WO2017024891A1 - 一种锂离子动力电池负极材料的制备方法 - Google Patents

一种锂离子动力电池负极材料的制备方法 Download PDF

Info

Publication number
WO2017024891A1
WO2017024891A1 PCT/CN2016/085913 CN2016085913W WO2017024891A1 WO 2017024891 A1 WO2017024891 A1 WO 2017024891A1 CN 2016085913 W CN2016085913 W CN 2016085913W WO 2017024891 A1 WO2017024891 A1 WO 2017024891A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
negative electrode
power battery
ion power
composite coating
Prior art date
Application number
PCT/CN2016/085913
Other languages
English (en)
French (fr)
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2017024891A1 publication Critical patent/WO2017024891A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of batteries, in particular to a method for preparing a negative electrode material for a lithium ion power battery.
  • the inner layer of the negative electrode material prepared by the method is lithium titanate, and the outer layer is a composite coating layer formed by the combination of asphalt and resin.
  • Power battery refers to the battery used in electric vehicles, including lithium ion batteries, lead acid batteries, fuel cells, etc. Among them, lithium ion batteries have higher specific energy, higher specific power, less self-discharge, long service life and good safety. Other advantages have become the focus of current development in various countries.
  • the graphite material as the anode material of the lithium ion battery has the advantages of low lithium insertion/deintercalation potential, suitable reversible capacity, abundant resources, and low price, and is an ideal anode material for lithium ion batteries. However, it also has the disadvantages of low initial discharge efficiency, poor cycle performance, and high selectivity to the electrolyte, which limits the application of graphite materials.
  • Li 4 Ti 5 O 12 is a new type of negative electrode material for lithium ion secondary batteries. Compared with other commercial materials, Li 4 Ti 5 O 12 has the advantages of good cycle performance, no reaction with electrolyte, high safety performance, and stable charge and discharge platform. It is one of the most excellent anode materials for lithium-ion batteries that has received much attention in recent years. Compared with carbon negative electrode materials, lithium titanate has many advantages.
  • the deintercalation of lithium ions in lithium titanate is reversible, and the crystal form of lithium ion in the process of inserting or extracting lithium titanate is not Changed, volume change is less than 1%, so it is called "zero strain material", which can avoid the structure damage caused by the back and forth expansion of the electrode material in the charge and discharge cycle, thereby improving the cycle performance and service life of the electrode, reducing the The number of cycles increases and the specific capacity is greatly attenuated, which has better cycle performance than the carbon negative electrode; however, since lithium titanate is an insulating material, its electrical conductivity is low, resulting in the rate performance in the application of lithium battery. The problem is poor. At the same time, the theoretical specific capacity of lithium titanate material is 175mAh/g, the actual specific capacity is more than 160mAh/g, and it has the disadvantages of low gram capacity. Therefore, it is necessary to modify lithium titanate.
  • the pitch pyrolysis carbon has a smaller specific surface area than the resin pyrolytic carbon coated graphite, and affinity with graphite. If the structure is firmer, the asphalt coating will be deformed by melting during the heating process. If the amount is too much, the coated graphite particles will be bonded to each other. If the amount is too small, the coating will be uneven, and the heating process will be easy to expand. , affecting the electrical properties of graphite.
  • Chinese patent CN101162775A uses a liquid phase method to simultaneously dissolve asphalt and resin, then adds graphite to mix, then distills off the solvent, and finally heat treatment, coating a mixture of asphalt and one or more resins on the surface of graphite to improve The cycle efficiency and cycle stability of graphite as well as rate characteristics and compressibility.
  • This method also has some shortcomings in practical applications.
  • the liquid phase method requires the use of organic solvents, which is easy to cause pollution, and the requirements for the dissolved asphalt are also high (the quinoline insoluble content is not more than 12%), and the evaporation is recovered. Solvents require complex equipment and are prone to over-investment, which makes it difficult to actually use them in industrial production.
  • An object of the present invention is to provide a method for preparing a negative electrode material for a lithium ion power battery.
  • the inner layer of the negative electrode material prepared by the method is lithium titanate
  • the outer layer is a composite coating layer formed by a combination of asphalt and resin.
  • the asphalt charcoal and the resin charcoal are pinned together and insufficiently complementary, which improves the overall electrical properties of the lithium titanate.
  • a method for preparing a negative electrode material for a lithium ion power battery the specific steps are as follows:
  • the uniform powder obtained in the step (3) is heated to a temperature of 1 to 10 ° C / min to 800 ⁇ 1100 ° C under the protection of an inert gas, and then kept for 1 to 5 hours, naturally cooled, after cooling
  • the sieve obtains the anode material of the lithium ion power battery.
  • the asphalt includes one or more mixtures of coal tar pitch, petroleum pitch, modified pitch, mesophase pitch, and condensed polycyclic polynuclear aromatic hydrocarbon obtained by upgrading the pitch, and the softening point is Above 100 °C.
  • the resin is a thermoplastic resin, and includes one or a mixture of one of a furan resin, a urea resin, a pyrimidine resin, a phenol resin, an epoxy resin, and a polyoxymethylene acrylate resin.
  • the composite coating material ultrafine powder has a particle diameter of 3 ⁇ m or less.
  • the inert gas is N2 or Ar.
  • the solid phase coating method has the advantages of simple process, low manufacturing cost, short manufacturing cycle, and the like;
  • the invention adopts the composite of the resin-based hard carbon precursor and the asphalt-based soft carbon precursor as the coating material, and has obvious superiority, the asphalt carbon and the resin carbon are pinned together, the complementation is insufficient, and the titanic acid is improved.
  • the mesophase pitch (softening point 250 ° C) and the phenolic resin (softening point 110 ° C) were added together in a ratio of 1:0.5 (35 Kg and 17.5 Kg) to a 100 L kneading kettle, and the heating was started to be heated to 300 ° C in the asphalt. After the resin is melted into a liquid, the stirring is started, and the temperature is lowered after 2 hours, and after cooling, a composite coating material block is obtained; the composite coating material block is coarsely crushed by an ordinary pulverizer, and then the airflow is used.
  • the pulverizer is subjected to ultrafine pulverization to obtain an ultrafine powder of a composite coating material having an average particle diameter D50 of 2.1 ⁇ m; and the ultrafine powder of the composite coating material and lithium titanate are mixed at a ratio of 1:9, and the mixture is mixed.
  • the uniform powder was heated to 1000 ° C at a rate of 5 ° C / min, kept for 3 hours, and then cooled to room temperature, and sieved to obtain a negative electrode material of the lithium ion power battery of the present invention.
  • the mesophase pitch (softening point 250 ° C) and the phenolic resin (softening point 110 ° C) were added together in a ratio of 1:1 (30 Kg and 30 Kg) to a 100 L kneading kettle, and the heating was started to be heated to 300 ° C in the asphalt and After the resin is melted into a liquid, stirring is started, and the temperature is lowered after 2 hours, and after cooling, a composite coating material block is obtained; the composite coating material block is coarsely crushed by an ordinary pulverizer, and then pulverized by air flow. The machine was subjected to ultrafine pulverization to obtain an ultrafine powder of a composite coating material having an average particle diameter D50 of 2.1 ⁇ m.
  • the ultrafine powder of the composite coating material and the lithium titanate are mixed at a ratio of 1:10, and the uniformly mixed powder is heated to 1100 ° C at a rate of 5 ° C / min, kept for 1 hour, and then cooled to room temperature.
  • the negative electrode material of the lithium ion power battery of the present invention is obtained by sieving.
  • Coal tar pitch (softening point 120 ° C) and phenolic resin (softening point 110 ° C) were added together in a ratio of 1:0.7 (35 Kg and 24.5 Kg) to a 100 L kneading kettle, and the heating was started to be heated to 150 ° C in asphalt and After the resin is melted into a liquid, stirring is started, and the temperature is lowered after 2 hours, and after cooling, a composite coating material block is obtained; the composite coating material block is coarsely crushed by an ordinary pulverizer, and then deep cold is used.
  • the pulverizer is subjected to ultrafine pulverization to obtain an ultrafine powder of a composite coating material having an average particle diameter D50 of 2.1 ⁇ m; and the ultrafine powder of the composite coating material and lithium titanate are mixed at a ratio of 1:9, and the mixture is mixed.
  • the uniform powder was heated to 1000 ° C at a rate of 5 ° C / min, kept for 2 hours, and then cooled to room temperature, and sieved to obtain a lithium ion power battery negative electrode material of the present invention.
  • the mesophase pitch (softening point 250 ° C) was ultra-finely pulverized by a jet mill to obtain an average particle diameter.
  • D50 is a 2.1 ⁇ m asphalt coating material ultrafine powder; then the asphalt coating material ultrafine powder and lithium titanate are mixed at a ratio of 1:9, and the uniformly mixed powder is at a rate of 10 ° C / min.
  • the temperature was raised to 1050 ° C, and the temperature was kept for 1.5 hours, and then cooled to room temperature, and sieved to obtain an asphalt-coated lithium titanate negative electrode material.
  • the phenol resin (softening point of 110 ° C) was ultra-finely pulverized by a deep-cooling pulverizer to obtain an ultrafine powder of a resin-coated material having an average particle diameter D50 of 2.1 ⁇ m. Further, the ultrafine powder of the resin coating material and the lithium titanate are mixed at a ratio of 1:9, and the uniformly mixed powder is heated to 1050 ° C at a rate of 5 ° C / min, kept for 2 hours, and then cooled to room temperature. The resin-coated lithium titanate negative electrode material was obtained by sieving.
  • Table 1 compares the performance of negative electrode materials in different examples and comparative examples.
  • the 18650 type cylindrical finished battery was used for the detection of rate charge and discharge.
  • Table 2 is a comparison of the rate performance of the anode materials in different examples and comparative examples.

Abstract

一种锂离子动力电池负极材料的制备方法,具体步骤如下:将沥青和树脂加热升温至熔化成液体,然后不断搅拌混合均匀后冷却得到复合包覆材料块体;将复合包覆材料块体进行粗碎后和超细粉碎,得到复合包覆材料超细粉体;将复合包覆材料超细粉体和钛酸锂充分混合得均匀粉体;将均匀粉体在惰性气体的保护下,升温,保温,再自然降温,冷却后过筛即得到锂离子动力电池负极材料。将包覆材料前驱体复合处理后,再包覆钛酸锂;保证了多种包覆材料前驱体混合的均匀性,同时不需要任何溶剂,对环境友好;另外,工艺简单,成本低,易工业化生产。

Description

一种锂离子动力电池负极材料的制备方法 技术领域
本发明涉及电池领域,具体为一种锂离子动力电池负极材料的制备方法,该方法制备的负极材料内层为钛酸锂,外层是由沥青和树脂共同形成的复合包覆层。
背景技术
随着汽车行业的发展,石油、天然气等不可再生石化燃料的耗竭日益受到关注,空气污染和室温效应也成为全球性的问题。为解决能源问题,实现低碳环保,基于目前能源技术的发展水平,电动汽车技术逐渐成为全球经济发展的重点方向,美国、日本、德国、中国等国家相继限制燃油车使用,大力发展电动车。作为电动汽车的核心部件——动力电池也迎来了大好的发展机遇。动力电池是指应用于电动车的电池,包括锂离子电池、铅酸电池、燃料电池等,其中,锂离子电池因具有比能量高、比功率大、自放电少、使用寿命长及安全性好等优点,已成为目前各国发展的重点。
而作为锂离子电池负极材料的石墨类材料具有较低的锂嵌入/脱嵌电位、合适的可逆容量且资源丰富、价格低廉等优点,是比较理想的锂离子电池负极材料。但它也存在首次放电效率低、循环性能差、对电解液选择性高等缺点,使石墨材料应用受到限制。
Li4Ti5O12作为一种新型的锂离子二次电池负极材料,与其它商业化的材料相比,具有循环性能好、不与电解液反应、安全性能高、充放电平台平稳等优点,是近几年来备受关注的最优异的锂离子电池负极材料之一。与碳负电极材料相比,钛酸锂有很多的优势,其中,锂离子在钛酸锂中的脱嵌是可逆的,而且锂离子在嵌入或脱出钛酸锂的过程中,其晶型不发生变化,体积变化小于1%,因此被称为“零应变材料”,能够避免充放电循环中由于电极材料的来回伸缩而导致结构的破坏,从而提高电极的循环性能和使用寿命,减少了随循环次数增加而带来比容量大幅度的衰减,具有比碳负极更优良的循环性能;但是,由于钛酸锂是一种绝缘材料,其电导率低,从而导致在锂电中的应用存在倍率性能较差的问题,同时钛酸锂材料理论比容量为175mAh/g,实际比容量大于160mAh/g,具有克容量较低等缺点,因此,对于钛酸锂进行改性是十分必要的。
目前对材料的包覆改性处理中,均只单独包覆树脂类硬炭前躯体或者是沥青类软炭前躯体。中国专利CN101604743A和CN1224251A等采用树脂类作为包覆材料,主要优点是树脂在低温下流动性好,不仅能包覆表面,而且很容易通过石墨内的微孔渗入到石墨颗粒内部,对提高石墨颗粒的振实密度和电子电导率有益,还可以通过加热、引入催化剂或紫外线照射等方法固化,树脂热解过程中不会熔化变形,也不会产生明显膨胀,但也存在一些问题,主要有:树脂类材料和石墨的亲和力较差,因此他们热解得到的炭材料和石墨结合不牢固,由树脂热解得到的炭材料得率偏低,具有脆性,树脂热解过程中挥发份多,比表面积偏高,树脂的粘结力较强,易于造成包覆颗粒粘接在一起,热处理后粉碎时易造成包覆层的破坏。以上这些问题,影响了树脂包覆石墨材料的循环效率、循环稳定性和石墨电极的压缩性。
中国专利CN96198348.5和CN03120199.6等,采用沥青、石油焦油、煤焦油或它们的混合物包覆石墨,沥青热解炭比树脂热解炭包覆石墨的比表面积小,和石墨的亲合性要好,结构更牢固,但沥青包覆在加热过程中因熔化而变形,用量过多也易造成包覆石墨颗粒的相互粘接,用量过少易造成包覆不均匀,并且加热过程中易于膨胀,影响石墨的电性能。
中国专利CN101162775A采用液相法将沥青和树脂同时溶解后,再加入石墨混合,然后蒸出溶剂,最后进行热处理,将沥青和一种或一种以上树脂形成的混合物包覆在石墨表面,来提高石墨的循环效率和循环稳定性以及倍率特性和可压缩性能。但是该方法在实际应用中也有一些不足,采用液相法需要使用有机溶剂,易造成污染,同时对溶解物沥青的要求也很高——(喹啉不溶物含量不大于12%),蒸发回收溶剂需要复杂的设备,易造成投资过大,这些导致了难以实际应用于工业化生产中。
发明内容
本发明的目的在于提供一种锂离子动力电池负极材料的制备方法,该方法制备的负极材料内层为钛酸锂,外层是由沥青和树脂共同形成的复合包覆层。沥青炭和树脂炭相互钉扎在一起,互补不足,提高了钛酸锂的综合电性能。
本发明为解决其技术问题采用的技术方案是:
一种锂离子动力电池负极材料的制备方法,具体步骤如下:
(1)制备复合包覆材料块体:将沥青和树脂按重量比为1:0.5~1加入到具有加热和搅拌装置的捏合釜中,加热升温至沥青和树脂均熔化成液体,然后不断搅拌,混合均匀后停止加热,冷却得到复合包覆材料块体;
(2)制备复合包覆材料超细粉体:将步骤(1)制备的复合包覆材料块体进行粗碎后,再通过气流粉碎机或深冷粉碎机进行超细粉碎,得到平均粒径在3μm以下的复合包覆材料超细粉体;
(3)混合:将步骤(2)制备的复合包覆材料超细粉体和钛酸锂按重量比为5~20:100充分混合得均匀粉体;
(4)热处理:将步骤(3)得的均匀粉体在惰性气体的保护下,以1~10℃/min的速度升温至800~1100℃,再保温1~5h,自然降温,冷却后过筛即得到锂离子动力电池负极材料。
本发明中,所述的沥青包括煤沥青、石油沥青、改质沥青、中间相沥青、由沥青改质而得到的缩合多环多核芳香烃中的一种或一种以上的混合物,软化点在100℃以上。
本发明中,所述的树脂为热塑性树脂,包括呋喃树脂、脲醛树脂、嘧胺树脂、酚醛树脂、环氧树脂和聚甲醛丙烯酸甲酯树脂中的一种或一种以上的混合物。
本发明中,所述的复合包覆材料超细粉体的粒径在3μm以下。
本发明中,所述的惰性气体为N2或Ar。
与现有技术,本发明的有益效果是:
(1)通过固相包覆法,具有工艺简单、制造成本低、制成周期短等优点;
(2)本发明采用树脂类硬炭前躯体和沥青类软炭前躯体复合后作为包覆材料,具有明显的优越性,沥青炭和树脂炭相互钉扎在一起,互补不足,提高了钛酸锂的综合电性能;
(3)通过复合材料包覆处理,可以避免钛酸锂和电解液直接接触导致气胀而对锂电池造成安全隐患,同时有利于材料性能的稳定。
具体实施方式
为了使本发明的技术手段、创作特征、工作流程、使用方法达成目的与功效易于明白了解,下面进一步阐述本发明。
实施例1
将中间相沥青(软化点250℃)和酚醛树脂(软化点110℃)按照1:0.5(35Kg和17.5Kg)的比例一起加入到在100L的捏合釜中,开始升温加热到300℃,在沥青和树脂均熔化成液体后,开始搅拌,并维持2小时后开始降温,待冷却后,得到复合包覆材料块体;将复合包覆材料块体用普通粉碎机进行粗碎后,再采用气流粉碎机进行超细粉碎,得到平均粒径D50为2.1μm的复合包覆材料超细粉体;再将复合包覆材料超细粉体与钛酸锂按照1:9的比例进行混合,将混合均匀的粉体以5℃/min的速率升温至1000℃,保温3小时,然后冷却至室温,经筛分得到本发明的锂离子动力电池负极材料。
实施例2
将中间相沥青(软化点250℃)和酚醛树脂(软化点110℃)按照1:1(30Kg和30Kg)的比例一起加入到在100L的捏合釜中,开始升温加热到300℃,在沥青和树脂均熔化成液体后,开始搅拌,并维持2小时后开始降温,待冷却后,得到复合包覆材料块体;将复合包覆材料块体用普通粉碎机进行粗碎后,再采用气流粉碎机进行超细粉碎,得到平均粒径D50为2.1μm的复合包覆材料超细粉体。再将复合包覆材料超细粉体与钛酸锂按照1:10的比例进行混合,将混合均匀的粉体以5℃/min的速率升温至1100℃,保温1小时,然后冷却至室温,经筛分得到本发明的锂离子动力电池负极材料。
实施例3
将煤沥青(软化点120℃)和酚醛树脂(软化点110℃)按照1:0.7(35Kg和24.5Kg)的比例一起加入到在100L的捏合釜中,开始升温加热到150℃,在沥青和树脂均熔化成液体后,开始搅拌,并维持2小时后开始降温,待冷却后,得到复合包覆材料块体;将复合包覆材料块体用普通粉碎机进行粗碎后,再采用深冷粉碎机进行超细粉碎,得到平均粒径D50为2.1μm的复合包覆材料超细粉体;再将复合包覆材料超细粉体与钛酸锂按照1:9的比例进行混合,将混合均匀的粉体以5℃/min的速率升温至1000℃,保温2小时,然后冷却至室温,经筛分得到本发明的锂离子动力电池负极材料。
对比例1
将中间相沥青(软化点250℃)采用气流粉碎机进行超细粉碎,得到平均粒径 D50为2.1μm的沥青包覆材料超细粉体;再将沥青包覆材料超细粉体与钛酸锂按照1:9的比例进行混合,将混合均匀的粉体以10℃/min的速率升温至1050℃,保温1.5小时,然后冷却至室温,经筛分得到沥青包覆的钛酸锂负极材料。
对比例2
将酚醛树脂(软化点110℃)采用深冷粉碎机进行超细粉碎,得到平均粒径D50为2.1μm的树脂包覆材料超细粉体。再将树脂包覆材料超细粉体与钛酸锂按照1:9的比例进行混合,将混合均匀的粉体以5℃/min的速率升温至1050℃,保温2小时,然后冷却至室温,经筛分得到树脂包覆的钛酸锂负极材料。
对比例3
未包覆的钛酸锂直接进行电性能测试。
电化学性能测试
为检验本发明方法制备的锂离子动力电池负极材料的性能,用半电池测试方法进行测试,用以上实施例和比较例的负极材料:乙炔黑:PVDF(聚偏氟乙烯)=93:3:4(重量比),加适量NMP(N-甲基吡咯烷酮)调成浆状,涂布于铜箔上,经真空110℃干燥8小时制成负极片;以金属锂片为对电极,电解液为1mol/L LiPF6/EC+DEC+DMC=1:1:1,聚丙烯微孔膜为隔膜,组装成电池。充放电电压为1.0~2.5V,充放电速率为0.2C,对电池性能进行能测试,测试结果见表1。
表1为不同实施例和比较例中负极材料的性能比较
Figure PCTCN2016085913-appb-000001
为了检测本发明的负极材料在动力电池方面的倍率性能,采用制备成18650型圆柱成品电池进行倍率充放电的检测。
用上实施例和比较例的负极材料:SP:SBR(固含量50%):CMC=94:2.5:1.5:2(重量比),加适量去离子水混合均匀调成浆状,涂于铜箔上,在90℃下抽真空干燥;将LiFePO4粉末:SP:KS-6:PVDF=92:3.5:2:2.5(重量比),以NMP做溶剂混合均匀进行调浆后,涂于铝箔上,在100℃下抽真空干燥;将干燥后的正、负极极片经过辊压、裁片、卷绕、注液、封口、化成工序,制成磷酸铁锂动力型18650圆柱电池,隔膜为Celgard2400,电解液为1M LiPF6/DMC:EC:DEC,使用动力电池检测装置进行倍率性能的检测,测试结果见表2。
表2为不同实施例和比较例中负极材料的倍率性能比较
Figure PCTCN2016085913-appb-000002
以上显示和描述了本发明的基本原理、主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明的要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

  1. 一种锂离子动力电池负极材料的制备方法,其特征是:具体步骤如下:
    (1)制备复合包覆材料块体:将沥青和树脂按重量比为1:0.5~1加入到具有加热和搅拌装置的捏合釜中,加热升温至沥青和树脂均熔化成液体,然后不断搅拌,混合均匀后停止加热,冷却得到复合包覆材料块体;
    (2)制备复合包覆材料超细粉体:将步骤(1)制备的复合包覆材料块体进行粗碎后,再通过气流粉碎机或深冷粉碎机进行超细粉碎,得到平均粒径在3μm以下的复合包覆材料超细粉体;
    (3)混合:将步骤(2)制备的复合包覆材料超细粉体和钛酸锂按重量比为5~20:100充分混合得均匀粉体;
    (4)热处理:将步骤(3)得的均匀粉体在惰性气体的保护下,以1~10℃/min的速度升温至800~1100℃,再保温1~5h,自然降温,冷却后过筛即得到锂离子动力电池负极材料。
  2. 根据权利要求1所述的一种锂离子动力电池负极材料的制备方法,其特征是:步骤(1)中所述的沥青包括煤沥青、石油沥青、改质沥青、中间相沥青、由沥青改质而得到的缩合多环多核芳香烃中的一种或一种以上的混合物,软化点在100℃以上。
  3. 根据权利要求1所述的一种锂离子动力电池负极材料的制备方法,其特征是:步骤(1)中所述的树脂为热塑性树脂,包括呋喃树脂、脲醛树脂、嘧胺树脂、酚醛树脂、环氧树脂和聚甲醛丙烯酸甲酯树脂中的一种或一种以上的混合物。
  4. 根据权利要求1所述的一种锂离子动力电池负极材料的制备方法,其特征是:步骤(2)中所述的复合包覆材料超细粉体的平均粒径在3μm以下。
  5. 根据权利要求1所述的一种锂离子动力电池负极材料的制备方法,其特征是:步骤(4)中所述的惰性气体为N2或Ar。
PCT/CN2016/085913 2015-08-07 2016-06-15 一种锂离子动力电池负极材料的制备方法 WO2017024891A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510480856.8A CN105070899A (zh) 2015-08-07 2015-08-07 一种锂离子动力电池负极材料的制备方法
CN201510480856.8 2015-08-07

Publications (1)

Publication Number Publication Date
WO2017024891A1 true WO2017024891A1 (zh) 2017-02-16

Family

ID=54500218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085913 WO2017024891A1 (zh) 2015-08-07 2016-06-15 一种锂离子动力电池负极材料的制备方法

Country Status (2)

Country Link
CN (1) CN105070899A (zh)
WO (1) WO2017024891A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602045A (zh) * 2017-02-18 2017-04-26 山东六聚新材料科技有限公司 气力流态化包覆装置及锂离子电池负极材料包覆工艺
CN110323426A (zh) * 2019-06-27 2019-10-11 桑顿新能源科技(长沙)有限公司 包覆材料及制备方法、负极材料及制备方法、锂离子电池
CN111785935A (zh) * 2019-04-03 2020-10-16 江苏载驰科技股份有限公司 一种锂离子电池负极复合材料的制备方法
CN115036490A (zh) * 2022-07-01 2022-09-09 内蒙古三信科技发展有限公司 一种具有耐低温性能的免炭化负极材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070899A (zh) * 2015-08-07 2015-11-18 田东 一种锂离子动力电池负极材料的制备方法
CN109786679B (zh) * 2017-11-14 2021-05-11 湖南杉杉能源科技股份有限公司 一种锂离子电池复合正极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082272A (zh) * 2010-12-29 2011-06-01 长沙海容新材料有限公司 一种含硬碳包覆的锂离子电池负极材料及其制备方法
CN103035919A (zh) * 2012-12-14 2013-04-10 深圳市斯诺实业发展有限公司永丰县分公司 一种锂离子动力电池改性石墨负极材料的制备方法
CN103151497A (zh) * 2013-03-16 2013-06-12 无锡东恒新能源材料有限公司 一种低温锂离子电池负极材料的制备方法
CN103456939A (zh) * 2013-07-24 2013-12-18 湖南大学 利用偏钛酸制备锂离子电池负极材料碳包覆钛酸锂的方法
CN103811717A (zh) * 2014-02-19 2014-05-21 新乡市赛日新能源科技有限公司 核壳结构的动力锂离子电池负极材料及其制备方法
CN105070899A (zh) * 2015-08-07 2015-11-18 田东 一种锂离子动力电池负极材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162775B (zh) * 2006-10-10 2010-05-12 中国电子科技集团公司第十八研究所 一种高性能锂离子电池负极材料的制备方法
CN103296257B (zh) * 2013-06-05 2015-06-24 深圳市斯诺实业发展有限公司 一种改性锂离子电池钛酸锂负极材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082272A (zh) * 2010-12-29 2011-06-01 长沙海容新材料有限公司 一种含硬碳包覆的锂离子电池负极材料及其制备方法
CN103035919A (zh) * 2012-12-14 2013-04-10 深圳市斯诺实业发展有限公司永丰县分公司 一种锂离子动力电池改性石墨负极材料的制备方法
CN103151497A (zh) * 2013-03-16 2013-06-12 无锡东恒新能源材料有限公司 一种低温锂离子电池负极材料的制备方法
CN103456939A (zh) * 2013-07-24 2013-12-18 湖南大学 利用偏钛酸制备锂离子电池负极材料碳包覆钛酸锂的方法
CN103811717A (zh) * 2014-02-19 2014-05-21 新乡市赛日新能源科技有限公司 核壳结构的动力锂离子电池负极材料及其制备方法
CN105070899A (zh) * 2015-08-07 2015-11-18 田东 一种锂离子动力电池负极材料的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602045A (zh) * 2017-02-18 2017-04-26 山东六聚新材料科技有限公司 气力流态化包覆装置及锂离子电池负极材料包覆工艺
CN106602045B (zh) * 2017-02-18 2023-08-01 潍坊正远粉体工程设备有限公司 气力流态化包覆装置及锂离子电池负极材料包覆工艺
CN111785935A (zh) * 2019-04-03 2020-10-16 江苏载驰科技股份有限公司 一种锂离子电池负极复合材料的制备方法
CN110323426A (zh) * 2019-06-27 2019-10-11 桑顿新能源科技(长沙)有限公司 包覆材料及制备方法、负极材料及制备方法、锂离子电池
CN115036490A (zh) * 2022-07-01 2022-09-09 内蒙古三信科技发展有限公司 一种具有耐低温性能的免炭化负极材料及其制备方法

Also Published As

Publication number Publication date
CN105070899A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
WO2017206544A1 (zh) 一种锂离子电池人造石墨负极材料的制备方法
WO2016169149A1 (zh) 一种石墨细粉作为锂离子电池负极材料的循环利用方法
US20190051894A1 (en) Silicon Negative Material, Silicon Negative Material Preparation Method, Negative Electrode Plate, And Lithium-Ion Battery
WO2017008494A1 (zh) 一种石墨硅基复合负极材料的制备方法
WO2017024891A1 (zh) 一种锂离子动力电池负极材料的制备方法
WO2016201940A1 (zh) 一种炭/石墨复合负极材料的制备方法
WO2017024775A1 (zh) 一种改性钛酸锂负极材料的制备方法
CN104659366A (zh) 一种动力锂离子电池负极材料的制备方法
CN104934579B (zh) 一种多孔石墨掺杂与碳包覆石墨负极材料的制备方法
CN103606681A (zh) 一种锂离子电池负极包覆层复合材料的制备方法
WO2017008606A1 (zh) 一种石墨锡基复合负极材料的制备方法
CN103296257B (zh) 一种改性锂离子电池钛酸锂负极材料的制备方法
CN107946568B (zh) 一种高性能氧化亚硅/硬碳/石墨复合材料及其制备方法与应用
CN102280656A (zh) 一种导电聚合物包覆正极的锂离子电池的制备方法
CN102351163B (zh) 一种锂离子电池纳米炭微球负极材料及其制备方法
WO2017206299A1 (zh) 一种锂离子电池改性石墨负极材料的制备方法
WO2016202164A1 (zh) 一种炭/石墨/锡复合负极材料的制备方法
CN104241696A (zh) 一种高能量密度的锂离子电池及其制备方法
CN102522561A (zh) 一种锂离子电池负极材料及其制备方法
CN103311514A (zh) 一种改性锂离子电池石墨负极材料的制备方法
WO2017024897A1 (zh) 一种改性锂电池负极材料的制备方法
CN105826561A (zh) 一种高倍率锂离子电池负极材料的制备方法
WO2016169150A1 (zh) 一种石墨细粉掺杂处理用作负极材料的方法
CN104766954A (zh) 人造石墨细粉循环利用作为负极材料的方法
CN104766955A (zh) 天然石墨细粉循环利用作为负极材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16834515

Country of ref document: EP

Kind code of ref document: A1