WO2017030126A1 - 半導体装置及び半導体素子保護用材料 - Google Patents

半導体装置及び半導体素子保護用材料 Download PDF

Info

Publication number
WO2017030126A1
WO2017030126A1 PCT/JP2016/073934 JP2016073934W WO2017030126A1 WO 2017030126 A1 WO2017030126 A1 WO 2017030126A1 JP 2016073934 W JP2016073934 W JP 2016073934W WO 2017030126 A1 WO2017030126 A1 WO 2017030126A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor element
cured product
compound
less
weight
Prior art date
Application number
PCT/JP2016/073934
Other languages
English (en)
French (fr)
Inventor
貴史 西村
前中 寛
秀 中村
卓司 青山
小林 祐輔
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201680033071.9A priority Critical patent/CN107735859B/zh
Priority to KR1020187014799A priority patent/KR102097004B1/ko
Priority to KR1020217006250A priority patent/KR102294307B1/ko
Priority to KR1020217026566A priority patent/KR102460328B1/ko
Priority to KR1020177023796A priority patent/KR101864096B1/ko
Priority to KR1020207009101A priority patent/KR102224210B1/ko
Priority to JP2016553906A priority patent/JP6275863B2/ja
Publication of WO2017030126A1 publication Critical patent/WO2017030126A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to a semiconductor device using a semiconductor element protecting material.
  • the present invention also relates to a semiconductor element protecting material that is used by coating on the surface of the semiconductor element in order to protect the semiconductor element.
  • the electrode of the semiconductor element is electrically connected to, for example, an electrode in another connection target member having the electrode on the surface.
  • the semiconductor element and the other connection target member are bonded and bonded by curing the epoxy resin composition. It is fixed.
  • positioned between a semiconductor element and another connection object member differs from the material for protecting the surface of a semiconductor element.
  • an epoxy resin composition may be used to seal a semiconductor element.
  • Patent Document 1 discloses an epoxy resin, a phenolic curing agent, a curing accelerator that is tris (2,6-dimethoxyphenyl) phosphine or tris (2,4,6-trimethoxyphenyl) phosphine, and alumina.
  • An epoxy resin composition is disclosed.
  • the epoxy resin composition which is powder is described.
  • Patent Document 1 describes that it is suitably used for sealing semiconductor devices such as ICs, LSIs, transistors, thyristors, and diodes, and for manufacturing printed circuit boards. .
  • Patent Document 2 discloses a sealing epoxy resin composition containing an epoxy resin, a phenol resin curing agent, a curing accelerator, and an inorganic filler.
  • the epoxy resin composition for sealing which is a powder is described.
  • Patent Document 2 describes that it can be used as a general molding material, and further used as a sealing material for semiconductor devices, in particular, thin, multi-pin, long wire, narrow pad. It is described that it is suitably used for a sealing material of a semiconductor device in which a semiconductor chip is disposed on a mounting substrate such as a pitch or an organic substrate or an organic film.
  • Patent Document 3 discloses an epoxy resin composition containing a bisphenol F type liquid epoxy resin, a curing agent, and an inorganic filler.
  • the epoxy resin composition (melt viscosity is 75 degreeC or more) which is solid is described.
  • a semiconductor device for example, a multi-pin thin package such as TQFP, TSOP, and QFP, particularly a semiconductor device using a matrix frame It is described that it is suitably used as a sealing material.
  • Patent Document 4 discloses an epoxy resin composition for semiconductor encapsulation containing an epoxy resin, a phenol resin curing agent, a high thermal conductive filler, and an inorganic filler.
  • the epoxy resin composition for semiconductor sealing which is powder is described.
  • Patent Document 4 describes that it is used as a sealing material for electronic components such as semiconductor elements.
  • Patent Document 5 listed below includes a first agent containing a bisphenol A type epoxy resin, a flexible epoxy resin in the skeleton, a second agent containing an acid anhydride compound and a curing accelerator, A two-component type epoxy resin composition having the following is disclosed. Patent Document 5 describes that the two-pack type epoxy resin composition is useful as an in-case filler.
  • Patent Documents 1 to 4 specifically disclose an epoxy resin composition that is a powder or a solid. Such a powder or solid epoxy resin composition has low applicability and is difficult to place accurately in a predetermined region.
  • the cured product of the conventional epoxy resin composition may have low heat dissipation. Furthermore, voids may occur in the cured product of the conventional epoxy resin composition. When voids occur, the cured product may peel off.
  • Patent Documents 1 to 4 mainly describe sealing applications as specific applications of the epoxy resin composition.
  • patent document 5 as a specific application of the epoxy resin composition, a case-filler application is mainly described.
  • the epoxy resin compositions described in Patent Documents 1 to 5 are generally not used by coating on the surface of the semiconductor element in order to protect the semiconductor element.
  • An object of the present invention is to provide a semiconductor device that is excellent in heat dissipation of a cured product, has few voids in the cured product, is excellent in insulation reliability of the cured product, and can satisfactorily protect a semiconductor element. .
  • the present invention also relates to a semiconductor element protecting material used for forming a cured product on the surface of the semiconductor element by applying it on the surface of the semiconductor element in order to protect the semiconductor element in the semiconductor device.
  • the purpose is to provide.
  • the object of the present invention is to provide a semiconductor element protection that can provide a cured product having excellent heat dissipation, few voids, and excellent insulation reliability in the above-mentioned applications, and can protect the semiconductor element satisfactorily. Is to provide materials.
  • the semiconductor device includes a semiconductor element and a cured product disposed on the first surface of the semiconductor element, and the cured product is a cured product of a semiconductor element protecting material, and the semiconductor element protection
  • the material for use includes a thermosetting compound, a curing agent or a curing catalyst, and an inorganic filler having a thermal conductivity of 10 W / m ⁇ K or more, and the semiconductor element protecting material is changed from a trimer to a decamer.
  • a cyclic siloxane compound from trimer to decamer is contained at 500 ppm or less, and the content of the inorganic filler in the cured product is 60% by weight or more and 92% by weight or less.
  • the cured product has an electric conductivity of 50 ⁇ S / cm or less.
  • a material for protecting a semiconductor element which is applied on the surface of the semiconductor element and used to form a cured product on the surface of the semiconductor element
  • Thermosetting compound unlike the one that forms a cured product that is disposed between a semiconductor element and another connection target member and adheres and fixes the semiconductor element and the other connection target member so as not to peel off.
  • a curing agent or a curing catalyst, and an inorganic filler having a thermal conductivity of 10 W / m ⁇ K or more, and does not contain a cyclic siloxane compound from trimer to decamer, or from trimer to tenmer.
  • the cyclic siloxane compound up to a monomer is contained at 500 ppm or less, the content of the inorganic filler is 60 wt% or more and 92 wt% or less, and the cured product is obtained by heating at 150 ° C. for 2 hours to obtain a cured product.
  • Thing Air conductivity is less than 50 [mu] S / cm, the semiconductor element protection material is provided.
  • the semiconductor element in order to protect a semiconductor element mounted on a connection target member, the semiconductor element is applied on a surface opposite to the connection target member side of the semiconductor element, and the connection target of the semiconductor element is It is a material for protecting a semiconductor element used for forming a cured product on the surface opposite to the member side, and has a thermosetting compound, a curing agent or a curing catalyst, and a thermal conductivity of 10 W / m ⁇ K or more.
  • thermosetting compound contains an epoxy compound or a silicone compound.
  • thermosetting compound contains a silicone compound.
  • the curing agent is an allylphenol novolak compound.
  • thermosetting compound includes a flexible epoxy compound.
  • thermosetting compound includes the flexible epoxy compound and an epoxy compound different from the flexible epoxy compound.
  • the flexible epoxy compound contained in the semiconductor element protecting material has a structural unit in which 9 or more alkylene glycol groups are repeated.
  • Alkylene glycol diglycidyl ether Alkylene glycol diglycidyl ether.
  • the material for protecting a semiconductor element does not contain water or contains 1000 ppm or less of water.
  • the semiconductor device includes a connection target member, and the semiconductor element is on the connection target member from a second surface side opposite to the first surface. Has been implemented.
  • the said semiconductor device is provided with the connection object member which has a 2nd electrode on the surface,
  • the said semiconductor element is 2nd opposite to the said 1st surface side.
  • a first electrode is provided on the surface side, and the first electrode of the semiconductor element is electrically connected to the second electrode in the connection target member having the second electrode on the surface.
  • the protective film is arrange
  • the material for protecting a semiconductor element according to the present invention forms a cured product on the surface of the semiconductor element to protect the semiconductor element, and a protective film on the surface opposite to the semiconductor element side of the cured product
  • a cured product is formed on the surface of the semiconductor element and opposite to the semiconductor element side of the cured product. Is used to obtain a semiconductor device having a surface exposed.
  • a semiconductor element device includes a semiconductor element and a cured product disposed on a first surface of the semiconductor element, and the cured product is a cured product of a semiconductor element protecting material, and the semiconductor
  • the element protecting material includes a thermosetting compound, a curing agent or a curing catalyst, and an inorganic filler having a thermal conductivity of 10 W / m ⁇ K or more.
  • the cyclic siloxane compound is not included up to a trimer, or the cyclic siloxane compound from trimer to decamer is included at 500 ppm or less, and the content of the inorganic filler in the cured product is 60% by weight or more and 92% by weight. Since the electrical conductivity of the cured product is 50 ⁇ S / cm or less, the cured product has excellent heat dissipation, less voids in the cured product, excellent insulation reliability of the cured product, and good semiconductor elements. Keep It can be.
  • the material for protecting a semiconductor element according to the present invention includes a thermosetting compound, a curing agent or a curing catalyst, and an inorganic filler having a thermal conductivity of 10 W / m ⁇ K or more, from trimer to decamer.
  • the cyclic siloxane compound is not contained, or the cyclic siloxane compound from trimer to decamer is contained at 500 ppm or less, water is not contained, or water is contained at 1000 ppm or less, and the content of the inorganic filler is 60
  • the cured product is obtained by heating at 150 ° C. for 2 hours, since the electrical conductivity of the cured product is 50 ⁇ S / cm or less, the heat dissipation is excellent.
  • the semiconductor element protecting material according to the present invention can be satisfactorily protected by applying and curing the surface of the semiconductor element in order to protect the semiconductor element.
  • the semiconductor element protecting material according to the present invention is applied on the surface opposite to the connection target member side of the semiconductor element and cured. By doing so, the semiconductor element can be well protected.
  • FIG. 1 is a partially cutaway front sectional view showing a semiconductor device using a semiconductor element protecting material according to a first embodiment of the present invention.
  • FIG. 2 is a partially cutaway front sectional view showing a semiconductor device using a semiconductor element protecting material according to a second embodiment of the present invention.
  • the semiconductor device according to the present invention includes a semiconductor element and a cured product.
  • the cured product is disposed on the first surface of the semiconductor element.
  • the cured product is a cured product of a semiconductor element protecting material.
  • the material for protecting a semiconductor element according to the present invention is applied on the surface of the semiconductor element to form a cured product on the surface of the semiconductor element.
  • the material for protecting a semiconductor element according to the present invention is a cured product that is disposed between a semiconductor element and another connection target member and adheres and fixes the semiconductor element and the other connection target member so as not to peel off. It is different from what is formed (material).
  • the material for protecting a semiconductor element according to the present invention is provided on a surface opposite to the connection target member side of the semiconductor element in order to protect the semiconductor element mounted on the connection target member. It is used to form a cured product on the surface of the semiconductor element.
  • a semiconductor element protecting material used in a semiconductor device according to the present invention and a semiconductor element protecting material according to the present invention are: (A) a thermosetting compound and (B) a curing agent or a curing catalyst ((B1) curing. Agent or (B2) curing catalyst) and (C) an inorganic filler having a thermal conductivity of 10 W / m ⁇ K or more.
  • the material for protecting a semiconductor element used in the semiconductor device according to the present invention and the material for protecting a semiconductor element according to the present invention are, for example, liquid at 23 ° C. because they are applied on the surface of the semiconductor element. Preferably, it is not solid at 23 ° C. In addition, viscous paste is also contained in liquid form.
  • the semiconductor element protecting material used for the semiconductor device according to the present invention and the semiconductor element protecting material according to the present invention do not contain (X) a cyclic siloxane compound from trimer to decamer, or ( X) A cyclic siloxane compound from trimer to decamer is contained at 500 ppm or less.
  • the content of the low molecular weight (X) siloxane compound in the semiconductor element protecting material used in the semiconductor device according to the present invention and the semiconductor element protecting material according to the present invention is small.
  • the content of the inorganic filler (C) having a thermal conductivity of 10 W / m ⁇ K or more is 60% by weight or more and 92% by weight or less.
  • C) The content of the inorganic filler having a thermal conductivity of 10 W / m ⁇ K or more is preferably 60% by weight or more, preferably 92% by weight. % Or less. In 100% by weight of the semiconductor element protecting material according to the present invention, the content of the inorganic filler (C) having a thermal conductivity of 10 W / m ⁇ K or more is 60% by weight or more and 92% by weight or less.
  • the electrical conductivity of the cured product of the semiconductor device according to the present invention and the cured product of the semiconductor element protecting material according to the present invention is 50 ⁇ S / cm or less.
  • the semiconductor element protecting material can be applied on the surface of the semiconductor element.
  • the semiconductor element protecting material can be selectively and accurately applied onto the surface of a portion where it is desired to improve the heat dissipation of the semiconductor element.
  • the semiconductor device according to the present invention Since the semiconductor device according to the present invention has the above-described configuration, it is excellent in heat dissipation of the cured product. For this reason, heat can be sufficiently dissipated from the surface of the semiconductor element via the cured product. For this reason, the thermal degradation of the semiconductor device can be effectively suppressed.
  • the semiconductor element protecting material according to the present invention since the semiconductor element protecting material according to the present invention has the above-described configuration, it is excellent in heat dissipation of the cured product. For this reason, by arrange
  • the semiconductor device according to the present invention and the semiconductor element protecting material according to the present invention it is difficult to generate voids in the cured product, and it is difficult to peel the cured product from the surface of the semiconductor element.
  • the semiconductor device according to the present invention is excellent in insulation reliability of the cured product. Therefore, the semiconductor element can be well protected.
  • the semiconductor element protecting material according to the present invention a cured product having excellent insulation reliability can be obtained. Therefore, the semiconductor element protecting material according to the present invention can be satisfactorily protected by applying and curing the surface of the semiconductor element in order to protect the semiconductor element. In addition, in order to protect the semiconductor element mounted on the connection target member, the semiconductor element protecting material according to the present invention is applied on the surface opposite to the connection target member side of the semiconductor element and cured. By doing so, the semiconductor element can be well protected.
  • the content of the (X) cyclic siloxane compound from trimer to decamer is at most 500 ppm. From the viewpoint of further improving the insulation reliability, the content of the cyclic siloxane compound from (X) trimer to decamer is preferably 250 ppm or less. (X) The smaller the content of the cyclic siloxane compound from trimer to decamer, the better.
  • Cyclic siloxane compounds from trimer to decamer include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, tetradecamethylcycloheptasiloxane, hexadecamethylcyclohexane. It means octasiloxane, octadecamethylcyclononasiloxane, and eicosamethylcyclodecasiloxane.
  • the semiconductor element protecting material according to the present invention does not contain (Y) water or (Y) contains 1000 ppm or less of water.
  • the content of (Y) water is preferably 800 ppm or less.
  • (Y) The smaller the water content, the better.
  • the water content is measured using a Karl Fischer moisture meter (“MKV-710B” manufactured by Kyoto Electronics Industry Co., Ltd.).
  • the electrical conductivity of the cured product of the semiconductor device according to the present invention is 50 ⁇ S / cm or less.
  • the electrical conductivity of the cured product is 50 ⁇ S / cm or less.
  • the electric conductivity of the cured product is preferably 30 ⁇ S / cm or less.
  • the lower limit of the electrical conductivity of the cured product is not particularly limited.
  • the electrical conductivity is measured as follows.
  • a cured product of the semiconductor device is prepared.
  • the semiconductor element protecting material is cured at 150 ° C. for 2 hours to obtain a cured product.
  • These cured products are pulverized to about 5 mm square, 25 mL of ion exchange water is added to 2.5 g of the pulverized product, and placed in PCT (121 ° C. ⁇ 2 ° C./humidity 100% / 2 atm bath) for 20 hours. Thereafter, an extract obtained by cooling to room temperature (25 ° C.) is obtained as a test solution.
  • the electrical conductivity of this test solution is measured using a conductivity meter (electric conductivity meters “CM-30G”, “CM-42X”, etc., manufactured by Toa Denpa Kogyo Co., Ltd.).
  • the viscosity at 25 ° C. and 10 rpm of the semiconductor element protecting material is preferably 40 Pa ⁇ s or more, more preferably 50 Pa ⁇ s or more, preferably 140 Pa ⁇ s or less. More preferably, it is 130 Pa ⁇ s or less.
  • the viscosity is measured using a B-type viscometer (“TVB-10 type” manufactured by Toki Sangyo Co., Ltd.).
  • the semiconductor element protecting material preferably contains (B1) a curing agent and (D) a curing accelerator.
  • the semiconductor element protecting material is: (E) It is preferable that a coupling agent is included.
  • the semiconductor element protecting material preferably contains (F) an ion scavenger.
  • thermosetting compound examples include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds.
  • thermosetting compound examples include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds.
  • a thermosetting compound only 1 type may be used and 2 or more types may be used together.
  • thermosetting compound is (A1) an epoxy compound or (A2) silicone. It is preferable to include a compound.
  • the thermosetting compound may contain (A1) an epoxy compound, and (A2) may contain a silicone compound. From the viewpoint of further suppressing the warpage of the connection target member after being exposed to a high temperature, the molecular weight of the (A2) silicone compound is preferably 300 or more. From the viewpoint of further suppressing warpage of the connection target member after being exposed to a high temperature, it is preferable that (A) the thermosetting compound contains (A2) a silicone compound.
  • the content of the (A) thermosetting compound is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 20% by weight or less, more preferably 15%. % By weight or less, more preferably 10% by weight or less, particularly preferably 8% by weight or less.
  • content of a thermosetting compound is more than the said minimum and below the said upper limit, the applicability
  • the total content of (A1) epoxy compound and (A2) silicone compound in 100% by weight of the semiconductor element protecting material is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 20%. % By weight or less, more preferably 15% by weight or less.
  • the total content of (A1) epoxy compound and (A2) silicone compound is not less than the above lower limit and not more than the above upper limit, the coatability of the semiconductor element protecting material, the flexibility of the cured product, and the moisture resistance are even better. Thus, the adhesiveness of the cured product to the semiconductor element is further improved, and sticking to the protective film can be further suppressed.
