WO2017072994A1 - 貼り合わせsoiウェーハの製造方法 - Google Patents

貼り合わせsoiウェーハの製造方法 Download PDF

Info

Publication number
WO2017072994A1
WO2017072994A1 PCT/JP2016/003916 JP2016003916W WO2017072994A1 WO 2017072994 A1 WO2017072994 A1 WO 2017072994A1 JP 2016003916 W JP2016003916 W JP 2016003916W WO 2017072994 A1 WO2017072994 A1 WO 2017072994A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
layer
soi
oxide film
bonded
Prior art date
Application number
PCT/JP2016/003916
Other languages
English (en)
French (fr)
Inventor
功 横川
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to KR1020187011656A priority Critical patent/KR102317552B1/ko
Priority to US15/767,174 priority patent/US10347525B2/en
Priority to SG11201802984RA priority patent/SG11201802984RA/en
Priority to EP16859235.0A priority patent/EP3370249B1/en
Priority to CN201680059158.3A priority patent/CN108140553B/zh
Publication of WO2017072994A1 publication Critical patent/WO2017072994A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76243Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using silicon implanted buried insulating layers, e.g. oxide layers, i.e. SIMOX techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body

Definitions

  • the present invention relates to a method for manufacturing a bonded SOI wafer, and more particularly, to a method for manufacturing an SOI wafer using an ion implantation separation method.
  • An SOI (Silicon on Insulator) wafer manufacturing method is a method of manufacturing an SOI wafer by peeling an ion-implanted wafer after bonding (ion)
  • An injection peeling method a technique called a smart cut method (registered trademark)) has attracted attention.
  • an oxide film is formed on at least one of two silicon wafers, and gas ions such as hydrogen ions or rare gas ions are implanted from the upper surface of one silicon wafer (bond wafer),
  • An ion implantation layer (also referred to as a microbubble layer or an encapsulation layer) is formed inside the wafer.
  • the surface into which the ions are implanted is brought into close contact with the other silicon wafer (base wafer) through an oxide film, and then a heat treatment (peeling heat treatment) is applied to form a microbubble layer as a cleaved surface on one wafer (bond wafer).
  • a heat treatment peeling heat treatment
  • there is a method of firmly bonding the peeled SOI wafer by applying a heat treatment (bonding heat treatment) (see Patent Document 1).
  • the cleaved surface is the surface of the SOI layer, and an SOI wafer having a thin SOI film thickness and high uniformity can be obtained relatively easily.
  • a damaged layer due to ion implantation exists on the surface of the SOI wafer after peeling, and the surface roughness is larger than that of a normal mirror surface of a silicon wafer. Therefore, in the ion implantation separation method, it is necessary to remove such a damaged layer and surface roughness.
  • One method of removing the surface roughness and damage layer on the SOI layer surface is an annealing method in which high-temperature heat treatment is performed in an argon-containing atmosphere. According to this annealing method, the film thickness uniformity of the SOI layer obtained by the ion implantation separation method can be kept high while the surface of the SOI layer is planarized (Patent Documents 1 and 2).
  • a bonded SOI wafer having a BOX layer (embedded oxide film layer) and an SOI layer on a base wafer is manufactured by ion implantation separation, and is separated by heat treatment in an argon gas-containing atmosphere (hereinafter also simply referred to as Ar annealing).
  • Ar annealing an argon gas-containing atmosphere
  • the present invention has been made in view of the above problems, and in the production of a bonded SOI wafer, particles from the outermost peripheral portion of the SOI layer remaining in an overhanging state by planarization heat treatment in an argon gas-containing atmosphere are provided.
  • the purpose is to prevent the occurrence of this.
  • the present invention forms an ion-implanted layer by ion-implanting at least one gas ion of hydrogen ions or rare gas ions from the surface of a bond wafer made of a silicon single crystal, After bonding the ion-implanted surface of the wafer and the surface of the base wafer made of a silicon single crystal through a silicon oxide film, the bond wafer is peeled off by the ion-implanted layer, whereby the surface of the base wafer is removed.
  • a bonded SOI wafer having a BOX layer and an SOI layer is manufactured, and a planarization heat treatment is performed on the bonded SOI wafer in an argon gas-containing atmosphere, and then a sacrificial oxidation process is performed to adjust the film thickness of the SOI layer.
  • the bonded SOI wafer manufacturing method to be performed the bonded SOI wafer produced by the peeling
  • the thickness of the BOX layer is more than 500nm in Doha,
  • the relationship between the film thickness (t) of the SOI layer subjected to the sacrificial oxidation treatment and the film thickness (d) of the sacrificial oxide film formed in the sacrificial oxidation treatment satisfies 0.9d>t> 0.45d.
  • the present invention provides a method for manufacturing a bonded SOI wafer, wherein the sacrificial oxide film is formed.
  • the thickness (t) of the SOI layer immediately before the sacrificial oxidation treatment is performed after performing the planarization heat treatment in the argon gas-containing atmosphere on the bonded SOI wafer having the BOX layer thickness of 500 nm or more.
  • the argon gas-containing atmosphere is preferably 100% Ar gas.
  • a silicon oxide film having a thickness of 500 nm or more is formed on the base wafer, the base wafer on which the silicon oxide film is formed, and the ion-implanted surface of the bond wafer are bonded together, and then the ion It is preferable to produce the bonded SOI wafer in which the thickness of the BOX layer is 500 nm or more by peeling the bond wafer with an injection layer.
  • an epitaxial layer can also be formed on the surface of the SOI layer after the sacrificial oxidation treatment.
  • a bonded SOI wafer is manufactured by the ion implantation delamination method as in the present invention
  • a thin SOI layer thinner than 1 ⁇ m is usually used. Limited. Therefore, in order to manufacture a bonded SOI wafer having an SOI layer having a thick film thickness of several ⁇ m or more and high film thickness uniformity, the surface of the thin film SOI layer manufactured by the ion implantation separation method is epitaxially formed. Additional layers need to be formed.
  • the sacrificial oxide film thickness is adjusted so that the overhanging outermost peripheral portion of the SOI layer is completely changed to the sacrificial oxide film. Generation of particles from the outermost peripheral portion of the SOI layer remaining in a hang shape can be prevented in advance.
  • a bonding heat treatment may be performed in an oxidizing atmosphere in order to increase the bonding force at the bonding interface between the SOI layer 11 and the base wafer 12 after separation.
  • a surface oxide film 13 is formed on the surface of the SOI layer 11 after peeling by bonding heat treatment (FIG. 2A).
  • the surface oxide film 13 formed by the bonding heat treatment is removed by, for example, hydrofluoric acid (FIG. 2B).
  • the bonded SOI wafer from which the surface oxide film 13 has been removed is subjected to high-temperature heat treatment (Ar annealing) in an argon-containing atmosphere (FIG. 2C).
  • Ar annealing high-temperature heat treatment
  • migration occurs in the silicon atoms on the surface of the SOI layer 11 and the surface of the SOI layer 11 is flattened.
  • the Si / SiO 2 interface SOI / BOX interface 15 and BOX / At the base wafer interface 16
  • SiO is vaporized (Si + SiO 2 ⁇ 2SiO), and the erosion of the interface proceeds. For this reason, a state in which the thin film (SOI + BOX) is widely peeled is formed, and the outermost peripheral portion of the SOI layer 11 remains in an overhang shape.
  • a sacrificial oxidation process formation of sacrificial oxide film 17 (FIG. 2 (d)) + oxide film removal (FIG. 2 (e)) is performed to adjust the film thickness of the SOI layer. If the thickness of the sacrificial oxide film 17 thus formed is insufficient, the outer peripheral portion of the SOI layer remains thin in an overhang state after the oxide film is removed, so that the outer peripheral portion of the thin SOI layer is washed It will be peeled off in the later process.
  • the present inventor has found that when the thickness of the BOX layer is 500 nm or more, peeling of the thin film (SOI + BOX) becomes remarkable, a wider overhang shape is formed, and generation of particles becomes remarkable. discovered. Then, for a bonded SOI wafer having a BOX layer thickness of 500 nm or more, the sacrificial oxide film thickness is changed so that the overhanging outer peripheral portion of the SOI layer completely changes to an oxide film in the sacrificial oxidation after Ar annealing. It was found that the generation of particles from the outermost peripheral portion of the SOI layer remaining in an overhanging state can be prevented beforehand by adjusting.
  • FIG. 1 shows a process flow diagram showing an example of a method for manufacturing a bonded SOI wafer of the present invention.
  • FIG. 3 is an explanatory view showing an example of a method for manufacturing a bonded SOI wafer according to the present invention.
  • At least one gas ion of hydrogen ions or rare gas ions is ion-implanted from the surface of a bond wafer made of silicon single crystal to form an ion-implanted layer at a predetermined depth of the bond wafer (FIG. 1A). )).
  • a silicon oxide film that will later become a BOX layer (film thickness of 500 nm or more) is formed on the bond wafer and / or the base wafer.
  • the acceleration voltage for ion implantation needs to be extremely high, so that an ion implantation apparatus capable of high voltage ion implantation is required. Therefore, in the present invention, it is preferable to form a silicon oxide film of 500 nm or more on the base wafer (FIG. 1B).
  • a silicon oxide film may be formed on both the bond wafer and the base wafer, and the total thickness thereof may be 500 nm or more.
  • the bond wafer on which the silicon oxide film is formed and the ion-implanted surface of the bond wafer are bonded together (FIG. 1C).
  • the bond wafer and the base wafer are brought into contact with each other in a clean atmosphere at room temperature, whereby the wafers are bonded to each other without using an adhesive or the like.
  • a peeling heat treatment for example, if a heat treatment is usually performed at 400 ° C. to 700 ° C. for 30 minutes or more in an inert gas atmosphere such as Ar, the bond wafer can be peeled off by the ion implantation layer.
  • plasma treatment on the bonding surface in advance it is possible to perform peeling by applying an external force without performing heat treatment (or after performing heat treatment at a temperature that does not peel).
  • the upper limit of the thickness of the buried oxide film layer can be set to 5 ⁇ m, for example.
  • a bonding heat treatment in an oxidizing atmosphere may be performed, and then a treatment for removing the formed surface oxide film may be performed.
  • implantation damage generated during ion implantation remaining on the peeled surface can be removed.
  • planarization heat treatment is performed on the manufactured bonded SOI wafer in an argon gas-containing atmosphere.
  • the bonded SOI wafer has Si / SiO 2 interfaces at the interface between the SOI layer and the BOX layer and at the interface between the BOX layer and the base wafer.
  • the thermal oxide film 3 is formed on the base wafer 2 (FIG. 3A), bonded to a bond wafer without an oxide film, and a bonded SOI wafer is manufactured by an ion implantation separation method (
  • FIG. 3B the interface A between the SOI layer 1 and the BOX layer 3 becomes a bonding interface, and the interface B between the BOX layer 3 and the base wafer 2 becomes a thermal oxide film interface.
  • FIG. 3C compressive strain is stored inside the thermal oxide film 3 (BOX layer) formed on the base wafer 2.
  • the internal stress in the BOX layer 3 increases as the thickness of the BOX layer 3 increases, peeling increases more easily as the thickness of the BOX layer 3 increases. If the thickness of the BOX layer 3 is 500 nm or more as in the present invention, the thin film (SOI + BOX) peels off significantly, and a wider overhang shape is formed.
  • Such a phenomenon occurs in an argon-containing atmosphere (for example, a mixed gas atmosphere of argon and hydrogen or a 100% Ar gas atmosphere).
  • a 100% Ar gas atmosphere a high temperature for a long time (1150 ° C. or higher) It occurs remarkably by heat treatment for 30 minutes or more.
  • BOX layer 3 SOI layer 1: SEM image of bonded SOI wafer with thin film (SOI + BOX) peeled widely when Ar anneal is performed on bonded wafer having film thickness of 1000 nm and SOI layer 1: film thickness of 750 nm Shown in 4 (A). Further, FIG. 4B shows an SEM image in which erosion at the SOI / BOX interface A has progressed, and FIG. 4C shows an SEM image in which erosion has progressed at the BOX / base wafer interface B.
  • sacrificial oxidation treatment for adjusting the film thickness of the SOI layer 1 is performed (FIG. 1 (F), FIG. 3 (F), FIG. 3 (G)).
  • the sacrificial oxide film thickness is adjusted by adjusting the sacrificial oxidation conditions so that the overhanging outer peripheral portion of the SOI layer 1 is completely changed to the sacrificial oxide film 4.
  • the sacrificial oxide film thickness (d) is adjusted so that the relationship with the sacrificial oxide film thickness (d) formed on one surface satisfies 2 ⁇ 0.45d> t. That's fine.
  • the SOI layer is overhanged. It is possible to suppress the generation of particles due to this portion.
  • the conditions for the sacrificial oxidation heat treatment are not particularly limited as long as the sacrificial oxide film can be formed so that the film thickness satisfies 0.9d> t> 0.45d, but for example, about 900 to 950 ° C.
  • the sacrificial oxide film formed in the sacrificial oxidation treatment is removed (FIG. 3G).
  • the outer peripheral portion of the SOI layer that has been overhanged after Ar annealing is completely removed.
  • an oxide film removal method for example, there is a method of performing 15% HF cleaning and, if necessary, RCA cleaning.
  • the sacrificial oxide film thickness is such that the overhanging outermost peripheral portion of the SOI layer completely changes to an oxide film.
  • a bonded SOI wafer having a relatively thick SOI layer film thickness can be obtained by further forming an epitaxial layer on the surface of the SOI layer after the sacrificial oxidation treatment.
  • the end surface of the BOX layer is more than the end surface of the SOI layer. It becomes a concave structure.
  • the occurrence of defects such as a valley-shaped step between the epitaxial layer grown from the epitaxial layer and the epitaxial layer grown from the terrace portion can be prevented.
  • a bonded SOI wafer is prepared by bonding a bond wafer subjected to ion implantation to a base wafer with a silicon oxide film having a thickness of 600 nm and peeling the bond wafer with an ion-implanted layer according to the manufacturing conditions shown in Table 1 below. Was made. Thereafter, the bonding heat treatment and the oxide film formed by the bonding heat treatment were removed, and then a planarization heat treatment was performed in a 100% Ar gas atmosphere.
  • the SOI film thickness after Ar annealing was 490 nm (Example) and 415 nm (Comparative Example), respectively.
  • sacrificial oxidation treatment for adjusting the SOI layer was performed under the conditions described in Table 1, and then SC1 cleaning (80 ° C., 3 minutes) was performed in a separate cleaning tank. Then, using a particle counter (SP2 manufactured by KLA Tencor), particles (diameter of 0.25 ⁇ m or more) adhering to the surface were measured and compared.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Element Separation (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本発明は、イオン注入剥離法により、ベースウェーハ上にBOX層とSOI層とを有する貼り合わせSOIウェーハを作製し、アルゴンガス含有雰囲気で平坦化熱処理を行った後、SOI層の膜厚を調整する犠牲酸化処理を行う貼り合わせSOIウェーハの製造方法において、BOX層の膜厚を500nm以上とし、犠牲酸化処理を施す前記SOI層の膜厚(t)と、犠牲酸化処理において形成する犠牲酸化膜の膜厚(d)との関係が、0.9d>t>0.45dを満たすように前記犠牲酸化膜を形成することを特徴とする貼り合わせSOIウェーハの製造方法である。これにより、貼り合わせSOIウェーハの製造において、平坦化熱処理によってオーバーハング状に残ったSOI層の最外周部からのパーティクル発生を未然に防止することができる貼り合わせSOIウェーハの製造方法が提供される。

Description

貼り合わせSOIウェーハの製造方法
 本発明は、貼り合わせSOIウェーハの製造方法に関し、特に、イオン注入剥離法を用いたSOIウェーハの製造方法に関する。
 SOI(Silicon on Insulator)ウェーハの製造方法、特に先端集積回路の高性能化を可能とする薄膜SOIウェーハの製造方法として、イオン注入したウェーハを貼り合わせ後に剥離してSOIウェーハを製造する方法(イオン注入剥離法:スマートカット法(登録商標)とも呼ばれる技術)が注目されている。
 このイオン注入剥離法は、二枚のシリコンウェーハのうち、少なくとも一方に酸化膜を形成すると共に、一方のシリコンウェーハ(ボンドウェーハ)の上面から水素イオンまたは希ガスイオン等のガスイオンを注入し、該ウェーハ内部にイオン注入層(微小気泡層又は封入層とも呼ぶ)を形成する。その後、イオンを注入した方の面を、酸化膜を介して他方のシリコンウェーハ(ベースウェーハ)と密着させ、その後熱処理(剥離熱処理)を加えて微小気泡層を劈開面として一方のウェーハ(ボンドウェーハ)を薄膜状に剥離して貼り合わせSOIウェーハを製造する技術である。また、剥離後のSOIウェーハに対し、熱処理(結合熱処理)を加えて強固に結合する方法がある(特許文献1参照)。
 この段階では、劈開面(剥離面)がSOI層の表面となっており、SOI膜厚が薄くてかつ均一性も高いSOIウェーハが比較的容易に得られている。しかし、剥離後のSOIウェーハ表面にはイオン注入によるダメージ層が存在し、また、表面粗さが通常のシリコンウェーハの鏡面に比べて大きなものとなっている。したがって、イオン注入剥離法では、このようなダメージ層と表面粗さを除去することが必要になる。
 このSOI層表面の表面粗さやダメージ層を除去する方法の一つとして、アルゴン含有雰囲気で高温熱処理を行うアニール法がある。このアニール法によれば、SOI層表面を平坦化しつつ、イオン注入剥離法により得られたSOI層の膜厚均一性を高く維持することができる(特許文献1、2)。
再公表公報 WO2003/009386号 再公表公報 WO2011/027545号
 イオン注入剥離法によって、ベースウェーハ上にBOX層(埋め込み酸化膜層)とSOI層とを有する貼り合わせSOIウェーハを作製し、アルゴンガス含有雰囲気での熱処理(以下、単にArアニールともいう)により剥離面の平坦化を行うと、SOI/BOX界面、及び、BOX/ベースウェーハ界面のエッチングが進行し、SOI層の最外周部において下地のBOX層が消失してしまうため、Arアニール直後には、SOI層の最外周部がオーバーハング状に残ってしまう場合があった。
 その結果、その後のSOIウェーハ製造工程(洗浄、熱処理など)やデバイス製造工程等において、オーバーハング部が容易に剥がれ、パーティクルを発生させるという問題があった。
 本発明は、上記問題点に鑑みてなされたものであって、貼り合わせSOIウェーハの製造において、アルゴンガス含有雰囲気での平坦化熱処理によってオーバーハング状に残ったSOI層の最外周部からのパーティクルの発生を、未然に防止することを目的とする。
 上記目的を達成するために、本発明は、シリコン単結晶からなるボンドウェーハの表面から水素イオン又は希ガスイオンのうち少なくとも1種類のガスイオンをイオン注入してイオン注入層を形成し、前記ボンドウェーハの前記イオン注入した表面と、シリコン単結晶からなるベースウェーハの表面とをシリコン酸化膜を介して貼り合わせた後、前記イオン注入層で前記ボンドウェーハを剥離することにより、前記ベースウェーハ上にBOX層とSOI層とを有する貼り合わせSOIウェーハを作製し、該貼り合わせSOIウェーハに対してアルゴンガス含有雰囲気で平坦化熱処理を行った後、前記SOI層の膜厚を調整する犠牲酸化処理を行う貼り合わせSOIウェーハの製造方法において、前記剥離により作製された貼り合わせSOIウェーハにおける前記BOX層の膜厚を500nm以上とし、
 前記犠牲酸化処理を施す前記SOI層の膜厚(t)と、前記犠牲酸化処理において形成する犠牲酸化膜の膜厚(d)との関係が、0.9d>t>0.45dを満たすように前記犠牲酸化膜を形成することを特徴とする貼り合わせSOIウェーハの製造方法を提供する。
 このように、BOX層の膜厚が500nm以上である貼り合わせSOIウェーハに対してアルゴンガス含有雰囲気で平坦化熱処理を行った後、犠牲酸化処理を行う直前のSOI層の膜厚(t)と、犠牲酸化処理において形成する犠牲酸化膜の膜厚(d)との関係が、0.9d>t>0.45dを満たすように犠牲酸化膜を形成することで、SOI層のオーバーハング状の最外周部が完全に犠牲酸化膜に変化するため、その後の酸化膜除去によって完全に除去することができる。そのため、Arアニール後にオーバーハング状に残ったSOI層の最外周部からのパーティクルの発生を未然に防止することができる。
 またこの場合、前記アルゴンガス含有雰囲気を100%Arガスとすることが好ましい。
 このように平坦化熱処理を100%Arガス雰囲気で行った場合には、より顕著にSOI層の最外周部がオーバーハング状に残るため、本発明による貼り合わせSOIウェーハの製造方法をより効果的に利用できる。
 また、本発明においては、前記ベースウェーハに500nm以上のシリコン酸化膜を形成し、該シリコン酸化膜を形成したベースウェーハと、前記ボンドウェーハの前記イオン注入した表面とを貼り合わせた後、前記イオン注入層で前記ボンドウェーハを剥離することにより、前記BOX層の膜厚が500nm以上である前記貼り合わせSOIウェーハを作製することが好ましい。
 剥離用のイオン注入を行うボンドウェーハにこのような厚い酸化膜を形成する場合、高電圧のイオン注入が可能なイオン注入装置が必要となる。そのため、BOX層となる500nm以上のシリコン酸化膜は、ベースウェーハ側に形成することが好ましい。また、このようにベースウェーハ側に500nm以上のシリコン酸化膜を形成した場合、熱酸化界面(BOX層とベースウェーハとの界面)での剥がれが特に大きくなるため、より顕著にSOI層の最外周部がオーバーハング状に残る。そのため、本発明による貼り合わせSOIウェーハの製造方法をより効果的に適用できる。
 また、本発明においては、犠牲酸化処理後のSOI層の表面にエピタキシャル層を形成することもできる。
 本発明のようにイオン注入剥離法で貼り合わせSOIウェーハを製造する場合、SOI層の膜厚はイオン注入装置の加速電圧の大きさに依存するため、通常は、1μmよりも薄い薄膜SOI層に制限される。そのため、数μmからそれ以上の厚い膜厚で、かつ、膜厚均一性の高いSOI層を有する貼り合わせSOIウェーハを製造するためには、イオン注入剥離法で作製した薄膜SOI層の表面にエピタキシャル層を追加形成する必要がある。このような場合においても、本発明であれば、SOI層の最外周部からのパーティクルの発生を未然に防止することができ、エピタキシャル層形成時の欠陥発生も抑制することができる。
 本発明によれば、Arアニール後の犠牲酸化処理において、SOI層のオーバーハング状の最外周部が完全に犠牲酸化膜に変化するように犠牲酸化膜厚を調整することで、Arアニール後にオーバーハング状に残ったSOI層の最外周部からのパーティクルの発生を未然に防止することができる。
本発明の貼り合わせSOIウェーハの製造方法の一例を示した工程フロー図である。 Arアニール後にSOI層の最外周部がオーバーハング状に残るメカニズム及びパーティクルの発生メカニズムの説明図である。 本発明の貼り合わせSOIウェーハの製造方法の一例を示した説明図である。 (A)薄膜(SOI+BOX)が幅広く剥がれた状態の貼り合わせSOIウェーハのSEM像、(B)SOI/BOX界面での侵食が進行した様子のSEM像、(C)BOX/ベースウェーハ界面での侵食が進行した様子のSEM像である。 本発明における、犠牲酸化処理を施すSOI層の膜厚(t)と、犠牲酸化処理において形成する犠牲酸化膜の膜厚(d)との関係を示した説明図である。
 以下、アルゴンガス含有雰囲気での平坦化熱処理により、SOI層の最外周部がオーバーハング状に残ってしまう原因について図2を参照しながら説明する。
 イオン注入剥離法により、貼り合わせSOIウェーハを製造する際、剥離後のSOI層11とベースウェーハ12との貼り合わせ界面の結合力を高めるために、酸化性雰囲気にて結合熱処理を行う場合がある。この結合熱処理により、剥離後のSOI層11の表面に結合熱処理による表面酸化膜13が形成される(図2(a))。その後、結合熱処理で形成された表面酸化膜13を、例えばフッ酸などにより除去する(図2(b))。この酸化膜形成と酸化膜除去によって、剥離面に残留するイオン注入時に発生した注入ダメージが除去できる。その際、SOI層11/BOX層14の界面15にフッ酸による侵食が生ずる。
 その後、剥離面を平坦化するために、表面酸化膜13が除去された貼り合わせSOIウェーハに対し、アルゴン含有雰囲気下で高温熱処理(Arアニール)を行う(図2(c))。この高温のArアニールにより、SOI層11の表面のシリコン原子にマイグレーションが生じ、SOI層11の表面が平坦化されるのと同時に、Si/SiO界面(SOI/BOX界面15、及び、BOX/ベースウェーハ界面16)において、SiOが気化する(Si+SiO→2SiO)ことで界面の侵食が進行する。このため、薄膜(SOI+BOX)が幅広く剥がれた状態が形成されてしまい、SOI層11の最外周部がオーバーハング状に残ってしまう。
 Arアニール後、SOI層の膜厚を調整するための犠牲酸化処理(犠牲酸化膜17形成(図2(d))+酸化膜除去(図2(e)))が行われる。この形成した犠牲酸化膜17の膜厚が不十分な厚さであると、酸化膜除去後にSOI層の外周部がオーバーハング状に薄く残ってしまうため、その薄いSOI層の外周部が、洗浄などの後工程で剥がれてパーティクルとなってしまう。
 これに対して本発明者は、BOX層の厚さが500nm以上になると、薄膜(SOI+BOX)の剥がれ具合が顕著となり、より幅広なオーバーハング形状が形成され、パーティクルの発生も顕著となることを発見した。そして、BOX層の厚さが500nm以上である貼り合わせSOIウェーハに対し、Arアニール後の犠牲酸化において、SOI層のオーバーハング状の外周部が完全に酸化膜に変化するように犠牲酸化膜厚を調整することで、オーバーハング状に残ったSOI層の最外周部からのパーティクル発生を未然に防止することができることを見出した。
 図1に本発明の貼り合わせSOIウェーハの製造方法の一例を示した工程フロー図を示す。また、図3に本発明の貼り合わせSOIウェーハの製造方法の一例の説明図を示す。
 まず、シリコン単結晶からなるボンドウェーハの表面から水素イオン又は希ガスイオンのうち少なくとも1種類のガスイオンをイオン注入して、ボンドウェーハの所定深さにイオン注入層を形成する(図1(A))。
 次いで、後にBOX層(膜厚500nm以上)となるシリコン酸化膜を、ボンドウェーハ及び/又はベースウェーハに形成する。ボンドウェーハにこのような厚い酸化膜を形成すると、イオン注入の加速電圧を極めて高くする必要があるため、高電圧のイオン注入が可能なイオン注入装置が必要となる。従って、本発明においては、ベースウェーハに500nm以上のシリコン酸化膜を形成することが好ましい(図1(B))。もちろん、ボンドウェーハとベースウェーハの両方にシリコン酸化膜を形成し、それらの厚さの合計が500nm以上となるようにしても良い。
 その後、シリコン酸化膜を形成したベースウェーハとボンドウェーハのイオン注入した表面とを貼り合わせる(図1(C))。この貼り合わせは、例えば、常温の清浄な雰囲気下でボンドウェーハとベースウェーハとを接触させることにより、接着剤等を用いることなくウェーハ同士が接着する。
 次いで、剥離熱処理を行ってイオン注入層でボンドウェーハを剥離することにより、ベースウェーハ上に、500nm以上の膜厚を有する埋め込み酸化膜層(BOX層)と、SOI層とを有する貼り合わせSOIウェーハを作製する(図1(D))。この剥離熱処理としては、例えば、Ar等の不活性ガス雰囲気下、通常400℃以上700℃以下、30分以上熱処理を加えればボンドウェーハをイオン注入層で剥離することができる。また、貼り合わせ面にあらかじめプラズマ処理を施すことによって、熱処理を加えずに(あるいは、剥離しない程度の温度で熱処理を加えた後)、外力を加えて剥離することもできる。尚、埋め込み酸化膜層の膜厚の上限は、例えば5μmとすることができる。
 その後、剥離後のSOI層とベースウェーハとの貼り合わせ界面の結合力を高めるために、酸化性雰囲気での結合熱処理を行い、その後、形成された表面酸化膜を除去する処理を行っても良い。この酸化膜形成と酸化膜除去によって、剥離面に残留するイオン注入時に発生した注入ダメージを除去することができる。
 次いで、作製した貼り合わせSOIウェーハに対してアルゴンガス含有雰囲気で平坦化熱処理を行う。このとき、貼り合わせSOIウェーハには、SOI層とBOX層との界面と、BOX層とベースウェーハとの界面に、それぞれSi/SiO界面が存在する。
 例えば、上述したように、ベースウェーハ2に熱酸化膜3を形成し(図3(A))、酸化膜のないボンドウェーハと貼り合わせ、イオン注入剥離法により貼り合わせSOIウェーハを作製する場合(図3(B))、SOI層1とBOX層3との界面Aは貼り合わせ界面となり、BOX層3とベースウェーハ2との界面Bは熱酸化膜界面となる。この場合、図3(C)に示すように、ベースウェーハ2に形成した熱酸化膜3(BOX層)の内部には圧縮歪が保存されている。そのため、SiOの気化反応(Si+SiO→2SiO)により界面Bがひとたび切断されるとBOX層3中の内部応力が開放され、薄膜(SOI+BOX)が剥がれる方向に力が掛るため剥がれが助長される(図3(D)、(E))。
 BOX層3中の内部応力はBOX層3の厚さが厚いほど大きくなるので、BOX層3の厚さが厚いほど剥がれが助長されやすくなる。そして、本発明のようにBOX層3の厚さが500nm以上であると、薄膜(SOI+BOX)の剥がれ具合が顕著となり、より幅広なオーバーハング形状が形成される。
 また、このような現象は、アルゴン含有雰囲気(例えば、アルゴンと水素の混合ガス雰囲気や100%Arガス雰囲気など)で発生し、特に、100%Arガス雰囲気で、1150℃以上の高温長時間(30分以上)の熱処理で顕著に発生する。
 BOX層3:膜厚1000nm、SOI層1:膜厚750nmを有する貼り合わせウェーハに対し、Arアニールを行った際の、薄膜(SOI+BOX)が幅広く剥がれた状態の貼り合わせSOIウェーハのSEM像を図4(A)に示す。また、SOI/BOX界面Aでの侵食が進行した様子のSEM像を図4(B)に、BOX/ベースウェーハ界面Bでの侵食が進行した様子のSEM像を図4(C)に示す。
 その後、SOI層1の膜厚を調整する犠牲酸化処理(犠牲酸化膜4形成+酸化膜除去)を行う(図1(F)、図3(F)、図3(G))。
 ここで、本発明においては、SOI層1のオーバーハング状の外周部が完全に犠牲酸化膜4に変化するように犠牲酸化条件を調整して犠牲酸化膜厚を調整する。
 具体的には、図5に示すように、SOI層のオーバーハング状の部分は上下面で同時に熱酸化膜が形成されるので、膜厚(t)であるSOI層のオーバーハング状の部分を完全に酸化膜に変化させるためには、片面に形成される犠牲酸化膜厚(d)との関係が、2×0.45d>tを満たすように、犠牲酸化膜厚(d)を調整すればよい。
 一方、オーバーハング状の部分以外のSOI層は表面のみに犠牲酸化膜が形成されるので、犠牲酸化後にSOI層を残存させるためには、t>0.45dを満たす必要がある。
 従って、0.9d>t>0.45dを満たすように犠牲酸化膜厚(d)を形成するための犠牲酸化条件(酸化温度、酸化時間など)を調整することによって、SOI層のオーバーハング状の部分に起因するパーティクルの発生を抑制することが可能となる。
 尚、犠牲酸化熱処理の条件は、膜厚が0.9d>t>0.45dを満たすような犠牲酸化膜を形成することができる条件であれば特に制限されないが、例えば900~950℃程度の温度で犠牲酸化熱処理を行うことにより、OSF(酸化誘起積層欠陥)を発生させることなく剥離面(SOI層表面)のダメージを十分に除去するのと同時に貼り合わせ界面結合強度を強化することができる。
 次いで、犠牲酸化処理において形成した犠牲酸化膜を除去する(図3(G))。これにより、Arアニール後にオーバーハング状となっていたSOI層の外周部が完全に除去される。酸化膜除去方法としては、例えば15%のHF洗浄、および、必要に応じて、RCA洗浄を行う方法がある。
 このような本発明の貼り合わせSOIウェーハの製造方法によれば、Arアニール後の犠牲酸化処理において、SOI層のオーバーハング状の最外周部が完全に酸化膜に変化するように犠牲酸化膜厚を調整することで、Arアニール後にオーバーハング状に残ったSOI層の最外周部からのパーティクル発生を未然に防止することができる。
 また、本発明においては、前記犠牲酸化処理後のSOI層の表面に、さらに、エピタキシャル層を形成することによって、比較的厚いSOI層膜厚を有する貼り合わせSOIウェーハとすることもできる。
 この場合、エピタキシャル成長を行う前のSOIウェーハの外周テラス部のベースウェーハ表面に酸化膜が残存している場合には、この酸化膜を除去してからエピタキシャル成長を行うことが好ましいが、そのテラス部の酸化膜を除去する工程や、その前に行われた犠牲酸化処理工程の酸化膜除去によって、BOX層がSOI層に比べて若干内側までエッチングされるため、BOX層の端面がSOI層の端面より凹んだ構造となる。
 そのため、BOX層の外周部がSOI層の端面より突出した状態(すなわち、BOX層の最外周部が露出した状態)でエピタキシャル成長を行った場合に発生するポリシリコン成長や、段差(SOI層の端面から成長したエピタキシャル層とテラス部から成長したエピタキシャル層との間に生ずる渓谷状の段差)などの欠陥発生を防止することができる。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 下記表1の製造条件により、イオン注入を行ったボンドウェーハと、600nmの膜厚を有するシリコン酸化膜付きベースウェーハとを貼り合わせ、イオン注入層でボンドウェーハを剥離することにより、貼り合わせSOIウェーハを作製した。その後、結合熱処理及び結合熱処理で形成された酸化膜を除去し、その後、100%Arガス雰囲気で平坦化熱処理を行った。Arアニール後のSOI膜厚は、それぞれ490nm(実施例)、415nm(比較例)であった。
 この際、実施例、比較例のいずれのSOIウェーハも、Arアニール直後には、図3(E)の図に示したようなオーバーハング形状が残っていることをSEM観察により確認した。
 その後、SOI層を調整する犠牲酸化処理(犠牲酸化膜形成+酸化膜除去)を表1に記載された条件でそれぞれ行った後、別々の洗浄槽でSC1洗浄(80℃、3分)を行って乾燥し、パーティクルカウンター(KLA Tencor社製SP2)を用いて、表面に付着したパーティクル(直径0.25μm以上)を測定して比較した。
Figure JPOXMLDOC01-appb-T000001
 その結果、実施例では、犠牲酸化処理後の洗浄工程において、比較例に対してパーティクルの発生を大幅に低減する効果が得られた。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (4)

  1.  シリコン単結晶からなるボンドウェーハの表面から水素イオン又は希ガスイオンのうち少なくとも1種類のガスイオンをイオン注入してイオン注入層を形成し、前記ボンドウェーハの前記イオン注入した表面と、シリコン単結晶からなるベースウェーハの表面とをシリコン酸化膜を介して貼り合わせた後、前記イオン注入層で前記ボンドウェーハを剥離することにより、前記ベースウェーハ上にBOX層とSOI層とを有する貼り合わせSOIウェーハを作製し、該貼り合わせSOIウェーハに対してアルゴンガス含有雰囲気で平坦化熱処理を行った後、前記SOI層の膜厚を調整する犠牲酸化処理を行う貼り合わせSOIウェーハの製造方法において、
     前記剥離により作製された貼り合わせSOIウェーハにおける前記BOX層の膜厚を500nm以上とし、
     前記犠牲酸化処理を施す前記SOI層の膜厚(t)と、前記犠牲酸化処理において形成する犠牲酸化膜の膜厚(d)との関係が、0.9d>t>0.45dを満たすように前記犠牲酸化膜を形成することを特徴とする貼り合わせSOIウェーハの製造方法。
  2.  前記アルゴンガス含有雰囲気を100%Arガスとすることを特徴とする請求項1に記載の貼り合わせSOIウェーハの製造方法。
  3.  前記ベースウェーハに500nm以上のシリコン酸化膜を形成し、該シリコン酸化膜を形成したベースウェーハと、前記ボンドウェーハの前記イオン注入した表面とを貼り合わせた後、前記イオン注入層で前記ボンドウェーハを剥離することにより、前記BOX層の膜厚が500nm以上である前記貼り合わせSOIウェーハを作製することを特徴とする請求項1又は請求項2に記載の貼り合わせSOIウェーハの製造方法。
  4.  前記犠牲酸化処理後の前記SOI層の表面にエピタキシャル層を形成することを特徴とする請求項1から請求項3のいずれか一項に記載の貼り合わせSOIウェーハの製造方法。
     
PCT/JP2016/003916 2015-10-28 2016-08-29 貼り合わせsoiウェーハの製造方法 WO2017072994A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187011656A KR102317552B1 (ko) 2015-10-28 2016-08-29 접합 soi 웨이퍼의 제조방법
US15/767,174 US10347525B2 (en) 2015-10-28 2016-08-29 Method for producing bonded SOI wafer
SG11201802984RA SG11201802984RA (en) 2015-10-28 2016-08-29 Method for producing bonded soi wafer
EP16859235.0A EP3370249B1 (en) 2015-10-28 2016-08-29 Bonded soi wafer manufacturing method
CN201680059158.3A CN108140553B (zh) 2015-10-28 2016-08-29 贴合式soi晶圆的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015211730A JP6473970B2 (ja) 2015-10-28 2015-10-28 貼り合わせsoiウェーハの製造方法
JP2015-211730 2015-10-28

Publications (1)

Publication Number Publication Date
WO2017072994A1 true WO2017072994A1 (ja) 2017-05-04

Family

ID=58630023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003916 WO2017072994A1 (ja) 2015-10-28 2016-08-29 貼り合わせsoiウェーハの製造方法

Country Status (8)

Country Link
US (1) US10347525B2 (ja)
EP (1) EP3370249B1 (ja)
JP (1) JP6473970B2 (ja)
KR (1) KR102317552B1 (ja)
CN (1) CN108140553B (ja)
SG (2) SG11201802984RA (ja)
TW (1) TWI709999B (ja)
WO (1) WO2017072994A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146146A (zh) * 2019-12-30 2020-05-12 长春理工大学 一种基底可多次利用的高效散热半导体衬底的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964321A (ja) * 1995-08-24 1997-03-07 Komatsu Electron Metals Co Ltd Soi基板の製造方法
WO2003009386A1 (fr) * 2001-07-17 2003-01-30 Shin-Etsu Handotai Co.,Ltd. Procede de production de plaquettes de liaison
JP2006270039A (ja) * 2005-02-28 2006-10-05 Shin Etsu Handotai Co Ltd 貼り合わせウエーハの製造方法及び貼り合わせウエーハ
JP2007317988A (ja) * 2006-05-29 2007-12-06 Shin Etsu Handotai Co Ltd 貼り合わせウエーハの製造方法
JP2009027124A (ja) * 2007-06-21 2009-02-05 Shin Etsu Handotai Co Ltd Soiウェーハの製造方法
JP2012129347A (ja) * 2010-12-15 2012-07-05 Shin Etsu Handotai Co Ltd 貼り合わせsoiウエーハの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204452A (ja) * 1998-01-13 1999-07-30 Mitsubishi Electric Corp 半導体基板の処理方法および半導体基板
JP4228419B2 (ja) * 1998-07-29 2009-02-25 信越半導体株式会社 Soiウエーハの製造方法およびsoiウエーハ
WO2006092886A1 (ja) 2005-02-28 2006-09-08 Shin-Etsu Handotai Co., Ltd. 貼り合わせウエーハの製造方法及び貼り合わせウエーハ
JP5135935B2 (ja) * 2007-07-27 2013-02-06 信越半導体株式会社 貼り合わせウエーハの製造方法
JP5499428B2 (ja) * 2007-09-07 2014-05-21 株式会社Sumco 貼り合わせウェーハの製造方法
EP2075830A3 (en) * 2007-10-11 2011-01-19 Sumco Corporation Method for producing bonded wafer
WO2011027545A1 (ja) 2009-09-04 2011-03-10 信越半導体株式会社 Soiウェーハの製造方法
JP5521561B2 (ja) * 2010-01-12 2014-06-18 信越半導体株式会社 貼り合わせウェーハの製造方法
JP6056516B2 (ja) * 2013-02-01 2017-01-11 信越半導体株式会社 Soiウェーハの製造方法及びsoiウェーハ
JP6380245B2 (ja) * 2015-06-15 2018-08-29 信越半導体株式会社 Soiウェーハの製造方法
JP6513041B2 (ja) * 2016-02-19 2019-05-15 信越半導体株式会社 半導体ウェーハの熱処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964321A (ja) * 1995-08-24 1997-03-07 Komatsu Electron Metals Co Ltd Soi基板の製造方法
WO2003009386A1 (fr) * 2001-07-17 2003-01-30 Shin-Etsu Handotai Co.,Ltd. Procede de production de plaquettes de liaison
JP2006270039A (ja) * 2005-02-28 2006-10-05 Shin Etsu Handotai Co Ltd 貼り合わせウエーハの製造方法及び貼り合わせウエーハ
JP2007317988A (ja) * 2006-05-29 2007-12-06 Shin Etsu Handotai Co Ltd 貼り合わせウエーハの製造方法
JP2009027124A (ja) * 2007-06-21 2009-02-05 Shin Etsu Handotai Co Ltd Soiウェーハの製造方法
JP2012129347A (ja) * 2010-12-15 2012-07-05 Shin Etsu Handotai Co Ltd 貼り合わせsoiウエーハの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146146A (zh) * 2019-12-30 2020-05-12 长春理工大学 一种基底可多次利用的高效散热半导体衬底的制备方法

Also Published As

Publication number Publication date
US20190074213A1 (en) 2019-03-07
EP3370249B1 (en) 2020-03-11
TW201724176A (zh) 2017-07-01
TWI709999B (zh) 2020-11-11
CN108140553A (zh) 2018-06-08
EP3370249A4 (en) 2019-06-26
EP3370249A1 (en) 2018-09-05
CN108140553B (zh) 2022-04-08
KR20180073580A (ko) 2018-07-02
KR102317552B1 (ko) 2021-10-27
SG10201903932WA (en) 2019-05-30
JP6473970B2 (ja) 2019-02-27
JP2017084963A (ja) 2017-05-18
SG11201802984RA (en) 2018-05-30
US10347525B2 (en) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2015162839A1 (ja) 貼り合わせsoiウェーハの製造方法
WO2013102968A1 (ja) 貼り合わせsoiウェーハの製造方法
WO2017212812A1 (ja) 貼り合わせsoiウェーハの製造方法
TW201546873A (zh) 貼合式soi晶圓的製造方法
JP2009212402A (ja) 貼り合わせウェーハの製造方法
WO2016203677A1 (ja) Soiウェーハの製造方法
JP5522175B2 (ja) Soiウェーハの製造方法
WO2005067053A1 (ja) Soiウェーハの作製方法
JP5942948B2 (ja) Soiウェーハの製造方法及び貼り合わせsoiウェーハ
JP2010098167A (ja) 貼り合わせウェーハの製造方法
JP5493345B2 (ja) Soiウェーハの製造方法
JP2010507918A (ja) 欠陥クラスタを有する基板内に形成された薄層の転写のための改善された方法
WO2010064355A1 (ja) 貼り合わせウェーハの製造方法
JP5541136B2 (ja) 貼り合わせsoiウエーハの製造方法
JP6473970B2 (ja) 貼り合わせsoiウェーハの製造方法
WO2016059748A1 (ja) 貼り合わせウェーハの製造方法
JP6111678B2 (ja) GeOIウェーハの製造方法
JP5477277B2 (ja) Soiウェーハの製造方法
JP5125194B2 (ja) 貼り合わせウエーハの製造方法
JP2007173694A (ja) 半導体基板の作製方法
JP2010129839A (ja) 貼り合わせウェーハの製造方法
JP2006269552A (ja) 半導体ウエーハの製造方法
JP7251419B2 (ja) 貼り合わせsoiウェーハの製造方法
JP5572914B2 (ja) 直接接合ウェーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859235

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201802984R

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 20187011656

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016859235

Country of ref document: EP