JP3128795B2 - チョクラルスキー法による結晶製造装置および製造方法 - Google Patents

チョクラルスキー法による結晶製造装置および製造方法

Info

Publication number
JP3128795B2
JP3128795B2 JP07143586A JP14358695A JP3128795B2 JP 3128795 B2 JP3128795 B2 JP 3128795B2 JP 07143586 A JP07143586 A JP 07143586A JP 14358695 A JP14358695 A JP 14358695A JP 3128795 B2 JP3128795 B2 JP 3128795B2
Authority
JP
Japan
Prior art keywords
crystal
heat insulating
insulating cylinder
manufacturing apparatus
crystal manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07143586A
Other languages
English (en)
Other versions
JPH08337491A (ja
Inventor
昌弘 桜田
友彦 太田
清隆 高野
雅規 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP07143586A priority Critical patent/JP3128795B2/ja
Priority to US08/655,810 priority patent/US5817171A/en
Priority to DE69610021T priority patent/DE69610021T2/de
Priority to EP96303990A priority patent/EP0747515B1/en
Priority to KR1019960019998A priority patent/KR100270056B1/ko
Publication of JPH08337491A publication Critical patent/JPH08337491A/ja
Priority to US09/090,400 priority patent/US5938842A/en
Application granted granted Critical
Publication of JP3128795B2 publication Critical patent/JP3128795B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1068Seed pulling including heating or cooling details [e.g., shield configuration]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1076Apparatus for crystallization from liquid or supercritical state having means for producing a moving solid-liquid-solid zone
    • Y10T117/1088Apparatus for crystallization from liquid or supercritical state having means for producing a moving solid-liquid-solid zone including heating or cooling details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明はチョクラルスキー法によ
って、結晶を育成する際に用いる装置およびこの装置を
用いて結晶を製造する方法に関するものである。
【0002】
【従来の技術】近年、半導体デバイスの高集積化、高精
度化が増々進み、半導体結晶基板への品質要求も厳しく
なる一方である。半導体結晶は主にチョクラルスキー法
(引き上げ法)で製造されており、更なる高純度化、低
欠陥化、均一化を計るべく努力が続けられている。最近
では、原料の高純度化や使用部材の高純度化、装置の高
精度化のみならず、成長中の結晶の熱履歴が結晶欠陥等
に大きく影響することが判明してきている。例えば、シ
リコンにおいてはOSF(Oxidation Induced Stacking
Faults)、酸素析出、BMD(Bulk Micro-Defect )、
