WO2022030108A1 - 熱伝導性2液付加硬化型シリコーン組成物及びその製造方法 - Google Patents

熱伝導性2液付加硬化型シリコーン組成物及びその製造方法 Download PDF

Info

Publication number
WO2022030108A1
WO2022030108A1 PCT/JP2021/022492 JP2021022492W WO2022030108A1 WO 2022030108 A1 WO2022030108 A1 WO 2022030108A1 JP 2021022492 W JP2021022492 W JP 2021022492W WO 2022030108 A1 WO2022030108 A1 WO 2022030108A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
liquid
group
heat
formula
Prior art date
Application number
PCT/JP2021/022492
Other languages
English (en)
French (fr)
Inventor
充弘 岩田
瞳子 高橋
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP21852983.2A priority Critical patent/EP4194494A4/en
Priority to CN202180057993.4A priority patent/CN116075552B/zh
Priority to KR1020237003828A priority patent/KR20230048508A/ko
Priority to US18/019,007 priority patent/US20230242766A1/en
Publication of WO2022030108A1 publication Critical patent/WO2022030108A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to a thermally conductive two-component addition-curable silicone composition having excellent thermal conductivity and a method for producing the same.
  • thermally conductive silicone compositions have been used for the purpose of relieving thermal stress.
  • a filler having good thermal conductivity may be used for the purpose of relaxing thermal stress.
  • Such fillers include silica powder, aluminum oxide powder, silicon carbide powder, and silicon nitride powder.
  • Aluminum nitride powder, magnesium oxide powder, diamond powder, iron, stainless steel, metal powder such as copper, carbon powder and the like are known.
  • metal powder and carbon powder have electrical conductivity and cannot be used in a heat conductive silicone composition for the purpose of electrical insulation.
  • silicon carbide powder and diamond powder are materials with high hardness, and there is a risk that the wiring and elements in the substrate filled with these powders will be worn or cut.
  • Silicon nitride powder, aluminum nitride powder, magnesium oxide powder, etc. can be used from the viewpoint of electrical insulation, but since they all show hydrolyzability and lack long-term storage stability, thermal conductivity 2 has been used so far. It was difficult to ensure the storage stability of the liquid-additionally curable silicone composition.
  • examples of the filler that can be actually used include silica powder and aluminum oxide powder.
  • silica powder does not have sufficient thermal conductivity, and when trying to give high thermal conductivity, silicone is used. Workability such as the viscosity of the composition is significantly reduced.
  • aluminum oxide powder it is known that due to the influence of Al-OH groups remaining on the alumina surface, it reacts with hydrogen atoms bonded to silicon atoms to cause a dehydrogenation reaction, resulting in a low crosslink density. With the set low hardness material, the effect of dehydrogenation reaction cannot be ignored.
  • Patent Document 1 the use of aluminum oxide treated with silyl ketene acetal or the like
  • Patent Document 2 the proposal of a silicone gel composition defining the pH of aluminum oxide
  • the surface-treated aluminum oxide with the silyl ketene acetal was concerned about the change in hardness over time, and it was difficult to use it in an environment whose main purpose was stress relaxation. Further, in aluminum oxide having a defined pH, a treatment agent for an inorganic acid is used, and the remaining inorganic acid causes a dehydrogenation reaction with time, and it is difficult to suppress the change in hardness with time. rice field.
  • Japanese Unexamined Patent Publication No. 05-001237 Japanese Unexamined Patent Publication No. 11-049959 Japanese Unexamined Patent Publication No. 2011-122084
  • the present invention has been made in view of the above circumstances, and is applicable to a module including electrical / electronic parts and a circuit board on which they are mounted, and exhibits excellent stress relaxation characteristics and thermal conductivity after curing. It is an object of the present invention to provide a thermally conductive two-component addition-curable silicone composition capable of producing the same, and a method for producing the same.
  • a heat-conducting two-component addition-curable silicone composition (A) The following average composition formula (1) R a R 1 b SiO (4-ab) / 2 (1)
  • R is an alkenyl group independently, R 1 is an unsubstituted or substituted monovalent hydrocarbon group independently having no aliphatic unsaturated bond, and a is 0.0001 to 0.2.
  • b is 1.7 to 2.2, and a + b is a positive number satisfying 1.9 to 2.4.
  • Organopolysiloxane having at least two alkenyl groups bonded to silicon atoms in one molecule, and
  • C aluminum oxide powder heated and extracted with pure water at 120 ° C.
  • R is an alkenyl group independently, R 1 is an unsubstituted or substituted monovalent hydrocarbon group independently having no aliphatic unsaturated bond, and a is 0.0001 to 0.2.
  • b is 1.7 to 2.2, and a + b is a positive number satisfying 1.9 to 2.4.
  • Organopolysiloxane which is represented by and has at least two alkenyl groups bonded to silicon atoms in one molecule.
  • D The following average composition formula (3) R 3 e H f SiO (4-ef) / 2 (3)
  • R 3 is an unsubstituted or substituted monovalent hydrocarbon group independently having no aliphatic unsaturated bond, e is 0.7 to 2.2, and f is 0.001 to 0.5.
  • the first liquid does not contain the components (B) and (D), and the second liquid does not contain the components (E) and (F).
  • the total of the component (A) is 100 parts by mass, and the component (B) is a silicon atom-bonded hydrogen atom in the component (B) with respect to one alkenyl group in the component (A).
  • the amount of (SiH group) to be 0.1 to 2 is contained, the total of the component (C) is 1,000 to 7,000 parts by mass, and the component (D) is contained in the component (A).
  • One alkenyl group contains 0.01 to 3 silicon atom-bonded hydrogen atoms (SiH groups) in the component (D), and the component (E) is platinum with respect to the component (A).
  • the group metal mass is 1 to 200 ppm, and the component (F) is contained in an amount of 0.01 to 10 parts by mass.
  • the thermal viscosities of the first liquid and the second liquid are 2.0 to 7.0 W / m ⁇ K in the ISO 22007-2 compliant hot disk method, and the first liquid and the second liquid, respectively.
  • thermally conductive two-component addition curable silicone composition having a viscosity at 25 ° C. of 30 to 800 Pa ⁇ s when the rotor A is measured by a spiral viscometer and the rotation speed is 10 rpm (slip speed 6 (1 / sec)). do.
  • the thermally conductive two-component addition-curable silicone composition With such a thermally conductive two-component addition-curable silicone composition, the storage stability is improved and the change in hardness with time is suppressed.
  • the heat-conducting two-component addition-curable silicone which is a cured product of the composition, can be suitably used for protecting electrical and electronic components and circuit boards on which they are mounted, and thus has excellent stress relaxation characteristics and heat. Can exhibit conductivity.
  • the total amount of the SiH groups in the component (B) and the component (D) is 0.11 to 5 with respect to one alkenyl group in the component (A).
  • the heat-treated mixture in the first liquid and the heat-treated mixture in the second liquid are further added to the silane coupling agent (G) and / or the following general formula (4).
  • R 4 is an independently unsubstituted or substituted monovalent hydrocarbon group
  • R 5 is an independently alkyl group, alkoxyalkyl group, alkenyl group or acyl group
  • g is an integer of 5 to 100.
  • h is an integer of 1 to 3.
  • aqueous layer is ion chromatographed.
  • a mixture containing aluminum oxide having an Na + ion amount of 100 ppm or less as measured by chromatography is heat-treated at a temperature of 70 ° C. or higher, and the component (C) is surface-treated with a part of the component (A). Then, in the heat-treated mixture cooled, (E) Platinum group metal catalyst, (F) An ion trapping agent that is a cation exchange and / or both ion exchange type ion trapping agent and that carries at least one element selected from Zr, Bi, Sb, Mg, and Al is added and mixed.
  • R is an alkenyl group independently, R 1 is an unsubstituted or substituted monovalent hydrocarbon group independently having no aliphatic unsaturated bond, and a is 0.0001 to 0.2.
  • b is 1.7 to 2.2, and a + b is a positive number satisfying 1.9 to 2.4.
  • Organopolysiloxane which is represented by and has at least two alkenyl groups bonded to silicon atoms in one molecule.
  • a mixture containing aluminum oxide having an Na + ion amount of 100 ppm or less as measured by ion chromatography is heat-treated at a temperature of 70 ° C. or higher, and the component (C) is surface-treated with a part of the component (B). And then cooled to the heat-treated mixture.
  • D The following average composition formula (3) R 3 e H f SiO (4-ef) / 2 (3) (In the formula, R 3 is an unsubstituted or substituted monovalent hydrocarbon group independently having no aliphatic unsaturated bond, e is 0.7 to 2.2, and f is 0.001 to 0.5.
  • e + f is a positive number satisfying 0.8 to 2.5.
  • It is composed of the first liquid and the second liquid by the step of preparing the second liquid by adding and mixing an organohydrogenpolysiloxane having two hydrogen atoms bonded to silicon atoms in one molecule.
  • a method for producing a thermally conductive two-component addition-curable silicone composition for preparing a composition It is assumed that the first liquid does not contain the components (B) and (D), and the second liquid does not contain the components (E) and (F).
  • the total of the component (A) is 100 parts by mass, and the component (B) is a silicon atom-bonded hydrogen atom in the component (B) with respect to one alkenyl group in the component (A).
  • the amount of SiH groups) is 0.1 to 2, the total of the components (C) is 1,000 to 7,000 parts by mass, and the component (D) is the alkenyl group 1 in the component (A).
  • the amount of the silicon atom-bonded hydrogen atom (SiH group) in the component (D) is 0.01 to 3
  • the component (E) is the mass of the platinum group metal with respect to the component (A). 1 to 200 ppm
  • the component (F) is 0.01 to 10 parts by mass.
  • the thermal viscosities of the obtained first liquid and the second liquid are set to 2.0 to 7.0 W / m ⁇ K in the ISO 22007-2 compliant hot disk method, and the obtained first liquid and the first liquid are obtained.
  • Thermally conductive two-component add-on-curable silicone composition in which the viscosities of each of the two liquids at 25 ° C are 30 to 800 Pa ⁇ s when the rotor A is measured with a spiral viscometer and the rotation speed is 10 rpm (slip speed 6 (1 / sec)). Provide a method for manufacturing a product.
  • thermoly conductive additive-curable silicone which is a cured product of the composition, can be suitably used for protecting electrical and electronic parts and circuit boards on which they are mounted, and thus has excellent stress relaxation characteristics and thermal conductivity. Can be demonstrated.
  • the thermal conductivity 2 is such that the total amount of the SiH groups in the component (B) and the component (D) is 0.11 to 5 with respect to one alkenyl group in the component (A). It is preferable that it is a method for producing a liquid addition-curable silicone composition.
  • the obtained cured product becomes a stable silicone cured product, and does not become too hard and brittle.
  • the silane coupling agent (G) and / or the following general formula (4) are further added to the mixture to be heat-treated in the first liquid and the mixture to be heat-treated in the second liquid.
  • R 4 is an independently unsubstituted or substituted monovalent hydrocarbon group
  • R 5 is an independently alkyl group, alkoxyalkyl group, alkenyl group or acyl group
  • g is an integer of 5 to 100.
  • h is an integer of 1 to 3.
  • It is preferable to use a method for producing a thermally conductive two-component addition-curable silicone composition which is represented by and heat-treated by mixing organopolysiloxane (H) having a viscosity at 25 ° C. of 0.01 to 30 Pa ⁇ s. ..
  • a thermally conductive two-component addition-curable silicone composition having improved storage stability and suppressing a change in hardness over time can be obtained, and the thermally conductive silicone which is a cured product of the composition can be obtained. Since it can be suitably used for protecting electric / electronic components and circuit boards on which they are mounted, excellent stress relaxation characteristics and thermal conductivity can be exhibited.
  • the present inventors heated and extracted aluminum oxide powder with pure water at 120 ° C. ⁇ 48 hours as a heat conductive filler, and measured the aqueous layer by ion chromatography.
  • aluminum oxide having an Na + ion content of 100 ppm or less and an alkenyl group-containing organopolysiloxane are heat-treated and mixed at a temperature of 70 ° C. or higher, and then the mixture is mixed with a curing catalyst and cation exchange and / or both ions. Na when aluminum oxide powder is heat-extracted with pure water at 120 ° C.
  • an organopolysiloxane containing an alkenyl group, and an organohydrogenpolysiloxane having a specific structure are simultaneously heat-treated and mixed at a temperature of 70 ° C. or higher, the mixture is mixed with an organopolysiloxane having a specific structure.
  • the present invention has been found to improve storage stability and suppress changes in hardness over time by using a heat-conducting two-component addition-curable silicone composition composed of a second solution to which hydrogen polysiloxane is added. I came to the point.
  • the present invention A heat-conducting two-component addition-curable silicone composition.
  • R is an alkenyl group independently, R 1 is an unsubstituted or substituted monovalent hydrocarbon group independently having no aliphatic unsaturated bond, and a is 0.0001 to 0.2.
  • b is 1.7 to 2.2, and a + b is a positive number satisfying 1.9 to 2.4.
  • Organopolysiloxane having at least two alkenyl groups bonded to silicon atoms in one molecule, and
  • C aluminum oxide powder heated and extracted with pure water at 120 ° C.
  • R is an alkenyl group independently, R 1 is an unsubstituted or substituted monovalent hydrocarbon group independently having no aliphatic unsaturated bond, and a is 0.0001 to 0.2.
  • b is 1.7 to 2.2, and a + b is a positive number satisfying 1.9 to 2.4.
  • Organopolysiloxane which is represented by and has at least two alkenyl groups bonded to silicon atoms in one molecule.
  • D The following average composition formula (3) R 3 e H f SiO (4-ef) / 2 (3)
  • R 3 is an unsubstituted or substituted monovalent hydrocarbon group independently having no aliphatic unsaturated bond, e is 0.7 to 2.2, and f is 0.001 to 0.5.
  • e + f is a positive number satisfying 0.8 to 2.5.
  • It is a composition composed of a second liquid containing an organohydrogenpolysiloxane having two hydrogen atoms bonded to a silicon atom in one molecule.
  • the first liquid does not contain the components (B) and (D), and the second liquid does not contain the components (E) and (F).
  • the total amount of the component (A) is 100 parts by mass, and the component (B) is a silicon atom-bonded hydrogen atom in the component (B) with respect to one alkenyl group in the component (A).
  • the amount of (SiH group) to be 0.1 to 2 is contained, the total of the component (C) is 1,000 to 7,000 parts by mass, and the component (D) is contained in the component (A).
  • One alkenyl group contains 0.01 to 3 silicon atom-bonded hydrogen atoms (SiH groups) in the component (D), and the component (E) is platinum with respect to the component (A).
  • the group metal mass is 1 to 200 ppm, and the component (F) is contained in an amount of 0.01 to 10 parts by mass.
  • the thermal viscosities of the first liquid and the second liquid are 2.0 to 7.0 W / m ⁇ K in the ISO 22007-2 compliant hot disk method, and the first liquid and the second liquid, respectively.
  • a heat conductive two-component addition curable silicone composition having a viscosity at 25 ° C. of 30 to 800 Pa ⁇ s when the rotor A is measured by a spiral viscometer and the rotation speed is 10 rpm (slip speed 6 (1 / sec)). It is a manufacturing method.
  • the component (A) of the composition of the present invention is a component serving as a main component (base polymer) of the composition.
  • the component (A) is an organopolysiloxane represented by the following average composition formula (1) and having at least two alkenyl groups bonded to silicon atoms (hereinafter referred to as "silicon atom-bonded alkenyl groups") in one molecule. ..
  • the silicon atom-bonded alkenyl group has at least two in one molecule, preferably 2 to 50, and more preferably 2 to 20.
  • These silicon atom-bonded alkenyl groups may be bonded to the silicon atom at the end of the molecular chain, to the silicon atom at the non-terminal of the molecular chain (that is, other than the terminal of the molecular chain), or a combination thereof.
  • R a R 1 b SiO (4-ab) / 2 (1) (In the formula, R is an alkenyl group independently, R 1 is an unsubstituted or substituted monovalent hydrocarbon group independently having no aliphatic unsaturated bond, and a is 0.0001 to 0.2. b is 1.7 to 2.2, and a + b is a positive number satisfying 1.9 to 2.4.)
  • R is usually an alkenyl group having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms.
  • alkenyl groups such as a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group and an isobutenyl group, and a vinyl group is particularly preferable.
  • R 1 is usually an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 aliphatic unsaturated bonds. Specific examples thereof include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, cyclohexyl group, octyl group, decyl group and other alkyl groups; phenyl group.
  • Aryl groups such as trill groups; Aralkyl groups such as benzyl groups and phenylethyl groups; Chloromethyl groups in which some or all of the hydrogen atoms of these groups are substituted with halogen atoms such as fluorine, chlorine and bromine. Examples thereof include 3,3,3-trifluoropropyl group, but from the viewpoint of ease of synthesis and the like, a methyl group, a phenyl group and a 3,3,3-trifluoropropyl group are preferable.
  • a is a positive number of 0.0001 to 0.2, preferably 0.0005 to 0.1, and b is a positive number of 1.7 to 2.2. It is preferably a positive number of 9 to 2.0, a + b is a positive number satisfying 1.9 to 2.4, and is preferably a positive number satisfying 1.95 to 2.05.
  • the molecular structure of the organopolysiloxane as a component (A) is not particularly limited, and is linear; a part of the molecular chain includes RSiO 3/2 unit, R 1 SiO 3/2 unit, SiO 2 unit (in the formula, R And the group represented by R1 may be a branched chain including (as defined above); cyclic; a three-dimensional network (resin), or a combination thereof, but the main chain is basic.
  • a linear diorganopolysiloxane consisting of repeating diorganosiloxane units and having both ends of the molecular chain sealed with a triorganosyloxy group is particularly preferable.
  • the viscosity of the organopolysiloxane of the component (A) is preferably 50 to 100,000 mPa ⁇ s, and more preferably 100 to 10,000 mPa ⁇ s.
  • the viscosity is a value at 25 ° C. measured by a rotational viscometer (hereinafter, the same applies).
  • organopolysiloxane of the component (A) satisfying the above requirements for example, the following general formula (1A): (In the formula, R 6 is an independently unsubstituted or substituted monovalent hydrocarbon group, where at least two of R 6 are alkenyl groups and i is an integer of 20-2,000.) The one represented by is mentioned.
  • the unsubstituted or substituted monovalent hydrocarbon group represented by R 6 is the above-mentioned R (alkenyl group) and R 1 (unsubstituted or substituted without aliphatic unsaturated bond). It is the same as the one defined in (monovalent hydrocarbon group), and the number of carbon atoms, specific examples, etc. are also the same. However, at least two, preferably 2 to 50, more preferably 2 to 20 of R 6 are alkenyl groups. Further, i is preferably an integer of 40 to 1,200, more preferably 50 to 600.
  • organopolysiloxane represented by the above formula (1A) include a dimethylpolysiloxane having a dimethylvinylsiloxy group-blocking at both ends of the molecular chain, a dimethylsiloxane / methylvinylsiloxane copolymer having a trimethylsiloxy group-blocking at both ends of the molecular chain, and a molecule.
  • the organopolysiloxane of the component (A) may be used alone or in combination of two or more.
  • the above-mentioned organopolysiloxane having an alkenyl group is known per se and is produced by a conventionally known method.