  • (A1) Epoxy compound In 100% by weight of the semiconductor element protecting material, the content of the (A1) epoxy compound is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 10% by weight or less, more preferably 8% by weight. % Or less. (A1) When the content of the epoxy compound is not less than the above lower limit and not more than the above upper limit, the coatability of the semiconductor element protecting material, the flexibility of the cured product, and the moisture resistance are further improved. The adhesiveness is further improved, and sticking to the protective film can be further suppressed.
  • the epoxy compound includes (A11) a flexible epoxy compound and (A12) an epoxy compound different from the flexible epoxy compound. From the viewpoint of effectively demonstrating the effects of the present invention, (A) the thermosetting compound contains (A11) a flexible epoxy compound and (A12) an epoxy compound different from the flexible epoxy compound. Is preferred.
  • (A12) An epoxy compound different from the flexible epoxy compound does not have flexibility. By using the (A12) epoxy compound together with the (A11) flexible epoxy compound, the moisture resistance of the cured product of the semiconductor element protecting material can be increased, and the adhesion to the protective film can be reduced.
  • (A12) As for an epoxy compound only 1 type may be used and 2 or more types may be used together.
  • the thermosetting compound preferably includes (A11) a flexible epoxy compound.
  • (A11) The flexibility of the cured product can be increased by using a flexible epoxy compound.
  • (A11) By using a flexible epoxy compound it becomes difficult to cause damage to the semiconductor element due to deformation stress on the semiconductor element, and it is possible to make it difficult to peel the cured product from the surface of the semiconductor element.
  • (A11) As for a flexible epoxy compound only 1 type may be used and 2 or more types may be used together.
  • Examples of the flexible epoxy compound include polyalkylene glycol diglycidyl ether, polybutadiene diglycidyl ether, sulfide-modified epoxy resin, polyalkylene oxide-modified bisphenol A type epoxy resin, and the like. From the viewpoint of further enhancing the flexibility of the cured product, polyalkylene glycol diglycidyl ether is preferred.
  • the polyalkylene glycol diglycidyl ether preferably has a structural unit in which 9 or more alkylene glycol groups are repeated.
  • the upper limit of the number of repeating alkylene groups is not particularly limited.
  • the number of repeating alkylene groups may be 30 or less.
  • the alkylene group preferably has 2 or more carbon atoms, preferably 5 or less.
  • polyalkylene glycol diglycidyl ether examples include polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and polytetramethylene glycol diglycidyl ether.
  • the content of the (A11) flexible epoxy compound is preferably 3% by weight or more, more preferably 5% by weight or more, preferably 10% by weight or less, more preferably 8% by weight or less.
  • the content of the flexible epoxy compound is not less than the above lower limit, the flexibility of the cured product is further increased.
  • the content of the flexible epoxy compound is not more than the above upper limit, the applicability of the semiconductor element protecting material is further enhanced.
  • the total content of (A11) flexible epoxy compound and (A12) epoxy compound in 100% by weight of the semiconductor element protecting material is preferably 5% by weight or more, more preferably 8% by weight or more, preferably Is 15% by weight or less, more preferably 12% by weight or less.
  • the coatability of the semiconductor element protecting material, the flexibility of the cured product, and the moisture resistance are sufficient. It becomes much more favorable, the adhesiveness with respect to the semiconductor element of hardened
  • an epoxy compound an epoxy compound having a bisphenol skeleton, an epoxy compound having a dicyclopentadiene skeleton, an epoxy compound having a naphthalene skeleton, an epoxy compound having an adamantane skeleton, an epoxy compound having a fluorene skeleton, an epoxy having a biphenyl skeleton
  • an epoxy compound having a bi (glycidyloxyphenyl) methane skeleton an epoxy compound having a xanthene skeleton, an epoxy compound having an anthracene skeleton, and an epoxy compound having a pyrene skeleton.
  • the epoxy compound is preferably not a polyalkylene glycol diglycidyl ether.
  • the (A12) epoxy compound is preferably an epoxy compound having a bisphenol skeleton (bisphenol type epoxy compound).
  • Examples of the epoxy compound having a bisphenol skeleton include an epoxy monomer having a bisphenol skeleton of bisphenol A type, bisphenol F type, or bisphenol S type.
  • Examples of the epoxy compound having a dicyclopentadiene skeleton include dicyclopentadiene dioxide and a phenol novolac epoxy monomer having a dicyclopentadiene skeleton.
  • Examples of the epoxy compound having a naphthalene skeleton include 1-glycidylnaphthalene, 2-glycidylnaphthalene, 1,2-diglycidylnaphthalene, 1,5-diglycidylnaphthalene, 1,6-diglycidylnaphthalene, 1,7-diglycidyl.
  • Examples include naphthalene, 2,7-diglycidylnaphthalene, triglycidylnaphthalene, and 1,2,5,6-tetraglycidylnaphthalene.
  • Examples of the epoxy compound having an adamantane skeleton include 1,3-bis (4-glycidyloxyphenyl) adamantane and 2,2-bis (4-glycidyloxyphenyl) adamantane.
  • Examples of the epoxy compound having a fluorene skeleton include 9,9-bis (4-glycidyloxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3-methylphenyl) fluorene, and 9,9-bis (4- Glycidyloxy-3-chlorophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-bromophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-fluorophenyl) fluorene, 9,9-bis (4-Glycidyloxy-3-methoxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dimethylphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dichlorophenyl) Fluorene and 9,9-bis (4-glycidyloxy-3,5-dibromophenyl) Fluorene, and
  • Examples of the epoxy compound having a biphenyl skeleton include 4,4'-diglycidylbiphenyl and 4,4'-diglycidyl-3,3 ', 5,5'-tetramethylbiphenyl.
  • Examples of the epoxy compound having a bi (glycidyloxyphenyl) methane skeleton include 1,1′-bi (2,7-glycidyloxynaphthyl) methane, 1,8′-bi (2,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,7-glycidyloxynaphthyl) methane, 1,8′-bi (3,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,5-glycidyloxynaphthyl) methane 1,8'-bi (3,5-glycidyloxynaphthyl) methane, 1,2'-bi (2,7-glycidyloxynaphthyl) methane, 1,2'-bi (3,7-glycidyloxynaphthyl) And methane and 1,2′
  • Examples of the epoxy compound having a xanthene skeleton include 1,3,4,5,6,8-hexamethyl-2,7-bis-oxiranylmethoxy-9-phenyl-9H-xanthene.
  • the content of the (A12) epoxy compound is preferably 10 parts by weight or more, more preferably 20 parts by weight or more, preferably 100 parts by weight or less, more preferably 100 parts by weight of the (A11) flexible epoxy compound. Is 90 parts by weight or less.
  • the content of the epoxy compound is not less than the above lower limit, the applicability of the semiconductor element protecting material is further enhanced, and the adhesiveness of the cured product to the semiconductor element is further enhanced.
  • the content of the epoxy compound is not more than the above upper limit, the flexibility of the cured product is further increased.
  • the silicone compound includes, for example, a silicone compound having an alkenyl group bonded to a silicon atom and a silicone compound having a hydrogen atom bonded to a silicon atom.
  • a silicone compound having an alkenyl group bonded to a silicon atom may not have a hydrogen atom bonded to a silicon atom.
  • the silicone compound having an alkenyl group bonded to a silicon atom is a silicone compound represented by the following formula (1A), a silicone compound represented by the following formula (2A), or a silicone compound represented by the following formula (3A). It is preferable that
  • a and b satisfy 0.01 ⁇ a ⁇ 0.2 and 0.8 ⁇ b ⁇ 0.99, and 1 mol% or more and 20 mol% or less of R1 to R5 represent an alkenyl group.
  • 80 to 99 mol% of R1 to R5 represent a methyl group and a phenyl group, and R1 to R5 other than the alkenyl group, the methyl group and the phenyl group represent an alkyl group having 2 to 6 carbon atoms.
  • a and b satisfy 0.7 ⁇ a ⁇ 0.9 and 0.1 ⁇ b ⁇ 0.3, and 1 mol% or more and 33 mol% or less of R1 to R3 represent an alkenyl group.
  • R1 to R3 of 67 mol% or more and 99 mol% or less represent a methyl group and a phenyl group, and R1 to R3 other than the alkenyl group, the methyl group and the phenyl group represent an alkyl group having 2 to 6 carbon atoms.
  • R1 to R3 may represent an alkenyl group
  • 80 mol% or more and 99 mol% or less of R1 to R3 may represent a methyl group and a phenyl group.
  • a, b and c satisfy 0.05 ⁇ a ⁇ 0.3, 0 ⁇ b ⁇ 0.8, 0.15 ⁇ c ⁇ 0.85, and 2 mol% of R1 to R6
  • 20 mol% or less represents an alkenyl group
  • 80 to 95 mol% of R1 to R6 represents 95 mol% or less represents a methyl group and a phenyl group
  • R1 to R6 other than the alkenyl group, methyl group and phenyl group represent 2 to Represents an alkyl group of 6;
  • the silicone compound having a hydrogen atom bonded to the silicon atom is preferably a silicone compound represented by the following formula (1B).
  • a and b satisfy 0.1 ⁇ a ⁇ 0.67 and 0.33 ⁇ b ⁇ 0.9, and 1 mol% or more and 25 mol or less of R1 to R5 represent hydrogen atoms.
  • R1 to R5 of 75 to 99 mol% represent a methyl group and a phenyl group
  • R1 to R5 other than a hydrogen atom, a methyl group and a phenyl group represent an alkyl group having 2 to 6 carbon atoms.
  • the silicone compound preferably contains a silicone compound represented by the above formula (1A).
  • the silicone compound includes a silicone compound represented by the above formula (1A) and a silicone compound represented by the above formula (2A), or a silicone compound represented by the above formula (1A) and And a silicone compound represented by the above formula (3A).
  • thermosetting compound is (A1) a silicone compound represented by the above formula (2A) or (3A). It is preferable to contain the silicone compound represented, and the silicone compound represented by the said Formula (1B). From the viewpoint of enhancing the insulation reliability, (A) the thermosetting compound is, as (A1) silicone compound, a silicone compound represented by the above formula (3A), and a silicone compound represented by the above formula (1B) It is preferable to contain. From the viewpoint of further suppressing warpage of the connection target member, (A) the thermosetting compound is represented by (A1) the silicone compound represented by the above formula (1A) and the above formula (1B) as the silicone compound. It is preferable to contain a silicone compound.
  • the content of the (A2) silicone compound is preferably 5% by weight or more, more preferably 8% by weight or more, preferably 20% by weight or less, more preferably 15% by weight. % Or less.
  • the content of the silicone compound is not less than the above lower limit and not more than the above upper limit, the applicability of the semiconductor element protecting material, the flexibility of the cured product, and the moisture resistance are further improved. The adhesiveness is further improved, and sticking to the protective film can be further suppressed.
  • the content of the silicone compound having an alkenyl group bonded to the silicon atom is preferably 10 parts by weight or more, preferably 400 parts by weight or less with respect to 100 parts by weight of the silicone compound having a hydrogen atom bonded to the silicon atom. It is. If this content relationship is satisfied, the coating property of the semiconductor element protecting material, the flexibility and moisture resistance of the cured product will be further improved, and the adhesion of the cured product to the semiconductor device will be further improved, and the protective film Can be further suppressed.
  • (B) curing agent or curing catalyst As a curing agent or a curing catalyst, (B1) a curing agent may be used, or (B2) a curing catalyst may be used. When (A1) an epoxy compound is used, (B1) a curing agent is preferred. When (A2) a silicone compound is used, (B2) a curing catalyst is preferred.
  • the curing agent may be liquid at 23 ° C. or solid.
  • the (B1) curing agent is preferably a curing agent that is liquid at 23 ° C.
  • the wettability with respect to the surface of the semiconductor element of the semiconductor element protection material becomes high by using a curing agent that is liquid at 23 ° C.
  • curing agent examples include an amine compound (amine curing agent), an imidazole compound (imidazole curing agent), a phenol compound (phenol curing agent), and an acid anhydride (acid anhydride curing agent).
  • the curing agent may not be an imidazole compound.
  • the (B1) curing agent is preferably a phenol compound.
  • the (B1) curing agent has an allyl group. It is preferable that the phenol compound has an allyl group.
  • phenol compound examples include phenol novolak, o-cresol novolak, p-cresol novolak, t-butylphenol novolak, dicyclopentadiene cresol, polyparavinylphenol, bisphenol A type novolak, xylylene modified novolak, decalin modified novolak, poly (di -O-hydroxyphenyl) methane, poly (di-m-hydroxyphenyl) methane, poly (di-p-hydroxyphenyl) methane and the like.
  • the content of (B1) curing agent is preferably 50 parts by weight or more, more preferably 75 parts by weight or more, with respect to 100 parts by weight of (A) thermosetting compound.
  • the amount is preferably 100 parts by weight or more, preferably 250 parts by weight or less, more preferably 225 parts by weight or less, and still more preferably 200 parts by weight or less.
  • (B1) When content of a hardening
  • the content of the (B1) curing agent is not more than the above upper limit, the residual amount of the (B1) curing agent that did not contribute to curing in the cured product is reduced.
  • curing catalyst examples include metal catalysts such as hydrosilylation reaction catalysts and condensation catalysts.
  • the curing catalyst examples include a tin-based catalyst, a platinum-based catalyst, a rhodium-based catalyst, and a palladium-based catalyst. Since the transparency can be increased, a platinum-based catalyst is preferable.
  • the hydrosilylation reaction catalyst is a catalyst that causes a hydrosilylation reaction between a hydrogen atom bonded to a silicon atom in a silicone compound and an alkenyl group in the silicone compound.
  • the said catalyst for hydrosilylation reaction only 1 type may be used and 2 or more types may be used together.
  • platinum-based catalyst examples include platinum powder, chloroplatinic acid, platinum-alkenylsiloxane complex, platinum-olefin complex, and platinum-carbonyl complex.
  • platinum-alkenylsiloxane complex or a platinum-olefin complex is preferred.
  • Examples of the alkenylsiloxane in the platinum-alkenylsiloxane complex include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane and 1,3,5,7-tetramethyl-1,3,5. , 7-tetravinylcyclotetrasiloxane and the like.
  • Examples of the olefin in the platinum-olefin complex include allyl ether and 1,6-heptadiene.
  • alkenylsiloxane, organosiloxane oligomer, allyl ether or olefin is added to the platinum-alkenylsiloxane complex or platinum-olefin complex.
  • the alkenylsiloxane is preferably 1,3-divinyl-1,1,3,3-tetramethyldisiloxane.
  • the organosiloxane oligomer is preferably a dimethylsiloxane oligomer.
  • the olefin is preferably 1,6-heptadiene.
  • the content of the (B2) curing catalyst is preferably 0.001 part by weight or more, more preferably 0.01% by weight with respect to 100 parts by weight of the (A) thermosetting compound. Part or more, more preferably 0.05 part by weight or more, preferably 2 parts by weight or less, more preferably 1 part by weight or less, still more preferably 0.5 parts by weight or less.
  • the content of the curing catalyst is not less than the above lower limit, the semiconductor element protecting material can be cured well.
  • the content of the (B2) curing catalyst is not more than the above upper limit, the residual amount of the (B2) curing catalyst that has not contributed to the curing in the cured product is reduced.
  • the thermal conductivity of the (C) inorganic filler is preferably 10 W / m ⁇ K or more, more preferably 15 W / m ⁇ K or more, and even more preferably 20 W / m ⁇ . K or more.
  • the upper limit of the thermal conductivity of the inorganic filler is not particularly limited. Inorganic fillers having a thermal conductivity of about 300 W / m ⁇ K are widely known, and inorganic fillers having a thermal conductivity of about 200 W / m ⁇ K are easily available.
  • the (C) inorganic filler is preferably alumina, aluminum nitride, or silicon carbide.
  • these preferable inorganic fillers only 1 type may be used for these inorganic fillers, and 2 or more types may be used together.
  • (C) As an inorganic filler you may use suitably inorganic fillers other than the above.
  • the filler is preferably an inorganic filler having a thermal conductivity of 10 W / m ⁇ K or more and a spherical shape.
  • the spherical shape means that the aspect ratio (major axis / minor axis) is 1 or more and 2 or less.
  • the average particle diameter of the inorganic filler is preferably 0.1 ⁇ m or more, and preferably 150 ⁇ m or less.
  • the average particle diameter of an inorganic filler is more than the said minimum, (C) an inorganic filler can be filled with high density easily.
  • the average particle diameter of the inorganic filler is not more than the above upper limit, the coating property of the semiconductor element protecting material is further enhanced.
  • the above-mentioned “average particle diameter” is an average particle diameter obtained from a volume average particle size distribution measurement result measured with a laser diffraction particle size distribution measuring apparatus.
  • the content of the (C) inorganic filler is preferably 60% by weight or more and 92% by weight or less. In 100% by weight of the semiconductor element protecting material, the content of the inorganic filler (C) is more preferably 70% by weight or more, still more preferably 80% by weight or more, particularly preferably 82% by weight or more, more preferably 90%. % By weight or less.
  • cured material becomes it higher that content of an inorganic filler is more than the said minimum.
  • content of an inorganic filler is below the said upper limit, the applicability
  • (D) curing accelerator) (D) By using a curing accelerator, the curing rate can be increased, and the semiconductor element protecting material can be efficiently cured. (D) Only 1 type may be used for a hardening accelerator and 2 or more types may be used together.
  • Examples of the curing accelerator include imidazole compounds, phosphorus compounds, amine compounds, and organometallic compounds. Especially, since the effect of this invention is further excellent, an imidazole compound is preferable.
  • imidazole compound examples include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Mechi Imidazolyl- (1 ′)]-
  • curing agent can be used.
  • specific examples include PN23, PN40, and PN-H (trade names, all manufactured by Ajinomoto Fine Techno Co., Ltd.).
  • curing accelerators which are also called microencapsulated imidazoles, which are addition-reacted to the hydroxyl group of an epoxy adduct of an amine compound, such as Novacure HX-3088, Novacure HX-3941, HX-3742, HX-3722 (trade name, Asahi Kasei E-Materials Co., Ltd.).
  • inclusion imidazole can also be used.
  • a specific example is TIC-188 (trade name, manufactured by Nippon Soda Co., Ltd.).
  • Examples of the phosphorus compound include triphenylphosphine.
  • Examples of the amine compound include 2,4,6-tris (dimethylaminomethyl) phenol, diethylamine, triethylamine, diethylenetetramine, triethylenetetramine, and 4,4-dimethylaminopyridine.
  • organometallic compound examples include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III).
  • the content of the (D) curing accelerator is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, preferably 100 parts by weight in total with the thermosetting compound. Is 10 parts by weight or less, more preferably 8 parts by weight or less.
  • a semiconductor element protection material can be hardened favorably.
  • the content of (D) the curing accelerator is not more than the above upper limit, the residual amount of (D) the curing accelerator that has not contributed to curing in the cured product is reduced.
  • the semiconductor element protecting material preferably includes (E) a coupling agent.
  • E) a coupling agent By using a coupling agent, the moisture resistance of the hardened
  • the content of the (E) coupling agent is preferably 0.1% by weight or more, more preferably 0.2% by weight or more. Yes, preferably 2% by weight or less, more preferably 1% by weight or less.
  • cured material of a semiconductor element protection material becomes it still higher that content of a coupling agent is more than the said minimum.
  • content of a coupling agent is below the said upper limit, the applicability
  • the (E) coupling agent is a silane coupling agent whose weight loss at 100 ° C. is 10% by weight or less, a titanate coupling agent whose weight loss at 100 ° C. is 10% by weight or less, or at 100 ° C. It is preferable to include an aluminate coupling agent having a weight loss of 10% by weight or less. When using these preferable coupling agents, only 1 type may be used for these coupling agents, and 2 or more types may be used together.
  • the weight decrease at 100 ° C. was measured by using an infrared moisture meter (“FD-720” manufactured by Kett Scientific Laboratory) at a temperature increase rate of 50 ° C./min. It can be determined by measuring the decrease.
  • FD-720 infrared moisture meter
  • the semiconductor element protecting material preferably includes (F) an ion scavenger.
  • F Only 1 type may be used for an ion trapping agent and 2 or more types may be used together.
  • the ion scavenger is not particularly limited. Conventionally known ion scavengers can be used as the (F) ion scavenger.
  • (F) ion scavengers include compounds known as copper damage inhibitors to prevent copper from ionizing and dissolving, for example, using triazine thiol compounds, bisphenol reducing agents, and the like. Can do.
  • bisphenol-based reducing agents include 2,2′-methylene-bis- (4-methyl-6-tert-butylphenol), 4,4′-thio-bis- (3-methyl-6-tert-butylphenol), etc. Is mentioned.
  • Specific examples of the (F) ion scavenger include inorganic anion exchangers, inorganic cation exchangers, and inorganic both ion exchangers.
  • the general formula BiO X (OH) Y ( NO 3 ) Z [wherein X is 0.9 to 1.1, Y is 0.6 to 0.8, and Z is a positive number of 0.2 to 0.4] ion scavenger, antimony oxide based ion scavenger, a titanium phosphate ion scavenger, a zirconium phosphate ion scavenger, and the general formula Mg X Al Y (OH) 2X + 3Y-2Z (CO 3) Z ⁇ mH 2 O Where X, Y and Z are positive numbers satisfying 2X + 3Y ⁇ 2Z ⁇ 0, and m is a positive number.
  • IXE-100 manufactured by Toagosei Co., Ltd., zirconium phosphate ion scavenger
  • IXE-300 manufactured by Toagosei Co., Ltd., antimony oxide ion scavenger
  • IXE- 400 manufactured by Toagosei Co., Ltd., titanium phosphate ion trapping agent
  • IXE-500 manufactured by Toagosei Co., Ltd., bismuth oxide ion scavenger
  • IXE-600 manufactured by Toagosei Co., Ltd., antimony oxide / bismuth oxide ion trapping agent
  • DHT-4A hydrotalcite-based ion scavenger, manufactured by Kyowa Chemical Industry Co., Ltd.
  • Kyoward KW-2000 hydrotalcite-based ion scavenger