FPD(Flow Pattern Defect )、LSTD(Laser Sc
attering Tomography Defect)そして酸化膜耐圧等が熱
履歴に影響され、またGaP、GaAs、InP等の化
合物半導体では転位密度やドナーあるいはアクセプター
として働く欠陥レベルが熱履歴に大きく影響されること
が解明されている。従って、結晶成長中の熱履歴を調整
することで結晶中の欠陥を制御すべく、種々の炉内構造
をもつ結晶製造装置が提案されている(例えば、H.Yama
gishi,I.Fusegawa,K.Takano,E.Iino,N.Fujimaki,T.Ohta
and M.Sakurada : Proceedings of the 17th interna
tional symposium onSilicon Materials Science and T
echnology,SEMICONDUCTOR SILICON 1994,p124〜135 参
照)。しかし、これらの装置あるいは方法は部分的な特
定の位置における温度を上げるかあるいは下げる事のみ
しかできず、炉内の温度分布全体の調整はできないし、
特定の位置の制御も成長結晶全体の温度を上げるか下げ
るかだけで自由度がなく、精度が不完全である。さらに
は、特定の温度領域のみの制御をすることはきわめて困
難である。また、新たな課題のため温度分布を変更する
必要がある場合には、装置全体の設計変更が必要とな
り、一からやり直しになるという不利益がある。
【0003】
【発明が解決しようとする課題】本発明はこのような問
題点に鑑みなされたもので、チョクラルスキー法によっ
て育成される結晶の成長中の熱履歴を容易に、かつ精度
よく制御できる結晶製造装置およびその製造方法を提供
することを目的とする。
【0004】
【課題を解決するための手段】本発明者らはチョクラル
スキー法において用いられるルツボおよびヒーターを囲
繞する断熱筒の構造に着目し本発明を完成させたもので
その主な要旨は、原料を収容するルツボと原料を加熱溶
融するヒーターとこれらを囲繞する断熱筒とを具備する
チョクラルスキー法による結晶製造装置であって、前記
断熱筒が鉛直方向に分割され断裂部を有することを特徴
とするチョクラルスキー法による結晶製造装置である。
そしてこの断熱筒の断裂部を複数設けること、断熱筒の
断裂部をルツボ内の原料の湯面より上部に設けること、
断熱筒の材質が炭素繊維成型材であること、分割された
断熱筒の厚さを相互に変更させること、分割された断熱
筒の材質を相互に変更させること、さらには製造する結
晶がシリコン、ゲルマニウム、GaP、GaAs、In
Pであることをも要旨とする。また、前記結晶製造装置
を用いて、シリコン又はゲルマニウム、GaP、GaA
s、InPの単結晶を製造する方法、チョクラルスキー
法における結晶製造装置内の温度分布を制御する方法、
チョクラルスキー法により製造される結晶の熱履歴を制
御する方法も要旨とする。
【0005】以下これをさらに詳述する。本発明者ら
は、チョクラルスキー法によって製造される結晶の熱履
歴を変更・調整する方法として、原料を収容するルツボ
と原料を加熱溶融するヒーター等を囲繞し保温する断熱
筒の構造に着目してみた。従来のチョクラルスキー法に
よる結晶の製造に用いられる結晶製造装置の例を図1
(a)に示したが、断熱筒5は原料を収容するルツボ3
と原料を加熱溶融するヒーター4を囲繞するように配置
された筒状のもので、材質は一般に炭素繊維成型材が用
いられる。従来、この断熱筒の構造の変更によって結晶
の熱履歴あるいは炉内の温度分布を変更するには、図1
(b)に示したごとく、断熱筒を上部に伸長し、結晶成
長炉内の上部空間7を保温し、結晶2を保温することで
行われるか、逆に断熱筒を短くし、結晶を急冷却するか
等で行われていた。しかし、この方法では結晶を保温す
るか冷却するかしか出来ず、特定の温度帯のみの制御は
不可能であり、精度もよくない。また、単に断熱筒を上
部に伸長したのでは結晶が保温され冷却されにくくなる
ので結晶成長速度が低下し、生産性が著しく低下してし
まう。また、単に断熱筒を短くしたのでは成長炉の保温
性が悪化し電力を消費するだけでなく炉をいため、結晶
の製造効率も悪化する。そこで従来は前記文献のよう
に、断熱筒によるのではなく他の炉内部品を用い、種々
の炉内構造をもつ結晶製造装置を設計し、結晶の熱履歴
の調整をしようとしたのである。すなわち、従来、断熱
筒はその構造変更による結晶熱履歴の調整には、自由度
が小さいため変更、研究対象になっておらず、せいぜい
上部に延長あるいは短縮する程度であった。
【0006】しかし、本発明者らはチョクラルスキー法
における炉内の温度分布に決定的な影響を与えるのは、