  • the component (A) is used for both the first liquid and the second liquid, and the ratio of the component (A) used for the first liquid and the second liquid is not particularly limited, but the first liquid and the first liquid are not particularly limited. It is preferable to use it so that the mixing ratio with the two liquids is almost the same mass ratio.
  • the component (B) of the composition of the present invention has at least three hydrogen atoms bonded to silicon atoms in one molecule, and acts as a surface treatment agent and a cross-linking agent for aluminum oxide which is the component (C). It is a thing. That is, when the heat treatment is performed at a high temperature, a part of the Al-OH group remaining on the surface of the component (C) and the residue of the surface treatment agent of the inorganic acid are consumed by the dehydrogenation reaction, and hydrogen bonded to the remaining silicon atom. An atom undergoes an addition reaction with an alkenyl group in the component (A), which is an essential component in the present invention.
  • the component (B) is represented by the following average composition formula (2), and is an organohydrogenpoly having at least three hydrogen atoms bonded to a silicon atom (hereinafter, also referred to as “silicon atom-bonded hydrogen atom”) in one molecule. It is a siloxane.
  • the number of silicon atom-bonded hydrogen atoms contained in one molecule of this organohydrogenpolysiloxane is preferably 3 to 100, more preferably 3 to 50, and particularly preferably 3 to 20.
  • the hydrogen atom bonded to the silicon atom may be at the end of the molecular chain, in the middle of the molecular chain, or both.
  • R 2 c H d SiO (4-cd) / 2 (2)
  • R 2 is an unsubstituted or substituted monovalent hydrocarbon group independently having no aliphatic unsaturated bond, c is 0.7 to 2.2, d is 0.001 to 0.5. And c + d is a positive number satisfying 0.8 to 2.5.
  • R 2 is an unsubstituted or substituted monovalent hydrocarbon group independently having no aliphatic unsaturated bond, and the number of carbon atoms thereof is usually 1 to 10, preferably 1 to 6. Is. Specific examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, a cyclohexyl group, an octyl group, a nonyl group and a decyl group.
  • Alkyl groups such as phenyl group, trill group, xylyl group, naphthyl group and other aryl groups; benzyl group, phenylethyl group, phenylpropyl group and other aralkyl groups; some or all of the hydrogen atoms of these groups are fluorine. , 3,3,3-trifluoropropyl group substituted with a halogen atom such as chlorine or bromine. Of these, an alkyl group, an aryl group and a 3,3,3-trifluoropropyl group are preferable, and a methyl group, a phenyl group and a 3,3,3-trifluoropropyl group are more preferable.
  • c is a positive number of 0.7 to 2.2, and is preferably a positive number of 1.0 to 2.1.
  • d is a positive number of 0.001 to 0.5, and is preferably a positive number of 0.005 to 0.1.
  • c + d is a positive number satisfying 0.8 to 2.5, preferably a positive number satisfying 1.0 to 2.5, and more preferably a positive number satisfying 1.5 to 2.2. ..
  • the number of silicon atoms (that is, the degree of polymerization) in one molecule of the organohydrogenpolysiloxane of the component (B) is usually 10 to 1,000, but the handling workability of the composition and the obtained cured product From the viewpoint of good characteristics, the number is preferably 20 to 500, more preferably 20 to 100.
  • the molecular structure of the organohydrogenpolysiloxane of the component (B) is not particularly limited as long as it satisfies the above requirements.
  • the viscosity of the organohydrogenpolysiloxane of the component (B) is usually 1 to 10,000 mPa ⁇ s, preferably 3 to 2,000 mPa ⁇ s, more preferably 10 to 1,000 mPa ⁇ s, and is at room temperature (25). It is desirable that it is liquid at ° C).
  • organohydrogenpolysiloxane represented by the above formula (2) examples include a methylhydrogensiloxane / dimethylsiloxane cyclic copolymer, a dimethylhydrogensiloxy group-blocked methylhydrogenpolysiloxane at both ends of the molecular chain, and both molecular chains.
  • the organohydrogenpolysiloxane of the component (B) may be used alone or in combination of two or more.
  • organohydrogenpolysiloxane is synthesized by a conventionally known method.
  • the blending amount of the organohydrogenpolysiloxane of the component (B) is 0.1 to 2 for the silicon atom-bonded hydrogen atom (SiH group) in the component (B) with respect to one alkenyl group in the total of the components (A).
  • the amount is preferably 0.1 to 1.8, and more preferably 0.1 to 1.5. If the blending amount is too small, the effect of improving storage stability may be insufficient, and if the blending amount is too large, the physical properties of the obtained thermally conductive silicone cured product may become unstable.
  • the component (C) of the composition of the present invention is aluminum oxide having an Na + ion amount of 100 ppm or less when aluminum oxide powder is heat-extracted with pure water at 120 ° C. for 48 hours and the aqueous layer is measured by ion chromatography. Is.
  • the amount of Na + ion is 100 ppm or less, preferably the amount of Na + ion is 80 ppm or less, more preferably 60 ppm. It is as follows. If the amount of Na + ion exceeds 100 ppm, the component (E) may be inactivated over time. The lower limit of the amount of Na + ion can be 0 ppm or more.
  • the Na + ion amount of aluminum oxide used in the present invention in the above range, commercially available aluminum oxide powder is dispersed in water at room temperature (1 to 25 ° C.) or in order to shorten the process time.
  • the amount of Na + ion can be adjusted by washing with water by heating to 60 ° C. and stirring.
  • the aluminum oxide powder preferably has an average particle size of 1 to 100 ⁇ m as measured by a laser diffraction method, more preferably 1 to 80 ⁇ m, and further preferably crushed particles or rounded particles as the shape of the particles. , Or spherical particles, preferably crushed particles and spherical particles.
  • the aluminum oxide powder may be used alone or in combination of two or more types having different average particle sizes.
  • the average particle size is 1 ⁇ m or more, the contact between the particles is sufficient, the thermal resistance between the particles does not increase, and the thermal conductivity becomes good. Further, when the average particle size is 100 ⁇ m or less, the unevenness of the sheet surface becomes sufficiently small, the interfacial thermal resistance does not increase, and the thermal conductivity becomes good.
  • the total amount of the heat conductive filler of the component (C) is 1,000 to 7,000 parts by mass, preferably 1,000 to 6,900 parts by mass, and more preferably 1 per 100 parts by mass of the component (A). It is 000 to 6,700 parts by mass.
  • the heat conductive two-component addition curable silicone composition that gives a heat conductive silicone cured product capable of suppressing the viscosity, thermal conductivity, storage stability, and hardness change with time of the present invention. Can be.
  • the component (C) is used for both the first liquid and the second liquid, and the ratio of the component (C) used for the first liquid and the second liquid is not particularly limited, but the first liquid and the first liquid are not particularly limited. It is preferable to use it so that the mixing ratio with the two liquids is almost the same mass ratio.
  • the component (D) of the composition of the present invention has the following average composition formula (3).
  • R 3 e H f SiO (4-ef) / 2 (3) (In the formula, R 3 is an unsubstituted or substituted monovalent hydrocarbon group independently having no aliphatic unsaturated bond, e is 0.7 to 2.2, and f is 0.001 to 0.5. And e + f is a positive number satisfying 0.8 to 2.5.) It is an organohydrogenpolysiloxane having two hydrogen atoms bonded to a silicon atom in one molecule.
  • R 3 is an unsubstituted or substituted monovalent hydrocarbon group independently having no aliphatic unsaturated bond, and the number of carbon atoms thereof is usually 1 to 10, preferably 1 to 6. Is. Specific examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, a cyclohexyl group, an octyl group, a nonyl group and a decyl group.
  • Alkyl groups such as phenyl group, trill group, xylyl group, naphthyl group and other aryl groups; benzyl group, phenylethyl group, phenylpropyl group and other aralkyl groups; some or all of the hydrogen atoms of these groups are fluorine. , 3,3,3-trifluoropropyl group substituted with a halogen atom such as chlorine or bromine. Of these, an alkyl group, an aryl group and a 3,3,3-trifluoropropyl group are preferable, and a methyl group, a phenyl group and a 3,3,3-trifluoropropyl group are more preferable.
  • e is a positive number of 0.7 to 2.2, and preferably a positive number of 1.0 to 2.1.
  • f is a positive number of 0.001 to 0.5, and is preferably a positive number of 0.005 to 0.1.
  • e + f is a positive number satisfying 0.8 to 2.5, preferably a positive number satisfying 1.0 to 2.5, and more preferably a positive number satisfying 1.5 to 2.2. ..
  • the organohydrogenpolysiloxane component (D) has two hydrogen atoms bonded to silicon atoms in one molecule, regardless of whether it is at the end of the molecular chain or in the middle of the molecular chain. , There may be one in each of them, but it is preferably the end of the molecular chain.
  • the number of silicon atoms (that is, the degree of polymerization) in one molecule of the organohydrogenpolysiloxane of the component (D) is usually 10 to 1,000, but the handling workability of the composition and the obtained cured product From the viewpoint of good characteristics, the number is preferably 15 to 500, more preferably 18 to 100.
  • the molecular structure of the organohydrogenpolysiloxane of the component (D) is not particularly limited as long as it satisfies the above requirements.
  • the viscosity of the organohydrogenpolysiloxane of the component (D) is usually 1 to 10,000 mPa ⁇ s, preferably 3 to 2,000 mPa ⁇ s, more preferably 10 to 1,000 mPa ⁇ s, and is at room temperature (25). It is desirable that it is liquid at ° C).
  • organohydrogenpolysiloxane represented by the above formula (3) examples include methylhydrogensiloxane / dimethylsiloxane cyclic copolymer, dimethylhydrogensiloxy group-sealed dimethylpolysiloxane at both ends of the molecular chain, and trimethyl at both ends of the molecular chain.
  • Syroxy group-blocked methylhydrogenpolysiloxane molecular chain double-ended trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, molecular chain double-ended trimethylsiloxy group-blocked methylhydrogensiloxane / diphenylsiloxane copolymer, molecular chain both Terminal trimethylsiloxy group-blocked methylhydrogensiloxane / diphenylsiloxane / dimethylsiloxane copolymer, a copolymer consisting of (CH 3 ) 2 HSiO 1/2 unit and (CH 3 ) 2 SiO unit and CH 3 SiO 3/2 unit.
  • Polymer (CH 3 ) 2 HSiO 1/2 unit and (CH 3 ) (CF 3 C 2 H 4 ) SiO unit and (CH 3 ) 2 SiO unit and (CF 3 C 2 H 4 ) SiO 3
  • Examples thereof include a copolymer consisting of / 2 units.
  • the organohydrogenpolysiloxane of the component (D) may be used alone or in combination of two or more.
  • organohydrogenpolysiloxane is synthesized by a conventionally known method.
  • the component (D) has two hydrogen atoms (SiH groups) bonded to silicon atoms in one molecule, and has at least three hydrogen atoms bonded to silicon atoms in one molecule (B). ) It differs from the component in this respect. Further, the component (B) is also used as a surface treatment agent for the component (C), whereas the component (D) reacts with the alkenyl group in the component (A) to obtain a cured product. Used only as. That is, since the component (D) has two SiH groups, if even one of them is deactivated, three-dimensional cross-linking will not occur. Therefore, in the present invention, the component (C) is surface-treated with the component (B) described above so that the component (D) to be blended in the second liquid does not deteriorate over time.
  • the amount of the component (D) used is 0.01 to 3, preferably 0.05 to 2 SiH groups in the component (D) with respect to one alkenyl group in the total of the components (A). , More preferably 0.2 to 1.5 pieces. If the number of SiH groups in the component (D) is less than 0.01 with respect to one alkenyl group in the component (A), the silicone may become too soft and a stable cured silicone product may not be obtained. If the number of SiH groups in the component exceeds 3 with respect to 1 alkenyl group in the component (A), the cured silicone product may become too hard and brittle.
  • the total amount of SiH groups in the above-mentioned component (B) and component (D) is 0.11 to 5 with respect to one alkenyl group in the total of component (A), particularly 0. It is preferable to use it in a ratio of 25 to 4.
  • the total amount of the SiH groups in the component (B) and the component (D) is 0.11 or more with respect to one alkenyl group in the component (A)
  • a stable silicone cured product is obtained without becoming too soft.
  • the total amount of SiH groups in the component (B) and the component (D) is 5 or less with respect to one alkenyl group in the component (A)
  • the cured silicone product has sufficient flexibility. Does not become brittle.
  • the component (E) of the composition of the present invention is a platinum group metal catalyst, and promotes the addition reaction of the alkenyl group in the component (A) and the hydrogen atom bonded to the silicon atom in the component (B) and the component (D). It is a catalyst to be used.
  • a catalyst to be used for example, platinum chloride acid, alcohol-modified platinum chloride acid, platinum chloride acid and olefins, aldehydes, vinylsiloxanes, or coordination compounds with acetylene compounds, tetrakis (triphenylphosphine) palladium, chlorotris (triphenylphosphine) rhodium.
  • Etc. are used, but a platinum catalyst is preferable, and a coordination compound of platinum chloride acid and vinylsiloxane is most preferably used.
  • the blending amount of the component (E) may be a catalytic amount, but is usually 1 to 200 ppm, preferably 2 to 100 ppm, in terms of mass of the platinum group metal with respect to the total amount of the component (A). If the blending amount of the component (E) is out of this range, appropriate curability cannot be obtained.
  • the component (F) is a cation exchange and / or both ion trapping agent, and the component (E) deteriorates with time due to Na + ions contained in the component (C) in the composition of the present invention. It is a component that can be suppressed. Therefore, anion exchange type trapping agents are not suitable in the present invention.
  • the component (F) is characterized in that at least one element selected from Zr, Bi, Sb, Mg, and Al is carried, and is preferably selected from the elements of Zr, Bi, Mg, and Al. More preferably, it is selected from the elements of Zr, Mg and Al.
  • the component (F) is not particularly limited in other parts, but the carrier may be one or more selected from inorganic ion exchangers such as hydrotalcites and acid salts of polyvalent metals. preferable. Among these, those supported by hydrotalcites are particularly preferable from the viewpoint of improving the storage characteristics of the composition of the present invention.
  • the amount of the element of the component (F) supported is preferably 0.1 to 10 meq / g, and particularly preferably 1 to 8 meq / g, as the total exchange amount of each ion. Within this range, the storage properties of the composition of the present invention can be improved more effectively.
  • the total amount of ion exchange is the amount of ion exchange in 0.1N hydrochloric acid or 0.1N sodium hydroxide aqueous solution.
  • component (F) commercially available products such as IXE-100, IXE-600, IXEPLAS-A1 and IXEPLAS-A2 (manufactured by Toagosei Co., Ltd.) can be used.
  • the amount of the component (F) added is 0.01 to 10 parts by mass, preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the total component (A). be. If the component (F) is less than 0.01 parts by mass, deterioration of the component (E) over time may not be suppressed, and if the component (F) exceeds 10 parts by mass, appropriate curability cannot be obtained. There is.
  • a (G) silane coupling agent can be used in the composition of the present invention, if necessary. By blending the component (G), the effect of lowering the viscosity of the first liquid and the second liquid can be obtained.
  • the (G) silane coupling agent include vinyl-based silane coupling agents, epoxy-based silane coupling agents, acrylic-based silane coupling agents, long-chain alkyl-based silane coupling agents, and the like, and one type alone or Two or more types can be used in combination as appropriate. Among them, a long-chain alkyl-based silane coupling agent is preferable, and decyltrimethoxysilane is preferable.
  • the component (G) when the component (G) is used, it is preferable to prepare a heat-treated mixture at a temperature of 70 ° C. or higher together with the above-mentioned components (A), (C) or (A) to (C), but (C). ) Ingredients can also be pre-treated with (G) ingredients.
  • the law can be adopted.
  • Stirring is performed so that the spherical aluminum oxide powder is not destroyed.
  • the in-system temperature or the drying temperature after the treatment in the dry method is appropriately determined in a region where the surface treatment agent does not volatilize or decompose, depending on the type of the surface treatment agent, and is 80 to 180 ° C.
  • the amount used is preferably 0.1 to 5 parts by mass, more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the total of the component (C). If it is 0.1 part by mass or more, the effect of lowering the viscosity can be sufficiently obtained, and if it is 5 parts by mass or less, the effect suitable for the amount used can be obtained.
  • the component (G) When the component (G) is used, it is used for both the first liquid and the second liquid, and the ratio of the (G) component used for the first liquid and the second liquid is not particularly limited. For example, the same amount can be blended in the first liquid and the second liquid.
  • the composition of the present invention contains (H) at least one hydrolyzable silyl group represented by the following general formula (4) in one molecule, if necessary, and has a viscosity of 0.01 at 25 ° C.
  • Organopolysiloxanes of up to 30 Pa ⁇ s can be used.
  • the effect of lowering the viscosity of the first liquid and the second liquid can be obtained.
  • R 4 is an independently unsubstituted or substituted monovalent hydrocarbon group
  • R 5 is an independently alkyl group, alkoxyalkyl group, alkenyl group or acyl group
  • g is an integer of 5 to 100.
  • h is an integer of 1 to 3.
  • R4 is a monovalent hydrocarbon group independently unsubstituted or substituted, preferably having 1 to 10 carbon atoms, more preferably 1 to 6 and even more preferably 1 to 3.
  • Examples include a linear alkyl group, a branched chain alkyl group, a cyclic alkyl group, an alkenyl group, an aryl group, an aralkyl group, and an alkyl halide group.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, a decyl group and the like.
  • Examples of the branched-chain alkyl group include an isopropyl group, an isobutyl group, a tert-butyl group, a 2-ethylhexyl group and the like.
  • Examples of the cyclic alkyl group include a cyclopentyl group and a cyclohexyl group.
  • Examples of the alkenyl group include a vinyl group and an allyl group.
  • Examples of the aryl group include a phenyl group and a tolyl group.
  • Examples of the aralkyl group include a 2-phenylethyl group and a 2-methyl-2-phenylethyl group.
  • alkyl halide group examples include a 3,3,3-trifluoropropyl group, a 2- (nonafluorobutyl) ethyl group, a 2- (heptadecafluorooctyl) ethyl group and the like.
  • R4 a methyl group and a phenyl group are preferable.
  • R5 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group.
  • the alkyl group include a linear alkyl group, a branched chain alkyl group, and a cyclic alkyl group similar to those exemplified in R4 .
  • the alkoxyalkyl group include a methoxyethyl group and a methoxypropyl group, and those having 2 to 10 carbon atoms are preferable.
  • Examples of the alkenyl group include the same groups as those exemplified in R above, and those having 2 to 8 carbon atoms are preferable.
  • acyl group examples include an acetyl group and an octanoyl group, and those having 2 to 10 carbon atoms are preferable.
  • R 5 is preferably an alkyl group, and particularly preferably a methyl group or an ethyl group.
  • g is an integer of 5 to 100, preferably an integer of 8 to 50, and h is an integer of 1 to 3, preferably 3.
  • Suitable specific examples of the organopolysiloxane of the component (H) include the following. (In the formula, Me is a methyl group. The same applies hereinafter.)