  • the cation exchanger is preferably a Zr-based cation exchanger or an Sb-based cation exchanger, and a Zr-based cation exchanger. It is more preferable that the cation exchanger contains a zirconium atom.
  • the anion exchanger is a Bi-based anion exchanger, Mg-Al-based anion exchanger, or Zr-based anion exchanger.
  • the Mg—Al-based anion exchanger is more preferable, and the anion exchanger preferably includes a magnesium atom and an aluminum atom.
  • the neutral exchange capacity of the cation exchanger is preferably 1 meq / g or more, more preferably 2 meq / g or more, preferably 10 meq. / G or less, more preferably 4 meq / g or less.
  • the neutral exchange capacity of the anion exchanger is preferably 0.1 meq / g or more, more preferably 1 meq / g or more, preferably Is 10 meq / g or less, more preferably 5 meq / g or less.
  • the median diameter of the cation exchanger is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, preferably 10 ⁇ m or less. More preferably, it is 3 ⁇ m or less.
  • the median diameter of the anion exchanger is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, preferably 10 ⁇ m or less, More preferably, it is 3 ⁇ m or less.
  • the content of (F) ion scavenger in 100% by weight of the cured product and 100% by weight of the semiconductor element protecting material is: Preferably it is 0.1 weight% or more, More preferably, it is 0.3 weight% or more, Preferably it is 3 weight% or less, More preferably, it is 2 weight% or less.
  • the above-mentioned material for protecting a semiconductor element may include a natural wax such as carnauba wax, a synthetic wax such as polyethylene wax, a higher fatty acid such as stearic acid or zinc stearate and a metal salt thereof or a mold release agent such as paraffin; carbon Colorants such as black and bengara; flame retardants such as brominated epoxy resins, antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, and phosphazene; inorganic ion exchangers such as bismuth oxide hydrate; Low stress components such as silicone oil and silicone rubber; various additives such as antioxidants may be included.
  • a natural wax such as carnauba wax, a synthetic wax such as polyethylene wax, a higher fatty acid such as stearic acid or zinc stearate and a metal salt thereof or a mold release agent such as paraffin
  • carbon Colorants such as black and bengara
  • flame retardants such as brominated
  • the semiconductor element protecting material preferably contains a dispersant.
  • the dispersant include polycarboxylic acid salts, alkyl ammonium salts, alkylol ammonium salts, phosphate ester salts, acrylic block copolymers, and polymer salts.
  • the content of the dispersant is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, preferably Is 2% by weight or less, more preferably 1% by weight or less.
  • the said semiconductor element protection material is apply
  • the semiconductor element protecting material is disposed between the semiconductor element and another connection target member to form a cured product that adheres and fixes the semiconductor element and the other connection target member so as not to peel off. Is different.
  • the semiconductor element protecting material is preferably a coating material that covers the surface of the semiconductor element.
  • the semiconductor element protecting material is preferably not applied on the side surface of the semiconductor element.
  • the material for protecting a semiconductor element is preferably different from a material for sealing the semiconductor element, and is preferably not a sealant for sealing the semiconductor element.
  • the semiconductor element protecting material is preferably not an underfill material.
  • the semiconductor element has a first electrode on a second surface side, and the semiconductor element protecting material is applied on a first surface opposite to the second surface side of the semiconductor element. It is preferable to be used.
  • the semiconductor element protecting material is suitably used for forming a cured product on the surface of the semiconductor element in order to protect the semiconductor element in the semiconductor device.
  • the semiconductor element protecting material is preferably used for forming a cured product on the surface of the semiconductor element to protect the semiconductor element, and on the surface of the cured product opposite to the semiconductor element side.
  • the protective film is preferably used for obtaining a semiconductor device.
  • the cured product preferably has an electric conductivity of 50 ⁇ S / cm or less.
  • Examples of the method for applying the semiconductor element protecting material include a coating method using a dispenser, a coating method using screen printing, and a coating method using an ink jet apparatus.
  • the semiconductor element protecting material is preferably used by being applied by a dispenser, screen printing, vacuum screen printing, or an application method using an inkjet apparatus. From the viewpoint of facilitating application and making it more difficult to generate voids in the cured product, the semiconductor element protecting material is preferably applied by a dispenser.
  • the semiconductor device according to the present invention includes a semiconductor element and a cured product disposed on the first surface of the semiconductor element.
  • the cured product is formed by curing the semiconductor element protecting material.
  • the semiconductor element protecting material forms a cured product on the surface of the semiconductor element, and a protective film is disposed on the surface of the cured product opposite to the semiconductor element side.
  • a cured product is formed on the surface of the semiconductor element, and the surface of the cured product opposite to the semiconductor element side is used. It is preferably used to obtain an exposed semiconductor device. Since the effects of the present invention are more effectively exhibited, the semiconductor element protecting material is preferably a driver IC chip protecting material.
  • FIG. 1 is a partially cutaway front sectional view showing a semiconductor device using a semiconductor element protecting material according to a first embodiment of the present invention.
  • a semiconductor device 1 shown in FIG. 1 includes a semiconductor element 2 and a cured product 3 arranged on the first surface 2 a of the semiconductor element 2.
  • the cured product 3 is formed by curing the above-described semiconductor element protecting material.
  • the cured product 3 is disposed in a partial region on the first surface 2 a of the semiconductor element 2.
  • the semiconductor element 2 has a first electrode 2A on the second surface 2b side opposite to the first surface 2a side.
  • the semiconductor device 1 further includes a connection target member 4.
  • the connection target member 4 has a second electrode 4A on the surface 4a.
  • the semiconductor element 2 and the connection target member 4 are bonded and fixed via another cured product 5 (connection portion).
  • the semiconductor element 2 is mounted on the connection target member 4.
  • the first electrode 2 ⁇ / b> A of the semiconductor element 2 and the second electrode 4 ⁇ / b> A of the connection target member 4 face each other and are electrically connected by the conductive particles 6.
  • the first electrode 2 ⁇ / b> A and the second electrode 4 ⁇ / b> A may be electrically connected by being in contact with each other.
  • the cured product 3 is disposed on the first surface 2a opposite to the side on which the first electrode 2A of the semiconductor element 2 is disposed.
  • the cured product 3 is disposed on the first surface 2 a opposite to the connection target member 4 side of the semiconductor
  • a protective film 7 is disposed on the surface of the cured product 3 opposite to the semiconductor element 2 side. Thereby, not only the heat dissipation and the protection of the semiconductor element are enhanced by the cured product 3, but also the protection of the semiconductor element can be further enhanced by the protective film 7. Since the hardened
  • connection target member examples include a glass substrate, a glass epoxy substrate, and a flexible printed substrate.
  • the flexible printed board examples include a resin board such as a polyimide board. Since the effect of the present invention is more effectively exhibited, the connection target member is preferably a substrate, preferably a flexible printed substrate, preferably a resin substrate, and a polyimide substrate. Is more preferable.
  • the thickness of the cured material of the semiconductor element protecting material is preferably 400 ⁇ m or more, more preferably 500 ⁇ m or more, preferably 2000 ⁇ m or less, more preferably 1900 ⁇ m or less.
  • the thickness of the cured product of the semiconductor element protecting material may be smaller than the thickness of the semiconductor element.
  • FIG. 2 is a partially cutaway front sectional view showing a semiconductor device using a semiconductor element protecting material according to a second embodiment of the present invention.
  • a semiconductor device 1X shown in FIG. 2 includes a semiconductor element 2 and a cured product 3X disposed on the first surface 2a of the semiconductor element 2.
  • the cured product 3X is formed by curing the semiconductor element protecting material described above.
  • the cured product 3 ⁇ / b> X is disposed in the entire region on the first surface 2 a of the semiconductor element 2.
  • the protective film is not arranged on the surface opposite to the semiconductor element 2 side of the cured product 3X. The surface opposite to the semiconductor element 2 side of the cured product 3X is exposed.
  • a protective film is disposed on the surface of the cured product opposite to the semiconductor element side, or the surface of the cured product opposite to the semiconductor element side is exposed. Is preferred.
  • FIGS. 1 and 2 are merely examples of the semiconductor device, and can be appropriately modified to an arrangement structure of a cured product of the semiconductor element protecting material.
  • the thermal conductivity of the cured product of the semiconductor element protecting material is not particularly limited, but is preferably more than 1.1 W / m ⁇ K, more preferably 1.5 W / m ⁇ K or more, and 1.8 W / m More preferably, it is m ⁇ K or more.
  • the number average molecular weight of the obtained polymer A was 15000.
  • the polymer A had the following average composition formula.
  • Me represents a methyl group
  • Vi represents a vinyl group
  • Ph represents a phenyl group.
  • the content ratio of phenyl groups and methyl groups was 97.6 mol%
  • the content ratio of vinyl groups was 2.4 mol%.
  • the molecular weight of each polymer was measured by GPC measurement by adding 1 mL of tetrahydrofuran to 10 mg, stirring until dissolved.
  • GPC measurement a measuring device manufactured by Waters (column: Shodex GPC LF-804 (length: 300 mm) x 2 manufactured by Showa Denko KK), measuring temperature: 40 ° C., flow rate: 1 mL / min, solvent: tetrahydrofuran, standard substance: Polystyrene) was used.
  • Polymers B to D were obtained in the same manner as the synthesis of polymer A, except that the type and blending amount of the organosilicon compound used for the synthesis were changed.
  • Polymer B (SiO 4/2 ) 0.20 (ViMe 2 SiO 1/2 ) 0.40 (Me 3 SiO 1/2 ) 0.40 Number average molecular weight 2000
  • the content ratio of phenyl group and methyl group is 83.3 mol%, and the content ratio of vinyl group is 16.7 mol%.
  • Polymer C (MeSiO 3/2 ) 0.20 (PhMeSiO 2/2 ) 0.70 (ViMe 2 SiO 1/2 ) 0.10 Number average molecular weight 4000 The content ratio of phenyl group and methyl group is 94.7 mol%, and the content ratio of vinyl group is 5.3 mol%.
  • Polymer D (PhSiO 3/2 ) 0.80 (ViMe 2 SiO 1/2 ) 0.20 Number average molecular weight 1700
  • the content ratio of phenyl group and methyl group is 85.7 mol%, and the content ratio of vinyl group is 14.3 mol%.
  • the number average molecular weight of the obtained polymer E was 850.
  • the polymer E had the following average composition formula.
  • Me represents a methyl group
  • Ph represents a phenyl group.
  • the content ratio of phenyl groups and methyl groups was 74.9 mol%
  • the content ratio of hydrogen atoms bonded to silicon atoms was 25.1%.
  • the number average molecular weight of the obtained polymer G was 350.
  • the polymer G had the following average composition formula.
  • Me represents a methyl group.
  • the content ratio of phenyl groups and methyl groups was 80 mol%, and the content ratio of hydrogen atoms bonded to silicon atoms was 20%.
  • Inorganic filler FAN-f05 having a thermal conductivity of 10 W / m ⁇ K or more (Furukawa Electronics, aluminum nitride, thermal conductivity: 100 W / m ⁇ K, spherical, average particle size: 6 ⁇ m)
  • FAN-f50 Fluukawa Electronics, aluminum nitride, thermal conductivity: 100 W / m ⁇ K, spherical, average particle size: 30 ⁇ m
  • CB-P05 made by Showa Denko KK, aluminum oxide, thermal conductivity: 20 W / m ⁇ K, spherical, average particle size: 4 ⁇ m
  • CB-P40 made by Showa Denko, aluminum oxide, thermal conductivity: 20 W / m ⁇ K, spherical, average particle size: 44 ⁇ m
  • SSC-A15 manufactured by Shinano Denki Co., Ltd., silicon carbide, thermal conductivity: 100 W / m ⁇
  • (E) Coupling agent KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd., 3-glycidoxypropyltrimethoxysilane, weight loss at 100 ° C .: more than 10% by weight)
  • A-LINK599 (manufactured by 3-octanoylthio-1-propyltriethoxysilane, weight loss at 100 ° C .: 10% by weight or less)
  • TOG (IPA cut) Nihon Soda Co., Ltd., titanium-i-propoxyoctylene glycolate, weight loss at 100 ° C .: 10% by weight or less
  • AL-M Al-M (Ajinomoto Fine Techno Co., Ltd., acetoalkoxyaluminum diisopropylate, weight loss at 100 ° C .: 10% by weight or less)
  • BYK-9076 manufactured by BYK, dispersant
  • Ion scavenger IXE-300 manufactured by Toagosei Co., Ltd., antimony oxide ion scavenger
  • IXE-600 manufactured by Toagosei Co., Ltd., antimony oxide / bismuth oxide ion scavenger
  • DHT-4A manufactured by Kyowa Chemical Industry Co., Ltd., hydrotalcite-based ion scavenger
  • Examples 2 to 22 and Comparative Examples 1 and 2 A material for protecting a semiconductor element was obtained in the same manner as in Example 1 except that the types and blending amounts of the blending components were changed as shown in Tables 1 to 4 below.
  • the semiconductor element protecting material was cured at 150 ° C. for 2 hours to obtain a cured product.
  • the obtained cured product was pulverized to about 5 mm square, 25 mL of ion-exchanged water was added to 2.5 g of the pulverized product, and the mixture was placed in PCT (121 ° C. ⁇ 2 ° C./humidity 100% / 2 atm bath) for 20 hours. Thereafter, an extract obtained by cooling to room temperature was obtained as a test solution.
  • the electrical conductivity of this test solution was measured using a conductivity meter (electric conductivity meter “CM-42X” manufactured by Toa Denpa Kogyo Co., Ltd.).
  • the thermal conductivity of the obtained evaluation sample was measured using a thermal conductivity meter “Rapid thermal conductivity meter QTM-500” manufactured by Kyoto Electronics Industry Co., Ltd. In addition, when the thermal conductivity was 1.1 W / m ⁇ K or less, the thermal conductivity was determined as “x”.
  • the volume resistivity of the obtained evaluation sample was measured using DSM-8104 (manufactured by Hioki Electric Co., Ltd., digital super insulation / microammeter), electrode for flat plate sample SME-8310 (manufactured by Hioki Electric Co., Ltd.).
  • a pressure cooker test was conducted with an advanced accelerated life test apparatus EHS-211 (manufactured by Espec). After being left for 24 hours under the conditions of 121 ° C., humidity 100% RH and 2 atm, and then allowed to stand for 24 hours in an environment of 23 ° C. and humidity 50% RH, the volume resistivity was measured. The decrease rate of the volume resistivity before and after the pressure cooker test was calculated, and the moisture resistance was judged according to the following criteria.
  • Decrease rate of volume resistivity before and after the test is 10% or less
  • Decrease rate of the volume resistivity before and after the test exceeds 10% and 20% or less
  • Decrease rate of the volume resistivity before and after the test is 20%
  • Adhesive strength die shear strength
  • a semiconductor element protecting material was applied so that the adhesion area was 3 mm ⁇ 3 mm, and a 3 mm square Si chip was placed thereon to obtain a test sample.
  • the obtained test sample was heated at 150 ° C. for 2 hours to cure the semiconductor element protecting material.
  • the die shear strength at 25 ° C. was evaluated at a speed of 300 ⁇ m / sec using a die shear tester (“DAGE 4000” manufactured by Arctech).
  • Die shear strength criteria ⁇ : Die share strength is 10N or more ⁇ : Die share strength is 6N or more and less than 10N ⁇ : Die share strength is 5N or more and less than 6N ⁇ : Die share strength is less than 5N
  • the obtained evaluation sample was left for 24 hours in an atmosphere of 23 ° C. and humidity 50% RH. Immediately after being left for 24 hours, the tackiness of the surface of the evaluation sample was measured using a tack tester TA-500 (manufactured by UBM).
  • the volume resistivity was measured using the obtained evaluation sample, DSM-8104 (manufactured by Hioki Electric Co., Ltd., digital super insulation / microammeter), electrode for flat plate sample SME-8310 (manufactured by Hioki Electric Co., Ltd.).
  • the sample was allowed to stand at 180 ° C. for 100 hours, and then left at 23 ° C. and a humidity of 50% RH for 24 hours, and then volume resistivity was measured.
  • the decrease rate of the volume resistivity before and after the heat test was calculated, and the heat resistance was judged according to the following criteria.
  • Decrease rate of volume resistivity before and after test is 5% or less
  • Decrease rate of volume resistivity before and after test exceeds 5% and 10% or less
  • Decrease rate of volume resistivity before and after test is 10% Over 20% or less
  • Volume resistivity decrease rate before and after the test exceeds 20%
  • Insulation reliability was judged according to the following criteria. In the case of the criteria of ⁇ , ⁇ , or ⁇ , the insulation reliability is judged to be acceptable, and there is insulation retention that does not hinder actual use, and the insulation reliability is excellent.
  • Resistance is 1 ⁇ 10 9 ⁇ or more and lasts for 100 hours or more, and insulation is very good
  • Resistance is 1 ⁇ 10 8 ⁇ or more, less than 1 ⁇ 10 9 ⁇ and lasts for 100 hours or more, and insulation is good
  • the resistance is less than 100 hours is reduced to less than 1 ⁇ 10 8 ⁇ , 1 ⁇ 10 8 ⁇ or more resistors 50 hours or more, lasting less than 100 hours, the insulating somewhat good ⁇ : less than 50 hours
  • the resistance drops to less than 1 ⁇ 10 8 ⁇ and is regarded as a poor insulation.
  • The warp amount of the film after the heat test is less than 1.1 times the warp amount of the film before the heat test.
  • The warp amount of the film after the heat test with respect to the warp amount of the film before the heat test.
  • x The warp amount of the film after the heat test is 1.2 times or more with respect to the warp amount of the film before the heat test
  • Example 23 In the preparation of the semiconductor element protecting material, the semiconductor element protecting material was prepared in the same manner as in Example 1 except that 0.5 part by weight of IXE-300 (manufactured by Toagosei Co., Ltd., antimony oxide ion scavenger) was further added. Got.
  • Example 24 The semiconductor element was prepared in the same manner as in Example 1, except that 0.5 part by weight of IXE-600 (manufactured by Toagosei Co., Ltd., antimony oxide / bismuth oxide ion scavenger) was further added in the preparation of the semiconductor element protection material. A protective material was obtained.
  • IXE-600 manufactured by Toagosei Co., Ltd., antimony oxide / bismuth oxide ion scavenger
  • Example 25 In the preparation of the semiconductor element protection material, the semiconductor element protection was carried out in the same manner as in Example 1 except that 0.5 part by weight of DHT-4A (Kyowa Chemical Industry Co., Ltd., hydrotalcite ion scavenger) was further added. Material was obtained.
  • DHT-4A Korean Chemical Industry Co., Ltd., hydrotalcite ion scavenger
  • Example 26 In the preparation of the semiconductor element protecting material, the semiconductor element protecting material was prepared in the same manner as in Example 18 except that 0.5 part by weight of IXE-300 (manufactured by Toagosei Co., Ltd., antimony oxide ion scavenger) was further added. Got.
  • Example 27 In the preparation of the semiconductor element protection material, the semiconductor element protection was performed in the same manner as in Example 18 except that 0.5 part by weight of IXE-600 (manufactured by Toagosei Co., Ltd., antimony oxide / bismuth oxide ion scavenger) was further added. Material was obtained.
  • IXE-600 manufactured by Toagosei Co., Ltd., antimony oxide / bismuth oxide ion scavenger
  • Example 28 In the preparation of the semiconductor element protection material, the semiconductor element protection was carried out in the same manner as in Example 18 except that 0.5 part by weight of DHT-4A (Kyowa Chemical Industry Co., Ltd., hydrotalcite ion scavenger) was further added. Material was obtained.
  • DHT-4A Korean Chemical Industry Co., Ltd., hydrotalcite ion scavenger
  • Example 29 The semiconductor element was prepared in the same manner as in Example 19 except that 0.5 part by weight of IXE-600 (manufactured by Toagosei Co., Ltd., antimony oxide / bismuth oxide ion scavenger) was further added in the preparation of the semiconductor element protecting material. A protective material was obtained.
  • IXE-600 manufactured by Toagosei Co., Ltd., antimony oxide / bismuth oxide ion scavenger
  • Example 30 The semiconductor element was prepared in the same manner as in Example 20 except that 0.5 part by weight of IXE-600 (manufactured by Toagosei Co., Ltd., antimony oxide / bismuth oxide ion scavenger) was further added in the preparation of the semiconductor element protection material. A protective material was obtained.
  • IXE-600 manufactured by Toagosei Co., Ltd., antimony oxide / bismuth oxide ion scavenger
  • Example 31 The semiconductor element was prepared in the same manner as in Example 21 except that 0.5 part by weight of IXE-600 (manufactured by Toagosei Co., Ltd., antimony oxide / bismuth oxide ion scavenger) was further added in the preparation of the semiconductor element protection material. A protective material was obtained.
  • IXE-600 manufactured by Toagosei Co., Ltd., antimony oxide / bismuth oxide ion scavenger
  • Example 1 and Examples 23 to 25 are “ ⁇ ”, but the resistance at the time of applying the voltage after 100 hours is higher in Examples 23 to 25 than in Example 1.
  • Examples 23 to 25 were superior to Example 1 in insulation reliability.
  • the results of the insulation reliability of Example 20 and Example 30 are “ ⁇ ”, but the resistance at the time of applying the voltage after 100 hours is higher in Example 30 than in Example 20, and Example 30 was superior to Example 20 in insulation reliability.
  • the result of insulation reliability of Example 21 and Example 31 is “ ⁇ ”, the resistance at the time of application of the voltage after 100 hours is higher in Example 31 than in Example 21. No. 31 was superior to Example 21 in insulation reliability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