ヒーター4(例えばカーボンヒーター、高周波コイル
等)あるいはルツボ3(例えば、石英、黒鉛、PBN)
を囲繞し、水冷チャンバー1を保護する断熱筒5である
ことから、この断熱筒の構造に工夫をこらしたのであ
る。たとえば、従来の炉内構造をもつ結晶製造装置図1
(a)に対し、ある温度領域を保温するという結晶の熱
履歴の変更をしようと思えば、従来は図1(b)のよう
に断熱筒を上部に伸長し結晶を保温することになる。し
かし、これではすべての温度領域が保温されるため、目
標とする特定の温度領域のみ保温するという熱履歴とは
ならないばかりか、結晶成長速度の低下をきたし結晶の
生産性を著しく悪化してしまう。そこで、特定の温度領
域のみ保温することによって結晶の熱履歴を変更し、結
晶欠陥の低減をはかり、かつ結晶成長速度に影響する結
晶の融点近傍の高温域等は何ら影響を受けないようにで
きれば、結晶欠陥の少ない良質の結晶が高速度、高生産
性で得られることになる。
【0007】そこで、本発明者らは、この点に鑑みて各
種炉内構造を持つ結晶製造装置における結晶温度を数値
計算により推定した。その結果、結晶の融点以下の特定
の温度域のみを徐冷させるには図2(a)のように、従
来法図1(a)に対しヒーター4を取り巻く断熱筒5を
上部に延長することで結晶表面からの輻射熱の散逸が減
少する為に特定温度域の徐冷化が可能であり、更に、ヒ
ーター4を取り巻く断熱筒5のうち、一部を切り欠き断
裂部8を設け、上下に断熱筒を分割することによって高
温域は従来通り、あるいは高温域は更に急冷化させ得る
ことが判明した。すなわち、特定温度領域のみを徐冷化
することが可能となり、結晶欠陥の減少をはかることが
出来る上、その他の温度領域は従来通り、特に結晶成長
速度に影響する融点近傍は徐冷化しないため結晶成長速
度は従来通りで生産性を落とすこともない。
【0008】これは断熱筒を有する位置では保温される
が、断裂部では熱の放散が大きく、その近傍での結晶表
面からの輻射熱が増加するために生じるものである。従
って、この断裂部の位置や幅、個数は重要であり、調整
する温度域に応じ適時選択することができる。例えば、
この断裂部は図2(b)のように2ヶ所あるいはそれ以
上の複数設けてもよい。このように断熱筒を鉛直方向に
分割し断裂部を設けることによって、チョクラルスキー
法による結晶の成長中の熱履歴を制御するには、断裂部
をルツボ内の原料の湯面より上部に設ける方が、結晶に
対しより直接的に作用するので効果的である。但し、断
裂部の位置はこれに限られるものではなく、結晶製造効
率(結晶のでき易さ)に影響する炉内温度分布を変更、
制御するために、種々の位置、数、幅で設けることが可
能である(例えば図2(c))。
【0009】断熱筒の材質は従来より炭素繊維成型材が
用いられるが、本発明にあっても、これをそのまま用い
ることが出来るし、その他の断熱材で実施することも可
能である。また、従来この断熱筒は、一体物で鉛直方向
で単一の材質、同一の厚さであるか、そのような断熱筒
を水平に分割し、単にそれらを積み重ね、載置されてい
るものに過ぎないものであったが、本発明においては断
熱筒は鉛直方向で分割されており、相互に材質を変更あ
るいは相互に厚さを変更することが可能で、よりきめ細
やかな温度分布、結晶熱履歴の制御が可能となる。すな
わち、図2(b)で説明すると断熱筒は鉛直方向で分割
され、ア部、イ部、ウ部の3つを有する。この結晶製造
装置の炉内の温度分布、結晶熱履歴は断裂部8の位置、
幅、個数で大きく影響されるが、これにア部、イ部、ウ
部の相互の断熱筒の厚さ、材質を変更することで、さら
に温度分布、結晶熱履歴の微調整が可能となる。
【0010】断熱筒を鉛直方向に分割し断裂部を作成す
るには、前記一般の断熱筒の材質が炭素繊維成型材等の
繊維質であるため、容易に加工が可能であり簡単に作成
できる。例えば、一般に断熱筒が繊維質であることか
ら、その繊維片がルツボ内に飛散しないよう、断熱筒の
内側には黒鉛内筒9がはめこまれている。この黒鉛内筒
9の外周表面の所定位置に凸部を設け断熱筒を上下から
はめこむことにより、容易に図2(a)の構造を作成で
きる。また、断裂部8には、断熱筒を切り欠いたままに
してもよいし、黒鉛等の熱の良導体で置換してもよい。
【0011】このような断熱筒の構造に特徴を有する本
発明の結晶製造装置、結晶製造方法、温度分布を制御す
る方法、結晶熱履歴を制御する方法は、一般にチョクラ
ルスキー法で作成される種々の結晶の製造に応用できる
ことは言うまでもない。特に、結晶熱履歴がOSF(Ox
idation Induced Stacking Faults)、酸素析出、BMD