  • the viscosity of the organopolysiloxane of the component (H) at 25 ° C. is usually 0.01 to 30 Pa ⁇ s, preferably 0.01 to 10 Pa ⁇ s.
  • the viscosity is 0.01 Pa ⁇ s or more, oil bleeding of the component (H) is less likely to occur from the silicone composition.
  • the viscosity is 30 Pa ⁇ s or less, the obtained silicone composition has excellent fluidity and good coating workability.
  • the blending amount is preferably 5 to 900 parts by mass, more preferably 10 to 900 parts by mass, and even more preferably 15 to 700 parts by mass with respect to 100 parts by mass of the total of the component (A). If the blending amount of the component (H) is 5 parts by mass or more, the effect of lowering the viscosity is sufficiently obtained, and if it is 900 parts by mass or less, oil bleeding of the component (H) may occur from the silicone composition. There is no.
  • the component (H) When the component (H) is used, it is used for both the first liquid and the second liquid, and the ratio of the (H) component used for the first liquid and the second liquid is not particularly limited. For example, the same amount can be blended in the first liquid and the second liquid.
  • the component (H) When the component (H) is blended, the component (H) is blended together with the above-mentioned components (A), (C) or (A) to (C), and heat-treated at a temperature of 70 ° C. or higher. It is preferable to add the component (E), the component (F), or the component (D) after the heat-treated mixture is cooled.
  • composition of the present invention various additives known per se can be blended in addition to the above-mentioned components (A) to (H) as other blending agents.
  • reaction control agents for adjusting the curing rate and storage stability specifically acetylene alcohols such as triallyl isocyanate alkyl maleate and ethynylcyclohexanol, and their silanes, siloxane modified products; hydroperoxide, tetra.
  • Methylethylenediamine, benzotriazole and the like, ferrous oxide as a colorant, ferric oxide and the like alone or in combination, and fumed silica as a thixo-imparting agent can be blended.
  • the blending amount of these is preferably 0.01 to 100,000 ppm in terms of mass per composition.
  • the composition of the present invention contains the above-mentioned components (A) to (F) and, if necessary, the above-mentioned (G) and (H) components and other components, and is composed of a first liquid and a second liquid. It is a conductive two-component addition curing type silicone composition.
  • the first liquid contains the components (A) and (C), and if necessary, a heat-treated mixture of the components (G) and (H) having a temperature of 70 ° C. or higher, and the components (E) and (F).
  • the second liquid does not contain the components (B) and (D), and the temperature of the components (A), (B), (C) and, if necessary, the components (G) and (H) is 70 ° C. It contains the above heat-treated mixture, the component (D), and if necessary, other additives, and does not contain the components (E) and (F).
  • the first liquid contains the above-mentioned components (A) and (C), and if necessary, a heat-treated mixture of the above-mentioned components (G) and (H) having a temperature of 70 ° C. or higher, and the above-mentioned components (E) and (F). Moreover, it does not contain the above-mentioned components (B) and (D).
  • the above-mentioned components (A) and (C) and, if necessary, the components (G) and (H) are 70 ° C. or higher, preferably 100 to 200 ° C., more preferably 100 to 170 ° C., still more preferable. Is mixed at 100 to 160 ° C., particularly preferably 100 to 150 ° C. for 60 minutes or longer.
  • the upper limit of the heat treatment time is not particularly limited, but the heat treatment is preferably performed for 60 to 240 minutes, more preferably 60 to 180 minutes, and particularly preferably 60 to 120 minutes.
  • the heat treatment temperature is less than 70 ° C., the surface treatment of the component (C) by the component (A) may be insufficient.
  • the heat treatment temperature is 200 ° C. or lower, the components (A), (G) and (H) are not decomposed. Further, if the heat treatment time is sufficiently long, the surface treatment of the component (C) by the component (A) is sufficient.
  • the heat-treated mixture obtained above by mixing the components (A) and (C) and, if necessary, the components (G) and (H) and heating at 70 ° C. or higher is preferably 0 to 50 ° C., more preferably.
  • the above components (E) and (F) are added to the mixture cooled to room temperature (1 to 25 ° C.) and mixed uniformly.
  • the mixing condition of the heat-treated mixture and the components (E) and (F) is about 5 to 30 minutes at room temperature (1 to 25 ° C.), and the first liquid can be obtained by the above method. ..
  • the second liquid contains the above-mentioned (A), (B), (C) component, and if necessary, a heat-treated mixture having a temperature of 70 ° C. or higher for the (G) and (H) components, the above-mentioned component (D), and if necessary. It contains other additives and does not contain the above-mentioned components (E) and (F).
  • the above (A), (B), (C) components and, if necessary, the (G) and (H) components are prepared at 70 ° C. or higher, preferably 100 to 200 ° C., more preferably 100 to 170. Mix at ° C., more preferably 100 to 160 ° C., particularly preferably 100 to 150 ° C. for 60 minutes or longer.
  • the upper limit of the heat treatment time is not particularly limited, but the heat treatment is preferably performed for 60 to 240 minutes, more preferably 60 to 180 minutes, and particularly preferably 60 to 120 minutes.
  • the hydrogen atom bonded to the silicon atom in the component (B) and the reactive group such as the Al-OH group and the residual inorganic acid in the component (C) can reduce the storage stability.
  • the progress of the reaction with the reactive substance is slowed down.
  • the heat treatment temperature is 200 ° C. or lower, the polymer itself of the component (A) and the component (B) does not deteriorate.
  • the heat treatment time is sufficiently long, the storage stability of the reactive groups such as the hydrogen atom bonded to the silicon atom in the component (B) and the Al—OH group in the component (C) and the residual inorganic acid is lowered.
  • the reaction with the reactive group or the reactive substance is sufficiently advanced, and the effect of improving the storage stability is sufficient.
  • a heat-treated mixture obtained by mixing the components (A), (B) and (C) obtained above, and optionally the components (G) and (H) and heating at 70 ° C. or higher is preferably 0 to 50 ° C.
  • the above-mentioned component (D) and, if necessary, other additives are added to the mixture cooled to room temperature (1 to 25 ° C.), and the mixture is uniformly mixed.
  • the mixing condition of the heat-treated mixture, the component (D) and, if necessary, other additives is about 5 to 30 minutes at room temperature (1 to 25 ° C.), and the second liquid is obtained by the above method. be able to.
  • a known mixer such as a static mixer, a planetary mixer, or a paddle mixer can be used.
  • the thermal conductivity of the first liquid and the second liquid is 2.0 to 7.0 W / m ⁇ K, respectively, in the hot disk method compliant with ISO 22007-2, preferably 2. It is 2 to 7.0 W / m ⁇ K. If the thermal conductivity is too low, the heat dissipation performance of the heat-generating electronic component may be insufficient.
  • the thermal conductivity can be achieved in the above range by setting the blending amount of the component (C) within the above range.
  • the viscosities of the first liquid and the second liquid at 25 ° C. are 30 to 800 Pa. It is s, preferably 30 to 700 Pa ⁇ s. If the viscosity is too low, the shape retention of the present composition may be insufficient, and if it is too high, workability may be difficult.
  • the viscosity can be set within the above range by setting the blending amount of the component (C) within the above range.
  • the difference in viscosity between the first liquid and the second liquid is small, they can be uniformly mixed by a static mixer such as a static mixer.
  • a static mixer such as a static mixer.
  • the initial (preparation) viscosity difference between the first liquid and the second liquid is the first for the viscosity at 25 ° C.
  • the viscosity of the liquid it is preferably ⁇ 0 to 80%, particularly ⁇ 0 to 50%.
  • the mixing ratio of the first liquid and the second liquid is almost the same mass ratio, but specifically, the first liquid and the second liquid are 1: 0.5 to 1: 2, especially 1: 0.75 to 1: 1.25, and even 1: 0.9 to 1: 1.1, especially 1: 0.95 to 1: 1.05. It is desirable to mix in a mass ratio of about.
  • the mixing device for the first liquid and the second liquid is not limited to a static mixer such as a static mixer, but is a known mixing of a planetary mixer, a paddle mixer and the like. It may be a machine.
  • the curing conditions of the composition of the present invention are not particularly limited and may be the same as the curing conditions of the known addition reaction curing type silicone composition. good.
  • the curing conditions for heating can be 40 to 180 ° C. for 1 to 60 minutes.
  • the obtained cured product of the composition of the present invention is preferably in the range of 5 to 95, particularly 10 to 90 in the Shore OO hardness tester specified in ASTM D 2240-05.
  • b is 1.7 to 2.2, and a + b is a positive number satisfying 1.9 to 2.4.
  • Organopolysiloxane having at least two alkenyl groups bonded to silicon atoms in one molecule and (C) aluminum oxide powder heated and extracted with pure water at 120 ° C. for 48 hours, and the aqueous layer is ion chromatographed.
  • a mixture containing aluminum oxide having an Na + ion amount of 100 ppm or less as measured by chromatography is heat-treated at a temperature of 70 ° C. or higher, and the component (C) is surface-treated with a part of the component (A).
  • c + d is a positive number satisfying 0.8 to 2.5.
  • a mixture containing aluminum oxide having an amount of Na + ions of 100 ppm or less as measured by ion chromatography is heat-treated at a temperature of 70 ° C. or higher, and the component (C) is surface-treated with a part of the component (B).
  • the first liquid does not contain the components (B) and (D), and the second liquid does not contain the components (E) and (F).
  • the total of the components (A) is 100 parts by mass
  • the component (B) is a silicon atom-bonded hydrogen atom (SiH group) in the component (B) with respect to one alkenyl group in the component (A).
  • the amount is 0.1 to 2
  • the total of the components (C) is 1,000 to 7,000 parts by mass
  • the component (D) is the component (D) with respect to one alkenyl group in the component (A).
  • the amount of silicon atom-bonded hydrogen atoms (SiH groups) inside is 0.01 to 3
  • the component (E) is 1 to 200 ppm in terms of platinum group metal mass with respect to the component (A)
  • the component (F) is 0. 1.01 to 10 parts by mass
  • the thermal viscosities of the obtained first liquid and the second liquid are set to 2.0 to 7.0 W / m ⁇ K in the ISO 22007-2 compliant hot disk method, and the obtained first liquid and the second liquid are obtained.
  • a thermally conductive two-component addition-curable silicone composition having a viscosity at 25 ° C. of 30 to 800 Pa ⁇ s at rotor A with a spiral viscometer and a rotation speed of 10 rpm (slip speed 6 (1 / sec)). Provide a manufacturing method.
  • thermoly conductive two-component addition-curable silicone which is a cured product of the composition, can be suitably used for protecting electrical and electronic parts and circuit boards on which they are mounted, and thus has excellent stress relaxation characteristics and thermal conductivity. Can exert sex.
  • thermal conductive two-component addition curing in which the total amount of SiH groups in the component (B) and the component (D) is 0.11 to 5 with respect to one alkenyl group in the component (A). It is preferable that it is a method for producing a mold silicone composition.
  • the obtained cured product has sufficient hardness and becomes a stable silicone cured product, and does not become too hard and brittle.
  • the mixture to be heat-treated in the first liquid and the mixture to be heat-treated in the second liquid are further mixed with the silane coupling agent (G) and / or the above-mentioned organoxane having a viscosity at 25 ° C. of 0.01 to 30 Pa ⁇ s.
  • G silane coupling agent
  • organoxane having a viscosity at 25 ° C. of 0.01 to 30 Pa ⁇ s.
  • a method for producing a heat-conducting two-component addition-curable silicone composition in which polysiloxane (H) is mixed and heat-treated is preferable.
  • Vi represents a vinyl group.
  • Example 1 In a 5L planetary mixer manufactured by Inoue Seisakusho Co., Ltd., (A) 55.2 parts by mass of dimethylvinylsiloxy group-sealed dimethylpolysiloxane at both ends of the molecular chain having a viscosity of 600 mPa ⁇ s, (H) is shown by the following general formula (6). Then, 9 parts by mass of organopolysiloxane having a viscosity at 25 ° C. of 30 mPa ⁇ s, (C) aluminum oxide powder was heat-extracted with pure water at 120 ° C. for 48 hours, and the aqueous layer was measured by ion chromatography.
  • Example 2 Heat conduction in the same manner except that the double ion exchange type IXEPLAS-A1 (manufactured by Toagosei Co., Ltd.) of Example 1 was changed to 1.00 parts by mass of the anion exchange type trap agent IXE500 (manufactured by Toagosei Co., Ltd.). A sex-additionally curable silicone composition 3 (first liquid / second liquid) was obtained.
  • SiH group / total SiVi group in dimethylpolysiloxane sealed dimethylvinyl double-ended dimethylvinyl group 0.79, total SiH group in polysiloxane of formulas (5) and (7) / dimethylvinyl at both ends of molecular chain
  • the SiVi group (0.9) in the siloxy group-sealed dimethylpolysiloxane was uniformly mixed at room temperature (25 ° C.) for 20 minutes to obtain a heat conductive addition-curable silicone composition 4 (second liquid).
  • the first liquid of Example 1 was used as the heat conductive addition-curable silicone composition 4 (first liquid) without any modification.
  • thermoly conductive addition-curable silicone composition 5 (first liquid / second liquid) was obtained in the same manner except that the heat treatment temperature described in Example 1 was set to 50 ° C.
  • Thermally conductive add-curable silicone composition 6 (first liquid) except that the amount of Na + ion measured in 1 was 103 ppm and the aluminum oxide was replaced with crushed aluminum oxide D having an average particle diameter of 1.0 ⁇ m. / Second solution) was obtained.
  • Example 2 In a 5L planetary mixer manufactured by Inoue Seisakusho Co., Ltd., (A) 57.2 parts by mass of dimethylvinylsiloxy group-sealed dimethylpolysiloxane at both ends of the molecular chain having a viscosity of 400 mPa ⁇ s, (H) is shown by the above general formula (6). Then, 117 parts by mass of organopolysiloxane having a viscosity at 25 ° C. of 30 mPa ⁇ s, (C) aluminum oxide powder was heat-extracted with pure water at 120 ° C. for 48 hours, and the aqueous layer was measured by ion chromatography.
  • the viscosity at 25 ° C. is 17 mPa ⁇ s.
  • Example 7 Heat conduction in the same manner except that the double ion exchange type IXEPLAS-A1 (manufactured by Toagosei Co., Ltd.) of Example 2 was changed to 1.00 parts by mass of the anion exchange type trap agent IXE500 (manufactured by Toagosei Co., Ltd.). A sex-additionally curable silicone composition 9 (first liquid / second liquid) was obtained.
  • SiH group / total SiVi group in dimethylpolysiloxane sealed dimethylvinyl double-ended dimethylvinyl group 0.85, total SiH group in polysiloxane of formulas (5) and (7) / dimethylvinyl at both ends of molecular chain
  • the SiVi group (1.0) in the siloxy group-sealed dimethylpolysiloxane was uniformly mixed at room temperature (25 ° C.) for 20 minutes to obtain a heat conductive addition-curable silicone composition 10 (second liquid).
  • the first liquid of Example 2 was used as the heat conductive addition-curable silicone composition 10 (first liquid) without any modification.
  • thermoly conductive addition-curable silicone composition 11 (first liquid / second liquid) was obtained in the same manner except that the heat treatment temperature described in Example 2 was set to 50 ° C.
  • Thermally conductive add-curable silicone composition 12 (first liquid) except that the amount of Na + ion measured in 1 was 103 ppm and the aluminum oxide was replaced with crushed aluminum oxide D having an average particle diameter of 1.0 ⁇ m. / Second solution) was obtained.
  • the viscosity of the thermally conductive addition-curable silicone composition 1 (first liquid / second liquid) to 12 (first liquid / second liquid) described in the above Examples and Comparative Examples is a spiral viscometer: Malcolm viscometer. Measured in a 25 ° C environment using (type PC-10AA, rotation speed 10 rpm), the thermal conductivity is a silicone composition at 25 ° C using a hot disk method thermophysical property measuring device TPS 2500S manufactured by Kyoto Denshi Kogyo Co., Ltd. The thermal conductivity of the object before curing was measured (ISO 22007-2 compliant hot disk method).
  • the first liquid and the second liquid of each composition are made uniform at a mass ratio of 1: 1 at room temperature (25). After mixing and discharging at (° C), the mixture is sufficiently vacuum defoamed and then poured into a molding mold having a curing thickness of 6 mm, and cured at 25 ° C for 24 hours to obtain a cured product, and its hardness (hardness) is determined by ASTM D 2240-. It was measured by a Shore OO hardness tester specified in 05. Further, after leaving the first liquid and the second liquid of each of these compositions in a constant temperature bath at 25 ° C. for 6 months, the viscosity, thermal conductivity, and hardness were measured in the same manner as above, and the results compared with the initial solution were obtained. It is shown in Table 1.
  • the compositions of Examples 1 and 2 of the present invention have no change in viscosity or thermal conductivity even after long-term storage (25 ° C., 6 months), and the obtained cured product.
  • No significant change in viscosity or thermal conductivity was observed in the compositions of Comparative Examples 1 to 10 after long-term storage, but the hardness of the obtained cured product was initially high. It can be seen that the change is 10 points or more. From this, it can be seen that since Comparative Examples 1 and 6 do not contain an ion trapping agent, the ion trapping agent is necessary for sufficient curing even after long-term storage.
  • Comparative Examples 2 and 7 an anion-exchange type ion trapping agent is contained, and it can be seen from this that a non-anion-exchange type ion trapping agent is required. Further, from Comparative Examples 3 and 8, it can be seen that it is preferable to heat-treat and mix the component (B) with the components (A) and (C) as the second liquid. Further, from Comparative Examples 4 and 9, it can be seen that it is preferable that the heat treatment temperature is 70 ° C. or higher after mixing the component (A), the component (B), and the component (C). It is considered that these are because the surface of the component (C) is not treated with the component (A) and the component (B).
  • the amount of Na + ion defined by the component (C) is preferably 100 ppm or less. Therefore, according to the present invention, a thermally conductive two-component addition-curable silicone composition having long-term storage stability and a cured product thereof can be obtained.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any of the above-described embodiments having substantially the same configuration as the technical idea described in the claims of the present invention and having the same effect and effect is the present invention. Is included in the technical scope of.
  • the heat-conducting silicone cured product obtained by curing the heat-conducting two-component addition-curable silicone composition obtained by the present invention is not affected by the heat-conducting filler even after long-term storage. Since stable hardness can be maintained, it is expected that reliability will be improved in heat dissipation and protection applications of electronic components such as power devices, transistors, psyllistas, and CPUs (central processing devices).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、(A)アルケニル基を2個以上有するオルガノポリシロキサン、(C)Na+イオン量が100ppm以下の酸化アルミニウム、を含む加熱処理混合物と、(E)白金族金属触媒、(F)陽イオン交換、及び/又は両イオン交換型のイオントラップ剤、とを含有する第1液と、(A)アルケニル基を2個以上有するオルガノポリシロキサン、(B)SiH基を3個以上有するオルガノハイドロジェンポリシロキサン、(C)Na+イオン量が100ppm以下の酸化アルミニウム、を含む加熱処理混合物と、(D)SiH基を2個有するオルガノハイドロジェンポリシロキサン、とを含有する第2液からなる熱伝導性2液付加硬化型シリコーン組成物である。これにより電気・電子部品及びこれらを搭載した回路基板を含むモジュール内に塗布可能で、硬化後優れた応力緩和特性と熱伝導性を発揮する熱伝導性2液付加硬化型シリコーン組成物及びその製造方法が提供される。