硬化物の放熱性に優れ、硬化物のボイドが少なく、硬化物の絶縁信頼性に優れており、半導体素子を良好に保護することができる半導体装置を提供する。 本発明に係る半導体装置は、半導体素子と、前記半導体素子の第1の表面上に配置された硬化物とを備え、前記硬化物を得るための半導体素子保護用材料は、熱硬化性化合物と、硬化剤又は硬化触媒と、熱伝導率が10W/m・K以上である無機フィラーとを含み、三量体から十量体までの環状シロキサン化合物を含まないか、又は三量体から十量体までの環状シロキサン化合物を500ppm以下で含み、前記硬化物における前記無機フィラーの含有量が60重量%以上、92重量%以下であり、前記硬化物の電気伝導度が50μS/cm以下である。

Description

半導体装置及び半導体素子保護用材料
 本発明は、半導体素子保護用材料を用いた半導体装置に関する。また、本発明は、半導体素子を保護するために、上記半導体素子の表面上に塗布して用いられる半導体素子保護用材料に関する。
 半導体装置の高性能化が進行している。これに伴って、半導体装置から発せられる熱を放散させる必要が高まっている。また、半導体装置では、半導体素子の電極は、例えば、電極を表面に有する他の接続対象部材における電極と電気的に接続されている。
 半導体装置では、例えば、半導体素子と他の接続対象部材との間にエポキシ樹脂組成物を配置した後、該エポキシ樹脂組成物を硬化させることにより、半導体素子と他の接続対象部材とが接着及び固定されている。なお、半導体素子と他の接続対象部材との間に配置される上記エポキシ樹脂組成物の硬化物は、半導体素子の表面を保護するための材料とは異なる。
 また、半導体装置では、半導体素子を封止するために、エポキシ樹脂組成物が用いられることがある。
 上記のようなエポキシ樹脂組成物が、例えば、下記の特許文献1~5に開示されている。
 下記の特許文献1には、エポキシ樹脂と、フェノール系硬化剤と、トリス(2,6-ジメトキシフェニル)ホスフィン又はトリス(2,4,6-トリメトキシフェニル)ホスフィンである硬化促進剤と、アルミナとを含むエポキシ樹脂組成物が開示されている。特許文献1の実施例では、粉体であるエポキシ樹脂組成物が記載されている。上記エポキシ樹脂組成物の用途に関して、特許文献1では、IC、LSI、トランジスタ、サイリスタ、ダイオード等の半導体装置の封止用、プリント回路板の製造などに好適に使用されることが記載されている。
 下記の特許文献2には、エポキシ樹脂と、フェノール樹脂硬化剤と、硬化促進剤と、無機充填剤とを含む封止用エポキシ樹脂組成物が開示されている。特許文献2の実施例では、粉体である封止用エポキシ樹脂組成物が記載されている。上記エポキシ樹脂組成物の用途に関して、特許文献2では、一般成形材料として使用することができることが記載され、更に半導体装置の封止材に用いられ、特に、薄型、多ピン、ロングワイヤ、狭パッドピッチ、または、有機基板もしくは有機フィルム等の実装基板上に半導体チップが配置された、半導体装置の封止材に好適に用いられることが記載されている。
 下記の特許文献3には、ビスフェノールF型液状エポキシ樹脂と、硬化剤と、無機質充填剤とを含むエポキシ樹脂組成物が開示されている。特許文献3の実施例では、固体であるエポキシ樹脂組成物(溶融粘度が75℃以上)が記載されている。上記エポキシ樹脂組成物の用途に関して、特許文献3には、一般成形材料として使用することもできるが、半導体装置、例えばTQFP、TSOP、QFPなどの多ピン薄型パッケージ、特にマトリックスフレームを使用した半導体装置の封止材として好適に用いられることが記載されている。
 下記の特許文献4には、エポキシ樹脂と、フェノール樹脂硬化剤と、高熱伝導性充填剤と、無機質充填剤とを含む半導体封止用エポキシ樹脂組成物が開示されている。特許文献4の実施例では、粉体である半導体封止用エポキシ樹脂組成物が記載されている。上記半導体封止用エポキシ樹脂組成物の用途に関して、特許文献4では、半導体素子等の電子部品の封止材料として使用されることが記載されている。
 また、下記の特許文献5には、ビスフェノールA型エポキシ樹脂と、骨格内に可撓性を有するエポキシ樹脂とを含む第1剤と、酸無水物化合物と硬化促進剤とを含む第2剤とを有する2液タイプのエポキシ樹脂組成物が開示されている。特許文献5では、2液タイプのエポキシ樹脂組成物の用途に関しては、ケース内充填材として有用であることが記載されている。
特開平5-86169号公報 特開2007-217469号公報 特開平10-176100号公報 特開2005-200533号公報 特開2014-40538号公報
 特許文献1~4では、具体的には、粉体又は固体であるエポキシ樹脂組成物が開示されている。このような粉体又は固体であるエポキシ樹脂組成物は、塗布性が低く、所定の領域に精度よく配置することが困難である。
 また、従来のエポキシ樹脂組成物の硬化物では、放熱性が低いことがある。さらに、従来のエポキシ樹脂組成物の硬化物では、ボイドが生じることがある。ボイドが生じると、硬化物の剥離が生じることがある。
 また、特許文献1~4では、エポキシ樹脂組成物の具体的な用途として、主に、封止用途が記載されている。特許文献5では、エポキシ樹脂組成物の具体的な用途として、主に、ケース内充填材用途が記載されている。一方で、半導体装置においては、半導体素子を封止しなくても、半導体素子を充分に保護することが望ましい。また、特許文献1~5に記載のエポキシ樹脂組成物は、一般に、半導体素子を保護するために、該半導体素子の表面上に塗布して用いられていない。
 また、近年、装置の薄さや意匠性の観点からICドライバを減少させることが求められている。ICドライバを少なくすると、半導体素子にかかる負担が増大し、更にかなりの熱を帯びやすくなる。従来の硬化物では、放熱性が低いため、放熱性の高い硬化物が求められている。
 本発明の目的は、硬化物の放熱性に優れ、硬化物のボイドが少なく、硬化物の絶縁信頼性に優れており、半導体素子を良好に保護することができる半導体装置を提供することである。
 また、本発明は、半導体装置において、半導体素子を保護するために、該半導体素子の表面上に塗布して、上記半導体素子の表面上に硬化物を形成するために用いられる半導体素子保護用材料を提供することを目的とする。
 さらに、本発明の目的は、上記の用途において、放熱性に優れ、ボイドが少なく、絶縁信頼性に優れている硬化物を得ることができ、半導体素子を良好に保護することができる半導体素子保護用材料を提供することである。
 本発明の広い局面では、半導体素子と、前記半導体素子の第1の表面上に配置された硬化物とを備え、前記硬化物が、半導体素子保護用材料の硬化物であり、前記半導体素子保護用材料が、熱硬化性化合物と、硬化剤又は硬化触媒と、熱伝導率が10W/m・K以上である無機フィラーとを含み、前記半導体素子保護用材料が、三量体から十量体までの環状シロキサン化合物を含まないか、又は三量体から十量体までの環状シロキサン化合物を500ppm以下で含み、前記硬化物における前記無機フィラーの含有量が60重量%以上、92重量%以下であり、前記硬化物の電気伝導度が50μS/cm以下である、半導体装置が提供される。
 本発明の広い局面では、半導体素子を保護するために、前記半導体素子の表面上に塗布して、前記半導体素子の表面上に硬化物を形成するために用いられる半導体素子保護用材料であり、半導体素子と他の接続対象部材との間に配置されて、前記半導体素子と前記他の接続対象部材とを剥離しないように接着及び固定する硬化物を形成するものとは異なり、熱硬化性化合物と、硬化剤又は硬化触媒と、熱伝導率が10W/m・K以上である無機フィラーとを含み、三量体から十量体までの環状シロキサン化合物を含まないか、又は三量体から十量体までの環状シロキサン化合物を500ppm以下で含み、前記無機フィラーの含有量が60重量%以上、92重量%以下であり、150℃で2時間加熱して硬化物を得たときに、前記硬化物の電気伝導度が50μS/cm以下である、半導体素子保護用材料が提供される。
 本発明の広い局面では、接続対象部材上に実装された半導体素子を保護するために、前記半導体素子の前記接続対象部材側とは反対の表面上に塗布して、前記半導体素子の前記接続対象部材側とは反対の表面上に硬化物を形成するために用いられる半導体素子保護用材料であり、熱硬化性化合物と、硬化剤又は硬化触媒と、熱伝導率が10W/m・K以上である無機フィラーとを含み、三量体から十量体までの環状シロキサン化合物を含まないか、又は三量体から十量体までの環状シロキサン化合物を500ppm以下で含み、前記無機フィラーの含有量が60重量%以上、92重量%以下であり、150℃で2時間加熱して硬化物を得たときに、前記硬化物の電気伝導度が50μS/cm以下である、半導体素子保護用材料が提供される。
 本発明に係る半導体装置及び半導体素子保護用材料のある特定の局面では、前記熱硬化性化合物が、エポキシ化合物又はシリコーン化合物を含む。
 本発明に係る半導体装置及び半導体素子保護用材料のある特定の局面では、前記熱硬化性化合物がシリコーン化合物を含む。
 本発明に係る半導体装置及び半導体素子保護用材料のある特定の局面では、前記硬化剤がアリルフェノールノボラック化合物である。
 本発明に係る半導体装置及び半導体素子保護用材料のある特定の局面では、前記熱硬化性化合物が、可撓性エポキシ化合物を含む。
 本発明に係る半導体装置及び半導体素子保護用材料のある特定の局面では、前記熱硬化性化合物が、前記可撓性エポキシ化合物と、可撓性エポキシ化合物とは異なるエポキシ化合物とを含む。
 本発明に係る半導体装置及び半導体素子保護用材料のある特定の局面では、前記半導体素子保護用材料に含まれる前記可撓性エポキシ化合物が、アルキレングリコール基が9以上繰り返された構造単位を有するポリアルキレングリコールジグリシジルエーテルである。
 本発明に係る半導体素子保護用材料のある特定の局面では、前記半導体素子保護用材料は、水を含まないか、又は水を1000ppm以下で含む。
 本発明に係る半導体装置のある特定の局面では、前記半導体装置は、接続対象部材を備え、前記接続対象部材上に、前記半導体素子が前記第1の表面とは反対の第2の表面側から実装されている。
 本発明に係る半導体装置のある特定の局面では、前記半導体装置は、第2の電極を表面に有する接続対象部材を備え、前記半導体素子が、前記第1の表面側とは反対の第2の表面側に第1の電極を有し、前記半導体素子の第1の電極が、第2の電極を表面に有する接続対象部材における前記第2の電極と電気的に接続されている。
 本発明に係る半導体装置のある特定の局面では、前記硬化物の前記半導体素子側とは反対の表面上に、保護フィルムが配置されているか、又は、前記硬化物の前記半導体素子側とは反対の表面が露出している。
 本発明に係る半導体素子保護用材料は、半導体素子を保護するために、前記半導体素子の表面上に硬化物を形成し、かつ前記硬化物の前記半導体素子側とは反対の表面上に保護フィルムを配置して、半導体装置を得るために用いられるか、又は、半導体素子を保護するために、前記半導体素子の表面上に硬化物を形成し、かつ前記硬化物の前記半導体素子側とは反対の表面が露出している半導体装置を得るために用いられる。
 本発明に係る半導体素子装置は、半導体素子と、上記半導体素子の第1の表面上に配置された硬化物とを備え、上記硬化物が、半導体素子保護用材料の硬化物であり、上記半導体素子保護用材料が、熱硬化性化合物と、硬化剤又は硬化触媒と、熱伝導率が10W/m・K以上である無機フィラーとを含み、上記半導体素子保護用材料が、三量体から十量体までの環状シロキサン化合物を含まないか、又は三量体から十量体までの環状シロキサン化合物を500ppm以下で含み、上記硬化物における上記無機フィラーの含有量が60重量%以上、92重量%以下であり、上記硬化物の電気伝導度が50μS/cm以下であるので、硬化物の放熱性に優れ、硬化物のボイドが少なく、硬化物の絶縁信頼性に優れており、半導体素子を良好に保護することができる。
 本発明に係る半導体素子保護用材料は、熱硬化性化合物と、硬化剤又は硬化触媒と、熱伝導率が10W/m・K以上である無機フィラーとを含み、三量体から十量体までの環状シロキサン化合物を含まないか、又は三量体から十量体までの環状シロキサン化合物を500ppm以下で含み、水を含まないか、又は水を1000ppm以下で含み、上記無機フィラーの含有量が60重量%以上、92重量%以下であり、150℃で2時間加熱して硬化物を得たときに、上記硬化物の電気伝導度が50μS/cm以下であるので、放熱性に優れており、ボイドが少なく、絶縁信頼性に優れている硬化物を得ることができる。従って、本発明に係る半導体素子保護用材料を、半導体素子を保護するために、上記半導体素子の表面上に塗布し、硬化させることにより、上記半導体素子を良好に保護することができる。また、本発明に係る半導体素子保護用材料を、接続対象部材上に実装された半導体素子を保護するために、上記半導体素子の上記接続対象部材側とは反対の表面上に塗布して、硬化させることにより、上記半導体素子を良好に保護することができる。
図1は、本発明の第1の実施形態に係る半導体素子保護用材料を用いた半導体装置を示す部分切欠正面断面図である。 図2は、本発明の第2の実施形態に係る半導体素子保護用材料を用いた半導体装置を示す部分切欠正面断面図である。
 以下、本発明を詳細に説明する。
 本発明に係る半導体装置は、半導体素子と、硬化物とを備える。本発明に係る半導体装置では、上記硬化物は、上記半導体素子の第1の表面上に配置されている。本発明に係る半導体装置では、上記硬化物は、半導体素子保護用材料の硬化物である。
 本発明に係る半導体素子保護用材料は、ある特定の局面では、半導体素子を保護するために、上記半導体素子の表面上に塗布して、上記半導体素子の表面上に硬化物を形成するために用いられる。本発明に係る半導体素子保護用材料は、半導体素子と他の接続対象部材との間に配置されて、上記半導体素子と上記他の接続対象部材とを剥離しないように接着及び固定する硬化物を形成するもの(材料)とは異なる。
 また、本発明に係る半導体素子保護用材料は、ある特定の局面では、接続対象部材上に実装された半導体素子を保護するために、上記半導体素子の上記接続対象部材側とは反対の表面上に塗布して、上記半導体素子の表面上に硬化物を形成するために用いられる。
 本発明に係る半導体装置に用いられる半導体素子保護用材料、及び、本発明に係る半導体素子保護用材料は、(A)熱硬化性化合物と、(B)硬化剤又は硬化触媒((B1)硬化剤又は(B2)硬化触媒)と、(C)熱伝導率が10W/m・K以上である無機フィラーとを含む。本発明に係る半導体装置に用いられる半導体素子保護用材料、及び、本発明に係る半導体素子保護用材料は、例えば、半導体素子の表面上に塗布されるために、23℃で液状であることが好ましく、23℃で固体ではないことが好ましい。なお、液状には、粘稠なペーストも含まれる。
 本発明に係る半導体装置に用いられる半導体素子保護用材料、及び、本発明に係る半導体素子保護用材料は、(X)三量体から十量体までの環状シロキサン化合物を含まないか、又は(X)三量体から十量体までの環状シロキサン化合物を500ppm以下で含む。本発明に係る半導体装置に用いられる半導体素子保護用材料、及び、本発明に係る半導体素子保護用材料における低分子量の(X)シロキサン化合物の含有量は少ない。本発明に係る半導体装置の硬化物100重量%中、(C)熱伝導率が10W/m・K以上である無機フィラーの含有量が60重量%以上、92重量%以下である。本発明に係る半導体装置に用いられる半導体素子保護用材料100重量%中、C)熱伝導率が10W/m・K以上である無機フィラーの含有量は好ましくは60重量%以上、好ましくは92重量%以下である。本発明に係る半導体素子保護用材料100重量%中、(C)熱伝導率が10W/m・K以上である無機フィラーの含有量が60重量%以上、92重量%以下である。
 本発明に係る半導体装置の硬化物、及び、本発明に係る半導体素子保護用材料の硬化物の電気伝導度は50μS/cm以下である。
 上記半導体素子保護用材料は、半導体素子の表面上に塗布することができる。例えば、半導体素子の放熱性を高めたい部位の表面上に選択的に、精度よく、上記半導体素子保護用材料を塗布することができる。
 本発明に係る半導体装置は、上述した構成を備えているので、硬化物の放熱性に優れている。このため、半導体素子の表面から硬化物を経由して、熱を充分に放散させることができる。このため、半導体装置の熱劣化を効果的に抑制することができる。
 また、本発明に係る半導体素子保護用材料は、上述した構成を備えているので、硬化物の放熱性に優れている。このため、半導体素子の表面上に硬化物を配置することによって、半導体素子の表面から硬化物を経由して、熱を充分に放散させることができる。このため、半導体装置の熱劣化を効果的に抑制することができる。
 さらに、本発明に係る半導体装置、及び、本発明に係る半導体素子保護用材料では、硬化物にボイドを生じ難くすることができ、半導体素子の表面から硬化物を剥離し難くすることができる。
 さらに、本発明に係る半導体装置では、硬化物の絶縁信頼性に優れている。従って、上記半導体素子を良好に保護することができる。
 また、本発明に係る半導体素子保護用材料では、絶縁信頼性に優れている硬化物を得ることができる。従って、本発明に係る半導体素子保護用材料を、半導体素子を保護するために、上記半導体素子の表面上に塗布し、硬化させることにより、上記半導体素子を良好に保護することができる。また、本発明に係る半導体素子保護用材料を、接続対象部材上に実装された半導体素子を保護するために、上記半導体素子の上記接続対象部材側とは反対の表面上に塗布して、硬化させることにより、上記半導体素子を良好に保護することができる。
 絶縁信頼性を高める観点から、(X)三量体から十量体までの環状シロキサン化合物の含有量は多くても、500ppmである。絶縁信頼性をより一層高める観点からは、(X)三量体から十量体までの環状シロキサン化合物の含有量は好ましくは250ppm以下である。(X)三量体から十量体までの環状シロキサン化合物の含有量は少ないほどよい。
 三量体から十量体までの環状シロキサン化合物とは、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、テトラデカメチルシクロヘプタシロキサン、ヘキサデカメチルシクロオクタシロキサン、オクタデカメチルシクロノナシロキサン、エイコサメチルシクロデカシロキサンを意味する。
 ボイドをより一層効果的に抑える観点から、本発明に係る半導体素子保護用材料は、(Y)水を含まないか、又は(Y)水を1000ppm以下で含むことが好ましい。ボイドを更に一層抑える観点からは、(Y)水の含有量は好ましくは800ppm以下である。(Y)水の含有量は少ないほどよい。
 上記水の含有量は、カールフィッシャー水分計(京都電子工業社製「MKV-710B」)を用いて測定される。
 絶縁信頼性を高める観点から、本発明に係る半導体装置の上記硬化物の電気伝導度は50μS/cm以下である。絶縁信頼性を高める観点から、本発明に係る半導体素子保護用材料を150℃で2時間加熱して硬化物を得たときに、上記硬化物の電気伝導度は50μS/cm以下である。絶縁信頼性をより一層高める観点からは、上記硬化物の電気伝導度は好ましくは30μS/cm以下である。上記硬化物の電気伝導度の下限は特に限定されない。
 上記電気伝導度は、以下のようにして測定される。本発明に係る半導体装置では、上記半導体装置の硬化物を用意する。本発明に係る半導体装置保護用材料では、上記半導体素子保護用材料を150℃で2時間で硬化させて硬化物を得る。これらの硬化物を5mm角程度に粉砕し、粉砕物2.5gにイオン交換水25mLを加え、PCT(121℃±2℃/湿度100%/2atmの槽)で20Hr置く。その後、室温(25℃)まで冷却して得た抽出液を試験液として得る。この試験液の電気伝導度を伝導度計(東亜電波工業社製の電気伝導率計「CM-30G」、「CM-42X」等)を用いて測定する。
 塗布性をより一層高める観点からは、上記半導体素子保護用材料の25℃及び10rpmでの粘度は、好ましくは40Pa・s以上、より好ましくは50Pa・s以上であり、好ましくは140Pa・s以下、より好ましくは130Pa・s以下である。
 上記粘度は、B型粘度計(東機産業社製「TVB-10型」)を用いて測定される。
 硬化性をより一層高める観点からは、上記半導体素子保護用材料は、(B1)硬化剤と、(D)硬化促進剤とを含むことが好ましい。
 また、半導体素子保護用材料の半導体素子の表面に対する濡れ性を高め、硬化物の柔軟性をより一層高め、更に硬化物の耐湿性をより一層高める観点からは、上記半導体素子保護用材料は、(E)カップリング剤を含むことが好ましい。