(Bulk Micro-Defect )、FPD(Flow Pattern Defec
t )、LSTD(Laser Scattering Tomography Defec
t)そして酸化膜耐圧等に大きく影響するシリコン、あ
るいは結晶熱履歴によって転位密度やドナーあるいはア
クセプターとして働く欠陥レベルが大きく影響されるG
aP、GaAs、InP等の化合物半導体の製造におい
て有用である。
【0012】
【作用】本発明にあっては、チョクラルスキー法で用い
られるルツボ、ヒーター等を囲繞する断熱筒が鉛直方向
に分割され、断裂部を有するので、この部分のみ局部的
に熱の放散を大きくすることが可能となる。そして、断
裂部の数、幅、位置は容易に種々変更可能であるから、
結晶の熱履歴、炉内温度分布を目的に応じ簡単かつ精度
よく変更・制御することができる。さらに分割された断
熱筒の材質、厚さを相互に変更・調整すれば、保温力、
熱の放散量をよりきめ細かく調整することが可能で、よ
り精密な制御ができる。
【0013】
【実施例】つぎに本発明の実施例をあげる。 (実施例、比較例)チョクラルスキー法で18”φ石英ル
ツボに、原料多結晶シリコン50kgをチャージし、6”
φ、方位〈100〉のシリコン単結晶を引き上げ、従来
の断熱筒を用いたものと、本発明の断熱筒を用いた結晶
製造装置とで、結晶の熱履歴を測定した。ヒーターはカ
ーボンヒーター(抵抗加熱)とした。比較例としてまず
図1(b)に示した従来の徐冷型の炉内構造によるもの
で引き上げた。断熱筒の材質は炭素繊維成型材製とし、
厚さは7cm鉛直方向で一定の一体物とした。結果を図3
の曲線Aとして示した。
【0014】つぎに、実施例として湯面より高さ14cm
の所に幅5cmの断裂部を設けた他は上記比較例と同様と
した、図2(a)に示したタイプの炉内構造を持つ結晶
製造装置でシリコン単結晶を引き上げた。その結晶の熱
履歴を測定した結果を図3の曲線Bとして示した。この
結果、シリコンの融点(約 1,420℃)近傍の高温域では
急冷却化されるとともに、1050℃〜 1,200℃付近の中温
域では徐冷化がなされている事が分かる。すなわち、高
温域を急冷化させたにもかかわらず、中温或は逆に徐冷
化するという熱履歴の変更ができた。一方、1050℃以下
では両者は同じ熱履歴をたどっており、特定温度領域の
みの履歴の変更ができた。この結果、従来の引き上げ速
度は約1mm/minであるのに対し、本発明では1.2mm/m
in程度まで高速化が可能となった。従って、結晶の生産
性を低下させることなく、結晶熱履歴を中温域で徐冷化
へと変化させることに成功した。
【0015】さらに、断裂部の幅を2cmと小さくした他
は、上記実施例と同様にしてシリコン単結晶を引き上
げ、結晶の熱履歴を測定した結果を図3の曲線Cとして
示した。この曲線Cを見れば分かる通り、曲線Aと曲線
Bの中間に位置しており、結晶の熱履歴のよりきめ細か
い制御を可能とするものである。
【0016】
【発明の効果】本発明にかかる結晶製造装置によって、
チョクラルスキー法によって製造される結晶の熱履歴を
簡単にかつ精度よく変更・制御することができる。よっ
て、チョクラルスキー法により製造されるシリコン、ゲ
ルマニウム、GaP、GaAs、InP等の結晶で発生
する熱履歴起因の結晶欠陥を低減化あるいは制御、均一
化をはかることができる。よって、結晶の高品質化およ
び歩留り、生産性の著しい向上が可能であり、産業界で
のその利用価値はすこぶる高い。
【図面の簡単な説明】
【図1】従来のチョクラルスキー法による結晶製造装置
の概略断面図である。 (a)急冷型 (b)徐冷型
【図2】本発明にかかる結晶製造装置の概略断面図であ
る (a)断裂部が1ヶの場合 (b)断裂部が2ヶの場合 (c)その他の実施例
【図3】各炉内構造をもつ結晶製造装置における、結晶
の熱履歴を測定した結果を示した図である。
【符号の説明】
1…チャンバー 2…単結晶 3…ルツボ 4…ヒーター 5…断熱筒 6…上部断熱筒 7…上部空間 8…断裂部 9…黒鉛内筒
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高野 清隆 群馬県安中市磯部2丁目13番1号 信越 半導体株式会社 半導体磯部研究所内 (72)発明者 木村 雅規 群馬県安中市磯部2丁目13番1号 信越 半導体株式会社 半導体磯部研究所内 (56)参考文献 特開 昭60−46998(JP,A) 特開 昭59−57986(JP,A) 特開 昭63−176390(JP,A) 特開 平7−277878(JP,A) 特開 平2−4193(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 EPAT(QUESTEL)