Description

熱伝導性2液付加硬化型シリコーン組成物及びその製造方法
 本発明は、熱伝導性に優れた熱伝導性2液付加硬化型シリコーン組成物及びその製造方法に関する。
 近年では、電子部品回路の高集積化、高電圧化に伴い、IC、回路から発生する熱量は増大しており、熱応力を緩和する目的で熱伝導性シリコーン組成物が使用されている。
 熱応力の緩和目的として、熱伝導性の良好な充填剤を使用すればよいことが知られているが、このような充填剤としては、シリカ粉末、酸化アルミニウム粉末、炭化珪素粉末、窒化珪素粉末、窒化アルミニウム粉末、酸化マグネシウム粉末、ダイヤモンド粉末、鉄、ステンレススチール、銅等の金属粉末、並びにカーボン粉末等が知られている。
 しかしながら、上記充填剤のうち、金属粉末、カーボン粉末は電気伝導性があり、電気絶縁を目的とする熱伝導性シリコーン組成物に使用することはできない。炭化珪素粉末、ダイヤモンド粉末はいずれも硬度が高い材料であり、これらの粉末により充填された基板内の配線や素子が摩耗、切断するおそれがある。窒化珪素粉末、窒化アルミニウム粉末、酸化マグネシウム粉末等は電気絶縁性の観点から使用可能であるが、いずれも加水分解性を示すことから長期の保存安定性に欠けるため、これまでは熱伝導性2液付加硬化型シリコーン組成物の保存性確保が困難であった。
 上記のような観点から、実際に使用可能な充填剤としては、シリカ粉末、酸化アルミニウム粉末が挙げられるが、シリカ粉末は熱伝導性が十分でなく、高い熱伝導性を与えようとすると、シリコーン組成物の粘度等の作業性が大幅に低下する。また、酸化アルミニウム粉末を使用した場合、アルミナ表面に残存するAl-OH基の影響により、珪素原子に結合した水素原子と反応して脱水素反応を起こすことが知られており、低架橋密度に設定した低硬度材料では、脱水素反応の影響が無視できない。その対策として、シリルケテンアセタール等で処理した酸化アルミニウムを使用すること(特許文献1)や、酸化アルミニウムのpHを規定したシリコーンゲル組成物の提案がなされている(特許文献2)。
 しかしながら、前記シリルケテンアセタールによる表面処理酸化アルミニウムでは、熱経時での硬さ変化が懸念され、応力緩和を主目的とする環境での使用が困難であった。また、前記pHを規定した酸化アルミニウムでは無機酸の処理剤を使用しており、残存する無機酸により経時での脱水素反応が発生し、経時での硬さ変化を抑制することが困難であった。
 そのため、流動性と長期保存性に優れ、硬化した後は優れた応力緩和特性と共に、経時における硬さ変化が少ない熱伝導性シリコーンゲル組成物が提案されているが、具体的な熱伝導率や熱伝導性2液付加硬化型シリコーン組成物に関しての記述がなく、また規定された酸化アルミニウムの煮沸抽出後のNaイオン量が多すぎることから、熱伝導率が2.0W/m・K以上となる場合は不十分であった(特許文献3)。
特開平05-001237号公報 特開平11-049959号公報 特開2011-122084号公報
 そこで、特に電子部品用放熱部材として使用した際に、パワーデバイス、トランジスタ、サイリスタ、CPU(中央処理装置)等の発熱性電子部品を損傷させることなく、電子機器に組み込むことができる、応力緩和と絶縁性に優れた熱伝導性シリコーン硬化物を与える熱伝導性2液付加硬化型シリコーン組成物及びその製造方法が求められていた。
 本発明は、上記事情に鑑みなされたもので、電気・電子部品及びこれらを搭載した回路基板を含むモジュール内に塗布可能で、かつ硬化後、優れた応力緩和特性と熱伝導性を発揮することができる熱伝導性2液付加硬化型シリコーン組成物及びその製造方法を提供することを目的とする。
 上記課題を解決するために、本発明では、
 熱伝導性2液付加硬化型シリコーン組成物であって、
(A)下記平均組成式(1)
  R SiO(4-a-b)/2   (1)
(式中、Rは独立にアルケニル基であり、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、aは0.0001~0.2、bは1.7~2.2で、かつa+bが1.9~2.4を満足する正数である。)
で表され、一分子中に珪素原子に結合したアルケニル基を少なくとも2個有するオルガノポリシロキサン、及び
(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が100ppm以下の酸化アルミニウム
を含み、かつ前記(C)成分が前記(A)成分の一部で表面処理されたものである加熱処理混合物と、
(E)白金族金属触媒、
(F)陽イオン交換、及び/又は両イオン交換型のイオントラップ剤であり、かつZr、Bi、Sb、Mg、Alから選択される少なくとも1種の元素が担持されたイオントラップ剤
とを含有する第1液と、
(A)下記平均組成式(1)
  R SiO(4-a-b)/2   (1)
(式中、Rは独立にアルケニル基であり、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、aは0.0001~0.2、bは1.7~2.2で、かつa+bが1.9~2.4を満足する正数である。)
で表され、一分子中に珪素原子に結合したアルケニル基を少なくとも2個有するオルガノポリシロキサン、
(B)下記平均組成式(2)
  R SiO(4-c-d)/2   (2)
(式中、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、cは0.7~2.2、dは0.001~0.5で、かつc+dが0.8~2.5を満足する正数である。)
で表され、一分子中に珪素原子に結合した水素原子を少なくとも3個有するオルガノハイドロジェンポリシロキサン、及び
(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が100ppm以下の酸化アルミニウム
を含み、かつ前記(C)成分が前記(B)成分の一部で表面処理されたものである加熱処理混合物と、
(D)下記平均組成式(3)
  R SiO(4-e-f)/2   (3)
(式中、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、eは0.7~2.2、fは0.001~0.5で、かつe+fが0.8~2.5を満足する正数である。)
で表され、一分子中に珪素原子に結合した水素原子を2個有するオルガノハイドロジェンポリシロキサン
とを含有する第2液と
からなる組成物であって、
 前記第1液は前記(B)、(D)成分を含有せず、前記第2液は前記(E)、(F)成分を含有せず、
 前記組成物中、前記(A)成分の合計は100質量部であり、前記(B)成分が前記(A)成分中のアルケニル基1個に対し前記(B)成分中の珪素原子結合水素原子(SiH基)が0.1~2個となる量含まれ、前記(C)成分の合計は1,000~7,000質量部であり、前記(D)成分が前記(A)成分中のアルケニル基1個に対し前記(D)成分中の珪素原子結合水素原子(SiH基)が0.01~3個となる量含まれ、前記(E)成分が前記(A)成分に対して白金族金属質量で1~200ppm、前記(F)成分が0.01~10質量部含まれ、
 前記第1液及び前記第2液それぞれの熱伝導率がISO 22007-2準拠のホットディスク法において、2.0~7.0W/m・Kであり、前記第1液及び前記第2液それぞれの25℃における粘度がスパイラル粘度計によるローターA、回転数10rpm測定時(ずり速度6(1/sec))において、30~800Pa・sである熱伝導性2液付加硬化型シリコーン組成物を提供する。
 このような熱伝導性2液付加硬化型シリコーン組成物であると、保存性が向上し、経時での硬さ変化が抑えられる。該組成物の硬化物である熱伝導性2液付加硬化型シリコーンは、電気・電子部品及びこれらを搭載した回路基板を保護するために好適に使用し得ることから、優れた応力緩和特性と熱伝導性を発揮することができる。
 また、前記(B)成分と前記(D)成分中のSiH基の合計量が、前記(A)成分中のアルケニル基1個に対して0.11~5個の割合であることが好ましい。
 このようなものであれば、安定したシリコーン硬化物になるとともに、硬くなりすぎて脆くなったりすることがない。
 更に、前記第1液中の加熱処理混合物及び前記第2液中の加熱処理混合物が更にシランカップリング剤(G)及び/又は下記一般式(4)
Figure JPOXMLDOC01-appb-C000003
(式中、Rは独立に非置換又は置換の1価炭化水素基であり、Rは独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、gは5~100の整数であり、hは1~3の整数である。)
で表され、25℃における粘度が0.01~30Pa・sのオルガノポリシロキサン(H)を含有することが好ましい。
 このような熱伝導性2液付加硬化型シリコーン組成物であると、第1液と第2液を低粘度化できる。
 また、熱伝導性2液付加硬化型シリコーン組成物の製造方法であって、
(A)下記平均組成式(1)
  R SiO(4-a-b)/2   (1)
(式中、Rは独立にアルケニル基であり、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、aは0.0001~0.2、bは1.7~2.2で、かつa+bが1.9~2.4を満足する正数である。)
で表され、一分子中に珪素原子に結合したアルケニル基を少なくとも2個有するオルガノポリシロキサン、及び
(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が100ppm以下の酸化アルミニウム
を含む混合物に70℃以上の温度で加熱処理を行い、前記(C)成分を前記(A)成分の一部で表面処理をし、その後冷却した前記加熱処理混合物に、
(E)白金族金属触媒、
(F)陽イオン交換、及び/又は両イオン交換型のイオントラップ剤であり、かつZr、Bi、Sb、Mg、Alから選択される少なくとも1種の元素が担持されたイオントラップ剤
を添加混合することにより、第1液を調製する工程、及び
(A)下記平均組成式(1)
  R SiO(4-a-b)/2   (1)
(式中、Rは独立にアルケニル基であり、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、aは0.0001~0.2、bは1.7~2.2で、かつa+bが1.9~2.4を満足する正数である。)
で表され、一分子中に珪素原子に結合したアルケニル基を少なくとも2個有するオルガノポリシロキサン、
(B)下記平均組成式(2)
  R SiO(4-c-d)/2   (2)
(式中、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、cは0.7~2.2、dは0.001~0.5で、かつc+dが0.8~2.5を満足する正数である。)
で表され、一分子中に珪素原子に結合した水素原子を少なくとも3個有するオルガノハイドロジェンポリシロキサン、及び
(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が100ppm以下の酸化アルミニウム
を含む混合物に70℃以上の温度で加熱処理を行い、前記(C)成分を前記(B)成分の一部で表面処理をし、その後冷却した前記加熱処理混合物に、
(D)下記平均組成式(3)
  R SiO(4-e-f)/2   (3)
(式中、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、eは0.7~2.2、fは0.001~0.5で、かつe+fが0.8~2.5を満足する正数である。)
で表され、一分子中に珪素原子に結合した水素原子を2個有するオルガノハイドロジェンポリシロキサン
を添加混合することにより、第2液を調製する工程
によって前記第1液及び前記第2液からなる組成物を調製する熱伝導性2液付加硬化型シリコーン組成物の製造方法であって、
 前記第1液は前記(B)、(D)成分を、前記第2液は前記(E)、(F)成分を含有しないものとし、
 前記組成物中、前記(A)成分の合計は100質量部とし、前記(B)成分を前記(A)成分中のアルケニル基1個に対し前記(B)成分中の珪素原子結合水素原子(SiH基)が0.1~2個となる量とし、前記(C)成分の合計は1,000~7,000質量部とし、前記(D)成分を前記(A)成分中のアルケニル基1個に対し前記(D)成分中の珪素原子結合水素原子(SiH基)が0.01~3個となる量とし、前記(E)成分を前記(A)成分に対して白金族金属質量で1~200ppm、前記(F)成分を0.01~10質量部とし、
 得られる前記第1液及び前記第2液それぞれの熱伝導率をISO 22007-2準拠のホットディスク法において、2.0~7.0W/m・Kとし、得られる前記第1液及び前記第2液それぞれの25℃における粘度をスパイラル粘度計によるローターA、回転数10rpm測定時(ずり速度6(1/sec))において、30~800Pa・sとする熱伝導性2液付加硬化型シリコーン組成物の製造方法を提供する。
 このような2液付加硬化型シリコーンゴム組成物の製造方法であれば、保存性が向上し、経時での硬さ変化が抑えられる熱伝導性2液付加硬化型シリコーン組成物が得られ、該組成物の硬化物である熱伝導性付加硬化型シリコーンは、電気・電子部品及びこれらを搭載した回路基板を保護するために好適に使用し得ることから、優れた応力緩和特性と熱伝導性を発揮することができる。
 更に、前記(B)成分と前記(D)成分中のSiH基の合計量を、前記(A)成分中のアルケニル基1個に対して0.11~5個の割合とする熱伝導性2液付加硬化型シリコーン組成物の製造方法であることが好ましい。
 このような製造方法であれば、得られる硬化物が安定したシリコーン硬化物となり、硬くなりすぎて脆くなったりすることがない。
 また、前記第1液中の加熱処理を行う混合物、及び前記第2液の加熱処理を行う混合物に、更にシランカップリング剤(G)及び/又は下記一般式(4)
Figure JPOXMLDOC01-appb-C000004
(式中、Rは独立に非置換又は置換の1価炭化水素基であり、Rは独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、gは5~100の整数であり、hは1~3の整数である。)
で表され、25℃における粘度が0.01~30Pa・sのオルガノポリシロキサン(H)を混合して加熱処理を行う熱伝導性2液付加硬化型シリコーン組成物の製造方法であることが好ましい。
 このような熱伝導性2液付加硬化型シリコーンゴム組成物の製造方法であれば、第1液と第2液が低粘度化した熱伝導性2液付加硬化型シリコーン組成物が得られる。
 本発明によれば、保存性が向上し、経時での硬さ変化が抑えられる熱伝導性2液付加硬化型シリコーン組成物が得られ、該組成物の硬化物である熱伝導性シリコーンは、電気・電子部品及びこれらを搭載した回路基板を保護するために好適に使用し得ることから、優れた応力緩和特性と熱伝導性を発揮することができる。
 本発明者らは、上記目的を達成するため鋭意検討した結果、熱伝導性充填剤として、120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が100ppm以下の酸化アルミニウムと、アルケニル基含有オルガノポリシロキサンとを70℃以上の温度で加熱処理混合した後、該混合物に、硬化触媒と陽イオン交換、及び/又は両イオン交換型のイオントラップ剤を添加する第1液と、熱伝導性充填剤として、120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が100ppm以下の酸化アルミニウムと、アルケニル基含有オルガノポリシロキサンと、特定構造のオルガノハイドロジェンポリシロキサンとを同時に70℃以上の温度で加熱処理混合した後、該混合物に、特定構造のオルガノハイドロジェンポリシロキサンを添加する第2液とからなる熱伝導性2液付加硬化型シリコーン組成物を用いることにより保存性が向上し、経時での硬さ変化が抑えられることを見出し、本発明をなすに至った。
 すなわち、本発明は、
 熱伝導性2液付加硬化型シリコーン組成物であって、
(A)下記平均組成式(1)
  R SiO(4-a-b)/2   (1)
(式中、Rは独立にアルケニル基であり、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、aは0.0001~0.2、bは1.7~2.2で、かつa+bが1.9~2.4を満足する正数である。)
で表され、一分子中に珪素原子に結合したアルケニル基を少なくとも2個有するオルガノポリシロキサン、及び
(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が100ppm以下の酸化アルミニウム
を含み、かつ前記(C)成分が前記(A)成分の一部で表面処理されたものである加熱処理混合物と、
(E)白金族金属触媒、
(F)陽イオン交換、及び/又は両イオン交換型のイオントラップ剤であり、かつZr、Bi、Sb、Mg、Alから選択される少なくとも1種の元素が担持されたイオントラップ剤
とを含有する第1液と、
(A)下記平均組成式(1)
  R SiO(4-a-b)/2   (1)
(式中、Rは独立にアルケニル基であり、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、aは0.0001~0.2、bは1.7~2.2で、かつa+bが1.9~2.4を満足する正数である。)
で表され、一分子中に珪素原子に結合したアルケニル基を少なくとも2個有するオルガノポリシロキサン、
(B)下記平均組成式(2)
  R SiO(4-c-d)/2   (2)
(式中、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、cは0.7~2.2、dは0.001~0.5で、かつc+dが0.8~2.5を満足する正数である。)
で表され、一分子中に珪素原子に結合した水素原子を少なくとも3個有するオルガノハイドロジェンポリシロキサン、及び
(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が100ppm以下の酸化アルミニウム
を含み、かつ前記(C)成分が前記(B)成分の一部で表面処理されたものである加熱処理混合物と、
(D)下記平均組成式(3)
  R SiO(4-e-f)/2   (3)
(式中、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、eは0.7~2.2、fは0.001~0.5で、かつe+fが0.8~2.5を満足する正数である。)
で表され、一分子中に珪素原子に結合した水素原子を2個有するオルガノハイドロジェンポリシロキサン
とを含有する第2液と
からなる組成物であって、
 前記第1液は前記(B)、(D)成分を含有せず、前記第2液は前記(E)、(F)成分を含有せず、
 前記組成物中、前記(A)成分の合計は100質量部であり、前記(B)成分が前記(A)成分中のアルケニル基1個に対し前記(B)成分中の珪素原子結合水素原子(SiH基)が0.1~2個となる量含まれ、前記(C)成分の合計は1,000~7,000質量部であり、前記(D)成分が前記(A)成分中のアルケニル基1個に対し前記(D)成分中の珪素原子結合水素原子(SiH基)が0.01~3個となる量含まれ、前記(E)成分が前記(A)成分に対して白金族金属質量で1~200ppm、前記(F)成分が0.01~10質量部含まれ、
 前記第1液及び前記第2液それぞれの熱伝導率がISO 22007-2準拠のホットディスク法において、2.0~7.0W/m・Kであり、前記第1液及び前記第2液それぞれの25℃における粘度がスパイラル粘度計によるローターA、回転数10rpm測定時(ずり速度6(1/sec))において、30~800Pa・sである熱伝導性2液付加硬化型シリコーン組成物及びその製造方法である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
[(A)成分]
 本発明の組成物の(A)成分は、組成物の主剤(ベースポリマー)となる成分である。(A)成分は、下記平均組成式(1)で表され、一分子中に珪素原子に結合したアルケニル基(以下、「珪素原子結合アルケニル基」という)を少なくとも2個有するオルガノポリシロキサンである。前記珪素原子結合アルケニル基は、一分子中に少なくとも2個有するものであり、2~50個有することが好ましく、2~20個有することがより好ましい。これらの珪素原子結合アルケニル基は、分子鎖末端の珪素原子に結合していても、分子鎖非末端(即ち、分子鎖末端以外)の珪素原子に結合していても、あるいはそれらの組み合わせであってもよい。
  R SiO(4-a-b)/2   (1)
(式中、Rは独立にアルケニル基であり、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、aは0.0001~0.2、bは1.7~2.2で、かつa+bが1.9~2.4を満足する正数である。)
 上記式(1)中、Rは、通常、炭素原子数が2~6、好ましくは2~4のアルケニル基である。その具体例としては、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基等の低級アルケニル基が挙げられ、特にはビニル基が好ましい。
 Rは、通常、炭素原子数が1~10、好ましくは1~6の脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基等のアルキル基;フェニル基、トリル基等のアリール基;ベンジル基、フェニルエチル基等のアラルキル基;これらの基の水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子で置換された、クロロメチル基、3,3,3-トリフルオロプロピル基等が挙げられるが、合成の容易さ等の観点から、メチル基、フェニル基、3,3,3-トリフルオロプロピル基が好ましい。
 また、aは0.0001~0.2の正数であり、0.0005~0.1の正数であることが好ましく、bは1.7~2.2の正数であり、1.9~2.0の正数であることが好ましく、a+bは1.9~2.4を満足する正数であり、1.95~2.05を満足する正数であることが好ましい。
 (A)成分のオルガノポリシロキサンの分子構造は特に限定されず、直鎖状;分子鎖の一部に、RSiO3/2単位、RSiO3/2単位、SiO単位(式中、R及びRで表される基は、上記で定義したとおりである)等を含む分岐鎖状;環状;三次元網状(樹脂状)、及びこれらの組み合わせのいずれでもよいが、主鎖が基本的にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状のジオルガノポリシロキサンが特に好ましい。
 (A)成分のオルガノポリシロキサンの粘度は、好ましくは50~100,000mPa・sであり、より好ましくは100~10,000mPa・sである。この粘度が50~100,000mPa・sである場合には、得られる硬化物は、強度、流動性、作業性により優れたものとなる。なお、粘度は回転粘度計により測定した25℃における値である(以下、同じ)。
 以上の要件を満たす(A)成分のオルガノポリシロキサンとしては、例えば、下記一般式(1A):
Figure JPOXMLDOC01-appb-C000005
(式中、Rは、独立に非置換又は置換の1価炭化水素基であり、但しRの少なくとも2個はアルケニル基であり、iは20~2,000の整数である。)
で表されるものが挙げられる。
 この式(1A)中、Rで表される非置換又は置換の1価炭化水素基は、前記R(アルケニル基)、及びR(脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基)で定義したものと同じであり、その炭素原子数、具体例等も同じである。但しRの少なくとも2個、好ましくは2~50個、より好ましくは2~20個はアルケニル基である。また、iは、好ましくは40~1,200、より好ましくは50~600の整数である。
 上記式(1A)で表されるオルガノポリシロキサンの具体例としては、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖片末端トリメチルシロキシ基・片末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体等が挙げられる。
 (A)成分のオルガノポリシロキサンは、1種単独で用いても2種以上を併用してもよい。
 上述したアルケニル基を有するオルガノポリシロキサンは、それ自体公知のものであり、従来公知の方法で製造される。
 なお、(A)成分は、第1液、第2液の両方に用いるものであり、第1液と第2液に使用する(A)成分の割合は特に限定されないが、第1液と第2液との混合割合がほぼ同等の質量比となるように用いることが好ましい。
[(B)成分]
 本発明の組成物の(B)成分は、一分子中に珪素原子に結合した水素原子を少なくとも3個有するものであり、(C)成分である酸化アルミニウムの表面処理剤兼架橋剤として作用するものである。即ち、高温で熱処理する際に、(C)成分中の表面に残存したAl-OH基や無機酸の表面処理剤残渣と脱水素反応により一部が消費され、残存した珪素原子に結合した水素原子が(A)成分中のアルケニル基と付加反応するものであり、本発明に必須の成分である。
 (B)成分は、下記平均組成式(2)で表され、一分子中に珪素原子に結合した水素原子(以下、「珪素原子結合水素原子」ともいう)を少なくとも3個有するオルガノハイドロジェンポリシロキサンである。このオルガノハイドロジェンポリシロキサンが一分子中に有する珪素原子結合水素原子は、好ましくは3~100個、より好ましくは3~50個、特に好ましくは3~20個である。この珪素原子に結合した水素原子は分子鎖末端にあっても、分子鎖の途中にあっても、その両方にあってもよい。
  R SiO(4-c-d)/2   (2)
(式中、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、cは0.7~2.2、dは0.001~0.5で、かつc+dが0.8~2.5を満足する正数である。)
 上記式(2)中、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、その炭素原子数は、通常1~10、好ましくは1~6である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、へキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの基の水素原子の一部又は全部を、フッ素、塩素、臭素等のハロゲン原子で置換した3,3,3-トリフルオロプロピル基等が挙げられる。中でも好ましくはアルキル基、アリール基、3,3,3-トリフルオロプロピル基であり、より好ましくはメチル基、フェニル基、3,3,3-トリフルオロプロピル基である。
 また、cは0.7~2.2の正数であり、1.0~2.1の正数であることが好ましい。dは0.001~0.5の正数であり、0.005~0.1の正数であることが好ましい。c+dは0.8~2.5を満足する正数であり、1.0~2.5を満足する正数が好ましく、1.5~2.2を満足する正数であることがより好ましい。
 (B)成分のオルガノハイドロジェンポリシロキサンの一分子中の珪素原子の数(即ち、重合度)は、通常10~1,000個であるが、組成物の取扱作業性及び得られる硬化物の特性が良好となる点から、好ましくは20~500個、より好ましくは20~100個である。
 また、(B)成分のオルガノハイドロジェンポリシロキサンの分子構造は、上記要件を満たすものであれば特に限定されない。
 (B)成分のオルガノハイドロジェンポリシロキサンの粘度は、通常、1~10,000mPa・s、好ましくは3~2,000mPa・s、より好ましくは10~1,000mPa・sであり、室温(25℃)で液状のものが望ましい。
 上記式(2)で表されるオルガノハイドロジェンポリシロキサンとしては、例えば、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェン・ジメチルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェン・ジフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェン・ジメチルシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、(CHHSiO1/2単位と(CHSiO単位とCHSiO3/2単位からなる共重合体、(CHHSiO1/2単位と(CSiO単位と(CHSiO単位とCHSiO3/2単位からなる共重合体、(CH)(C)HSiO1/2単位と(CHSiO単位とCHSiO3/2単位からなる共重合体、(CHHSiO1/2単位と(CHSiO単位とCSiO3/2単位からなる共重合体、(CH)(CF)HSiO1/2単位と(CH)(CF)SiO単位とCHSiO3/2単位とからなる共重合体、(CH)(CF)HSiO1/2単位と(CH)(CF)SiO単位と(CHSiO単位とCHSiO3/2単位とからなる共重合体、(CHHSiO1/2単位と(CH)(CF)SiO単位とCHSiO3/2単位とからなる共重合体、(CHHSiO1/2単位と(CH)(CF)SiO単位と(CHSiO単位とCHSiO3/2単位とからなる共重合体、(CHHSiO1/2単位と(CH)(CF)SiO単位と(CHSiO単位と(CF)SiO3/2単位とからなる共重合体等が挙げられる。
 (B)成分のオルガノハイドロジェンポリシロキサンは、1種単独で用いても2種以上を併用してもよい。
 また、このオルガノハイドロジェンポリシロキサンは、従来公知の方法で合成される。
 (B)成分のオルガノハイドロジェンポリシロキサンの配合量は、(A)成分の合計中のアルケニル基1個に対し(B)成分中の珪素原子結合水素原子(SiH基)が0.1~2個となる量、好ましくは0.1~1.8個となる量、更に好ましくは0.1~1.5個となる量である。配合量が少なすぎると保存安定性向上効果が不十分となることがあり、配合量が多すぎると得られる熱伝導性シリコーン硬化物の物性が不安定となることがある。
[(C)成分]
 本発明の組成物の(C)成分は、120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が100ppm以下の酸化アルミニウムである。
 120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量は100ppm以下、好ましくはNaイオン量は80ppm以下、より好ましくは60ppm以下である。Naイオン量が100ppmを超えると、経時で(E)成分が失活する場合がある。Naイオン量の下限は0ppm以上とすることができる。
 ここで、本発明に用いる酸化アルミニウムのNaイオン量を上記範囲とするためには、市販の酸化アルミニウム粉末を水に分散させ、常温(1~25℃)、あるいは工程時間短縮のために、例えば60℃に加温して攪拌させることにより水洗することで、Naイオン量を調整することができる。
 酸化アルミニウム粉末は、レーザー回折法測定による平均粒子径が1~100μmのものが好ましく、より好ましくは1~80μmのものであり、更に粒子の形状として好ましくは破砕状粒子、丸み状を帯びた粒子、又は球状粒子であり、好ましくは破砕状粒子と球状粒子である。酸化アルミニウム粉末は、1種単独でも、平均粒子径が異なる2種類以上の複数種を併用してもよい。平均粒子径が1μm以上であれば、粒子同士の接触が十分であり、粒子間接触熱抵抗が増大せず熱伝導率が良好になる。また、平均粒子径が100μm以下であれば、シート表面の凹凸が十分に小さくなり界面熱抵抗が増大せず熱伝導率が良好になる。
(C)成分の熱伝導性充填剤の合計は、(A)成分の合計100質量部あたり1,000~7,000質量部、好ましくは1,000~6,900質量部、更に好ましくは1,000~6,700質量部である。配合量が上記範囲内であると、本発明の粘度、熱伝導率、保存性、経時での硬さ変化が抑制できる熱伝導性シリコーン硬化物を与える熱伝導性2液付加硬化型シリコーン組成物とすることができる。
 なお、(C)成分は、第1液、第2液の両方に用いるものであり、第1液と第2液に使用する(C)成分の割合は特に限定されないが、第1液と第2液との混合割合がほぼ同等の質量比となるように用いることが好ましい。
[(D)成分]
 本発明の組成物の(D)成分は、下記平均組成式(3)
  R SiO(4-e-f)/2   (3)
(式中、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、eは0.7~2.2、fは0.001~0.5で、かつe+fが0.8~2.5を満足する正数である。)
で表され、一分子中に珪素原子に結合した水素原子を2個有するオルガノハイドロジェンポリシロキサンである。
 上記式(3)中、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、その炭素原子数は、通常1~10、好ましくは1~6である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、へキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの基の水素原子の一部又は全部を、フッ素、塩素、臭素等のハロゲン原子で置換した3,3,3-トリフルオロプロピル基等が挙げられる。中でも好ましくはアルキル基、アリール基、3,3,3-トリフルオロプロピル基であり、より好ましくはメチル基、フェニル基、3,3,3-トリフルオロプロピル基である。
 また、eは0.7~2.2の正数であり、1.0~2.1の正数であることが好ましい。fは0.001~0.5の正数であり、0.005~0.1の正数であることが好ましい。e+fは0.8~2.5を満足する正数であり、1.0~2.5を満足する正数が好ましく、1.5~2.2を満足する正数であることがより好ましい。
 (D)成分のオルガノハイドロジェンポリシロキサンは、一分子中に珪素原子に結合した水素原子を2個有するものであるが、これは分子鎖末端にあっても、分子鎖の途中にあっても、その両方にそれぞれ1個ずつあってもよいが、好ましくは分子鎖末端である。
 (D)成分のオルガノハイドロジェンポリシロキサンの一分子中の珪素原子の数(即ち、重合度)は、通常10~1,000個であるが、組成物の取扱作業性及び得られる硬化物の特性が良好となる点から、好ましくは15~500個、より好ましくは18~100個である。
 また、(D)成分のオルガノハイドロジェンポリシロキサンの分子構造は、上記要件を満たすものであれば特に限定されない。
 (D)成分のオルガノハイドロジェンポリシロキサンの粘度は、通常、1~10,000mPa・s、好ましくは3~2,000mPa・s、より好ましくは10~1,000mPa・sであり、室温(25℃)で液状のものが望ましい。
 上記式(3)で表されるオルガノハイドロジェンポリシロキサンとしては、例えば、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、(CHHSiO1/2単位と(CHSiO単位とCHSiO3/2単位からなる共重合体、(CHHSiO1/2単位と(CSiO単位と(CHSiO単位とCHSiO3/2単位からなる共重合体、(CH)(C)HSiO1/2単位と(CHSiO単位とCHSiO3/2単位からなる共重合体、(CHHSiO1/2単位と(CHSiO単位とCSiO3/2単位からなる共重合体、(CH)(CF)HSiO1/2単位と(CH)(CF)SiO単位とCHSiO3/2単位とからなる共重合体、(CH)(CF)HSiO1/2単位と(CH)(CF)SiO単位と(CHSiO単位とCHSiO3/2単位とからなる共重合体、(CHHSiO1/2単位と(CH)(CF)SiO単位とCHSiO3/2単位とからなる共重合体、(CHHSiO1/2単位と(CH)(CF)SiO単位と(CHSiO単位とCHSiO3/2単位とからなる共重合体、(CHHSiO1/2単位と(CH)(CF)SiO単位と(CHSiO単位と(CF)SiO3/2単位とからなる共重合体等が挙げられる。
 (D)成分のオルガノハイドロジェンポリシロキサンは、1種単独で用いても2種以上を併用してもよい。
 また、このオルガノハイドロジェンポリシロキサンは、従来公知の方法で合成される。
 ここで、(D)成分は、一分子中に珪素原子に結合した水素原子(SiH基)を2個有するものであり、一分子中に珪素原子に結合した水素原子を少なくとも3個有する(B)成分とはこの点において相違するものである。また、(B)成分は(C)成分の表面処理剤としても使用されるのに対し、(D)成分は(A)成分中のアルケニル基と反応して、硬化物を得るための架橋剤としてのみ使用される。即ち、(D)成分はSiH基が2個のため、1個でも失活してしまうと三次元架橋しなくなってしまう。このため、本発明においては、第2液に配合する(D)成分が経時で劣化しないよう、上述した(B)成分で(C)成分を表面処理させるものである。
 そのため、(D)成分の使用量は、(A)成分の合計中のアルケニル基1個に対して(D)成分中のSiH基が0.01~3個、好ましくは0.05~2個、より好ましくは0.2~1.5個となる量である。(D)成分中のSiH基が(A)成分中のアルケニル基1個に対して0.01個未満であると軟らかくなりすぎて安定したシリコーン硬化物が得られないことがあり、(D)成分中のSiH基が(A)成分中のアルケニル基1個に対して3個を超えるとシリコーン硬化物が硬くなりすぎて脆くなる場合がある。
 本発明においては、上述した(B)成分と(D)成分中のSiH基の合計量が、(A)成分の合計中のアルケニル基1個に対して0.11~5個、特に0.25~4個の割合となるように用いることが好ましい。(B)成分と(D)成分中のSiH基の合計量が、(A)成分中のアルケニル基1個に対して0.11個以上であると軟らかくなりすぎず安定したシリコーン硬化物が得られ、(B)成分と(D)成分中のSiH基の合計量が、(A)成分中のアルケニル基1個に対して5個以下であれば、シリコーン硬化物が十分に柔軟性を持ち脆くならない。
[(E)成分]
 本発明の組成物の(E)成分は白金族金属触媒であり、(A)成分中のアルケニル基と(B)成分及び(D)成分中の珪素原子に結合した水素原子の付加反応を促進する触媒である。例えば、塩化白金酸、アルコール変性塩化白金酸、塩化白金酸とオレフィン類、アルデヒド類、ビニルシロキサン類、もしくはアセチレン化合物との配位化合物、テトラキス(トリフェニルホスフィン)パラジウム、クロロトリス(トリフェニルホスフィン)ロジウム等が使用されるが、好ましくは白金触媒であり、最も好適には塩化白金酸とビニルシロキサンの配位化合物が使用される。
 (E)成分の配合量は触媒量でよいが、通常(A)成分の合計に対して白金族金属の質量換算で1~200ppmであり、好ましくは2~100ppmである。(E)成分の配合量がこの範囲外であると、適切な硬化性が得られない。
[(F)成分]
 (F)成分は陽イオン交換、及び/又は両イオン交換型のイオントラップ剤であり、本発明の組成物における(C)成分中に含まれるNaイオンによる、(E)成分の経時劣化を抑制できる成分である。従って、陰イオン交換型のトラップ剤は本発明においては適さない。
 (F)成分は、Zr、Bi、Sb、Mg、Alから選択される少なくとも1種の元素が担持されていることが特徴であり、好ましくはZr、Bi、Mg、Alの元素から選択され、更に好ましくはZr、Mg、Alの元素から選択される。
 (F)成分は、その他の部分では特に限定されないが、その担体としては、例えばハイドロタルサイト類および多価金属酸性塩等の無機イオン交換体から選択される一種または二種以上であることが好ましい。これらの中でも、本発明の組成物の保存特性を向上させる観点から、ハイドロタルサイト類で担持されたものであることが特に好ましい。
 (F)成分の元素の担持量としては、各イオンの総交換量として、0.1~10meq/gであることが好ましく、1~8meq/gであることが特に好ましい。この範囲内であれば、本発明の組成物の保存特性をより効果的に向上させることができる。なお、イオンの総交換量とは、0.1N 塩酸中又は0.1N 水酸化ナトリウム水溶液中におけるイオン交換量である。
 (F)成分は、例えばIXE-100、IXE-600、IXEPLAS-A1、IXEPLAS-A2(東亞合成株式会社製)などの市販品を使用することができる。
 (F)成分の添加量は、(A)成分の合計100質量部に対して0.01~10質量部、好ましくは0.1~10質量部、更に好ましくは0.5~10質量部である。(F)成分が0.01質量部未満であると、(E)成分の経時劣化を抑制できない場合があり、(F)成分が10質量部を超えると、適切な硬化性が得られない場合がある。
[(G)成分]
 本発明の組成物には、必要に応じて(G)シランカップリング剤を用いることができる。(G)成分を配合することにより第1液と第2液を低粘度化させる効果が得られる。(G)シランカップリング剤としては、ビニル系シランカップリング剤、エポキシ系シランカップリング剤、アクリル系シランカップリング剤、並びに長鎖アルキル系シランカップリング剤等が挙げられ、1種単独で又は2種以上を適宜組み合わせて用いることができる。中でも、長鎖アルキル系シランカップリング剤が好ましく、デシルトリメトキシシランが好ましい。
 本発明において、(G)成分を用いる場合、上述した(A)、(C)成分又は(A)~(C)成分と共に70℃以上の温度で加熱処理混合物とすることが好ましいが、(C)成分を(G)成分にて事前に処理することもできる。この場合、(G)成分による(C)成分の表面処理方法としては、流体ノズルを用いた噴霧方式、せん断力のある攪拌方式、ボールミル、ミキサー等の乾式法、水系又は有機溶剤系等の湿式法を採用することができる。攪拌は、球状酸化アルミニウム粉末の破壊が起こらない程度にして行う。乾式法における系内温度又は処理後の乾燥温度は、表面処理剤の種類に応じ、表面処理剤が揮発や分解しない領域で適宜決定されるが、80~180℃である。
 (G)成分を用いる場合の使用量は、(C)成分の合計100質量部に対して0.1~5質量部であることが好ましく、1~5質量部であることがより好ましい。0.1質量部以上であれば低粘度化させる効果が十分に得られ、5質量部以下であれば使用量にあった効果が得られる。
 なお、(G)成分を用いる場合、第1液、第2液の両方に用いるものであり、第1液と第2液に使用する(G)成分の割合は特に限定されるものではないが、例えば第1液と第2液に同量配合することができる。
[(H)成分]
 本発明の組成物には、必要に応じて(H)下記一般式(4)で表される加水分解性シリル基を一分子中に少なくとも1個含有し、25℃での粘度が0.01~30Pa・sであるオルガノポリシロキサンを用いることができる。(H)成分を配合することにより第1液と第2液を低粘度化させる効果が得られる。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは独立に非置換又は置換の1価炭化水素基であり、Rは独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、gは5~100の整数であり、hは1~3の整数である。)
 上記式(4)中、Rは独立に非置換又は置換の、好ましくは炭素原子数1~10、より好ましくは1~6、更に好ましくは1~3の1価炭化水素基であり、その例としては、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基が挙げられる。直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基等が挙げられる。分岐鎖状アルキル基としては、例えば、イソプロピル基、イソブチル基、tert-ブチル基、2-エチルヘキシル基等が挙げられる。環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等が挙げられる。アルケニル基としては、例えば、ビニル基、アリル基等が挙げられる。アリール基としては、例えば、フェニル基、トリル基等が挙げられる。アラルキル基としては、例えば、2-フェニルエチル基、2-メチル-2-フェニルエチル基等が挙げられる。ハロゲン化アルキル基としては、例えば、3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、2-(ヘプタデカフルオロオクチル)エチル基等が挙げられる。Rとしては、メチル基、フェニル基が好ましい。
 上記式(4)中、Rは独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基である。アルキル基としては、例えば、Rにおいて例示したものと同様の直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基が挙げられる。アルコキシアルキル基としては、例えば、メトキシエチル基、メトキシプロピル基等が挙げられ、炭素原子数2~10のものが好ましい。アルケニル基としては、例えば、前述のRにおいて例示したものと同様のものが挙げられ、炭素原子数は2~8のものが好ましい。アシル基としては、例えば、アセチル基、オクタノイル基等が挙げられ、炭素原子数2~10のものが好ましい。Rはアルキル基であることが好ましく、特にはメチル基、エチル基であることが好ましい。
 また、gは5~100の整数、好ましくは8~50の整数であり、hは1~3の整数、好ましくは3である。
 (H)成分のオルガノポリシロキサンの好適な具体例としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000007
(式中、Meはメチル基である。以下、同じ。)
 (H)成分のオルガノポリシロキサンの25℃における粘度は、通常、0.01~30Pa・sであり、0.01~10Pa・sが好ましい。粘度が0.01Pa・s以上であれば、シリコーン組成物から(H)成分のオイルブリードが発生しにくくなる。粘度が30Pa・s以下であれば、得られるシリコーン組成物は流動性に優れ、塗布作業性が良好となる。
 (H)成分を用いる場合の配合量は、(A)成分の合計100質量部に対して5~900質量部が好ましく、10~900質量部がより好ましく、15~700質量部が更に好ましい。(H)成分の配合量が、5質量部以上であれば低粘度化させる効果は十分に得られ、900質量部以下であれば、シリコーン組成物から(H)成分のオイルブリードが発生する恐れがない。
 なお、(H)成分を用いる場合、第1液、第2液の両方に用いるものであり、第1液と第2液に使用する(H)成分の割合は特に限定されるものではないが、例えば第1液と第2液に同量配合することができる。
 なお、(H)成分を配合する場合、(H)成分は、上述した(A)、(C)成分又は(A)~(C)成分と共に配合して、70℃以上の温度で加熱処理を行い、冷却した加熱処理混合物とした後に、(E)成分、(F)成分、又は(D)成分を配合することが好ましい。
 本発明の組成物には、その他の配合剤として上述した(A)~(H)成分以外に、それ自体公知の種々の添加剤を配合することができる。
 例えば、硬化速度や保存安定性を調節するための反応制御剤、具体的にはトリアリルイソシアネートアルキルマレエート、エチニルシクロヘキサノール等のアセチレンアルコール及びこれらのシラン類、シロキサン変性物;ハイドロパーオキサイド、テトラメチルエチレンジアミン、ベンゾトリアゾール等、着色剤としての酸化第一鉄、酸化第二鉄等の単独又は組み合わせ、チクソ付与剤としてのフュームドシリカ等を配合することができる。これらの配合量は、それぞれ本組成物あたり、質量換算で0.01~100,000ppmであることが好ましい。
[熱伝導性2液付加硬化型シリコーン組成物]
 本発明の組成物は、上記(A)~(F)成分、及び必要に応じて上記(G)、(H)成分やその他の成分を含有する、第1液と第2液とからなる熱伝導性2液付加硬化型シリコーン組成物である。
 ここで、第1液は、(A)、(C)成分、及び必要により(G)、(H)成分の温度70℃以上の加熱処理混合物と、(E)、(F)成分を含有し、かつ(B)、(D)成分を含有しないものであり、第2液は、(A)、(B)、(C)成分、及び必要により(G)、(H)成分の温度70℃以上の加熱処理混合物と、(D)成分と、必要によりその他の添加剤を含有し、かつ(E)、(F)成分を含有しないものである。
[第1液]
 第1液は、上記(A)、(C)成分、及び必要により(G)、(H)成分の温度70℃以上の加熱処理混合物と、上記(E)、(F)成分を含有し、かつ上記(B)、(D)成分を含有しないものである。
 加熱処理混合物の調製は、上記(A)、(C)成分、及び必要により(G)、(H)成分を70℃以上、好ましくは100~200℃、より好ましくは100~170℃、更に好ましくは100~160℃、特に好ましくは100~150℃の加熱下で、好ましくは60分以上混合する。熱処理時間の上限は特に制限はないが、好ましくは60~240分、より好ましくは60~180分、特に好ましくは60~120分熱処理する。熱処理温度が70℃未満の場合、(A)成分による(C)成分の表面処理が不十分な場合がある。熱処理温度が200℃以下の場合、(A)、(G)、(H)成分が分解することがない。また、熱処理時間が十分に長ければ、(A)成分による(C)成分の表面処理が十分となる。
 上記で得られた(A)、(C)成分、及び必要により(G)、(H)成分を混合して70℃以上で加熱した加熱処理混合物を、好ましくは0~50℃、より好ましくは常温(1~25℃)に冷却したものに、上記(E)、(F)成分を添加し、均一に混合する。ここで、加熱処理混合物と(E)、(F)成分との混合条件は、常温(1~25℃)で5~30分間程度であり、上記の方法により、第1液を得ることができる。
[第2液]
 第2液は、上記(A)、(B)、(C)成分、及び必要により(G)、(H)成分の温度70℃以上の加熱処理混合物と、上記(D)成分と、必要によりその他の添加剤を含有し、かつ上記(E)、(F)成分を含有しないものである。
 加熱処理混合物の調製は、上記(A)、(B)、(C)成分、及び必要により(G)、(H)成分を70℃以上、好ましくは100~200℃、より好ましくは100~170℃、更に好ましくは100~160℃、特に好ましくは100~150℃の加熱下で、好ましくは60分以上混合する。熱処理時間の上限は特に制限はないが、好ましくは60~240分、より好ましくは60~180分、特に好ましくは60~120分熱処理する。熱処理温度が70℃未満の場合、(B)成分中の珪素原子に結合した水素原子と(C)成分中のAl-OH基や残存無機酸等の保存安定性を低下させ得る反応性基や反応性物質との反応の進行が遅くなる。熱処理温度が200℃以下であれば、(A)成分や(B)成分のポリマー自身の劣化が発生することがない。また、熱処理時間が十分に長ければ、(B)成分中の珪素原子に結合した水素原子と(C)成分中のAl-OH基等の反応性基や残存無機酸等の保存安定性を低下させる反応性基や反応性物質との反応が十分に進行し、保存安定性向上効果が十分となる。
 上記で得られた(A)、(B)、(C)成分、及び必要により(G)、(H)成分を混合して70℃以上で加熱した加熱処理混合物を、好ましくは0~50℃、より好ましくは常温(1~25℃)に冷却したものに、上記(D)成分、及び必要によりその他の添加剤を添加し、均一に混合する。ここで、加熱処理混合物と(D)成分と必要によりその他の添加剤との混合条件は、常温(1~25℃)で5~30分間程度であり、上記の方法により、第2液を得ることができる。
 なお、上記第1液及び第2液を調製する際の混合装置は、スタティックミキサー、プラネタリーミキサー、パドルミキサー等の公知の混合機を用いることができる。
 本発明の組成物において、第1液及び第2液の熱伝導率は、ISO 22007-2準拠のホットディスク法において、それぞれ2.0~7.0W/m・Kであり、好ましくは2.2~7.0W/m・Kである。熱伝導率が低すぎると発熱性電子部品の放熱性能が不十分となる場合がある。なお、本発明において、熱伝導率を上記範囲とするには、特に(C)成分の配合量を上記に規定した範囲内とすることにより達成できる。
 本発明の組成物において、第1液及び第2液の25℃における粘度は、スパイラル粘度計によるローターA、回転数10rpm測定時(ずり速度6(1/sec))において、それぞれ30~800Pa・sであり、好ましくは30~700Pa・sである。粘度が低すぎると本組成物の形状維持性が不十分となる場合があり、高すぎると作業性が困難になる場合がある。なお、本発明において、粘度を上記範囲とするには、特に(C)成分の配合量を上記に規定した範囲内とすることにより達成できる。
 本発明の組成物において、第1液及び第2液は、粘度の差が小さいものであれば、これらをスタティックミキサー等の静止型混合器により均一に混合することができる。この場合、スパイラル粘度計によるローターA、回転数10rpm測定時(ずり速度6(1/sec))において、25℃の粘度について第1液、第2液の初期(調製時)粘度差が第1液の粘度を基準にして、±0~80%、特に±0~50%であることが好ましい。
 本発明の組成物において、上記第1液と第2液との混合割合は、ほぼ同等の質量比とすることが好ましいものであるが、具体的には、第1液と第2液とが1:0.5~1:2、特には1:0.75~1:1.25、更には1:0.9~1:1.1、とりわけ1:0.95~1:1.05程度の質量比で混合することが望ましい。
 なお、本発明の組成物において、上記第1液と第2液との混合装置は、スタティックミキサー等の静止型混合器に限定されるものではなく、プラネタリーミキサー、パドルミキサー等の公知の混合機であってもよい。
 また、本発明の組成物の硬化条件は特に限定されず、公知の付加反応硬化型シリコーン組成物の硬化条件と同じでよく、例えば、常温でも十分硬化するが、必要に応じて加熱してもよい。なお、加熱する場合の硬化条件としては、40~180℃で1~60分間とすることができる。
 得られた本発明の組成物の硬化物は、ASTM D 2240-05に規定されるShore OO硬度計において、5~95、特には10~90の範囲にあることが好ましい。
[組成物の製造方法]
 また、本発明では、熱伝導性2液付加硬化型シリコーン組成物の製造方法であって、
(A)下記平均組成式(1)
  R SiO(4-a-b)/2   (1)
(式中、Rは独立にアルケニル基であり、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、aは0.0001~0.2、bは1.7~2.2で、かつa+bが1.9~2.4を満足する正数である。)
で表され、一分子中に珪素原子に結合したアルケニル基を少なくとも2個有するオルガノポリシロキサン、及び
(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が100ppm以下の酸化アルミニウム
を含む混合物に70℃以上の温度で加熱処理を行い、(C)成分を(A)成分の一部で表面処理をし、その後冷却した加熱処理混合物に、
(E)白金族金属触媒、
(F)陽イオン交換、及び/又は両イオン交換型のイオントラップ剤であり、かつZr、Bi、Sb、Mg、Alから選択される少なくとも1種の元素が担持されたイオントラップ剤
を添加混合することにより、第1液を調製する工程、及び
(A)下記平均組成式(1)
  R SiO(4-a-b)/2   (1)
(式中、Rは独立にアルケニル基であり、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、aは0.0001~0.2、bは1.7~2.2で、かつa+bが1.9~2.4を満足する正数である。)
で表され、一分子中に珪素原子に結合したアルケニル基を少なくとも2個有するオルガノポリシロキサン、
(B)下記平均組成式(2)
  R SiO(4-c-d)/2   (2)
(式中、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、cは0.7~2.2、dは0.001~0.5で、かつc+dが0.8~2.5を満足する正数である。)
で表され、一分子中に珪素原子に結合した水素原子を少なくとも3個有するオルガノハイドロジェンポリシロキサン、及び
(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が100ppm以下の酸化アルミニウム
を含む混合物に70℃以上の温度で加熱処理を行い、(C)成分を(B)成分の一部で表面処理をし、その後冷却した加熱処理混合物に、
(D)下記平均組成式(3)
  R SiO(4-e-f)/2   (3)
(式中、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、eは0.7~2.2、fは0.001~0.5で、かつe+fが0.8~2.5を満足する正数である。)
で表され、一分子中に珪素原子に結合した水素原子を2個有するオルガノハイドロジェンポリシロキサン
を添加混合することにより、第2液を調製する工程
によって第1液及び第2液からなる組成物を調製する熱伝導性2液付加硬化型シリコーン組成物の製造方法であって、
 第1液は(B)、(D)成分を、第2液は(E)、(F)成分を含有しないものとし、