 硬化物の絶縁信頼性を効果的に高める観点からは、上記半導体素子保護用材料は、(F)イオン捕捉剤を含むことが好ましい。
 以下、上記半導体素子保護用材料に用いることができる各成分の詳細を説明する。
 ((A)熱硬化性化合物)
 (A)熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。(A)熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 本発明の効果を効果的に発揮し、耐熱性をより一層高くし、かつクラックをより一層生じ難くする観点からは、(A)熱硬化性化合物は、(A1)エポキシ化合物又は(A2)シリコーン化合物を含むことが好ましい。(A)熱硬化性化合物は、(A1)エポキシ化合物を含んでいてもよく、(A2)シリコーン化合物を含んでいてもよい。高温下に晒された後の接続対象部材の反りをより一層抑える観点からは、(A2)シリコーン化合物の分子量は、300以上であることが好ましい。高温下に晒された後の接続対象部材の反りをより一層抑える観点からは、(A)熱硬化性化合物が、(A2)シリコーン化合物を含むこと好ましい。
 上記半導体素子保護用材料100重量%中、(A)熱硬化性化合物の含有量は好ましくは1重量%以上、より好ましくは2重量%以上であり、好ましくは20重量%以下、より好ましくは15重量%以下、更に好ましくは10重量%以下、特に好ましくは8重量%以下である。(A)熱硬化性化合物の含有量が上記下限以上及び上記上限以下であると、半導体素子保護用材料の塗布性、硬化物の柔軟性及び耐湿性がより一層良好になり、硬化物の半導体素子に対する接着性がより一層良好になり、保護フィルムに対する貼り付きをより一層抑えることができる。
 上記半導体素子保護用材料100重量%中、(A1)エポキシ化合物と(A2)シリコーン化合物との合計の含有量は、好ましくは1重量%以上、より好ましくは2重量%以上であり、好ましくは20重量%以下、より好ましくは15重量%以下である。(A1)エポキシ化合物と(A2)シリコーン化合物との合計の含有量が上記下限以上及び上記上限以下であると、半導体素子保護用材料の塗布性、硬化物の柔軟性及び耐湿性がより一層良好になり、硬化物の半導体素子に対する接着性がより一層良好になり、保護フィルムに対する貼り付きをより一層抑えることができる。
 (A1)エポキシ化合物:
 上記半導体素子保護用材料100重量%中、(A1)エポキシ化合物の含有量は、好ましくは1重量%以上、より好ましくは2重量%以上であり、好ましくは10重量%以下、より好ましくは8重量%以下である。(A1)エポキシ化合物の含有量が上記下限以上及び上記上限以下であると、半導体素子保護用材料の塗布性、硬化物の柔軟性及び耐湿性がより一層良好になり、硬化物の半導体素子に対する接着性がより一層良好になり、保護フィルムに対する貼り付きをより一層抑えることができる。
 (A1)エポキシ化合物としては、(A11)可撓性エポキシ化合物及び(A12)可撓性エポキシ化合物とは異なるエポキシ化合物が挙げられる。本発明の効果を効果的に発揮する観点からは、(A)熱硬化性化合物は、(A11)可撓性エポキシ化合物と、(A12)可撓性エポキシ化合物とは異なるエポキシ化合物とを含むことが好ましい。
 (A12)可撓性エポキシ化合物とは異なるエポキシ化合物は、可撓性を有さない。(A11)可撓性エポキシ化合物とともに(A12)エポキシ化合物を用いることによって、半導体素子保護用材料の硬化物の耐湿性が高くなり、保護フィルムに対する貼り付き性を低下させることができる。(A12)エポキシ化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 (A)熱硬化性化合物は、(A11)可撓性エポキシ化合物を含むことが好ましい。(A11)可撓性エポキシ化合物を用いることによって、硬化物の柔軟性を高めることができる。(A11)可撓性エポキシ化合物を用いることによって、半導体素子に対する変形応力などによって、半導体素子の損傷が生じ難くなり、更に半導体素子の表面から硬化物を剥離し難くすることができる。(A11)可撓性エポキシ化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 (A11)可撓性エポキシ化合物としては、ポリアルキレングリコールジグリシジルエーテル、ポリブタジエンジグリシジルエーテル、サルファイド変性エポキシ樹脂、及びポリアルキレンオキサイド変性ビスフェノールA型エポキシ樹脂等が挙げられる。硬化物の柔軟性をより一層高める観点からは、ポリアルキレングリコールジグリシジルエーテルが好ましい。
 硬化物の柔軟性をより一層高めて接着力を向上させる観点からは、上記ポリアルキレングリコールジグリシジルエーテルは、アルキレングリコール基が9以上繰り返された構造単位を有することが好ましい。アルキレン基の繰り返し数の上限は特に限定されない。アルキレン基の繰り返し数は、30以下であってもよい。上記アルキレン基の炭素数は、好ましくは2以上であり、好ましくは5以下である。
 上記ポリアルキレングリコールジグリシジルエーテルとしては、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル及びポリテトラメチレングリコールジグリシジルエーテル等が挙げられる。
 上記半導体素子保護用材料100重量%中、(A11)可撓性エポキシ化合物の含有量は好ましくは3重量%以上、より好ましくは5重量%以上であり、好ましくは10重量%以下、より好ましくは8重量%以下である。(A11)可撓性エポキシ化合物の含有量が上記下限以上であると、硬化物の柔軟性がより一層高くなる。(A11)可撓性エポキシ化合物の含有量が上記上限以下であると、半導体素子保護用材料の塗布性がより一層高くなる。
 上記半導体素子保護用材料100重量%中、(A11)可撓性エポキシ化合物と(A12)エポキシ化合物との合計の含有量は好ましくは5重量%以上、より好ましくは8重量%以上であり、好ましくは15重量%以下、より好ましくは12重量%以下である。(A11)可撓性エポキシ化合物と(A12)エポキシ化合物との合計の含有量が上記下限以上及び上記上限以下であると、半導体素子保護用材料の塗布性、硬化物の柔軟性及び耐湿性がより一層良好になり、硬化物の半導体素子に対する接着性がより一層良好になり、保護フィルムに対する貼り付きをより一層抑えることができる。
 (A12)エポキシ化合物としては、ビスフェノール骨格を有するエポキシ化合物、ジシクロペンタジエン骨格を有するエポキシ化合物、ナフタレン骨格を有するエポキシ化合物、アダマンタン骨格を有するエポキシ化合物、フルオレン骨格を有するエポキシ化合物、ビフェニル骨格を有するエポキシ化合物、バイ(グリシジルオキシフェニル)メタン骨格を有するエポキシ化合物、キサンテン骨格を有するエポキシ化合物、アントラセン骨格を有するエポキシ化合物、及びピレン骨格を有するエポキシ化合物等が挙げられる。これらの水素添加物又は変性物を用いてもよい。(A12)エポキシ化合物は、ポリアルキレングリコールジグリシジルエーテルではないことが好ましい。
 本発明の効果がより一層優れることから、(A12)エポキシ化合物は、ビスフェノール骨格を有するエポキシ化合物(ビスフェノール型エポキシ化合物)であることが好ましい。
 上記ビスフェノール骨格を有するエポキシ化合物としては、例えば、ビスフェノールA型、ビスフェノールF型又はビスフェノールS型のビスフェノール骨格を有するエポキシモノマー等が挙げられる。
 上記ジシクロペンタジエン骨格を有するエポキシ化合物としては、ジシクロペンタジエンジオキシド、及びジシクロペンタジエン骨格を有するフェノールノボラックエポキシモノマー等が挙げられる。
 上記ナフタレン骨格を有するエポキシ化合物としては、1-グリシジルナフタレン、2-グリシジルナフタレン、1,2-ジグリシジルナフタレン、1,5-ジグリシジルナフタレン、1,6-ジグリシジルナフタレン、1,7-ジグリシジルナフタレン、2,7-ジグリシジルナフタレン、トリグリシジルナフタレン、及び1,2,5,6-テトラグリシジルナフタレン等が挙げられる。
 上記アダマンタン骨格を有するエポキシ化合物としては、1,3-ビス(4-グリシジルオキシフェニル)アダマンタン、及び2,2-ビス(4-グリシジルオキシフェニル)アダマンタン等が挙げられる。
 上記フルオレン骨格を有するエポキシ化合物としては、9,9-ビス(4-グリシジルオキシフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-クロロフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-ブロモフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-フルオロフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-メトキシフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3,5-ジクロロフェニル)フルオレン、及び9,9-ビス(4-グリシジルオキシ-3,5-ジブロモフェニル)フルオレン等が挙げられる。
 上記ビフェニル骨格を有するエポキシ化合物としては、4,4’-ジグリシジルビフェニル、及び4,4’-ジグリシジル-3,3’,5,5’-テトラメチルビフェニル等が挙げられる。
 上記バイ(グリシジルオキシフェニル)メタン骨格を有するエポキシ化合物としては、1,1’-バイ(2,7-グリシジルオキシナフチル)メタン、1,8’-バイ(2,7-グリシジルオキシナフチル)メタン、1,1’-バイ(3,7-グリシジルオキシナフチル)メタン、1,8’-バイ(3,7-グリシジルオキシナフチル)メタン、1,1’-バイ(3,5-グリシジルオキシナフチル)メタン、1,8’-バイ(3,5-グリシジルオキシナフチル)メタン、1,2’-バイ(2,7-グリシジルオキシナフチル)メタン、1,2’-バイ(3,7-グリシジルオキシナフチル)メタン、及び1,2’-バイ(3,5-グリシジルオキシナフチル)メタン等が挙げられる。
 上記キサンテン骨格を有するエポキシ化合物としては、1,3,4,5,6,8-ヘキサメチル-2,7-ビス-オキシラニルメトキシ-9-フェニル-9H-キサンテン等が挙げられる。
 (A11)可撓性エポキシ化合物100重量部に対して、(A12)エポキシ化合物の含有量は好ましくは10重量部以上、より好ましくは20重量部以上であり、好ましくは100重量部以下、より好ましくは90重量部以下である。(A12)エポキシ化合物の含有量が上記下限以上であると、半導体素子保護用材料の塗布性がより一層高くなり、硬化物の半導体素子に対する接着性がより一層高くなる。(A12)エポキシ化合物の含有量が上記上限以下であると、硬化物の柔軟性がより一層高くなる。
 (A2)シリコーン化合物は、例えば、珪素原子に結合したアルケニル基を有するシリコーン化合物と、珪素原子に結合した水素原子を有するシリコーン化合物とを含む。珪素原子に結合したアルケニル基を有するシリコーン化合物は、珪素原子に結合した水素原子を有さなくてもよい。
 上記珪素原子に結合したアルケニル基を有するシリコーン化合物は、下記式(1A)で表されるシリコーン化合物、下記式(2A)で表されるシリコーン化合物、又は下記式(3A)で表されるシリコーン化合物であることが好ましい。
 (R1R2R3SiO1/2(R4R5SiO2/2 …(1A)
 上記式(1A)中、a及びbは、0.01≦a≦0.2、0.8≦b≦0.99を満たし、R1~R5の1mol%以上、20mol%以下はアルケニル基を表し、R1~R5の80mol%以上、99mol%以下はメチル基及びフェニル基を表し、アルケニル基、メチル基及びフェニル基以外のR1~R5は、炭素数2~6のアルキル基を表す。
 (R1R2R3SiO1/2(SiO4/2 …(2A)
 上記式(2A)中、a及びbは、0.7≦a≦0.9、0.1≦b≦0.3を満たし、R1~R3の1mol%以上、33mol%以下はアルケニル基を表し、R1~R3の67mol%以上、99mol%以下はメチル基及びフェニル基を表し、アルケニル基、メチル基及びフェニル基以外のR1~R3は、炭素数2~6のアルキル基を表す。R1~R3の1mol%以上、20mol%以下はアルケニル基を表していてもよく、R1~R3の80mol%以上、99mol%以下はメチル基及びフェニル基を表していてもよい。
 (R1R2R3SiO1/2(R4R5SiO2/2(R6SiO3/2 …(3A)
 上記式(3A)中、a、b及びcは、0.05≦a≦0.3、0≦b≦0.8、0.15≦c≦0.85を満たし、R1~R6の2mol%以上、20mol%以下はアルケニル基を表し、R1~R6の80mol%以上、95mol%以下はメチル基及びフェニル基を表し、アルケニル基、メチル基及びフェニル基以外のR1~R6は、炭素数2~6のアルキル基を表す。
 上記珪素原子に結合した水素原子を有するシリコーン化合物は、下記式(1B)で表されるシリコーン化合物であることが好ましい。
 (R1R2R3SiO1/2(R4R5SiO2/2 …(1B)
 上記式(1B)中、a及びbは、0.1≦a≦0.67、0.33≦b≦0.9を満たし、R1~R5の1mol%以上、25mol以下%は水素原子を表し、R1~R5の75mol%以上、99mol%以下はメチル基及びフェニル基を表し、水素原子、メチル基及びフェニル基以外のR1~R5は、炭素数2~6のアルキル基を表す。
 (A2)シリコーン化合物は、上記式(1A)で表されるシリコーン化合物を含むことが好ましい。(A2)シリコーン化合物は、上記式(1A)で表されるシリコーン化合物と、上記式(2A)で表されるシリコーン化合物とを含むか、又は、上記式(1A)で表されるシリコーン化合物と、上記式(3A)で表されるシリコーン化合物とを含むことが好ましい。
 硬化物の接着性を効果的に高め、硬化物の剥離を効果的に高める観点からは、(A)熱硬化性化合物が、(A1)シリコーン化合物として、上記式(2A)又は(3A)で表されるシリコーン化合物と、上記式(1B)で表されるシリコーン化合物とを含むこと好ましい。絶縁信頼性を高める観点からは、(A)熱硬化性化合物が、(A1)シリコーン化合物として、上記式(3A)で表されるシリコーン化合物と、上記式(1B)で表されるシリコーン化合物とを含むこと好ましい。接続対象部材の反りをより一層抑える観点からは、(A)熱硬化性化合物が、(A1)シリコーン化合物として、上記式(1A)で表されるシリコーン化合物と、上記式(1B)で表されるシリコーン化合物とを含むこと好ましい。
 上記半導体素子保護用材料100重量%中、(A2)シリコーン化合物の含有量は、好ましくは5重量%以上、より好ましくは8重量%以上であり、好ましくは20重量%以下、より好ましくは15重量%以下である。(A2)シリコーン化合物の含有量が上記下限以上及び上記上限以下であると、半導体素子保護用材料の塗布性、硬化物の柔軟性及び耐湿性がより一層良好になり、硬化物の半導体素子に対する接着性がより一層良好になり、保護フィルムに対する貼り付きをより一層抑えることができる。
 上記珪素原子に結合した水素原子を有するシリコーン化合物100重量部に対して、上記珪素原子に結合したアルケニル基を有するシリコーン化合物の含有量は好ましくは10重量部以上であり、好ましくは400重量部以下である。この含有量の関係を満足すると、半導体素子保護用材料の塗布性、硬化物の柔軟性及び耐湿性がより一層良好になり、硬化物の半導体素子に対する接着性がより一層良好になり、保護フィルムに対する貼り付きをより一層抑えることができる。
 ((B)硬化剤又は硬化触媒)
 (B)硬化剤又は硬化触媒として、(B1)硬化剤を用いてもよく、(B2)硬化触媒を用いてもよい。(A1)エポキシ化合物を用いる場合には、(B1)硬化剤が好ましい。(A2)シリコーン化合物を用いる場合には、(B2)硬化触媒が好ましい。
 (B1)硬化剤は、23℃で液状であってもよく、固形であってもよい。半導体素子保護用材料の塗布性をより一層高める観点からは、(B1)硬化剤は、23℃で液状である硬化剤であることが好ましい。また、23℃で液状である硬化剤の使用により、半導体素子保護用材料の半導体素子の表面に対する濡れ性が高くなる。(B1)硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。(B2)硬化触媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 (B1)硬化剤としては、アミン化合物(アミン硬化剤)、イミダゾール化合物(イミダゾール硬化剤)、フェノール化合物(フェノール硬化剤)及び酸無水物(酸無水物硬化剤)等が挙げられる。(B1)硬化剤はイミダゾール化合物でなくてもよい。
 硬化物中でのボイドの発生をより一層抑え、硬化物の耐熱性をより一層高める観点からは、(B1)硬化剤は、フェノール化合物であることが好ましい。
 半導体素子保護用材料の塗布性をより一層高め、硬化物中でのボイドの発生をより一層抑え、硬化物の耐熱性をより一層高める観点からは、(B1)硬化剤は、アリル基を有することが好ましく、上記フェノール化合物がアリル基を有することが好ましい。
 上記フェノール化合物としては、フェノールノボラック、o-クレゾールノボラック、p-クレゾールノボラック、t-ブチルフェノールノボラック、ジシクロペンタジエンクレゾール、ポリパラビニルフェノール、ビスフェノールA型ノボラック、キシリレン変性ノボラック、デカリン変性ノボラック、ポリ(ジ-o-ヒドロキシフェニル)メタン、ポリ(ジ-m-ヒドロキシフェニル)メタン、及びポリ(ジ-p-ヒドロキシフェニル)メタン等が挙げられる。
 (B1)硬化剤を用いる場合に、(A)熱硬化性化合物100重量部に対して、(B1)硬化剤の含有量は、好ましくは50重量部以上、より好ましくは75重量部以上、更に好ましくは100重量部以上であり、好ましくは250重量部以下、より好ましくは225重量部以下、更に好ましくは200重量部以下である。(B1)硬化剤の含有量が上記下限以上であると、半導体素子保護用材料を良好に硬化させることができる。(B1)硬化剤の含有量が上記上限以下であると、硬化物内における硬化に寄与しなかった(B1)硬化剤の残存量が少なくなる。
 (B2)硬化触媒としては、ヒドロシリル化反応用触媒及び縮合触媒などの金属触媒等が挙げられる。
 上記硬化触媒としては、例えば、錫系触媒、白金系触媒、ロジウム系触媒及びパラジウム系触媒等が挙げられる。透明性を高くすることができるため、白金系触媒が好ましい。
 上記ヒドロシリル化反応用触媒は、シリコーン化合物中の珪素原子に結合した水素原子と、シリコーン化合物中のアルケニル基とをヒドロシリル化反応させる触媒である。上記ヒドロシリル化反応用触媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記白金系触媒としては、白金粉末、塩化白金酸、白金-アルケニルシロキサン錯体、白金-オレフィン錯体及び白金-カルボニル錯体が挙げられる。特に、白金-アルケニルシロキサン錯体又は白金-オレフィン錯体が好ましい。
 上記白金-アルケニルシロキサン錯体におけるアルケニルシロキサンとしては、例えば、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、及び1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン等が挙げられる。上記白金-オレフィン錯体におけるオレフィンとしては、例えば、アリルエーテル及び1,6-ヘプタジエン等が挙げられる。
 上記白金-アルケニルシロキサン錯体及び白金-オレフィン錯体の安定性を向上させることができるため、上記白金-アルケニルシロキサン錯体又は白金-オレフィン錯体に、アルケニルシロキサン、オルガノシロキサンオリゴマー、アリルエーテル又はオレフィンを添加することが好ましい。上記アルケニルシロキサンは、好ましくは1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンである。上記オルガノシロキサンオリゴマーは、好ましくはジメチルシロキサンオリゴマーである。上記オレフィンは、好ましくは1,6-ヘプタジエンである。
 (B2)硬化触媒を用いる場合に、(A)熱硬化性化合物100重量部に対して、(B2)硬化触媒の含有量は、好ましくは0.001重量部以上、より好ましくは0.01重量部以上、更に好ましくは0.05重量部以上であり、好ましくは2重量部以下、より好ましくは1重量部以下、更に好ましくは0.5重量部以下である。(B2)硬化触媒の含有量が上記下限以上であると、半導体素子保護用材料を良好に硬化させることができる。(B2)硬化触媒の含有量が上記上限以下であると、硬化物内における硬化に寄与しなかった(B2)硬化触媒の残存量が少なくなる。
 ((C)熱伝導率が10W/m・K以上である無機フィラー)
 (C)熱伝導率が10W/m・K以上である無機フィラーを用いることによって、半導体素子保護用材料の塗布性を高く維持しつつ、かつ硬化物の柔軟性を高く維持しつつ、硬化物の放熱性を高めることができる。(C)無機フィラーは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 硬化物の放熱性をより一層高める観点からは、(C)無機フィラーの熱伝導率は、好ましくは10W/m・K以上、より好ましくは15W/m・K以上、更に好ましくは20W/m・K以上である。(C)無機フィラーの熱伝導率の上限は特に限定されない。熱伝導率が300W/m・K程度である無機フィラーは広く知られており、また熱伝導率が200W/m・K程度である無機フィラーは容易に入手できる。
 硬化物の放熱性を効果的に高める観点からは、(C)無機フィラーは、アルミナ、窒化アルミニウム又は炭化ケイ素であることが好ましい。これらの好ましい無機フィラーを用いる場合に、これらの無機フィラーは、1種のみが用いられてもよく、2種以上が併用されてもよい。(C)無機フィラーとして、上記以外の無機フィラーを適宜用いてもよい。
 半導体素子保護用材料の塗布性を効果的に高く維持しつつ、かつ硬化物の柔軟性を効果的に高く維持しつつ、硬化物の放熱性を効果的に高める観点からは、(C)無機フィラーは、熱伝導率が10W/m・K以上であり、かつ球状である無機フィラーであることが好ましい。球状とは、アスペクト比(長径/短径)が1以上、2以下であることをいう。
 (C)無機フィラーの平均粒子径は、好ましくは0.1μm以上であり、好ましくは150μm以下である。(C)無機フィラーの平均粒子径が上記下限以上であると、(C)無機フィラーを高密度で容易に充填できる。(C)無機フィラーの平均粒子径が上記上限以下であると、半導体素子保護用材料の塗布性がより一層高くなる。
 上記「平均粒子径」とは、レーザー回折式粒度分布測定装置により測定した体積平均での粒度分布測定結果から求められる平均粒子径である。
 上記硬化物100重量%中、及び、上記半導体素子保護用材料100重量%中、(C)無機フィラーの含有量は好ましくは60重量%以上、92重量%以下である。上記半導体素子保護用材料100重量%中、(C)無機フィラーの含有量はより好ましくは70重量%以上、更に好ましくは80重量%以上、特に好ましくは82重量%以上であり、より好ましくは90重量%以下である。(C)無機フィラーの含有量が上記下限以上であると、硬化物の放熱性がより一層高くなる。(C)無機フィラーの含有量が上記上限以下であると、半導体素子保護用材料の塗布性がより一層高くなり、硬化物の性状がより一層良好になる。
 ((D)硬化促進剤)
 (D)硬化促進剤の使用によって、硬化速度を速くし、半導体素子保護用材料を効率的に硬化させることができる。(D)硬化促進剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
 (D)硬化促進剤としては、イミダゾール化合物、リン化合物、アミン化合物、及び有機金属化合物等が挙げられる。なかでも、本発明の効果がより一層優れることから、イミダゾール化合物が好ましい。
 上記イミダゾール化合物としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール、等が挙げられる。また、公知のイミダゾール系潜在性硬化剤を用いることができる。具体例としては、PN23、PN40、PN-H(商品名、いずれも味の素ファインテクノ社製)が挙げられる。また、マイクロカプセル化イミダゾールとも呼ばれる、アミン化合物のエポキシアダクトの水酸基に付加反応させた硬化促進剤が挙げられ、例えばノバキュアHX-3088、ノバキュアHX-3941、HX-3742、HX-3722(商品名、いずれも旭化成イーマテリアルズ社製)等が挙げられる。さらに、包摂イミダゾールを用いることもできる。具体例としては、TIC-188(商品名、日本曹達社製)が挙げられる。
 上記リン化合物としては、トリフェニルホスフィン等が挙げられる。
 上記アミン化合物としては、2,4,6-トリス(ジメチルアミノメチル)フェノール、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン及び4,4-ジメチルアミノピリジン等が挙げられる。
 上記有機金属化合物としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)等が挙げられる。
 (A)熱硬化性化合物との合計100重量部に対して、(D)硬化促進剤の含有量は、好ましくは0.1重量部以上、より好ましくは0.5重量部以上であり、好ましくは10重量部以下、より好ましくは8重量部以下である。(D)硬化促進剤の含有量が上記下限以上であると、半導体素子保護用材料を良好に硬化させることができる。(D)硬化促進剤の含有量が上記上限以下であると、硬化物内における硬化に寄与しなかった(D)硬化促進剤の残存量が少なくなる。
 ((E)カップリング剤)
 上記半導体素子保護用材料は、(E)カップリング剤を含むことが好ましい。(E)カップリング剤の使用により、半導体素子保護用材料の硬化物の耐湿性がより一層高くなる。(E)カップリング剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記硬化物100重量%中、及び、上記半導体素子保護用材料100重量%中、(E)カップリング剤の含有量は好ましくは0.1重量%以上、より好ましくは0.2重量%以上であり、好ましくは2重量%以下、より好ましくは1重量%以下である。(E)カップリング剤の含有量が上記下限以上であると、半導体素子保護用材料の硬化物の耐湿性がより一層高くなる。(E)カップリング剤の含有量が上記上限以下であると、半導体素子保護用材料の塗布性がより一層高くなる。
 上記(E)カップリング剤は、100℃での重量減少が10重量%以下であるシランカップリング剤、100℃での重量減少が10重量%以下であるチタネートカップリング剤、又は100℃での重量減少が10重量%以下であるアルミネートカップリング剤を含むことが好ましい。これらの好ましいカップリング剤を用いる場合に、これらのカップリング剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 100℃における重量減少が10重量%以下であると、硬化中に(E)カップリング剤の揮発が抑制され、半導体素子に対する濡れ性がより一層高くなり、硬化物の放熱性がより一層高くなる。
 なお、100℃における重量減少は、赤外水分計(ケツト科学研究所社製「FD-720」)を用い、50℃/分の昇温速度で100℃まで昇温し、10分後の重量減少を測定することにより求めることができる。
 ((F)イオン捕捉剤)
 硬化物の絶縁信頼性を効果的に高める観点からは、上記半導体素子保護用材料は、(F)イオン捕捉剤を含むことが好ましい。(F)イオン捕捉剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
 (F)イオン捕捉剤は特に限定されない。該(F)イオン捕捉剤として、従来公知のイオン捕捉剤が使用可能である。
 (F)イオン捕捉剤の具体例としては、銅がイオン化して溶け出すのを防止するため銅害防止剤として知られる化合物が挙げられ、例えば、トリアジンチオール化合物、ビスフェノール系還元剤等を用いることができる。ビスフェノール系還元剤としては、2,2’-メチレン-ビス-(4-メチル-6-第3ブチルフェノール)、及び4,4’-チオ-ビス-(3-メチル-6-第3ブチルフェノール)等が挙げられる。また、(F)イオン捕捉剤の具体例としては、無機陰イオン交換体、無機陽イオン交換体及び無機両イオン交換体等も挙げられ、具体的には、一般式BiO(OH)(NO[ここで、Xは0.9~1.1、Yは0.6~0.8、Zは0.2~0.4の正数である]で表される酸化ビスマス系イオン捕捉剤、酸化アンチモン系イオン捕捉剤、リン酸チタン系イオン捕捉剤、リン酸ジルコニウム系イオン捕捉剤、並びに、一般式MgAl(OH)2X+3Y-2Z(CO・mHO[ここで、X、Y、Zは2X+3Y-2Z≧0を満たす正数、mは正数である]で表されるハイドロタルサイト系イオン捕捉剤等が挙げられる。これらのイオン捕捉剤の市販品としては、例えば、IXE-100(東亞合成社製、リン酸ジルコニウム系イオン捕捉剤)、IXE-300(東亞合成社製、酸化アンチモン系イオン捕捉剤)、IXE-400(東亞合成社製、リン酸チタン系イオン捕捉剤)、IXE-500(東亞合成社製、酸化ビスマス系イオン捕捉剤)、IXE-600(東亞合成社製、酸化アンチモン・酸化ビスマス系イオン捕捉剤)、DHT-4A(ハイドロタルサイト系イオン捕捉剤、協和化学工業社製)、及びキョーワードKW-2000(ハイドロタルサイト系イオン捕捉剤、協和化学工業社製)等が挙げられる。硬化物の電気信頼性をより一層低くする観点からは、(F)イオン捕捉剤は、無機陽イオン交換体又は無機両イオン交換体であることが好ましい。
 マイグレーションをより一層抑制し、絶縁信頼性をより一層高める観点からは、上記陽イオン交換体は、Zr系陽イオン交換体又はSb系陽イオン交換体であることが好ましく、Zr系陽イオン交換体であることがより好ましく、また上記陽イオン交換体は、ジルコニウム原子を含むことが好ましい。
 マイグレーションをより一層抑制し、絶縁信頼性をより一層高める観点からは、上記陰イオン交換体は、Bi系陰イオン交換体、Mg-Al系陰イオン交換体又はZr系陰イオン交換体であることが好ましく、Mg-Al系陰イオン交換体であることがより好ましく、また上記陰イオン交換体は、マグネシウム原子とアルミニウム原子とを含むことが好ましい。
 マイグレーションをより一層抑制し、絶縁信頼性をより一層高める観点からは、上記陽イオン交換体の中性交換容量は、好ましくは1meq/g以上、より好ましくは2meq/g以上であり、好ましくは10meq/g以下、より好ましくは4meq/g以下である。
 マイグレーションをより一層抑制し、絶縁信頼性をより一層高める観点からは、上記陰イオン交換体の中性交換容量は、好ましくは0.1meq/g以上、より好ましくは1meq/g以上であり、好ましくは10meq/g以下、より好ましくは5meq/g以下である。
 マイグレーションをより一層抑制し、絶縁信頼性をより一層高める観点からは、上記陽イオン交換体のメディアン径は、好ましくは0.1μm以上、より好ましくは0.5μm以上であり、好ましくは10μm以下、より好ましくは3μm以下である。
 マイグレーションをより一層抑制し、絶縁信頼性をより一層高める観点からは、上記陰イオン交換体のメディアン径は、好ましくは0.1μm以上、より好ましくは0.5μm以上であり、好ましくは10μm以下、より好ましくは3μm以下である。
 マイグレーションをより一層抑制し、絶縁信頼性をより一層高める観点からは、上記硬化物100重量%中、及び、上記半導体素子保護用材料100重量%中、(F)イオン捕捉剤の含有量は、好ましくは0.1量%以上、より好ましくは0.3重量%以上であり、好ましくは3重量%以下、より好ましくは2重量%以下である。
 (他の成分)
 上記半導体素子保護用材料は、必要に応じて、カルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類若しくはパラフィン等の離型剤;カーボンブラック、ベンガラ等の着色剤;臭素化エポキシ樹脂、三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛、フォスファゼン等の難燃剤;酸化ビスマス水和物等の無機イオン交換体;シリコーンオイル、シリコーンゴム等の低応力化成分;酸化防止剤等の各種添加剤を含んでいてもよい。
 上記半導体素子保護用材料は、分散剤を含むことが好ましい。分散剤の具体例としては、ポリカルボン酸塩、アルキルアンモニウム塩、アルキロールアンモニウム塩、リン酸エステル塩、アクリル系ブロック共重合物、及びポリマー塩等が挙げられる。
 上記硬化物100重量%中、及び、上記半導体素子保護用材料100重量%中、分散剤の含有量は、好ましくは0.1重量%以上、より好ましくは0.2重量%以上であり、好ましくは2重量%以下、より好ましくは1重量%以下である。
 (半導体素子保護用材料の他の詳細及び半導体装置)
 上記半導体素子保護用材料は、半導体素子を保護するために、上記半導体素子の表面上に塗布して用いられる。上記半導体素子保護用材料は、半導体素子と他の接続対象部材との間に配置されて、上記半導体素子と上記他の接続対象部材とを剥離しないように接着及び固定する硬化物を形成するものとは異なる。上記半導体素子保護用材料は、半導体素子の表面を被覆する被覆材料であることが好ましい。上記半導体素子保護用材料は、半導体素子の側面上に塗布されないことが好ましい。上記半導体素子保護用材料は、上記半導体素子を封止するための材料とは異なることが好ましく、上記半導体素子を封止するための封止剤ではないことが好ましい。上記半導体素子保護用材料は、アンダーフィル材ではないことが好ましい。上記半導体素子が、第2の表面側に第1の電極を有し、上記半導体素子保護用材料は、上記半導体素子の上記第2の表面側とは反対の第1の表面上に塗布されて用いられることが好ましい。上記半導体素子保護用材料は、半導体装置において、半導体素子を保護するために、上記半導体素子の表面上に硬化物を形成するために好適に用いられる。上記半導体素子保護用材料は、半導体素子を保護するために、上記半導体素子の表面上に硬化物を形成するために好適に用いられ、かつ上記硬化物の上記半導体素子側とは反対の表面上に保護フィルムを配置して、半導体装置を得るために好適に用いられる。上記半導体装置において、上記硬化物の電気伝導度は50μS/cm以下であることが好ましい。
 上記半導体素子保護用材料を塗布する方法としては、ディスペンサーによる塗布方法、スクリーン印刷による塗布方法、及びインクジェット装置による塗布方法等が挙げられる。上記半導体素子保護用材料は、ディスペンサー、スクリーン印刷、真空スクリーン印刷又はインクジェット装置による塗布方法により塗布されて用いられることが好ましい。塗布が容易であり、かつ硬化物中にボイドをより一層生じ難くする観点からは、上記半導体素子保護用材料は、ディスペンサーにより塗布されて用いられることが好ましい。
 本発明に係る半導体装置は、半導体素子と、上記半導体素子の第1の表面上に配置された硬化物とを備える。本発明に係る半導体装置では、上記硬化物が、上述した半導体素子保護用材料を硬化させることにより形成されている。
 上記半導体素子保護用材料は、半導体素子を保護するために、上記半導体素子の表面上に硬化物を形成し、かつ上記硬化物の上記半導体素子側とは反対の表面上に保護フィルムを配置して、半導体装置を得るために用いられるか、又は、半導体素子を保護するために、上記半導体素子の表面上に硬化物を形成し、かつ上記硬化物の上記半導体素子側とは反対の表面が露出している半導体装置を得るために用いられることが好ましい。本発明の効果がより一層有効に発揮されることから、上記半導体素子保護用材料は、ドライバICチップの保護用材料であることが好ましい。
 図1は、本発明の第1の実施形態に係る半導体素子保護用材料を用いた半導体装置を示す部分切欠正面断面図である。
 図1に示す半導体装置1は、半導体素子2と、半導体素子2の第1の表面2a上に配置された硬化物3とを備える。硬化物3は、上述した半導体素子保護用材料を硬化させることにより形成されている。硬化物3は、半導体素子2の第1の表面2a上の一部の領域に配置されている。
 半導体素子2は、第1の表面2a側とは反対の第2の表面2b側に、第1の電極2Aを有する。半導体装置1は、接続対象部材4をさらに備える。接続対象部材4は、表面4aに第2の電極4Aを有する。半導体素子2と接続対象部材4とは、他の硬化物5(接続部)を介して接着及び固定されている。半導体素子2は、接続対象部材4上に実装されている。半導体素子2の第1の電極2Aと、接続対象部材4の第2の電極4Aとが対向しており、導電性粒子6により電気的に接続されている。第1の電極2Aと第2の電極4Aとが接触することで、電気的に接続されていてもよい。硬化物3は、半導体素子2の第1の電極2Aが配置されている側と反対の第1の表面2a上に配置されている。硬化物3は、半導体素子2の接続対象部材4側と反対の第1の表面2a上に配置されている。
 硬化物3の半導体素子2側とは反対の表面上に、保護フィルム7が配置されている。それによって、硬化物3によって放熱性及び半導体素子の保護性を高めるだけでなく、保護フィルム7によっても、半導体素子の保護性をより一層高めることができる。硬化物3は、上述した組成を有して得られているため、硬化物3の保護フィルム7に対する貼り付きを抑えることができる。
 上記接続対象部材としては、ガラス基板、ガラスエポキシ基板及びフレキシブルプリント基板等が挙げられる。上記フレキシブルプリント基板としては、ポリイミド基板等の樹脂基板等が挙げられる。本発明の効果がより一層有効に発揮されることから、上記接続対象部材は、基板であることが好ましく、フレキシブルプリント基板であることが好ましく、樹脂基板であることが好ましく、ポリイミド基板であることがより好ましい。
 半導体素子の表面上において、半導体素子保護用材料の硬化物の厚みは、好ましくは400μm以上、より好ましくは500μm以上であり、好ましくは2000μm以下、より好ましくは1900μm以下である。半導体素子保護用材料の硬化物の厚みは、半導体素子の厚みよりも薄くてもよい。
 図2は、本発明の第2の実施形態に係る半導体素子保護用材料を用いた半導体装置を示す部分切欠正面断面図である。
 図2に示す半導体装置1Xは、半導体素子2と、半導体素子2の第1の表面2a上に配置された硬化物3Xとを備える。硬化物3Xは、上述した半導体素子保護用材料を硬化させることにより形成されている。硬化物3Xは、半導体素子2の第1の表面2a上の全体の領域に配置されている。硬化物3Xの半導体素子2側とは反対の表面上に、保護フィルムは配置されていない。硬化物3Xの半導体素子2側とは反対の表面は露出している。
 上記半導体装置では、上記硬化物の上記半導体素子側とは反対の表面上に、保護フィルムが配置されているか、又は、上記硬化物の上記半導体素子側とは反対の表面が露出していることが好ましい。
 なお、図1,2に示す構造は、半導体装置の一例にすぎず、半導体素子保護用材料の硬化物の配置構造等には適宜変形され得る。
 半導体素子保護用材料の硬化物の熱伝導率は特に限定されないが、1.1W/m・Kを超えることが好ましく、1.5W/m・K以上であることがより好ましく、1.8W/m・K以上であることが更に好ましい。
 以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明を明らかにする。なお、本発明は以下の実施例に限定されない。
 以下の材料を用いた。
 (A1)エポキシ化合物
 EX-821(n=4)((A11)可撓性エポキシ化合物、ナガセケムテックス社製、ポリエチレングリコールジグリシジルエーテル、エポキシ当量:185)
 EX-830(n=9)((A11)可撓性エポキシ化合物、ナガセケムテックス社製、ポリエチレングリコールジグリシジルエーテル、エポキシ当量:268)
 EX-931(n=11)((A11)可撓性エポキシ化合物、ナガセケムテックス社製、ポリプロピレングリコールジグリシジルエーテル、エポキシ当量:471)
 EX-861(n=22)((A11)可撓性エポキシ化合物、ナガセケムテックス社製、ポリエチレングリコールジグリシジルエーテル、エポキシ当量:551)
 PB3600(ダイセル社製、ポリプダジエン変性エポキシ樹脂、エポキシ当量:200)
 jER828((A12)エポキシ化合物、三菱化学社製、ビスフェノールA型エポキシ樹脂、エポキシ当量:188)
 jER834((A12)エポキシ化合物、三菱化学社製、ビスフェノールA型エポキシ樹脂、軟化点:30℃、エポキシ当量:255)
 (A2)シリコーン化合物
 [シリコーン化合物であるポリマーAの合成]
 温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、ジメチルジメトキシシラン164.1g、メチルフェニルジメトキシシラン20.1g及び1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン4.7gを入れ、50℃で攪拌した。その中に、水酸化カリウム2.2gを水35.1gに溶かした溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、減圧して揮発成分を除去し、反応液に酢酸2.4gを加え、減圧下で加熱した。その後、酢酸カリウムをろ過により除去して、ポリマーAを得た。
 得られたポリマーAの数平均分子量は15000であった。29Si-NMRより化学構造を同定した結果、ポリマーAは、下記の平均組成式を有していた。
 (MeSiO2/20.85(PhMeSiO2/20.10(ViMeSiO1/20.05
 上記式中、Meはメチル基、Viはビニル基、Phはフェニル基を示す。得られたポリマーAのフェニル基及びメチル基の含有比率は97.6モル%、ビニル基の含有比率は2.4モル%であった。
 なお、各ポリマーの分子量は、10mgにテトラヒドロフラン1mLを加え、溶解するまで攪拌し、GPC測定により測定した。GPC測定では、Waters社製の測定装置(カラム:昭和電工社製 Shodex GPC LF-804(長さ300mm)×2本、測定温度:40℃、流速:1mL/min、溶媒:テトラヒドロフラン、標準物質:ポリスチレン)を用いた。
 [シリコーン化合物であるポリマーB~Dの合成]
 合成に用いる有機珪素化合物の種類及び配合量をかえたこと以外はポリマーAの合成と同様にして、ポリマーB~Dを得た。
 ポリマーB:
 (SiO4/20.20(ViMeSiO1/20.40(MeSiO1/20.40
 数平均分子量 2000
 フェニル基及びメチル基の含有比率は83.3モル%、ビニル基の含有比率は16.7モル%
 ポリマーC:
 (MeSiO3/20.20(PhMeSiO2/20.70(ViMeSiO1/20.10
 数平均分子量 4000
 フェニル基及びメチル基の含有比率は94.7モル%、ビニル基の含有比率は5.3モル%
 ポリマーD:
 (PhSiO3/20.80(ViMeSiO1/20.20
 数平均分子量 1700
 フェニル基及びメチル基の含有比率は85.7モル%、ビニル基の含有比率は14.3モル%
 [シリコーン化合物であるポリマーEの合成]
 温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、ジフェニルジメトキシシラン80.6g、及び1,1,3,3-テトラメチルジシロキサン45gを入れ、50℃で攪拌した。その中に、酢酸100gと水27gの溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、減圧して揮発成分を除去してポリマーを得た。得られたポリマーにヘキサン150gと酢酸エチル150gとを添加し、イオン交換水300gで10回洗浄を行い、減圧して揮発成分を除去してポリマーEを得た。
 得られたポリマーEの数平均分子量は850であった。29Si-NMRより化学構造を同定した結果、ポリマーEは、下記の平均組成式を有していた。
 (PhSiO2/20.67(HMeSiO1/20.33
 上記式中、Meはメチル基、Phはフェニル基を示す。得られたポリマーEのフェニル基及びメチル基の含有比率は74.9モル%、珪素原子に結合した水素原子の含有比率は25.1%であった。
 [シリコーン化合物であるポリマーFの合成]
 ポリマーEの合成において、イオン交換水での洗浄を1回に変更したこと以外は同様にして、ポリマーFを得た。
 [シリコーン化合物であるポリマーGの合成]
 温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、ジメチルジメトキシシラン80.6g、及び1,1,3,3-テトラメチルジシロキサン45gを入れ、50℃で攪拌した。その中に、酢酸100gと水27gの溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、得られた反応液にヘキサン150gと酢酸エチル150gとを添加し、イオン交換水300gで10回洗浄を行い、分液にて溶剤成分を除去してポリマーGを得た。
 得られたポリマーGの数平均分子量は350であった。29Si-NMRより化学構造を同定した結果、ポリマーGは、下記の平均組成式を有していた。
 (MeSiO2/20.50(HMeSiO1/20.50
 上記式中、Meはメチル基を示す。得られたポリマーGのフェニル基及びメチル基の含有比率は80モル%、珪素原子に結合した水素原子の含有比率は20%であった。
 (B)硬化剤又は硬化触媒
 フジキュアー7000(富士化成社製、23℃で液状、アミン化合物)
 MEH-8005(明和化成社製、23℃で液状、アリルフェノールノボラック化合物)
 TD-2131(DIC社製、23℃で固体状、フェノールノボラック化合物)
 白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体
 (D)硬化促進剤
 SA-102(サンアプロ社製、DBUオクチル酸塩)
 (C)熱伝導率が10W/m・K以上である無機フィラー
 FAN-f05(古河電子社製、窒化アルミニウム、熱伝導率:100W/m・K、球状、平均粒子径:6μm)
 FAN-f50(古河電子社製、窒化アルミニウム、熱伝導率:100W/m・K、球状、平均粒子径:30μm)
 CB-P05(昭和電工社製、酸化アルミニウム、熱伝導率:20W/m・K、球状、平均粒子径:4μm)
 CB-P40(昭和電工社製、酸化アルミニウム、熱伝導率:20W/m・K、球状、平均粒子径:44μm)
 SSC-A15(信濃電気精錬社製、炭化ケイ素、熱伝導率:100W/m・K、球状、平均粒子径:19μm)
 SSC-A30(信濃電気精錬社製、炭化ケイ素、熱伝導率:100W/m・K、球状、平均粒子径:34μm)
 (C’)その他の無機フィラー
 HS-306(マイクロン社製、酸化ケイ素、熱伝導率:2W/m・K、球状、平均粒子径:2.5μm)
 HS-304(マイクロン社製、酸化ケイ素、熱伝導率:2W/m・K、球状、平均粒子径:25μm)
 (E)カップリング剤
 KBM-403(信越化学工業社製、3-グリシドキシプロピルトリメトキシシラン、100℃における重量減少:10重量%を超える)
 A-LINK599(momentive社製、3-オクタノイルチオ-1-プロピルトリエトキシシラン、100℃における重量減少:10重量%以下)
 TOG(IPAカット)(日本曹達社製、チタニウム-i-プロポキシオクチレングリコレート、100℃における重量減少:10重量%以下)
 AL-M(味の素ファインテクノ社製、アセトアルコキシアルミニウムジイソプロピレート、100℃における重量減少:10重量%以下)
 (他の成分)
 BYK-9076(BYK社製、分散剤)
 (F)イオン捕捉剤
 IXE-300(東亞合成社製、酸化アンチモン系イオン捕捉剤)
 IXE-600(東亞合成社製、酸化アンチモン・酸化ビスマス系イオン捕捉剤)
 DHT-4A(協和化学工業社製、ハイドロタルサイト系イオン捕捉剤)
 (実施例1)
 EX-821(n=4)を6.5重量部、jER828を2.5重量部、フジキュアー7000を5重量部、SA-102を0.5重量部、CB-P05を42.5重量部、CB-P40を42.5重量部、及びBYK-9076を0.5重量部混合し、脱泡を行い、半導体素子保護用材料を得た。
 (実施例2~22及び比較例1,2)
 配合成分の種類及び配合量を下記の表1~4に示すように変更したこと以外は実施例1と同様にして、半導体素子保護用材料を得た。
 (評価)
 (1)25℃における粘度の測定
 B型粘度計(東機産業社製「TVB-10型」)を用いて半導体素子保護用材料の25℃における10rpmでの粘度(Pa・s)を測定した。
 (2)(X)三量体から十量体までの環状シロキサン化合物の含有量
 得られた半導体素子保護用材料において、ガスクロマトグラフ質量分析装置(GC-MS)(島津製作所社製「QP2010SE」)を用いて、(X)三量体から十量体までの環状シロキサン化合物の含有量を評価した。
 (3)(Y)水の含有量
 得られた半導体素子保護用材料において、JIS K7215に準拠して、カールフィッシャー水分計(京都電子工業社製「MKV-710B」)を用いて(Y)水の含有量を評価した。
 (4)電気伝導度
 半導体素子保護用材料を150℃で2時間硬化させて硬化物を得た。得られた硬化物を5mm角程度に粉砕し、粉砕物2.5gにイオン交換水25mLを加え、PCT(121℃±2℃/湿度100%/2atmの槽)で20Hr置いた。その後、室温まで冷却して得た抽出液を試験液として得た。この試験液の電気伝導度を伝導度計(東亜電波工業社製の電気伝導率計「CM-42X」)を用いて測定した。
 (5)熱伝導率
 得られた半導体素子保護用材料を150℃で2時間加熱し、硬化させ、100mm×100mm×厚さ50μmの硬化物を得た。この硬化物を評価サンプルとした。
 得られた評価サンプルの熱伝導率を、京都電子工業社製熱伝導率計「迅速熱伝導率計QTM-500」を用いて測定した。なお、熱伝導率が1.1W/m・K以下である場合に、熱伝導率を「×」と判定した。
 (6)塗布性
 得られた半導体素子保護用材料をディスペンサー装置(武蔵エンジニアリング社製「SHOTMASTER-300」)から、ポリイミドフィルムに直径5mm、高さ2mmになるように直接吐出した後、半導体素子保護用材料を150℃で2時間加熱して硬化させた。硬化後の半導体素子保護用材料の形状から塗布性を下記の基準で判定した。
 [塗布性の判定基準]
 ○:直径5.3mm以上、高さ1.8mm未満(流動性あり)
 △:直径5mmを超え、5.3mm未満、高さ1.8mmを超え、2mm未満(流動性少しあり)
 ×:直径5mm、高さ2mmのまま(流動性なし)
 (7)ボイドの有無
 ポリイミドフィルムにアンダーフィル剤(ナミックス社製、U8437-2)を幅3mm、長さ18mmになるように塗布し、幅3mm、長さ18mm、厚み0.3mmのSiチップを載せて、150℃で1時間硬化させた試験片を準備した。準備した試験片に、得られた半導体素子保護用材料をディスペンサー装置(武蔵エンジニアリング社製「SHOTMASTER-300」)から、Siチップを全て覆うように、幅5mm、長さ21mm、厚み0.9mmになるように直接吐出した後、半導体素子保護用材料を150℃で2時間加熱して硬化させた。硬化後の半導体素子保護用材料におけるボイドの有無を顕微鏡で観察し評価した。
 [ボイドの有無の判定基準]
 ○:ボイドなし
 △:直径100μm未満の目視不能なボイドがある
 △△:直径100μm以上、150μm未満の目視可能なボイドがある
 ×:直径150μm以上の目視可能なボイドがある
 (8)耐湿性
 得られた半導体素子保護用材料を150℃で2時間加熱し、硬化させ、100mm×100mm×厚さ50μmの硬化物を得た。この硬化物を評価サンプルとした。
 得られた評価サンプルをDSM-8104(日置電機社製、ディジタル超絶縁/微少電流計)、平板試料用電極 SME-8310(日置電機社製)を用いて体積抵抗率を測定した。
 次に、プレッシャークッカー試験を高度加速寿命試験装置EHS-211(エスペック社製)で行った。121℃、湿度100%RH及び2atmの条件で24時間放置し、次に23℃及び湿度50%RHの環境で24時間放置した後、体積抵抗率を測定した。プレッシャークッカー試験前後の体積抵抗率の低下率を計算し、耐湿性を下記の基準で判定した。
 [耐湿性の判定基準]
 ○:試験前後の体積抵抗率の低下率が10%以下
 △:試験前後の体積抵抗率の低下率が10%を超え、20%以下
 ×:試験前後の体積抵抗率の低下率が20%を超える
 (9)接着力(ダイシェア強度)
 ポリイミド基板上に、接着面積が3mm×3mmになるように半導体素子保護用材料を塗布し、3mm角のSiチップを載せて、テストサンプルを得た。
 得られたテストサンプルを150℃で2時間加熱し、半導体素子保護用材料を硬化させた。次に、ダイシェアテスター(アークテック社製「DAGE 4000」)を用いて、300μm/秒の速度で、25℃でのダイシェア強度を評価した。
 [ダイシェア強度の判定基準]
 ○:ダイシェア強度が10N以上
 △:ダイシェア強度が6N以上、10N未満
 △△:ダイシェア強度が5N以上、6N未満
 ×:ダイシェア強度が5N未満
 (10)タック性(保護フィルムの貼り付き性)
 得られた半導体素子保護用材料を150℃で2時間加熱し、硬化させ、100mm×100mm×厚さ50μmの硬化物を得た。この硬化物を評価サンプルとした。
 得られた評価サンプルを23℃及び湿度50%RHの雰囲気下で24時間放置した。24時間放置後直ちに、評価サンプルの表面の粘着性を、タックテスターTA-500(UBM社製)を用いタックを測定した。
 [タック性の判定基準]
 ○:応力が50gf/cm未満
 △:応力が50gf/cm以上、100gf/cm未満
 ×:応力が100gf/cm以上
 (11)フィルム反り
 得られた半導体素子保護用材料をディスペンサー装置(武蔵エンジニアリング社製「SHOTMASTER―300」)から、ポリイミドフィルムに縦20mm、横100mm、高さ10mmになるように直接吐出した後、半導体素子保護用材料を150℃で2時間加熱して硬化させた。硬化後にポリイミドフィルムの反りを目視で確認し、フィルム反りを下記の基準で判定した。
 [フィルム反りの判定基準]
 ○:ポリイミドフィルムの反りなし
 △:ポリイミドフィルムの反りがわずかに発生(使用上問題なし)
 ×:ポリイミドフィルムの反り発生(使用上問題あり)
 (12)耐熱性
 得られた半導体素子保護用材料を150℃で2時間加熱し、硬化させ、100mm×100mm×厚さ50μmの硬化物を得た。この硬化物を評価サンプルとした。
 得られた評価サンプルをDSM-8104(日置電機社製、ディジタル超絶縁/微少電流計)、平板試料用電極 SME-8310(日置電機社製)を用いて体積抵抗率の測定を測定した。
 次に、180℃で100時間放置し、次に23℃及び湿度50%RHの環境で24時間放置した後、体積抵抗率を測定した。耐熱試験前後の体積抵抗率の低下率を計算し、耐熱性を下記の基準で判定した。
 [耐熱性の判定基準]
 ○○:試験前後の体積抵抗率の低下率が5%以下
 ○:試験前後の体積抵抗率の低下率が5%を超え、10%以下
 △:試験前後の体積抵抗率の低下率が10%を超え、20%以下
 ×:試験前後の体積抵抗率の低下率が20%を超える
 (13)絶縁信頼性
 基板(ポリイミドフィルム)上に形成された櫛歯型電極(材質:銅の上にスズめっき、パターンピッチ:50μm、L/S=25μm/25μm)の上に、熱硬化ソルダーレジスト(日本ポリテック社製「NPR-3300」)を10μmの膜厚で塗布して150℃で1時間加熱硬化させて、テストパターンを準備した。上記テストパターンに半導体素子保護用材料を塗布し、150℃で2時間加熱硬化させて、試験片を得た。加熱後の試験片を85℃及び湿度85%の槽(エスペック社製「SH641」)へ入れ、マイグレーションテスター(IMV社製「MIG-8600B」)を用いて電極間に40Vの直流電圧を印加して、電極間の抵抗を測定した。絶縁信頼性を以下の基準で判定した。○、△又は△△の判定基準の場合に、絶縁信頼性は合格と判断され、実使用に支障が無い絶縁性保持性があり、絶縁信頼性に優れている。
 [絶縁信頼性の判定基準]
 ○:抵抗が1×10Ω以上で100時間以上持続し、絶縁性が非常に良好
 △:抵抗が1×10Ω以上、1×10Ω未満で100時間以上持続し、絶縁性が良好
 △△:100時間未満で抵抗が1×10Ω未満に低下するが、1×10Ω以上の抵抗を50時間以上、100時間未満持続し、絶縁性がやや良好
 ×:50時間未満で抵抗が1×10Ω未満に低下し、絶縁不良とみなされる
 (14)耐熱試験後のフィルム反り
 上記(11)フィルム反りの評価後に、半導体素子保護用材料の硬化物とポリイミドフィルムとの積層体を、180℃で100時間放置した。放置後に、ポリイミドフィルムの反りを目視で確認し、耐熱試験後のフィルム反りを下記の基準で判定した。
 [耐熱試験後のフィルム反りの判定基準]
 ○:耐熱試験前のフィルムの反り量に対して、耐熱試験後のフィルムの反り量が1.1倍未満
 △:耐熱試験前のフィルムの反り量に対して、耐熱試験後のフィルムの反り量が1.1倍以上、1.2倍未満
 ×:耐熱試験前のフィルムの反り量に対して、耐熱試験後のフィルムの反り量が1.2倍以上
 配合成分の詳細、組成及び結果を下記の表1~4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 (実施例23)
 半導体素子保護用材料の調製において、IXE-300(東亞合成社製、酸化アンチモン系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施例1と同様にして、半導体素子保護用材料を得た。
 (実施例24)
 半導体素子保護用材料の調製において、IXE-600(東亞合成社製、酸化アンチモン・酸化ビスマス系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施例1と同様にして、半導体素子保護用材料を得た。
 (実施例25)
 半導体素子保護用材料の調製において、DHT-4A(協和化学工業社製、ハイドロタルサイト系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施例1と同様にして、半導体素子保護用材料を得た。
 (実施例26)
 半導体素子保護用材料の調製において、IXE-300(東亞合成社製、酸化アンチモン系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施例18と同様にして、半導体素子保護用材料を得た。
 (実施例27)
 半導体素子保護用材料の調製において、IXE-600(東亞合成社製、酸化アンチモン・酸化ビスマス系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施18と同様にして、半導体素子保護用材料を得た。
 (実施例28)
 半導体素子保護用材料の調製において、DHT-4A(協和化学工業社製、ハイドロタルサイト系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施例18と同様にして、半導体素子保護用材料を得た。
 (実施例29)
 半導体素子保護用材料の調製において、IXE-600(東亞合成社製、酸化アンチモン・酸化ビスマス系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施例19と同様にして、半導体素子保護用材料を得た。
 (実施例30)
 半導体素子保護用材料の調製において、IXE-600(東亞合成社製、酸化アンチモン・酸化ビスマス系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施例20と同様にして、半導体素子保護用材料を得た。
 (実施例31)
 半導体素子保護用材料の調製において、IXE-600(東亞合成社製、酸化アンチモン・酸化ビスマス系イオン捕捉剤)0.5重量部を更に添加したこと以外は実施例21と同様にして、半導体素子保護用材料を得た。
 (評価)
 実施例23~31について、上記(13)絶縁信頼性の評価を実施した。
 この結果、実施例23~31の絶縁信頼性の結果はいずれも、「○」であった。
 また、実施例1及び実施例23~25の絶縁信頼性の結果は「○」であるが、100時間後の電圧の印加時の抵抗は、実施例23~25の方が実施例1よりも高く、実施例23~25の方が実施例1よりも絶縁信頼性に優れていた。また、実施例20及び実施例30の絶縁信頼性の結果は「○」であるが、100時間後の電圧の印加時の抵抗は、実施例30の方が実施例20よりも高く、実施例30の方が実施例20よりも絶縁信頼性に優れていた。また、実施例21及び実施例31の絶縁信頼性の結果は「○」であるが、100時間後の電圧の印加時の抵抗は、実施例31の方が実施例21よりも高く、実施例31の方が実施例21よりも絶縁信頼性に優れていた。
 なお、実施例23~31については、実施例1~22及び比較例1,2で行った他の評価項目についても、良好な結果が得られた。また、(A2)シリコーン化合物を用いた実施例19~21の耐熱試験後のフィルム反りの結果における反り量の増加割合は、(A1)エポキシ化合物を用いた実施例1~17の耐熱試験後のフィルム反りの結果における反り量の増加割合よりも小さかった。
 1,1X…半導体装置
 2…半導体素子
 2a…第1の表面
 2b…第2の表面
 2A…第1の電極
 3,3X…硬化物
 4…接続対象部材
 4a…表面
 4A…第2の電極
 5…他の硬化物
 6…導電性粒子
 7…保護フィルム

Claims (20)

  1.  半導体素子と、
     前記半導体素子の第1の表面上に配置された硬化物とを備え、
     前記硬化物が、半導体素子保護用材料の硬化物であり、
     前記半導体素子保護用材料が、熱硬化性化合物と、硬化剤又は硬化触媒と、熱伝導率が10W/m・K以上である無機フィラーとを含み、
     前記半導体素子保護用材料が、三量体から十量体までの環状シロキサン化合物を含まないか、又は三量体から十量体までの環状シロキサン化合物を500ppm以下で含み、
     前記硬化物における前記無機フィラーの含有量が60重量%以上、92重量%以下であり、
     前記硬化物の電気伝導度が50μS/cm以下である、半導体装置。
  2.  前記熱硬化性化合物が、エポキシ化合物又はシリコーン化合物を含む、請求項1に記載の半導体装置。
  3.  前記熱硬化性化合物がシリコーン化合物を含む、請求項2に記載の半導体装置。
  4.  前記硬化剤がアリルフェノールノボラック化合物である、請求項1~3のいずれか1項に記載の半導体装置。
  5.  前記熱硬化性化合物が、可撓性エポキシ化合物を含む、請求項1~4のいずれか1項に記載の半導体装置。
  6.  前記熱硬化性化合物が、前記可撓性エポキシ化合物と、可撓性エポキシ化合物とは異なるエポキシ化合物とを含む、請求項5に記載の半導体装置。
  7.  前記半導体素子保護用材料に含まれる前記可撓性エポキシ化合物が、アルキレングリコール基が9以上繰り返された構造単位を有するポリアルキレングリコールジグリシジルエーテルである、請求項5又は6に記載の半導体装置。
  8.  接続対象部材を備え、
     前記接続対象部材上に、前記半導体素子が前記第1の表面とは反対の第2の表面側から実装されている、請求項1~7のいずれか1項に記載の半導体装置。
  9.  第2の電極を表面に有する接続対象部材を備え、
     前記半導体素子が、前記第1の表面側とは反対の第2の表面側に第1の電極を有し、前記半導体素子の第1の電極が、前記第2の電極を表面に有する前記接続対象部材における前記第2の電極と電気的に接続されている、請求項1~8のいずれか1項に記載の半導体装置。
  10.  前記硬化物の前記半導体素子側とは反対の表面上に、保護フィルムが配置されているか、又は、前記硬化物の前記半導体素子側とは反対の表面が露出している、請求項1~9のいずれか1項に記載の半導体装置。
  11.  半導体素子を保護するために、前記半導体素子の表面上に塗布して、前記半導体素子の表面上に硬化物を形成するために用いられる半導体素子保護用材料であり、
     半導体素子と他の接続対象部材との間に配置されて、前記半導体素子と前記他の接続対象部材とを剥離しないように接着及び固定する硬化物を形成するものとは異なり、
     熱硬化性化合物と、硬化剤又は硬化触媒と、熱伝導率が10W/m・K以上である無機フィラーとを含み、
     三量体から十量体までの環状シロキサン化合物を含まないか、又は三量体から十量体までの環状シロキサン化合物を500ppm以下で含み、
     前記無機フィラーの含有量が60重量%以上、92重量%以下であり、
     150℃で2時間加熱して硬化物を得たときに、前記硬化物の電気伝導度が50μS/cm以下である、半導体素子保護用材料。
  12.  接続対象部材上に実装された半導体素子を保護するために、前記半導体素子の前記接続対象部材側とは反対の表面上に塗布して、前記半導体素子の前記接続対象部材側とは反対の表面上に硬化物を形成するために用いられる半導体素子保護用材料であり、
     熱硬化性化合物と、硬化剤又は硬化触媒と、熱伝導率が10W/m・K以上である無機フィラーとを含み、
     三量体から十量体までの環状シロキサン化合物を含まないか、又は三量体から十量体までの環状シロキサン化合物を500ppm以下で含み、
     前記無機フィラーの含有量が60重量%以上、92重量%以下であり、
     150℃で2時間加熱して硬化物を得たときに、前記硬化物の電気伝導度が50μS/cm以下である、半導体素子保護用材料。
  13.  前記熱硬化性化合物が、エポキシ化合物又はシリコーン化合物を含む、請求項11又は12に記載の半導体素子保護用材料。
  14.  前記熱硬化性化合物がシリコーン化合物を含む、請求項13に記載の半導体素子保護用材料。
  15.  前記硬化剤がアリルフェノールノボラック化合物である、請求項11~14のいずれか1項に記載の半導体素子保護用材料。
  16.  前記熱硬化性化合物が、可撓性エポキシ化合物を含む、請求項11~15のいずれか1項に記載の半導体素子保護用材料。
  17.  前記熱硬化性化合物が、前記可撓性エポキシ化合物と、可撓性エポキシ化合物とは異なるエポキシ化合物とを含む、請求項16に記載の半導体素子保護用材料。
  18.  半導体素子保護用材料に含まれる前記可撓性エポキシ化合物が、アルキレングリコール基が9以上繰り返された構造単位を有するポリアルキレングリコールジグリシジルエーテルである、請求項16又は17に記載の半導体素子保護用材料。
  19.  水を含まないか、又は水を1000ppm以下で含む、請求項11~18のいずれか1項に記載の半導体素子保護用材料。
  20.  半導体素子を保護するために、前記半導体素子の表面上に硬化物を形成し、かつ前記硬化物の前記半導体素子側とは反対の表面上に保護フィルムを配置して、半導体装置を得るために用いられるか、又は、半導体素子を保護するために、前記半導体素子の表面上に硬化物を形成し、かつ前記硬化物の前記半導体素子側とは反対の表面が露出している半導体装置を得るために用いられる、請求項11~19のいずれか1項に記載の半導体素子保護用材料。
PCT/JP2016/073934 2015-08-17 2016-08-16 半導体装置及び半導体素子保護用材料 WO2017030126A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201680033071.9A CN107735859B (zh) 2015-08-17 2016-08-16 半导体装置以及半导体元件保护用材料
KR1020187014799A KR102097004B1 (ko) 2015-08-17 2016-08-16 반도체 장치 및 반도체 소자 보호용 재료
KR1020217006250A KR102294307B1 (ko) 2015-08-17 2016-08-16 반도체 장치 및 반도체 소자 보호용 재료
KR1020217026566A KR102460328B1 (ko) 2015-08-17 2016-08-16 반도체 장치 및 반도체 소자 보호용 재료
KR1020177023796A KR101864096B1 (ko) 2015-08-17 2016-08-16 반도체 장치 및 반도체 소자 보호용 재료
KR1020207009101A KR102224210B1 (ko) 2015-08-17 2016-08-16 반도체 장치 및 반도체 소자 보호용 재료
JP2016553906A JP6275863B2 (ja) 2015-08-17 2016-08-16 半導体装置及び半導体素子保護用材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015160674 2015-08-17
JP2015-160674 2015-08-17

Publications (1)

Publication Number Publication Date
WO2017030126A1 true WO2017030126A1 (ja) 2017-02-23

Family

ID=58052215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073934 WO2017030126A1 (ja) 2015-08-17 2016-08-16 半導体装置及び半導体素子保護用材料

Country Status (5)

Country Link
JP (3) JP6275863B2 (ja)
KR (5) KR102294307B1 (ja)
CN (2) CN111900137A (ja)
TW (1) TWI630230B (ja)
WO (1) WO2017030126A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181737A1 (ja) * 2017-03-30 2018-10-04 味の素株式会社 ペースト状樹脂組成物
JPWO2018062009A1 (ja) * 2016-09-29 2019-07-11 ダウ・東レ株式会社 硬化性シリコーン組成物、その硬化物、および光半導体装置
WO2020100345A1 (ja) * 2018-11-14 2020-05-22 ナガセケムテックス株式会社 硬化性樹脂組成物および硬化性シート
JPWO2019146617A1 (ja) * 2018-01-23 2021-02-12 ナガセケムテックス株式会社 封止用樹脂組成物
WO2022030108A1 (ja) * 2020-08-06 2022-02-10 信越化学工業株式会社 熱伝導性2液付加硬化型シリコーン組成物及びその製造方法
CN114641551A (zh) * 2019-12-24 2022-06-17 富士胶片株式会社 内窥镜用粘接剂及其固化物、以及内窥镜及其制造方法
WO2024005037A1 (ja) * 2022-07-01 2024-01-04 三井化学株式会社 表示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6981914B2 (ja) * 2018-04-09 2021-12-17 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
WO2019216388A1 (ja) * 2018-05-10 2019-11-14 積水化学工業株式会社 硬化性組成物、半導体素子保護用材料、及び半導体装置
JP7247003B2 (ja) 2019-04-12 2023-03-28 本田技研工業株式会社 放熱性塗料組成物及び放熱性被膜の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210612A (ja) * 2005-01-27 2006-08-10 Rohm Co Ltd 半導体装置
JP2012126762A (ja) * 2010-12-13 2012-07-05 Sekisui Chem Co Ltd 熱伝導性接着剤
JP2013030637A (ja) * 2011-07-29 2013-02-07 Sumitomo Bakelite Co Ltd 液状樹脂組成物および半導体装置
JP2013071960A (ja) * 2011-09-27 2013-04-22 Sekisui Chem Co Ltd 絶縁材料及び積層構造体
JP2013119593A (ja) * 2011-12-07 2013-06-17 Sekisui Chem Co Ltd 光半導体装置用ダイボンド材及びそれを用いた光半導体装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2817474B2 (ja) 1991-09-25 1998-10-30 信越化学工業株式会社 エポキシ樹脂組成物及び硬化物
JP3821173B2 (ja) 1996-12-19 2006-09-13 信越化学工業株式会社 エポキシ樹脂組成物
JP4190080B2 (ja) * 1999-03-16 2008-12-03 日東電工株式会社 半導体封止用エポキシ樹脂組成物およびそれを用いた半導体装置
JP3847032B2 (ja) * 1999-08-26 2006-11-15 住友ベークライト株式会社 液状封止樹脂組成物及びそれを用いた半導体装置
JP3921630B2 (ja) * 2000-04-05 2007-05-30 株式会社日立製作所 エポキシ樹脂複合材料及びそれを用いた装置
US8017449B2 (en) * 2003-08-08 2011-09-13 Dow Corning Corporation Process for fabricating electronic components using liquid injection molding
JP2005200533A (ja) 2004-01-15 2005-07-28 Kyocera Chemical Corp 半導体封止用エポキシ樹脂組成物および樹脂封止型半導体装置
JP2006232950A (ja) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd 封止用液状エポキシ樹脂組成物、半導体装置及びその製造方法
JP2007217469A (ja) 2006-02-14 2007-08-30 Kyocera Chemical Corp 封止用エポキシ樹脂組成物および半導体装置
JP4823161B2 (ja) * 2007-07-20 2011-11-24 日本テキサス・インスツルメンツ株式会社 半導体装置
KR101174971B1 (ko) * 2007-09-05 2012-08-17 세키스이가가쿠 고교가부시키가이샤 절연 시트 및 적층 구조체
JP2009263601A (ja) * 2008-04-30 2009-11-12 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置
JP6134089B2 (ja) * 2011-02-22 2017-05-24 積水化学工業株式会社 絶縁材料及び積層構造体
JP2012199544A (ja) * 2011-03-09 2012-10-18 Sekisui Chem Co Ltd 異方性導電ペースト、接続構造体及び接続構造体の製造方法
JP2013001861A (ja) * 2011-06-20 2013-01-07 Kyocera Chemical Corp 半導体封止用樹脂組成物、その製造方法及び半導体装置
JP2013067673A (ja) * 2011-09-20 2013-04-18 Hitachi Chemical Co Ltd 樹脂ペースト組成物及び半導体装置
JP2014040538A (ja) 2012-08-23 2014-03-06 Hitachi Chemical Co Ltd 2液タイプのエポキシ樹脂組成物
JP6230363B2 (ja) * 2013-10-08 2017-11-15 ナミックス株式会社 フィルム用樹脂組成物、絶縁フィルムおよび半導体装置
WO2015076457A1 (ko) * 2013-11-21 2015-05-28 주식회사 동부하이텍 씨오에프형 반도체 패키지 및 그 제조 방법
JPWO2016010067A1 (ja) * 2014-07-18 2017-04-27 積水化学工業株式会社 半導体素子保護用材料及び半導体装置
JP5766867B1 (ja) * 2014-11-25 2015-08-19 積水化学工業株式会社 半導体素子保護用材料及び半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210612A (ja) * 2005-01-27 2006-08-10 Rohm Co Ltd 半導体装置
JP2012126762A (ja) * 2010-12-13 2012-07-05 Sekisui Chem Co Ltd 熱伝導性接着剤
JP2013030637A (ja) * 2011-07-29 2013-02-07 Sumitomo Bakelite Co Ltd 液状樹脂組成物および半導体装置
JP2013071960A (ja) * 2011-09-27 2013-04-22 Sekisui Chem Co Ltd 絶縁材料及び積層構造体
JP2013119593A (ja) * 2011-12-07 2013-06-17 Sekisui Chem Co Ltd 光半導体装置用ダイボンド材及びそれを用いた光半導体装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018062009A1 (ja) * 2016-09-29 2019-07-11 ダウ・東レ株式会社 硬化性シリコーン組成物、その硬化物、および光半導体装置
KR102561855B1 (ko) 2017-03-30 2023-08-02 아지노모토 가부시키가이샤 페이스트상 수지 조성물
CN110352219A (zh) * 2017-03-30 2019-10-18 味之素株式会社 糊状树脂组合物
KR20190127770A (ko) * 2017-03-30 2019-11-13 아지노모토 가부시키가이샤 페이스트상 수지 조성물
TWI828621B (zh) * 2017-03-30 2024-01-11 日商味之素股份有限公司 糊狀樹脂組成物
WO2018181737A1 (ja) * 2017-03-30 2018-10-04 味の素株式会社 ペースト状樹脂組成物
JP7420559B2 (ja) 2018-01-23 2024-01-23 ナガセケムテックス株式会社 封止用樹脂組成物
JPWO2019146617A1 (ja) * 2018-01-23 2021-02-12 ナガセケムテックス株式会社 封止用樹脂組成物
US11718770B2 (en) 2018-11-14 2023-08-08 Nagase Chemtex Corporation Curable resin composition and curable sheet
CN113056519A (zh) * 2018-11-14 2021-06-29 长濑化成株式会社 固化性树脂组合物及固化性片材
JP6764149B1 (ja) * 2018-11-14 2020-09-30 ナガセケムテックス株式会社 硬化性樹脂組成物および硬化性シート
WO2020100345A1 (ja) * 2018-11-14 2020-05-22 ナガセケムテックス株式会社 硬化性樹脂組成物および硬化性シート
CN113056519B (zh) * 2018-11-14 2024-02-23 长濑化成株式会社 固化性树脂组合物及固化性片材
CN114641551A (zh) * 2019-12-24 2022-06-17 富士胶片株式会社 内窥镜用粘接剂及其固化物、以及内窥镜及其制造方法
JP2022029985A (ja) * 2020-08-06 2022-02-18 信越化学工業株式会社 熱伝導性2液付加硬化型シリコーン組成物及びその製造方法
WO2022030108A1 (ja) * 2020-08-06 2022-02-10 信越化学工業株式会社 熱伝導性2液付加硬化型シリコーン組成物及びその製造方法
JP7328184B2 (ja) 2020-08-06 2023-08-16 信越化学工業株式会社 熱伝導性2液付加硬化型シリコーン組成物及びその製造方法
WO2024005037A1 (ja) * 2022-07-01 2024-01-04 三井化学株式会社 表示装置

Also Published As

Publication number Publication date
KR102460328B1 (ko) 2022-10-28
CN107735859B (zh) 2020-08-14
TWI630230B (zh) 2018-07-21
KR20210027521A (ko) 2021-03-10
JP6731906B2 (ja) 2020-07-29
TW201723071A (zh) 2017-07-01
JP6275863B2 (ja) 2018-02-07
KR102294307B1 (ko) 2021-08-26
CN111900137A (zh) 2020-11-06
KR102097004B1 (ko) 2020-04-03
KR20200037437A (ko) 2020-04-08
JP2020170867A (ja) 2020-10-15
JP6905129B2 (ja) 2021-07-21
JPWO2017030126A1 (ja) 2017-08-17
CN107735859A (zh) 2018-02-23
KR101864096B1 (ko) 2018-06-01
JP2018056595A (ja) 2018-04-05
KR20180013842A (ko) 2018-02-07
KR20210107160A (ko) 2021-08-31
KR102224210B1 (ko) 2021-03-08
KR20180061405A (ko) 2018-06-07

Similar Documents

Publication Publication Date Title
JP6905129B2 (ja) 半導体装置及び半導体素子保護用材料
JP6093880B2 (ja) 硬化性組成物、硬化性組成物の製造方法及び半導体装置
JP6539150B2 (ja) 半導体素子保護用材料及び半導体装置
KR101808472B1 (ko) 반도체 소자 보호용 재료 및 반도체 장치
JP2017041633A (ja) 半導体装置及び半導体素子保護用材料
JP5766867B1 (ja) 半導体素子保護用材料及び半導体装置
JP2016023219A (ja) 半導体素子保護用の2液混合型の第1,第2の液及び半導体装置
JP6475593B2 (ja) 半導体素子保護用材料及び半導体装置
JP2017039799A (ja) 半導体素子保護用材料及び半導体装置
JP2017039801A (ja) 半導体素子保護用材料及び半導体装置
JP2017039800A (ja) 半導体素子保護用材料及び半導体装置
JP2019123774A (ja) 半導体素子保護用材料及び半導体装置
JP2017039804A (ja) 硬化体及び半導体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016553906

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177023796

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16837115

Country of ref document: EP

Kind code of ref document: A1