Claims (10)

    (57)【特許請求の範囲】
  1. 【請求項1】 原料を収容するルツボと原料を加熱溶融
    するヒーターとこれらを囲繞する断熱筒とを具備するチ
    ョクラルスキー法による結晶製造装置であって、前記断
    熱筒が鉛直方向に分割され断裂部を有することを特徴と
    するチョクラルスキー法による結晶製造装置。
  2. 【請求項2】 断熱筒の断裂部を複数設けることを特徴
    とする請求項1の結晶製造装置。
  3. 【請求項3】 断熱筒の断裂部をルツボ内の原料の湯面
    より上部に設けることを特徴とする請求項1又は請求項
    2の結晶製造装置。
  4. 【請求項4】 断熱筒の材質が炭素繊維成型材である請
    求項1ないし請求項3の結晶製造装置。
  5. 【請求項5】 分割された断熱筒の厚さを、相互に変更
    させた請求項1ないし請求項4の結晶製造装置。
  6. 【請求項6】 分割された断熱筒の材質を、相互に変更
    させた請求項1ないし請求項5の結晶製造装置。
  7. 【請求項7】 製造する結晶がシリコン、ゲルマニウ
    ム、GaP、GaAs、InPである請求項1ないし請
    求項6の結晶製造装置。
  8. 【請求項8】 請求項1ないし請求項6の結晶製造装置
    を用いてシリコン又はゲルマニウム、GaP、GaA
    s、InPの単結晶を製造する方法。
  9. 【請求項9】 請求項1ないし請求項6の装置を用い
    て、チョクラルスキー法における結晶製造装置内の温度
    分布を制御する方法。
  10. 【請求項10】 請求項1ないし請求項6の装置によっ
    て、チョクラルスキー法により製造される結晶の熱履歴
    を制御する方法。
JP07143586A 1995-06-09 1995-06-09 チョクラルスキー法による結晶製造装置および製造方法 Expired - Fee Related JP3128795B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP07143586A JP3128795B2 (ja) 1995-06-09 1995-06-09 チョクラルスキー法による結晶製造装置および製造方法
US08/655,810 US5817171A (en) 1995-06-09 1996-05-31 Apparatus and method for producing single crystal using Czochralski technique
DE69610021T DE69610021T2 (de) 1995-06-09 1996-06-03 Verfahren und Vorrichtung zur Herstellung von Einkristallen durch die Czochralski-Technik
EP96303990A EP0747515B1 (en) 1995-06-09 1996-06-03 Apparatus and method for producing single crystal using Czochralski technique
KR1019960019998A KR100270056B1 (ko) 1995-06-09 1996-06-05 쵸크랄 스키법에 따른 결정제조장치 및 제조방법
US09/090,400 US5938842A (en) 1995-06-09 1998-06-04 Method for producing a single crystal using czochralski technique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07143586A JP3128795B2 (ja) 1995-06-09 1995-06-09 チョクラルスキー法による結晶製造装置および製造方法