 上記組成物中、(A)成分の合計は100質量部とし、(B)成分を(A)成分中のアルケニル基1個に対し(B)成分中の珪素原子結合水素原子(SiH基)が0.1~2個となる量とし、(C)成分の合計は1,000~7,000質量部とし、(D)成分を(A)成分中のアルケニル基1個に対し(D)成分中の珪素原子結合水素原子(SiH基)が0.01~3個となる量とし、(E)成分を(A)成分に対して白金族金属質量で1~200ppm、(F)成分を0.01~10質量部とし、
 得られる第1液及び第2液それぞれの熱伝導率をISO 22007-2準拠のホットディスク法において、2.0~7.0W/m・Kとし、得られる前記第1液及び前記第2液それぞれの25℃における粘度をスパイラル粘度計によるローターA、回転数10rpm測定時(ずり速度6(1/sec))において、30~800Pa・sとする熱伝導性2液付加硬化型シリコーン組成物の製造方法を提供する。
 このような2液付加硬化型シリコーンゴム組成物の製造方法であれば、保存性が向上し、経時での硬さ変化が抑えられる熱伝導性2液付加硬化型シリコーン組成物が得られ、該組成物の硬化物である熱伝導性2液付加硬化型シリコーンは、電気・電子部品及びこれらを搭載した回路基板を保護するために好適に使用し得ることから、優れた応力緩和特性と熱伝導性を発揮することができる。
 さらに、(B)成分と(D)成分中のSiH基の合計量を、(A)成分中のアルケニル基1個に対して0.11~5個の割合とする熱伝導性2液付加硬化型シリコーン組成物の製造方法であることが好ましい。
 このような製造方法であれば、得られる硬化物が十分な硬度を有し安定したシリコーン硬化物となる上に、硬くなりすぎて脆くなったりすることがない。
 第1液中の加熱処理を行う混合物、及び第2液の加熱処理を行う混合物に、更にシランカップリング剤(G)及び/又は前述の25℃における粘度が0.01~30Pa・sのオルガノポリシロキサン(H)を混合して加熱処理を行う熱伝導性2液付加硬化型シリコーン組成物の製造方法であることが好ましい。
 このような付加硬化型シリコーンゴム組成物の製造方法であれば、第1液と第2液を低粘度化させる効果が得られる。
 (A)~(H)、及びその他の配合剤は、上述したように添加、混合することができる。
 以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記の例においてViはビニル基を示す。
[実施例1]
 (株)井上製作所製5Lプラネタリーミキサーに、(A)粘度が600mPa・sの分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン55.2質量部、(H)下記一般式(6)で示され、25℃における粘度が30mPa・sのオルガノポリシロキサン9質量部、(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が57ppmであり、平均粒子径が43μmの溶融球状酸化アルミニウムA 300質量部、(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が11ppmであり、平均粒子径が1.2μmの破砕状酸化アルミニウムB 200質量部を添加して混合し、100℃で1時間加熱処理混合した。
 次いで、この加熱処理混合物を室温(25℃)まで十分冷却した後、(E)塩化白金酸のビニルシロキサン錯体(Pt含有量1質量%)0.18質量部、(F)両イオン交換型のイオントラップ剤IXEPLAS-A1(東亞合成株式会社製)1.00質量部を均一に室温(25℃)で20分間混合し、熱伝導性付加硬化型シリコーン組成物1(第1液)を得た。
 (株)井上製作所製5Lプラネタリーミキサーに、(A)粘度が600mPa・sの分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン44.8質量部、(B)下記一般式(5)で示され、25℃における粘度が28mPa・sのトリメチルシロキシ基封鎖メチルハイドロジェン・ジメチルポリシロキサン1.26質量部(式(5)のポリシロキサン中のSiH基/分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中の合計SiVi基=0.11)、(H)下記一般式(6)で示され、25℃における粘度が30mPa・sのオルガノポリシロキサン9質量部、(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が57ppmであり、平均粒子径が43μmの溶融球状酸化アルミニウムA 300質量部、(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が11ppmであり、平均粒子径が1.2μmの破砕状酸化アルミニウムB 200質量部を添加して混合し、100℃で1時間加熱処理混合した。
 次いで、この加熱処理混合物を室温(25℃)まで十分冷却した後、エチニルシクロヘキサノール0.02質量部、更に(D)下記一般式(7)で示され、25℃での粘度が17mPa・sであるジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン9.4質量部(式(7)のポリシロキサン中のSiH基/上記分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中の合計SiVi基=0.79、式(5)及び(7)のポリシロキサン中の合計SiH基/上記分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のSiVi基=0.9)を均一に室温(25℃)で20分間混合し、熱伝導性付加硬化型シリコーン組成物1(第2液)を得た。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
[比較例1]
 実施例1に記載の第1液中の両イオン交換型IXEPLAS-A1(東亞合成株式会社製)を添加しなかった以外は、同様にして熱伝導性付加硬化型シリコーン組成物2(第1液/第2液)を得た。
[比較例2]
 実施例1の両イオン交換型IXEPLAS-A1(東亞合成株式会社製)から陰イオン交換型のトラップ剤IXE500(東亞合成株式会社製)1.00質量部に変更した以外は、同様にして熱伝導性付加硬化型シリコーン組成物3(第1液/第2液)を得た。
[比較例3]
 (株)井上製作所製5Lプラネタリーミキサーに、(A)粘度が600mPa・sの分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン44.8質量部、(H)上記一般式(6)で示され、25℃における粘度が30mPa・sのオルガノポリシロキサン9質量部、(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が57ppmであり、平均粒子径が43μmの溶融球状酸化アルミニウムA 300質量部、(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が11ppmであり、平均粒子径が1.2μmの破砕状酸化アルミニウムB 200質量部を添加して混合し、100℃で1時間加熱処理混合した。
 次いで、この加熱処理混合物を室温(25℃)まで十分冷却した後、エチニルシクロヘキサノール0.02質量部、(B)上記一般式(5)で示され、25℃における粘度が28mPa・sのトリメチルシロキシ基封鎖メチルハイドロジェン・ジメチルポリシロキサン1.26質量部(式(5)のポリシロキサン中のSiH基/分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中の合計SiVi基=0.11)、更に(D)上記一般式(7)で示され、25℃での粘度が17mPa・sであるジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン9.4質量部(式(7)のポリシロキサン中のSiH基/上記分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中の合計SiVi基=0.79、式(5)及び(7)のポリシロキサン中の合計SiH基/上記分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のSiVi基=0.9)を均一に室温(25℃)で20分間混合し、熱伝導性付加硬化型シリコーン組成物4(第2液)を得た。なお、実施例1の第1液は何も変更せず、熱伝導性付加硬化型シリコーン組成物4(第1液)として用いた。
[比較例4]
 実施例1に記載の熱処理温度を50℃にする以外は、同様にして熱伝導性付加硬化型シリコーン組成物5(第1液/第2液)を得た。
[比較例5]
 実施例1に記載の溶融球状酸化アルミニウムAから、120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が111ppmであり、平均粒子径が41μmの溶融球状酸化アルミニウムCに置き換え、実施例1に記載の破砕状酸化アルミニウムBから、120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が103ppmであり、平均粒子径が1.0μmの破砕状酸化アルミニウムDに置き換えた以外は、同様にして熱伝導性付加硬化型シリコーン組成物6(第1液/第2液)を得た。
[実施例2]
 (株)井上製作所製5Lプラネタリーミキサーに、(A)粘度が400mPa・sの分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン57.2質量部、(H)上記一般式(6)で示され、25℃における粘度が30mPa・sのオルガノポリシロキサン117質量部、(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が52ppmであり、平均粒子径が60μmの溶融球状酸化アルミニウムE 2,418質量部、(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が11ppmであり、平均粒子径が1.2μmの破砕状酸化アルミニウムB 907質量部を添加して混合し、100℃で1時間加熱処理混合した。
 次いで、この加熱処理混合物を室温(25℃)まで十分冷却した後、(E)塩化白金酸のビニルシロキサン錯体(Pt含有量1質量%)1.00質量部、(F)両イオン交換型のイオントラップ剤IXEPLAS-A1(東亞合成株式会社製)2.00質量部を均一に室温(25℃)で20分間混合し、熱伝導性付加硬化型シリコーン組成物7(第1液)を得た。
 (株)井上製作所製5Lプラネタリーミキサーに、(A)粘度が400mPa・sの分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン42.8質量部、(B)上記一般式(5)で示され、25℃における粘度が28mPa・sのトリメチルシロキシ基封鎖メチルハイドロジェン・ジメチルポリシロキサン2.33質量部(式(5)のポリシロキサン中のSiH基/分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中の合計SiVi基=0.15)、(H)上記一般式(6)で示され、25℃における粘度が30mPa・sのオルガノポリシロキサン117質量部、(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が52ppmであり、平均粒子径が60μmの溶融球状酸化アルミニウムE 2,418質量部、(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が11ppmであり、平均粒子径が1.2μmの破砕状酸化アルミニウムB 907質量部を添加して混合し、100℃で1時間加熱処理混合した。
 次いで、この加熱処理混合物を室温(25℃)まで十分冷却した後、エチニルシクロヘキサノール0.11質量部、更に(D)上記一般式(7)で示され、25℃での粘度が17mPa・sであるジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン13.0質量部(式(7)のポリシロキサン中のSiH基/上記分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中の合計SiVi基=0.85、式(5)及び(7)のポリシロキサン中の合計SiH基/上記分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のSiVi基=1.0)を均一に室温(25℃)で20分間混合し、熱伝導性付加硬化型シリコーン組成物7(第2液)を得た。
[比較例6]
 実施例2に記載の第1液中の両イオン交換型IXEPLAS-A1(東亞合成株式会社製)を添加しなかった以外は、同様にして熱伝導性付加硬化型シリコーン組成物8(第1液/第2液)を得た。
[比較例7]
 実施例2の両イオン交換型IXEPLAS-A1(東亞合成株式会社製)から陰イオン交換型のトラップ剤IXE500(東亞合成株式会社製)1.00質量部に変更した以外は、同様にして熱伝導性付加硬化型シリコーン組成物9(第1液/第2液)を得た。
[比較例8]
 (株)井上製作所製5Lプラネタリーミキサーに、(A)粘度が400mPa・sの分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン42.8質量部、(H)上記一般式(6)で示され、25℃における粘度が30mPa・sのオルガノポリシロキサン117質量部、(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が52ppmであり、平均粒子径が60μmの溶融球状酸化アルミニウムE 2,418質量部、(C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が11ppmであり、平均粒子径が1.2μmの破砕状酸化アルミニウムB 907質量部を添加して混合し、100℃で1時間加熱処理混合した。
 次いで、この加熱処理混合物を室温(25℃)まで十分冷却した後、エチニルシクロヘキサノール0.11質量部、上記一般式(5)で示され、(B)25℃における粘度が28mPa・sのトリメチルシロキシ基封鎖メチルハイドロジェン・ジメチルポリシロキサン2.33質量部(式(5)のポリシロキサン中のSiH基/分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中の合計SiVi基=0.15)、更に(D)上記一般式(7)で示され、25℃での粘度が17mPa・sであるジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン13.0質量部(式(7)のポリシロキサン中のSiH基/上記分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中の合計SiVi基=0.85、式(5)及び(7)のポリシロキサン中の合計SiH基/上記分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のSiVi基=1.0)を均一に室温(25℃)で20分間混合し、熱伝導性付加硬化型シリコーン組成物10(第2液)を得た。なお、実施例2の第1液は何も変更せず、熱伝導性付加硬化型シリコーン組成物10(第1液)として用いた。
[比較例9]
 実施例2に記載の熱処理温度を50℃にする以外は、同様にして熱伝導性付加硬化型シリコーン組成物11(第1液/第2液)を得た。
[比較例10]
 実施例2に記載の溶融球状酸化アルミニウムEから、120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が108ppmであり、平均粒子径が61μmの溶融球状酸化アルミニウムFに置き換え、実施例2に記載の破砕状酸化アルミニウムBから、120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が103ppmであり、平均粒子径が1.0μmの破砕状酸化アルミニウムDに置き換えた以外は、同様にして熱伝導性付加硬化型シリコーン組成物12(第1液/第2液)を得た。
 上記実施例、比較例に記載の熱伝導性付加硬化型シリコーン組成物1(第1液/第2液)~12(第1液/第2液)の粘度は、スパイラル粘度計:マルコム粘度計(タイプPC-10AA、回転数10rpm)を用いて25℃環境下で測定し、熱伝導率は京都電子工業(株)製ホットディスク法熱物性測定装置TPS 2500 Sを用いて25℃におけるシリコーン組成物の硬化前の熱伝導率を測定した(ISO 22007-2準拠のホットディスク法)。
 その後、株式会社ノリタケカンパニーリミテド製のスタティックミキサー(MXA6.3-21)を使用して、各組成物の第1液と第2液を1:1の質量比にて均一になるよう常温(25℃)で混合吐出後、十分真空脱泡してから6mm硬化厚みとなるような成形型に流し込み、25℃×24時間硬化して硬化物を得、その硬度(硬さ)をASTM D 2240-05に規定されるShore OO硬度計により測定した。また、これらの各組成物の第1液と第2液を25℃の恒温槽に6ヶ月間放置後、上記と同様に粘度、熱伝導率、並びに硬度を測定し、初期と比較した結果を表1に示した。
Figure JPOXMLDOC01-appb-T000011
 上記の結果から明らかなように、本発明の実施例1、2の組成物は、長期保存(25℃、6ヶ月)後においても、粘度や熱伝導率に変化はなく、また得られる硬化物の硬度変化も見られないのに対し、比較例1~10の組成物は、長期保存後において、粘度や熱伝導率に顕著な変化は観察されないものの、得られた硬化物の硬度が、初期から10ポイント以上変化していることがわかる。ここから、比較例1、6ではイオントラップ剤を含んでいないため、長期保存後においても十分に硬化させるためにはイオントラップ剤が必要であることが分かる。更に、比較例2、7では陰イオン交換型のイオントラップ剤が含まれており、そこから陰イオン交換型でないイオントラップ剤が必要であることが分かる。またこのように、比較例3、8から、第2液として、(B)成分を(A)、(C)成分と加熱処理混合することが好ましいことがわかる。また、比較例4、9から、(A)成分、(B)成分、(C)成分を混合後、熱処理温度は70℃以上とすることが好ましいこともわかる。これらは、(C)成分の表面が(A)成分及び(B)成分で処理が進んでいないためと思われる。更には、比較例5、10から、(C)成分で規定したNaイオン量は100ppm以下が好ましいこともわかる。従って、本発明によれば、長期間の保存安定性を有する熱伝導性2液付加硬化型シリコーン組成物及びその硬化物が得られる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 本発明により得られた熱伝導性2液付加硬化型シリコーン組成物を硬化することにより得られる熱伝導性シリコーン硬化物は、長期間保存した後でも熱伝導性充填剤の作用を受けることなく、安定した硬度を維持することができるため、パワーデバイス、トランジスタ、サイリスタ、CPU(中央処理装置)等の電子部品の放熱兼保護用途で信頼性の向上が期待される。

Claims (6)

  1.  熱伝導性2液付加硬化型シリコーン組成物であって、
    (A)下記平均組成式(1)
      R SiO(4-a-b)/2   (1)
    (式中、Rは独立にアルケニル基であり、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、aは0.0001~0.2、bは1.7~2.2で、かつa+bが1.9~2.4を満足する正数である。)
    で表され、一分子中に珪素原子に結合したアルケニル基を少なくとも2個有するオルガノポリシロキサン、及び
    (C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が100ppm以下の酸化アルミニウム
    を含み、かつ前記(C)成分が前記(A)成分の一部で表面処理されたものである加熱処理混合物と、
    (E)白金族金属触媒、
    (F)陽イオン交換、及び/又は両イオン交換型のイオントラップ剤であり、かつZr、Bi、Sb、Mg、Alから選択される少なくとも1種の元素が担持されたイオントラップ剤
    とを含有する第1液と、
    (A)下記平均組成式(1)
      R SiO(4-a-b)/2   (1)
    (式中、Rは独立にアルケニル基であり、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、aは0.0001~0.2、bは1.7~2.2で、かつa+bが1.9~2.4を満足する正数である。)
    で表され、一分子中に珪素原子に結合したアルケニル基を少なくとも2個有するオルガノポリシロキサン、
    (B)下記平均組成式(2)
      R SiO(4-c-d)/2   (2)
    (式中、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、cは0.7~2.2、dは0.001~0.5で、かつc+dが0.8~2.5を満足する正数である。)
    で表され、一分子中に珪素原子に結合した水素原子を少なくとも3個有するオルガノハイドロジェンポリシロキサン、及び
    (C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が100ppm以下の酸化アルミニウム
    を含み、かつ前記(C)成分が前記(B)成分の一部で表面処理されたものである加熱処理混合物と、
    (D)下記平均組成式(3)
      R SiO(4-e-f)/2   (3)
    (式中、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、eは0.7~2.2、fは0.001~0.5で、かつe+fが0.8~2.5を満足する正数である。)
    で表され、一分子中に珪素原子に結合した水素原子を2個有するオルガノハイドロジェンポリシロキサン
    とを含有する第2液と
    からなる組成物であって、
     前記第1液は前記(B)、(D)成分を含有せず、前記第2液は前記(E)、(F)成分を含有せず、
     前記組成物中、前記(A)成分の合計は100質量部であり、前記(B)成分が前記(A)成分中のアルケニル基1個に対し前記(B)成分中の珪素原子結合水素原子(SiH基)が0.1~2個となる量含まれ、前記(C)成分の合計は1,000~7,000質量部であり、前記(D)成分が前記(A)成分中のアルケニル基1個に対し前記(D)成分中の珪素原子結合水素原子(SiH基)が0.01~3個となる量含まれ、前記(E)成分が前記(A)成分に対して白金族金属質量で1~200ppm、前記(F)成分が0.01~10質量部含まれ、
     前記第1液及び前記第2液それぞれの熱伝導率がISO 22007-2準拠のホットディスク法において、2.0~7.0W/m・Kであり、前記第1液及び前記第2液それぞれの25℃における粘度がスパイラル粘度計によるローターA、回転数10rpm測定時(ずり速度6(1/sec))において、30~800Pa・sであることを特徴とする熱伝導性2液付加硬化型シリコーン組成物。
  2.  前記(B)成分と前記(D)成分中のSiH基の合計量が、前記(A)成分中のアルケニル基1個に対して0.11~5個の割合であることを特徴とする請求項1に記載の熱伝導性2液付加硬化型シリコーン組成物。
  3.  前記第1液中の加熱処理混合物及び前記第2液中の加熱処理混合物が更にシランカップリング剤(G)及び/又は下記一般式(4)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは独立に非置換又は置換の1価炭化水素基であり、Rは独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、gは5~100の整数であり、hは1~3の整数である。)
    で表され、25℃における粘度が0.01~30Pa・sのオルガノポリシロキサン(H)を含有することを特徴とする請求項1又は請求項2に記載の熱伝導性2液付加硬化型シリコーン組成物。
  4.  熱伝導性2液付加硬化型シリコーン組成物の製造方法であって、
    (A)下記平均組成式(1)
      R SiO(4-a-b)/2   (1)
    (式中、Rは独立にアルケニル基であり、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、aは0.0001~0.2、bは1.7~2.2で、かつa+bが1.9~2.4を満足する正数である。)
    で表され、一分子中に珪素原子に結合したアルケニル基を少なくとも2個有するオルガノポリシロキサン、及び
    (C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が100ppm以下の酸化アルミニウム
    を含む混合物に70℃以上の温度で加熱処理を行い、前記(C)成分を前記(A)成分の一部で表面処理をし、その後冷却した前記加熱処理混合物に、
    (E)白金族金属触媒、
    (F)陽イオン交換、及び/又は両イオン交換型のイオントラップ剤であり、かつZr、Bi、Sb、Mg、Alから選択される少なくとも1種の元素が担持されたイオントラップ剤
    を添加混合することにより、第1液を調製する工程、及び
    (A)下記平均組成式(1)
      R SiO(4-a-b)/2   (1)
    (式中、Rは独立にアルケニル基であり、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、aは0.0001~0.2、bは1.7~2.2で、かつa+bが1.9~2.4を満足する正数である。)
    で表され、一分子中に珪素原子に結合したアルケニル基を少なくとも2個有するオルガノポリシロキサン、
    (B)下記平均組成式(2)
      R SiO(4-c-d)/2   (2)
    (式中、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、cは0.7~2.2、dは0.001~0.5で、かつc+dが0.8~2.5を満足する正数である。)
    で表され、一分子中に珪素原子に結合した水素原子を少なくとも3個有するオルガノハイドロジェンポリシロキサン、及び
    (C)120℃×48時間純水で酸化アルミニウム粉末を加熱抽出し、その水層をイオンクロマトグラフィーで測定した場合のNaイオン量が100ppm以下の酸化アルミニウム
    を含む混合物に70℃以上の温度で加熱処理を行い、前記(C)成分を前記(B)成分の一部で表面処理をし、その後冷却した前記加熱処理混合物に、
    (D)下記平均組成式(3)
      R SiO(4-e-f)/2   (3)
    (式中、Rは独立に脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、eは0.7~2.2、fは0.001~0.5で、かつe+fが0.8~2.5を満足する正数である。)
    で表され、一分子中に珪素原子に結合した水素原子を2個有するオルガノハイドロジェンポリシロキサン
    を添加混合することにより、第2液を調製する工程
    によって前記第1液及び前記第2液からなる組成物を調製する熱伝導性2液付加硬化型シリコーン組成物の製造方法であって、
     前記第1液は前記(B)、(D)成分を、前記第2液は前記(E)、(F)成分を含有しないものとし、
     前記組成物中、前記(A)成分の合計は100質量部とし、前記(B)成分を前記(A)成分中のアルケニル基1個に対し前記(B)成分中の珪素原子結合水素原子(SiH基)が0.1~2個となる量とし、前記(C)成分の合計は1,000~7,000質量部とし、前記(D)成分を前記(A)成分中のアルケニル基1個に対し前記(D)成分中の珪素原子結合水素原子(SiH基)が0.01~3個となる量とし、前記(E)成分を前記(A)成分に対して白金族金属質量で1~200ppm、前記(F)成分を0.01~10質量部とし、
     得られる前記第1液及び前記第2液それぞれの熱伝導率をISO 22007-2準拠のホットディスク法において、2.0~7.0W/m・Kとし、得られる前記第1液及び前記第2液それぞれの25℃における粘度をスパイラル粘度計によるローターA、回転数10rpm測定時(ずり速度6(1/sec))において、30~800Pa・sとすることを特徴とする熱伝導性2液付加硬化型シリコーン組成物の製造方法。
  5.  前記(B)成分と前記(D)成分中のSiH基の合計量を、前記(A)成分中のアルケニル基1個に対して0.11~5個の割合とすることを特徴とする請求項4に記載の熱伝導性2液付加硬化型シリコーン組成物の製造方法。
  6.  前記第1液中の加熱処理を行う混合物、及び前記第2液の加熱処理を行う混合物に、更にシランカップリング剤(G)及び/又は下記一般式(4)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは独立に非置換又は置換の1価炭化水素基であり、Rは独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、gは5~100の整数であり、hは1~3の整数である。)
    で表され、25℃における粘度が0.01~30Pa・sのオルガノポリシロキサン(H)を混合して加熱処理を行うことを特徴とする請求項4又は請求項5に記載の熱伝導性2液付加硬化型シリコーン組成物の製造方法。
PCT/JP2021/022492 2020-08-06 2021-06-14 熱伝導性2液付加硬化型シリコーン組成物及びその製造方法 WO2022030108A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21852983.2A EP4194494A4 (en) 2020-08-06 2021-06-14 THERMALLY CONDUCTIVE TWO-COMPONENT ADDITION CURING TYPE SILICONE COMPOSITION AND METHOD FOR MANUFACTURING SAME
CN202180057993.4A CN116075552B (zh) 2020-08-06 2021-06-14 导热性两液加成固化型有机硅组合物及其制备方法
KR1020237003828A KR20230048508A (ko) 2020-08-06 2021-06-14 열전도성 2액부가경화형 실리콘 조성물 및 그의 제조방법
US18/019,007 US20230242766A1 (en) 2020-08-06 2021-06-14 Thermally-conductive two-part addition-curable silicone composition and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020133644A JP7328184B2 (ja) 2020-08-06 2020-08-06 熱伝導性2液付加硬化型シリコーン組成物及びその製造方法
JP2020-133644 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022030108A1 true WO2022030108A1 (ja) 2022-02-10

Family

ID=80117840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022492 WO2022030108A1 (ja) 2020-08-06 2021-06-14 熱伝導性2液付加硬化型シリコーン組成物及びその製造方法

Country Status (7)

Country Link
US (1) US20230242766A1 (ja)
EP (1) EP4194494A4 (ja)
JP (1) JP7328184B2 (ja)
KR (1) KR20230048508A (ja)
CN (1) CN116075552B (ja)
TW (1) TW202212477A (ja)
WO (1) WO2022030108A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7344174B2 (ja) * 2020-05-26 2023-09-13 信越化学工業株式会社 熱伝導性付加硬化型シリコーン組成物及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051237A (ja) 1991-06-24 1993-01-08 Shin Etsu Chem Co Ltd 表面処理アルミナ及びそれを含有する熱伝導性シリコーン組成物
JPH1149959A (ja) 1997-08-05 1999-02-23 Toshiba Silicone Co Ltd 難燃性放熱性シート用シリコーンゲル組成物および難燃性放熱性シリコーンシート
JP2005344106A (ja) * 2004-05-07 2005-12-15 Shin Etsu Chem Co Ltd シリコーンゲル組成物
JP2011122084A (ja) 2009-12-11 2011-06-23 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーンゲル組成物、その製造方法及び熱伝導性シリコーンゲル
WO2017030126A1 (ja) * 2015-08-17 2017-02-23 積水化学工業株式会社 半導体装置及び半導体素子保護用材料
WO2021095501A1 (ja) * 2019-11-15 2021-05-20 信越化学工業株式会社 熱伝導性付加硬化型シリコーン組成物及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193052B2 (ja) * 2003-08-25 2008-12-10 信越化学工業株式会社 高熱伝導性シリコーンゴム組成物並びに定着ロール及び定着ベルト
CN100422264C (zh) * 2004-05-07 2008-10-01 信越化学工业株式会社 硅氧烷凝胶组合物
JP2010138384A (ja) * 2008-11-12 2010-06-24 Hitachi Chem Co Ltd 封止用液状エポキシ樹脂組成物、及びこの封止用液状エポキシ樹脂組成物で封止した素子を備えた電子部品装置およびウエハーレベルチップサイズパッケージ
WO2011059081A1 (ja) * 2009-11-16 2011-05-19 日揮触媒化成株式会社 シリカ・アルミナゾルの製造方法、シリカ・アルミナゾル、該ゾルを含む透明被膜形成用塗料および透明被膜付基材
JP5358412B2 (ja) * 2009-11-30 2013-12-04 ポリマテック株式会社 熱伝導性シートの製造方法及び熱伝導性シート
JP2019131734A (ja) * 2018-02-01 2019-08-08 信越化学工業株式会社 2液付加反応硬化型放熱シリコーン組成物及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051237A (ja) 1991-06-24 1993-01-08 Shin Etsu Chem Co Ltd 表面処理アルミナ及びそれを含有する熱伝導性シリコーン組成物
JPH1149959A (ja) 1997-08-05 1999-02-23 Toshiba Silicone Co Ltd 難燃性放熱性シート用シリコーンゲル組成物および難燃性放熱性シリコーンシート
JP2005344106A (ja) * 2004-05-07 2005-12-15 Shin Etsu Chem Co Ltd シリコーンゲル組成物
JP2011122084A (ja) 2009-12-11 2011-06-23 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーンゲル組成物、その製造方法及び熱伝導性シリコーンゲル
WO2017030126A1 (ja) * 2015-08-17 2017-02-23 積水化学工業株式会社 半導体装置及び半導体素子保護用材料
WO2021095501A1 (ja) * 2019-11-15 2021-05-20 信越化学工業株式会社 熱伝導性付加硬化型シリコーン組成物及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4194494A4

Also Published As

Publication number Publication date
US20230242766A1 (en) 2023-08-03
EP4194494A4 (en) 2024-01-10
JP7328184B2 (ja) 2023-08-16
CN116075552A (zh) 2023-05-05
EP4194494A1 (en) 2023-06-14
TW202212477A (zh) 2022-04-01
JP2022029985A (ja) 2022-02-18
CN116075552B (zh) 2024-06-21
KR20230048508A (ko) 2023-04-11

Similar Documents

Publication Publication Date Title
JP7116703B2 (ja) 熱伝導性シリコーン組成物及びその製造方法、並びに熱伝導性シリコーン硬化物
JP7285231B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP6240593B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
TW201943768A (zh) 熱傳導性矽酮組成物及其硬化物
CN114466905A (zh) 导热性有机硅组合物及其制造方法
WO2021240987A1 (ja) 熱伝導性付加硬化型シリコーン組成物及びその製造方法
TW202227588A (zh) 導熱性矽組成物及導熱性構件
WO2022030108A1 (ja) 熱伝導性2液付加硬化型シリコーン組成物及びその製造方法
JP7243857B2 (ja) 熱伝導性付加硬化型シリコーン組成物及びその製造方法
JP5821160B2 (ja) 熱伝導性シリコーンゲル組成物の製造方法
CN118804952A (zh) 双组分型导热性加成固化型有机硅组合物及其有机硅固化物
JP7034980B2 (ja) 表面処理アルミナ粉末の製造方法
WO2023171352A1 (ja) 熱伝導性付加硬化型シリコーン組成物及びそのシリコーン硬化物
WO2024024503A1 (ja) 熱伝導性2液付加硬化型シリコーン組成物、硬化物及びシート
KR20240157075A (ko) 2액형 열전도성 부가 경화형 실리콘 조성물 및 그 실리콘 경화물
KR20240157074A (ko) 열전도성 부가 경화형 실리콘 조성물 및 그 실리콘 경화물
CN118829691A (zh) 导热性加成固化型有机硅组合物及其有机硅固化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852983

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021852983

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE