) シリコン単結晶の製造方法
JP2007308335A (ja) 単結晶引上げ方法
JP2002321997A (ja) シリコン単結晶の製造装置及びそれを用いたシリコン単結晶の製造方法
WO1999037833A1 (fr) Appareil de tirage de cristal unique
JP2007031235A (ja) 単結晶製造装置
JP2008127216A (ja) 半導体単結晶製造方法
JP2004292288A (ja) シリコン単結晶原料の溶解方法
TWI751028B (zh) 單晶矽的製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4184725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term