Publications (2)

Publication Number Publication Date
JPH08337491A JPH08337491A (ja) 1996-12-24
JP3128795B2 true JP3128795B2 (ja) 2001-01-29

Family

ID=15342187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07143586A Expired - Fee Related JP3128795B2 (ja) 1995-06-09 1995-06-09 チョクラルスキー法による結晶製造装置および製造方法

Country Status (5)

Country Link
US (2) US5817171A (ja)
EP (1) EP0747515B1 (ja)
JP (1) JP3128795B2 (ja)
KR (1) KR100270056B1 (ja)
DE (1) DE69610021T2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3006669B2 (ja) * 1995-06-20 2000-02-07 信越半導体株式会社 結晶欠陥の均一なシリコン単結晶の製造方法およびその製造装置
JP3533812B2 (ja) * 1996-02-14 2004-05-31 信越半導体株式会社 チョクラルスキー法による結晶製造装置、結晶製造方法、およびこの方法から製造される結晶
JPH10152395A (ja) * 1996-11-21 1998-06-09 Komatsu Electron Metals Co Ltd シリコン単結晶の製造方法
WO1999010570A1 (fr) * 1997-08-26 1999-03-04 Sumitomo Metal Industries, Ltd. Cristal unique de silicium de grande qualite et procede de fabrication
JP3919308B2 (ja) * 1997-10-17 2007-05-23 信越半導体株式会社 結晶欠陥の少ないシリコン単結晶の製造方法ならびにこの方法で製造されたシリコン単結晶およびシリコンウエーハ
US5968263A (en) * 1998-04-01 1999-10-19 Memc Electronic Materials, Inc. Open-loop method and system for controlling growth of semiconductor crystal
US6306125B1 (en) 1998-06-22 2001-10-23 Neovasys, Inc. Angiogenic implant delivery system and method
US6835245B2 (en) * 2000-06-22 2004-12-28 Sumitomo Mitsubishi Silicon Corporation Method of manufacturing epitaxial wafer and method of producing single crystal as material therefor
KR100445187B1 (ko) * 2000-12-05 2004-08-18 주식회사 실트론 단결정 실리콘 잉곳 및 그 제조방법과 제조 장치
KR20040044146A (ko) * 2002-11-19 2004-05-27 가부시끼가이샤 도꾸야마 플루오르화 금속용 단결정 인출 장치
KR100843019B1 (ko) * 2006-12-22 2008-07-01 주식회사 실트론 쵸크랄스키법에 의한 반도체 단결정 잉곳 제조 장치에사용되는 열 환경 제공 모듈 및 이를 이용한 장치
CN100513652C (zh) * 2007-05-24 2009-07-15 北京有色金属研究总院 降埚直拉法生长低位错锗单晶工艺及装置
JP5375809B2 (ja) * 2010-12-06 2013-12-25 信越半導体株式会社 断熱筒、断熱筒の製造方法及び単結晶製造装置
JP5500134B2 (ja) * 2011-08-10 2014-05-21 信越半導体株式会社 単結晶育成装置
JP5585554B2 (ja) * 2011-08-26 2014-09-10 信越半導体株式会社 単結晶育成装置
JP6398640B2 (ja) * 2014-11-18 2018-10-03 住友電気工業株式会社 炭化珪素単結晶の製造方法および炭化珪素単結晶の製造装置
DE112016005199B4 (de) * 2015-11-13 2021-01-14 Sumco Corporation Verfahren zur Herstellung eines Silicium-Einkristalls

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046998A (ja) * 1983-08-26 1985-03-14 Sumitomo Electric Ind Ltd 単結晶引上方法及びそのための装置
JPS6096596A (ja) * 1983-10-28 1985-05-30 Sumitomo Electric Ind Ltd 単結晶引上げ軸
DE3743951A1 (de) * 1986-12-26 1988-07-07 Toshiba Ceramics Co Einrichtung zum ziehen von siliziumeinkristallen mit einem waermeisolierzylinder und verfahren zur herstellung des materials desselben
JP2553633B2 (ja) * 1988-05-19 1996-11-13 住友電気工業株式会社 高温炉の断熱方法
JPH0259489A (ja) * 1988-08-25 1990-02-28 Shin Etsu Handotai Co Ltd 化合物半導体単結晶の製造方法
US5363796A (en) * 1991-02-20 1994-11-15 Sumitomo Metal Industries, Ltd. Apparatus and method of growing single crystal
JPH09227286A (ja) * 1996-02-24 1997-09-02 Komatsu Electron Metals Co Ltd 単結晶製造装置

Also Published As

Publication number Publication date
EP0747515A2 (en) 1996-12-11
DE69610021T2 (de) 2001-05-03
DE69610021D1 (de) 2000-10-05
EP0747515B1 (en) 2000-08-30
US5817171A (en) 1998-10-06
US5938842A (en) 1999-08-17
JPH08337491A (ja) 1996-12-24
EP0747515A3 (en) 1997-03-26
KR100270056B1 (ko) 2000-10-16

Similar Documents

Publication Publication Date Title
JP3128795B2 (ja) チョクラルスキー法による結晶製造装置および製造方法
US9217208B2 (en) Apparatus for producing single crystal
US3798007A (en) Method and apparatus for producing large diameter monocrystals
US7141113B1 (en) Production method for silicon single crystal and production device for single crystal ingot, and heat treating method for silicon crystal wafer
KR101213626B1 (ko) 단결정의 제조방법
KR100717237B1 (ko) 균일한 열 이력을 갖는 단결정 실리콘을 제조하는 방법
JP3533812B2 (ja) チョクラルスキー法による結晶製造装置、結晶製造方法、およびこの方法から製造される結晶
US5342475A (en) Method of growing single crystal of compound semiconductor
JP3368113B2 (ja) 多結晶半導体の製造方法
JP3531333B2 (ja) チョクラルスキー法による結晶製造装置、結晶製造方法、およびこの方法から製造される結晶
KR100331552B1 (ko) 잉곳-용융물 경계의 중앙 및 가장자리에서의 온도구배의 조절에 의한 단결정 실리콘 잉곳의 제조를 위한 초크랄스키 풀러, 상기 초크랄스키 풀러용 열차단체 및 상기 초크랄스키 풀러의 개량방법.
JP4151474B2 (ja) 単結晶の製造方法及び単結晶
JP2709310B2 (ja) 単結晶引上げ装置
JPH11240790A (ja) 単結晶製造装置
KR20090034534A (ko) 극저결함 반도체 단결정의 제조방법 및 그 제조 장치
KR20030059293A (ko) 베이컨시-지배 단결정 실리콘의 열 이력을 제어하는 공정
KR20190075411A (ko) 리니지 결함을 제거할 수 있는 도가니부재, 이를 이용한 고품질 사파이어 단결정 성장장치 및 그 방법
JP2814796B2 (ja) 単結晶の製造方法及びその装置
KR100771477B1 (ko) 실리콘 단결정 잉곳 및 실리콘 단결정 잉곳의 제조 방법
JP2004277267A (ja) 化合物半導体単結晶の製造装置
JPH09301709A (ja) シリコン鋳造方法
JP2004002064A (ja) シリコン単結晶の製造方法
JP2001122689A (ja) 単結晶引き上げ装置
JP2000169278A (ja) 半導体結晶の製造方法および製造装置
JPH06206789A (ja) 半導体単結晶の製造方法

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees