WO2017008494A1 - 一种石墨硅基复合负极材料的制备方法 - Google Patents

一种石墨硅基复合负极材料的制备方法 Download PDF

Info

Publication number
WO2017008494A1
WO2017008494A1 PCT/CN2016/071693 CN2016071693W WO2017008494A1 WO 2017008494 A1 WO2017008494 A1 WO 2017008494A1 CN 2016071693 W CN2016071693 W CN 2016071693W WO 2017008494 A1 WO2017008494 A1 WO 2017008494A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
graphite
preparing
based composite
powder
Prior art date
Application number
PCT/CN2016/071693
Other languages
English (en)
French (fr)
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2017008494A1 publication Critical patent/WO2017008494A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of anode materials for lithium ion batteries, and in particular to a method for preparing a graphite silicon-based composite anode material for lithium ion batteries.
  • silicon material Due to its high storage capacity (theoretical specific capacity of 4200 mAh/g) and abundant resources, silicon material is considered to be one of the ideal candidates for the development of a new generation of high specific energy and high power density lithium ion battery anode materials.
  • the silicon negative electrode suffers from severe volume expansion and shrinkage during the process of inserting and deintercalating lithium, causing destruction and pulverization of the material structure, resulting in degradation of the cycle performance of the electrode, which limits its commercial application. Therefore, suppressing the volume expansion of the silicon material and improving the structural stability of the material are significant for improving the electrical conductivity and cycle stability of the silicon material.
  • the volume expansion of silicon materials is mainly improved by nanocrystallization of silicon, alloying of silicon and metal, and compounding of silicon and carbon materials.
  • Patent document CN103078092A discloses a preparation method of a silicon-carbon (Si/C) composite anode material for a lithium ion battery, which disperses a silicon source (before or after etching treatment) and graphite in the presence of a second type of additive.
  • the temperature is controlled to completely volatilize the solvent to obtain a precursor solid; and the precursor solid is coated with amorphous carbon.
  • the nano silicon prepared by the invention has a large specific surface area and is difficult to be uniformly dispersed on the graphite surface. Therefore, the silicon carbon material prepared by the method has serious problem of poor cycle performance of the material due to silicon expansion due to serious silicon agglomeration.
  • Application No. 201310294027.1 discloses a method for preparing a lithium-ion battery silicon carbon anode material by dispersing nano-silica between graphite particles or adhering to a graphite surface to prepare a nano-silicon/graphite composite, and then to composite nano-silicon/ The graphite composite is subjected to dry coating and high-temperature carbonization to prepare a silicon-carbon anode material for a lithium ion battery.
  • the method disperses the dispersing agent in a high solid content state and a dry state during the evaporation process of the dispersing medium, and the nano silicon re-agglomerates after drying, which is difficult to suppress the volume expansion of the large granular silicon, and the bonding used
  • the carbon residue rate after carbonization of the material is low, resulting in low bonding strength of the nano-silicon and graphite particles and poor cycle performance of the electrode material.
  • Patent No. 201310566652.7 discloses a graphite silicon-based composite lithium ion battery anode material, which first prepares a silicon polishing liquid, a high acrylonitrile content copolymerized polymer microsphere emulsion and a graphite dispersion, and then mixes them to obtain graphite/silicon. / high acrylonitrile content polymer microsphere composite dispersion; then spray drying, heat treatment, adding asphalt for melt mechanical kneading, and finally high temperature sintering, crushing, sieving A graphite silicon-based composite lithium ion battery anode material was obtained.
  • the method uses high acrylonitrile content polymer microspheres as a thermal cracking carbon source, the carbon residue is high, the mixing is uniform, and the silicon and graphite are firmly bonded.
  • this method combines graphite and nano-silicon by spray drying, and it is difficult to avoid agglomeration of nano-silicon in the dry compounding process.
  • one of the objects of the present invention is to provide a method for preparing a graphite silicon-based composite anode material, which first coats nano-silicon with a resin-based carbon precursor, and the carbon precursor is subjected to high-temperature carbonization. After the porous structure is formed, the volume expansion effect of silicon can be effectively alleviated, and the sub-micron powder is obtained by pulverizing the carbonized material, and then mixed with graphite and asphalt carbon precursor, and then cooled and sieved by high temperature treatment. The graphite silicon-based composite anode material of the present invention is obtained.
  • a preparation method of a graphite silicon-based composite anode material the specific preparation steps are as follows:
  • the material A is pulverized to obtain a submicron powder B having a particle diameter D50 of 0.1 to 1 ⁇ m;
  • the powder B is solid-phase mixed with graphite and asphalt-based carbon precursor, and then carbonized at a high temperature under the protection of an inert gas, and cooled and sieved.
  • the resin-based carbon precursor in the step (1) means one of a furfural resin, an epoxy resin, a phenol resin, a polyethylene glycol, a polyvinyl chloride, a polyvinyl butyral, a polyacrylonitrile, and a polyacrylic acid. Or a combination of at least two.
  • the ratio of the resin-based carbon precursor to the nano-silicon in the step (1) is 1: (0.05 to 0.15).
  • the temperature of the high-temperature carbonization in the step (1) is 650 to 850 ° C
  • the heating rate is 1 to 5 ° C / min
  • the holding time is 0.5 to 3 h.
  • step (2) pulverization refers to one or a combination of two or more of ball milling, mechanical pulverization, or air pulverization.
  • step (3) the weight ratio of powder B to graphite is (0.1 to 0.5): 1, and the pitch-based carbon precursor accounts for 10 to 30% of the total weight of powder B and graphite.
  • the graphite in the step (3) has an average particle diameter of 5 to 30 ⁇ m and a tap density of ⁇ 0.7 g/cm 3 .
  • the asphalt-based carbon precursor in the step (3) refers to a combination of one or at least two of a condensed polycyclic polynuclear hydrocarbon obtained by upgrading coal tar pitch, petroleum pitch, modified pitch, mesophase pitch, and pitch. .
  • the powder particle diameter D50 of the pitch-based carbon precursor in the step (3) is ⁇ 3 ⁇ m.
  • the temperature of the high temperature carbonization in the step (3) is 850 to 1000 ° C
  • the heating rate is 5 to 20 ° C / min
  • the holding time is 0.5 to 4 h.
  • the porous structure carbon formed by carbonization of the resin-based carbon precursor serves as a carrier for fixing the nano-silicon, and utilizes the characteristics of many small organic molecules in the resin. At high temperatures, small molecules overflow from the surface to form micropores, and the nano-silicon is uniformly embedded in the micro-pores.
  • the method can improve the dispersibility of the nano silicon particles in the silicon-based composite anode material, alleviate the volume expansion and contraction of the material during lithium removal/intercalation, enhance the structural stability of the material, and ensure the material has a high electrical conductivity. Improve the electrochemical properties of materials and their cycle stability.
  • the asphalt coating modification treatment solves the disadvantage of excessive surface area of the resin material, avoiding large irreversible capacity loss, and finally obtaining a material with low specific surface area and good processing performance. And high-kick capacity and long-cycle cycling.
  • the method of the invention is simple in operation, easy to control, low in production cost, and suitable for industrial production.
  • the powder was raised to 850 °C at a heating rate of 10 °C/min under inert gas protection, kept for 3 hours, and cooled to room temperature. Thereafter, the graphite silicon-based composite negative electrode material prepared by the present invention is obtained by sieving.
  • the powder was raised to 1000 ° C at a heating rate of 10 ° C / min under the protection of an inert gas, kept for 0.5 h, and cooled to room temperature. Sifting The graphite silicon-based composite anode material prepared by the invention is obtained.
  • the powder was raised to 900 ° C at a heating rate of 15 ° C / min under inert gas protection, and kept for 1.5 h. After cooling to room temperature, the graphite silicon-based composite negative electrode material prepared by the present invention is obtained by sieving.
  • °C heat preservation for 0.5h
  • the powder obtained by carbonization is pulverized by jet milling to a D50 of 0.1 to 1 ⁇ m, and then the powder and graphite are 0.25:1 by weight, while adding 20% of the total weight of the powder and graphite.
  • the powder was raised to 850 ° C at a heating rate of 5 ° C / min under an inert gas atmosphere, kept for 2.5 h, and cooled to room temperature. Thereafter, the graphite silicon-based composite negative electrode material prepared by the present invention is obtained by sieving.
  • the charge-discharge voltage is 1.0-2.5V, and the charge-discharge rate is 0.5C.
  • the battery performance can be tested. The test results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种石墨硅基复合负极材料的制备方法,该方法先采用树脂类碳前驱体对纳米硅进行包覆,树脂类碳前驱体碳化后所形成的多孔结构碳作为固定纳米硅的载体,能有效缓解硅的体积膨胀效应,再通过与石墨进行复合后,经过沥青包覆改性处理,解决了树脂类材料比表面积过大的缺点,避免了大的不可逆容量损失,最终所得的材料具有低的比表面积,良好的加工性能和高克比容量以及长周期循环等优点。同时,本发明的方法操作简单、易于控制,生产成本低、适合工业化生产。

Description

一种石墨硅基复合负极材料的制备方法 技术领域
本发明涉及锂离子电池负极材料领域,具体涉及一种锂离子电池用石墨硅基复合负极材料的制备方法。
背景技术
硅材料因具有较高的储理容量(理论比容量4200mAh/g)和丰富的资源,被认为是开发新一代高比能量及高功率密度的锂离子电池负极材料的理想候选材料之一。然而,硅负极由于其在锂的嵌、脱循环过程中要经历严重的体积膨胀和收缩,造成材料结构的破坏和粉碎化,从而导致电极循环性能的衰退,限制了其商业化应用。因此,抑制硅材料的体积膨胀,提高材料的结构稳定对于提高硅材料的电导率与循环稳定性意义重大。目前主要通过硅的纳米化、硅与金属的合金化、硅与碳材料的复合来改善硅材料的体积膨胀。
专利文献CN103078092A公开了一种锂离子电池硅碳(Si/C)复合负极材料的制备方法,该发明将硅源(刻蚀处理前或处理后)与石墨在第二类添加剂存在的条件下分散在溶剂中,控制温度将溶剂完全挥发后,得前驱体固体;并对前驱体固体进行无定形碳的包覆。该发明通过刻蚀制备的纳米硅比表面积大,难于在石墨表面得到均匀的分散,所以用该方法制备的硅碳材料由于硅团聚严重,无法解决硅膨胀引起的该材料循环性能差的问题。
申请号201310294027.1专利公开了一种锂离子电池硅碳负极材料的制备方法,所述方法通过分散纳米硅于石墨颗粒之间或者附着于石墨表面制备纳米硅/石墨复合体,然后对复合纳米硅/石墨复合体进行干燥包覆和高温碳化处理,制备出锂离子电池硅碳负极材料。该方法将分散介质蒸干过程中,分散剂无法在高固含量状态和干燥状态下发挥分散作用,纳米硅在干燥后仍然会重新团聚,难于抑制大颗粒硅的体积膨胀,且使用的粘结材料碳化后残炭率低,导致该纳米硅和石墨颗粒的结合强度低和电极材料循环性能较差。
申请号201310566652.7专利公开了一种石墨硅基复合锂离子电池负极材料,该发明先制备硅研磨液、高丙烯腈含量共聚高分子微球乳液和石墨分散液,再将其混合制得石墨/硅/高丙烯腈含量高分子微球的复合分散液;然后经喷雾干燥、热处理后,加入沥青进行熔融机械式捏和,最后经高温烧结、粉碎、过筛 制得石墨硅基复合锂离子电池负极材料。该方法采用高丙烯腈含量高分子微球作为热裂解碳源,残炭量高,混合均一,硅与石墨粘结牢固。但该方法将石墨与纳米硅通过喷雾干燥进行复合,在干燥复合过程中很难避免纳米硅的团聚。
发明内容
针对现有技术存在的问题,本发明的目的之一在于提供一种石墨硅基复合负极材料的制备方法,该方法先采用树脂类碳前驱体对纳米硅进行包覆,碳前驱体经过高温碳化后形成多孔结构,能有效缓解硅的体积膨胀效应,再对包覆碳化后的材料通过粉碎得到亚微米粉体,再与石墨、沥青类碳前驱体进行混合后,通过高温处理,冷却过筛,得到本发明石墨硅基复合负极材料。
一种石墨硅基复合负极材料的制备方法,具体制备步骤如下:
(1)将树脂类碳前驱体分散在溶剂中,加入纳米硅,然后超声分散,蒸发掉有机溶剂,在惰性气体保护下,高温碳化,得到材料A;
(2)将材料A通过粉碎,得到粒径D50介于0.1~1μm的亚微米级粉体B;
(3)将粉体B与石墨、沥青类碳前驱体进行固相混合,然后在惰性气体保护下,高温碳化,冷却过筛即可。
进一步,步骤(1)中树脂类碳前驱体是指糠醛树脂、环氧树脂、酚醛树脂、聚乙二醇、聚氯乙烯、聚乙烯醇缩丁醛、聚丙烯腈、聚丙烯酸中的1种或至少2种的组合。
进一步,步骤(1)中树脂类碳前驱体与纳米硅的比例为1:(0.05~0.15)。
进一步,步骤(1)中高温碳化的温度为650~850℃,升温速率为1~5℃/min,保温时间为0.5~3h。
进一步,步骤(2)粉碎是指通过球磨、机械粉碎或者气流粉碎方式中的一种或者两种以上的组合。
进一步,步骤(3)粉体B与石墨的重量比为(0.1~0.5):1,沥青类碳前驱体占粉体B与石墨总重量的10~30%。
进一步,步骤(3)中石墨的平均粒径为5~30μm,振实密度≥0.7g/cm3
进一步,步骤(3)中沥青类碳前驱是指煤沥青、石油沥青、改质沥青、中间相沥青、由沥青改质而得到的缩合多环多核芳香烃中的1种或至少2种的组合。
进一步,步骤(3)中沥青类碳前驱的粉体粒径D50≤3μm。
进一步,步骤(3)中高温碳化的温度为850~1000℃,升温速率为5~20℃/min,保温时间为0.5~4h。
树脂类碳前驱体碳化后所形成的多孔结构碳作为固定纳米硅的载体,利用树脂中有机小分子多的特性,在高温时,小分子从中溢出,形成微孔,纳米硅均匀镶嵌在微孔中,该方法可改善纳米硅颗粒在硅基复合负极材料中的分散性,缓解材料脱/嵌锂时的体积膨胀和收缩,增强了材料的结构稳定性,保证材料具有较高的导电率,提高材料的电化学性能及其循环稳定性。
再通过与石墨进行复合后,经过沥青包覆改性处理,解决了树脂类材料比表面积过大的缺点,避免了大的不可逆容量损失,最终所得的材料具有低的比表面积,良好的加工性能和高克比容量以及长周期循环等优点。
同时,本发明的方法操作简单、易于控制,生产成本低、适合工业化生产。
具体实施方式
为了更好地理解本发明,下面通过具体的实施例来具体说明本发明的技术方案。
实施例1
将环氧树脂分散在丙酮溶剂中,按环氧树脂:纳米硅=1:0.1的比例加入硅粉,然后超声分散,蒸发掉有机溶剂,在惰性气体保护下,以2℃/min的升温速率升至750℃,保温2h,利用气流粉碎将碳化后所得的粉体粉碎至D50介于0.1~1μm,再将粉体与石墨为0.3:1的重量比,同时加入粉体与石墨总重量的15%的石油沥青(D50=2.15μm)一起混合,在各组分混合均匀后,在惰性气体保护下,将粉体以10℃/min的升温速率升至850℃,保温3h,冷却至室温后,过筛即得本发明所制备的石墨硅基复合负极材料。
实施例2
将酚醛树脂分散在酒精溶剂中,按酚醛树脂:纳米硅=1:0.15的比例加入硅粉,然后超声分散,蒸发掉有机溶剂,在惰性气体保护下,以3℃/min的升温速率升至800℃,保温3h,利用球磨粉碎将碳化后所得的粉体粉碎至D50介于0.1~1μm,再将粉体与石墨为0.4:1的重量比,同时加入粉体与石墨总重量的20%的煤沥青(D50=2.15μm)一起混合,在各组分混合均匀后,在惰性气体保护下,将粉体以10℃/min的升温速率升至1000℃,保温0.5h,冷却至室温后,过筛即 得本发明所制备的石墨硅基复合负极材料。
实施例3
将聚乙二醇分散在去离子中,按聚乙二醇:纳米硅=1:0.05的比例加入硅粉,然后超声分散,蒸发掉有机溶剂,在惰性气体保护下,以5℃/min的升温速率升至850℃,保温1h,利用机械粉碎将碳化后所得的粉体粉碎至D50介于0.1~1μm,再将粉体与石墨为0.5:1的重量比,同时加入粉体与石墨总重量的30%的中间相沥青(D50=2.15μm)一起混合,在各组分混合均匀后,在惰性气体保护下,将粉体以15℃/min的升温速率升至900℃,保温1.5h,冷却至室温后,过筛即得本发明所制备的石墨硅基复合负极材料。
实施例4
将酚醛树脂分散在酒精溶剂中,按树脂:纳米硅=1:0.1的比例加入硅粉,然后超声分散,蒸发掉有机溶剂,在惰性气体保护下,以2℃/min的升温速率升至850℃,保温0.5h,利用气流粉碎将碳化后所得的粉体粉碎至D50介于0.1~1μm,再将粉体与石墨为0.25:1的重量比,同时加入粉体与石墨总重量的20%的改质沥青(D50=2.15μm)一起混合,在各组分混合均匀后,在惰性气体保护下,将粉体以5℃/min的升温速率升至850℃,保温2.5h,冷却至室温后,过筛即得本发明所制备的石墨硅基复合负极材料。
对比例1
实施例1中的单组份石墨。
对比例2
按照实施例1中的制备流程,区别在于未添加硅粉最终得到的负极材料。
半电池检测
为检验本发明方法制备的负极材料的电性能,用半电池测试方法进行测试,用以上实施例和比较例的负极材料:乙炔黑:PVDF(聚偏氟乙烯)=93:3:4(重量比),加适量NMP(N-甲基吡咯烷酮)调成浆状,涂布于铜箔上,经真空110℃干燥8小时制成负极片;以金属锂片为对电极,电解液为1mol/L LiPF6/EC+DEC+DMC=1:1:1,聚丙烯微孔膜为隔膜,组装成电池。充放电电压为1.0~2.5V,充放电速率为0.5C,对电池性能进行能测试,测试结果见表1。
全电池测试
用上实施例和比较例的负极材料:SP:SBR(固含量50%):CMC=94:2.5:1.5: 2(重量比),加适量去离子水混合均匀调成浆状,涂于铜箔上,在90℃下抽真空干燥;将LiCoO2粉末:SP:KS-6:PVDF=94:1.5:2:2.5(重量比),以NMP做溶剂混合均匀进行调浆后,涂于铝箔上,在100℃下抽真空干燥;将干燥后的正、负极极片经过辊压、裁片、卷绕、注液、封口、化成工序,制成18650圆柱电池,隔膜为Celgard2400,电解液为1M LiPF6/DMC:EC:DEC,使用电池检测装置进行循环性能的检测,测试结果见表1。
表1不同实施例和比较例中负极材料的性能比较
Figure PCTCN2016071693-appb-000001
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

  1. 一种石墨硅基复合负极材料的制备方法,具体制备步骤如下:
    (1)将树脂类碳前驱体分散在溶剂中,加入纳米硅,然后超声分散,蒸发掉有机溶剂,在惰性气体保护下,高温碳化,得到材料A;
    (2)将材料A通过粉碎,得到粒径D50介于0.1~1μm的亚微米级粉体B;
    (3)将粉体B与石墨、沥青类碳前驱体进行固相混合,然后在惰性气体保护下,高温碳化,冷却过筛即可。
  2. 根据权利要求1所述的一种石墨硅基复合负极材料的制备方法,其特征在于步骤(1)中树脂类碳前驱体是指糠醛树脂、环氧树脂、酚醛树脂、聚乙二醇、聚氯乙烯、聚乙烯醇缩丁醛、聚丙烯腈、聚丙烯酸中的1种或至少2种的组合。
  3. 根据权利要求1所述的一种石墨硅基复合负极材料的制备方法,其特征在于步骤(1)中树脂类碳前驱体与纳米硅的比例为1:(0.05~0.15)。
  4. 根据权利要求1所述的一种石墨硅基复合负极材料的制备方法,其特征在于步骤(1)中高温碳化的温度为650~850℃,升温速率为1~5℃/min,保温时间为0.5~3h。
  5. 根据权利要求1所述的一种石墨硅基复合负极材料的制备方法,其特征在于步骤(2)粉碎是指通过球磨、机械粉碎或者气流粉碎方式中的一种或者两种以上的组合。
  6. 根据权利要求1所述的一种石墨硅基复合负极材料的制备方法,其特征在于步骤(3)粉体B与石墨的重量比为(0.1~0.5):1,沥青类碳前驱体占粉体B与石墨总重量的10~30%。
  7. 根据权利要求1所述的一种石墨硅基复合负极材料的制备方法,其特征在于步骤(3)中石墨的平均粒径为5~30μm,振实密度≥0.7g/cm3
  8. 根据权利要求1所述的一种石墨硅基复合负极材料的制备方法,其特征在于步骤(3)中沥青类碳前驱是指煤沥青、石油沥青、改质沥青、中间相沥青、由沥青改质而得到的缩合多环多核芳香烃中的1种或至少2种的组合,沥青类碳前驱的粉体粒径D50≤3μm。
  9. 根据权利要求1所述的一种石墨硅基复合负极材料的制备方法,其特征在于步骤(3)中高温碳化的温度为850~1000℃,升温速率为5~20℃/min,保温时间为0.5~4h。
PCT/CN2016/071693 2015-07-10 2016-01-22 一种石墨硅基复合负极材料的制备方法 WO2017008494A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510406073.5 2015-07-10
CN201510406073.5A CN104916831A (zh) 2015-07-10 2015-07-10 一种石墨硅基复合负极材料的制备方法

Publications (1)

Publication Number Publication Date
WO2017008494A1 true WO2017008494A1 (zh) 2017-01-19

Family

ID=54085684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071693 WO2017008494A1 (zh) 2015-07-10 2016-01-22 一种石墨硅基复合负极材料的制备方法

Country Status (2)

Country Link
CN (1) CN104916831A (zh)
WO (1) WO2017008494A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108736007A (zh) * 2018-08-20 2018-11-02 赣州市瑞富特科技有限公司 一种高压实密度锂离子电池硅碳负极材料的制备方法
CN111180713A (zh) * 2020-02-10 2020-05-19 马鞍山科达普锐能源科技有限公司 一种锂离子电池用硅碳负极材料及制备方法
CN111668472A (zh) * 2020-06-28 2020-09-15 贝特瑞新材料集团股份有限公司 硅基复合负极材料及其制备方法和锂离子电池
CN112520719A (zh) * 2020-11-16 2021-03-19 阜阳申邦新材料技术有限公司 一种聚酰亚胺改性碳硅负极材料及其制备方法
CN112768644A (zh) * 2020-04-16 2021-05-07 西安越遴新材料研究院有限公司 一种利用改性沥青包覆硅碳复合负极材料界面的修饰方法
CN113582171A (zh) * 2021-07-19 2021-11-02 上海纳米技术及应用国家工程研究中心有限公司 一种回收锂离子电池石墨负极的方法
CN113772682A (zh) * 2021-08-30 2021-12-10 上海纳米技术及应用国家工程研究中心有限公司 用于提升SiOx@C与石墨复合负极材料倍率循环性能的方法
CN113800510A (zh) * 2021-09-07 2021-12-17 广东凯金新能源科技股份有限公司 一种石墨负极材料及其制备方法
CN114050243A (zh) * 2021-11-11 2022-02-15 博尔特新材料(银川)有限公司 氮掺杂协同导电聚合物改性硅碳复合负极材料及制备方法
CN114094104A (zh) * 2021-11-22 2022-02-25 青岛科技大学 一种海胆状硅碳复合材料及其制备方法和应用
CN114105133A (zh) * 2021-10-19 2022-03-01 湖南金硅科技有限公司 一种石墨-硅/硅氧化物-碳复合材料及其制备方法和应用
CN114144909A (zh) * 2021-03-31 2022-03-04 宁德新能源科技有限公司 一种负极极片、包含该负极极片的电化学装置和电子装置
CN114335456A (zh) * 2021-12-06 2022-04-12 桂林电子科技大学 快充型复合负极材料及其制备方法与应用
CN114744178A (zh) * 2022-04-29 2022-07-12 中国有色桂林矿产地质研究院有限公司 表面具有碳包覆和偏磷酸铝复合修饰层的纳米硅-石墨复合负极材料及其制备方法
CN114824232A (zh) * 2022-05-30 2022-07-29 常州大学 一种氮掺杂富含多孔的硅碳负极制备方法
CN114976008A (zh) * 2022-06-10 2022-08-30 洛阳联创锂能科技有限公司 一种锂离子电池用低膨胀硅碳负极材料及其制备方法
CN117276523A (zh) * 2023-06-20 2023-12-22 湖北斯诺新材料科技有限公司 一种硅碳复合材料的制备方法及其应用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916831A (zh) * 2015-07-10 2015-09-16 田东 一种石墨硅基复合负极材料的制备方法
CN106532009B (zh) * 2016-12-21 2021-07-06 上海杉杉科技有限公司 一种高容量锂离子电池硬炭复合负极材料的制备方法
CN107230781A (zh) * 2017-05-31 2017-10-03 成都硅宝科技股份有限公司 一种三维球状硅碳复合负极材料及其制备方法
CN107611369A (zh) * 2017-08-11 2018-01-19 天津爱敏特电池材料有限公司 一种锂离子电池用硅碳负极材料及其制备方法
CN109980190B (zh) * 2017-12-28 2022-05-10 上海杉杉科技有限公司 一种通过催化作用制备硅-碳纳米管负极材料的方法
CN108987692B (zh) * 2018-07-09 2021-10-22 浙江工业职业技术学院 一种介孔结构的碳硅复合材料的制备方法
CN108807936A (zh) * 2018-07-09 2018-11-13 浙江工业职业技术学院 一种锂离子电池纳米硅多孔碳复合负极材料
CN112713274B (zh) * 2020-12-29 2022-10-21 宁波杉杉新材料科技有限公司 纳米硅碳复合材料、制备方法、应用和锂离子电池
CN115448307A (zh) * 2022-09-13 2022-12-09 季华实验室 一种膨胀石墨基碳复合材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996645A (zh) * 2006-01-04 2007-07-11 Ls电线有限公司 二次电池用含碳电极材料及其制造方法以及采用该方法制造的二次电池
CN102394288A (zh) * 2011-11-24 2012-03-28 深圳市贝特瑞新能源材料股份有限公司 锂离子电池用的硅碳负极材料及其制备方法
CN103311514A (zh) * 2013-06-05 2013-09-18 深圳市斯诺实业发展有限公司永丰县分公司 一种改性锂离子电池石墨负极材料的制备方法
CN104916831A (zh) * 2015-07-10 2015-09-16 田东 一种石墨硅基复合负极材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101244814A (zh) * 2007-02-13 2008-08-20 深圳市比克电池有限公司 锂电池硅碳负极材料制备方法及制得的硅碳负极材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996645A (zh) * 2006-01-04 2007-07-11 Ls电线有限公司 二次电池用含碳电极材料及其制造方法以及采用该方法制造的二次电池
CN102394288A (zh) * 2011-11-24 2012-03-28 深圳市贝特瑞新能源材料股份有限公司 锂离子电池用的硅碳负极材料及其制备方法
CN103311514A (zh) * 2013-06-05 2013-09-18 深圳市斯诺实业发展有限公司永丰县分公司 一种改性锂离子电池石墨负极材料的制备方法
CN104916831A (zh) * 2015-07-10 2015-09-16 田东 一种石墨硅基复合负极材料的制备方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108736007A (zh) * 2018-08-20 2018-11-02 赣州市瑞富特科技有限公司 一种高压实密度锂离子电池硅碳负极材料的制备方法
CN111180713A (zh) * 2020-02-10 2020-05-19 马鞍山科达普锐能源科技有限公司 一种锂离子电池用硅碳负极材料及制备方法
CN111180713B (zh) * 2020-02-10 2022-11-01 马鞍山科达普锐能源科技有限公司 一种锂离子电池用硅碳负极材料及制备方法
CN112768644A (zh) * 2020-04-16 2021-05-07 西安越遴新材料研究院有限公司 一种利用改性沥青包覆硅碳复合负极材料界面的修饰方法
CN111668472A (zh) * 2020-06-28 2020-09-15 贝特瑞新材料集团股份有限公司 硅基复合负极材料及其制备方法和锂离子电池
CN112520719A (zh) * 2020-11-16 2021-03-19 阜阳申邦新材料技术有限公司 一种聚酰亚胺改性碳硅负极材料及其制备方法
CN112520719B (zh) * 2020-11-16 2022-10-18 湖北斯诺新材料科技有限公司 一种聚酰亚胺改性碳硅负极材料及其制备方法
CN114144909A (zh) * 2021-03-31 2022-03-04 宁德新能源科技有限公司 一种负极极片、包含该负极极片的电化学装置和电子装置
CN113582171A (zh) * 2021-07-19 2021-11-02 上海纳米技术及应用国家工程研究中心有限公司 一种回收锂离子电池石墨负极的方法
CN113582171B (zh) * 2021-07-19 2023-07-18 上海纳米技术及应用国家工程研究中心有限公司 一种回收锂离子电池石墨负极的方法
CN113772682A (zh) * 2021-08-30 2021-12-10 上海纳米技术及应用国家工程研究中心有限公司 用于提升SiOx@C与石墨复合负极材料倍率循环性能的方法
CN113800510A (zh) * 2021-09-07 2021-12-17 广东凯金新能源科技股份有限公司 一种石墨负极材料及其制备方法
CN114105133A (zh) * 2021-10-19 2022-03-01 湖南金硅科技有限公司 一种石墨-硅/硅氧化物-碳复合材料及其制备方法和应用
CN114105133B (zh) * 2021-10-19 2023-09-05 湖南金硅科技有限公司 一种石墨-硅/硅氧化物-碳复合材料及其制备方法和应用
CN114050243B (zh) * 2021-11-11 2023-10-24 博尔特新材料(银川)有限公司 氮掺杂协同导电聚合物改性硅碳复合负极材料及制备方法
CN114050243A (zh) * 2021-11-11 2022-02-15 博尔特新材料(银川)有限公司 氮掺杂协同导电聚合物改性硅碳复合负极材料及制备方法
CN114094104A (zh) * 2021-11-22 2022-02-25 青岛科技大学 一种海胆状硅碳复合材料及其制备方法和应用
CN114335456A (zh) * 2021-12-06 2022-04-12 桂林电子科技大学 快充型复合负极材料及其制备方法与应用
CN114335456B (zh) * 2021-12-06 2024-05-17 桂林电子科技大学 快充型复合负极材料及其制备方法与应用
CN114744178A (zh) * 2022-04-29 2022-07-12 中国有色桂林矿产地质研究院有限公司 表面具有碳包覆和偏磷酸铝复合修饰层的纳米硅-石墨复合负极材料及其制备方法
CN114824232A (zh) * 2022-05-30 2022-07-29 常州大学 一种氮掺杂富含多孔的硅碳负极制备方法
CN114824232B (zh) * 2022-05-30 2023-10-03 常州大学 一种氮掺杂富含多孔的硅碳负极制备方法
CN114976008A (zh) * 2022-06-10 2022-08-30 洛阳联创锂能科技有限公司 一种锂离子电池用低膨胀硅碳负极材料及其制备方法
CN117276523A (zh) * 2023-06-20 2023-12-22 湖北斯诺新材料科技有限公司 一种硅碳复合材料的制备方法及其应用

Also Published As

Publication number Publication date
CN104916831A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2017008494A1 (zh) 一种石墨硅基复合负极材料的制备方法
WO2017206544A1 (zh) 一种锂离子电池人造石墨负极材料的制备方法
WO2017121069A1 (zh) 一种锂离子动力电池用硬碳负极材料的制备及其改性方法
WO2016169149A1 (zh) 一种石墨细粉作为锂离子电池负极材料的循环利用方法
WO2022121136A1 (zh) 一种高倍率锂离子电池人造石墨负极材料及其制备方法
WO2017008606A1 (zh) 一种石墨锡基复合负极材料的制备方法
US10847789B2 (en) Negative electrode material for secondary battery, method for preparing the same, and battery containing the same
CN109616638B (zh) 一种球形核壳结构混合石墨@硬碳复合材料及其制备方法和应用
CN105098186A (zh) 一种热解无定型碳材料及其制备方法和用途
JP2004127913A (ja) リチウム二次電池
KR20040012541A (ko) 리튬이차전지
KR101609459B1 (ko) 탄소-실리콘 복합체 및 이의 제조방법
CN109037603B (zh) 一种新型的沥青基球形多孔掺杂改性硬碳负极材料的方法
CN109360962B (zh) 一种锂电池用高稳定性硅碳负极材料及其制备方法
WO2016202164A1 (zh) 一种炭/石墨/锡复合负极材料的制备方法
WO2017024891A1 (zh) 一种锂离子动力电池负极材料的制备方法
WO2017008624A1 (zh) 一种钛酸锂硅基复合负极材料的制备方法
WO2017024775A1 (zh) 一种改性钛酸锂负极材料的制备方法
WO2017024897A1 (zh) 一种改性锂电池负极材料的制备方法
WO2016021736A1 (ja) 非水電解質二次電池負極用炭素質材料
CN109148865B (zh) 锂或钠离子电池硬炭复合碳微球负极材料的制备方法
WO2023159863A1 (zh) 一种负极材料及其制备方法、负极片和电池
CN114388755A (zh) 一种锂离子电池硅碳负极材料及其制备方法
CN104485457B (zh) 一种新型锂离子电池负极材料的制备方法
JP3091944B2 (ja) リチウムイオン二次電池負極用カーボン粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16823642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16823642

Country of ref document: EP

Kind code of ref document: A1