WO2017206544A1 - 一种锂离子电池人造石墨负极材料的制备方法 - Google Patents
一种锂离子电池人造石墨负极材料的制备方法 Download PDFInfo
- Publication number
- WO2017206544A1 WO2017206544A1 PCT/CN2017/073532 CN2017073532W WO2017206544A1 WO 2017206544 A1 WO2017206544 A1 WO 2017206544A1 CN 2017073532 W CN2017073532 W CN 2017073532W WO 2017206544 A1 WO2017206544 A1 WO 2017206544A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- artificial graphite
- lithium ion
- ion battery
- anode material
- preparing
- Prior art date
Links
- 229910021383 artificial graphite Inorganic materials 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000010405 anode material Substances 0.000 title claims abstract description 21
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 50
- 239000000463 material Substances 0.000 claims abstract description 23
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 21
- 239000002245 particle Substances 0.000 claims abstract description 19
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 238000011282 treatment Methods 0.000 claims abstract description 11
- 238000002156 mixing Methods 0.000 claims abstract description 7
- 238000005087 graphitization Methods 0.000 claims abstract description 6
- 238000007873 sieving Methods 0.000 claims abstract description 3
- 239000000843 powder Substances 0.000 claims description 23
- 238000003756 stirring Methods 0.000 claims description 10
- 239000010426 asphalt Substances 0.000 claims description 6
- 239000002006 petroleum coke Substances 0.000 claims description 5
- 239000006253 pitch coke Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 239000005011 phenolic resin Substances 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 3
- 239000011300 coal pitch Substances 0.000 claims description 3
- 229920001568 phenolic resin Polymers 0.000 claims description 3
- -1 polyphenylene Polymers 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 239000003822 epoxy resin Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000011812 mixed powder Substances 0.000 claims description 2
- 239000011331 needle coke Substances 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 239000003208 petroleum Substances 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 2
- 239000004800 polyvinyl chloride Substances 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- 238000012216 screening Methods 0.000 claims description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims 1
- 239000005977 Ethylene Substances 0.000 claims 1
- 229920000265 Polyparaphenylene Polymers 0.000 claims 1
- 239000002994 raw material Substances 0.000 abstract description 10
- 239000011248 coating agent Substances 0.000 abstract description 9
- 238000000576 coating method Methods 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 4
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 230000002427 irreversible effect Effects 0.000 abstract description 3
- 238000004898 kneading Methods 0.000 abstract description 3
- 238000009818 secondary granulation Methods 0.000 abstract description 3
- 230000007306 turnover Effects 0.000 abstract description 3
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 239000012535 impurity Substances 0.000 abstract description 2
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 239000011163 secondary particle Substances 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 15
- 229910002804 graphite Inorganic materials 0.000 description 13
- 239000010439 graphite Substances 0.000 description 13
- 239000007773 negative electrode material Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000011301 petroleum pitch Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- 239000007833 carbon precursor Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229910021384 soft carbon Inorganic materials 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 229940044949 eucalyptus oil Drugs 0.000 description 2
- 239000010642 eucalyptus oil Substances 0.000 description 2
- 239000007770 graphite material Substances 0.000 description 2
- 229910021385 hard carbon Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention belongs to the field of lithium ion batteries, and in particular relates to a preparation method of an artificial graphite anode material for a lithium ion battery.
- Lithium-ion batteries have many advantages such as high voltage, large specific energy, long life and no memory effect. In recent years, they have been widely used in 3C products, electric bicycles, energy storage systems, especially electric vehicles.
- Graphite anode material is the leading anode material of commercial lithium ion battery. It has the advantages of low lithium insertion/extraction potential, high reversible capacity, abundant resources and low price.
- Lithium-ion battery anode materials are currently mainly graphite materials, of which artificial graphite is developing rapidly.
- the mesophase carbon microspheres are one kind of artificial graphite.
- the structure is stable, the specific surface area is small, the cycle performance and safety are good, but the production cost is high, and it has been used as a high-end lithium ion anode material.
- the general artificial graphite powder has irregular shape, large specific surface area and high anisotropy, which leads to poor material processing performance, and the problems such as pole piece rebound, battery coreflat, and deformation are prominent. Therefore, reducing the specific surface area, improving the isotropic degree, improving the cycle performance and safety of the battery core have always been the focus of research and development of artificial graphite carbon negative electrode materials.
- the pitch pyrolysis carbon has a smaller specific surface area than the resin pyrolytic carbon coated graphite, and affinity with graphite. If the structure is firmer, the asphalt coating will be deformed by melting during the heating process. If the amount is too much, the coated graphite particles will be bonded to each other. If the amount is too small, the coating will be uneven, and the heating process will be easy to expand. , affecting the electrical properties of graphite.
- Chinese patent CN101162775A uses a liquid phase method to simultaneously dissolve asphalt and resin, then adds graphite to mix, then distills off the solvent, and finally heat treatment, coating a mixture of asphalt and one or more resins on the surface of graphite to improve The cycle efficiency and cycle stability of graphite as well as rate characteristics and compressibility.
- This method also has some shortcomings in practical applications.
- the liquid phase method requires the use of organic solvents, which is easy to cause pollution, and the requirements for the dissolved asphalt are also high (the quinoline insoluble content is not more than 12%), and the evaporation is recovered. Solvents require complex equipment and are prone to over-investment, which makes it difficult to actually use them in industrial production.
- Chinese patent CN102082272A uses a hard carbon precursor, a soft carbon precursor and a hetero atom modifier, and graphite to be uniformly mixed in a ratio, first curing, then a relatively low heat treatment, and finally a second high temperature graphitization.
- the treatment is carried out to obtain a negative electrode material of a lithium ion battery coated with a hard carbon.
- this method is difficult to ensure the uniformity of mixing of a plurality of coating material precursors by adopting a method of mixing up to four kinds of powders under normal temperature solid phase conditions, and secondly, due to the soft carbon precursors of the two precursors.
- the specific gravity is too high, so a second high-temperature graphitization treatment is required, otherwise the degree of graphitization of soft carbon will be biased. Low results in a lower specific capacity of the final coated graphite material. This will eventually lead to an increase in the production cost of the product, and it is difficult to meet the market demand for high quality and low price.
- Chinese patent CN201410325202.3 produces an artificial graphite anode material by physical processing, mixing, molding treatment, roasting treatment and spheroidizing and shaping, which has large material turnover loss, low production efficiency, large energy consumption and complicated process.
- Chinese patent CN02125715.9 uses a spray granulation method to coat a layer of carbon on the surface of graphite micropowder to obtain a carbon-coated graphite powder with a core-shell structure with graphite inside and carbon on the outside, which has low initial irreversible capacity and good cycle performance.
- the method is complicated in process, high in energy consumption, and high in production cost.
- the object of the present invention is to solve the above technical defects in the prior art, and to provide a method for preparing an artificial graphite anode material.
- the present invention specifically provides the following technical solution, a method for preparing a lithium ion battery artificial graphite anode material, which comprises the following steps:
- the organic carbon source in the step (1) is one or more of petroleum pitch, coal pitch, phenol resin, polyvinyl chloride, polystyrene, phenolic resin, and epoxy resin.
- the artificial graphite coke powder in the step (1) is one or more of petroleum coke fine powder, needle coke fine powder, pitch coke fine powder, and mesophase fine powder, and the average particle diameter D50 is 2 to 10 ⁇ m.
- the weight ratio of the artificial graphite coke powder to the organic carbon source in the step (1) is 10: (1 to 4).
- the stirring heating temperature in the step (1) is 50 to 300 ° C, and the stirring time is 1 to 12 hours.
- the heating rate of the step (2) is 0.5 to 5 ° C / min, and the cooling is naturally cooled to 200 to 300 ° C, and then forcedly cooled to room temperature.
- Steps (2) and (3) are carried out under a non-oxidizing protective atmosphere, and are protected by an inert gas such as nitrogen during the preparation, and the gas flow rate is 5 to 30 L/min.
- the sieved material collected by sieving in the step (4) has an average particle diameter D50 of 8 to 25 ⁇ m.
- the raw material used in the invention is an artificial graphite coke powder having an average particle diameter D50 of 2 to 10 ⁇ m, and a coke powder having a relatively small particle diameter is selected, which has the characteristics of large specific surface area and low tap density.
- D50 average particle diameter
- a coke powder having a relatively small particle diameter is selected, which has the characteristics of large specific surface area and low tap density.
- the channel resistance between lithium ions entering the graphite layer can be shortened, and the superior rate performance and low temperature performance are exhibited.
- the coke powder and the organic carbon source By mixing the coke powder and the organic carbon source in a heating environment, the effects of coating, kneading, secondary granulation, etc. can be achieved, and the coke powder of the small particles can be formed into secondary particles under the bonding of the organic carbon source. To solve the problem of material anisotropy and improve the tap density of materials.
- the preparation method comprehensively carries out the processes of coating, secondary granulation, kneading and the like, thereby reducing the material turnover and equipment residue loss, high yield, simple process, low energy consumption, environmental protection, uniform coating effect on the surface of the material. High consistency;
- the problem of the orientation of raw materials is better, the macroscopic isotropic, the iron impurity content is low, the obtained lithium ion battery anode material, the first irreversible capacity is low, the volume expansion is small, the liquid absorption is good, the cycle performance is good, the cost performance is good. High and excellent overall performance.
- Fig. 1 is a scanning electron micrograph of a negative electrode material of Example 1 of the present invention.
- Fig. 2 is a full battery cycle graph of the negative electrode material of Example 1 of the present invention.
- the needle-shaped coke fine powder is used as raw material (average particle diameter D50 is 5 ⁇ m), and the petroleum pitch (softening point is 100 ° C) is an organic carbon source.
- the mass ratio of the two is 10:3, and 100 kg of needle-like coke fine powder and 30 Kg of petroleum pitch are weighed.
- the reaction kettle was stirred together at a temperature of ° C 120 and the stirring time was 6 hours.
- the temperature was raised to 800 ° C at a heating rate of 5 ° C / min, and the temperature was kept at room temperature for 5 hours, and then cooled to room temperature, and then the material was graphitized at 2600 ° C or higher.
- the petroleum coke fine powder is used as raw material (average particle diameter D50 is 7 ⁇ m), and the coal pitch (softening point is 150 ° C) is an organic carbon source.
- the mass ratio of the two is 10:3.5, and 100 Kg of petroleum coke fine powder and 35 Kg of coal tar pitch are weighed together. Add to the reaction kettle and stir at a temperature of °C170. The stirring time was 5 hours.
- the temperature was raised to 900 ° C at a temperature increase rate of 5 ° C / min, and the temperature was kept at room temperature for 4 hours, and then cooled to room temperature, and then the material was graphitized at 2600 ° C or higher.
- the pitch coke fine powder is used as raw material (average particle diameter D50 is 6.5 ⁇ m), and the petroleum pitch (softening point is 120 ° C) is an organic carbon source.
- the mass ratio of the two is 10:2.5, and 100 Kg of pitch coke fine powder and 25 Kg of petroleum pitch are weighed.
- the reaction kettle was stirred together at a temperature of 150 ° C and a stirring time of 4.5 hours.
- the temperature was raised to 850 ° C at a temperature increase rate of 4 ° C / min, and the temperature was kept at room temperature for 4 hours, and then cooled to room temperature, and then the material was graphitized at 2600 ° C or higher.
- the needle-shaped pyrofine raw material (average particle diameter D50 was 5 ⁇ m) in Example 1.
- the petroleum coke fine powder material of Example 2 (average particle diameter D50 was 7 ⁇ m).
- the pitch coke fine powder material of Example 3 (average particle diameter D50 was 6.5 ⁇ m).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
一种锂离子电池人造石墨负极材料的制备方法,采用小粒径的人造石墨焦粉和有机碳源为原料,通过混料、高温处理、石墨化处理、筛分等工序,通过焦粉与有机碳源在加热环境下进行混合处理,可起到包覆、混捏、二次造粒等效果,使小粒子的焦粉在有机碳源的粘结作用下,形成二次颗粒,解决材料各相异性的问题,提高材料的振实密度。本发明减少了物料的周转和设备残留损失,产率高,工序简单,能耗低,环保,物料表面包覆效果均匀,一致性高。制得的负极材料具有各向同性,铁杂质含量低,首次不可逆容量低,体积膨胀小,吸液性好,循环性能好、性价比高,综合性能优良等特点。
Description
本发明属于锂离子电池领域,具体涉及一种锂离子电池人造石墨负极材料的制备方法。
锂离子电池具有高电压、比能量大、寿命长及无记忆效应等优点,因而近年来,在3C产品、电动自行车、储能系统,特别是电动汽车中得到广泛应用。石墨类负极材料是目前商业化锂离子电池的主导负极材料,它具有较低的锂嵌入/脱出电位、较高的可逆容量且资源丰富、价格低廉等优点。
锂离子电池负极材料目前主要是具有石墨结构的材料,其中人造石墨发展迅速。中间相炭微球是人造石墨的一种,它结构稳定,比表面积小,循环性能及安全性好,但是其制作成本高,一直以来被作为高端锂离子负极材料来使用。一般的人造石墨粉形状不规则,比表面积大,各向异性度较高,导致材料加工性能差,极片反弹、电芯胀气、形变等问题突出。因此降低比表面积、提高各向同性度,改善电芯的循环性能及安全性一直是人造石墨类炭负极材料研究开发的重点。
中国专利CN96198348.5和CN03120199.6等,采用沥青、石油焦油、煤焦油或它们的混合物包覆石墨,沥青热解炭比树脂热解炭包覆石墨的比表面积小,和石墨的亲合性要好,结构更牢固,但沥青包覆在加热过程中因熔化而变形,用量过多也易造成包覆石墨颗粒的相互粘接,用量过少易造成包覆不均匀,并且加热过程中易于膨胀,影响石墨的电性能。
中国专利CN101162775A采用液相法将沥青和树脂同时溶解后,再加入石墨混合,然后蒸出溶剂,最后进行热处理,将沥青和一种或一种以上树脂形成的混合物包覆在石墨表面,来提高石墨的循环效率和循环稳定性以及倍率特性和可压缩性能。但是该方法在实际应用中也有一些不足,采用液相法需要使用有机溶剂,易造成污染,同时对溶解物沥青的要求也很高——(喹啉不溶物含量不大于12%),蒸发回收溶剂需要复杂的设备,易造成投资过大,这些导致了难以实际应用于工业化生产中。
中国专利CN102082272A采用将硬炭前躯体、软炭前躯体和杂原子改性剂,以及石墨按比例混合均匀后,先进行固化处理,再进行一次相对较低的热处理,最后进行二次高温石墨化处理,得到含硬炭包覆的锂离子电池负极材料。但该方法由于采用在常温固相条件下将多达四种粉体混合的办法,首先难以保证多种包覆材料前驱体混合的均匀性,其次由于两种前躯体中,软炭前躯体的比重过高,所以还需第二次的高温石墨化处理,否则会因为软炭的石墨化程度偏
低而导致最终包覆石墨材料的比容量偏低。这样最终会导致产品生产成本的升高,难以满足市场对产品物美价廉的要求。
中国专利CN201410325202.3通过将物料物理加工、混合、模压处理、焙烧处理及球化整形等工序制得一种人造石墨负极材料,物料周转损失大,生产效率低,能耗大,工艺复杂。
中国专利CN02125715.9利用喷雾造粒的方法在石墨微粉表面包覆一层炭,得到内部为石墨,外部为炭的核壳结构的炭包覆石墨微粉,首次不可逆容量较低,循环性能较好,但该方法工艺复杂,能耗大,生产成本高。
中国专利CN200510029448.7在人造石墨微粉表面包覆有机碳源后经过焙烧等处理得到的人造石墨负极材料,需选择蒽油和洗油等芳香族溶剂作为反应助剂,蒽油和洗油中含有蒽、萘、高沸点酚类、重质吡啶碱类、苊、芴等有毒物质,对环境不友好。
发明内容
本发明的目的就是还要解决现有技术中的上述技术缺陷,提供一种人造石墨负极材料的制备方法。
本发明具体提供了如下技术方案,一种锂离子电池人造石墨负极材料的制备方法,其包括如下步骤:
(1)混料:将有机碳源和人造石墨焦粉按一定比例加入带有加热功能的搅拌机,不断搅拌至混合均匀;
(2)高温处理:将混合均匀的粉体升温至500~1100℃,并恒温3~10小时,然后冷却至室温;
(3)石墨化处理:将高温处理后的材料在2600℃以上进行石墨化处理;
(4)筛分:将石墨化处理后的粉体进行过筛,收集筛下料得成品。
步骤(1)中的有机碳源为石油沥青、煤沥青、酚醛树脂、聚氯乙烯、聚苯乙烯、酚醛树脂、环氧树脂的一种或几种。
步骤(1)中的人造石墨焦粉为石油焦微粉、针状焦微粉、沥青焦微粉、中间相微粉的一种或两种以上,平均粒径D50为2~10μm。
步骤(1)中人造石墨焦粉和有机碳源的重量比为10:(1~4)。
步骤(1)中的搅拌加热温度为50~300℃,搅拌时间为1~12小时。
步骤(2)的升温速率为0.5~5℃/min,冷却是自然冷却至200~300℃,然后强制冷却至室温。
步骤(2)和(3)是在非氧化保护气氛下进行的,是在制备过程中通入氮气等惰性气体进行保护,其气体流量为5~30L/min。
步骤(4)中经过筛分收集的筛下料,其平均粒径D50为8~25μm。
本发明采用的原材料是平均粒径D50为2~10μm的人造石墨焦粉,选择比较小粒径的焦粉,具有比表面积大、振实密度低等特点。但正由于其粒径小,所以可以缩短锂离子进入石墨层间的通道阻力,表现出更加优异的倍率性能和低温性能。通过焦粉与有机碳源在加热环境下进行混合处理,可起到包覆、混捏、二次造粒等效果,使小粒子的焦粉在有机碳源的粘结作用下,形成二次颗粒,解决材料各相异性的问题,提高材料的振实密度。
本发明具有如下优点和积极效果:
1、该制备方法将包覆、二次造粒、混捏等工序综合进行,减少了物料的周转和设备残留损失,产率高,工序简单,能耗低,环保,物料表面包覆效果均匀,一致性高;
2、对原材料的取向问题解决的比较好,宏观各向同性,铁杂质含量低,制得的锂离子电池负极材料,首次不可逆容量低,体积膨胀小,吸液性好,循环性能好、性价比高,综合性能优良。
图1本发明实施例1的负极材料扫描电镜图。
图2本发明实施例1的负极材料全电池循环曲线图。
下面结合具体实施例,对本发明的较优的实施例作进一步的详细说明,但本发明的实施例不限于此。
实施例1
以针状焦微粉为原料(平均粒径D50为5μm),石油沥青(软化点为100℃)为有机碳源,两者质量比为10∶3,称取100Kg针状焦微粉和30Kg石油沥青,一起加入反应釜搅拌,温度为℃120,搅拌时间为6小时。
之后以5℃/min的升温速率升温至800℃,并恒温5小时,然后冷却至室温,再将材料在2600℃以上进行石墨化处理。
最后,将粉体进行过筛,收集筛下料得成品。
实施例2
以石油焦微粉为原料(平均粒径D50为7μm),煤沥青(软化点为150℃)为有机碳源,两者质量比为10∶3.5,称取100Kg石油焦微粉和35Kg煤沥青,一起加入反应釜搅拌,温度为℃170,
搅拌时间为5小时。
之后以5℃/min的升温速率升温至900℃,并恒温4小时,然后冷却至室温,再将材料在2600℃以上进行石墨化处理。
最后,将粉体进行过筛,收集筛下料得成品。
实施例3
以沥青焦微粉为原料(平均粒径D50为6.5μm),石油沥青(软化点为120℃)为有机碳源,两者质量比为10∶2.5,称取100Kg沥青焦微粉和25Kg石油沥青,一起加入反应釜搅拌,温度为150℃,搅拌时间为4.5小时。
之后以4℃/min的升温速率升温至850℃,并恒温4小时,然后冷却至室温,再将材料在2600℃以上进行石墨化处理。
最后,将粉体进行过筛,收集筛下料得成品。
对比例1
实施例1中针状焦微粉原料(平均粒径D50为5μm)。
对比例2
实施例2中石油焦微粉原料(平均粒径D50为7μm)。
对比例3
实施例3中沥青焦微粉原料(平均粒径D50为6.5μm)。
上述实施例及对比例中的原料,具体指标参数表1。
表1
产品 | 粒径D50(μm) | 比表面积(m2/g) | 振实密度(g/cm3′) |
实施例1 | 12.53 | 1.95 | 1.08 |
对比例1 | 5 | 17.38 | 0.47 |
实施例2 | 11.63 | 4.03 | 1.11 |
对比例2 | 7 | 14.31 | 0.58 |
实施例3 | 13.94 | 2.17 | 1.10 |
对比例3 | 6.5 | 15.81 | 0.63 |
电化学性能测试
为检验实施例及对比例中的原料的首次容量和首次效率性能,用半电池测试方法进行测试,用以上实施例和比较例的负极材料∶乙炔黑∶PVDF(聚偏氟乙烯)=93∶3∶4(重量比),加适量NMP(N-甲基吡咯烷酮)调成浆状,涂布于铜箔上,经真空110℃干燥8小时制成负极片;
以金属锂片为对电极,电解液为1mol/L LiPF6/EC+DEC+DMC=1∶1∶1,聚丙烯微孔膜为隔膜,组装成电池。充放电电压为0~2.0V,充放电速率为0.2C,对电池性能进行能测试,测试结果见表2。
为检验实施例及对比例中的原料的循环性能,用全电池的测试方法进行测试,用上实施例和比较例的负极材料∶SP∶SBR(固含量50%)∶CMC=94∶2.5∶1.5∶2(重量比),加适量去离子水混合均匀调成浆状,涂于铜箔上,在90℃下抽真空干燥;将LiFePO4粉末∶SP∶KS-6∶PVDF=92∶3.5∶2∶2.5(重量比),以NMP做溶剂混合均匀进行调浆后,涂于铝箔上,在100℃下抽真空干燥;将干燥后的正、负极极片经过辊压、裁片、卷绕、注液、封口、化成工序,制成磷酸铁锂动力型4244130型软包成品电池(标称容量为2.5Ah),隔膜为Celgard2400,电解液为1M LiPF6/DMC∶EC∶DEC,使用电池检测装置进行循环性能的检测,测试结果见表2。
表2
产品 | 粒径D50(μm) | 比表面积(m2/g) | 振实密度(g/cm3′) |
实施例1 | 12.53 | 1.95 | 1.08 |
对比例1 | 5 | 17.38 | 0.47 |
实施例2 | 11.63 | 4.03 | 1.11 |
对比例2 | 7 | 14.31 | 0.58 |
实施例3 | 13.94 | 2.17 | 1.10 |
对比例3 | 6.5 | 15.81 | 0.63 |
从表1、表2可以看出,各实施例所制得的负极材料各项性能均优于对比例。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
Claims (8)
- 一种锂离子电池人造石墨负极材料的制备方法,其包括如下步骤:(1)混料:将有机碳源和人造石墨焦粉按一定比例加入带有加热功能的搅拌机,不断搅拌至混合均匀;(2)高温处理:将混合均匀的粉体升温至500~1100℃,并恒温3~10小时,然后冷却至室温;(3)石墨化处理:将高温处理后的材料在2600℃以上进行石墨化处理;(4)筛分:将石墨化处理后的粉体进行过筛,收集筛下料得成品。
- 根据权利要求1中所述的一种锂离子电池人造石墨负极材料的制备方法,其特征在于:步骤(1)中的有机碳源为石油沥青、煤沥青、酚醛树脂、聚氯乙烯、聚苯乙烯、酚醛树脂、环氧树脂的一种或几种。
- 根据权利要求1中所述的一种锂离子电池人造石墨负极材料的制备方法,其特征在于:步骤(1)中的人造石墨焦粉为石油焦微粉、针状焦微粉、沥青焦微粉、中间相微粉的一种或两种以上,平均粒径D50为2~10μm。
- 根据权利要求1中所述的一种锂离子电池人造石墨负极材料的制备方法,其特征在于:步骤(1)中人造石墨焦粉和有机碳源的重量比为10:(1~4)。
- 根据权利要求1中所述的一种锂离子电池人造石墨负极材料的制备方法,其特征在于:步骤(1)中的搅拌加热温度为50~300℃,搅拌时间为1~12小时。
- 根据权利要求1中所述的一种锂离子电池人造石墨负极材料的制备方法,其特征在于:步骤(2)的升温速率为0.5~5℃/min,冷却是自然冷却至200~300℃,然后强制冷却至室温。
- 根据权利要求1中所述的一种锂离子电池人造石墨负极材料的制备方法,其特征在于:步骤(2)和(3)是在非氧化保护气氛下进行的,是在制备过程中通入氮气等惰性气体进行保护,其气体流量为5~30L/min。
- 根据权利要求1中所述的一种锂离子电池人造石墨负极材料的制备方法,其特征在于:步骤(4)中经过筛分收集的筛下料,其平均粒径D50为8~25μm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610387117.9 | 2016-06-03 | ||
CN201610387117.9A CN105958070A (zh) | 2016-06-03 | 2016-06-03 | 一种锂离子电池人造石墨负极材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017206544A1 true WO2017206544A1 (zh) | 2017-12-07 |
Family
ID=56908486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/073532 WO2017206544A1 (zh) | 2016-06-03 | 2017-02-14 | 一种锂离子电池人造石墨负极材料的制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105958070A (zh) |
WO (1) | WO2017206544A1 (zh) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108144539A (zh) * | 2018-03-01 | 2018-06-12 | 苏州维洛克电子科技有限公司 | 一种旋转叶轮混料装置 |
CN108807995A (zh) * | 2018-08-03 | 2018-11-13 | 安徽科达洁能新材料有限公司 | 一种锂离子电池用石墨负极材料及其制备方法 |
CN110590364A (zh) * | 2019-10-15 | 2019-12-20 | 湖南中科星城石墨有限公司 | 多相粉体的新型二次造粒工艺 |
CN110828798A (zh) * | 2019-10-31 | 2020-02-21 | 方大炭素新材料科技股份有限公司 | 一种湿法加压包覆涂层制备锂离子电池石墨负极材料的方法 |
CN111554898A (zh) * | 2020-05-11 | 2020-08-18 | 珠海冠宇电池股份有限公司 | 一种负极材料及其制备方法和应用 |
CN111682177A (zh) * | 2020-06-18 | 2020-09-18 | 贝特瑞新材料集团股份有限公司 | 一种石墨复合材料、其制备方法和用途 |
US20210020941A1 (en) * | 2018-12-17 | 2021-01-21 | Btr New Material Group Co., Ltd. | Low-swelling graphite anode material, preparation method thereof and lithium ion battery |
CN112938960A (zh) * | 2021-01-29 | 2021-06-11 | 乌海宝杰新能源材料有限公司 | 一种高压实密度兼低比表面积负极材料的制备方法 |
CN113526956A (zh) * | 2021-06-24 | 2021-10-22 | 湛江市聚鑫新能源有限公司 | 一种低成本长循环的石墨负极材料及其制备方法和用途 |
CN114068885A (zh) * | 2020-07-30 | 2022-02-18 | 湖南中科星城石墨有限公司 | 一种具有多孔碳层的石墨材料及其制备方法和用途 |
CN114068886A (zh) * | 2020-07-30 | 2022-02-18 | 湖南中科星城石墨有限公司 | 一种改性石墨材料及其制备方法和用途 |
CN114195123A (zh) * | 2021-12-30 | 2022-03-18 | 上海杉杉新材料有限公司 | 一种改性硬炭材料、制备方法及其应用 |
CN114203979A (zh) * | 2020-09-17 | 2022-03-18 | 湖南中科星城石墨有限公司 | 一种石墨负极材料及其制备方法和应用 |
CN114212787A (zh) * | 2021-12-30 | 2022-03-22 | 湖州杉杉新能源科技有限公司 | 一种改性石墨材料及其制备方法和应用、锂离子电池 |
CN114291814A (zh) * | 2021-12-24 | 2022-04-08 | 东北师范大学 | 一种石墨负极材料及其制备方法和应用 |
CN114388806A (zh) * | 2021-12-31 | 2022-04-22 | 宁波杉杉新材料科技有限公司 | 一种包覆剂、改性石墨材料及其制备方法和应用 |
CN114426274A (zh) * | 2022-02-09 | 2022-05-03 | 广东凯金新能源科技股份有限公司 | 一种石墨负极材料及其制备方法和应用 |
CN114447330A (zh) * | 2021-11-19 | 2022-05-06 | 惠州市豪鹏科技有限公司 | 一种电极、电极材料及其制备方法 |
CN114538423A (zh) * | 2022-03-15 | 2022-05-27 | 上海杉杉科技有限公司 | 人造石墨材料及其制备方法和应用 |
CN114597533A (zh) * | 2022-03-24 | 2022-06-07 | 广东凯金新能源科技股份有限公司 | 一种锂离子电池负极石墨重复利用的方法 |
CN114620719A (zh) * | 2022-02-28 | 2022-06-14 | 李鑫 | 中温石墨化人造石墨负极材料及其制造方法 |
CN114976013A (zh) * | 2022-06-21 | 2022-08-30 | 惠州锂威新能源科技有限公司 | 一种电池负极材料的制备方法 |
CN114956069A (zh) * | 2022-07-07 | 2022-08-30 | 王辅志 | 一种制备锂离子电池用人造石墨负极材料的装置及其制备方法 |
CN115036490A (zh) * | 2022-07-01 | 2022-09-09 | 内蒙古三信科技发展有限公司 | 一种具有耐低温性能的免炭化负极材料及其制备方法 |
CN115172692A (zh) * | 2022-07-11 | 2022-10-11 | 成都佰思格科技有限公司 | 一种固态锂电池用银炭负极材料及其制备方法 |
CN115636404A (zh) * | 2022-10-21 | 2023-01-24 | 泾河新城陕煤技术研究院新能源材料有限公司 | 基于二次造粒工艺的球形煤基钠电负极材料的制备方法 |
CN115744894A (zh) * | 2022-11-30 | 2023-03-07 | 山西沁新能源集团股份有限公司 | 一种锂离子电池人造石墨负极材料制备技术 |
CN116354741A (zh) * | 2022-12-21 | 2023-06-30 | 中国人民解放军96901部队23分队 | 一种模板法制备低密度多级孔等静压石墨材料的方法 |
CN116354342A (zh) * | 2021-12-28 | 2023-06-30 | 湖南中科星城石墨有限公司 | 一种石墨材料及其制备方法和应用 |
CN116354329A (zh) * | 2023-01-09 | 2023-06-30 | 内蒙古欣源石墨烯科技股份有限公司 | 一种微波处理锂电池负极材料的方法 |
CN116789110A (zh) * | 2022-03-13 | 2023-09-22 | 曲靖华金雨林科技有限责任公司 | 一种制备石墨烯/碳纳米管复合材料的方法 |
CN119170786A (zh) * | 2024-11-18 | 2024-12-20 | 赣州立探新能源科技有限公司 | 二次粒子硅碳材料及其制备方法、应用 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105958070A (zh) * | 2016-06-03 | 2016-09-21 | 田东 | 一种锂离子电池人造石墨负极材料的制备方法 |
CN106278265B (zh) * | 2016-07-28 | 2019-03-05 | 芜湖迈特电子科技有限公司 | 高导热导电性石墨导热片精加工工艺 |
CN107706387B (zh) * | 2017-10-09 | 2021-11-05 | 贝特瑞新材料集团股份有限公司 | 一种复合负极材料、其制备方法及锂离子电池 |
CN107845810A (zh) * | 2017-10-26 | 2018-03-27 | 深圳市斯诺实业发展股份有限公司 | 一种锂离子电池软硬碳改性负极材料的制备方法 |
US11646406B2 (en) * | 2017-12-22 | 2023-05-09 | Tokai Carbon Co., Ltd. | Negative electrode material for lithium-ion secondary battery and method for producing negative electrode material for lithium-ion secondary battery |
CN108217639A (zh) * | 2018-01-15 | 2018-06-29 | 天津锦美碳材科技发展有限公司 | 复合造粒锂离子电池负极材料及其制备方法 |
CN109659149B (zh) * | 2018-12-27 | 2021-04-06 | 广东聚石化学股份有限公司 | 一种石墨烯活性炭复合材料及其制备方法和应用 |
CN109713303B (zh) * | 2018-12-29 | 2021-12-21 | 蜂巢能源科技有限公司 | 制备负极材料的方法、负极材料和动力电池 |
CN112018386B (zh) * | 2019-05-31 | 2022-03-15 | 宁波杉杉新材料科技有限公司 | 人造石墨材料、复合材料及其制备方法、锂离子二次电池 |
CN111908462A (zh) * | 2020-07-21 | 2020-11-10 | 铜仁学院 | 一种长循环人造石墨负极前驱体的制备方法 |
CN113716544B (zh) * | 2021-08-20 | 2023-08-04 | 中钢集团鞍山热能研究院有限公司 | 一种低成本高倍率负极材料焦的制备方法 |
EP4174973A4 (en) * | 2021-08-24 | 2023-08-16 | Contemporary Amperex Technology Co., Limited | ARTIFICIAL GRAPHITE AND METHOD OF PREPARING IT, NEGATIVE ELECTRODE PLATE, SECONDARY BATTERY, BATTERY MODULE, BATTERY PACK AND ELECTRICAL DEVICE |
CN113716558A (zh) * | 2021-08-27 | 2021-11-30 | 石家庄尚太科技股份有限公司 | 一种二次颗粒人造石墨材料及其制备方法 |
CN114628650B (zh) * | 2021-09-06 | 2024-01-05 | 万向一二三股份公司 | 一种改善锂离子电池快充性能的材料及其制备方法 |
CN114368748A (zh) * | 2021-12-08 | 2022-04-19 | 惠州市豪鹏科技有限公司 | 一种人造石墨材料的制备方法、负极材料及电池 |
CN115477301B (zh) * | 2022-09-19 | 2024-10-01 | 力神(青岛)新能源有限公司 | 一种储能长循环石墨负极材料的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101323447A (zh) * | 2008-07-21 | 2008-12-17 | 深圳市贝特瑞新能源材料股份有限公司 | 锂离子电池负极的石墨粉及其制备方法 |
CN102800852A (zh) * | 2012-08-28 | 2012-11-28 | 湖南德天新能源科技有限公司 | 动力锂离子电池负极材料制备方法 |
CN105810946A (zh) * | 2016-06-03 | 2016-07-27 | 田东 | 一种锂离子电池天然石墨负极材料的制备方法 |
CN105932281A (zh) * | 2016-06-03 | 2016-09-07 | 田东 | 一种锂离子电池石墨负极材料的制备方法 |
CN105958070A (zh) * | 2016-06-03 | 2016-09-21 | 田东 | 一种锂离子电池人造石墨负极材料的制备方法 |
-
2016
- 2016-06-03 CN CN201610387117.9A patent/CN105958070A/zh not_active Withdrawn
-
2017
- 2017-02-14 WO PCT/CN2017/073532 patent/WO2017206544A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101323447A (zh) * | 2008-07-21 | 2008-12-17 | 深圳市贝特瑞新能源材料股份有限公司 | 锂离子电池负极的石墨粉及其制备方法 |
CN102800852A (zh) * | 2012-08-28 | 2012-11-28 | 湖南德天新能源科技有限公司 | 动力锂离子电池负极材料制备方法 |
CN105810946A (zh) * | 2016-06-03 | 2016-07-27 | 田东 | 一种锂离子电池天然石墨负极材料的制备方法 |
CN105932281A (zh) * | 2016-06-03 | 2016-09-07 | 田东 | 一种锂离子电池石墨负极材料的制备方法 |
CN105958070A (zh) * | 2016-06-03 | 2016-09-21 | 田东 | 一种锂离子电池人造石墨负极材料的制备方法 |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108144539A (zh) * | 2018-03-01 | 2018-06-12 | 苏州维洛克电子科技有限公司 | 一种旋转叶轮混料装置 |
CN108144539B (zh) * | 2018-03-01 | 2024-01-16 | 湖南金驰磁材科技股份有限公司 | 一种旋转叶轮混料装置 |
CN108807995A (zh) * | 2018-08-03 | 2018-11-13 | 安徽科达洁能新材料有限公司 | 一种锂离子电池用石墨负极材料及其制备方法 |
US20210020941A1 (en) * | 2018-12-17 | 2021-01-21 | Btr New Material Group Co., Ltd. | Low-swelling graphite anode material, preparation method thereof and lithium ion battery |
US11855288B2 (en) * | 2018-12-17 | 2023-12-26 | Btr New Material Group Co., Ltd | Low-swelling graphite anode material, preparation method thereof and lithium ion battery |
CN110590364A (zh) * | 2019-10-15 | 2019-12-20 | 湖南中科星城石墨有限公司 | 多相粉体的新型二次造粒工艺 |
CN110828798B (zh) * | 2019-10-31 | 2022-06-07 | 方大炭素新材料科技股份有限公司 | 一种湿法加压包覆涂层制备锂离子电池石墨负极材料的方法 |
CN110828798A (zh) * | 2019-10-31 | 2020-02-21 | 方大炭素新材料科技股份有限公司 | 一种湿法加压包覆涂层制备锂离子电池石墨负极材料的方法 |
CN111554898A (zh) * | 2020-05-11 | 2020-08-18 | 珠海冠宇电池股份有限公司 | 一种负极材料及其制备方法和应用 |
CN111682177A (zh) * | 2020-06-18 | 2020-09-18 | 贝特瑞新材料集团股份有限公司 | 一种石墨复合材料、其制备方法和用途 |
CN114068885A (zh) * | 2020-07-30 | 2022-02-18 | 湖南中科星城石墨有限公司 | 一种具有多孔碳层的石墨材料及其制备方法和用途 |
CN114068886A (zh) * | 2020-07-30 | 2022-02-18 | 湖南中科星城石墨有限公司 | 一种改性石墨材料及其制备方法和用途 |
CN114203979A (zh) * | 2020-09-17 | 2022-03-18 | 湖南中科星城石墨有限公司 | 一种石墨负极材料及其制备方法和应用 |
CN114203979B (zh) * | 2020-09-17 | 2024-05-17 | 湖南中科星城石墨有限公司 | 一种石墨负极材料及其制备方法和应用 |
CN112938960B (zh) * | 2021-01-29 | 2023-09-29 | 乌海宝杰新能源材料有限公司 | 一种高压实密度兼低比表面积负极材料的制备方法 |
CN112938960A (zh) * | 2021-01-29 | 2021-06-11 | 乌海宝杰新能源材料有限公司 | 一种高压实密度兼低比表面积负极材料的制备方法 |
CN113526956A (zh) * | 2021-06-24 | 2021-10-22 | 湛江市聚鑫新能源有限公司 | 一种低成本长循环的石墨负极材料及其制备方法和用途 |
CN114447330A (zh) * | 2021-11-19 | 2022-05-06 | 惠州市豪鹏科技有限公司 | 一种电极、电极材料及其制备方法 |
CN114291814A (zh) * | 2021-12-24 | 2022-04-08 | 东北师范大学 | 一种石墨负极材料及其制备方法和应用 |
CN114291814B (zh) * | 2021-12-24 | 2024-04-16 | 东北师范大学 | 一种石墨负极材料及其制备方法和应用 |
CN116354342A (zh) * | 2021-12-28 | 2023-06-30 | 湖南中科星城石墨有限公司 | 一种石墨材料及其制备方法和应用 |
CN114212787A (zh) * | 2021-12-30 | 2022-03-22 | 湖州杉杉新能源科技有限公司 | 一种改性石墨材料及其制备方法和应用、锂离子电池 |
CN114212787B (zh) * | 2021-12-30 | 2023-11-07 | 湖州杉杉新能源科技有限公司 | 一种改性石墨材料及其制备方法和应用、锂离子电池 |
CN114195123A (zh) * | 2021-12-30 | 2022-03-18 | 上海杉杉新材料有限公司 | 一种改性硬炭材料、制备方法及其应用 |
CN114388806A (zh) * | 2021-12-31 | 2022-04-22 | 宁波杉杉新材料科技有限公司 | 一种包覆剂、改性石墨材料及其制备方法和应用 |
CN114426274A (zh) * | 2022-02-09 | 2022-05-03 | 广东凯金新能源科技股份有限公司 | 一种石墨负极材料及其制备方法和应用 |
CN114620719A (zh) * | 2022-02-28 | 2022-06-14 | 李鑫 | 中温石墨化人造石墨负极材料及其制造方法 |
CN116789110A (zh) * | 2022-03-13 | 2023-09-22 | 曲靖华金雨林科技有限责任公司 | 一种制备石墨烯/碳纳米管复合材料的方法 |
CN114538423A (zh) * | 2022-03-15 | 2022-05-27 | 上海杉杉科技有限公司 | 人造石墨材料及其制备方法和应用 |
CN114597533A (zh) * | 2022-03-24 | 2022-06-07 | 广东凯金新能源科技股份有限公司 | 一种锂离子电池负极石墨重复利用的方法 |
CN114597533B (zh) * | 2022-03-24 | 2024-01-05 | 广东凯金新能源科技股份有限公司 | 一种锂离子电池负极石墨重复利用的方法 |
CN114976013B (zh) * | 2022-06-21 | 2023-07-04 | 惠州锂威新能源科技有限公司 | 一种电池负极材料的制备方法 |
CN114976013A (zh) * | 2022-06-21 | 2022-08-30 | 惠州锂威新能源科技有限公司 | 一种电池负极材料的制备方法 |
CN115036490A (zh) * | 2022-07-01 | 2022-09-09 | 内蒙古三信科技发展有限公司 | 一种具有耐低温性能的免炭化负极材料及其制备方法 |
CN114956069A (zh) * | 2022-07-07 | 2022-08-30 | 王辅志 | 一种制备锂离子电池用人造石墨负极材料的装置及其制备方法 |
CN115172692A (zh) * | 2022-07-11 | 2022-10-11 | 成都佰思格科技有限公司 | 一种固态锂电池用银炭负极材料及其制备方法 |
CN115636404B (zh) * | 2022-10-21 | 2024-03-26 | 泾河新城陕煤技术研究院新能源材料有限公司 | 基于二次造粒工艺的球形煤基钠电负极材料的制备方法 |
CN115636404A (zh) * | 2022-10-21 | 2023-01-24 | 泾河新城陕煤技术研究院新能源材料有限公司 | 基于二次造粒工艺的球形煤基钠电负极材料的制备方法 |
CN115744894B (zh) * | 2022-11-30 | 2024-03-15 | 山西沁新能源集团股份有限公司 | 一种锂离子电池人造石墨负极材料制备技术 |
CN115744894A (zh) * | 2022-11-30 | 2023-03-07 | 山西沁新能源集团股份有限公司 | 一种锂离子电池人造石墨负极材料制备技术 |
CN116354741A (zh) * | 2022-12-21 | 2023-06-30 | 中国人民解放军96901部队23分队 | 一种模板法制备低密度多级孔等静压石墨材料的方法 |
CN116354329A (zh) * | 2023-01-09 | 2023-06-30 | 内蒙古欣源石墨烯科技股份有限公司 | 一种微波处理锂电池负极材料的方法 |
CN119170786A (zh) * | 2024-11-18 | 2024-12-20 | 赣州立探新能源科技有限公司 | 二次粒子硅碳材料及其制备方法、应用 |
Also Published As
Publication number | Publication date |
---|---|
CN105958070A (zh) | 2016-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017206544A1 (zh) | 一种锂离子电池人造石墨负极材料的制备方法 | |
WO2022121136A1 (zh) | 一种高倍率锂离子电池人造石墨负极材料及其制备方法 | |
WO2016169149A1 (zh) | 一种石墨细粉作为锂离子电池负极材料的循环利用方法 | |
CN105932281A (zh) | 一种锂离子电池石墨负极材料的制备方法 | |
WO2016201940A1 (zh) | 一种炭/石墨复合负极材料的制备方法 | |
CN106025221B (zh) | 一种硅/碳/石墨复合负极材料的制备方法 | |
WO2017121069A1 (zh) | 一种锂离子动力电池用硬碳负极材料的制备及其改性方法 | |
CN114597361A (zh) | 一种锂离子电池用人造石墨复合负极材料及其制备方法和应用 | |
CN106848264A (zh) | 一种多孔硅氧化物锂离子电池负极材料及其制备方法 | |
CN107946568B (zh) | 一种高性能氧化亚硅/硬碳/石墨复合材料及其制备方法与应用 | |
CN109860524A (zh) | 一种固体沥青低温包覆制备负极材料的方法 | |
WO2017206299A1 (zh) | 一种锂离子电池改性石墨负极材料的制备方法 | |
CN105810946A (zh) | 一种锂离子电池天然石墨负极材料的制备方法 | |
CN109911878A (zh) | 高容量沥青/环氧树脂基改性硬碳负极材料及其制备方法 | |
WO2017008606A1 (zh) | 一种石墨锡基复合负极材料的制备方法 | |
WO2016202164A1 (zh) | 一种炭/石墨/锡复合负极材料的制备方法 | |
CN102832378A (zh) | 一种锂离子电池碳负极材料及其制备方法 | |
CN105523544A (zh) | 一种锂离子电池负极材料制备方法及制得的负极材料 | |
WO2017024897A1 (zh) | 一种改性锂电池负极材料的制备方法 | |
CN106531979A (zh) | 一种高倍率性能锂离子电池负极材料的制备方法 | |
CN113526500A (zh) | 一种高性能人造石墨负极材料的制备方法 | |
CN101651200B (zh) | 锂离子电池负极材料及其制备方法 | |
WO2017024891A1 (zh) | 一种锂离子动力电池负极材料的制备方法 | |
WO2017024775A1 (zh) | 一种改性钛酸锂负极材料的制备方法 | |
CN109638260B (zh) | 一种炭包覆石墨负极材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17805491 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17805491 Country of ref document: EP Kind code of ref document: A1 |