WO2017003267A1 - 항바이러스 활성 효능을 가지는 펩티드 및 이를 포함하는 조성물 - Google Patents

항바이러스 활성 효능을 가지는 펩티드 및 이를 포함하는 조성물 Download PDF

Info

Publication number
WO2017003267A1
WO2017003267A1 PCT/KR2016/007192 KR2016007192W WO2017003267A1 WO 2017003267 A1 WO2017003267 A1 WO 2017003267A1 KR 2016007192 W KR2016007192 W KR 2016007192W WO 2017003267 A1 WO2017003267 A1 WO 2017003267A1
Authority
WO
WIPO (PCT)
Prior art keywords
pep1
peptide
virus
cells
hiv
Prior art date
Application number
PCT/KR2016/007192
Other languages
English (en)
French (fr)
Inventor
김상재
김범준
Original Assignee
주식회사 젬백스앤카엘
김상재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 젬백스앤카엘, 김상재 filed Critical 주식회사 젬백스앤카엘
Priority to ES16818300T priority Critical patent/ES2886946T3/es
Priority to EP16818300.2A priority patent/EP3318265B1/en
Priority to KR1020177036109A priority patent/KR102638286B1/ko
Priority to US15/739,483 priority patent/US11015179B2/en
Priority to CN201680039356.3A priority patent/CN107847551B/zh
Priority to JP2017567630A priority patent/JP6923453B2/ja
Publication of WO2017003267A1 publication Critical patent/WO2017003267A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1276RNA-directed DNA polymerase (2.7.7.49), i.e. reverse transcriptase or telomerase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0041Xanthene dyes, used in vivo, e.g. administered to a mice, e.g. rhodamines, rose Bengal
    • A61K49/0043Fluorescein, used in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0056Peptides, proteins, polyamino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07049RNA-directed DNA polymerase (2.7.7.49), i.e. telomerase or reverse-transcriptase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present disclosure relates to a peptide having an antiviral activity and a composition comprising the same, and more particularly, to a peptide derived from telomerase and to inhibiting the virus's self-replication and activity to treat a disease caused by a virus. It relates to a composition for the prevention and treatment of viral diseases.
  • Antiviral activity can be divided into methods of directly recognizing and attacking viral proteins or portions thereof, methods of inhibiting each step of the virus's life cycle, and methods of enhancing immunity. Methods for inhibiting each stage of the virus's life cycle can be classified into several stages. For example, a viral agent that inhibits the stage prior to entry into a host cell, which may be an entry-inhibitor or entry-blocking agent that prevents the entry of the virus into the cell, or the penetration of the virus ( Penetration and uncoating blocking agents are possible.
  • antiviral activity in the step of viral replication in the host cell after the virus enters the host cell is possible, for example, similar to the building blocks of RNA or DNA of the virus but inactivating RNA, DNA replication enzymes.
  • nucleotide or nucleoside analogs there is a method of inhibiting the replication of a virus.
  • Representatives include reverse transcriptase inhibitors.
  • the next step is to inhibit the integrase enzymes for cutting the DNA of the synthesized virus, or to inhibit the transcription, translation, post-translational modification, or subsequent targeting of the virus.
  • a method of inhibiting the virus's protease, blocking the virus's assembly step, or blocking the release phase of the virus from the host cell, which is the final step is possible.
  • drugs that relieve various symptoms caused by the virus are possible, not directly acting on the virus.
  • anti-inflammatory drugs to alleviate the inflammation caused by viruses, antipyretics to lower the high fever caused by viruses, and the like are possible, but this cannot be seen as a fundamental treatment for viruses.
  • Viruses are infectious agents that are smaller than bacteria. It consists of genetic material RNA or DNA and the protein surrounding the genetic material. Because they can't metabolize themselves, they infiltrate their DNA or RNA into host cells, use their organelles to replicate their genetic material, and produce viruses like themselves. In this process, the host cell may be damaged or destroyed, causing disease in the host.
  • Hepatitis C Virus first identified in 1989, belongs to Flaviviridae and is a single positive stranded RNA virus with a size of about 9.5 kb gene. There is no symptom during the initial infection and about 55 to 85% of patients develop chronic hepatitis. Of these, about 5 to 10% of patients develop liver cirrhosis and then liver cancer.
  • HCV is classified into six genotypes according to the difference in gene sequences, and clinical differences such as response to treatment have been reported. The differences in the distribution of HCV genotypes are known by region, and some reports that 1b and 2a are the predominant species in Korea are not sufficient. HCV has a higher mutation rate than other viruses after infection, resulting in six strands and makes numerous quasi-species within a single strand. Due to these properties, HCV is expected to induce a single drug resistance, which requires a combination treatment of several drugs. Therefore, the development of more stable and effective research and treatment for the prevention and treatment of liver disease caused by HCV is urgent.
  • HCV produces a complex protein of 3,030 amino acids based on its own genome after viral infection.
  • 5 'untranslated region (UTR) and 3'UTR play an important role in HCV replication.
  • the 5'UTR has an internal ribosome entry site (IRS) that is highly conserved in the HCV strand, resulting in a cap-independent translation process.
  • the first complex protein produced after infection is processed by host and viral proteases to make structural proteins such as C, E1, and E2 and regulatory proteins necessary for viral growth such as NS2, NS3, NS4A, NS4B, NS5A, NS5B, etc. You lose.
  • HBV infection has a variety of clinical course to significantly asymptomatic infection, chronic infection, cirrhosis, hepatocellular carcinoma, increase chronic disease morbidity and mortality.
  • HBV-derived liver disease is a threat to human health, with approximately 350 million people worldwide.
  • HBV which accounts for 53% of all cases of hepatocellular carcinoma (HCC), is HCV. And other causes, along with other causes.
  • HBV produces three envelope proteins, all of which are encoded in the pre-S / S open reading frame.
  • LHBs large surface proteins
  • liver resection is considered as a priority if there is no cirrhosis or sufficient remaining liver function
  • liver transplantation is considered as a primary treatment when liver function is accompanied, but most patients with hepatocellular carcinoma are portal hypertension, liver.
  • the procedure is difficult for reasons such as decreased function, multiple tumors, portal invasion, and aging.
  • Radiofrequency ablation and ethanol injection are mainly used as non-surgical treatments, but the success rate is low when the tumor is large.
  • interferon and lamivudine have been used as antiviral agents for the treatment of chronic hepatitis B.
  • they have side effects and low reactivity.
  • Adefovir and Tenofovir have been developed to suppress the growth of the virus. It is used as a drug to slow down liver damage. These drugs have the effect of slowing liver damage by inhibiting the growth of the virus, but they do not completely remove the virus or cure hepatitis. Therefore, resistance is required due to continuous prescription, and the intrinsic properties of the drug show hepatotoxicity and nephrotoxicity.
  • Sorafenib the only clinically-targeted therapeutic agent for liver cancer, currently has limitations that require a limited range of treatment and careful observation of treatment trends. Many of the substances under development are kinase inhibitors derived from sorafenib, a multiple kinase inhibitor, or angiogenic inhibitors that inhibit angiogenesis essential for liver cancer progression. Epidermal growth factor receptor inhibitors, known to be overexpressed in 66% of HCC patients, did not yield significant results in a phase II clinical trial. Low molecular tyrosine kinase inhibitors, brivanib, developed for the purpose of angiogenesis, and ramucirumab, a monoclonal antibody, did not achieve good results in phase II clinical trials.
  • HIV Human immunodeficiency virus
  • retroviridae retrovirus
  • Lentivirus Lentiviruses can infect a wide variety of species and are characterized by long-latent chronic diseases.
  • the life history of HIV can be divided into invasion of host cells, replication and transcription in cells, recombination of viruses and finally synthesis and secretion of viruses. Blocking either step during the proliferation of HIV can inhibit HIV.
  • Drugs currently being developed and used for patients include fusion inhibitors, reverse transcriptase inhibitors that convert RNA to DNA, and protease inhibitors that block the process of protein cleavage by proteases. inhibitors).
  • anti-HIV treatment The goal of anti-HIV treatment is to strongly inhibit HIV, prevent it from growing, and maintain this condition for as long as possible to restore the patient's immune function, thereby reducing morbidity and mortality from HIV infection.
  • the limitation of current anti-HIV treatment is that it cannot be stopped once the treatment is started because HIV reappears and immunity decreases again when the anti-HIV treatment is stopped.
  • the problem of having to continue anti-HIV treatment for at least several years and for decades if no cure has been developed means that the patient must bear the side effects of long-term administration of the drug as well as the financial burden. Drug side effects, as well as the current known side effects, as the duration of use may have to consider the side effects may be known in the future.
  • an object of the present invention is to provide a composition for the prevention and treatment of antiviral and viral diseases that are effective and at the same time have no side effects.
  • an active ingredient includes at least one selected from the group consisting of a peptide comprising the amino acid sequence of SEQ ID NO: 1, a peptide having a sequence homology of 80% or more with the amino acid sequence, or a fragment thereof.
  • An antiviral composition is provided.
  • the fragment may be a fragment consisting of three or more amino acids.
  • the composition may be further characterized by inhibiting the replication of the virus to suppress the target virus.
  • the virus may be further characterized in that the mediation of HSP90.
  • the virus may be characterized in that it comprises HCV, HBV or HIV.
  • the prevention and treatment of a viral disease comprising administering a pharmaceutically effective amount of a composition according to the invention to a subject with a viral disease or exhibiting pathological symptoms caused by the virus.
  • a method is provided.
  • kits for the prevention and treatment of a viral disease comprising instructions describing a method for preventing and treating a viral disease, including the method for preventing and treating the viral disease.
  • a peptide comprising the amino acid sequence of SEQ ID NO: 1, a peptide having a sequence homology of 80% or more with the amino acid sequence, or a fragment thereof is provided for use in the preparation of an antiviral composition do.
  • the composition may be further characterized by inhibiting the target virus by inhibiting RNA replication of the virus.
  • the virus may be characterized in that it comprises HCV, HBV or HIV.
  • a peptide comprising the amino acid sequence of SEQ ID NO: 1, a peptide having a sequence homology of 80% or more with the amino acid sequence or a peptide thereof is a pharmaceutical composition for preventing and treating viral diseases Uses for the preparation of the same are provided.
  • the composition may be further characterized by inhibiting the virus of interest by inhibiting RNA replication of the virus.
  • the virus may be characterized in that it comprises HCV, HBV or HIV.
  • a peptide having a sequence of SEQ ID NO or a peptide or fragment having a sequence having 80% homology with the sequence according to an aspect of the present invention has an antiviral inhibitory effect, thereby providing a method for treating or preventing a viral disease. do.
  • FIG. 1 shows two hours of vehicle, conventional antioxidants (NAC (20 mM), PDTC (100 ⁇ M), vitamin E (10 ⁇ M)) and PEP1 at different concentrations in JFH-1 cell line. Incubated for a while, and a graph showing the degree of generation of ROS.
  • NAC conventional antioxidants
  • PDTC 100 ⁇ M
  • vitamin E 10 ⁇ M
  • FIG. 2 shows the treatment of JFH-1 cell line with vehicle, PEP1, NAC (20 mM), PDTC (100 ⁇ M) and vitamin E (10 ⁇ M) for 2 hours, followed by HSP90, pp-38, p38, p-JNK, This is an image of an immunoblot analysis with antibodies specific for JNK, p-ERK, ERK, and GAPDH.
  • Figure 3 is a graph showing the rate of ROS generation compared to the control (DMSO, vehicle) treatment when PEP1 was administered to the control antibody (isotype), anti-HSP70 antibody, anti-HSP90 antibody to the JFH-1 cell line.
  • Figure 4 is a graph showing the rate of ROS production compared to the control (DMSO, vehicle) when treated with the PDTC, an antioxidant to the control antibody (isotype), anti-HSP70 antibody, anti-HSP90 antibody to JFH-1 cell line to be.
  • FIG. 7 is a graph showing the production rate of ROS after culturing the JFH-1 cell line with PEP1 and DMSO, or incubating for 2 hours by increasing the PDTC concentration.
  • FIG. 8 is a graph showing the expression concentration (ng / ml) of HSP90 compared to that of the control (PBS) when treated with hydrogen peroxide, a type of ROS, in the Huh7.5 cell line.
  • FIG. 9 is a graph showing the expression concentration (ng / ml) of HSP90 compared to control (PBS) treatment using ELISA when treated with antioxidant PDTC in JFH-1 cell line (error bar is the standard of the mean) Error (SEM), compared to the vehicle control, * P ⁇ 0.05 and ** P ⁇ 0.01 P values were obtained based on the independent two-tailed test t-test and the results were obtained from 2 to 5 independent experiments. Representative value).
  • FIG. 10 is a graph measured by culturing MbCD (5 mM) in a JFH-1 cell line with FITC (fluorescein isothiocyanate) -conjugated PEP1 (FITC-PEP1) for 2 hours, and analyzing the cells by flow cytometry. And the result is representative of three independent experiments.
  • FITC fluorescein isothiocyanate
  • FIG. 11 is a graph of cells analyzed by flow cytometry after incubation with anti-LRP1 antibody for 2 hours in JFH-1 cell line with FITC-conjugated PEP1 (FITC-PEP1). Representative value of an independent experiment.
  • FIG. 12 is a graph measured by analyzing a cell by flow cytometry after incubation with LRP1 siRNA (200 nM) for 2 hours in a JFH-1 cell line with FITC-conjugated PEP1 (FITC-PEP1). Is representative of three independent experiments.
  • FIG. 13 is a graph measured by analyzing a cell through a flow cytometer after incubation with PDTC for 2 hours in a JFH-1 cell line with FITC-conjugated PEP1 (FITC-PEP1). Results are three independent experiments. Representative value of.
  • FIG. 14 is a graph measured by analyzing a cell by flow cytometry after incubation with H 2 O 2 for 2 hours with FITC-conjugated PEP1 (FITC-PEP1) in a JFH-1 cell line. Representative of two independent experiments.
  • Figure 15 is transfected with scrambled siRNA or LRP1 siRNA and treated with ROS generation using DCF-DA method prior to treatment of JFH-1 cell line in PEP1 (10 ⁇ M), PDTC (100 ⁇ M) or PBS for 2 hours.
  • PEP1 10 ⁇ M
  • PDTC 100 ⁇ M
  • PBS PBS
  • FIG. 16 shows the quantitative PCR measurement of NS2 transcription in HCV when the JFH-1 cell line was incubated for 48 hours with PEP1, NAC (20 mM), PDTC (100 ⁇ M) and vitamin E (10 ⁇ M). The result of measuring anti-HCV activity of PEP1 in vitro.
  • 17 shows the results of measuring the amount of transcription of NS2 after incubating the JFH-1 cell line with anti-HSP70 antibody, anti-HSP90 antibody, or control antibody for 2 hours in the presence of PEP1 (10 ⁇ M). .
  • HSP90 red
  • DAPI red
  • AIH autoimmune hepatitis
  • FIG. 21 shows JFH-1 cells incubated with PEP1 (10 ⁇ M) or PBS for 2 hours, stained with HSP90, and results are representative of two independent experiments.
  • Figure 22 shows the effect on the cell viability of PEP1, showing the results of MTT assay and treatment for 5 days by increasing the PEP1 concentration in MT-4, IG5 and ACH-2 cells.
  • FIG. 23 shows the effect of PEP1 on HIV-1 virus production, showing the results of treatment of HIV-1 infected MT-4 cells with increasing concentrations of PEP1 (viral particles in supernatant). ) was determined by p24 ELISA).
  • Figure 24 shows the effect of PEP1 on the expression of eGFP (eGFP expressed with HIV-1 Nef), HIV-4 infected MT-4 cells treated with increasing concentrations of PEP1, expression of eGFP Shows the result of monitoring with a fluorescence microscope.
  • FIG. 25 shows inhibition of HIV-1 viral particle production. Viral genomes of supernatant were treated with HIV-1 infected MT-4 cells with AZT or PEP1 with increasing levels of concentration. The level of was measured using RT-qPCR.
  • FIG. 26 shows the protective effect of cells from HIV-1 infection-related cell death of PEP1, MT-4 cells (1 ⁇ 10 4 ) infected with HIV-1 virus ( 4 ⁇ 10 5 CCID 50 ), 5 with AZT It was treated daily and cell viability was measured by p24 ELISA. (Data is represented as mean ⁇ SD (standard deviation).
  • FIG. 27 shows the protective effect of cells from HIV-1 infection-related cell death of PEP1, MT-4 cells ( 4 ⁇ 10 4 ) infected with HIV-1 virus ( 4 ⁇ 10 5 CCID 50 ), 5 with PEP1
  • the cells were treated daily, and the viability was measured by p24 ELISA (data represented as mean ⁇ SD (mean error)).
  • FIG. 28 is a time-of-addition assay in which named anti-HIV-1 drugs, including PEP1, were treated at different time points after infection with MT-4 cells infected with HIV-1. HIV-1 replication is evaluated by p24 ELISA 5 days after HIV-1 infection.
  • 29 shows representative eGFP images obtained from time-of-addition assays.
  • FIG. 30 shows inhibition of HIV-1 viral mRNA synthesis of PEP1, MT-4 cells were infected by HIV-1 and vehicle or antiviral drugs were treated at the indicated time points, and viral mRNAs were determined by RT-qPCR. Measured data (represented as mean ⁇ SD (mean error). * Indicates p ⁇ 0.05 compared to DMSO and *** indicates p ⁇ 0.001).
  • FIG. 31 shows that AZT or PEP1 treatment reduced the effect of HIV-1 infection on HIV-LTR-luciferase activity by a factor of five.
  • Figure 33 shows the inhibitory effect on reactivation after incubation of HIV-1 by PEP1.
  • Figure 34 shows the inhibitory effect on reactivation after incubation of HIV-1 by PEP1.
  • FIG. 36 shows a representative eGFP image obtained in FIG. 35.
  • MT-4 cells were infected with NF- ⁇ B firefly luciferase and CMV-promoter renilla luciferase reporter plasmid followed by HIV-1 (1 ⁇ 10 6 CCID 50 ) and then named Treatment with compounds for 24 hours followed by a dual-luciferase assay (data is representative of mean ⁇ SD (standard deviation). *** is p ⁇ 0.001 compared to DMSO) ).
  • FIG. 39 shows MT-4 cells infected with HIV-1, 24 hours after infection with DMSO, AZT or PEP1 as mentioned in FIG. 38, followed by extraction of nuclear fractions followed by EMSA assay (electrophoretic). mobility shift assay) is shown.
  • ACH-2 cells were stimulated with TNF- ⁇ (30 ng / ml) or PMA (phorbol 12-myristate 13-acetate) (50 nM) for 1 hour and treated with DMSO, AZT or PEP1 after 24 hours. Cells were then transmitted with anti-p65 NF- ⁇ B antibody and Alexa-fluorescent 594-conjugated secondary antibody followed by brief DAPI nuclear staining followed by confocal microscopy.
  • 44a is a comparison of Virion forming ability by PEP1 peptide in HepG2 cell line injected with whole HBV W4P genome.
  • 44B is a comparison of Virion forming ability by PEP1 peptide in Huh7 cell line injected with the entire HBV W4P genome.
  • FIG. 44C compares Virion forming ability by PEP1 peptide in Huh7.5 cell line injected with the entire HBV W4P genome.
  • Figure 47 shows the effect of the PEP1 peptide on the expression of HNF4 ⁇ by Western blot.
  • PEP1 peptide is a Western blot showing the effect of PEP1 peptide on protein expression in whole HBV W4P genomic transgenic mice.
  • 51A shows the effect of PEP1 peptide on immune cell (lymphocyte CD8) distribution in whole HBV W4P genomic transgenic mice.
  • 51B shows the effect of PEP1 peptide on immune cell (lymphocyte CD4) distribution in whole HBV W4P genomic transgenic mice.
  • 51C shows the effect of PEP1 peptide on immune cell (lymphocyte B cell) distribution in whole HBV W4P genomic transgenic mice.
  • 51D shows the effect of PEP1 peptide on immune cell (lymphocyte NK1.1) distribution in whole HBV W4P genomic transgenic mice.
  • FIG. 51E shows the effect of PEP1 peptide on the distribution of myeloid dendritic cells (myeloid DC) in whole HBV W4P genomic transgenic mice.
  • 51F shows the effect of PEP1 peptide on immune cell (macrophage) distribution in whole HBV W4P genomic transgenic mice.
  • 51G shows the effect of PEP1 peptide on immune cell (neutrophil) distribution in whole HBV W4P genomic transgenic mice.
  • 51H shows the effect of PEP1 peptide on immune cell (monocyte) distribution in whole HBV W4P genomic transgenic mice.
  • 52A shows the effect of PEP1 peptide between immune cells (lymphocyte CD4) and INF ⁇ activation.
  • 52B shows the effect of PEP1 peptide between immune cells (lymphocyte CD4) and INF ⁇ activation.
  • 52C shows the effect of PEP1 peptide between immune cells (lymphocyte CD8) and INF ⁇ activation.
  • FIG. 52D shows the effect of PEP1 peptide between immune cells (lymphocyte CD8) and INF ⁇ activation.
  • 52E shows the effect of PEP1 peptide between immune cells (NK1.1) and INF ⁇ activation.
  • 52F shows the effect of PEP1 peptide between immune cells (NK1.1) and INF ⁇ activation.
  • 52G shows the effect of PEP1 peptide between immune cells (NK1.1) and INF ⁇ activation.
  • FIG. 53 shows the effect of PEP1 peptide on macrophage differentiation in whole HBV W4P genomic transgenic mice.
  • Figure 54 shows the antiviral effect of PEP1 peptides by HSP90 blocking in transfected cells of the whole HBV wild line genome.
  • the present invention may, in one aspect, be capable of various transformations and have various embodiments.
  • the present invention will be described in more detail. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and technical scope according to one aspect of the present invention.
  • the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
  • Telomere is a genetic material repeatedly present at the end of a chromosome and is known to prevent damage to the chromosome or binding to another chromosome. Each time a cell divides, the telomeres become slightly shorter. After a certain number of cell divisions, the telomeres become very short, and the cells stop dividing and die. On the other hand, elongation of telomeres is known to prolong cell lifespan. For example, cancer cells are known to be able to continue to proliferate without dying because telomerase prevents the telomerase from being overexpressed. The inventors have found that peptides derived from telomerase are effective in the prevention and treatment of antiviral and virus related diseases and have completed the present specification.
  • HSP90 protein is a molecular chaperone that is responsible for the stabilization and activity of various proteins involved in cell growth, differentiation and survival, especially under stress.
  • HSP90 is iHSP90 called "intracellular HSP90” and not only intracellular, but also extracellular as eHSP90 called “extracellular HSP90”.
  • released HSP90 and cell surface HSP90 have been observed in cancer cells, and these extracellular HSP90 (eHSP90) proteins promote cancer growth and angiogenesis.
  • Cells that are not cancerous cells also produce eHSP90 under various environmental conditions, such as heat, hypoxia, hunger and cytokine.
  • eHSP90 functions differently from iHSP90 and can interact with various cell surface proteins to regulate cell signaling pathways.
  • HSP90 is associated with a number of pathological symptoms such as cancer, sclerosis and viral infections. Molecules that can bind to HSP90 have been found to contain a number of proteins associated with cancer, invasiveness and metastasis, thus confirming that HSP90 can be a potent target for cancer therapy.
  • hTERT-derived 16mer peptide (611-EARPALLTSRLRFIPK-626, SEQ ID NO: 1), known as PEP1 peptide, interacts with HSP90, which plays an important role in protein homeostasis, and exhibits antiviral effects by regulating cellular signals. Will be confirmed.
  • the antiviral effect is to inhibit the virus by one or more selected from the group consisting of inhibition of replication, transcription inhibition, reactivation inhibition, antigen expression inhibition, and virion formation inhibition of the virus. It may be.
  • the present invention provides a peptide vaccine derived from reverse transcriptase of telomerase.
  • the present invention provides an amino acid peptide vaccine derived from human telomerase reverse transcriptase (hTERT). More specifically, in one aspect, the present invention provides a peptide PEP1, known as GV1001 ® , as an antiviral vaccine as a 16 amino acid peptide derived from hTERT.
  • PEP1 Peptides according to one aspect of the present invention
  • PEP1 has been confirmed that it can play a variety of biological roles as a synthetic peptide derived from human telomerase.
  • HSP heat shock protein
  • the present invention has shown that the antioxidant efficacy of PEP1 has an effect of inhibiting the replication of HCV in HCV infected cells with increased free radicals.
  • free radicals in HCV-infected cells increased free radicals increase the secretion capacity of HSP90
  • cell penetration of PEP1 bound to HSP90 is enhanced to inhibit HCV replication proliferation in cells It can be said.
  • the present invention provides novel drugs capable of inhibiting HCV replication proliferation through various biological activities that PEP1 exhibits through HSP90.
  • the present invention provides, in another aspect, a novel form of anti-HIV therapeutics that can overcome HIV resistance and drug side effects against existing antiretroviral agents, based on peptides.
  • Infected cells are known to undergo cell death by stimulating cell death mechanisms.
  • the inventors have confirmed that PEP1 has antiviral effects on the HIV virus itself, inhibits HIV proliferation, and prevents cell death on HIV-infected cell lines.
  • the present invention maintains the normal state of the cells and has been confirmed to minimize HIV cytotoxicity or cell death.
  • the present invention provides a novel form of anti-HBV therapeutic agent that can overcome drug side effects such as hepatotoxicity of existing viral hepatitis B drugs and nephrotoxicity during continuous administration based on peptides.
  • a peptide of SEQ ID NO: 1, a peptide that is a fragment of SEQ ID NO: 1, or a peptide having a sequence homology of at least 80% with the peptide sequence is selected from telomerase, specifically human ( Homo sapiens ) telomerase. Peptides derived.
  • the present invention may be a peptide comprising an amino acid sequence of SEQ ID NO: 1, a peptide having 80% or more sequence homology with the amino acid sequence, or a fragment for antiviral.
  • Peptides disclosed herein can include peptides having at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% homology.
  • the peptides disclosed herein, peptides or fragments thereof comprising SEQ ID NO: 1 and one or more amino acids, two or more amino acids, three or more amino acids, four or more amino acids, five or more amino acids, six or more amino acids Or peptides with seven or more amino acids changed.
  • the peptide may be included in the composition in a conjugated form with a label.
  • the labeling material may be a fluorescent material or a contrast material.
  • the fluorescent material may be fluorescein isothiocyanate (FITC).
  • amino acid changes belong to a property that allows the physicochemical properties of the peptide to be altered.
  • amino acid changes can be made, such as improving the thermal stability of the peptide, altering substrate specificity, changing the optimal pH, and the like.
  • amino acid includes not only the 22 standard amino acids that are naturally incorporated into the peptide, but also D-isomers and modified amino acids. Accordingly, in one aspect of the invention the peptide may be a peptide comprising D-amino acids. Meanwhile, in another aspect of the present invention, the peptide may include non-standard amino acid or the like which has been post-translational modified.
  • post-translational modifications include phosphorylation, glycosylation, acylation (including, for example, acetylation, myristoylation and palmitoylation), alkylation ), Carboxylation, hydroxylation, glycation, biotinylation, ubiquitinylation, changes in chemical properties (e.g., beta-elimination deimidization) , Deamidation) and structural changes (eg, formation of disulfide bridges). It also includes changes in amino acids, such as changes in amino groups, carboxy groups or side chains, caused by chemical reactions that occur in the course of binding with crosslinkers to form peptide conjugates.
  • Peptides disclosed herein can be wild-type peptides identified and isolated from a natural source.
  • the peptides disclosed herein may be artificial variants, comprising an amino acid sequence in which one or more amino acids are substituted, deleted and / or inserted compared to peptides that are fragments of SEQ ID NO: 1.
  • Amino acid changes in the wild type polypeptide as well as in artificial variants include conservative amino acid substitutions that do not significantly affect the folding and / or activity of the protein.
  • conservative substitutions include basic amino acids (arginine, lysine and histidine), acidic amino acids (glutamic acid and aspartic acid), polar amino acids (glutamine and asparagine), hydrophobic amino acids (leucine, isoleucine, valine and methionine), aromatic amino acids (phenylalanine, Tryptophan and tyrosine), and small amino acids (glycine, alanine, serine and threonine). Amino acid substitutions that generally do not alter specific activity are known in the art.
  • the most common exchanges are Ala / Ser, Val / Ile, Asp / Glu, Thr / Ser, Ala / Gly, Ala / Thr, Ser / Asn, Ala / Val, Ser / Gly, Tyr / Phe, Ala / Pro, Lys / Arg, Asp / Asn, Leu / Ile, Leu / Val, Ala / Glu, and Asp / Gly, and vice versa.
  • Other examples of conservative substitutions are shown in the following table.
  • residue substitutions Preferred residue substitution Ala (A) val; leu; ile Val Arg (R) lys; gln; asn Lys Asn (N) gln; his; asp, lys; arg Gln Asp (D) glu; asn Glu Cys (C) ser; ala Ser Gln (Q) asn; glu Asn Glu (E) asp; gln Asp Gly (G) Ala Ala His (H) asn; gln; lys; arg Arg Ile (I) leu; val; met; ala; phe; norleucine Leu Leu (L) norleucine; ile; val; met; ala; phe Ile Lys (K) arg; gln; asn Arg Met (M) leu; phe; ile Leu Phe (F) leu; val; ile; ala; tyr Tyr Pro (P
  • Substantial modifications in the biological properties of the peptide include (a) their effect on maintaining the structure of the polypeptide backbone, eg, a sheet or helical conformation, within the substitution region, (b) the charge of the molecule at the target site. Or their effect in maintaining hydrophobicity, or (c) their effect in maintaining the bulk of the side chains, is carried out by selecting significantly different substitutions. Natural residues are divided into the following groups based on common side chain properties:
  • hydrophobic norleucine, met, ala, val, leu, ile
  • Non-conservative substitutions will be made by exchanging a member of one of these classes for another class. Any cysteine residue that is not involved in maintaining the proper conformation of the peptide can generally be substituted with serine to improve the oxidative stability of the molecule and to prevent abnormal crosslinking. Conversely, cysteine bond (s) can be added to the peptide to improve its stability.
  • Another type of amino acid variant of the peptide is a change in the glycosylation pattern of the antibody.
  • change is meant the deletion of one or more carbohydrate residues found in the peptide and / or the addition of one or more glycosylation sites that are not present in the peptide.
  • N-linked refers to a carbohydrate moiety attached to the side chain of an asparagine moiety.
  • Tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are recognition sequences for enzymatic attachment of carbohydrate moieties to the asparagine side chains.
  • O-linked glycosylation means attaching one of the sugars N-acetylgalactosamine, galactose or xylose to hydroxyamino acids, most commonly serine or threonine, but 5-hydroxyproline or 5-hydroxylysine You can also use
  • glycosylation sites to the peptide is conveniently performed by changing the amino acid sequence to contain one or more of the above mentioned tripeptide sequences (for N-linked glycosylation sites). Such changes may also be made by adding or replacing one or more serine or threonine residues with the sequence of the original antibody (for O-linked glycosylation sites).
  • a peptide having a sequence of SEQ ID NO: 1, a peptide which is a fragment of SEQ ID NO: 1, or a peptide having a sequence homology of 80% or more with the peptide sequence according to an aspect of the present invention has low intracellular toxicity and stability in vivo. This has the advantage of being high.
  • SEQ ID NO: 1 is a telomerase-derived peptide consisting of 16 amino acids as follows.
  • the peptide described in SEQ ID NO: 1 is shown in Table 2 below. "Name” in Table 2 below is named to distinguish peptides.
  • the peptide set forth in SEQ ID NO: 2 represents the entire peptide of human telomerase.
  • a peptide having a sequence of SEQ ID NO: 1, a peptide that is a fragment of SEQ ID NO: 1, or a peptide having at least 80% sequence homology with the peptide sequence corresponds to a peptide included in telomerase.
  • synthetic peptides selected and synthesized at the positional peptides.
  • SEQ ID 2 shows the amino acid sequence of the entire telomerase.
  • a peptide comprising the amino acid sequence of SEQ ID NO: 1, a peptide having an anti-viral and virus inhibitory effect which is a peptide or fragment thereof having 80% or more sequence homology with the amino acid sequence as an active ingredient It provides a composition comprising.
  • the composition may be a pharmaceutical composition.
  • the virus is a DNA virus, RNA virus, double-stranded DNA Reverse Transcriptase (dsDNA-RT) virus, single-stranded RNA Reverse Transcriptase (single-stranded RNA Reverse Transcriptase) , ssRNA-RT) virus, or ssRNA virus.
  • dsDNA-RT double-stranded DNA Reverse Transcriptase
  • ssRNA-RT single-stranded RNA Reverse Transcriptase
  • ssRNA virus a DNA virus, RNA virus, double-stranded DNA Reverse Transcriptase (dsDNA-RT) virus, single-stranded RNA Reverse Transcriptase (single-stranded RNA Reverse Transcriptase) , ssRNA-RT) virus, or ssRNA virus.
  • the virus may be a flaviviruses bayireoseugwa (Flaviviridae) retro bayireoseugwa (Retroviridae), or HEPA and out bayireoseugwa (Hepadnaviridae).
  • the virus may be HCV, HIV, or HBV.
  • the pharmaceutical composition having an antiviral and virus inhibitory effect is a peptide comprising an amino acid sequence of SEQ ID NO: 1, a peptide having a sequence homology of 80% or more with the amino acid sequence, or a 0.01 mg / mL or more, 0.02 mg / mL or more, 0.05 mg / mL or more, 0.07 mg / mL or more, 0.1 mg / mL or more, 0.15 mg / mL or more, 0.2 mg / mL or more, 0.25 mg / mL 0.3 mg / mL or more, 0.5 mg / mL or more, 0.7 mg / mL or more, 1 mg / mL or more, 2 mg / mL or more, 3 mg / mL or more, 5 mg / mL or more, 7 mg / mL or more, 10 mg / mL or more, 20 mg / mL or more, 30
  • composition according to an aspect of the present invention comprises at least 0.0001 ⁇ M and at least 0.001 ⁇ M of a peptide comprising a amino acid sequence of SEQ ID NO. 1, a peptide having a sequence homology of 80% or more with the amino acid sequence, or a fragment thereof.
  • 0.002 ⁇ M or more 0.005 ⁇ M or more, 0.007 ⁇ M or more, 0.01 ⁇ M or more, 0.02 ⁇ M or more, 0.05 ⁇ M or more, 0.07 ⁇ M or more, 0.09 ⁇ M or more, 0.1 ⁇ M or more, 0.2 ⁇ M or more, 0.25 ⁇ M or more, 0.3 ⁇ M or more, 0.35 ⁇ M or more, 0.4 ⁇ M or more, 0.45 ⁇ M or more, 0.5 ⁇ M or more, 0.55 ⁇ M or more, 0.6 ⁇ M or more, 0.65 ⁇ M or more, 0.7 ⁇ M or more, 0.75 ⁇ M or more, 0.8 ⁇ M or more, 0.85 ⁇ M or more, 0.9 ⁇ M or more, 0.95 ⁇ M or more , 1 ⁇ M or more, 2 ⁇ M or more, 3 ⁇ M or more, 5 ⁇ M or more, 7 ⁇ M or more, 10 ⁇ M or more, 30 ⁇ M or more,
  • composition according to one aspect of the present invention can be applied to all animals including humans, dogs, chickens, pigs, cattle, sheep, guinea pigs or monkeys.
  • the composition is a peptide comprising the amino acid sequence of SEQ ID NO: 1, a peptide or fragment thereof having 80% or more sequence homology with the amino acid sequence, antiviral efficacy and prevention and treatment of virus related diseases. It provides a pharmaceutical composition comprising a peptide having an effect on.
  • the pharmaceutical composition according to one aspect of the present invention may be administered orally, rectal, transdermal, intravenous, intramuscular, intraperitoneal, intramedullary, intradural or subcutaneous.
  • Formulations for oral administration may be, but are not limited to, tablets, pills, soft or hard capsules, granules, powders, solutions or emulsions.
  • Formulations for parenteral administration may be, but are not limited to, injections, drops, lotions, ointments, gels, creams, suspensions, emulsions, suppositories, patches or sprays.
  • compositions according to one aspect of the invention may include additives such as diluents, excipients, lubricants, binders, disintegrants, buffers, dispersants, surfactants, colorants, flavoring or sweetening agents as needed.
  • additives such as diluents, excipients, lubricants, binders, disintegrants, buffers, dispersants, surfactants, colorants, flavoring or sweetening agents as needed.
  • Pharmaceutical compositions according to one aspect of the invention may be prepared by conventional methods in the art.
  • the active ingredient of the pharmaceutical composition according to one aspect of the present invention will vary depending on the age, sex, weight, pathology and severity of the subject to be administered, the route of administration or the judgment of the prescriber. Dosage determination based on these factors is within the level of skill in the art and its daily dosage is at least 0.01 ⁇ g / kg / day, at least 0.1 ⁇ g / kg / day, at least 1 ⁇ g / kg / day, at least 0.0016 mg / kg / day , At least 0.005 mg / kg / day, at least 0.006 mg / kg / day, at least 0.0093 mg / kg / day, at least 0.01 mg / kg / day, at least 0.016 mg / kg / day, at least 0.05 mg / kg / day, 0.1 mg / kg / day or more, 0.5 mg / kg / day or more, 1 mg / kg / day or more, 5 mg / kg / day or more, 10 mg
  • composition according to one aspect of the present invention may be administered once to three times a day, but is not limited thereto.
  • the composition relates to an antiviral virus comprising a peptide comprising an amino acid sequence of SEQ ID NO: 1, a peptide having a sequence homology of 80% or more with the amino acid sequence, or a fragment thereof as an active ingredient
  • a peptide having a sequence homology of 80% or more with the amino acid sequence, or a fragment thereof as an active ingredient Provided are compositions for the prevention and treatment of diseases.
  • the formulation of the composition according to one aspect of the present invention is not particularly limited, but may be, for example, formulated into tablets, granules, powders, solutions, solid preparations, and the like.
  • Each formulation may be appropriately selected and formulated by those skilled in the art according to the formulation or purpose of use, in addition to the active ingredient, and may be synergistic when applied simultaneously with other raw materials.
  • the composition may be a food composition.
  • the formulation of the food composition according to one aspect of the present invention is not particularly limited, but may be, for example, formulated into tablets, granules, powders, solutions, solid preparations, and the like.
  • Each formulation may be appropriately selected and blended by those skilled in the art according to the formulation or purpose of use, in addition to the active ingredient, and may be synergistic when applied simultaneously with other raw materials.
  • the present invention provides a method for ameliorating, preventing and treating a viral disease comprising administering the composition to a subject having a viral disease or exhibiting pathological symptoms caused by the virus.
  • the viral disease may be acquired immune deficiency syndrome, hepatitis B, hepatitis C, cirrhosis thereof, or liver cancer thereby.
  • the present invention in another aspect, the composition; And it provides a kit for the prevention and treatment of viral diseases comprising instructions describing the method for preventing and treating viral diseases.
  • the method for preventing and treating a viral disease may include administering the antiviral composition to an individual suffering from a viral disease or showing pathological symptoms caused by a virus.
  • the present invention provides the use of a peptide comprising an amino acid sequence of SEQ ID NO: 1, a peptide having a sequence homology of 80% or more with the amino acid sequence, or a fragment thereof for use in preparing the composition. to provide.
  • Preferred embodiments according to one aspect of the invention include the most optimal mode known to the inventors for carrying out the invention. Variations of the preferred embodiments may become apparent to those skilled in the art upon reading the foregoing description. The inventors expect those skilled in the art to make appropriate use of such variations, and the inventors expect the invention to be practiced in a manner different from that described herein. Accordingly, the present invention, in one aspect, includes equivalents and all variations of the subject matter referred to in the appended claims, as permitted by patent law. Moreover, any combination of the abovementioned elements within all possible variations is included in the invention unless expressly stated to the contrary or apparently contradictory in context. While the invention has been shown and described in detail, with reference to exemplary embodiments, those skilled in the art will recognize that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the following claims. I will understand well.
  • PEP1 The peptide of SEQ ID NO: 1 (hereinafter referred to as "PEP1") was prepared according to the conventionally known solid phase peptide synthesis method. Specifically, peptides were synthesized by coupling amino acids one by one from the C-terminus through Fmoc solid phase synthesis (SPPS) using ASP48S (Peptron, Inc., Daejeon, Korea). As follows, the first amino acid at the C-terminus of the peptides was attached to the resin. For example:
  • Coupling reagent is HBTU [2- (1H-Benzotriazole-1-yl) -1,1,3,3-tetamethylaminium hexafluorophosphate] / HOBt [N-Hydroxxybenzotriazole] / NMM [4-Methylmorpholine] It was. Fmoc removal was performed using piperidine in DMF at 20%.
  • Each peptide was synthesized by repeating a process of reacting the amino acids with each other, washing with a solvent, and then deprotecting the amino acid using the state in which the amino acid protecting group was bound to the solid support.
  • the synthesized peptide was separated from the resin and then purified by HPLC, and confirmed by MS and lyophilized.
  • the cell line Huh7.5 (human hepatocellular carcinoma) used in the HCV antiviral efficacy example of PEP1 was purchased from American Type Culture Collection, Manassas, VA, USA, and JFH-1 cell line.
  • Reagents used in the examples according to one aspect of the present invention are NAC (N-acetylcysteine), PDTC (pyrolidine dithiocarbamate), vitamin E, hydrogen peroxide (H 2 O 2 ), MbCD (methyl- ⁇ -cyclodextrin), KNK-437 (As KNK, inhibitor of HSP70), 17AAG (inhibitor of 17-N-Allylamino-17-demethoxy geldanamycin, HSP90), Sigma-Aldrich, St. Louis, MO, USA) and Calbiochem, Temecula, CA, USA) purchased and used.
  • NAC N-acetylcysteine
  • PDTC pyrolidine dithiocarbamate
  • vitamin E hydrogen peroxide
  • MbCD methyl- ⁇ -cyclodextrin
  • KNK-437 As KNK, inhibitor of HSP70
  • 17AAG inhibitor of 17-N-Allylamino-17-demethoxy geldan
  • the antibodies used in the examples are HSP70, HSP90, isotype control antibodies, purchased from Santa Cruz Biotechnology (Santa Cruz Biotechnology, Santa Cruz, CA, USA).
  • Anti-LRP1 antibodies were purchased and used from Thermo Fisher Scientific, Fremont, CA, USA.
  • ROS Reactive Oxygen
  • JFH-1 cell line was injected with 5 ⁇ 10 4 (cells / well) cells in a 24-well plate, and then the free oxygen production was measured in the following day according to various experimental substances. Intracellular activity was measured using DCF-DA (dichlorodihydrofluoresein diacetate, Invitrogen), and fluorescence was measured using Infinte M2000 Tecan (Tecan Trading AG, Switzerland) for ROS generation at 485 nm (emission) / 535 nm (excitation). Whether or not was measured. All fluorescent units were expressed in arbitrary units and hydrogen peroxide solution (H 2 O 2 , 2 mM) was used as a positive control. ROS measurements on Huh7.5 cells were measured using the same procedure.
  • Cells are prepared using a lysis solution (Cell Signaling Technology, Danvers, MA, USA) containing a proteinase inhibitors cocktail (Roche, Basel, Switzerland) and a phosphatase inhibitor (Roche). To obtain the protein. After lysis, the cells were centrifuged at 4 ° C for 10 minutes to remove undissolved debris. 50 ⁇ g of protein was transferred to PVDF (polyvinylidene difluoride membrane, Millipore, Bedford, MA, USA) after electrophoresis on 12% SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis).
  • PVDF polyvinylidene difluoride membrane, Millipore, Bedford, MA, USA
  • the migrated membrane contains zinc-copper as HSP90, p38, p-p38 (Thr180 / Tyr182), JNK, p-JNK (Thr183 / Tyr185), ERK, p-ERK (Thr202 / Tyr204), superoxide dismutase oxidase (SOD) SuperSignal West Pico Chemiluminescence Substance after attaching antibodies to the enzymes SOD (CuZn-SOD), manganese-SOD (Mn-SOD), GAPDH (all purchased from Cell Signaling Technology and Santa Cruz Biotechnology) Fluorescence was developed using Pico Chemiluminescence Substrate (Pierce, Rockford, USA) and developed with ImageQuant TM LAS 4000 Mini Biomolecular Imager (GE Healthcare Bio-Sciences AB, Sweden). Using Multi Gauge V 3.0 (Fuji Film, Japan), ⁇ -actin was used as a normalization and quantitative analysis was performed by densitometry.
  • LRP1 Low density lipoprotein receptor related protein 1
  • CD91 CD91
  • LRP1 is a protein that promotes epidermal and skin cell migration and has been identified as one of the cellular receptors for HSP.
  • LRP1 is a receptor of gp96, HSP90, HSP70, and lecticulin; peptides that are chaperoned by HSPs bind to the receptor and enter the antigen presenting cells along with HSPs.
  • LRP1 complex in combination with eHSP90 is shown to act as an endocytosis and signaling receptor. This suggests that LRP1 influences the role of eHSPs in pathological or stressed environments.
  • LRP1 is important in the antioxidant activity of the peptide PEP1 according to the invention in the oxidative stress environment.
  • the inventors of the present invention have shown that LRP1 is important for entering the cells of the peptides of the invention and inhibiting ROS production in JFH-1 cells.
  • siRNA small interfering RNA
  • siRNA target LRP1 and scrambled siRNA were purchased from Daejeon, Republic of Korea. All siRNAs were injected into JFH-1 or Huh7.5 cell lines using Lipofectamine 2000 (Invitrogen) at various concentrations. After 18 hours, RNA was obtained from the cells, and then RNA knockdown was confirmed by performing qRT-PCR (quantitative reverse-transcription-polymerase chain reaction).
  • HCV RNA levels were measured by performing quantitative PCR using primers for the NS2 gene.
  • RNA was extracted from 100 ⁇ l of cell culture using the QIAamp Viral RNA Mini Kit (Qiagen). The extracted RNA was used for cDNA synthesis, using a Transcript First Strand cDNA Synthesis Kit (Roche Applied Science). PCR was performed using 1 ⁇ SYBR Green mix (Qiagen).
  • Real-time PCR was used by purchasing NS2 forward primer, 5'-CGACCAGTACCACCATCCTT-3 '(SEQ ID NO: 3) and reverse primer, 5'-AGCACCTTACCCAGGCCTAT-3' (SEQ ID NO: 4) from Bioneer Co.
  • NS2 forward primer 5'-CGACCAGTACCACCATCCTT-3 '(SEQ ID NO: 3)
  • reverse primer 5'-AGCACCTTACCCAGGCCTAT-3' (SEQ ID NO: 4) from Bioneer Co.
  • a 7900HT Fast real-time PCR system (Applied Biosystems, Foster City, CA, USA) was used.
  • FCS-conjugated PEP1 was further treated for two hours after treatment with various substances in the cell line, followed by FACS analysis.
  • siRNA was injected into the cells, washed 18 hours with PBS, treated with FITC-conjugated PEP1 for 2 hours, and then the peptides attached to the cells were completely removed by treatment with Trypsin / EDTA (Invitrogen). Washed with FACS buffer (PBS, 0.5% BSA) and analyzed with BD FACSFortessa (BD Biosciences, San Diego, CA, USA). Data analysis was performed using FlowJo software (version 9.7.7, TreeStar, Ashland, OR, USA).
  • Huh7.5 and JFH-1 cell lines were treated with antioxidant (H 2 O 2 , 2 mM) and antioxidant PDTC (100 ⁇ M) for 2 hours.
  • Culture supernatant HSP90 extra cellular HSP90, eHSP90 was performed using ELISA (R & D Systems, Minneapolis, MN, USA) and was performed according to the manufacturer's instructions.
  • Human liver biopsy tissue was collected from patients with chronic HCV or HBV and from autoimmune hepatitis (AIH) as a control group, including the institutional review board (IRB) of Soonchunhyang University Bucheon Hospital (2014-12-034) and Seoul National University Hospital ( 1410-136-621).
  • AIH autoimmune hepatitis
  • liver tissue or JFH-1 cells were stained with anti-HSP90 antibody (Cell Signaling Technology) antibody.
  • Alexa Fluor 594-conjugated antirabbit IgG (Invitrogen) was used for visualization.
  • 4 ', 6-Diamidino-2-phenylindole (DAPI, Sigma-Aldrich) was used for counter-staining for the nucleus.
  • Image acquisition and processing were performed using a confocal microscope system A1 (Nikon, Minatoku, Tokyo, Japan) and NIS-Elements 4.20 Viewer (Nikon).
  • the amount of transcription of NS2 was measured to determine whether PEP1 inhibits the replication of NS2, one of HCV RNA.
  • NS2 transcription was measured in the control group (vehicle), PEP1 administration group, and conventional antioxidant (NAC, PDTC, vitamin E) administration group. Appeared to inhibit.
  • NAC, PDTC, vitamin E did not appear to inhibit the transcription of NS2 at all (FIG. 16).
  • HCV RNA proliferation by PEP1 was not inhibited by anti-HSP90 antibody treatment.
  • anti-HSP70 antibodies and control antibody groups HCV RNA proliferation was inhibited by PEP1 regardless of the antibody (FIG. 17).
  • the degree of NS2 transcription inhibition of PEP1 was measured according to the inhibition of LRP1, a receptor for HSP90.
  • HSP90 is known to be involved in the formation of conjugates of NS5A and FKBP8 for HCV RNA replication.
  • PEP1 was treated on JFH-1 cells to observe the binding of HSP90 and FKBP8. Specifically, JFH-1 cells were incubated with PEP1 (10 ⁇ M) for 48 hours. The protein was then subjected to immunoprecipitation with an anti-FKBP8 antibody or an anti-HSP90 antibody. Endogenous expression of HSP90 and FKBP8 was measured in untreated JFH-1 cells.
  • PEP1 has a property of binding to HSP90 and thus has an effect of inhibiting the replication of HCV RNA through a mechanism of reducing the activity of HSP90 against FKBP8. It can also be said that PEP1 inhibits replication of HCV and exhibits antiviral efficacy.
  • JFH-1 cell line was produced by infecting Huh7.5 cells with HCV2a JFH-1 clone. Due to HCV virion synthesis, intracellular free radicals in JFH-1 cell line are more regulated than in Huh7.5 cell line (parent cell line of JFH-1).
  • PEP1 significantly inhibited the production of ROS in JFH-1 cells in a dose dependent manner up to 10 ⁇ M. At 1 and 10 ⁇ M, the antioxidant activity effect of PEP1 was comparable to NAC, PDTC and Vitamin E (FIG. 1).
  • ROS was measured in JFH-1 cells and Huh7.5 cells according to the methods mentioned in the above experiments and assay methods.
  • PEP1 was treated at various concentrations for 2 hours, and then stained with DCF-DA for 30 minutes and fluorescence was measured.
  • NAC 2 Mm
  • PDTC 100 ⁇ M
  • vitamin E 10 ⁇ M
  • PEP1 was not administered, the intracellular free radicals in the JFH-1 cell line increased about twice as much as the Huh7.5 cell line (FIG. 1). Accordingly, when PEP1 is treated, the amount of active oxygen decreases in a concentration-dependent manner.
  • HSP90 would be mediated by the antioxidant effect of PEP1.
  • the experiment in order to determine whether the antioxidant effect of PEP1 is due to HSP90, the experiment to measure the degree of ROS generation of PEP1 according to the presence or absence of HSP90 activity.
  • ROS production in the PEP1 administration group, the antioxidant PDTC administration group and the control group (PBS) in JFH-1 cells was measured and compared.
  • the present invention showed that PEP1 inhibits ROS levels in JFH-1 cells in the presence of anti-HSP70 antibody, but no inhibitory effect is observed in the presence of anti-HSP90 antibody (FIG. 3). Inhibition by PEP1 was observed in the control antibody (isotype) (FIG. 3). In addition, 17AAG, an inhibitor of HSP90, showed an active oxygen inhibitory effect when treated with JFH-1 cells, but no change in active oxygen by HNK70 inhibitor KNK was observed (FIG. 5). Control drug PDTC inhibited ROS production, regardless of blocking HSP70 and HSP90 with specific antibodies, inhibiting ROS production under all treatment conditions (FIG. 4).
  • PDTC also inhibited ROS production in the presence of KNK and 17AAG (FIG. 6). This suggests that PEP1 inhibits ROS production through different mechanisms.
  • eHSP90 is an important mediator of the antioxidant activity of PEP1 and that PEP1 acts at the catalytic site essential for ROS induction in HSP90.
  • the present invention was carried out experiments to confirm the specific antioxidant function of PEP1 in the stress state by the active oxygen. Specifically, the administration of the existing antioxidants to reduce the expression of HSP90, and thus experiments to determine whether the antioxidant efficacy is reduced when PEP1 is administered with the existing antioxidants. Since the antioxidant activity of PEP1 is eHSP90 dependent, the secretion of eHSP was measured from the cells in the Examples of the present invention. Stimulation by H 2 O 2 in Huh7.5 cells increased eHSP90 secretion to a much higher level than control (FIG. 8). On the other hand, when JFH-1 cells were treated with the antioxidant PDTC, eHSP90 was produced at a lower level than the control (FIG. 9). These results suggest that oxidative stress causes HSP90 secretion. It also suggests that PEP1 selectively inhibits ROS production in cells in oxidative stress.
  • LRP1 a cellular receptor
  • LRP1 is a common receptor for gp96, HSP90, HSP70 and caleticulin, and peptides chaperoned by HSP bind to these receptors and enter the antigen presenting cells with HSP.
  • the LRP1 complex is coupled with eHSP to act as an inclusion and cycling receptor, suggesting that LRP1 influences the action of eHSP90 in pathological or stressed states.
  • HSP90 forms an HCV RNA replication complex with FKBP8, one of the FK506-binding protein families, and non-structural protein 5A (NS5A).
  • HSP90 can regulate HCV RNA replication through its expression or activity.
  • HSP90 modulates NOx activity, leading to super oxide formation.
  • PEP1 achieves selective antioxidant activity and binds to a major site of HSP90, thereby inhibiting the activity of HSP90, and exerts various biological effects in cells in oxidative stress.
  • LRP1 would play an important role in the antioxidant effects of PEP1 under oxidative stress.
  • PEP1 would not enter the cell and would be unable to inhibit ROS production in JFH-1 cells.
  • PEP1 does not enter JFH-1 cells when pretreated with clathrin-caveolin- and MbCD, a lipid raft formation inhibitor that inhibits the clathrin / caberole independent endocto pathway. It was confirmed that it can not.
  • MbCD inhibited the entry of FITC-PEP1 into JFH-1 cells, evidenced by reduced fluorescence intensity compared to PBS controls.
  • Intracellular influx of FITC-PEP1 was inhibited by siRNA against LRP1 (ie, LRP siRNA) as well as anti-LRP1 antibodies as compared to controls (FIGS. 11 and 12). This suggests that LRP1 is an important receptor in eHSP90 dependent delivery of PEP1.
  • PEP1 is different in the degree of intracellular influx depending on the presence or absence of LRP1, the receptor of HSP90, and when the expression of LRP1 is reduced or inhibited, the intracellular influx is reduced. It can be seen that this is to confirm that PEP1 is introduced into the cell dependent on HSP90.
  • HSP90 autoimmune hepatitis
  • the expression level of HSP90 was compared in HCV, HBV and AIH infected liver tissues.
  • the expression of HSP90 was increased in HCV-infected cases compared to that of HBV and AIH (gray portion, FIG. 20).
  • PEP1 reduced intracellular HSP90 in JFH-1 cells, which is presumably a side effect of reduced ROS levels (FIG. 9).
  • the comparison of the control group (PBS) and PEP1 treatment group in HCV-infected liver tissue showed that HSP90 was lower than the control group in PEP1 treatment (gray portion, FIG. 21).
  • HCV infection induced higher levels of free radicals than normal cells, and HSP90 was overexpressed in cells stressed by accumulated free radicals, so that PEP1 was in an oxidative stress state. It is suggested to serve as a therapeutic agent for infected cells.
  • HSP90 Human immunodeficiency virus-1 (HIV-1) infections were also found to show increased HSP90 expression in monocytes. HSP90 has been shown to play an important role in HIV replication by acting at various stages of the virus's life cycle, and HSP90's role in HIV virus transcription and replication in acutely infected cells has been shown to be inhibited by HSP90 inhibitors. In addition, HSP90 was found to regulate HIV reactivation from the latent state by regulating NF- ⁇ B signaling.
  • HIV-1 Human immunodeficiency virus-1
  • the cell line used in the HIV antiviral efficacy example of PEP1 of the present invention was derived from human T cell leukemia cell line MT-4, ACH-2 cell line latent infected with HIV-1, Jurkat, and stably inserted HIV-LTR-Lucifer It was a 1G5 cell line containing a luciferase construct and these cell lines were obtained from the NIH / AIDS Research and Reference Reagent Program (NIH, Bethesda, MD). 293FT cells were purchased from Life Technologies (Carlsbad, Calif.). MT-4 and 1G5 cell lines were maintained in RPMI 1640 supplemented with glutamine (2 mM), 10% fetal bovine serum (FBS) and penicillin-streptomycin.
  • MT-4 and 1G5 cell lines were maintained in RPMI 1640 supplemented with glutamine (2 mM), 10% fetal bovine serum (FBS) and penicillin-streptomycin.
  • ACH-2 cells were cultured in RPMI 1640 supplemented with 2 mM glutamine, 10% FBS, penicillin-streptomycin and 5 mM HEPES.
  • 293FT cell lines were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 10% FBS, penicillin-streptomycin, 6 mM L-glutamine, 1 mM sodium pyruvate and 0.1 mM non-essential amino acids.
  • DMEM Dulbecco's modified Eagle's medium
  • NIH National Institute of Health
  • NIH National Institute of Health
  • AIDS Department NIH / T-20
  • Raltegravir Flavopyiridol and Ritonavir as antiretroviral drugs Obtained from the AIDS Research and Reference Reagent Program (NIH, Bethesda, MD, USA) and dissolved in D-PBS, DMSO or distilled water as indicated.
  • Azidothymidine (3-azido-3-dioxythymidine, AZT) was purchased from Sigma Aldrich (St. Louis, MO).
  • HSP90 (# 4877S), phospho-NF- ⁇ B (p65, # 3033S), I ⁇ B (# 4814S) and phospho-I ⁇ B (# 2859S) were obtained from cell signaling (Cell Singaling, Danvers, MA), antip24 Antibody (ab9071) was purchased from Abcap (Abcam, Cambridge, Mass.).
  • Antibodies against HSP70 (sc32239), antibodies against GFP (sc81045), antibodies against GAPDH (sc25778) and antibodies against NF- ⁇ B (p65, sc372) are purchased from Santa Cruz Biotechnology (Santa Cruz, Dallas, Texas) It was.
  • PBR43IeG-rcmGB1nef Proviral HIV-1 Plasmid and Tat Protein Expressing Nef and Enhanced Green Fluorescent Protein (eGFP) Together from a Single Bicistronic RNA (Cat No. 11371, supplied by Dr. Daniel Sauter and Dr. Frank Kirchhoff) National Institute of Health, AIDS Department, NIH / AIDS Research and Reference Reagent Program (NIH, Bethesda, MD) for pSV2tat72 Plasmid (Cat. No. 294, Dr.
  • MT-4 cells were used to perform cell based anti-viral effect assays.
  • MT-4 cells (4 ⁇ 10 5 cells) were infected with HIV-1 (4 ⁇ 10 5 CC ID 50; 50% cell culture infective dose) for 1 hour. After washing twice with D-PBS, infected cells were inoculated with PEP1 or anti-HIV-1 drugs. After incubation for 2 days, images of MT-4 cells expressing eGFP were obtained using fluorescence microscopy before cells were collected.
  • MT-4 cells were infected with HIV for 1 hour, and anti-HSP70 (10 ng), anti-HSP90 (10 ng) (Cell Signaling, Danvers, MA) or 17 -AAG (1 ⁇ M) (Calbiochem, Darmstadt, Germany).
  • HIV-1 replication was analyzed using p24 ELISA and eGFP was monitored using fluorescence microscopy.
  • cell lysates were immunoblotted using anti-GFP antibodies to confirm the synthesis of HIV-LTR-dependent eGFP.
  • MT-4, 1G5 or ACH-2 cells were seeded at a density of 1 ⁇ 10 4 in 96 well microplates, treated with increasing concentrations of PEP1 and incubated for 5 days.
  • Cell viability was measured by colorimetry using the CellTiter96 Aqueous One Solution Assay Kit (Promega, WI) according to the manufacturer's instructions.
  • MT-4 cells (1x10 4 ) with HIV-1 virus (4x10 5 CC, ID 50 ) with PEP1 for 5 days, Or infected without PEP1 and cell viability was measured.
  • HIV-1 p24 antigen capture ELISA p24 ELISA, ABL
  • RT-qPCT assays were performed according to manufacturer's instructions.
  • the HIV-1 RNA genome was purified from the cell culture supernatants and pellets using the QIAamp Ultrasense Virus Kit (Quiagen, Hilden, Germany) according to the manufacturer's instructions. HIV-1 RNA levels were quantified using RT-qPCR using primer pairs specific for HIV-1 gag.
  • Glyceraldehyde phosphate dehydrogenase Glyceraldehyde phosphate dehydrogenase (GAPDH) was used as a control gene for standardization.
  • the following primer pairs were used for qPCR: Gag, 5'-TGCTATGTCAGTTCCCCTTGGTTCTCT-3 '(sense, SEQ ID NO: 5) and 5'-AGTTGGAGGACATCAAGCAGCCATGCAAAT-3' (antisense, SEQ ID NO: 6); And GAPDH, 5'-AATCCCATCACCATCTTCCA-3 '(sense, SEQ ID NO: 7) and 5'-TGGACTCCACGACGTACTCA-3' (antisense, SEQ ID NO: 8).
  • Viral titers were measured using an HIV Type 1 Genesig Standard kit (Primer design, Southampton, UK). The stock virus concentration was 2 ⁇ 10 5 copies / ⁇ l.
  • the inventors of the present invention hypothesized that PEP1 can inhibit antiviral activity against HIV-1 in light of the fact that HSP90 plays an important role in the HIV-1 life cycle and that PEP1 interacts with HSP90. was verified. Before investigating the role of PEP1, we first analyzed the cytotoxicity of PEP1 to rule out the possibility that PEP1's nonspecific cytotoxicity would affect HIV-1 replication.
  • FIG. 22-27 are data showing HIV-1 replication inhibition by PEP1.
  • PEP1 did not show significant cytotoxicity up to 25 ⁇ M against MT-4, 1G5 and ACH-2 cells (FIG. 22).
  • anti-HIV-1 activity of PEP1 was determined by analyzing the effect on HIV-1 replication in MT-4 cells.
  • MT-4 cells were infected with HIV-1 generated from pBR_HIV-1-M-NL4-3_IRES_eGFP and treated with various concentrations of PEP1.
  • IC50 inhibitory concentration
  • HIV-infected cells are known to have apoptosis due to intracellular cell death mechanisms.
  • Anti-cytopathic effect assays were conducted to determine whether PEP1 inhibits the replication of HIV and the effects of HIV-infected cells on apoptosis. Consistent with the inhibition of HIV-1 replication by PEP1, PEP1 has a cytoprotective effect on HIV-1 infected MT-4 cells. AZT and PEP1 showed significant cellular protective effects in a dose dependent manner (FIGS. 26 and 27). Similar to AZT, 5 ⁇ M PEP1 shows nearly 100% cell protection from HIV-1 mediated cell death. This cytoprotective effect is inversely proportional to the reduction of supernatant p24 levels, suggesting that PEP1 can protect cells by inhibiting viral replication.
  • Controlled anti-HIV drugs are well known for their properties, and inhibition of the HIV proliferation stage of each drug occurs as follows: AZT inhibits reverse transcriptase activity and inhibits HIV proliferation between 3 and 4 hours; Raltegravir inhibits the integrase activity that allows HIV DNA to be inserted into the host DNA genome and inhibits HIV proliferation between 6 and 8 hours; Ritonavir inhibits the activity of the protease, making it impossible to process the precursors of the gal-pol polypeptide, resulting in the production of non-infectious immature HIV particles and inhibiting HIV proliferation by 15 hours; T-20 inhibits the fusion of the virus and cell membranes, interfering with the entry of the HIV virus into cells, and an additional 24 hour incubation results in one-third less HIV growth than DMSO, a non-therapeutic drug.
  • FIG. 28 to 30 are photographs showing the inhibition of HIV-1 replication by PEP1 at the transcriptional level.
  • the results of each drug in the TOA assay are well represented at times when the inhibition of HIV replication corresponds to the replication stage targeted by each drug, and HIV inhibition by PEP1 is 11 to 11 after treatment of HIV infected MT-4 cells with PEP1. It occurs between 13 hours (FIG. 28).
  • Analysis of eGFP expression confirmed that the inhibitory activity of PEP1 was attenuated when treated for 12 hours after infection (FIG. 29).
  • transcription of the HIV virus from the inserted HIV genome occurs between 11 and 13 hours after infection.
  • HIV-1 transactivation protein is a regulatory protein that dramatically enhances HIV-1 transcription through interaction with the tat-transactivation reactive region (TAR).
  • TAR tat-transactivation reactive region
  • the inventors of the present invention tested whether PEP1 affected HIV-1 Tat metastatic activity.
  • 1G5 containing a stably inserted HIV-LTR-luciferase construct was used as a Jurkat derived cell line. Luciferase activity was analyzed after 1G5 infection with HIV-1 or transformation with tat-retroviral vector (pSV2tat72) in the presence of AZT or PEP1.
  • 1G5 cells injected with HIV-LTR-luciferase construct were infected with HIV-1 and post-treated with DMSO, AZT or PEP1.
  • a luciferase assay was performed to analyze the transactivation of cell lysate HIV-LTR.
  • 1G5 cells infected with HIV-1 showed a sharp increase in luciferase activity (FIG. 31).
  • AZT or PEP1 treatment reduced the effect of HIV-1 infection on HIV-LTR-luciferase activity by a factor of five ( Figure 31).
  • 1G5 cells were infected with the Tat plasmid. Twelve hours after infection, cells were treated with vehicle (DMSO), AZT or PEP1 as previously described. Four days after infection, transcriptional activity of HIV-LTR was analyzed via a luciferase assay. Data are representatively expressed as mean ⁇ SD (standard deviation). *** indicates that p ⁇ 0.001 (FIG. 32). Consistent with the results in FIG. 31, PEP1 inhibited the activation of HIV-LTR luciferase activity induced by ectopic expression of Tat (FIG. 32). However, AZT did not inhibit HIV-LTR luciferase activity in this experimental setting. These results indicate that PEP1 modulates the transactivation function of tat during HIV-1 infection, thereby inhibiting replication of HIV-1.
  • HIV replication can be successfully inhibited below detectable levels by highly active antiretroviral therapy (HAART), but HIV is present in latent infected cells, such as resting memory CD4 + T-cells. I can stay.
  • HAART highly active antiretroviral therapy
  • Tat acts as a molecular switch that regulates reactivation through interactions with several types of related proteins.
  • ACH-2 cells a human T cell line with a single copy of HIV-1 DNA
  • PMA phorbol 12-myristate 13-acetate
  • AZT vehicle
  • PEP1 protein 12-myristate 13-acetate
  • ACH-2 cells ie, cells infected with the latent state of HIV-1
  • PMA 50 nM
  • Cells were then treated with DMSO, AZT, or PEP1 for 24 hours.
  • the production level of viral particles in the supernatant was measured by p24 ELISA.
  • PMA treatment significantly increased supernatant p24 levels and PEP1 nearly eliminated this effect (FIG. 33, data represented representatively as mean ⁇ SD (standard deviation). *** is DMSO Contrast p ⁇ 0.001).
  • ACH-2 cells were treated with PMA followed by AZT or PEP1 with increasing concentrations as shown in FIG. 33.
  • the resulting viral particles were measured for the amount of viral genetic RNAs using RT-qPCR.
  • AZT did not change the effect of PMA.
  • PEP1 inhibits PMA-induced HIV-1 reactivation and inhibits the production of viral particles.
  • HIV-1 viral RNA genome levels also decreased significantly in a dose dependent manner when PEP1 was treated in supernatants from PMA-treated cells (FIG. 34, data shows mean ⁇ SD (standard deviation). *** represents p ⁇ 0.001 relative to DMSO).
  • PEP1 has been shown to interact with HSP90 and HSP70.
  • the interaction of PEP1 with HSPs results in inhibition of the HIF-1 ⁇ -VEGF signaling axis, indicating that PEP1 can regulate intracellular signaling pathways through interaction with HSPs.
  • the inventors of the present invention investigated whether PEP1 can regulate HIV-1 replication through interaction with HSPs. Surprisingly, inhibition of PEP1-mediated HIV-1 production in MT-4 cells was fully restored when treated with anti-HSP90 neutralizing antibodies.
  • AZT mediated inhibition was not affected at all (FIG. 35). That is, MT-4 cells were treated with HIV-1 for 1 hour, then treated with anti-GAPDH, anti-HSP70, anti-HSP90 antibody or 17AAG for 1 hour, followed by DMSO, AZT or PEP1. Several hours after infection, production of HIV-1 particles was measured by p24 ELISA. As a result, anti-HSP70-neutralizing antibody treatment resulted in partial repair, and isotype regulation of anti-GAPDH antibody had no significant effect. This suggests that the anti-HIV role of PEP1 occurs mainly through interaction with HSP90 (FIG. 35).
  • HSP inhibitor 17-AAG also completely abolished the effect of PEP1, confirming that anti-HIV activity of PEP1 occurs via HSP90 (FIG. 35).
  • inhibition of eGFP expression dependent on HIV-1 transcriptional activity by PEP1 was reverted by anti-HSP90 antibodies.
  • MT-4 cells were infected with HIV and treated with anti-GAPDH, anti-HSP90 antibodies.
  • Cells were treated with DMSO, AZT or PEP1 for 24 hours as described above.
  • Cells were burst and analyzed via immunoblotting to test expression of eGFP.
  • AZT was not affected (FIGS. 36 and 37).
  • NF- ⁇ B interacts with NF- ⁇ B binding sites within HIV-LTR to trigger HIV transcription and increase TAT-mediated LTR translocation activation.
  • Tat can directly activate NF- ⁇ B.
  • extracellular HSP90 can modulate many intracellular signaling pathways, including NF- ⁇ B. Since the anti-HIV effect of PEP1 is eliminated by anti-HSP90-blocking antibodies suggests the possibility of extracellular HSP90 in the anti-HIV function of PEP1, the inventors of the present invention modulate NF- ⁇ B activity in a manner in which PEP1 is HSP90 related. To regulate HIV-1 transcriptional activity. Treatment with PEP1 dramatically reduced basal NF- ⁇ B activity with or without HIV-1 infection in MT-4 cells (FIG.
  • AZT did not show a significant effect on NF- ⁇ B activity in MT-4 cells.
  • AZT showed a moderate inhibitory effect among HIV-4 infected MT-4 cells, probably due to low HIV replication levels (FIG. 38).
  • Inhibitory effect of PEP1 on basal NF- ⁇ B activity was further confirmed by EMSA (FIG. 39).
  • PEP1 treated cells showed a clear decrease in p65 NF- ⁇ B activation (FIG. 39). This indicates that it inhibits the basal level of NF- ⁇ B DNA binding in the nucleus.
  • PEP1 treatment also results in a decrease in NF- ⁇ B (p65) phosphorylation, indicating that PEP1 inhibits NF- ⁇ B cytoplasmic activation and subsequent nuclear transfer (FIG. 40). Similar results were obtained from ACH-2 cells latent infected with HIV-1 (FIG. 40). As assumed, treatment with PEP1 reduced migration of NF-kB (p65) into the nucleus in PMA treated ACH-2 cells compared to DMSO treated control cells (FIG. 41). Since the present invention showed that the anti-HIV effect of PEP1 was dependent on HSP90, we tested whether the NF- ⁇ B inhibitory effect was dependent on HSP90. Consistent with anti-HIV activity data, the NF- ⁇ B inhibitory effect of PEP1 completely disappeared when treated with HSP90 blocking antibody or HSP inhibitor. In contrast, there was no significant effect when treated with anti-GAPDH antibody (FIG. 42).
  • HIV replication can be successfully inhibited by high activity antiretroviral therapy (HAART)
  • HAART high activity antiretroviral therapy
  • current therapies do not eradicate latent infected HIV-1. Reactivation of the virus is a major cause of failure of therapy.
  • PEP1 has already been proven stable in a number of clinical trials. Thus, the anti-HIV effect of PEP1 may provide an effective treatment for inhibiting HIV reactivation.
  • IL-6 / JAK / STAT various signaling pathways such as EGFR tyrosine kinase, c-MET kinase, IL-6 / JAK / STAT, Ras / ERK, Wnt, etc. were studied as target candidates.
  • the IL-6 / JAK / STAT signaling pathway through various studies, can control the inflammation and cancerization process, and thus, it can be an effective target for the treatment of HBV-derived diseases and HCC.
  • Abnormal activation of STAT3 was observed in 72.4% of hepatocellular carcinoma tissues, and it was confirmed that STAT3 inhibition induced growth of hepatocellular carcinoma cell lines and growth inhibition in animal models.
  • Human derived hepatocellular carcinoma (Hu7 cell line) (American Type Culture Collection (ATCC), Manassas, VA, USA), Huh7.5 cell line and human hepatocellular carcinoma (ATCC, Manassas, VA, USA) 10% fetal bovine serum (Invitrogen, USA), 2 mmol / ml L-glutamine, 100 ug / ml penicillin and 100 units / ml streptomycin were added to 1640 medium and cultured in a 37 ° C., 5% CO 2 incubator.
  • W4P is a novel Pre-S1 substituted W4P mutation in which the genetic code encoding amino acid 4 (fourth from preS1) of an antigenic protein is translated from wild-type TGG into mutant CCG (underlined indicates mutated portion).
  • the product refers to a protein in which the fourth amino acid is substituted for tryptophan (W) with proline (P).
  • huh7 cells 2x10 6 were injected into a 100 mm dish, and transfected whole HBV including W4P and whole HBV, and then medium was changed for 3 days. After culturing, cell pellets were collected and protein was extracted to perform IP. 20 ⁇ l of protein A / G plus-agarose immunoprecipitant (Santa Cruz Biotechnology, USA) was added to the protein and pre-cleared at 4 ° C. for 2 hours.
  • the whole medium of the soup was collected and the virion DNA was extracted by replacing the medium every 24 hours using the previous method, and real-time quantitative PCR with Quantitech SYBR Green Master-Mix Kit (Qiagen).
  • the whole soup was precipitated by ultracentrifuge for 2 hours at 20,000 rpm with SW28 swing rotor, and the precipitated virus pellets were released with sterile DW 200 ⁇ l.
  • Treat 100 ⁇ g / ml RNase A to extract virion DNA add 100 ⁇ l of lysis buffer (0.25% SDS, 0.25M Tris, 0.25M EDTA), and add 500 ⁇ g / ml of proteinase K at 37 °C.
  • the Exicycler TM 96 real-time quantitative inverse block system (Bioneer Co., Korea) was used for 40 cycles of 5 minutes at 95 ° C, 15 seconds at 94 ° C and 15 seconds at 60 ° C, and at 95 ° C for melting curve analysis.
  • the temperature was increased from 53 ° C. to 90 ° C. by adjusting 0 sec, 53 ° C., 30 sec, and 0.1 ° C. per second.
  • HBV transgenic mice were injected by microinjection into the fertilized eggs of mice 1.1 times the HBV sequence including all open reading frame (ORF).
  • HBV sequences used in the study were obtained using a pHY92-W4P plasmid.
  • the pHY92-W4P plasmid was cleaved by EcoRI prior to injection into mouse fertilized eggs and finally a 3.9 kb long sequence was used for microinjection.
  • the resulting individuals were selected by PCR using HBsAg specific sequences. PCR-positive subjects were screened according to HBsAg and HBeAg concentrations in serum and finally PCR-positive, HBsAg-positive, HBeAg-positive mice were used for the study.
  • This mouse is backcrossed with C57BL / 6 mice to produce heterologous HBV transgenic mice.
  • Southern and northern hybridizations were performed on mice showing high HBsAg- and HBeAg-positive values among progeny to confirm HBV replication intermediates and transcription of hepatocytes.
  • HBV transgenic mice with high hepatocyte HBV replication intermediates and transcription were used for antiviral studies with PEP1.
  • C57 / BL6 mice were injected with total HBV W4P genomic DNA (1.8ml solution injected wittin 5s into 20g mice) and treated with PEP1 (50 ug / kg) subcutaneously twice a week from the following day. Blood samples were obtained for 1, 3, 7, 10 and 14 days, 2 weeks, and after anesthesia on day 14, whole blood was obtained and sacrificed. Blood was collected to separate serum and livers were quickly excised and homogenized.
  • HBsAg levels in HBV-transformed mice were measured using the HBsAg ELISA kit (BIOKIT, Germany). To quantify HBV titers, all DNA was extracted and confirmed by real-time PCR. For Western blot, cells were lysed using the same amount of protein lysate as 8 M urea, separated using electrophoresis, bound with antibodies, and identified using a chemiluminescent detection ECL kit (Perkin Elmer, USA).
  • RNA extracted through lysis using REzol was isolated using isopropanol precipitation. The obtained RNA was treated with RNase-free DNase I (Roche, Germany) for 30 minutes at 37 °C to remove the residual DNA plasmid. After extraction using phenol / chloroform, RNA was purified using ethanol precipitation and resuspension. For blunt blots, the same amount of RNA was isolated via electrophoresis with 2% formaldehyde gel, transferred to a membrane and stained with a P32-labeled HBV full length probe corresponding to the HBV total base. Hybridization of P32-labeled GAPDH probes on the same membrane was used as loading control.
  • HBV DNA In order to extract HBV DNA from mouse liver tissue, the following method is used according to an existing process. To lyse cells, add 1.2 mL NET buffer (50 mM Tris-HCl, pH8.0, 1 mM EDTA, pH8.0, 100 mM NaCl, 0.5% NP-40) per 10-cm dish at 37 ° C. Stirring culture was carried out for a time, centrifugation (13k rpm, 10 minutes, 4 °C) was carried out to remove nuclei. The supernatant was controlled by 6 mM CaCl 2 to incubate Micrococcal Nuclease (Amersham Pharmacia Biotech AB, Sweden) for 30 min at 37 ° C.
  • NET buffer 50 mM Tris-HCl, pH8.0, 1 mM EDTA, pH8.0, 100 mM NaCl, 0.5% NP-40
  • HBV DNA was extracted using phenol / chloroform and purified using ethanol precipitation and TE buffer resuspension. 1.5% electrophoresis was performed on 1/5 of the amount of HBV DNA purified for the Southern blot and transferred to the membrane to use a P32-labeled-HBV full length probe.
  • RNA obtained from mouse liver tissue was used to compare and observe the expression levels of inflammatory cytokines IL6, IL1 ⁇ , and TNF ⁇ at the RNA level, and to compare expression of TGF ⁇ , collagenase I and IV, markers of liver fibrosis, and to compare immune cell markers 4 /.
  • the expression levels of 80, CD68 and chemokine attractant proteins and their receptors were determined by real-time PCR. Control RNA was compared with the expression of 18S.
  • the splenocytes were harvested and analyzed for distribution of B cells, T cells (CD8 +, CD4 + CXCR5 + TFH cells), and NKT cells using a cell flow analyzer. Splenocytes were incubated with purified native and mutant envelope antigens and proliferation of T cells was measured by thymidine uptake. At the same time, PHA, anti-CD3 antibody and the like were treated and T cell proliferation was measured by the same method to study T cell proliferative capacity after mitogen treatment.
  • liver perfusion using the digestion solution containing collagenase through the portal vein homogenize the liver, obtain the cells with digestion solution, remove the liver cells by low centrifugation (30 RCF / 3 min) and differentiate Intrahepatic immune cells were harvested by gradient centrifugation.
  • flow cytometry was performed using antibodies such as anti-CD3, anti-CD4, anti-CD8, anti-NK1.1, anti-CD19, anti-CD11b, anti-CD11c and the like to analyze the distribution of immune cells in the liver.
  • T cells were isolated from immune cells obtained from the spleen and liver using a T-cell enrichment column (R & D), followed by incubation with the envelope antigen-expressing P815 cell line for 16 hours, followed by the use of a type 2 interferon ( ⁇ ) ELISPOT kit. T cells that specifically produce gamma interferon were measured.
  • the HBV polymerase inhibitor 3TC also showed an inhibitory effect compared to the control group, but did not show a significant difference compared to the PEP1 treated group. (Figure 43). From these results, the PEP1 peptide demonstrated an inhibitory effect on HBsAg synthesis of HBV as well as the representative antiviral agent 3TC. (SEM of the data is three experiments with duplicate. * P ⁇ 0.05, ** P ⁇ 0.01)
  • the virion was collected using supp 6000 in the sup method obtained in order to observe the virion formation ability in sup and HBV DNA using virus DNA prep kit (Intron, Korea). Was obtained and quantified by real-time PCR.
  • the level of virion formed in sup showed inhibitory effect on PEP1 as well as 3TC in HepG2 and Huh7 cell lines, but not on virion secretion in Huh7.5 cell line.
  • 3B an HBV polymerase inhibitor, also showed an inhibitory effect compared to the control group, but did not show a significant difference compared to the PEP1 treated group as well as HBsAg synthesis ability (FIGS.
  • PEP1 peptide showed inhibitory effect from 0.01 ⁇ M in pellet, but it was slightly different depending on the concentration, and suppressed up to 10 ⁇ M concentration in sup but no effect at 100 ⁇ M.
  • 3TC was able to observe the inhibitory effect of concentration on both pellet and sup.
  • Hepatocyte nuclear factor 4 ⁇ is known to play an important role in HBV synthesis by binding to HBV enhancer I. Therefore, Western blot was performed by injecting the whole HBV W4P genome into the HepG2 cell line, processing the PEP1 10 ⁇ M, and extracting the protein from the pellet 48 hours later. A mock vector was injected as a control and compared.
  • the preS1 W4P mutant of HBV has been reported to be closely associated with the formation of the inflammatory regulatory cytokine IL-6. Therefore, in order to observe the anti-inflammatory effects of PEP1 in IL-6-induced cell lines, HepG2 and Huh7 cell lines were injected with the entire HBV W4P genome, treated with PEP1 10 ⁇ M and 3TC 10 ⁇ M, respectively. Levels were observed via ELISA. As a result, when the whole HBV W4P genome inducing IL-6 proliferation was injected, IL-6 levels were not detected at all in the HepG2 cell line, and the inhibitory effect of IL-6 was suppressed by PEP1 in the Huh7 cell line. Not observed. The 3TC treatment group likewise observed no effect on the formation of IL-6 cytokines (FIG. 48).
  • HBsAg synthesis ability was observed using a transgenic mouse prepared by injecting the entire HBV W4P genome.
  • PEP1 peptide was injected twice a week at a concentration of 50 ug / kg into the mouse tail vein.
  • HBs ELISA was performed to observe HBsAg levels in the serum by injecting 3TC 500 ⁇ g / kg with PEP1 peptide, and then bleeding the whole blood after 4 and 8 weeks.
  • real-time PCR was performed by obtaining HBV virion DNA from mouse serum.
  • HSP 90 heat shock protein 90
  • SOD superoxide dismutase
  • Phosphorylation of protein kinase (ERK) protein was inhibited by PEP1 peptide and JAK2 phosphorylation in the signal of Jenus kinase / signal and transducer and activator transcription factor (JAK / STAT) was also regulated by PEP1 peptide.
  • 3TC a control group, also inhibited phosphorylation of ERK and JAK2 signals.
  • PEP1 peptide may play an important role in inhibiting HBV-induced hepatocellular carcinoma progression by regulating HBV proliferation and regulating signals of MAPK and JAK / STAT, which play important roles in hepatocellular carcinoma progression (FIG. 50). ).
  • PEP1 is an HLA Class II binding peptide derived from telomerase and is a 16 amino acid peptide that elicits an immune response of cytotoxic T-cells and helper T-cells. Therefore, in order to observe the change in the distribution of renal immune cells by PEP1 peptide, the transgenic mice prepared with the whole HBV W4P mutant genome were injected with whole blood at 4 weeks, and the kidneys were obtained. Extracellular using markers (B cells (CD19B), CD4, CD8, NK1.1 cells) and myeloid cell markers (DC (CD11c), macrophage (F4 / 80), neutrophil (Ly-6G), monocyte (Gr1)) FACS analysis was performed after staining by cell surface staining method.
  • markers B cells (CD19B), CD4, CD8, NK1.1 cells
  • DC myeloid cell markers
  • DC CD11c
  • macrophage F4 / 80
  • neutrophil Ly-6G
  • monocyte monocyte
  • PEP1 peptide showed no significant difference in lymphocyte B cells, CD4, CD8, and NK1.1 cells, and myeloid cells such as DC, macrophage, neutrophil, and monocyte did not affect cell distribution. 3TC also did not affect the distribution of immune cells of the whole HBV W4P transgenic mice as in PEP1 (Figs. 51a to 51h).
  • mice prepared with the whole HBV W4P mutant genome were injected twice a week at 50ug / kg and 3TC 500ug / kg concentrations of PEP1 peptide.
  • mice were bled with whole blood and mouse kidneys were obtained to isolate immune cells and then stimulated by HBsAg treatment.
  • INF ⁇ cytokines were placed in cells with Brefeldin A, stained by intracellular staining, and analyzed by FACS.
  • CD4, CD8 and NK1.1 cells did not show INF ⁇ activity by the PEP1 peptide and 3TC also showed a slight increase but no significant difference (FIGS. 52A to 52G).
  • PEP1 peptide Differentiation of macrophage to M1 is known to induce apoptosis of infected cells with antiviral effects. Therefore, in order to observe whether PEP1 peptide is capable of differentiating macrophage into M1, PBS, PEP1 peptide 50ug / kg, and 3TC 500ug / kg, respectively, were used in transgenic mice injected with the whole HBV W4P mutant genome. After 8 weeks of injection into the tail vein, the mice were harvested from whole blood and mouse kidneys were obtained. Immune cells were isolated and stained by extracellular cell surface staining using macrophage (F4 / 80) and MHCII, an M1 marker. Then, FACS analysis was performed.
  • PEP1 is known to pass through the cell membrane from the outside of the cell to the inside of the shuttle (shuttle) via the HSP90. Based on these mechanisms, blocking the activity of HSP90 reduces the antiviral effects in the cells.
  • the antiviral effect of PEP1 was more statistically significant than that of ETV in the group treated with PEP1 in the non-treated cells, and the same result was observed in the GAPDH blocking group, and 17-AAG known as HSP90 and HSP90 inhibitor.
  • the antiviral effect by PEP1 was statistically significant (Fig. 54).
  • the antiviral effect of ETV was found to be no difference in the cells treated with nothing or the cells treated with GAPDH, HSP90 or 17-AAG.
  • the PEP1 peptide inhibits the expression of HNF4 ⁇ , which is an important transcription factor to increase the activity of enhacer by binding to the HBV enhancer during the transcription of HBV, thereby reducing HBsAg and virion formation in HBV. It was.
  • PEP1 inhibits HBV proliferation by inhibiting important ERK and JAK / STAT signal pathways in the progression of hepatocellular carcinoma, and thus plays an important role in preventing the progression of HBV-infected cells into hepatocellular carcinoma.
  • INF ⁇ interferon
  • PEP1 of the present invention when compared with the immune cell ratio of the transformed mouse containing the whole HBV W4P mutant genome and immune cells with increased INF ⁇ cytokine activity was confirmed that there is no difference from the control group PBS.
  • PEP1 peptide inhibits the synthesis of HBV mRNA by inhibiting ERK or JAK / STAT signal pathway or by reducing the expression of HNF ⁇ , a transcription factor that acts on HBV enhancers, rather than modulating the immune system in the human body. It seems to play an important role in inhibiting proliferation.
  • PEP1 has an antiviral effect on HBV, and PEP1 has already been proved in stability through a number of clinical trials.
  • the anti-HBV effect of PEP1 can provide a safe and free composition and treatment for HBV infection disease without hepatotoxicity and nephrotoxicity.
  • composition comprising the peptides PEP1 and PEP1 according to the present invention has a replication inhibitory effect and an antiviral effect of the virus.
  • the present invention provides the development of virus inhibitors and antiviral therapies or the prevention and treatment of virus related diseases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Nutrition Science (AREA)
  • Microbiology (AREA)
  • AIDS & HIV (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)
  • Physiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 명세서는 항바이러스용 조성물에 관한 것으로, 보다 구체적으로는 텔로머라제로부터 유래된 펩티드를 포함하여 바이러스 관련 질병 및 바이러스에 의한 병리학적 증상의 치료 및 예방에 효과적인 항바이러스 및 바이러스 관련 질병의 예방 및 치료용 조성물에 관한 것이다. 상기 펩티드는 바이러스의 RNA 복제를 억제하여 바이러스관련 질병을 치료하는 효과를 나타내어, 항바이러스 및 바이러스 관련 질병의 예방 및 치료방법을 제공할 수 있다.

Description

항바이러스 활성 효능을 가지는 펩티드 및 이를 포함하는 조성물
본 명세서는 항바이러스 활성 효능을 가지는 펩티드 및 이를 포함하는 조성물에 관한 것으로, 보다 구체적으로는 텔로머라제로부터 유래된 펩티드를 포함하며 바이러스의 자기 복제 및 활성을 억제하여 바이러스로 인한 질병을 치료하는데 효과적인 바이러스성 질병의 예방 및 치료용 조성물에 관한 것이다.
항바이러스 활성은 바이러스 단백질 또는 그 일부를 직접 인식하여 공격하는 방법, 바이러스의 라이프 사이클의 각 단계를 저해하는 방법, 면역을 증진시키는 방법 등으로 나뉠 수 있다. 바이러스의 라이프 사이클의 각 단계를 저해하는 방법은 각 단계에 따라 여러 가지로 분류될 수 있다. 예컨대, 숙주 세포로의 유입 전 단계를 저해하는 바이러스제로서, 바이러스가 세포에 유입되는 단계를 방해하는 유입-저해제(entry-inhibitor) 또는 유입-블로킹제(entry-blocking agent), 또는 바이러스의 침투(penetration) 및 탈각(uncoating) 블로킹제가 가능하다. 또한, 바이러스가 숙주 세포 내로 유입된 후에 숙주 세포 내에서 바이러스 복제를 하는 단계에서의 항바이러스 활성이 가능한데, 그 예로서, 바이러스의 RNA 또는 DNA의 빌딩 블록과 유사하지만 RNA, DNA 복제 효소를 불활성화시키는 뉴클레오티드 또는 뉴클레오시드 유사체를 통해, 바이러스의 복제를 억제하는 방법이 있다. 대표적으로 역전사효소 저해제를 들 수 있다. 그 다음 단계로서, 합성된 바이러스의 DNA를 자르기 위한 인테그레이즈(integrase) 효소를 억제하거나, 바이러스의 전사, 번역, 번역 후 변형, 또는 그 후의 타겟팅을 억제하는 방법이 있다. 그 외에도, 바이러스의 프로테아제 (protease)를 저해하거나, 바이러스의 어셈블리 단계를 차단하거나, 최종 단계인 숙주세포로부터 바이러스의 방출 단계(release phase)를 블로킹하는 방법이 가능하다. 위와 같은, 바이러스에 대한 직접적인 작용이 아닌, 바이러스에 의한 다양한 증상들을 완화시키는 약제도 가능하다. 예컨대, 바이러스에 의해 유발된 염증을 완화시키는 항염제, 바이러스에 의해 유발된 고열을 낮추는 해열제 등이 가능하지만, 이는 바이러스에 대한 근본적인 치료제로 볼 수는 없다.   
바이러스는 세균보다 크기가 작은 전염성 병원체이다. 유전물질인 RNA 또는 DNA와 그 유전물질을 둘러싸고 있는 단백질로 구성된다. 스스로 물질대사를 할 수 없기 때문에, 자신의 DNA나 RNA를 숙주 세포 안에 침투시킨 뒤 침투당한 세포의 소기관들을 이용하여 자신의 유전물질을 복제하고, 자기 자신과 같은 바이러스들을 생산한다. 이 과정에서 숙주 세포가 손상 되거나 파괴되어 숙주에 질병을 일으키기도 한다.
1989년 처음으로 규명된 C형 간염 바이러스 (Hepatitis C Virus, 이하 HCV)는 플라비비리데 (Flaviviridae)에 속하며 약 9.5kb 유전자 (genome) 사이즈를 갖는 단일 양성 가닥 RNA 바이러스이다. 초기 감염 시 증상이 없고 약 55~85% 의 환자에서 만성 간염 (chronic hepatitis) 으로 진행되며, 이 중 약 5~10%의 환자는 간경변증 (liver cirrhosis) 으로 진행하고 이어 간암으로 진행된다.
HCV는 그 유전자 염기서열의 차이에 따라 크게 6개의 유전자형으로 분류되며, 치료에 대한 반응 등 임상적 차이점이 보고되고 있다. 지역에 따라 HCV 유전자형 분포의 차이가 알려져 있으며, 국내에서는 1b 및 2a가 주종일 것이라는 일부 보고가 있었으나 충분한 자료가 있는 것은 아니다. HCV는 감염 후 타 바이러스에 비해 돌연변이율이 높아, 가닥수가 6가지나 되며 단일 가닥 내에도 수많은 유사종 (quasi-species)을 만든다. 이러한 성질로 HCV는 단일 치료제는 내성을 유발하리라 예상되어 여러 치료제의 복합치료가 필요한 실정이다. 따라서 HCV에 의한 간질환 예방 및 치료할 수 있는 보다 안정적이고 효과적인 연구 및 치료제 개발이 시급한 실정이다.
HCV는 바이러스 감염 후 자기 자신의 유전체를 기질로 하여 3,030 개의 아미노산으로 이루어진 하나의 복합 단백질을 만든다. 특히 HCV가 복제하는 데에 있어, 5' 비번역부위 (untranslated region, UTR) 과 3'UTR 이 매우 중요한 역할을 할 것으로 알려져 있다. 5'UTR 의 경우 HCV 가닥에서 매우 보존되어 있는 내부 리보솜 유입점 (internal ribosome entry site, IRES)를 갖고 있어 캡-비의존적으로 (cap-independent) 번역 과정이 일어난다. 감염 후 먼저 생성된 복합 단백질은 숙주와 바이러스의 프로테아제에 의해 가공되어, C, E1, E2 등의 구조 단백질과 NS2, NS3, NS4A, NS4B, NS5A, NS5B 등과 같은 바이러스 증식에 필요한 조절 단백질들로 만들어지게 된다.
항HCV 제제로서 최근까지 활발히 개발이 진행되고 있는 것은 주로 HCV를 타겟으로 한 저해제로서 NS3 프로테아제와 NS5B 폴리머라제 (polymerase)이다. 이러한 바이러스 특이적인 효소를 타겟으로 2003년에 뵈링거-잉겔하임 (Boehringer-Ingelheim)의 NS3 프로테아제를 타겟으로 한 약물의 임상 1상 실험 결과가 네이쳐지에 보고되면서 알려졌다. 그러나 NS3는 그 구조상 약물 침투가 어려워 기본 구조를 바탕으로 한 약물 디자인에 어려움을 겪고 있는 반면 NS5B는 전형적인 폴리머라제 구조인 엄지-손바닥-손가락 (thumb-palm-finger)의 모양을 하고 있으며, 활성부위 외에도 비-뉴클레오시드 억제제 (non-nucleoside inhibitor)를 디자인 할 수 있는 가능성을 가지고 있는 것으로 나타났다. 최근 들어 HCV를 타겟으로 하는 치료법 개발이 아닌 숙주를 타겟으로 하는 치료제 개발이 진행되고 있다.
또한, B형 간염 바이러스 (Hepatitis B Virus, 이하 HBV) 감염은 크게 무증상 감염, 만성 감염, 간경변, 간세포 암으로 이행하는 다양한 임상 경과를 보이며, 만성 질환 이환율 및 사망률을 증가시킨다. HBV 보균자는 전 세계적으로 약 3억 5천 만명이 분포하고 있을 정도로 HBV 유래 간질환은 인류 건강에 위협적인 질환으로, 전체 간세포암 (Hepatocellular Carcinoma, HCC) 발생 원인의 53%를 차지하고 있는 HBV는 HCV 및 다른 원인과 함께 간세포암 유발의 주요 인자이다.
HBV는 3종의 엔빌롭 (envelope) 단백질을 생성하고, 이들은 모두 pre-S/S 오픈 리딩 프레임 (open reading frame)에서 코딩된다. HBV 거대 표면 단백질 (large surface proteins, LHBs)의 역할은 명확히 규명되지는 않았다.
기존의 표준 간암 및 항바이러스 치료법으로는, 간경변증이 없거나 잔존 간기능이 충분한 경우 간절제술이 우선적으로 고려되고 있으며 간기능 장애가 동반된 경우 간이식이 일차 치료로 고려되지만 간세포암 환자 대부분이 문맥압 항진증, 간기능 저하, 다발성 종양, 문맥침습, 고령 등의 이유로 시술이 어렵다. 비수술적 치료법으로는 고주파열 치료술과 에탄올 주입술이 주로 사용되고 있으나 종양의 크기가 큰 경우 치료성공률이 낮다.
이와 같이 주로 수술 및 열치료 등에 의존하고 있으며 항암화학요법의 치료율이 매우 낮아 대체약물의 개발이 시급하다. 국내의 경우 특히 HBV 유래 간세포암이 많아 B형 바이러스 유래 만성간염의 선제적 치료가 요구되며 B형 간염을 동반한 간세포암의 경우 간염치료가 선제적 혹은 동시에 진행되는 경우 간암 치료성공률이 증가한다. 특히 만성간염 및 간경화로 인해 간세포암이 발생한 경우 간세포암 치료 이후에도 이로 인한 재발이 매우 높으며 이러한 만성적 염증의 치료가 동시에 이루어져야 하며, 국내에 배타적으로 존재하는 HBV 유전자 C형에 의한 간암의 발생 및 진행에 특화된 만성간염 및 간세포암에 대한 치료전략이 요구된다. 이에따라, 기존에는 인터페론 및 라미부딘이 항바이러스제로써 만성 B형간염 치료제로 사용되었으나 부작용 및 낮은 반응성을 나타내었고, 최근 아데포비르 (Adefovir), 테노포비르 (Tenofovir) 등이 개발되어 바이러스의 증식을 억제하여 간손상을 늦추는 약물로 사용되고 있다. 이러한 약물들은 바이러스의 증식을 억제하여 간손상을 늦추는 효과는 가지고 있지만 완전히 바이러스를 제거하거나 간염을 치료하지는 못한다. 따라서, 지속적인 처방이 필요하여 내성이 나타나게 되고, 약물 본연의 특성에 의해 간독성과 신독성을 나타낸다. 현재 임상적으로 사용 중인 유일한 간암 표적 치료제인 소라페닙 (sorafenib)은 제한적인 치료 범위와 면밀한 치료추이 관찰이 요구되는 한계를 지니고 있기에, 새로운 간암 표적 치료제의 개발에 관한 연구가 전 세계적으로 진행 중이다. 대다수의 개발 중인 물질은 다중 키나제 저해제인 소라페닙에서 유래된 키나제 저해제, 또는 간암 진행에 필수적인 혈관생성을 저해하는 혈관신생억제제 (angiogenic inhibitor)이다. HCC 환자의 66%에서 과발현되는 것이 알려진 표피세포성장인자 수용체 (epidermal growth factor receptor) 저해제는 임상 2상 시험결과 유의할 만한 결과를 얻지 못하였다. 혈관 신생억제를 목표로 개발된 저분자 티로신 키나제 저해제인 브리바닙 (brivanib) 및 단일 클론 항체인 라뮤시루맙 (ramucirumab) 등은 임상 2상에서 좋은 결과를 얻지 못하였다. HCC 환자의 40-50%에서 mTOR 신호 전달체계의 이상이 보고된 바, 에베로리무스 (everolimus)를 비롯한 mTOR 저해체가 소라페닙 불응성 환자를 대상으로 진행된 임상 3상 시험에 진입하였으나, 플라시보 (placebo)에 비해 의미 있는 효과가 있음을 입증하지 못하였다. 새로운 치료 전략으로 c-MET, MEK 저해 저분자 물질을 이용한 HCC 치료제 개발도 시도되고 있다.
현재 개발이 진행 중인 대다수의 신규 치료물질들은 임상시험 초기 단계 진입 수준이며, 임상이 마무리되어가는 약물들의 경우 1차 약물로 쓰일 수 없거나, 기존의 소라페닙과 병용하여 사용하여야만 유의미한 효과를 나타낸다. 따라서, 개발이 진행 중인 이들 기존 약물과는 다른 기전으로 작동하며 간암 환자에서 유의미한 효과가 있음과 동시에 간염의 진행을 억제하는 신규약물의 개발은 관련 간질환 치료에 혁신적인 발전을 도모할 수 있게 하리라 기대된다.
기존의 약물들은 전신적 항암요법에서 대부분의 항암제가 간세포암 (HCC) 치료효능을 나타내는데 실패하였고, 소라페닙의 경우만이 약 2달 정도의 생존기간 연장 효과를 보였다. 이러한 소라페닙의 경우도, 1차 치료로는 고려되지 않고 있다. 따라서, 기존 제품을 대체하고 치료 불응 환자에 사용될 수 있는 HCC에 특화된 전문 항암제 개발이 요구되고 있다.
한편, 사람 면역결핍 바이러스 (Human Immunodeficiency Virus, 이하 HIV)는 레트로바이러스 (retroviridae) 과 (family) 렌티바이러스 (Lentivirus) 속 (genus)에 속하는 바이러스이다. 렌티바이러스는 다양한 생물종에 감염될 수 있고, 긴 잠복기를 가진 만성 질환을 일으키는 원인체라는 특징이 있다.
HIV의 생활사는 크게 숙주 세포에 침입하는 단계, 그리고 세포 내에서 복제와 전사를 하는 단계, 바이러스가 재조합하는 단계와 마지막으로 바이러스가 합성되고 세포 외부로 분비되는 단계로 나눌 수 있다. 이러한 HIV의 증식 과정 도중에 어느 한 단계를 차단하면 HIV를 억제할 수 있다.
현재 치료제로 개발되어 환자에게 사용하고 있는 약제는 복합 억제제 (fusion inhibitors), RNA에서 DNA로 바꾸는 역전사효소 억제제 (reverse transcriptase inhibitors), 프로테아제에 의해서 단백질이 절단되는 과정을 차단하는 약물인 프로테아제 억제제 (protease inhibitors)로 구성되어 있다.
항HIV 치료의 목표는 HIV를 강력하게 억제하여 증식하지 못하는 상태로 만들고 이러한 상태를 가능하면 오랜 기간 동안 유지함으로써 환자의 면역능을 회복시켜서 HIV 감염증으로 발생하는 이환율과 사망률을 줄이는 것이다. 그러나, 항HIV 치료를 중단하면 HIV가 다시 나타나고 면역능도 다시 떨어지기 때문에 한번 치료를 시작하면 도중에 중단할 수 없다는 것이 현재 사용되고 있는 항HIV 치료의 한계이다. 항HIV 치료를 적어도 수 년 간, 만일 완치법이 개발되지 않으면 수 십 년간 계속해야 할지도 모른다는 문제점은 환자에게 경제적인 부담은 물론이고 약물을 장기간 투여하는데 따르는 부작용을 감수해야 함을 의미하는데, 특히 약물 부작용은 현재 알려진 부작용뿐 아니라 사용 기간이 늘어나면서 장차 알려질 부작용이 있을 수 있음을 고려해야 하는 실정이다. 또한, 오랜 기간 약물을 제대로 복용하는 일이 쉽지 않기에 HIV가 약제 내성을 획득하여 치료가 어렵게 된다는 것도 현재 항HIV 약제가 가진 큰 문제라고 할 수 있다. 그러므로 기존 치료제의 여러 가지 단점들을 극복하고 HIV 바이러스 자체에 억제 효과를 가지면서 면역 세포의 활성을 증강시킬 수 있는 새로운 개념의 치료제를 개발할 필요가 있다.
일 측면에서, 본 발명의 목적은 효과적이면서 동시에 부작용이 없는 항바이러스 및 바이러스성 질병의 예방 및 치료용 조성물을 제공하는데 있다.
본 발명의 일측면에 따르면, 서열번호 1의 아미노산 서열을 포함하는 펩티드, 상기 아미노산 서열과 80% 이상의 서열 상동성을 갖는 펩티드 또는 그 단편인 펩티드로 이루어지는 군으로부터 선택되는 하나 이상을 유효성분으로 포함하는 항바이러스용 조성물이 제공된다.
본 발명의 일측면에 따른 조성물에 있어서, 상기 단편은 3개 이상의 아미노산으로 구성된 단편일 수 있다.
본 발명의 일측면에 따른 조성물에 있어서, 상기 조성물은 바이러스의 복제를 억제하여 대상 바이러스를 억제하는 것을 더 특징으로 할 수 있다.
본 발명의 일측면에 따른 조성물에 있어서, 상기 바이러스의 복제는 HSP90을 매개로 하는 것을 더 특징으로 할 수 있다.
본 발명의 일측면에 따른 조성물에 있어서, 상기 바이러스는 HCV, HBV 또는 HIV를 포함하는 것을 더 특징으로 할 수 있다.
본 발명의 다른 일측면에 따르면, 약학적으로 유효한 양의 본 발명에 따른 조성물을 바이러스성 질병에 걸렸거나 바이러스에 의한 병리학적 증상을 보이는 개체에게 투여하는 단계를 포함하는 바이러스성 질병의 예방 및 치료방법이 제공된다.
본 발명의 다른 일측면에 따르면, 상기 바이러스성 질병의 예방 및 치료방법을 포함하는 바이러스성 질병의 예방 및 치료방법이 기재된 지시서를 포함하는 바이러스성 질병의 예방 및 치료용 키트가 제공된다.
본 발명의 다른 일측면에 따르면, 서열번호 1의 아미노산 서열을 포함하는 펩티드, 상기 아미노산 서열과 80% 이상의 서열 상동성을 갖는 펩티드 또는 그 단편인 펩티드를 항바이러스용 조성물의 제조에 이용하는 용도가 제공된다.
본 발명의 일측면에 따른 항바이러스용 조성물의 제조 용도에 있어서, 상기 조성물은 바이러스의 RNA 복제를 억제하여 대상 바이러스를 억제하는 것을 더 특징으로 할 수 있다.
본 발명의 일측면에 따른 항바이러스용 조성물의 제조 용도에 있어서, 상기 바이러스는 HCV, HBV 또는 HIV를 포함하는 것을 더 특징으로 할 수 있다.
본 발명의 다른 일측면에 따르면, 서열번호 1의 아미노산 서열을 포함하는 펩티드, 상기 아미노산 서열과 80% 이상의 서열 상동성을 갖는 펩티드 또는 그 단편인 펩티드를 바이러스성 질병의 예방 및 치료용 약학적 조성물의 제조를 위한 용도가 제공된다.
본 발명의 일측면에 따른 바이러스성 질병의 예방 및 치료용 조성물의 제조 용도에 있어서, 상기 조성물은 바이러스의 RNA 복제를 억제하여 대상 바이러스를 억제하는 것을 더 특징으로 할 수 있다.
본 발명의 일측면에 따른 바이러스성 질병의 예방 및 치료용 조성물의 제조 용도에 있어서, 상기 바이러스는 HCV, HBV 또는 HIV를 포함하는 것을 더 특징으로 할 수 있다.
본 발명의 일측면에 따른 서열번호의 서열을 갖는 펩티드 또는 상기 서열과 80%의 상동성을 갖는 서열을 갖는 펩티드 또는 단편인 펩티드는 항 바이러스 억제 효능을 가져, 바이러스성 질병의 치료 또는 예방법을 제공한다.
도 1은 JFH-1 세포주에서, 비히클 (vehicle), 기존의 항산화제들(NAC (20 mM), PDTC (100 μM), 비타민 E (10 μM))과 농도를 달리한 PEP1과 함께 각각 2 시간 동안 배양하고, ROS의 생성 정도를 측정하여 나타낸 그래프이다.
도 2는 JFH-1 세포주를 비히클, PEP1, NAC (20 mM), PDTC (100 μM) 및 비타민 E (10 μM)로 2 시간 동안 처리한 후, HSP90, p-p-38, p38, p-JNK, JNK, p-ERK, ERK, 및 GAPDH에 특이적인 항체로 면역 블롯 분석을 한 사진이다.
도 3은 JFH-1 세포주에 대조항체 (isotype), 항HSP70 항체, 항HSP90 항체를 처리한 것에 PEP1을 투여하였을 때 대조군 (DMSO, vehicle)을 처리한 것과 대비하여 ROS 생성 비율을 나타낸 그래프이다.
도 4는 JFH-1 세포주에 대조항체 (isotype), 항HSP70 항체, 항HSP90 항체를 처리한 것에 항산화제인 PDTC를 투여하였을 때 대조군 (DMSO, vehicle)을 처리한 것과 대비하여 ROS 생성 비율을 나타낸 그래프이다.
도 5는 JFH-1 세포주에 대조군 (DMSO, vehicle), HSP70 억제제인 KNK (10 μM), HSP90 억제제인 17AAG (1 μM)를 처리한 것에 PEP1를 투여하였을 때 대조군 (PBS)과 대비하여 ROS 생성 비율을 나타낸 그래프이다.
도 6은 JFH-1 세포주에 대조군 (DMSO, vehicle), HSP70 억제제인 KNK (10 μM), HSP90 억제제인 17AAG (1 μM)를 처리한 것에 항산화제인 PDTC를 투여하였을 때 대조군 (PBS)과 대비하여 ROS 생성 비율을 나타낸 그래프이다.
도 7는 JFH-1 세포주를 PEP1 및 DMSO와 함께 배양하거나, PDTC 농도를 증가시켜 2 시간 동안 배양한 후, ROS의 생성 비율을 나타낸 그래프이다.
도 8은 Huh7.5 세포주에서, ROS의 일종인 과산화수소를 처리하였을 때, HSP90의 발현 농도 (ng/ml)를 대조군 (PBS) 처리시와 비교하여 나타낸 그래프이다.
도 9는 JFH-1 세포주에서, 항산화제 PDTC를 처리하였을 때, HSP90의 발현 농도 (ng/ml)를 ELISA를 사용하여 대조군 (PBS) 처리시와 비교하여 나타낸 그래프이다(에러 바는 평균의 표준 에러 (SEM)을 나타낸다. 비히클 대조구와 비교하여, *P < 0.05이고, **P < 0.01이다. P 값은 독립표본 양측 검정 t-시험에 기초하여 얻었고 결과는 2번 내지 5번의 독립적 실험의 대표값이다).
도 10은 JFH-1 세포주에서, FITC(fluorescein isothiocyanate)-컨쥬게이트된 PEP1 (FITC-PEP1)과 함께 2 시간 동안, MbCD (5 mM)를 배양 후, 세포를 유세포 분석기를 통하여 분석하여 측정한 그래프이고, 결과는 3번의 독립적 실험의 대표값이다.
도 11은 JFH-1 세포주에서, FITC-컨쥬게이트된 PEP1 (FITC-PEP1)과 함께 2 시간 동안, 항LRP1 항체와 배양 후, 세포를 유세포 분석기를 통하여 분석하여 측정한 그래프이고, 결과는 3번의 독립적 실험의 대표값이다.
도 12는 JFH-1 세포주에서, FITC-컨쥬게이트된 PEP1 (FITC-PEP1)과 함께 2 시간 동안, LRP1 siRNA(200 nM)과 배양 후, 세포를 유세포 분석기를 통하여 분석하여 측정한 그래프이고, 결과는 3번의 독립적 실험의 대표값이다.
도 13은 JFH-1 세포주에서, FITC-컨쥬게이트된 PEP1 (FITC-PEP1)과 함께 2 시간 동안, PDTC와 배양 후, 세포를 유세포 분석기를 통하여 분석하여 측정한 그래프이고, 결과는 3번의 독립적 실험의 대표값이다.
도 14는 JFH-1 세포주에서, FITC-컨쥬게이트된 PEP1 (FITC-PEP1)과 함께 2 시간 동안, H2O2와 배양 후, 세포를 유세포 분석기를 통하여 분석하여 측정한 그래프이고, 결과는 3번의 독립적 실험의 대표값이다.
도 15는 JFH-1 세포주를 PEP1 (10 μM), PDTC (100 μM) 또는 PBS에서 2 시간 동안 처리하기 전에, 스크램블 siRNA 또는 LRP1 siRNA로 트랜스펙션하고, DCF-DA 방법을 사용하여 ROS 생성을 측정한 그래프이다(에러 바는 SEM을 나타낸다. 스크램블드 대조구와 비교하여, **P < 0.01이다. P 값은 독립표본 양측 검정 t-시험에 기초하여 얻었고 결과는 3번의 독립적 실험의 대표값이다).
도 16은 JFH-1 세포주를 PEP1, NAC (20 mM), PDTC (100 μM) 및 비타민 E (10 μM)로 48 시간 동안 배양하였을 때, HCV의 NS2의 전사량을 정량적 PCR로 측정하여, 시험관내 (in vitro)에서 PEP1의 항HCV 활성을 측정한 결과이다.
도 17은 JFH-1 세포주를 PEP1 (10 μM)이 존재하는 상황에서 항HSP70 항체, 항HSP90 항체, 또는 대조 (isotype) 항체와 함께 2 시간 동안 배양한 후, NS2의 전사량을 측정한 결과이다.
도 18은 JFH-1 세포주를 스크램블 siRNA 또는 LRP1 siRNA로 18 시간 동안 트랜스펙션시킨 후, PEP1 (10 μM) 또는 PBS로 2 시간 동안 처리한 결과이다(에러 바는 평균의 SEM을 나타낸다. 비히클 또는 PBS 대조구와 비교하여, *P < 0.05이고, **P < 0.01이고, ***P < 0.001 이다. P 값은 독립표본 양측 검정 t-시험에 기초하여 얻었고, 결과는 3번 또는 4번의 독립적 실험의 대표값이다).
도 19는 JFH-1 세포주에서 PEP1이 HCV RNA의 복제에 관여하는 FKBP8과 이에 결합하는 HSP90의 상호작용을 억제한다는 것을 나타낸 것이다(결과는 2번의 독립적 실험의 대표값이다).
도 20은 만성 HCV 감염 환자의 간 조직에서 HSP90 (적색)의 면역형광 염색으로서, 핵은 DAPI (청색)으로 대조염색 (counterstain)하였고, 자가면역 간염 (AIH) 환자 또는 B형 간염 환자로부터 얻은 간 조직을 대조구로 사용한 것이다.
도 21은 JFH-1 세포를 PEP1 (10 μM) 또는 PBS로 2 시간 동안 배양하고, HSP90으로 염색한 것이며, 결과는 2번의 독립적 실험의 대표값이다.
도 22는 PEP1의 세포 생존성에 대한 영향을 나타낸 것으로, MT-4, IG5 및 ACH-2 세포에 PEP1 농도를 증가시켜 5일간 처리하고 MTT 어세이를 실시한 결과를 나타낸 것이다.
도 23은 HIV-1 바이러스 생산에 대한 PEP1의 영향을 나타낸 것으로, HIV-1에 감염된 MT-4 세포들을, 증가되는 농도별 PEP1로 처리한 결과를 나타낸 것이다(상층액에서 바이러스성 입자 (viral particle)의 양은 p24 ELISA로 측정하였다).
도 24는 eGFP의 발현에 대한 PEP1의 영향을 나타낸 것으로(eGFP는 HIV-1 Nef와 같이 발현함), HIV-4로 감염된 MT-4세포들을, 증가되는 농도별 PEP1로 처리하고, eGFP의 발현은 형광 현미경으로 모니터한 결과를 나타낸 것이다.
도 25는 HIV-1 바이러스성 입자 생산의 억제를 나타낸 것으로, HIV-1로 감염된 MT-4 세포들을, 농도를 단계별로 증가시킨 AZT 또는 PEP1로 처리하여 상층액의 바이러스성 유전물질 (viral genomes)의 레벨을 RT-qPCR을 이용하여 측정한 것이다.
도 26은 PEP1의 HIV-1 감염-관련 세포 사멸로부터 세포의 보호 효과를 나타낸 것으로, MT-4 세포들 (1x104개)은 HIV-1 바이러스 (4x105 CCID50)로 감염된 것이고, AZT로 5일간 처리되었으며, 세포 활성 (viability)은 p24 ELISA로 측정한 것이다. (데이터는 평균 (means) ± SD (표준편차)로 대표 표기되었다).
도 27은 PEP1의 HIV-1 감염-관련 세포 사멸로부터 세포의 보호 효과를 나타낸 것으로, MT-4 세포들 (1x104개)은 HIV-1 바이러스 (4x105 CCID50)로 감염된 것이고, PEP1으로 5일간 처리되었으며, 세포 활성 (viability)은 p24 ELISA로 측정한 것이다(데이터는 평균 (means) ± SD (평균에러)로 대표 표기되었다).
도 28은 추가 시간 (Time-of-addition) 어세이로서, PEP1을 포함한 지명된 항-HIV-1 약물들을 HIV-1에 감염된 MT-4세포들에 감염후 각기 다른 시간대 (time point) 별로 처리한 것으로, HIV-1 복제는 HIV-1 감염 5일 후 p24 ELISA 로 평가한 것을 나타낸다.
도 29는 추가 시간 (Time-of-addition) 어세이에서 얻은 대표적인 eGFP 이미지를 나타낸다.
도 30는 PEP1의 HIV-1 바이러스성 mRNA 합성 억제를 나타낸 것으로, MT-4세포들은 HIV-1에 의해 감염되었고 비히클 또는 항바이러스 약물들은 표시된 시간대에 처리되었으며, 바이러스성 mRNA는 RT-qPCR에 의해 측정된 것이다(데이터는 평균 (means) ± SD (평균에러)로 대표 표기되었다. *은 DMSO대비 p<0.05 인것을, ***은 p<0.001인 것을 나타낸다).
도 31은 AZT 또는 PEP1 처리로 HIV-LTR-루시퍼라제 활성에 대한 HIV-1 감염의 효과를 5배 정도 감소시킨 것을 나타내는 것이다.
도 32는 PEP1에 의한 Tat-의존 HIV-1 전사의 억제를 나타내는 사진이다.
도 33은 PEP1에 의한 HIV-1의 잠복기 이후 재활성화에 대한 억제 효과를 나타내는 것이다.
도 34는 PEP1에 의한 HIV-1의 잠복기 이후 재활성화에 대한 억제 효과를 나타내는 것이다.
도 35는 PEP1이 항-HIV-1활성을 나타낼 때 HSP90의 중요한 역할을 나타내는 것이다.
도 36은 도 35에서 얻은 대표적인 eGFP 이미지를 나타낸 것이다.
도 37은 PEP1이 항-HIV-1활성을 나타낼 때 HSP90의 중요한 역할을 나타내는 것이다.
도 38는 MT-4 세포들을 NF-κB 반딧불 루시퍼라제 및 CMV-프로모터 레닐라 (renilla) 루시퍼라제 리포터 플라스미드로 감염시킨 후, 그 뒤 HIV-1 (1x106 CCID50)으로 감염시킨 뒤, 지명된 화합물들로 24시간 동안 처리한 다음 이중 (dual)-루시퍼라제 어세이를 실시한 결과를 나타낸다(데이터는 평균 (means) ± SD (표준편차)로 대표 표기되었다. ***은 DMSO 대비 p<0.001인 것을 나타낸다).
도 39는 MT-4 세포들을 HIV-1로 감염시키고, DMSO, AZT 또는 PEP1을 도 38에서 언급한대로 처리한 뒤 감염시킨 후 24 시간 뒤에, 핵분획 (nuclear fraction)을 추출한 다음 EMSA 어세이 (electrophoretic mobility shift assay)를 실시한 결과를 나타낸 것이다.
도 40는 NF-κB 및 AP-2 경쟁 올리고머들이 정확성을 확인하기 위하여 사용된 것을 나타낸 것이다.
도 41은 ACH-2 세포들을 TNF-α (30ng/ml) 또는 PMA(phorbol 12-myristate 13-acetate) (50 nM)을 사용하여 한 시간 동안 자극하였으며, DMSO, AZT 또는 PEP1을 24 시간 후 처리한 다음, 세포들을 항p65 NF-κB 항체 및 알렉사-형광 594-컨쥬게이트된 2차 항체로 투과시킨 뒤 간략한 DAPI 핵 염색 후 공초첨 현미경으로 관찰한 것을 나타낸 것이다.
도 42는 MT-4 세포들을 NF-κB 반딧불 루시퍼라제 및 CMV-프로모터 레닐라 (renilla) 루시퍼라제 리포터 플라스미드로 감염시킨 뒤, 세포들을 지명된 항체들 (10 ng/ml) 또는 17-AAG (1μM)로 HIV-감염 전에 1시간 동안 처리하고 HIV-감염 후 세포들을 DMSO, AZT 또는 PEP1로 24 시간 처리하였으며, 이중-루시퍼라제 어세이를 실시한 결과를 나타낸 것이다(데이터는 평균 (means) ± SD (평균 에러)로 대표 표기되었다. ***은 DMSO 대비 p<0.001인 것을 나타낸다.
도 43은 전체 HBV W4P 유전체를 주입한 여러 가지 사람 간암 세포주에서 PEP1 에 의한 HBsAg 합성능을 비교한 것이다.
도 44a는 전체 HBV W4P 유전체를 주입한 HepG2 세포주에서 PEP1 펩티드에 의한 Virion 형성능을 비교한 것이다.
도 44b는 전체 HBV W4P 유전체를 주입한 Huh7 세포주에서 PEP1 펩티드에 의한 Virion 형성능을 비교한 것이다.
도 44c는 전체 HBV W4P 유전체를 주입한 Huh7.5 세포주에서 PEP1 펩티드에 의한 Virion 형성능을 비교한 것이다.
도 45는 전체 HBV W4P 유전체를 주입한 HepG2 세포주에서 PEP1 펩티드의 농도에 따른 HBsAg 합성능을 비교한 것이다.
도 46은 전체 HBV W4P 유전체를 주입한 HepG2 세포주에서 PEP1 펩티드의 농도에 따른 virion 합성능을 비교한 것이다.
도 47은 PEP1 펩티드가 HNF4α의 발현에 미치는 영향을 웨스턴 블롯을 통해 확인한 것이다.
도 48은 PEP1 펩티드가 IL-6 에 미치는 영향을 나타내는 것이다.
도 49는 전체 HBV W4P 유전체 형질전환 마우스에서 PEP1이 HBsAg 합성능과 virion 에 미치는 영향을 확인한 것이다.
도 50은 전체 HBV W4P 유전체 형질전환 마우스에서 PEP1 펩티드가 단백질 발현에 미치는 영향을 웨스턴 블롯으로 나타낸 것이다.
도 51a는 전체 HBV W4P 유전체 형질전환 마우스에서 PEP1 펩티드가 면역 세포(림포사이트 CD8) 분포에 미치는 영향을 나타낸 것이다.
도 51b는 전체 HBV W4P 유전체 형질전환 마우스에서 PEP1 펩티드가 면역 세포(림포사이트 CD4) 분포에 미치는 영향을 나타낸 것이다.
도 51c는 전체 HBV W4P 유전체 형질전환 마우스에서 PEP1 펩티드가 면역 세포(림포사이트 B cell) 분포에 미치는 영향을 나타낸 것이다.
도 51d는 전체 HBV W4P 유전체 형질전환 마우스에서 PEP1 펩티드가 면역 세포(림포사이트 NK1.1) 분포에 미치는 영향을 나타낸 것이다.
도 51e는 전체 HBV W4P 유전체 형질전환 마우스에서 PEP1 펩티드가 면역 세포(myeloid dendritic cells, myeloid DC) 분포에 미치는 영향을 나타낸 것이다.
도 51f는 전체 HBV W4P 유전체 형질전환 마우스에서 PEP1 펩티드가 면역 세포(대식세포) 분포에 미치는 영향을 나타낸 것이다.
도 51g는 전체 HBV W4P 유전체 형질전환 마우스에서 PEP1 펩티드가 면역 세포(호중구) 분포에 미치는 영향을 나타낸 것이다.
도 51h는 전체 HBV W4P 유전체 형질전환 마우스에서 PEP1 펩티드가 면역 세포(단핵구) 분포에 미치는 영향을 나타낸 것이다.
도 52a는 PEP1 펩티드가 면역 세포(림포사이트 CD4)와 INFγ 활성화 간에 미치는 영향을 나타낸 것이다.
도 52b는 PEP1 펩티드가 면역 세포(림포사이트 CD4)와 INFγ 활성화 간에 미치는 영향을 나타낸 것이다.
도 52c는 PEP1 펩티드가 면역 세포(림포사이트 CD8)와 INFγ 활성화 간에 미치는 영향을 나타낸 것이다.
도 52d는 PEP1 펩티드가 면역 세포(림포사이트 CD8)와 INFγ 활성화 간에 미치는 영향을 나타낸 것이다.
도 52e는 PEP1 펩티드가 면역 세포(NK1.1)와 INFγ 활성화 간에 미치는 영향을 나타낸 것이다.
도 52f는 PEP1 펩티드가 면역 세포(NK1.1)와 INFγ 활성화 간에 미치는 영향을 나타낸 것이다.
도 52g는 PEP1 펩티드가 면역 세포(NK1.1)와 INFγ 활성화 간에 미치는 영향을 나타낸 것이다.
도 53은 전체 HBV W4P 유전체 형질전환 마우스에서 PEP1 펩티드가 대식세포(macrophage)의 분화에 미치는 영향을 나타낸 것이다.
도 54는 전체 HBV 야생주 유전체의 형질 주입 세포에서 HSP90 차단(blocking)에 의한 PEP1 펩티드의 항바이러스 효과를 확인한 것이다.
본 발명은 일측면에 있어서, 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 이하, 본 발명을 보다 구체적으로 설명한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 일측면에 따른 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 일측면에 따른 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
텔로미어 (telomere)는 염색체의 말단에 반복적으로 존재하는 유전 물질로서, 해당 염색체의 손상이나 다른 염색체와의 결합을 방지한다고 알려져 있다. 세포가 분열할 때마다 텔로미어의 길이는 조금씩 짧아지는데, 일정한 횟수 이상의 세포 분열이 있게 되면 텔로미어는 매우 짧아지고, 그 세포는 분열을 멈추고 죽게 된다. 반면 텔로미어를 길게 하면 세포의 수명이 연장된다고 알려져 있으며, 그 예로 암세포에서는 텔로머라제 (telomerase)라는 효소가 과발현되어 텔로미어가 짧아지는 것을 막기 때문에, 암세포가 죽지 않고 계속 증식할 수 있다고 알려져 있다. 본 발명자들은 텔로머라제로부터 유래되는 펩티드가 항바이러스 및 바이러스 관련 질병의 예방 및 치료에 효과적임을 확인하고 본 명세서를 완성하게 되었다.
HSP90 단백질은 분자 샤페론 (molecular chaperone)의 하나로 세포 성장, 분화, 생존에 관련된 다양한 단백질들의 안정화 및 활성, 특히 스트레스 환경 하에서 항상성을 담당한다. HSP90은 “세포내 HSP90 (intracellular HSP90)”으로 불리는 iHSP90으로 세포 내에 존재할 뿐만 아니라 “세포외 HSP90 (extracellular HSP90)”으로 불리는 eHSP90으로 세포외에도 존재한다. 흥미롭게도, 배출된 HSP90 및 세포 표면 HSP90이 암 세포에서 관찰되었으며, 이들 세포외 HSP90 (eHSP90) 단백질은 암 성장 및 혈관신생 (angiogenesis)를 촉진한다. 암 세포가 아닌 세포들도 다양한 환경 조건, 예를 들어, 열, 저산소, 굶주림 및 사이토카인 존재 하에서 eHSP90을 생성한다. eHSP90은 iHSP90과는 다른 기능을 하며, 다양한 세포 표면 단백질들과 상호작용하여 세포 시그널링 경로를 조절할 수 있다.
본 발명자들은, HSP90이 암, 경화증 및 바이러스 감염과 같은 다수의 병리학적 증상과 연관되어 있음을 확인하였다. HSP90과 결합할 수 있는 분자에는 암화, 침습성 및 전이와 연관된 다수의 단백질들을 포함하는 것을 확인하였고, 따라서, HSP90은 암 치료제로서 유력한 타켓이 될 수 있음을 확인하였다.
본 발명은 일측면에서 PEP1 펩티드로 알려진 hTERT 유래의 16mer 펩티드 (611-EARPALLTSRLRFIPK-626, 서열번호 1)가 단백질 항상성에 중요한 역할을 하는 HSP90과 상호작용하고, 세포 시그널을 조절함으로써 항바이러스 효과를 나타냄을 확인한 것이다.
본 발명의 다른 측면에 있어서, 상기 항바이러스 효과는 바이러스의 복제 억제, 전사 억제, 재활성화 억제, 항원 발현 억제, 및 비리온(Virion) 형성 억제로 이루어진 군에서 선택되는 하나 이상에 의하여 바이러스를 억제하는 것일 수 있다.
본 발명은 일측면에서 텔로머라제 (telomerase)의 역전사 효소 (reverse transcriptase) 유래의 펩티드 백신을 제공한다. 구체적으로 본 발명은 일측면에서, 인간 텔로머라제 역전사 효소 (human telomerase reverse transcriptase, hTERT) 유래의 아미노산 펩티드 백신을 제공한다. 보다 구체적으로는 본 발명은 일측면에서, hTERT 유래의 16개 아미노산 펩티드로 GV1001®로 알려진 펩티드 PEP1을 항 바이러스 백신으로 제공한다.
본 발명의 일측면에 따른 펩티드 (이하 PEP1)는 인간 텔로머라제 유래의 합성 펩티드로 다양한 생물학적 역할을 할 수 있음을 확인하였다.
본 발명자들은 PEP1은 열충격 단백질 (heat shock protein, HSP)와 상호작용하며 세포내 시그널링을 조절한다는 것을 밝혔다. 본 발명의 일측면에서 보여준 바와 같이, HSP90은 세포 내로 PEP1이 투과하는 것을 돕는다는 것을 확인하였고, PEP1이 세포외 HSP와 상호작용하고, 세포의 세포질 내로 투과할 수 있음을 확인하였다. 이러한 연구는 PEP1이 HSP을 통한 상호작용을 통해 세포내 시그널링 경로를 조절할 수 있다는 것을 나타낸다.
본 발명은 다른 측면에서 PEP1의 항산화 효능이 활성산소가 증가한 HCV 감염 세포에서 HCV의 복제를 저해하는 효과가 있음을 밝혔다. 구체적으로 본 발명은 일측면에서, HCV로 감염된 세포에서 활성산소가 증가하며, 증가된 활성산소가 HSP90의 분비능을 증가시키고, HSP90에 결합한 PEP1의 세포 침투능이 향상되어 세포 내에서 HCV 복제 증식을 억제할 수 있음을 밝혔다. 본 발명은 일측면에서 PEP1이 HSP90을 통해 나타내는 다양한 생물학적 활성을 통해, HCV 복제 증식을 억제할 수 있는 신규한 약물을 제공한다.
본 발명은 다른 측면에서 펩티드를 기반으로 하는, 기존의 항레트로바이러스제에 대한 HIV 내성 및 약제 부작용을 극복할 수 있는 새로운 형태의 항 HIV 치료제를 제공한다. 감염된 세포는 세포 사멸 기전의 자극을 받아 스스로 세포사가 일어나는 것으로 알려져 있다. 본 발명자들은 PEP1이 HIV 바이러스 자체에 대해 항바이러스 효과를 나타내 HIV 증식을 억제하며, HIV가 감염된 세포주에 대한 세포 사멸을 방지하는 것을 확인하였다. 본 발명은 일측면에서 세포의 상태를 정상적으로 유지시켜 주며 HIV 세포 독성이나 세포 사멸을 최소화하는 것을 확인하였다.
본 발명은 또 다른 측면에서 펩티드를 기반으로 하는, 기존의 바이러스성 B형 간염 약제들의 간독성 및 지속적인 복용시 나타나는 신독성 등의 약제 부작용을 극복할 수 있는 새로운 형태의 항HBV 치료제를 제공한다. 본 발명자들은 PEP1을 통한 STAT3 시그널링 경로의 억제, 직접적 세포 독성, IL-6 생성억제를 통한 항암효능 및 간염억제 효능의 복합작용으로부터, 항바이러스 억제에 의한 신규한 HCC 치료 물질을 제공한다.
본 발명의 일측면에서, 서열 번호 1의 펩티드, 서열번호 1의 단편인 펩티드 또는 상기 펩티드 서열과 80% 이상의 서열 상동성을 갖는 펩티드는 텔로머라제, 구체적으로 인간 (Homo sapiens) 텔로머라제에서 유래한 펩티드를 포함한다.
본 발명은 다른 측면에서, 서열번호 1의 아미노산 서열을 포함하는 펩티드, 상기 아미노산 서열과 80% 이상의 서열 상동성을 갖는 펩티드, 또는 그 단편인 항바이러스용 펩티드일 수 있다.
본 명세서에 개시된 펩티드는 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 99% 이상의 서열 상동성을 갖는 펩티드를 포함할 수 있다. 또한, 본 명세서에 개시된 펩티드는, 서열번호 1을 포함하는 펩티드 또는 그 단편들과 1개 이상의 아미노산, 2개 이상의 아미노산, 3개 이상의 아미노산, 4개 이상의 아미노산, 5개 이상의 아미노산, 6개 이상의 아미노산 또는 7개 이상의 아미노산이 변화된 펩티드를 포함할 수 있다.
본 발명의 일측면에서, 상기 펩티드는 표지물질과 컨쥬게이트된 형태로 상기 조성물에 포함될 수 있다. 다른 측면에 따르면, 상기 표지물질은 형광물질 또는 조영물질일 수 있다. 본 발명의 다른 측면에서 상기 형광물질은 FITC(fluorescein isothiocyanate)일 수 있다.
본 발명의 일측면에서, 아미노산 변화는 펩티드의 물리화학적 특성이 변경되도록 하는 성질에 속한다. 예를 들어, 펩티드의 열안정성을 향상시키고, 기질 특이성을 변경시키고, 최적의 pH를 변화시키는 등의 아미노산 변화가 수행될 수 있다.
본 명세서에서 "아미노산"이라 함은 자연적으로 펩티드로 통합되는 22개의 표준 아미노산들 뿐만 아니라 D-아이소머 및 변형된 아미노산들을 포함한다. 이에 따라, 본 발명의 일측면에서 펩티드는 D-아미노산을 포함하는 펩티드일 수 있다. 한편, 본 발명의 다른 측면에서 펩티드는 번역 후 변형 (post-translational modification)된 비표준 아미노산 등을 포함할 수 있다. 번역 후 변형의 예는 인산화 (phosphorylation), 당화 (glycosylation), 아실화(acylation) (예컨대, 아세틸화 (acetylation), 미리스토일화 (myristoylation) 및 팔미토일화 (palmitoylation)를 포함), 알킬화 (alkylation), 카르복실화 (carboxylation), 히드록실화 (hydroxylation), 당화반응 (glycation), 비오티닐화 (biotinylation), 유비퀴티닐화 (ubiquitinylation), 화학적 성질의 변화 (예컨대, 베타-제거 탈이미드화, 탈아미드화) 및 구조적 변화 (예컨대, 이황화물 브릿지의 형성) 를 포함한다. 또한, 펩티드 컨쥬게이트를 형성하기 위한 가교제 (crosslinker)들과의 결합과정에서 일어나는 화학 반응들에 의해 생기는 아미노산의 변화, 예컨대 아미노기, 카르복시기 또는 사이드 체인에서의 변화와 같은 아미노산의 변화를 포함한다.
본 명세서에 개시된 펩티드는 자연 그대로의 공급원으로부터 동정 및 분리된 야생형 펩티드일 수 있다. 한편, 본 명세서에 개시된 펩티드는 서열번호 1의 단편들인 펩티드와 비교하여 하나 이상의 아미노산이 치환, 결실 및/또는 삽입된 아미노산 서열을 포함하는, 인공 변이체일 수 있다. 인공 변이체에서 뿐만 아니라 야생형 폴리펩티드에서의 아미노산 변화는 단백질의 폴딩 (folding) 및/또는 활성에 유의한 영향을 미치지 않는 보존성 아미노산 치환을 포함한다. 보존성 치환의 예들은 염기성 아미노산 (아르기닌, 리신 및 히스티딘), 산성 아미노산 (글루탐산 및 아스파르트산), 극성 아미노산 (글루타민 및 아스파라긴), 소수성 아미노산 (루신, 이소로이신, 발린 및 메티오닌), 방향족 아미노산 (페닐알라닌, 트립토판 및 티로신), 및 작은 아미노산 (글리신, 알라닌, 세린 및 트레오닌)의 군의 범위 내에 있다. 일반적으로 특이적 활성을 변경시키지 않는 아미노산 치환이 본 분야에 공지되어 있다. 가장 흔하게 발생하는 교환은 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, 및 Asp/Gly, 그리고 이들과 반대인 것들이다. 보존적 치환의 다른 예는 다음 표와 같다.
원래 아미노산 예시적인 잔기 치환 바람직한 잔기 치환
Ala (A) val; leu; ile Val
Arg (R) lys; gln; asn Lys
Asn (N) gln; his; asp, lys; arg Gln
Asp (D) glu; asn Glu
Cys (C) ser; ala Ser
Gln (Q) asn; glu Asn
Glu (E) asp; gln Asp
Gly (G) Ala Ala
His (H) asn; gln; lys; arg Arg
Ile (I) leu; val; met; ala; phe; norleucine Leu
Leu (L) norleucine; ile ; val; met; ala; phe Ile
Lys (K) arg; gln; asn Arg
Met (M) leu; phe; ile Leu
Phe (F) leu; val; ile; ala; tyr Tyr
Pro (P) Ala Ala
Ser (S) thr Thr
Thr (T) Ser Ser
Trp (W) tyr; phe Tyr
Tyr (Y) trp; phe ; thr; ser Phe
Val (V) ile; leu; met; phe; ala; norleucine Leu
펩티드의 생물학적 특성에 있어서의 실재적인 변형은 (a) 치환 영역 내의 폴리펩티드 골격의 구조, 예를 들면 시트 또는 나선 입체 구조를 유지하는데 있어서의 이들의 효과, (b) 표적 부위에서의 상기 분자의 전하 또는 소수성을 유지하는데 있어서의 이들의 효과, 또는 (c) 측쇄의 벌크를 유지하는데 있어서의 이들의 효과가 상당히 상이한 치환부를 선택함으로써 수행된다. 천연 잔기는 통상의 측쇄 특성에 기준하여 다음 그룹으로 구분된다:
(1) 소수성: 노르루이신, met, ala, val, leu, ile;
(2) 중성 친수성: cys, ser, thr;
(3) 산성: asp, glu;
(4) 염기성: asn, gln, his, lys, arg;
(5) 쇄 배향에 영향을 미치는 잔기: gly, pro; 및
(6) 방향족: trp, tyr, phe.
비-보존적 치환은 이들 부류 중의 하나의 구성원을 또다른 부류로 교환함으로써 이루어질 것이다. 펩티드의 적당한 입체 구조를 유지하는 것과 관련이 없는 어떠한 시스테인 잔기도 일반적으로 세린으로 치환되어 상기 분자의 산화적 안정성을 향상시키고 이상한 가교결합을 방지할 수 있다. 역으로 말하면, 시스테인 결합(들)을 상기 펩티드에 가하여 그의 안정성을 향상시킬 수 있다
펩티드의 다른 유형의 아미노산 변이체는 항체의 글리코실화 패턴이 변화된 것이다. 변화란 의미는 펩티드에서 발견된 하나 이상의 탄수화물 잔기의 결실 및(또는) 펩티드 내에 존재하지 않는 하나 이상의 글리코실화 부위의 부가를 나타낸다.
펩티드의 글리코실화는 전형적으로 N-연결되거나 O-연결된 것이다. N-연결된이란 탄수화물 잔기가 아스파라긴 잔기의 측쇄에 부착된 것을 말한다. 트리펩티드 서열 아스파라긴-X-세린 및 아스파라긴-X-트레오닌 (여기서, X는 프롤린을 제외한 임의의 아미노산임)은 탄수화물 잔기를 아스파라긴 측쇄에 효소적으로 부착시키기 위한 인식 서열이다. 따라서, 이들 트리펩티드 서열 중의 하나가 폴리펩티드에 존재함으로써, 잠재적인 글리코실화 부위가 생성된다. O-연결된 글리코실화는 당 N-아세틸갈락토사민, 갈락토스 또는 크실로스 중의 하나를 히드록시아미노산, 가장 통상적으로는 세린 또는 트레오닌에 부착시키는 것을 의미하지만, 5-히드록시프롤린 또는 5-히드록시리신을 사용할 수도 있다.
펩티드로의 글리코실화 부위의 부가는 하나 이상의 상기 언급된 트리펩티드 서열을 함유하도록 아미노산 서열을 변화시킴으로써 편리하게 수행된다 (N-연결된 글리코실화 부위의 경우). 이러한 변화는 하나 이상의 세린 또는 트레오닌 잔기를 최초 항체의 서열에 부가하거나 이들 잔기로 치환함으로써 이루어질 수도 있다 (O-연결된 글리코실화 부위의 경우).
또한 본 발명의 일측면에 따른 서열 번호 1의 서열을 갖는 펩티드, 서열 번호 1의 서열의 단편인 펩티드 또는 상기 펩티드 서열과 80% 이상의 서열 상동성을 갖는 펩티드는 세포 내 독성이 낮고, 생체 내 안정성이 높다는 장점을 가진다. 본 발명은 일측면에서, 서열번호 1은 텔로머라제 유래 펩티드로서 하기와 같이 16개의 아미노산으로 이루어진 펩티드이다.
서열 번호 1에 기재된 펩티드는 아래 표 2과 같다. 아래 표 2의 "이름"은 펩티드를 구별하기 위해 명명한 것이다. 본 발명의 일측면에서, 서열 번호 2에 기재된 펩티드는 인간 텔로머라제의 전체 펩티드를 나타낸다. 본 발명의 다른 일측면에서, 서열 번호 1의 서열을 갖는 펩티드, 서열 번호 1의 서열의 단편인 펩티드 또는 상기 펩티드 서열과 80% 이상의 서열 상동성을 갖는 펩티드는 텔로머라제에 포함된 펩티드 중 해당 위치의 펩티드를 선별해 합성한 "합성 펩티드"를 포함한다. 서열번호 2는 전체 텔로머라제의 아미노산 서열을 나타낸 것이다.
Figure PCTKR2016007192-appb-T000001
본 발명의 일측면에서는 서열번호 1의 아미노산 서열을 포함하는 (comprising) 펩티드, 상기 아미노산 서열과 80% 이상의 서열 상동성을 갖는 펩티드 또는 그 단편인 항바이러스 및 바이러스 억제 효능을 가지는 펩티드를 유효 성분으로 포함하는 조성물을 제공한다. 본 발명의 일측면에 따르면, 상기 조성물은 약학 조성물일 수 있다.
본 발명의 일측면에 의하면, 상기 바이러스는 DNA 바이러스, RNA 바이러스, 이중가닥DNA-역전사효소(double-stranded DNA Reverse Transcriptase, dsDNA-RT) 바이러스, 단일가닥 RNA-역전사효소(single-stranded RNA Reverse Transcriptase, ssRNA-RT) 바이러스, 또는 ssRNA 바이러스일 수 있다.
본 발명의 다른 측면에 의하면, 상기 바이러스는 플라비바이러스과(Flaviviridae) 레트로바이러스과(Retroviridae), 또는 헤파드나바이러스과(Hepadnaviridae)일 수 있다.
본 발명의 또다른 측면에 의하면 상기 바이러스는 HCV, HIV, 또는 HBV일 수 있다.
본 발명의 일측면에 따른 항바이러스 및 바이러스 억제 효능을 가지는 약학 조성물은 일측면에서는 서열번호 1의 아미노산 서열을 포함하는 (comprising) 펩티드, 상기 아미노산 서열과 80% 이상의 서열 상동성을 갖는 펩티드 또는 그 단편인 펩티드를 0.01mg/mL 이상, 0.02mg/mL 이상, 0.05mg/mL 이상, 0.07mg/mL 이상, 0.1mg/mL 이상, 0.15mg/mL 이상, 0.2mg/mL 이상, 0.25mg/mL 이상, 0.3mg/mL 이상, 0.5mg/mL 이상, 0.7mg/mL 이상, 1mg/mL 이상, 2mg/mL 이상, 3mg/mL 이상, 5mg/mL 이상, 7mg/mL 이상, 10mg/mL 이상, 20mg/mL 이상, 30mg/mL 이상, 40mg/mL 이상, 50mg/mL 이상, 60mg/mL 이상, 70mg/mL 이상, 80mg/mL 이상, 또는 90mg/mL 이상이거나, 100mg/mL 이하, 90mg/mL 이하, 80mg/mL 이하, 70mg/mL 이하, 60mg/mL 이하, 50mg/mL 이하, 40mg/mL 이하, 30mg/mL 이하, 20mg/mL 이하, 10mg/mL 이하, 7mg/mL 이하, 5mg/mL 이하, 3mg/mL 이하, 2mg/mL 이하, 1mg/mL 이하, 0.7mg/mL 이하, 0.5mg/mL 이하, 0.3mg/mL 이하, 0.25mg/mL 이하, 0.2mg/mL 이하, 0.15mg/mL 이하, 0.1mg/mL 이하, 0.07mg/mL 이하, 0.05mg/mL 이하, 또는 0.02mg/mL 이하의 함량으로 포함할 수 있으나 용량에 따른 효과의 차이를 보이는 경우 이를 적절히 조절할 수 있다. 상기 범위 또는 그 이하의 범위로 포함하는 경우 본 발명의 일측면에서 의도한 효과를 나타내기에 적절할 뿐만 아니라, 조성물의 안정성 및 안전성을 모두 만족할 수 있으며, 비용 대비 효과의 측면에서도 상기 범위로 포함하는 것이 적절할 수 있다.
본 발명의 일측면에 따른 상기 조성물은 서열번호 1의 아미노산 서열을 포함하는 (comprising) 펩티드, 상기 아미노산 서열과 80% 이상의 서열 상동성을 갖는 펩티드 또는 그 단편인 펩티드를 0.0001 μM 이상, 0.001μM 이상, 0.002μM 이상, 0.005μM 이상, 0.007μM 이상, 0.01μM 이상, 0.02μM 이상, 0.05μM 이상, 0.07μM 이상, 0.09μM 이상, 0.1μM 이상, 0.2μM 이상, 0.25μM 이상, 0.3μM 이상, 0.35μM 이상, 0.4μM 이상, 0.45μM 이상, 0.5μM 이상, 0.55μM 이상, 0.6μM 이상, 0.65μM 이상, 0.7μM 이상, 0.75μM 이상, 0.8μM 이상, 0.85μM 이상, 0.9μM 이상, 0.95μM 이상, 1μM 이상, 2μM 이상, 3μM 이상, 5μM 이상, 7μM 이상, 10μM 이상, 30μM 이상, 50μM 이상, 또는 90μM 이상이거나, 100μM 이하, 90μM 이하, 50μM 이하, 30μM 이하, 10μM 이하, 9μM 이하, 7μM 이하, 5μM 이하, 3μM 이하, 2μM 이하, 1μM 이하, 0.95μM 이하, 0.9μM 이하, 0.85μM 이하, 0.8μM 이하, 0.75μM 이하, 0.7μM 이하, 0.65μM 이하, 0.6μM 이하, 0.55μM 이하, 0.5μM 이하, 0.45μM 이하, 0.4μM 이하, 0.35μM 이하, 0.3μM 이하, 0.25μM 이하, 0.2μM 이하, 0.1μM 이하, 0.09μM 이하, 0.07μM 이하, 0.05μM 이하, 0.02μM 이하, 0.01μM 이하, 0.007μM 이하, 0.005μM 이하, 0.002μM 이하, 0.001μM 이하, 또는 0.0005μM 이하의 농도로 포함할 수 있으며, 바람직하게는 0.001μM 내지 10μM의 농도로 포함할 수 있으나, 농도에 따른 효과의 차이를 보이는 경우 이를 적절히 조절할 수 있다. 상기 범위 또는 그 이하의 범위로 포함하는 경우 본 발명의 일측면에서 의도한 효과를 나타내기에 적절할 뿐만 아니라, 조성물의 안정성 및 안전성을 모두 만족할 수 있으며, 비용 대비 효과의 측면에서도 상기 범위로 포함하는 것이 적절할 수 있다.
본 발명의 일측면에 따른 조성물은 인간, 개, 닭, 돼지, 소, 양, 기니아피그 또는 원숭이를 포함하는 모든 동물에 적용될 수 있다.
본 발명의 일측면에서 조성물은 서열번호 1 의 아미노산 서열을 포함하는 (comprising) 펩티드, 상기 아미노산 서열과 80% 이상의 서열 상동성을 갖는 펩티드 또는 그 단편인 항바이러스 효능 및 바이러스 관련 질병의 예방 및 치료에 효능을 가지는 펩티드를 포함하는 약학 조성물을 제공한다. 본 발명의 일측면에 따른 약학 조성물은 경구, 직장, 경피, 정맥 내, 근육 내, 복강 내, 골수 내, 경막 내 또는 피하 등으로 투여될 수 있다.
경구 투여를 위한 제형은 정제, 환제, 연질 또는 경질 캅셀제, 과립제, 산제, 액제 또는 유탁제일 수 있으나, 이에 제한되는 것은 아니다. 비경구 투여를 위한 제형은 주사제, 점적제, 로션, 연고, 겔, 크림, 현탁제, 유제, 좌제, 패취 또는 분무제일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일측면에 따른 약학 조성물은 필요에 따라 희석제, 부형제, 활택제, 결합제, 붕해제, 완충제, 분산제, 계면 활성제, 착색제, 향료 또는 감미제 등의 첨가제를 포함할 수 있다. 본 발명의 일측면에 따른 약학 조성물은 당업계의 통상적인 방법에 의해 제조될 수 있다.
본 발명의 일측면에 따른 약학 조성물의 유효 성분은 투여 받을 대상의 연령, 성별, 체중, 병리 상태 및 그 심각도, 투여 경로 또는 처방자의 판단에 따라 달라질 것이다. 이러한 인자에 기초한 적용량 결정은 당업자의 수준 내에 있으며, 이의 1일 투여 용량은 0.01㎍/kg/일 이상, 0.1㎍/kg/일 이상, 1㎍/kg/일 이상, 0.0016 mg/kg/일 이상, 0.005 mg/kg/일 이상, 0.006 mg/kg/일 이상, 0.0093mg/kg/일 이상, 0.01 mg/kg/일 이상, 0.016 mg/kg/일 이상, 0.05 mg/kg/일 이상, 0.1 mg/kg/일 이상, 0.5 mg/kg/일 이상, 1 mg/kg/일 이상, 5 mg/kg/일 이상, 10 mg/kg/일 이상, 50 mg/kg/일 이상, 100 mg/kg/일 이상, 1 g/kg/일 이상, 5 g/kg/일 이상, 또는 9 g/kg/일 이상이거나, 10g/kg/일 이하, 9 g/kg/일 이하, 5 g/kg/일 이하, 1 g/kg/일 이하, 100 mg/kg/일 이하, 50 mg/kg/일 이하, 10 mg/kg/일 이하, 5 mg/kg/일 이하, 1 mg/kg/일 이하, 0.5 mg/kg/일 이하, 0.1 mg/kg/일 이하, 0.05 mg/kg/일 이하, 0.017mg/kg/일 이하, 0.01 mg/kg/일 이하, 0.0094mg/kg/일 이하, 0.007 mg/kg/일 이하, 0.005 mg/kg/일 이하, 0.0017 mg/kg/일 이하, 1㎍/kg/일 이하, 0.1㎍/kg/일 이하, 또는 0.05㎍/kg/일 이하일 수 있다. 예를 들어 0.01 ㎍/kg/일 내지 10 g/kg/일, 구체적으로는 0.1 ㎍/kg/일 내지 1 g/kg/일, 더 구체적으로는 1 ㎍/kg/일 내지 0.1 g/kg/일, 보다 더 구체적으로는 1 ㎍/kg/일 내지 10mg/kg/일, 바람직하게는 1 ㎍/kg/일 내지 1 mg/kg/일, 바람직하게는 0.005mg/kg 내지 0.05mg/kg, 가장 바람직하게는 0.01 mg/kg/일이 될 수 있으며, 용량에 따른 효과의 차이를 보이는 경우 이를 적절히 조절할 수 있다. 성인(60kg)의 경우, 1일 투여 시 0.1mg 내지 1mg, 바람직하게는 0.4 mg 내지 0.6 mg의 투여, 특히 0.56mg의 투여가 바람직하다. 본 발명의 일측면에 따른 약학 조성물은 1일 1회 내지 3회 투여될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일측면에서 조성물은 서열번호 1 의 아미노산 서열을 포함하는 (comprising) 펩티드, 상기 아미노산 서열과 80% 이상의 서열 상동성을 갖는 펩티드 또는 그 단편인 펩티드를 유효 성분으로 포함하는 항바이러스 바이러스 관련 질병의 예방 및 치료용 조성물을 제공한다.
본 발명의 일측면에 따른 조성물의 제형은 특별히 한정되지 않으나, 예를 들어, 정제, 과립제, 분말제, 액제, 고형 제제 등으로 제형화될 수 있다. 각 제형은 유효 성분 이외에 해당 분야에서 통상적으로 사용되는 성분들을 제형 또는 사용 목적에 따라 당업자가 어려움 없이 적의 선정하여 배합할 수 있으며, 다른 원료와 동시에 적용할 경우 상승 효과가 일어날 수 있다.
본 발명은 다른 측면에서, 상기 조성물은 식품 조성물일 수 있다.
본 발명의 일측면에 따른 식품 조성물의 제형은 특별히 한정되지 않으나, 예를 들어, 정제, 과립제, 분말제, 액제, 고형 제제 등으로 제형화될 수 있다. 각 제형은 유효성분 이외에 해당 분야에서 통상적으로 사용되는 성분들을 제형 또는 사용 목적에 따라 당업자가 어려움 없이 적의 선정하여 배합할 수 있으며, 다른 원료와 동시에 적용할 경우 상승 효과가 일어날 수 있다.
본 발명은 또 다른 측면에서, 상기 조성물을 바이러스성 질병에 걸렸거나 바이러스에 의한 병리학적 증상을 보이는 개체에 투여하는 것을 포함하는 바이러스성 질병의 개선, 예방 및 치료방법을 제공한다.
본 발명의 일 측면에 의하면, 상기 바이러스성 질병은 후천성면역결핍증, B형 간염, C형 간염, 이로 인한 간경변, 또는 이로 인한 간암일 수 있다.
본 발명은 또 다른 측면에서, 상기 조성물; 및 바이러스성 질병의 예방 및 치료방법이 기재된 지시서를 포함하는 바이러스성 질병의 예방 및 치료용 키트를 제공한다.
본 발명의 일 측면에 의하면, 상기 바이러스성 질병의 예방 및 치료방법은 상기 항바이러스용 조성물을 바이러스성 질병에 걸렸거나 바이러스에 의한 병리학적 증상을 보이는 개체에 투여하는 것을 포함하는 것일 수 있다.
본 발명은 또 다른 측면에서, 상기 조성물의 제조에 이용하기 위한, 서열번호 1의 아미노산 서열을 포함하는 펩티드, 상기 아미노산 서열과 80% 이상의 서열 상동성을 갖는 펩티드, 또는 그 단편인 펩티드의 용도를 제공한다.
본 명세서에서 사용된 용어들은 특정 구체예들을 설명하기 위한 목적으로만 의도된 것이지 본 명세서를 한정하고자 하는 의도가 아니다. 명사 앞에 개수가 생략된 용어는 수량을 제한하고자 하는 것이 아니라 언급된 명사 물품이 하나 이상 존재하는 것을 나타내는 것이다. 용어 "포함하는", "갖는", 및 "함유하는"은 열린 용어로 해석된다 (즉, "포함하지만 이에 한정되지는 않는"의 의미).
수치의 범위를 언급하는 것은 단지 그 범위 내에 속하는 각각의 별개의 수치들을 개별적으로 언급하는 것을 대신하는 쉬운 방법이기 때문이며, 그것이 아님이 명시되어 있지 않는, 각 별개의 수치는 마치 개별적으로 명세서에 언급되어 있는 것처럼 본 명세서에 통합된다. 모든 범위의 끝 값들은 그 범위 내에 포함되며 독립적으로 조합 가능하다.
본 명세서에 언급된 모든 방법들은 달리 명시되어 있거나 문맥에 의해 명백히 모순되지 않는 한 적절한 순서로 수행될 수 있다. 어느 한 실시예 및 모든 실시예 또는 예시적 언어 (예컨대, "~과 같은")를 사용하는 것은, 청구범위에 포함되어 있지 않는 한, 단지 본 발명의 일측면을 더 잘 기술하기 위함이지 본 발명의 일측면의 범위를 제한하고자 함이 아니다. 명세서의 어떤 언어도 어떤 비청구된 구성요소를 본 발명의 일측면에 따른 실시에 필수적인 것으로 해석되어서는 아니된다. 다른 정의가 없는 한, 본 명세서에 사용되는 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 갖는 사람에 의해 통상 이해되는 것과 같은 의미를 갖는다.
본 발명의 일측면에 따른 바람직한 구체예들은 본 발명을 수행하기 위해 발명자에게 알려진 가장 최적의 모드를 포함한다. 바람직한 구체예들의 변이들이 앞선 기재를 읽으면 당업자에게 명백하게 될 수 있다. 본 발명자들은 당업자들이 그러한 변이를 적절히 이용하길 기대하고, 발명자들은 본 명세서에 기재된 것과 다른 방식으로 본 발명이 실시되기를 기대한다. 따라서, 본 발명은 일측면에서, 특허법에 의해 허용되는 것과 같이, 첨부된 특허청구범위에서 언급된 발명의 요지의 균등물 및 모든 변형들을 포함한다. 더욱이, 모든 가능한 변이들 내에서 상기 언급된 구성요소들의 어떤 조합이라도 여기서 반대로 명시하거나 문맥상 명백히 모순되지 않는 한 본 발명에 포함된다. 본 발명은 일측면에서, 예시적인 구체예들을 참조하여 구체적으로 나타내어지고 기술되었지만, 당업자들은 하기 청구범위에 의해 정의되는 발명의 정신 및 범위를 벗어나지 않고서도 형태 및 디테일에서 다양한 변화가 행해질 수 있음을 잘 이해할 것이다.
이하, 실시예 및 실험예를 들어 본 발명의 일측면에 따른 구성 및 효과를 보다 구체적으로 설명한다. 그러나 아래 실시예 및 실험예는 본 발명의 일측면에 따른 이해를 돕기 위해 예시의 목적으로만 제공된 것일 뿐 본 발명의 범주 및 범위가 그에 의해 제한되는 것은 아니다.
실시예 1 : 펩티드의 합성
서열번호 1의 펩티드 (이하 "PEP1"이라 함)를 종래에 알려진 고상 펩티드 합성법에 따라 제조하였다. 구체적으로, 펩티드들은 ASP48S (Peptron, Inc., 대한민국 대전)를 이용하여 Fmoc 고상 합성법 (solid phase peptide synthesis, SPPS)을 통해 C-말단부터 아미노산 하나씩 커플링함으로써 합성하였다. 다음과 같이, 펩티드들의 C-말단의 첫번째 아미노산이 수지에 부착된 것을 사용하였다. 예컨대 다음과 같다:
NH2-Lys(Boc)-2-chloro-Trityl Resin
NH2-Ala-2-chloro-Trityl Resin
NH2-Arg(Pbf)-2-chloro-Trityl Resin
펩티드 합성에 사용한 모든 아미노산 원료는 N-term이 Fmoc으로 보호 (protection)되고, 잔기는 모두 산에서 제거되는 Trt, Boc, t-Bu (t-butylester), Pbf (2,2,4,6,7-pentamethyl dihydro-benzofuran-5-sulfonyl) 등으로 보호된 것을 사용하였다. 예컨대 다음과 같다:
Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Pro-OH, Fmoc-Leu-OH, Fmoc-Ile-OH, Fmoc-Phe-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Lys(Boc)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Trp(Boc)-OH, Fmoc-Met-OH, Fmoc-Asn(Trt)-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Ahx-OH, Trt-Mercaptoacetic acid.
커플링 시약 (Coupling reagent)으로는 HBTU[2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetamethylaminium hexafluorophosphate] / HOBt [N-Hydroxxybenzotriazole] /NMM [4-Methylmorpholine] 를 사용하였다. Fmoc 제거는 20%의 DMF 중 피페리딘 (piperidine in DMF)을 이용하였다. 합성된 펩티드를 Resin에서 분리 및 잔기의 보호기 제거에는 절단 칵테일 (Cleavage Cocktail) [TFA (trifluoroacetic acid) /TIS (triisopropylsilane) / EDT (ethanedithiol) / H2O=92.5/2.5/2.5/2.5] 를 사용하였다.
아미노산 보호기가 결합된 출발 아미노산이 고상 지지체에 결합되어 있는 상태를 이용하여 여기에 해당 아미노산들을 각각 반응시키고 용매로 세척한 후 탈보호하는 과정을 반복함으로써 각 펩티드를 합성하였다. 합성된 펩티드를 수지로부터 끊어낸 후 HPLC로 정제하고, 합성 여부를 MS로 확인하고 동결 건조하였다.
본 실시예에 사용된 펩티드에 대해 고성능 액체 크로마토그래피 결과, 모든 펩티드의 순도는 95% 이상이었다.
펩티드 PEP 1 제조에 관한 구체적인 과정을 설명하면 다음과 같다.
1) 커플링
NH2-Lys(Boc)-2-chloro-Trityl Resin 에 보호된 아미노산 (8당량)와 커플링 시약 HBTU(8당량)/HOBt(8당량)/NMM(16당량)을 DMF에 녹여서 첨가한 후, 상온에서 2시간 동안 반응하고 DMF, MeOH, DMF순으로 세척하였다.
2) Fmoc 탈보호
20%의 DMF 중의 피페리딘 (piperidine in DMF) 을 가하고 상온에서 5분 간 2회 반응하고 DMF, MeOH, DMF순으로 세척하였다.
3) 1과 2의 반응을 반복적으로 하여 펩티드 기본 골격 NH2-E(OtBu)-A-R(Pbf)-P-A-L-L-T(tBu)-S(tBu)-R(Pbf)L-R(Pbf)-F-I-P-K(Boc)-2-chloro-Trityl Resin)을 만들었다.
4) 절단(Cleavage): 합성이 완료된 펩티드 레진에 절단 칵테일 (Cleavage Cocktail) 을 가하여 펩티드를 레진에서 분리하였다.
5) 얻어진 혼합물에 쿨링 디에틸 에테르를 가한 후, 원심 분리하여 얻어진 펩티드를 침강시킨다.
6) Prep-HPLC로 정제 후, LC/MS로 분자량을 확인하고 동결하여 파우더로 제조하였다.
실시예 2 : HCV에 대한 PEP1의 효능 확인
세포주의 배양
본 발명의 일측면에 따른, PEP1의 HCV 항바이러스 효능 실시예에서 사용된 세포주인 Huh7.5 (human hepatocellular carcinoma)는 ATCC (American Type Culture Collection, Manassas, VA, USA)에서 구입하고 JFH-1 세포주는 Dr. Wakita (Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan)에게서 제공받은 HCV2a JFH-1 클론으로 Huh7.5 세포주에서 구축하였다. 모든 세포주는 10% FBS, 1% 항생제가 포함된 DMEM (Dulbecco's modified Eagle's medium) 배지에서 배양하였다.
시약 및 항체
본 발명의 일측면에 따른 실시예에서 사용된 시약은 NAC (N-acetylcysteine), PDTC (pyrolidine dithiocarbamate), 비타민 E, 과산화수소 (H2O2), MbCD (methyl-β-cyclodextrin), KNK-437 (KNK로서, HSP70의 억제제), 17AAG (17-N-Allylamino-17-demethoxy geldanamycin, HSP90의 억제제)이며, 시그마 알드리치(Sigma-Aldrich, St. Louis, MO, USA) 및 칼바이오켐 (Calbiochem, Temecula, CA, USA)에서 구매하여 사용하였다.
본 발명의 일측면에 따른, 실시예에서 사용된 항체는 HSP70, HSP90, 대조 (isotype control) 항체이며, 산타크루즈 바이오 테크놀로지 (Santa Cruz Biotechnology, Santa Cruz, CA, USA)에서 구매하여 사용하였다. 항LRP1 항체는 서모 피셔 사이언티픽 (Thermo Fisher Scientific, Fremont, CA, USA)에서 구매하여 사용하였다.
세포 내 활성산소 ( ROS , Reactive Oxygen Species) 측정
JFH-1 세포주를 24웰 플레이트에 5x104 (cells/well)개의 세포를 주입 한 후 다음 날 다양한 실험 물질에 따라 세포 내 활성산소 생성을 측정하였다. 세포내 활성 측정은 DCF-DA (dichlorodihydrofluoresein diacetate, Invitrogen)를 이용하여 염색 후 형광 측정은 Infinte M2000 Tecan (Tecan Trading AG, Switzerland) 를 이용하여 485 nm (emission) / 535 nm (excitation)에서 활성 산소 생성 여부를 측정하였다. 모든 형광 단위는 임의 단위(arbitrary units)으로 표현하며 양성 대조군으로 과산화수소수 (H2O2, 2 mM)를 사용하였다. Huh7.5 세포에 대한 ROS 측정도 동일한 과정을 통하여 측정되었다.
면역 블롯 분석
세포는 단백질분해효소 억제제 칵테일 (proteinase inhibitors cocktail, Roche, Basel, Switzerland)과 인산화효소 억제제 (phosphatase inhibitor, Roche) 가 포함된 세포용해 용액 (lysis solution, Cell Signaling Technology, Danvers, MA, USA)을 사용하여 단백질을 획득하였다. 세포용해 후 용해되지 않는 잔해를 제거하기 위하여 4°C에서 10 분간 원심 분리 하였다. 50 μg의 단백질을 12% SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis)에서 전기 영동 후 PVDF (polyvinylidene difluoride membrane, Millipore, Bedford, MA, USA) 로 전이하였다. 이동된 멤브레인은 HSP90, p38, p-p38 (Thr180/Tyr182), JNK, p-JNK (Thr183/Tyr185), ERK, p-ERK (Thr202/Tyr204), SOD (superoxide dismutase oxidase)로서 아연-구리 포함 효소 SOD (CuZn-SOD), 망간화-SOD (Mn-SOD), GAPDH (모두 Cell Signaling Technology 및 Santa Cruz Biotechnology 에서 구입) 에 대한 항체를 붙인 후 슈퍼시그날 웨스트 피코 케미루미네슨스 서브스트레이트 (SuperSignal West Pico Chemiluminescence Substrate) (Pierce, Rockford, USA)를 이용하여 형광 발색하여 ImageQuant™ LAS 4000 미니 바이오몰리큘라 이미저 (Mini Biomolecular Imager) (GE Healthcare Bio-Sciences AB, Sweden)으로 현상하였다. Multi Gauge V 3.0 (Fuji Film, Japan)을 이용하여, β-액틴(β-actin)을 보정값 (normalization)으로 사용하였으며, 농도계 (densitometry)로 정량적 분석을 실시하였다.
면역 침강 (immunoprecipitation)을 위해서, 400μg의 세포 용해물 (cell lysate)은 Protein A/G 플러스-아가로즈 비드 면역침강제 (Santa Cruz Biotechnology)로 2시간 동안 미리 세척 처리되고, 원심분리 후 비드들을 제거하였다. 이 상층액은 4μg의 관련 항체들 및 20μl의 비드들과 세포 용해 완충액과 4℃에서 하룻밤 배양되었다. 면역 침강은 항-HSP90(Cell Signaling Technology) 항체 및 FKBP8 (Thermo Fisher Scientific)의 면역 블로팅 분석을 위해 준비 되었다.
LRP1 / CD91siRNA를 이용한 일시적 넉다운 (transient knockdown)
저밀도 지질단백질 수용체 관련 단백질 1(LRP1)/CD91 (즉, LRP1)은 표피 및 피부 세포 이동을 촉진하는 단백질로, HSP에 대한 세포 수용체 중의 하나로 확인되었다. LRP1은 gp96, HSP90, HSP70 및 칼렉티쿨린의 수용체로 HSPs에 의해 샤페론되는 펩티드는 수용체에 결합하여 HSPs와 함께 항원 제시 세포로 들어간다. eHSP90과 결합하여 LRP1 복합체는 세포 내 이입 및 시그널링 수용체로서의 역할을 하는 것으로 제시된다. 이는 LRP1이 병리적 또는 스트레스 환경 하에서 eHSP의 역할에 영향을 미친다는 것을 제시한다. 본 발명의 일측면에 따른 펩티드 PEP1의 세포내 진입이 eHSP에 의존하고, eHSP가 그 수용체 LRP1에 의해 수용된다는 것이 알려졌다. 본 발명자들은 본 발명에 따른 펩티드 PEP1의 산화적 스트레스 환경에서의 항산화 활성에서 LRP1이 중요하다는 것을 제시하였다. 본 발명의 발명자들은 LRP1이 본 발명의 펩티드의 세포내로 진입 및 JFH-1 세포에서 ROS 생성 억제에 중요하다는 것을 보였다. 이를 확인하기 위해 항체와 LRP1에 대한 siRNA (small interfering RNA)를 이용하여 LRP1의 활성을 억제하였다.
siRNA 표적 LRP1 와 대조용 (scrambled) siRNA 는 바이오니아 (Daejeon, Republic of Korea)에서 구입하였다. 모든 siRNA 는 JFH-1 또는 Huh7.5 세포주에 다양한 농도에 따라 Lipofectamine 2000 (Invitrogen)을 이용하여 주입하였다. 18시간 후, 세포로부터 RNA를 획득 한 후 qRT-PCR (quantitative reverse-transcription-polymerase chain reaction)를 수행하여 RNA 넉다운을 확인하였다.
HCV RNA의 정량적인 측정
HCV RNA 수준은 NS2 유전자에 대한 프라이머를 사용하여 정량적 PCR을 수행하여 측정하였다. 세포 배양액의 상층액에서 HCV RNA의 양을 측정하기 위하여, RNA는 QIAamp Viral RNA Mini 키트 (Qiagen)를 이용하여 세포 배양액 100μl에서 추출하였다. 추출된 RNA는 cDNA 합성에 사용되었으며, Transcript First Strand cDNA 합성 키트 (Roche Applied Science)을 이용하였다. PCR은 1x SYBR Green 믹스 (Qiagen)를 이용하였다. 실시간 PCR은 NS2 정방향 프라이머, 5'-CGACCAGTACCACCATCCTT-3'(서열번호 3) 및 역방향 프라이머, 5'-AGCACCTTACCCAGGCCTAT-3'(서열번호 4)를 Bioneer Co.에서 구입하여 사용하였다. 정량 PCR에는 7900HT Fast real-time PCR system (Applied Biosystems, Foster City, CA, USA)을 사용하였다.
유세포 (Flow cytometric ) 분석
FITC(fluorescein isothiocyanate)-컨쥬게이트된 PEP1의 세포 내 침투를 확인하고자 세포주에 다양한 물질을 처리한 것에 FITC-컨쥬게이트된 PEP1을 두 시간 동안 추가로 처리한 후 FACS 분석을 하였다. LRP1의 넉다운을 위하여 세포에 siRNA를 주입하고 18 시간 후 PBS 로 씻어내고 FITC-컨쥬게이트된 PEP1을 두 시간 동안 처리한 후 세포에 붙어있는 펩티드는 Trypsin/EDTA (Invitrogen)를 처리하여 완벽하게 제거하고 FACS 완충용액 (PBS, 0.5% BSA)으로 씻어낸 후 BD FACSFortessa (BD Biosciences, San Diego, CA, USA)로 분석하였다. 데이터 분석은 FlowJo software (version 9.7.7, TreeStar, Ashland, OR, USA)을 사용하였다.
ELISA를 이용한 HSP90 측정
Huh7.5 과 JFH-1 세포주에 산화유도제인 (H2O2, 2mM)와 항산화제인 PDTC (100 μM) 를 2시간 동안 처리하였다. 배양 상층액의 HSP90 (extra cellular HSP90, eHSP90)은 ELISA (R&D Systems, Minneapolis, MN, USA)를 사용하였으며, 제조사의 지시서에 나온 과정을 따라 수행되었다.
간조직 및 JFH-1 세포의 면역 형광 염색 및 측정
인간의 간 생검 조직은 만성 HCV 또는 HBV를 보유한 환자 및 대조군으로 자가면역성 간염 환자 (AIH)에게서 채취하였으며, 순천향 대학 부천 병원 (2014-12-034)의 IRB (institutional review board) 및 서울대학교 병원 (1410-136-621)의 감독하에 수행되었다. 간세포 및 JFH-1 세포에서 HSP90의 발현을 측정하기 위해서, 간조직 또는 JFH-1 세포들은 항-HSP90 항체 (Cell Signaling Technology) 항체로 염색되었다. 시각화를 위해서 Alexa Fluor 594-컨쥬게이트된 항래빗 IgG (Invitrogen)를 사용하였다. 세포핵에 대한 카운터-염색을 위해 4',6-디아미디노-2-페닐인돌 (DAPI, Sigma-Aldrich)를 사용하였다. 공초첨 현미경 시스템 A1 (Nikon, Minatoku, Tokyo, Japan) 및 NIS-Elements 4.20 Viewer (Nikon)를 사용하여 이미지 획득 및 처리를 수행하였다.
통계 분석
모든 데이터는 평균 ± 평균의 표준에러 (SEM)으로 표현하며 통계적 비교는 GraphPad Prism, version 5.01 (GraphPad, La Jolla, CA, USA), 양측 스튜던트 티 테스트 (Student's t-test)로 수행되며 P 값이 0.05 이하일 때 통계적으로 유의한 것으로 판정하였다.
실험 결과 분석
1) PEP1의 HCV RNA 복제 억제 효과
적절한 ROS의 레벨이 HCV, HBV, 및 HIV의 복제를 조절한다는 것은 널리 알려져 있다. 이에 본 발명자들은 PEP1의 ROS를 억제하는 효과를 보이는 것이 바이러스 복제를 억제하는데에 효과를 보일 수도 있다는 가정을 세우고, JFH-1 세포에서 PEP1이 HCV RNA의 복제 억제 효과를 나타내는지를 알아보기 위한 실험을 하였다.
상기 실험과 분석 방법에서 언급한 방법에 따라, PEP1이 HCV RNA 중 하나인 NS2의 복제를 억제하는지 알아보기 위하여 NS2의 전사량을 측정하였다. JFH-1 세포에서, 대조군 (vehicle), PEP1 투여군, 기존 항산화제 (NAC, PDTC, 비타민 E) 투여군에서 NS2의 전사량을 측정한 결과, 대조군에 비하여 PEP1은 농도 의존적으로 10 μM 까지 NS2의 전사를 억제하는 것으로 나타났다. 대조적으로 기존 항산화제 NAC, PDTC, 비타민 E는 NS2의 전사를 전혀 억제하지 않는 것으로 나타났다 (도 16).
PEP1이 HSP90 의존적으로 ROS 활성 감소 효과를 보인 것을 근거로, HCV RNA의 복제 억제 효과도 HSP90과 관련이 있는지를 알아보기 위한 실험을 하였다. JFH-1 세포에서, 대조 항체군 (isotype), 항HSP70 처리군, 항HSP90 처리군으로 나누어 대조군 (PBS)과 비교시 PEP1의 NS2 전사량 억제 정도를 측정하였다. PEP1에 의한 HCV RNA 증식은 항HSP90 항체 처리시 증식이 억제 되지 않았다. 그러나, 항HSP70 항체 및 대조 항체군의 경우, 항체와 상관없이 PEP1에 의해 HCV RNA 증식이 억제되었다 (도 17). 추가로 HSP90의 수용체인 LRP1의 억제 유무에 따른 PEP1의 NS2 전사량 억제 정도를 측정하였다. LRP1 siRNA를 처리하여 LRP1이 발현이 넉다운되면, JFH-1 세포에서 HCV RNA 복제가 PEP1에 의해 감소되지 않았다 (도 18).
HSP90은 HCV RNA 복제를 위해 NS5A 및 FKBP8의 결합체 형성에 관여하는 것으로 알려져 있다. 이에 PEP1에 의한 HCV RNA 복제 억제가 복제 복합체 형성을 방해한 결과인지를 조사하였다. JFH-1 세포에 PEP1을 처리하여 HSP90과 FKBP8의 결합을 관찰하였다. 구체적으로, JFH-1 세포를 PEP1 (10 μM)으로 48 시간 동안 배양하였다. 이후 단백질을 항FKBP8 항체 또는 항HSP90 항체로 면역 침강 (immunoprecipitation)법을 실시하였다. HSP90 및 FKBP8의 내재적 (endogenous) 발현을 처리하지 않은 JFH-1 세포에서 측정하였다.
그 결과, 대조군에 비해 PEP1을 처리하였을 때, FKBP8에 의한 HSP90의 공동 침전을 감소시켰다 (도 19). JFH-1 세포에서, 세포 용해물, 대조군 (PBS), PEP1 처리군을 나누어 각각 항HSP90 및 항FKBP8 면역 침강 반응 후 항HSP90 및 항FKBP8 항체로 면역 블롯을 실시한 결과, 항HSP90 면역 침강 반응에서는 PEP1 처리군에서 FKBP8의 발현이 감소하였고, 항FKBP8 면역 침강 반응에서는 PEP1 처리군에서 HSP90의 발현이 감소한 것을 각각의 항체를 통한 면역 블롯으로 검출하였다 (도 19). 이러한 결과는 PEP1이 HCV RCV 복제 복합체 형성을 직접적으로 억제하며, PEP1이 FKBP8와 상호작용하는데 작용하는 HSP90의 주요 부위에 결합해서 작용한다는 것을 제시한다.
상기 실험 결과를 통하여, PEP1은 HSP90과 결합하는 특성을 가지므로 HSP90의 FKBP8에 대한 활성을 감소시키는 기전을 통하여 HCV RNA의 복제를 억제하는 효과를 가지는 것을 알 수 있다. 이는 PEP1이 HCV의 복제를 억제하고 항바이러스 효능을 나타낸다는 것으로도 말할 수 있다.
2) PEP1의 ROS 생성 억제
PEP1의 바이러스 감염 세포내에서 ROS 생성을 억제하는 효능을 알아보기 위하여, HCV 감염 세포주인 JFH-1 세포에 PEP1을 투여하였을 때, ROS의 생성이 억제되는지를 비교 실험하였다. JFH-1 세포주는 Huh7.5 세포를 HCV2a JFH-1 클론으로 감염시켜 생성된 것이다. HCV 비리온 합성으로 인해 JFH-1 세포주에서는 세포내 활성 산소량이 Huh7.5 세포주 (JFH-1의 모세포주)에서 보다 높게 조절되고 있다. 본 발명자들은 PEP1이 JFH-1 세포에서 ROS의 생성은 10μM까지 투여량 의존적인 방식으로 상당히 저해시킨다는 사실을 확인하였다. 1 및 10μM에서, PEP1의 항산화 활성 효과는 NAC, PDTC 및 비타민 E에 필적하였다 (도 1).
상기 실험과 분석 방법에서 언급한 방법에 따라, JFH-1 세포 및 Huh7.5 세포에서 ROS를 측정하였다. PEP1을 다양한 농도로 2 시간 동안 처리한 후, DCF-DA로 30분간 염색 후 형광을 측정하였다. 대조군으로 사람 간세포암 세포주 Huh7.5 와 JFH-1 세포주에 대표적인 항산화제로 알려진 NAC (2 Mm), PDTC (100μM), 비타민 E (10μM)을 처리하여 비교하였다. PEP1을 투여하지 않은 경우 JFH-1 세포주에서 세포내 활성 산소량이 Huh7.5 세포주보다 약 두 배 이상 증가되어 있다 (도 1). 이에 PEP1을 처리하였을 때 농도 의존적으로 활성 산소량이 감소한다. JFH-1 세포에서 PEP1을 농도별 (0.001, 0.01, 0.1, 1, 10 μM)로 투여한 실험군 및 기존의 항산화제 (NAC, PDTC, 비타민 E)를 투여한 실험군과 대조군 (vehicle 투여)을 비교한 결과 PEP1은 농도 의존적으로 ROS 생성을 감소시켰으며, 기존의 항산화제들도 ROS 생성감소를 보였다 (도 1).
ROS는 MAPK 시그널링 경로의 활성을 유도할 수 있다고 알려져 있기 때문에, PEP1이 MAPK 시그널링 경로에 관련된 인자 (p38, JNK, ERK)들을 감소시키는지를 알아보는 실험을 수행하였다 (도 2). 상기 실험과 분석 방법에서 언급한 방법에 따라, JFH-1 세포 및 Huh7.5 세포에서 면역 블롯을 실시하였다. p38 및 JNK의 인산화는 PEP1 처리 후 JFH-1 세포에서 감소하였고, 이는 항산화제인 NAC, PDTC 및 비타민 E를 처리한 결과와 유사하다. 반면, ERK의 활성은 PEP1 및 비타민 E 처리 둘 다에 의해 증가하였다 (도 2).
아울러, JFH-1 세포 및 Huh7.5 세포에서 각 대조군 및 실험군들 모두 HSP90의 발현을 측정한 결과 모두 강하게 발현 하는 것으로 나타났다 (도 2).
상기 실험 결과를 통하여, PEP1을 투여하는 것으로 세포 내 ROS의 생성 감소 효과를 볼 수 있으며, 이는 JFH-1 세포 내에서 특이적 시그널링, 즉, 감소된 MAPK 시그널링을 통해 일어난다는 것을 알 수 있다.
도 1 내지 9는 PEP1이 JFH-1 세포에서의 활성 산소종 (ROS) 생성을 HSP90을 통해 억제한다는 것을 보여준다.
3) PEP1의 항산화 효과에서 eHSP90의 역할
본 발명자들은 HSP90이 PEP1의 항산화 효과의 매개일 것으로 가정하였다. 본 발명에서는 PEP1의 항산화 효과가 HSP90에 의한 것인지를 알아보기 위하여, HSP90의 활성 유무에 따른 PEP1의 ROS 생성 정도를 측정하는 실험을 하였다. 본 발명자들은 HSP90과의 상호작용을 두 가지 방법으로 억제하였다: HSP70에 대한 항체 및 HSP90에 대한 항체를 사용 또는 촉매 위치 (HSP90의 N-말단 중의 ATP-결합 포켓)를 차지하는 억제제 사용하였다. 상기 실험과 분석 방법에서 언급한 방법에 따라, JFH-1 세포에서 PEP1 투여군, 항산화제 PDTC 투여군과 대조군 (PBS)의 ROS 생성을 측정하여 비교하였다.
그 결과, 본 발명에서는 PEP1이 항HSP70 항체 존재 하에서는 JFH-1 세포 중에서 ROS 수준을 억제하지만, 항HSP90 항체 존재 하에서는 억제 효과가 관찰되지 않는다는 것을 보였다 (도 3). 대조군 항체 (isotype)에서는 PEP1에 의한 억제가 관찰되었다 (도 3). 또한, HSP90의 억제제인 17AAG는 JFH-1 세포에 처리하였을 때 활성산소 억제 효과를 보였으나, HSP70 억제제인 KNK에 의한 활성 산소의 변화는 관찰되지 않았다 (도 5). 대조 약물 PDTC는 HSP70 및 HSP90을 특정 항체로 블락하는 것과 무관하게 ROS의 생성을 억제하여, 모든 처리 조건에서 ROS 생성을 억제하였다 (도 4). 또한 PDTC는 KNK 및 17AAG 존재 하에서 모두 ROS 생성을 억제하였다 (도 6). 이는 PEP1이 상이한 기작을 통해서 ROS 생성을 저해한다는 것을 제시한다. 이러한 데이타는 eHSP90이 PEP1의 항산화 활성에서 중요한 매개체이며, PEP1이 HSP90에서 ROS 유도에 필수적인 촉매 위치에 작용한다는 것을 나타낸다.
17AAG를 처리했을 때 PEP1의 항산화활성 효과가 저하된다는 결과로부터, 본 발명자들은 PEP1이 세포 내 활성산소 농도가 너무 낮거나 활성산소가 정상범위에 있을 때에는 활성산소를 억제하지 않을 가능성을 조사하였다. 이는 항산화물질이 이미 존재하는 상황에서는 PEP1이 JFH-1 세포 중에서도 ROS의 생성을 억제하지 못할 가능성을 제시한다. 본 발명자들은 이러한 가설을 조사하기 위해서, 항산화제인 PDTC의 농도를 증가시키면서 세포를 처리하였다. 그 결과 PEP1의 항산화 활성이 점진적으로 감소한다는 것을 확인하였다 (도 7). 이는 JFH-1 세포에서 PDTC 처리를 통해 ROS 수준이 떨어졌기 때문일 것이며, 감소되거나 정상 수준의 ROS를 갖는 세포와 비교하여 산화적 스트레스 환경 하에 있는 세포에서는 PEP1이 항산화제로 선택적으로 작용한다는 것을 제시한다. PEP1의 이러한 특성은 산화적 수준에 맞춘 치료 약물의 개발에 기여할 것이다.
아울러, 본 발명에서는 활성산소에 의한 스트레스 상태에서 PEP1의 특이적 항산화 기능을 확인하기 위한 실험을 수행하였다. 구체적으로, 기존 항산화제의 투여가 HSP90의 발현을 감소시키고, 이에 따라 PEP1이 기존 항산화제와 같이 투여될 때 항산화 효능이 감소하는지 여부를 확인하기 위한 실험을 하였다. PEP1의 항산화 활성은 eHSP90 의존적이므로, 본 발명의 실시예에서는 세포로부터 eHSP의 분비를 측정하였다. Huh7.5 세포에서 H2O2에 의한 자극은 대조구보다 훨씬 높은 수준으로 eHSP90 분비를 증가시켰다 (도 8). 반면, JFH-1 세포에 항산화 물질인 PDTC를 처리했을 때에는 대조구보다 낮은 수준의 eHSP90을 생성하였다 (도 9). 이러한 결과는 산화적 스트레스가 HSP90의 분비를 일으킨다는 점을 제시한다. 또한, PEP1이 산화적 스트레스 상태에 있는 세포에서 ROS 생성을 선택적으로 억제한다는 것을 제시한다.
도 1 내지 9는 PEP1이 JFH-1 세포에서의 활성 산소종 (ROS) 생성을 HSP90을 통해 억제한다는 것을 보여준다.
도 10 내지 15는 세포외 HSP90 및 LRP1이 PEP1에 의한 ROS 생성에 필수적이라는 것을 보여준다.
4) PEP1에 의한 항산화 효과에서 LRP1의 역할
PEP1이 eHSP90에 결합하여 세포내로 유입되는 사실이 알려져 있으며, eHSP90가 세포 수용체인 LRP1에 수용된다는 것이 알려져 있다. LRP1은 gp96, HSP90, HSP70 및 칼레티쿨린의 공통적인 수용체이며, HSP에 의해 샤페론되는 펩티드들은 이들 수용체여 결합하여 HSP와 함께 항원 제시 세포로 들어간다. LRP1 복합체는 eHSP와 커플링되어 내포 및 시클링 수용체로 작용하고, LRP1이 병리적 또는 스트레스 상태에서 eHSP90의 작용에 영향을 준다는 것을 제시한다. 아울러, HSP90은 FK506-결합 단백질 패밀리 중 하나인 FKBP8와 C형 간염 비구조 단백질 (non-structural protein) 5A (NS5A) 함께 HCV RNA 복제 컴플렉스를 형성한다. 이러한 사실은 HSP90이 그 발현 또는 활성을 통해서 HCV RNA 복제를 조절할 수 있다는 사실을 제시한다. HSP90은 NOX 활성을 조절하여, 슈퍼 옥사이드 형성을 유도한다. 본 발명자들은 PEP1은 HSP90의 주요 위치에 결합하여 HSP90의 활성을 억제하는 방식을 통해, 선택적인 항산화 작용을 달성하고, 산화적 스트레스 상태에 있는 세포에서 다양한 생물학적 영향을 끼친다는 것을 밝혔다.
본 발명자들은 산화적 스트레스 상태에서 LRP1이 PEP1의 항산화 효과에 중요한 역할을 할 것이라 가정하였다. 본 발명자들은 LRP1이 부재할 때에는 PEP1이 세포 내로 유입되지 않고, JFH-1 세포에서 ROS 생성을 억제할 수 없을 것이라 가정하였다.
이러한 가정을 확인하기 위해서, 상기 실험과 분석 방법에서 언급한 방법에 따라, PEP1이 HSP90의 세포 수용체인 LRP1의 유무에 따라 세포 내로 유입되는 정도를 확인하였다. 구체적으로 LRP1에 대한 항체와 siRNA를 사용하여 LRP1 활성을 억제하고, FITC-컨쥬게이트된 PEP1을 사용하여 유세포 분석을 실시하였다.
도 10 내지 15는 세포외 HSP90 및 LRP1이 PEP1에 의한 ROS 생성에 필수적이라는 것을 보여준다.
먼저, 클라트린- 카베올린-, 그리고 클라트린/카베올레 독립적인 내포 (endocyto) 경로를 억제하는 리피드 래프트 (lipid raft) 형성 억제제인 MbCD로 사전 처리하였을 때, PEP1이 JFH-1 세포에 들어가지 못한다는 것을 확인하였다. 이전에 보고된 바와 같이, MbCD는 JFH-1 세포 중으로 FITC-PEP1이 들어가는 것을 억제하였으며, 이는 PBS 대조구와 비교하여 감소된 형광 강도로 입증된다. FITC-PEP1의 세포내 유입은 대조구와 비교해서, 항-LRP1 항체 뿐만 아니라 LRP1에 대한 siRNA (즉, LRP siRNA)에 의해서도 억제되었다 (도 11 및 12). 이는 LRP1이 PEP1의 eHSP90 의존적 전달에서 중요한 수용체라는 점을 제시한다.
또한, 산화적 스트레스가 PEP1의 침투능에 영향을 미치는지 확인하기 위해서, JFH-1 세포에 PDTC를 첨가하고, Huh7.5 세포에 H2O2 를 첨가하여, 다양한 산화적 수준을 생성하였다. 이들 처리 조건은 ROS 수준에 따라 eHSP 분비에 상이한 영향을 가져온다 (도 8 및 9). 본 발명자들이 가정한 바와 일치하게 PDTC 존재 하에서 JFH-1 세포 중으로 PEP1의 침투는 감소하였고, H2O2 존재 하에서 Huh7.5 세포에서 PEP1의 침투는 증가하였다 (도 13 내지 14). 이는 PEP1의 세포내 유입과 생물학적 활성이 세포내 ROS 수준에 의존하며, 그에 따라 eHSP 수준에 의존한다는 것을 나타낸다.
다음으로 JFH-1 세포에서 LRP1을 넉다운시키고 ROS 수준을 측정하여 상기 가설을 추가로 확인하였다. JFH-1 세포 중 PEP1의 항산화 활성은 LRP1 siRNA 존재 하에서 관찰되지 않았다 (도 15).
상기 실험 결과를 통하여, PEP1의 항산화 기작은 PDTC와 상이하며, PEP1은 HSP90의 수용체인 LRP1의 발현 유무에 따라 세포내 유입 정도가 달라지며, LRP1의 발현이 감소 또는 억제될 경우 세포내 유입이 감소하는 것을 알 수 있으며, 이는 PEP1이 HSP90에 의존적으로 세포 내로 유입되는 것을 확인하여 주는 것이라 할 수 있다.
5) HCV로 감염된 간조직에서 HSP90의 발현
세포가 아닌 장기 또는 조직에 HCV가 감염되었을 경우 HBV 또는 AIH (autoimmune hepatitis, 자가면역성 간염)에 감염된 경우와 달리 HSP90의 발현이 증가한다는 것을 확인하기 위한 조직 해부학적 실험을 하였다.
상기 실험 및 분석 방법에서 언급한 방법에 따라, HCV, HBV 및 AIH에 감염된 간조직에서 HSP90의 발현정도를 비교하였다. 그 결과 HBV 및 AIH의 경우에 비교하여 HCV에 감염된 경우에서 HSP90이 발현이 증가되었다 (회색 부분, 도 20). 흥미롭게도, PEP1은 JFH-1 세포 중에서 세포 내 HSP90을 감소시켰으며, 이는 아마도 감소된 ROS 수준에 따른 부수적인 결과인 것으로 생각된다 (도 9). 또한, HCV에 감염된 간 조직에서 대조군 (PBS) 과 PEP1 처리군을 비교하였을 때 HSP90이 PEP1 처리시 대조군에 비하여 낮게 발현된 것이 나타났다 (회색 부분, 도 21).
도 20 및 21은 HCV 감염된 간세포에서 HSP90이 다량 존재한다는 것을 보여준다.
상기 실험결과는 HCV 감염으로 인해 세포 내부에서 정상 세포보다 높은 수준의 활성산소가 유도되고, 축적된 활성산소로 인해 스트레스를 받은 세포에서 상대적으로 HSP90이 과발현되므로, PEP1이 산화적 스트레스 상태에 있는 HCV 감염된 세포의 치료제로서 역할을 할 것을 제시한다.
실시예 3 : HIV에 대한 PEP1의 효능 확인
바이러스 감염 시, 왕성한 바이러스 단백질 생성 또한 HSP 기능을 필요로 함을 확인하였고, HSP90 저해제에 의해 억제되는 바이러스 리스트가 계속 늘어나고 있음을 확인하였다. 인간 면역 결핍 바이러스-1(human immunodeficiency virus-1, HIV-1) 감염 또한 단핵구 세포에서 증가된 HSP90 발현을 나타낸다는 것을 알아냈다. HSP90은 바이러스의 라이프 사이클의 여러 단계에서 작용하여 HIV 복제에서 중요한 역할을 하는 것으로 나타났고, 급성으로 감염된 세포에서 HIV 바이러스 전사 및 복제에서 HSP90의 역할은 HSP90 저해제에 의해 억제되는 것으로 나타났다. 아울러, HSP90은 NF-κB 시그널링을 조절함으로써 잠복성 상태로부터 HIV 재활성을 조절하는 것을 확인하였다.
세포주의 배양
본 발명의 PEP1의 HIV 항바이러스 효능 실시예에서 사용된 세포주는 인간 T 세포 백혈병 세포주 MT-4, HIV-1에 잠복 감염된 ACH-2 세포주, Jurkat로부터 유래하였으며, 안정적으로 삽입된 HIV-LTR-루시퍼라제 (luciferase) 구조체를 포함하는 1G5 세포주였으며, 이들 세포주들을 NIH/AIDS 리서치 및 레퍼런스 시약 프로그램 (NIH, Bethesda, MD)로부터 얻었다. 293FT 세포는 라이프 테크놀로지 (Carlsbad, CA)로부터 구입하였다. MT-4 및 1G5 세포주는 글루타민 (2 mM), 10% 소태아혈청 (FBS) 및 페니실린-스트렙토마이신이 보충된 RPMI 1640 중에서 유지하였다. ACH-2 세포는 2 mM 글루타민, 10% FBS, 페니실린-스트렙토마이신 및 5 mM HEPES가 보충된 RPMI 1640 중에서 배양하였다. 293FT 세포주는 10% FBS, 페니실린-스트렙토마이신, 6 mM L-글루타민, 1 mM 소디움 피루베이트 및 0.1 mM 비필수 아미노산을 함유한 Dulbecco 변형 Eagle 배지 (DMEM) 중에서 배양하였다.
시약 및 항체
항레트로 바이러스 약물로 T-20, 랄테그래비르 (Raltegravir), 플라보피리돌 (Flavopiridol) 및 리토나비르 (Ritonavir)를 내셔날 인스티튜트 오프 헬쓰 (NIH, Bethesda, MD, USA), AIDS 부서, NIH/AIDS 리서치 및 레퍼런스 시약 프로그램 (NIH, Bethesda, MD, USA)로부터 얻었으며, 지시된 대로 D-PBS, DMSO 또는 증류수에 용해시켰다. 아지도티미딘 (3-아지도-3-디옥시티미딘, AZT)는 시그마 알드리치 (St.Louis, MO)로부터 구입하였다. HSP90 (#4877S), 포스포-NF-κB (p65, #3033S), IκB (#4814S) 및 포스포-IκB (#2859S)를 셀 시그널링 (Cell Singaling, Danvers, MA)으로부터 얻었으며, 항p24 항체 (ab9071)을 앱캡 (Abcam, Cambridge, MA)으로부터 구입하였다. HSP70에 대한 항체 (sc32239), GFP에 대한 항체 (sc81045), GAPDH에 대한 항체 (sc25778) 및 NF-κB에 대한 항체 (p65, sc372)를 산타 크루즈 바이오테크놀로지 (Santa Cruz, Dallas, Texas)로부터 구입하였다.
플라스미드 및 바이러스
단일 바이시스트로닉 RNA (Cat No. 11371, Dr. Daniel Sauter 및 Dr. Frank Kirchhoff로부터 제공받음)으로부터 Nef와 향상된 녹색 형광 단백질 (eGFP) 를 함께 발현하는 pBR43IeG-rcmGB1nef 프로바이러스 HIV-1 플라스미드 및 Tat 단백질 (잔기 1-72)을 생산하는 pSV2tat72 플라스미드 (Cat. No. 294, Dr. Alan Frankei로부터 제공받음)을 내셔날 인스티튜트 오프 헬쓰, AIDS 부서, NIH/AIDS 리서치 및 레퍼런스 시약 프로그램 (NIH, Bethesda, MD)로부터 얻었다. HIV-1을 생산하기 위해, 리포펙타민 2000 시약 (Life Technologies)을 제조자 지시에 따라 사용하여 293FT 세포를 pBR_HIV-1_M_NL4-3_IRES_eGFP 벡터로 트랜스펙션하였다. 트랜스펙션 48 시간 후, 바이러스를 함유한 배지를 수집하고, 짧게 원심분리 및 필터링 (0.45 μm) 하였다. 바이러스 역가를 p24 ELISA (ABL, city, MD)를 사용하여 측정하였다. 감염성 HIV-1의 증식을 위해서, MT-4 세포를 생성된 HIV-1 (MOI=0.5)를 사용하여 48 시간 동안 감염시켰다. 짧게 원심분리 (1,300 rpm, 3 min)한 후, 상층액을 필터링 (0.22 μm)하고 p24 ELISA를 사용하여 역가 측정하였다.
항-바이러스 효과 어세이
PEP1의 항HIV-1 효과를 측정하기 위해서, MT-4 세포를 사용하여 세포 기반의 항-바이러스 효과 어세이를 수행하였다. MT-4 세포 (4x105 세포)를 HIV-1 (4x105 CC ID50; 50% cell culture infective dose)로 1 시간 동안 감염시켰다. D-PBS로 두번 세척한 후, 감염된 세포에 PEP1 또는 항HIV-1 약물을 접종 처리하였다. 2일간 배양한 후, 세포를 수집하기 전에 형광 현미경을 사용하여 eGFP를 발현하는 MT-4 세포의 이미지를 얻었다. 수집된 상층액에서 남은 세포 잔여물을 제거하기 위해서 13,000 rpm에서 3분 동안 원심 분리하였고, 세포외 바이러스 양을 측정하기 위해서 역전사 정량적 폴리머라제 연쇄 반응 (RT-qPCR)을 위해 p24 ELISA 또는 RNA 추출을 하였다. 한편, 세포 펠릿을 D-PBS로 두 번 세척하고 세포 생존 능력 (cell viability) 어세이에 사용하였다. PEP1의 항바이러스 작용에서 HSP90의 역할을 조사하기 위해서, MT-4 세포를 HIV로 1 시간 동안 감염시키고, 항HSP70 (10 ng), 항HSP90 (10 ng) (Cell Signaling, Danvers, MA) 또는 17-AAG (1 μM) (Calbiochem, Darmstadt, Germany)로 처리하였다. p24 ELISA를 사용하여 HIV-1 복제를 분석하였고, 형광 현미경을 사용하여 eGFP를 모니터링하였다. 또한, 세포 용해액을 항-GFP 항체를 사용하여 면역블롯팅하여 HIV-LTR-의존적 eGFP의 합성을 확인하였다.
세포 독성 어세이
MT-4, 1G5 또는 ACH-2 세포를 96웰 마이크로플레이트에서 1x104의 밀도로 접종하고, PEP1의 농도를 증가시켜 처리하여 5일 동안 배양하였다. 세포 생존 능력을 셀타이터96 어쿠어스 원 솔루션 (CellTiter96 Aqueous One Solution) 어세이 키트 (Promega, WI)를 사용하여 제조자 지시에 따라서 색측정법으로 측정하였다. HIV-1 유도된 세포 사멸로부터 PEP1이 세포 보호 능력을 부여한다는 것을 측정하기 위해서, MT-4 세포 (1x104)를 HIV-1 바이러스 (4x105 CC, ID50)로 5일 동안 PEP1과 함께, 또는 PEP1 없이 감염시키고, 세포 생존 능력을 측정하였다.
HIV-1 바이러스 생성의 측정
HIV-1 바이러스 역가를 측정하기 위해서, HIV-1 p24 항원 캡처 ELISA (p24 ELISA, ABL) 및 RT-qPCT 어세이를 수행하였다. ELISA를 제조사 지시에 따라 수행하였다. 세포 배양 상층액 및 펠렛으로부터 QIAamp 울트라센스 (Ultrasens) 바이러스 키트 (Quiagen, Hilden, Germany)를 사용하여 제조사 지시에 따라서 HIV-1 RNA 게놈을 정제하였다. HIV-1 RNA 수준을 HIV-1 gag에 특이적인 프라이머 페어를 사용하여 RT-qPCR을 사용하여 정량화하였다. 글리세르알데히드 포스페이트 디하이드로게나제 (GAPDH)를 표준화를 위한 대조 유전자로 사용하였다. 하기 프라이머 페어를 qPCR에 사용하였다: Gag, 5'-TGCTATGTCAGTTCCCCTTGGTTCTCT-3' (sense, 서열번호 5) 및 5'-AGTTGGAGGACATCAAGCAGCCATGCAAAT-3' (antisense, 서열번호 6); 및 GAPDH, 5'-AATCCCATCACCATCTTCCA-3' (sense, 서열번호 7) 및 5'-TGGACTCCACGACGTACTCA-3' (antisense, 서열번호 8). HIV 1형 게네시그 스탠다드 (Genesig Standard) 키트 (Primer design, Southampton, UK)를 사용하여 바이러스 역가를 측정하였다. 스탁 바이러스의 농도는 2x105 카피/μl이었다.
실험 결과 분석
1) PEP1에 의한 HIV-1 복제 억제
본 발명의 발명자들은 HSP90이 HIV-1 라이프 사이클에서 중요한 역할을 하고, PEP1이 HSP90과 상호작용한다는 점에 비추어, PEP1이 HIV-1에 대해서 항바이러스 활성을 억제할 수 있다는 가설을 세우고, 이 가설을 검증하였다. PEP1의 역할을 조사하기 전에, 먼저 PEP1의 비특이적 세포 독성이 HIV-1 복제에 영향을 미칠 가능성을 배제하기 위해서 PEP1의 세포 독성을 분석하였다.
도 22 내지 27은 PEP1에 의한 HIV-1 복제 억제를 보여주는 데이타이다. PEP1은 MT-4, 1G5 및 ACH-2 세포에 대해서 25 μM까지는 유의미한 세포 독성을 나타내지 않았다 (도 22). 먼저, PEP1의 항HIV-1 활성을 MT-4 세포에서의 HIV-1 복제에 대한 영향을 분석하여 측정하였다. MT-4 세포를 pBR_HIV-1-M-NL4-3_IRES_eGFP로부터 생성된 HIV-1로 감염시키고, 다양한 농도의 PEP1로 처리하였다. p24 ELISA에서 측정된 바와 같이, MT-4 세포 중 바이러스 입자의 생성은 투여량에 의존적인 방식으로 PEP1에 의해 상당히 저해되었으며, 평균 50% 저해 농도 (IC50) 값은 약 0.85 μM (도 23)이었다. 추가적으로, HIV-1의 활성화에 의존하는 eGFP의 생성 또한 PEP1으로 처리함에 따라 감소하였다. 이러한 결과는 PEP1의 항HIV-1 효과를 추가적으로 지지한다 (도 24). PEP1에 의한 바이러스 입자 생성의 억제는 생성된 바이러스 입자의 HIV-1 게놈 RNA 수준을 측정함으로써 추가적으로 확인되었다. PEP1은 투여량 의존적인 억제 효과를 나타내며, 5 μM PEP1은 바이러스 RNA 수준을 약 100배 정도 감소시킨다 (도 25).
HIV가 감염된 세포는 세포내 세포 사멸 기전에 의해 어팝토시스 (apoptosis)가 일어나는 것으로 알려져 있다. PEP1이 HIV의 복제 억제 효과와 함께 HIV가 감염된 세포 스스로 어팝토시스로 이르는 작용을 억제하는 효과가 있는지를 알아보기 위해 항세포 변성 효과 (anti-cytopathic effect) 어세이를 실시하였다. PEP1에 의한 HIV-1 복제의 억제와 일치하여, PEP1은 HIV-1 감염된 MT-4 세포에서 세포 보호 효과를 나타낸다. AZT 및 PEP1은 투여량 의존적인 방식으로 상당한 세포 보호 효과를 나타내었다 (도 26 및 27). AZT와 유사하게, 5μM PEP1은 HIV-1 매개된 세포 사멸로부터 거의 100% 세포 보호 작용을 나타낸다. 이러한 세포 보호 효과는 상층액 p24 수준이 감소하는 것과 반비례하는데, 이는 PEP1이 바이러스 복제를 억제함으로써 세포를 보호할 수 있다는 것을 제시한다.
2) PEP1에 의한 HIV-1 전사 억제
HIV-1 게놈으로부터 eGFP 생성이 Nef와 같은 조절 하에 있다는 점을 고려할 때, PEP1에 의한 HIV-1 감염된 세포에서 eGFP 발현의 감소는 PEP1에 의한 HIV-1 전사의 억제를 나타낸다 (도 30). PEP1에 의한 HIV-1 억제 기작을 보다 조사하기 위해, PEP1과 아울러 복제 차단 단계가 알려진 기존 항-HIV 약물들을 사용하여 추가 시간 (TOA) 어세이를 실시하였다. 대조구 항HIV 약물들은 그 특성이 잘 알려져 있으며, 각 약물들의 HIV 증식 단계에서의 억제는 다음과 같이 일어난다: AZT는 역전사 활성을 억제하며, 3 내지 4 시간 사이에 HIV 증식을 억제한다; 랄테그래비르 (raltegravir)는 HIV DNA가 숙주 DNA 게놈으로 삽입되도록 하는 인터그라제 (integrase) 활성을 억제하며, 6 내지 8 시간 사이에 HIV 증식을 억제한다; 리토나비르 (ritonavir)는 프로테아제의 활성을 저해하여 gal-pol 폴리펩티드의 전구체를 프로세싱할 수 없도록 만들어, 비감염성 미성숙 HIV 입자가 생성되도록 하며, 15 시간까지 HIV 증식을 억제한다; T-20은 바이러스와 세포 막의 융합을 저해하여 HIV 바이러스가 세포 내로 들어가는 것을 간섭하며, 추가 24 시간 배양을 처리하여 치료제가 아닌 대조 약물인 DMSO보다 1/3 적은 양의 HIV 증식이 일어난다.
도 28 내지 30은 PEP1에 의한 HIV-1 복제 억제를 전사레벨 (transcriptional level)에서 관찰한 사진이다. TOA 어세이에서 각 약물의 결과는 HIV 복제의 억제가 각 약물에 의해 타켓된 복제 단계에 상응하는 시간대에서 잘 나타나며, PEP1에 의한 HIV 억제는 HIV 감염된 MT-4 세포를 PEP1으로 처리한 후 11 내지 13 시간 사이에 일어남을 보여준다 (도 28). eGFP 발현의 분석은 PEP1의 저해 활성이 감염 후 12 시간 동안 처리하였을 때 약화된다는 것을 확인하였다 (도 29). TOA 전형적인 결과에 따르면, 삽입된 HIV 게놈으로부터 HIV 바이러스의 전사는 감염 후 11 내지 13 시간 사이에 일어난다. 이러한 결과는 HIV로 감염된 MT-4 세포에서 PEP1의 작용 방식은 예측한 바와 같이 전사 활성을 억제하여 HIV 증식을 억제하는 방식이라는 것을 제시한다. 본 발명자들의 가설은 바이러스 mRNA 수준의 분석을 통해 추가적으로 지지되었다. 감염 후 세포를 PEP1으로 9 시간 동안 처리하였을 때, PEP1은 HIV-1 바이러스 mRNA의 생성을 효과적으로 억제하였으나, 감염 후 13 시간 후에 처리되었을 때에는 바이러스 mRNA를 감소시키는 능력을 상실하였다 (도 30). 동시에 하우스키핑 호스트 GAPDH mRNA 합성에서 유의미한 변화는 없었으며, 이는 PEP1이 HIV-1 바이러스 전사를 선택적으로 조절한다는 점을 제시한다.
상기 실험 결과 및 알려진 HIV 시간대 별 증식 단계를 통하여 PEP1이 증식 억제를 보이는 시간대인 11 내지 13 시간대는 HIV가 세포주의 핵 내로 DNA를 주입시킨 후 (integration) 세포 내 전사 인자를 이용하여 증식을 시작하는 단계로 후기 (late phase)의 초기 단계에 해당한다는 것을 알 수 있었다. 이는 PEP1이 HIV 의 증식에 필요한 여러 단계의 생활사 중에서 세포 내 핵으로 전사되는 시기에 바이러스를 억제하는 것을 나타내며, PEP1이 항HIV 억제제로서 우수한 효과를 나타낼 수 있음을 알 수 있다.
3) PEP1에 의한 Tat 의존적 HIV-1 전사 억제
HIV-1 전이활성화 (transactivation) 단백질 (Tat)은 tat-전이활성 반응성 영역 (TAR)과의 상호작용을 통해 HIV-1 전사를 극적으로 향상시키는 조절 단백질이다. PEP1이 HIV-1 전사를 선택적으로 조절하는 점을 고려하여, 본 발명의 발명자들은 PEP1이 HIV-1 Tat 전이활성에 영향을 미치는지를 시험하였다. 본 발명에서는 Jurkat 파생 세포주로서, 안정적으로 삽입된 HIV-LTR-루시퍼라제 구조체를 함유하고 있는 1G5를 이용하였다. 1G5를 HIV-1로 감염시키거나, 또는 AZT 또는 PEP1 존재 하에서 tat-레트로바이러스 벡터 (pSV2tat72)로 형질 전환시킨 후에, 루시퍼라제 활성을 분석하였다.
HIV-LTR-루시퍼라제 구조(construct)가 주입되어 있는 1G5 세포에 HIV-1로 감염시킨 뒤 DMSO, AZT 또는 PEP1로 후처리 하였다. 감염시킨후 4일 뒤, 세포 용해액 (lysate) HIV-LTR의 전이활성 (transactivation)을 분석하기 위한 루시퍼라제 어세이를 실시하였다. HIV-1으로 감염시킨 1G5 세포는 루시퍼라제 활성에서 급격한 증가를 나타냈다 (도 31). AZT 또는 PEP1 처리는 HIV-LTR-루시퍼라제 활성에 대한 HIV-1 감염의 효과를 5배 정도 감소시켰다 (도 31).
1G5 세포들을 Tat 플라스미드로 감염시켰다. 감염시킨 후 12 시간 뒤, 세포들은 앞서 말한대로 비히클 (DMSO), AZT 또는 PEP1로 처리되었다. 감염시킨 후 4일 뒤, HIV-LTR의 전사활성은 루시퍼라제 어세이를 통해 분석되었다. 데이터는 평균 (means) ± SD (표준편차)로 대표 표기되었다. ***은 p<0.001인 것을 나타낸다(도 32). 도 31의 결과와 일관되게, Tat의 이소성 (ectopic) 발현에 의해 유도되는 HIV-LTR 루시퍼라제 활성의 활성화를 PEP1가 억제하였다 (도 32). 그러나, AZT는 이러한 실험 세팅에서 HIV-LTR 루시퍼라제 활성을 억제하지 않았다. 이러한 결과는 PEP1이 HIV-1 감염 중 tat의 전이활성화 기능을 조절하고, 그로 인해 HIV-1의 복제를 억제한다는 것을 나타낸다.
4) PEP1에 의한 잠복기로부터 HIV-1의 재활성화 억제
HIV 복제는 고활성 항레트로바이러스 치료법 (HAART, highly active antiretroviral therapy)에 의해 탐지가능한 수준 이하로 성공적으로 억제될 수 있지만, HIV는 휴지 상태 기억 (resting memory) CD4+ T-세포와 같이 잠복기 감염 세포 안에 머무를 수 있다.
Tat는 여러 종류의 연관된 단백질들과의 상호작용을 통해 재활성화를 조절하도록하는 분자 스위치로 작동한다.
PEP1이 Tat 의존적 전사 활성을 조절한다는 점에 비추어, HIV-1 재활성화에서의 PEP1의 역할을 조사하였다. HIV-1 DNA의 단일 카피를 갖고 있는 인간 T 세포주인 ACH-2 세포를 비히클, AZT 또는 PEP1과 함께 PMA(phorbol 12-myristate 13-acetate)로 처리하였다. 즉 ACH-2세포, 즉 HIV-1의 잠복성 상태 (latently)로 감염된 세포들을 PMA (50nM)로 자극하여 HIV-1의 재활성화를 1시간 동안 유도하였다. 그 다음 세포들은 DMSO, AZT, 또는 PEP1로 24시간 동안 처리되었다. 상층액에서 바이러스성 입자들의 생성 레벨은 p24 ELISA로 측정되었다. 그 결과, PMA 처리는 상층액 p24 수준을 상당히 증가시켰으며, PEP1은 이러한 효과를 거의 소멸시켰다 (도 33, 데이터는 평균 (means) ± SD (표준편차)로 대표 표기되었다. ***은 DMSO대비 p<0.001인 것을 나타낸다).
ACH-2 세포들은 PMA로 처리된 뒤 도 33에서처럼 농도를 단계별로 증가시킨 AZT 또는 PEP1로 처리되었다. 생성되는 바이러스성 입자들은 바이러스성 유전 RNA들의 양을 RT-qPCR을 사용하여 측정하였다. 그 결과, AZT는 PMA의 효과를 변화시키지 않았다. 이러한 결과는 PEP1이 PMA-유도된 HIV-1 재활성화를 억제하고, 바이러스 입자의 생성을 억제한다는 것을 제시한다. 비슷하게, HIV-1 바이러스 RNA 게놈 수준 또한 PMA-처리된 세포 유래의 상층액 중에서 PEP1을 처리하였을 때, 투여량 의존적인 방식으로 상당히 감소하였다 (도 34, 데이터는 평균 (means) ± SD (표준편차)로 대표 표기되었다. ***은 DMSO대비 p<0.001인 것을 나타낸다).
5) PEP1의 HSP90 의존적 항HIV-1 활성
PEP1은 HSP90 및 HSP70과의 상호작용을 하는 것으로 제시되었다. PEP1과 HSPs의 상호작용은 HIF-1α-VEGF 시그널링 축의 저해를 가져오며, 이는 PEP1이 HSPs와의 상호작용을 통해서 세포내 시그널링 경로를 조절할 수 있다는 것을 나타낸다. 본 발명의 발명자들은 PEP1이 HSPs와의 상호작용을 통해서 HIV-1 복제를 조절할 수 있는지 조사하였다. 놀랍게도, MT-4 세포 중 PEP1 매개된 HIV-1 생성의 억제는 항HSP90 중성화 항체를 처리하였을 때 완전히 복구되었다.
반면, AZT 매개된 억제는 전혀 영향을 받지 않았다 (도 35). 즉, MT-4세포들은 HIV-1로 1시간 동안 감염처리 후, 항GAPDH, 항HSP70, 항HSP90 항체 또는 17AAG로 1시간 동안 처리되었고 후속으로 DMSO, AZT 또는 PEP1로 처리 되었다. 감염 수시간 후, HIV-1 입자들의 생성은 p24 ELISA로 측정되었다. 그 결과, 항HSP70-중성화 항체 처리는 부분적 복구를 가져왔으며, 항GAPDH 항체의 아이소타입 (isotype) 조절은 유의미한 효과가 없었다. 이는 PEP1의 항HIV 역할이 주로 HSP90과의 상호작용을 통해 일어난다는 것을 제시한다 (도 35).
또한, HSP 억제제인 17-AAG 또한 PEP1의 효과를 완전히 소멸시켰으며, 이는 PEP1의 항HIV 활성이 HSP90을 통해 일어난다는 것을 확인하였다 (도 35). 또한, PEP1에 의한 HIV-1 전사활성에 의존하는 eGFP 발현의 억제는 항HSP90 항체에 의해 복귀되었다.
MT-4세포들은 HIV에 감염되었으며, 항GAPDH, 항HSP90 항체로 처리되었다. 세포들은 DMSO, AZT 또는 PEP1로 24시간동안 앞서 기술한대로 처리되었다. eGFP의 발현을 시험하기 위하여 세포를 터트려 면역블로팅을 통해 분석하였다. 그 결과, AZT의 영향은 받지 않았다 (도 36 및 37). 이러한 결과는 PEP1이 HSP90과의 상호작용을 통해서 HIV-1 전사 활성을 조절할 수 있다는 것을 나타낸다.
6) PEP1의 기저 NF-κB 전사 활성 억제
NF-κB는 HIV-LTR 내에 있는 NF-κB 결합 위치와 상호작용하여 HIV 전사를 촉발하고, TAT-매개된 LTR 전위 활성화를 증가시킨다. 아울러, Tat는 NF-κB를 직접적으로 활성화시킬 수 있다. 최근에, 세포외 HSP90이 NF-κB를 포함하여, 다수의 세포내 시그널링 경로를 조절할 수 있음을 보여주는 연구가 있었다. PEP1의 항HIV 효과가 항HSP90-차단 항체에 의해 소멸된다는 것은 PEP1의 항HIV 기능에서 세포외 HSP90의 관여 가능성을 제시하기 때문에, 본 발명의 발명자들은 PEP1이 HSP90 관련된 방식으로 NF-κB 활성을 조절하여 HIV-1 전사 활성을 조절하는지를 시험하였다. PEP1로 처리하면 MT-4 세포에서의 HIV-1 감염 여부와 관계없이 기저 NF-κB 활성을 극적으로 감소시켰다 (도 38). 반면에, AZT는 MT-4 세포 중에서 NF-κB 활성에 유의미한 영향을 나타내지 않았다. AZT는 HIV-1로 감염된 MT-4 세포 중에서 중간 정도의 억제 효과를 나타냈는데, 이는 아마도 낮은 HIV 복제 수준 때문일 것이다 (도 38). PEP1의 기저 NF-κB 활성에 대한 억제 효과는 EMSA로 추가적으로 확인하였다 (도 39). PEP1 처리된 세포는 p65 NF-κB 활성화의 명백한 감소를 나타내었다 (도 39). 이는 핵 내에서 NF-κB DNA 결합의 기저 수준을 억제한다는 것을 나타낸다. 또한 PEP1 처리는 NF-κB (p65) 인산화 감소를 가져오며, 이는 PEP1이 NF-κB 세포질 활성화와 이후의 핵 내 전이를 억제한다는 것을 나타낸다 (도 40). HIV-1으로 잠복 감염된 ACH-2 세포로부터도 유사한 결과를 얻었다 (도 40). 가정했던 바와 같이, PEP1에 의한 처리는 DMSO 처리된 대조 세포와 비교하여, PMA 처리된 ACH-2 세포에서 NF-kB(p65)의 핵 내로의 이동을 감소시켰다 (도 41). 본 발명에서 PEP1의 항HIV 효과가 HSP90에 의존한다는 것을 보였기 때문에, 본 발명자들은 NF-κB 억제 효과가 HSP90에 의존적인지 시험하였다. 항HIV 활성 데이타와 일관되게, PEP1의 NF-κB 억제 효과는 HSP90 블라킹 항체 또는 HSP 억제제를 처리하였을 때 완전히 소멸되었다. 반면, 항GAPDH 항체로 처리하였을 때는 의미있는 효과가 없었다 (도 42).
종합하여, 본 발명자들은 PEP1이 NF-κB 활성의 기저 수준을 억제하여, HIV-LTR 전이활성을 억제한다는 것을 보였다. 결과는 HSP90이 이러한 활성에 관여한다는 것을 제시한다. 이전 연구에서 세포내 HSP90이 NF-κB을 직접적으로 조절하여, HIV 재활성화에서 중요한 역할을 한다는 것을 보였다. 본 발명에서 보여준 항HSP90 항체에 의한 PEP1 효과의 무효화는 PEP1의 항바이러스 효과가 HSP90에 의한, NF-κB 시그널링과 HIV-LTR 활성화를 통해 이루어짐을 제시한다
고활성 항레트로바이러스 치료법 (HAART)에 의해 HIV 복제가 성공적으로 억제될 수 있지만, 현재의 치료법들은 잠복기 감염된 HIV-1을 근절시키지 못하고 있다. 바이러스의 재활성화는 치료법이 실패하는 주요 원인이다. PEP1은 다수의 임상 시험을 통해 그 안정성이 이미 입증된 바 있다. 따라서, PEP1의 항-HIV 효과는 HIV 재활성 억제를 위한 효과적인 치료법을 제공할 수 있다.
실시예 4: HBV에 대한 PEP1의 효능 확인
간암의 표적 치료제 개발을 위해 EGFR 티로신 키나제, c-MET 키나제 뿐만 아니라, IL-6/JAK/STAT, Ras/ERK, Wnt 등의 다양한 시그널링 경로를 표적 후보군으로 연구하였다. 이 중, IL-6/JAK/STAT 시그널링 경로의 경우, 다양한 연구 결과를 통해 염증과 암화과정을 함께 제어할 수 있어, HBV 유래 질환 및 HCC 치료에 효율적인 표적이 될 수 있음을 확인하였다. 72.4%의 간세포암 조직에서 STAT3의 비정상적 활성화가 관찰되었으며 STAT3 저해가 간암세포주의 성장 및 동물모델에서의 성장억제를 유도함을 확인하였다. STAT 시그널링 저해 목적으로, 현재 임상 시험에 진입해있거나 사용 중인 약물들은 거의 대부분 키나제 저해제들이며, STAT3를 직접 저해하는 약물들은 일부가 전임상 단계에 진입하였지만, 표적 자체의 약물성 (druggability) 및 화합물들의 표적에 대한 선택성이 부족하여 이에 대해 추가적인 연구를 실시하였다. 특히 JAK2를 저해하여 STAT3 신호전달을 차단하는 것과 관련하여, 간세포암 대상으로 임상 시험이 진행 중인 JAK 저해 화합물은 전무하다. 또한, 이러한 단일 단계를 억제하는 화합물의 경우 내성 발생확률이 매우 높다. 따라서, 본 발명자들은 JAK2/STAT3 시그널링 경로의 여러 단계에서 저해 활성을 보이며, 시그널링 경로 전반을 저해할 수 있는 신규 화합물의 개발을 위해 연구하였다.
세포주의 배양
사람 유래 간세포암 Huh7 세포주(human hepatocellular carcinoma) (ATCC (American Type Culture Collection), Manassas, VA, USA), Huh7.5 세포주 그리고 HepG2 세포주(human hepatocellular carcinoma) (ATCC, Manassas, VA, USA)는 RPMI 1640 배지에 10% 소태아혈청 (Invitrogen, USA)과, 2 mmol/ml L-글루타민, 100 ug/ml 페니실린과 100 units/ml 스트렙토마이신을 첨가하여 37℃, 5% CO2 배양기에서 배양하였다.
W4P를 포함한 전체 HBV 의 비리온 형성 억제능
본 발명자들은 간암이 성별 차이에 의한 발생빈도 차이가 나타남에 주목하여 관련 연구를 수행하였고 남성에서 특이적으로 발견되며 간경화 및 간암의 발생과 연관된 돌연변이 (W4P)를 세계 최초로 규명하였다. W4P는 신규한 Pre-S1 치환 W4P 돌연변이로서, 항원 단백질의 4번 (preS1으로부터 4번째) 아미노산을 코딩하는 유전자 코드가 야생형 TGG에서 돌연변이 CCG (밑줄은 돌연변이된 부분을 나타냄)로 변이된 결과 생긴 번역 산물로 4번째 아미노산이 트립토판 (W)에서 프롤린 (P)로 치환된 단백질을 말한다. 이러한 돌연변이는 남성에서 IL-6를 통해 JAK2-STAT3 신호전달체계를 조절함으로써 간암의 발생과 진행을 촉진하는 사실을 규명하였고 임상샘플에서도 높은 수준의 IL-6가 나타남을 확인하였다.
PEP1에 의한 W4P를 포함한 전체 HBV의 비리온 형성능을 관찰하기 위하여 100mm 디쉬에 huh7 세포 2x106개를 주입하여 정상 전체 HBV 와 W4P를 포함한 전체 HBV를 트랜스펙션 (transfection) 효율을 보정하기 위해 β-갈락토시다제 (galactosidase)를 포함하는 pCMV-β-gal 벡터를 코-트랜지언트 (co-transient) 트랜스펙션한 후 3일 동안 배양하면서 24시간마다 배지를 교체해 주면서 수프 (상층액, sup)을 모았다. 이를 분석하기 위하여 HBsAg(Hepatitis B surface antigen)와 HBeAg(Hepatitis B envelop Antigen)을 검출할 수 있는 일반화된 Bioelisa HBsAg 칼라 ELISA 키트 (BIOKIT S.A., Spain)와 HBeAg ELISA 키트(BIOKIT S.A., Spain)를 이용하여 제공된 실험 방법에 따라 ELISA 하였다. 모은 수프에서 100μl를 웰에 넣은 후 1시간 동안 37℃에서 반응시켰다. 세척 용액 300μl씩 넣고 3번 세척하였다. 컨쥬게이트 희석 용액에 300μl씩 넣고 3번 세척하였다. 기질 (substrate) 용액에 TMB를 20μl/ml 넣은 후 96웰에 100μl씩 넣고 30분 동안 상온에서 빛을 차단하여 반응시켰다. 스탑 (Stop) 용액 100μl 넣어 주어 반응을 종결시켰다. ELISA 리더 (Beckman, USA)로 450nm로 흡광도를 읽었다. 보정에 사용되는 β-갈락톡시다제는 리포터 용해 완충용액 키트와 β-갈락톡시다제 효소 분석 시스템 (Promega, USA)에서 제공한 방법에 따라서 실험을 진행하여 ELISA 결과를 보정하였다.
W4P를 포함한 전체 HBV 비리온의 외피 항원 발현 억제능
PEP1에 의한 W4P를 포함한 전체 HBV의 외피 항원 발현능을 확인하기 위하여 100mm 디쉬에 huh7 세포 2x106을 주입하여 정상 전체 HBV와 W4P를 포함한 전체 HBV를 트랜지언트 트랜스펙션한 후 3일 동안 배지를 교체해 주면서 배양한 후 세포 펠릿을 모아 단백질을 추출하여 IP를 수행하였다. 단백질에 프로틴 A/G 플러스-아가로즈 면역침강제 (Santa Cruz Biotechnology, USA)를 20μl 넣어 4℃에서 두 시간 동안 프리-클리어링 (pre-clearing)한다. 프리-클리어된 용해액 400 ug의 단백질에 프로틴 A/G 플러스-아가로즈 면역침강제 (Santa Cruz Biotechnology, USA)를 20μl 넣고 4μg 1차 항체를 첨가하여 4℃에서 24시간 반응시켰다. 다음 날 2000rpm으로 원심 분리하고 세척한 후 다시 단백질 용해 용액 50μl로 풀어주었다. 1차 항체 preS1과 HBs 항체를 이용하여 웨스턴 블롯을 시행하였다.
W4P를 포함한 전체 HBV의 비리온의 증식 억제능
W4P를 포함한 전체 HBV의 비리온 증식능을 관찰하기 위하여 앞선 방법으로 24 시간마다 배지를 교체해 주면서 교체한 수프의 전체를 모아 비리온 DNA를 추출하여 Quantitech SYBR Green Master-Mix 키트 (Qiagen)으로 실시간 정량 PCR을 시행하였다. 전체 수프는 SW28 스윙 로터로 20,000rpm에서 2시간동안 초원심분리기로 바이러스를 침전시킨 후 침전된 바이러스 펠렛을 멸균된 DW 200μl로 풀어주었다. 비리온 DNA를 추출하기 위해 100μg/ml RNase A를 처리하고 용해 완충용액 (0.25% SDS, 0.25M Tris, 0.25M EDTA) 100μl를 첨가한 후 프로티나제 K를 500μg/ml을 넣어 37℃에서 2시간 반응시켰다. 이후 페놀:클로로포름 추출 방법으로 추출하였다. 바이러스 증식능을 보기 위해 HBV 작은 표면적 부분을 표적으로 하는 실시간 PCR 프라이머를 SF-Real (5'-TTG ACA AGA ATC CTC ACA ATA CC-3', 서열번호 9)과 SR-Real (5'-GGA GGT TGG GGA CTG CGA AT-3', 서열번호 10) 제작한다. 96well plate에 12.5μl IQ SYBR 그린 슈퍼믹스 (Biorad, California, USA), 1.25μl SF-Real 프라이머, 1.25μl SR-Real 프라이머, 9μl 멸균 증류수, 1μl cDNA를 넣었다. Exicycler™ 96 실시간 정량 역 블록 시스템 (Bioneer Co., Korea)를 이용하여 95℃에서 5분, 94℃에서 15초, 60℃에서 15초로 40 주기로 하였고 멜팅 커프 (melting curve) 분석을 위하여 95℃에서 0초, 53℃에서 30초 및 초당 0.1℃씩 조절하여 53℃에서 90℃까지 온도를 상승시켰다.
형질전환 마우스
HBV 형질전환 마우스는 모든 ORF(open reading frame)를 포함하는 HBV 염기서열의 1.1배를 마우스의 수정란에 미세주입법으로 주입하였다. 연구에 사용되는 HBV 염기서열은 pHY92-W4P 플라스미드를 이용하여 얻었다. pHY92-W4P 플라스미드는 마우스 수정란에 주입되기 전에 EcoRI에 의하여 절단하여 최종적으로 3.9kb 길이의 염기서열을 미세주입법에 사용하였다. 생성된 개체는 HBsAg 특정 서열을 이용한 PCR을 통하여 선별하였다. PCR-양성 개체는 혈청의 HBsAg와 HBeAg 농도에 따라 선별되어 최종적으로 PCR-양성, HBsAg-양성, HBeAg-양성 마우스를 연구에 사용하였다. 이 마우스는 C57BL/6 마우스와 역교배되어 이형의 HBV 형질전환 마우스를 생산한다. 자손중 높은 HBsAg-, HBeAg-양성 수치를 보이는 마우스에 대하여 서던(southern), 노던(northern) 혼성화를 실시하여 간세포의 HBV 복제 중간체와 전사를 확인하였다. 이중 높은 간세포의 HBV 복제 중간체와 전사를 보이는 HBV 형질전환 마우스를 PEP1에 의한 항바이러스 연구에 사용하였다.
유체 역학 (Hydrodynamic) 주입법을 이용한 동물 실험
C57/BL6 마우스에 전체 HBV W4P 유전체 DNA (1.8ml solution injected wittin 5s into 20g mice)를 주입한 후 다음 날부터 PEP1 (50 ug/kg)을 일주일에 2회 피하 주사하여 처리하였다. 혈액 샘플은 1, 3, 7, 10 그리고 14일, 2주간 획득하고 14일째 마취한 후 전혈을 획득하여 희생하였다. 혈액을 채취하여 혈청을 분리하고 간은 신속히 절개하여 균질화 (homogenize)하였다.
HBsAg 측정, HBV 역가 정량 및 웨스턴 블롯
HBV-형질전환 마우스의 HBsAg 수치는 HBsAg ELISA 키트 (BIOKIT, Germany)을 이용하여 측정하였다. HBV 역가를 정량하기 위하여 모든 DNA를 추출하여 실시간 PCR에 의하여 확인하였다. 웨스턴 블롯을 위해서 8 M 우레아와 같은 양의 단백질 용해액를 이용하여 세포를 용해하고 전기영동을 이용하여 분리하고 항체와 결합시켜 화학발광 탐지 ECL 키트 (Perkin Elmer, USA)를 이용하여 확인하였다.
RNA 추출 및 노던 블롯
REzol (PROtech Technologies, Taiwan)를 이용한 세포용해를 통하여 추출된 세포 RNA를 이소프로판올 침전을 이용하여 분리하였다. 얻어진 RNA는 RNase-free DNase I (Roche, Germany)를 37℃에서 30분간 처리하여 잔여 DNA 플라스미드를 제거하였다. 이후 페놀/클로르폼을 이용하여 추출하고, 에탄올 침전과 재현탁을 이용하여 RNA를 정제하였다. 노덧 블롯을 위해서 동일한 양의 RNA를 2% 포름알데히드 겔에 의한 전기영동을 통하여 분리하고, 멤브레인 (membrane)으로 이동하여 HBV 전체 염기에 상응하는 P32-표지된 HBV 전장 프로브에 염색하였다. 로딩 컨트롤로서 동일한 멤브레인에서 P32-표지된 GAPDH 프로브의 혼성화를 사용하였다.
HBV 코아 결합된 DNA의 분리 및 서던 블롯
마우스 간조직으로부터 HBV DNA를 추출하기 위하여 기존 과정에 따라 다음과 같은 방법을 사용한다. 세포를 용해하기 위하여 10-cm 디쉬 당 1.2 mL NET 완충액 (50 mM Tris-HCl, pH8.0, 1 mM EDTA, pH8.0, 100 mM NaCl, 0.5% NP-40)를 첨가하여 37℃에서 1시간 동안 교반 배양을 실시하고, 원심분리 (13k rpm, 10분, 4℃)를 실시하여 핵을 제거하였다. 상층액은 6mM CaCl2에 의하여 조절하여 Micrococcal Nuclease (Amersham Pharmacia Biotech AB, Sweden)를 37℃에서 30 분간 배양하여 세포질내 RNA 또는 잔여 DNA 플라스미드를 분해하였다. 이후 65℃에서 15 분간 EDTA 20mM을 사용하여 효소를 불활성화시켰다. 프로티나제 K (Sigma) 200 μg/ml와 SDS 0.5% 50℃에서 하룻동안 반응시켜 상층액의 단백질을 분해하고 HBV 코어 결합된 DNA를 추출하였다. HBV DNA는 페놀/클로르포름을 이용하여 추출하고, 에탄올 침전과 TE 완충용액 재현탁 (resuspension)을 이용하여 정제하였다. 서던 블롯을 위하여 정제된 HBV DNA 양의 1/5를 1.5% 전기영동을 실시하고, 멤브레인으로 이동하여 P32-표지된-HBV 전장 프로브를 이용하였다.
IL6, TNFα 사이토 카인 분석
PEP1을 처리한 형질전환 마우스와 유체 역학 주입 모델에서 획득한 마우스 혈청에서 IL6와 TNFα의 수준을 비교하기 위하여 R&D ELISA 키트를 이용하여 제공된 방식에 따라 수행하였다. ELISA 리더 (Beckman, USA)로 450nm 흡광도로 읽었다.
RNA 발현 분석
마우스 간 조직으로부터 획득한 RNA를 이용하여 염증관련 사이토카인인 IL6, IL1β, TNFα의 RNA 수준에서 비교 관찰하고 간 섬유화의 마커인 TGFβ, 콜라게나제 I 및 IV의 발현을 비교하며 면역세포 마커 4/80, CD68 과 케모카인 유인제 (chemokine attractant) 단백질과 그 수용체의 RNA 발현 정도를 실시간 PCR을 통하여 확인하였다. 대조군 RNA는 18S의 발현과 비교하였다.
자연형 및 전체 HBV W4P 유전체 주입 마우스의 비장내 면역세포 분석
형질전환 마우스의 비장을 분리한 후 비장내 면역세포들을 수확하고 세포 유동분석기를 사용하여 B세포, T세포 (CD8+, CD4 + CXCR5 + TFH 세포), NKT 세포등의 분포를 분석하였다. 비장세포들을 정제된 자연형 및 변이주 외피항원과 함께 배양하며 T세포의 증식을 티미딘 흡수 (thymidine uptake) 기법을 통하여 측정하였다. 동시에 PHA, 항CD3 항체등을 처리하고 T세포의 증식을 동일한 방법으로 측정하여 마이토젠 (mitogen) 처리 후의 T 세포 증식능을 연구하였다.
자연형 및 전체 HBV W4P 유전체 주입 마우스의 간 내 면역세포 분석
간문맥을 통하여 콜라게나제를 포함한 소화 (digestion) 용액을 사용하여 간 관류 (perfusion) 후 간을 균질화하고 소화 용액으로 세포들을 얻은 후 낮은 원심분리 (30 RCF/3분)를 통하여 간세포를 제거하고 차등 (gradient) 원심분리를 통하여 간내 면역세포들을 수확하였다. Fc-블록 후 항CD3, 항CD4, 항CD8, 항NK1.1, 항CD19, 항CD11b, 항CD11c등의 항체를 사용하여 유동 세포분석을 수행하여 간내 면역세포의 분포를 분석하였다.
T-세포 활성 분석
외피항원을 발현하는 P815 세포주를 제조하여 비장 및 간에서 얻어진 면역세포들을 5일간 활성화한 후, 외피항원을 발현하는 P815 세포를 타겟 세포로 사용하여 분리된 T세포의 세포독성 (cytotoxicity)을 분석하여 세포살 T세포의 활성화정도를 측정하였다. 또한 역시 비장과 간에서 얻어진 면역세포로부터 T세포를 T-세포 농축 칼럼 (R&D)을 사용하여 분리한 후 외피항원발현 P815 세포주와 함께 16시간 배양한 후 2형 인터페론 (Interferon-γ) ELISPOT 키트를 사용하여 특이적으로 감마인터페론을 생산하는 T세포를 측정하였다.
통계 처리
SPSS 12.0K 프로그램을 사용하여 각 범주간의 차이를 비교할 때는 피셔의 정확 검정 (Fisher's exact test)나 카이 스퀘어 테스트 (Chi-square test)를 사용한다. 연속변수에는 값이 정규분포를 따를 경우 스튜던트 티 테스트 (Student's t-test)를 사용하고, 그렇지 않을 경우에는 만-휘트니 유-테스트 (Mann-Whitney U-test)를 사용하여 분석하였다. P 값이 0.05 이하일 때 통계적으로 유의한 것으로 판정하였다.
실험 결과 분석
1) 전체 HBV W4P 유전체를 주입한 Huh7, Huh7.5, HepG2 세포주에서 PEP1 펩티드에 의한 HBsAg 합성 억제능 확인
HBV HBsAg 과 비리온 분비를 유도하는 본 연구실에서 확립한 전체 HBV W4P 유전체를 이용하여 여러 가지 사람 간세포암 세포주를 이용하여 PEP1 의 HBsAg 분비에 미치는 영향을 관찰하였다. Huh7, Huh7.5 그리고 HepG2 세포주에 전체 HBV W4P 유전체를 transient transfection 한 후 PEP1 10μM과 대표적인 항 바이러스제 라미뷰딘(ramivudine, 이하 3TC)를 10μM을 처리한 후 48시간 뒤에 펠렛(pellet) 과 수프(상층액, supernatant, sup)를 모아 ELISA를 수행하였다. 그 결과, HBsAg 의 수준이 세포내, 외에서 HepG2 세포주에서는 PEP1 에 의해 모두 억제 효과를 보였고 Huh7 세포주 에서는 세포 내에서는 억제 하였으나 세포 외에서는 차이가 없었던 반면 Huh7.5 세포주 에서는 세포 내, 외에 모두 효과가 없었다. HBV polymerase inhibitor 인 3TC 도 역시 대조군에 비해 억제 효과를 보이긴 했으나 PEP1 처리한 군과 비교해서는 큰 차이를 보이진 않았다. (도 43). 이러한 결과로 보아, PEP1 펩티드에 의해 대표적인 항 바이러스제 3TC 와 마찬가지로 HBV 의 HBsAg 합성에 있어 억제 효과가 있음을 입증하였다.(데이터의 SEM은 duplicate 로 3번 실험한 값임. * P < 0.05, ** P <0.01)
2) 전체 HBV W4P 유전체를 주입한 Huh7, Huh7.5, HepG2 세포주에서 PEP1 펩티드에 의한 비리온(Virion) 형성 억제능 확인
PEP1 펩티드에 의해 HBsAg 분비능이 억제된 것을 관찰 한 후 sup에서 virion 형성능도 관찰하고자 앞선 방법으로 획득한 sup에서 PEG 6000을 이용하여 virion 을 모은 후 virus DNA prep kit(Intron, Korea)를 이용하여 HBV DNA를 획득하여 real-time PCR 로 정량화 하였다. 그 결과, sup 에 형성된 virion 의 수준이 HepG2 와 Huh7 세포주에서는 PEP1 에 의해 3TC 와 마찬가지로 모두 억제 효과를 보였으나 Huh7.5 세포주 에서는 virion 분비에 있어 영향을 보이지 않았다. HBV polymerase inhibitor 인 3TC도 역시 대조군에 비해 억제 효과를 보이긴 했으나 HBsAg 합성능과 마찬가지로 PEP1 처리한 군과 비교해서는 큰 차이를 보이진 않았다 (도 44a, 도 44b, 및 도 44c). 이러한 결과로 보아, PEP1 펩티드에 의해 대표적인 항 바이러스제 3TC 와 마찬가지로 HBV 의 virion 형성에 있어 억제 효과가 있음을 입증하였다.(데이터의 SEM 은 duplicate 로 3번 실험한 값임. * P < 0.05, ** P <0.01, *** P <0.001)
3) 전체 HBV W4P 유전체를 주입한 HepG2 세포주에서 PEP1 펩티드의 농도에 따른 HBsAg 합성 억제능 확인
Huh7, Hu7.5, HepG2 세포주에서 PEP1 펩티드에 의해 HBsAg 합성 억제 효과를 관찰한 결과 가장 효과적인 HepG2 세포주를 이용하여 PEP1 농도에 따른 효과를 관찰하고자 HepG2 세포주에 전체 HBV W4P 유전체를 주입한 후 PEP1 펩티드를 0.01, 0.1, 1, 10, 100μM 농도에 따라 처리한 후 48시간 뒤에 pellet 과 sup을 모아 ELISA를 수행하였다. 대조군으로 항바이러스제 3TC 도 같은 방법으로 처리하였다. 그 결과, PEP1 펩티드는 pellet에서 0.01μM 에서부터 억제 효과를 보이나 농도에 따라 다소 차이가 있으며 sup 에서는 10μM 농도까지 억제 효과를 보이다가 100μM에서는 전혀 효과가 없는 것으로 관찰 되었다. 반면, 3TC 는 pellet 과 sup 모두에서 농도에 따른 억제 효과를 관찰 할 수 있었다. 이러한 결과로 보아 PEP1 펩티드는 HBsAg 합성능에 pellet에서 농도 의존적인 효과를 보임을 확인하였다(도 45, 데이터의 SEM 은 duplicate 로 3번 실험한 값. * P < 0.05, ** P <0.01, *** P <0.001).
4) 전체 HBV W4P 유전체를 주입한 HepG2 세포주에서 PEP1 펩티드의 농도에 따른 Virion 형성 억제능
앞선 실험 세포 sup에서 펩티드 농도에 따른 virion 형성능을 관찰하고자 sup에서 virion을 획득하여 real-time PCR을 수행하였다. 그 결과, PEP1 펩티드는 pellet에서 0.01μM 저 농도에서는 효과가 없는 반면 10μM 농도에서 약 48% 감소효과를 보였으나 100μM 고농도에서는 오히려 전혀 효과를 보이지 않았다. 반면, 3TC 는 virion 합성에서도 농도에 따른 억제 효과를 관찰할 수 있었다. 이러한 결과로 보아 PEP1 펩티드는 virion 형성에 있어 10μM 농도까지 농도 의존적인 효과를 보임을 확인하였다(도 46, 데이터의 SEM 은 duplicate 로 3번 실험한 값. * P < 0.05, ** P <0.01, *** P <0.001).
5) PEP1 펩티드에 의한 HNF4α의 발현에 미치는 영향
Hepatocyte nuclear factor 4α는 HBV enhancer I 에 결합함으로써 HBV 합성하는데 중요한 역할을 하는 것으로 알려져 있다. 따라서 HepG2 세포주에 전체 HBV W4P 유전체를 주입한 후 PEP1 10μM을 처리한 후 48시간 후에 pellet에서 단백질을 추출하여 Western blot을 수행하였다. 대조군으로 mock vector를 주입하여 비교하였다.
그 결과, HBV 증식을 유도하는 전체 HBV W4P 유전체를 주입했을 때 증가된 HNF4α 의 발현이 관찰되었는데 이에 PEP1 펩티드에 의해 HNF4α 의 발현이 3TC 보다 더 효과적으로 감소함을 확인하였다. 이로써, PEP1 펩티드의 HBV 의 항 바이러스 효과는 transcription factor 인 HNF4α의 발현 조절에 의해 바이러스 증식을 억제함을 입증하였다 (도 47).
6) PEP1 펩티드에 의한 염증 관련 사이토카인에 미치는 영향
HBV 의 preS1 W4P 변이주는 염증 조절 사이토카인 IL-6 의 형성에도 밀접한 관련이 있다고 보고되어지고 있다. 따라서 IL-6 가 유도되어진 세포주에서 PEP1 에 의한 항 염증 효과를 관찰하고자 HepG2 와 Huh7 세포주에 전체 HBV W4P 유전체를 주입한 후 PEP1 10μM와 3TC 10μM를 각각 처리한 후 48시간 후에 배양 sup에서 IL-6 수준을 ELISA를 통해 관찰하였다. 그 결과, IL-6 증식을 유도하는 전체 HBV W4P 유전체를 주입했을 때 HepG2 세포주에서는 IL-6 수준이 전혀 검출이 되지 않을 정도로 낮은 수준으로 존재하였고 Huh7 세포주에서도 PEP1 에 의해 IL-6 의 억제 효과는 관찰되지 않았다. 3TC 처리 군도 마찬가지로 전혀 IL-6 사이토카인의 형성에는 영향을 미치지 않는 것으로 관찰되었다 (도 48).
7) 전체 HBV W4P 유전체 형질전환 마우스에서 PEP1의 HBsAg 합성능과 virion 에 미치는 영향
PEP1 펩티드에 의한 항바이러스 효과를 관찰하기 위하여 전체 HBV W4P 유전체를 주입하여 만든 형질전환 마우스를 이용하여 HBsAg 합성능을 관찰하였다. 마우스 꼬리 정맥으로 PEP1 펩티드를 50ug/kg 농도로 일주일에 2회씩 주입하였다. 대조군으로 3TC 500μg/kg을 PEP1 펩티드와 마찬가지로 주입하여 4주, 8주 후 마우스를 전혈 채혈하여 혈청에서 HBsAg 수준을 관찰하고자 HBs ELISA를 수행하였다. 또한 마우스 혈청으로부터 HBV virion DNA를 획득하여 real-time PCR을 수행하였다.
그 결과, HBsAg 의 혈청내 수준은 4주까지 처리하였을 때 PEP1 펩티드와 3TC 모두 감소 효과를 나타내지 않았으나 8주째 에서는 PEP1 펩티드에 의해 약 10% 정도 감소 효과를 보인 반면 3TC 는 효과가 없었다. 또한 virion 수준을 관찰하기 위하여 마우스 혈청에서 virion DNA를 획득한 후 real-time PCR을 수행 한 결과 4주째에는 HBsAg 과 마찬가지로 둘 다 virion 의 억제 효과는 관찰되지 않았으나 8주째에는 PEP1 펩티드는 약 50%, 3TC 는 약 52% 억제 효과를 보였다. 이로써 PEP1 이 전체 HBV W4P 변이주 유전체가 포함된 형질전환 마우스에서 형성되는 virion 을 형성 및 분비를 억제함을 확인하였다. (도 49).
8) 전체 HBV W4P 유전체 형질전환 마우스에서 PEP1 펩티드에 의한 단백질 발현에 미치는 영향
PEP1 펩티드에 의한 항바이러스 효과에 미치는 단백질 발현의 변화를 관찰하기 위하여 전체 HBV W4P 변이주 유전체를 주입하여 만든 형질전환 마우스를 이용하여 관찰하였다. 마우스 꼬리 정맥으로 PEP1 펩티드 50ug/kg 농도로 일주일에 2회씩 주입하였다. 대조군으로 3TC 500ug/kg을 PEP1 펩티드와 마찬가지로 주입하였다. 8주째 마우스에서 전혈 채혈하고, 마우스 간에서 단백질을 추출한 후 western blot을 수행하여 단백질의 발현을 관찰하였다.
그 결과, HBV 증식에 작용하는데 중요한 HBV의 역전사 효소의 활성과 밀접한 관련이 있는 Heat Shock Protein 90 (HSP 90) 와 HBV 에 의해 만성적으로 간염 되어있는 환자에서 활성이 증가되어 있는 superoxide dismutase (SOD) 의 발현에 있어서 PEP1 펩티드에 의한 영향은 관찰되지 않았으나 다양한 signal pathway에서 transcriptional activator 로 작용하는 HBx 로 인한 간세포암 진행과정에서 밀접한 관련이 있는 ras/raf-mitogen activated protein kinase (MAPK) 중 특히 extracellular signal - regulated protein kinase (ERK) 단백의 인산화는 PEP1 펩티드에 의해 발현이 억제되고 Jenus kinase/signal and transducer and activator transcription factor (JAK/STAT) 의 signal 중 JAK2 의 인산화 역시 PEP1 펩티드에 의해 조절됨을 확인하였다. 대조군인 3TC 역시 ERK와 JAK2 signal 의 인산화를 억제함을 확인할 수 있었다. 이로써 PEP1 펩티드는 HBV 의 증식을 조절하여 간세포암 진행 과정에서 중요한 역할을 하는 MAPK 와 JAK/STAT 의 시그널을 조절함으로써 HBV 에 의한 간세포암 진행을 억제할 수 있는 중요한 역할을 할 것으로 사료되었다 (도 50).
9) 전체 HBV W4P 유전체 형질전환 마우스에서 PEP1 펩티드에 의한 면역 세포 분포에 미치는 영향
PEP1 은 텔로머라제에서 유래하는 HLA Class II 결합 펩티드로 세포독성 T-세포와 보조 T-세포의 면역 반응 유발하는 16개의 아미노산 펩티드이다. 따라서, PEP1 펩티드에 의한 신장 면역 세포 분포의 변화를 관찰하기 위하여 전체 HBV W4P 변이주 유전체를 주입하여 만든 형질전환 마우스를 이용하여 4주째 마우스를 전혈 채혈하고, 마우스 신장을 획득하여 면역 세포를 분리 후 lymphocyte marker(B세포(CD19B), CD4, CD8, NK1.1세포)와 myeloid cell marker(DC(CD11c), macrophage(F4/80), neutrophil(Ly-6G), monocyte(Gr1))를 이용하여 extracellular cell surface 염색방법으로 염색한 후 FACS 분석을 하였다.
그 결과, PEP1 펩티드에 의해 lymphocyte 인 B 세포, CD4, CD8, NK1.1 세포 모두 유의적인 차이를 보이지 않았으며 myeloid 계열 세포인 DC, macrophage, neutrophil, monocyte 역시 세포 분포에 영향이 없는 것으로 확인하였다. 3TC 역시 PEP1 과 마찬가지로 전체 HBV W4P 형질전환 마우스의 면역 세포의 분포에 영향을 주지 않는 것으로 확인되었다(도 51a 내지 도 51h).
10) 전체 HBV W4P 유전체 형질전환 마우스에서 PEP1 펩티드에 의한 Interferon γ(INFγ) 활성에 미치는 영향
바이러스에 대항하여 면역세포에서 호르몬과 비슷한 사이토카인인 INF을 분비한다. 이러한 INF에는 α, β, γ가 존재하며 이중 INFγ가 인체 내에서 B형 간염 바이러스를 억제하는데 중요한 것으로 알려져 있다. 따라서 PEP1 펩티드에 의한 면역 반응으로 INFγ의 활성에 미치는 영향을 관찰하기 위하여 전체 HBV W4P 변이주 유전체를 주입하여 만든 형질전환 마우스를 이용하여 PEP1 펩티드 50ug/kg 과 3TC 500ug/kg 농도로 일주일 2회씩 꼬리정맥으로 주입한 8주째 마우스를 전혈 채혈하고 마우스 신장을 획득하여 면역 세포를 분리 후 HBsAg을 처리하여 자극시켰다. 72시간 자극 후 Brefeldin A로 세포 내에 INFγ 사이토카인을 두게 한 후 intracellular 염색 방법으로 염색한 후 FACS 분석을 하였다.
그 결과, PEP1 펩티드에 의해서는 CD4, CD8 그리고 NK1.1 세포 모두 INFγ의 활성이 나타나지 않았으며 3TC 역시 약간의 증가를 보이긴 하였으나 유의적인 차이를 보이진 않았다 (도 52a 내지 도 52g).
11) 전체 HBV W4P 유전체 형질전환 마우스에서 PEP1 펩티드에 의한 대식세포(macrophage)의 분화에 미치는 영향
macrophage 의 M1 으로의 분화는 감염된 세포를 세포 사멸을 유도하여 항 바이러스 효과를 보이는 것으로 알려져 있다. 따라서 PEP1 펩티드가 macrophage 를 M1 으로 분화 시킬 수 있는 능력이 있는지 관찰하기 위하여 전체 HBV W4P 변이주 유전체를 주입하여 만든 형질전환 마우스를 이용하여 PBS, PEP1 펩티드 50ug/kg, 및 3TC 500ug/kg 를 각각 일주일에 2회씩 꼬리정맥으로 주입한 8주째 마우스를 전혈 채혈한 후 마우스 신장을 획득하여 면역 세포를 분리 후 macrophage (F4/80) 와 M1 marker 인 MHCII 를 이용하여 extracellular cell surface 염색방법으로 염색하였다. 이후 FACS 분석을 하였다.
그 결과, PEP1 펩티드에 myeloid 계열 세포 중 macrophage 의 분포는 유의적으로 늘어났으나 이 세포들이 M1 으로의 분화에 있어서는 PBS 군에 비해 증가하긴 하였으나 유의적이지 않았다. HBV polymerase inhibitor 인 3TC 는 세포 분포 및 분화 모두 차이를 보이지 않았다 (도 53).
12) 전체 HBV 야생주 유전체의 형질 주입 세포에서 HSP90의 blocking에 의한 PEP1 펩티드의 항바이러스 효과
PEP1은 HSP90을 매개로하여 셔틀(shuttle) 방식으로 세포 외부에서 내부로 세포막을 통과하는 것으로 알려져 있다. 이러한 기전을 근거로 HSP90의 활성을 차단하게 되면 세포 내에서 항바이러스 효과가 감소하는지 확인하기 위하여 본 연구에서는 HepG2 세포주에 전체 HBV 야생주 유전체를 일시적으로 형질 주입한 후, anti-GAPDH, anti-HSP(1 ug/ml, HSP90의 활성을 blocking)와 17-AAG (1 μM)을 1시간 동안 처리하고, 다시 PBS (0.5%), Entecavir(ETV, 30 nM), PEP1(5 μM)을 24시간 동안 처리한 후 상층액을 걷어서 PEG6000으로 바이러스를 precipitation하고 viral DNA를 추출하여 실시간 정량 PCR(real-time quantitative PCR)을 수행하여 항바이러스 효과를 관찰하였다. 모든 실험은 3회에 걸쳐서 독립적으로 진행되었으며, 통계학적인 유의성 검정은 one way ANOVA를 이용하여 Tukey’s Multiple Comparison Test를 통해서 실시하였다. ** p < 0.05는 PBS를 기준으로 비교하였고, ## p < 0.05는 None을 기준으로 비교하였다.
그 결과 아무것도 처리하지 않은 세포에 PEP1을 처리한 군에서는 PEP1에 의한 항바이러스 효과가 ETV 보다 통계적으로 유의하게 있었고, GAPDH를 blocking한 군에서도 마찬가지 결과를 보였으며 HSP90과 HSP90 inhibitor로 알려진 17-AAG를 처리한 군에서는 PEP1에 의한 항바이러스 효과가 통계적으로 유의하게 없어졌음을 확인하였다 (도 54). 반면 ETV의 항바이러스 효과는 아무것도 처리하지 않은 세포나 GAPDH, HSP90 혹은 17-AAG를 처리한 세포에서 모두 차이가 없는 것으로 확인되었다.
상기한 바와 같이, PEP1 펩티드에 의해 HBV 의 전사 과정에서 HBV enhancer 에 결합하여 enhacer의 활성을 증가시키는데 중요한 전사인자(transcription factor) 인 HNF4α 의 발현을 억제하여 HBV 의 HBsAg 과 virion 형성을 감소시키는 것을 확인하였다.
또한, PEP1는 간세포암 진행과정에서 중요한 ERK 와 JAK/STAT signal pathway 를 억제하여 HBV 증식을 억제함으로써 HBV 에 감염된 세포의 간세포암으로 진행을 막는데 중요한 역할을 함을 알 수 있다.
바이러스가 인체에 감염이 되면 이러한 바이러스에 대항하여 면역세포에서는 인터페론(INF)을 분비하는데, 특히 INFγ 는 인체 내에서 B형 간염 바이러스를 억제하는데 중요한 것으로 알려져 있어 HBV 감염 되었을 때의 면역 세포의 분포와 INFγ 분비 활성을 나타내는 면역 세포의 비율이 중요할 것이다. 본 발명의 PEP1 에 의해 전체 HBV W4P 변이주 유전체가 포함된 형질전환 마우스의 면역 세포 비율과 INFγ 사이토카인의 활성이 증가된 면역세포를 비교하였을 때 대조군인 PBS 처리 군과 차이가 없는 것으로 확인되었다. 이로써 HBV 에 감염된 인체에서는 PEP1 펩티드가 인체 내 면역 시스템을 조절하는 것 보다 ERK 나 JAK/STAT signal pathway 를 억제하거나 HBV enhancer 에 작용하는 transcription factor 인 HNFα 의 발현을 감소시킴으로서 HBV mRNA 의 합성을 억제하여 HBV 증식을 억제하는데 중요한 역할을 담당할 것으로 사료된다.
이와 같이 PEP1은 HBV에 대한 항바이러스 효과가 있음을 알 수 있으며, PEP1은 다수의 임상 시험을 통해 그 안정성이 이미 입증된 바 있다. 따라서, PEP1의 항HBV 효과는 간독성 및 신독성이 없는 안전하고 HBV 감염 질병 치료용 조성물 및 치료법을 제공할 수 있다.
상기 실시예들을 통하여 본 발명에 따른 펩티드인 PEP1 및 PEP1을 포함하는 조성물은 바이러스의 복제 억제효과 및 항바이러스 효과가 있음을 알 수 있었다. 이를 이용하여 바이러스 억제제 및 항바이러스 치료제의 개발 또는 바이러스 관련 질병의 예방 및 치료법을 제공한다.

Claims (20)

  1. 서열번호 1의 아미노산 서열을 포함하는 펩티드, 상기 아미노산 서열과 80% 이상의 서열 상동성을 갖는 펩티드 또는 그 단편인 펩티드로 이루어지는 군으로부터 선택되는 하나 이상을 유효성분으로 포함하는 항바이러스용 조성물.
  2. 제 1항에 있어서, 상기 단편은 3개 이상의 아미노산으로 구성된 단편인 항바이러스용 조성물.
  3. 제 1항에 있어서, 상기 조성물은 바이러스의 복제 억제, 전사 억제, 재활성화 억제, 항원 발현 억제, 및 비리온(Virion) 형성 억제로 이루어진 군에서 선택되는 하나 이상에 의하여 바이러스를 억제하는 것인 항바이러스용 조성물.
  4. 제 1항에 있어서, 상기 항바이러스용 조성물은 HSP90을 매개로 하는 것인 항 바이러스용 조성물
  5. 제 1항에 있어서, 상기 바이러스는 DNA 바이러스 또는 RNA 바이러스인, 항바이러스용 조성물.
  6. 제 1항에 있어서, 상기 바이러스는 dsDNA-RT 바이러스, ssRNA-RT 바이러스, 및 ssRNA 바이러스로 이루어진 군에서 선택된 하나 이상인, 항바이러스용 조성물.
  7. 제 1항에 있어서, 상기 바이러스는 레트로바이러스과(Retroviridae family), 플라비바이러스과(Flaviviridae family), 또는 헤파드나바이러스과(Hepadnaviridae family)에 속하는 것을 특징으로 하는 항바이러스용 조성물.
  8. 제 1항에 있어서, 상기 바이러스는 C형 간염 바이러스(Hepatitis C Virus, HCV), B형 간염 바이러스(Hepatitis B Virus, HBV) 또는 인간면역결핍바이러스(human immunodeficiency virus, HIV)인 항바이러스용 조성물.
  9. 제1항에 있어서, 상기 조성물 내의 상기 펩티드의 농도는 0.0001 내지 100 μM인 항바이러스용 조성물.
  10. 제1항에 있어서, 상기 펩티드의 1일 투여량은 0.01㎍/kg/일 내지 10 g/kg/일인 항바이러스용 조성물.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 조성물은 약학 조성물인, 항바이러스용 조성물.
  12. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 조성물은 식품 조성물인, 항바이러스용 조성물.
  13. 제 1항에 있어서, 상기 펩티드는 표지물질과 컨쥬게이트된 형태로 포함되는 항바이러스용 조성물.
  14. 제 13항에 있어서, 상기 표지물질은 형광물질 또는 조영물질인 항바이러스용 조성물.
  15. 제 14항에 있어서, 상기 형광물질은 FITC인 항바이러스용 조성물.
  16. 제1항 내지 제10항 중 어느 한 항에 따른 항바이러스용 조성물을 바이러스성 질병에 걸렸거나 바이러스에 의한 병리학적 증상을 보이는 개체에게 투여하는 것을 포함하는 바이러스성 질병의 개선, 예방 및 치료방법.
  17. 제16항에 있어서, 상기 바이러스성 질병은 후천성면역결핍증, B형 간염, C형 간염, 이로 인한 간경변, 또는 이로 인한 간암인, 바이러스성 질병의 개선, 예방 및 치료방법.
  18. 제1항 내지 제10항 중 어느 한 항에 따른 항바이러스용 조성물; 및
    바이러스성 질병의 예방 및 치료방법이 기재된 지시서를 포함하는 바이러스성 질병의 예방 및 치료용 키트.
  19. 제18항에 있어서, 상기 바이러스성 질병의 예방 및 치료방법은 상기 항바이러스용 조성물을 바이러스성 질병에 걸렸거나 바이러스에 의한 병리학적 증상을 보이는 개체에 투여하는 것을 포함하는 바이러스성 질병의 예방 및 치료방법인, 바이러스성 질병의 예방 및 치료용 키트.
  20. 제1항 내지 제10항 중 어느 한 항에 따른 항바이러스용 조성물의 제조에 이용하기 위한, 서열번호 1의 아미노산 서열을 포함하는 펩티드, 상기 아미노산 서열과 80% 이상의 서열 상동성을 갖는 펩티드, 또는 그 단편인 펩티드의 용도.
PCT/KR2016/007192 2015-07-02 2016-07-04 항바이러스 활성 효능을 가지는 펩티드 및 이를 포함하는 조성물 WO2017003267A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES16818300T ES2886946T3 (es) 2015-07-02 2016-07-04 Péptido con efecto antiviral y composición que lo contiene
EP16818300.2A EP3318265B1 (en) 2015-07-02 2016-07-04 Peptide having anti-viral effect and composition containing same
KR1020177036109A KR102638286B1 (ko) 2015-07-02 2016-07-04 항바이러스 활성 효능을 가지는 펩티드 및 이를 포함하는 조성물
US15/739,483 US11015179B2 (en) 2015-07-02 2016-07-04 Peptide having anti-viral effect and composition containing same
CN201680039356.3A CN107847551B (zh) 2015-07-02 2016-07-04 具有抗病毒作用的肽和包含其的组合物
JP2017567630A JP6923453B2 (ja) 2015-07-02 2016-07-04 抗ウイルス活性効能を有するペプチド及びこれを含む組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0094840 2015-07-02
KR20150094840 2015-07-02
KR10-2015-0115671 2015-08-17
KR20150115671 2015-08-17

Publications (1)

Publication Number Publication Date
WO2017003267A1 true WO2017003267A1 (ko) 2017-01-05

Family

ID=57608897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007192 WO2017003267A1 (ko) 2015-07-02 2016-07-04 항바이러스 활성 효능을 가지는 펩티드 및 이를 포함하는 조성물

Country Status (7)

Country Link
US (1) US11015179B2 (ko)
EP (1) EP3318265B1 (ko)
JP (2) JP6923453B2 (ko)
KR (1) KR102638286B1 (ko)
CN (1) CN107847551B (ko)
ES (1) ES2886946T3 (ko)
WO (1) WO2017003267A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3085380B1 (en) 2013-12-17 2020-06-17 Gemvax & Kael Co., Ltd. Composition for treating prostate cancer
KR102413243B1 (ko) 2014-12-23 2022-06-27 주식회사 젬백스앤카엘 안질환 치료 펩티드 및 이를 포함하는 안질환 치료용 조성물
CN107405380B (zh) 2015-02-27 2021-04-20 珍白斯凯尔有限公司 用于预防听觉损伤的肽及其包含该肽的组合物
WO2017176087A1 (ko) 2016-04-07 2017-10-12 주식회사 젬백스앤카엘 텔로머라제 활성 증가 및 텔로미어 연장 효능을 가지는 펩티드 및 이를 포함하는 조성물
JP7455336B2 (ja) 2019-03-26 2024-03-26 富士フイルム株式会社 B型肝炎ウイルスタンパク質の産生を阻害する医薬組成物およびスクリーニング方法
CN115089591B (zh) * 2022-05-21 2024-04-12 复旦大学 布立尼布在制备抑制肠道病毒71型嗜神经性病毒药物中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060065588A (ko) * 2003-06-25 2006-06-14 가부시키가이샤 캔버스 면역 조절 활성, 항염증 활성 및 항바이러스 활성을 지니는펩티드 및 펩티도미메틱
KR20140037698A (ko) * 2012-09-19 2014-03-27 주식회사 카엘젬백스 텔로머라제 펩티드를 포함하는 항균 또는 항바이러스용 조성물
JP5491315B2 (ja) * 1998-07-08 2014-05-14 ゲムヴァックス・アーエス テロメラーゼ由来抗原ペプチド

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU207799B (en) 1991-07-24 1993-06-28 Beres Export Import Rt Process for producing pharmaceutical composition for influencing the reticuloendothelial system, for treating chronic pain symptomes of degenerative locomotor disorders or tumors, and for treating mucoviscidosis
JP2000515523A (ja) 1996-07-22 2000-11-21 ザ・ビクトリア・ユニバーシティ・オブ・マンチェスター 創傷および線維性障害の治療における性ステロイド機能モジュレーターの使用
US6610839B1 (en) 1997-08-14 2003-08-26 Geron Corporation Promoter for telomerase reverse transcriptase
ATE361099T1 (de) 1997-05-15 2007-05-15 Chugai Pharmaceutical Co Ltd Heilmittel für kachexie
EP0917579A1 (en) 1997-07-01 1999-05-26 Cambia Biosystems LLC Vertebrate telomerase genes and proteins and uses thereof
US6378526B1 (en) 1998-08-03 2002-04-30 Insite Vision, Incorporated Methods of ophthalmic administration
IL132406A0 (en) 1998-10-21 2001-03-19 Pfizer Prod Inc Treatment of bph with cgmp elevators
US6815426B2 (en) 2001-02-16 2004-11-09 E. I. Du Pont De Nemours And Company Angiogenesis-inhibitory tripeptides, compositions and their methods of use
RU2282446C2 (ru) 2001-04-10 2006-08-27 Ниппон Синяку Ко., Лтд. Лекарственное средство для хронического суставного ревматизма
DK1425028T3 (da) 2001-05-16 2010-03-01 Yeda Res & Dev Anvendelse af IL-18 inhibitorer til behandling eller forebyggelse af sepsis
US20030143228A1 (en) 2001-10-29 2003-07-31 Baylor College Of Medicine Human telomerase reverse transcriptase as a class-II restricted tumor-associated antigen
US7786084B2 (en) 2001-12-21 2010-08-31 Biotempt B.V. Treatment of burns
PL372928A1 (en) 2002-04-10 2005-08-08 Applied Research Systems Ars Holding N.V. Use of osteoprotegerin for the treatment and/or prevention of fibrotic disease
KR20050020987A (ko) 2002-06-12 2005-03-04 바이오겐 아이덱 엠에이 인코포레이티드 아데노신 수용체 길항제를 사용하여 허혈 재관류 손상을치료하는 방법
US20080025986A1 (en) 2003-06-06 2008-01-31 Ozes Osman N Methods of Treating Tnf-Mediated Disorders
KR20050040517A (ko) 2003-10-29 2005-05-03 주식회사 오리엔트 허혈성 질환에 대한 저항성을 나타내는 형질전환 생쥐
DE60303854T2 (de) 2003-11-11 2006-08-10 Mattern, Udo Nasenformulierung mit kontrollierter Freisetzung von Sexualhormonen
GB0426146D0 (en) 2004-11-29 2004-12-29 Bioxell Spa Therapeutic peptides and method
CA2646131C (en) 2005-03-21 2018-09-04 Vicus Therapeutics Spe 1, Llc Compositions and methods for ameliorating cachexia
KR20080084818A (ko) 2005-11-25 2008-09-19 각고호우징 게이오기주크 전립선암 치료제
AU2006325030B2 (en) 2005-12-16 2012-07-26 Cellectis Cell penetrating peptide conjugates for delivering nucleic acids into cells
WO2007097561A1 (en) 2006-02-20 2007-08-30 Ewha University - Industry Collaboration Foundation Peptide having cell membrane penetrating activity
CN101490080A (zh) 2006-07-24 2009-07-22 为人技术株式会社 用于缓解和治疗缺血性病症的药物组合物及其输送方法
CA2676797C (en) 2007-01-29 2014-04-22 Dae Woong Jo Novel macromolecule transduction domains and methods for identification and uses thereof
MY150234A (en) 2007-06-29 2013-12-31 Ahn Gook Pharmaceutical Company Ltd Predictive markers for ovarian cancer
MX2010001684A (es) 2007-08-15 2010-04-21 Amunix Inc Composiciones y metodos para modificar propiedades de polipeptidos biologicamente activos.
WO2009025871A1 (en) 2007-08-23 2009-02-26 University Of Medicine And Dentistry Of Nj Telomerase reverse transcriptase variant
WO2009054996A2 (en) 2007-10-25 2009-04-30 Genelux Corporation Systems and methods for viral therapy
GB2455539B (en) 2007-12-12 2012-01-18 Cambridge Entpr Ltd Anti-inflammatory compositions and combinations
TW200946541A (en) * 2008-03-27 2009-11-16 Idenix Pharmaceuticals Inc Solid forms of an anti-HIV phosphoindole compound
WO2010003520A2 (en) 2008-06-16 2010-01-14 Genovax S.R.L. Anti-tumor immunotherapy
US8252282B2 (en) 2008-06-19 2012-08-28 University Of Medicine & Dentistry Of New Jersey Nuclear telomerase reverse transcriptase variant
ES2334315B1 (es) 2008-07-29 2011-02-28 Universitat Pompeu Fabra Peptidos con capacidad de penetracion celular y sus usos.
JP5674661B2 (ja) * 2008-08-20 2015-02-25 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. エチニル置換ピリジンおよびピリミジン誘導体ならびにそれらのウイルス感染の治療における使用
US20110183925A1 (en) 2008-09-22 2011-07-28 Nisshin Pharma Inc. Anti-inflammatory peptide
KR101169030B1 (ko) 2009-01-21 2012-07-26 애니젠 주식회사 신규한 세포막 투과 도메인 및 이를 포함하는 세포내 전달 시스템
EP2428211A4 (en) 2009-05-07 2013-04-03 Moon & J Inc PHARMACEUTICAL COMPOSITION FOR THE PREVENTION OR TREATMENT OF NEURAL DAMAGE AND NEUROLOGICAL DISEASES
EP2251028A1 (en) 2009-05-12 2010-11-17 Biocompatibles Uk Ltd. Treatment of eye diseases using encapsulated cells encoding and secreting an anti-angiogenic factor and/or a neuroprotective factor
US7928067B2 (en) 2009-05-14 2011-04-19 Ischemix Llc Compositions and methods for treating ischemia and ischemia-reperfusion injury
BRPI1008230B1 (pt) 2009-05-20 2019-05-28 Toray Industries, Inc. Peptídeo de penetração celular e composição farmacêutica
KR20110057049A (ko) 2009-11-23 2011-05-31 박의신 기능성 전립선염 치료제
KR20110062943A (ko) 2009-12-04 2011-06-10 주식회사종근당 퀴나졸린 유도체를 유효성분으로 하는 전립선 비대증 예방 또는 치료제
ES2664866T3 (es) 2010-01-11 2018-04-23 Curna, Inc. Tratamiento de enfermedades relacionadas con la globulina fijadora de hormonas sexuales (shbg) mediante inhibición del transcrito antisentido natural a shbg
EP2536830B1 (en) * 2010-02-16 2019-07-17 Ultimovacs AS Polypeptides
FR2960542B1 (fr) 2010-05-27 2012-08-17 Esther Suzy Arlette Fellous Peptide en tant que medicament, en particulier pour le traitement du cancer
KR101263212B1 (ko) 2010-05-28 2013-05-10 성신여자대학교 산학협력단 신규한 세포막 투과성 펩타이드 및 그의 용도
WO2011150493A1 (en) 2010-05-30 2011-12-08 The Governing Council Of The University Of Toronto Mitochondrial penetrating peptides as carriers for antimicrobials
WO2011155803A2 (ko) 2010-06-11 2011-12-15 아주대학교산학협력단 청각보호 작용을 하는 신규 화합물
KR101348284B1 (ko) 2010-09-09 2014-01-03 주식회사 나이벡 인간 유래 세포 투과성 펩타이드와 생리활성 펩타이드 결합체 및 그 용도
US20120208755A1 (en) 2011-02-16 2012-08-16 Intarcia Therapeutics, Inc. Compositions, Devices and Methods of Use Thereof for the Treatment of Cancers
KR20120121196A (ko) 2011-04-26 2012-11-05 주식회사 글루칸 관절염 치료제
KR20120133661A (ko) 2011-05-31 2012-12-11 주식회사 바이오포트코리아 아스타잔틴을 포함하는 항염증제
KR101288053B1 (ko) 2011-07-04 2013-07-23 동국대학교 산학협력단 필발 추출물을 유효성분으로 포함하는 내이손상 예방 및 치료용 조성물
KR101361445B1 (ko) 2011-12-26 2014-02-12 성균관대학교산학협력단 펩타이드, 5-플루오로우라실, 및 성숙수지상세포를 포함하는 암 치료용 약학적 조성물
DE13746292T1 (de) 2012-02-10 2014-10-30 Hakushinkouseikai Foundation Proliferationsmittel für monozyten, kulturmedium zur proliferation von monozyten, verfahren zur herstellung von monozyten, verfahren zur herstellung dendritischer zellen und verfahren zur herstellung eines impfstoffs mit dendritischen zellen
KR102041381B1 (ko) 2012-03-12 2019-11-27 젬백스 에이에스 능동적인 면역치료법을 이용한 비-소세포성 폐암의 치료
CN104507489B (zh) 2012-05-11 2016-07-13 杰姆维克斯&凯尔有限公司 用于预防和治疗类风湿性关节炎的组合物
EP3428181A3 (en) 2012-05-11 2019-02-20 KAEL-GemVax Co., Ltd. Anti-inflammatory peptides and composition comprising the same
EP2873678B8 (en) 2012-07-11 2024-07-17 Gemvax & Kael Co., Ltd. Conjugate comprising a cell-penetrating peptide and compositions comprising same
US20150125438A1 (en) 2012-07-20 2015-05-07 Sang Jae Kim Anti-Inflammatory Peptides and Composition Comprising the Same
US9631184B2 (en) 2012-09-19 2017-04-25 Gemvax & Kael Co., Ltd. Cell penetrating peptide, conjugate comprising same, and composition comprising conjugate
ES2758451T3 (es) 2012-09-19 2020-05-05 Gemvax & Kael Co Ltd Péptido de penetración celular, conjugado que comprende el mismo y composición que comprende el conjugado
KR102578890B1 (ko) 2012-09-19 2023-09-18 주식회사 젬백스앤카엘 세포 투과성 펩티드, 그를 포함한 컨쥬게이트 및 그를 포함한 조성물
PT2897620T (pt) 2012-09-21 2020-09-03 Intensity Therapeutics Inc Método de tratamento de cancro
CN102875657B (zh) * 2012-10-22 2014-04-09 南京工业大学 一种制备端粒酶多肽疫苗的方法
KR20140104288A (ko) 2013-02-20 2014-08-28 주식회사 카엘젬백스 Tnf-알파 저해제
IL296870A (en) 2013-02-22 2022-11-01 Univ Leland Stanford Junior Nucleic acids encoding telomerase reverse transcriptase, preparations containing them and their uses
KR102258864B1 (ko) 2013-04-19 2021-06-01 주식회사 젬백스앤카엘 허혈성 손상 치료 및 예방용 조성물
JP6059405B2 (ja) 2013-06-07 2017-01-11 ジェムバックス アンド カエル カンパニー,リミティド 癌の免疫学的治療に有用な生物学的マーカー
EP3011967B1 (en) 2013-06-21 2020-06-17 Gemvax & Kael Co., Ltd. Hormone secretion regulator, composition containing same, and method for controlling hormone secretion using same
KR102166544B1 (ko) 2013-10-23 2020-10-16 주식회사 젬백스앤카엘 전립선 비대증 치료 및 예방용 조성물
WO2015076621A1 (ko) 2013-11-22 2015-05-28 주식회사 카엘젬백스 혈관 신생 억제 활성을 가지는 펩티드 및 이를 포함하는 조성물
EP3085380B1 (en) 2013-12-17 2020-06-17 Gemvax & Kael Co., Ltd. Composition for treating prostate cancer
KR102373603B1 (ko) 2014-04-11 2022-03-14 주식회사 젬백스앤카엘 섬유증 억제 활성을 가지는 펩티드 및 이를 포함하는 조성물
ES2962532T3 (es) 2014-04-30 2024-03-19 Gemvax & Kael Co Ltd Composición para el trasplante de órganos, tejidos o células, kit y procedimiento de trasplante
KR102413243B1 (ko) 2014-12-23 2022-06-27 주식회사 젬백스앤카엘 안질환 치료 펩티드 및 이를 포함하는 안질환 치료용 조성물
CN107405380B (zh) 2015-02-27 2021-04-20 珍白斯凯尔有限公司 用于预防听觉损伤的肽及其包含该肽的组合物
EP3372613A4 (en) 2015-11-03 2019-07-10 Gemvax & Kael Co., Ltd. PEPTIDE WITH NERVE DAMAGE PREVENTION AND REGENERATION EFFECT AND COMPOSITION THEREOF
KR20170054310A (ko) 2015-11-09 2017-05-17 주식회사 젬백스앤카엘 텔로머라제 유래 펩티드를 포함하는 수지상세포 치료제 및 면역 치료제, 및 이를 사용하는 치료방법
WO2017176087A1 (ko) 2016-04-07 2017-10-12 주식회사 젬백스앤카엘 텔로머라제 활성 증가 및 텔로미어 연장 효능을 가지는 펩티드 및 이를 포함하는 조성물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5491315B2 (ja) * 1998-07-08 2014-05-14 ゲムヴァックス・アーエス テロメラーゼ由来抗原ペプチド
KR20060065588A (ko) * 2003-06-25 2006-06-14 가부시키가이샤 캔버스 면역 조절 활성, 항염증 활성 및 항바이러스 활성을 지니는펩티드 및 펩티도미메틱
KR20140037698A (ko) * 2012-09-19 2014-03-27 주식회사 카엘젬백스 텔로머라제 펩티드를 포함하는 항균 또는 항바이러스용 조성물

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FAUCE ET AL.: "Telomerase-based Pharmacologic Enhancement of Antiviral Function of Human CD 8+ T Lymphocytes", THE JOURNAL OF IMMUNOLOGY, vol. 181, no. 10, 2008, pages 7400 - 7406, XP002570921 *
FONTANES ET AL.: "A Cell -permeable Peptide Inhibits Hepatitis C Virus Replication by Sequestering IRES Transacting Factors", VIROLOGY, vol. 394, no. 1, 2009, pages 82 - 90, XP026705072 *
KIM ET AL.: "Inhibition of HIV-1 Reactivation by a Telomerase-derived Peptide in a HSP90-dependent Manner", SCIENTIFIC REPORTS, vol. 6, no. 28896, 1 July 2016 (2016-07-01), pages 1 - 10, XP055343043 *
LEE ET AL.: "A Telomerase-derived Peptide Regulates Reactive Oxygen Species and Hepatitis C Virus RNA Replication in HCV-infected Cells Via Heat Shock Protein 90", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 471, no. 1, pages 156 - 162, XP029430818 *
See also references of EP3318265A4 *

Also Published As

Publication number Publication date
ES2886946T3 (es) 2021-12-21
JP2018526332A (ja) 2018-09-13
JP6923453B2 (ja) 2021-08-18
KR20180016410A (ko) 2018-02-14
EP3318265B1 (en) 2021-08-18
EP3318265A1 (en) 2018-05-09
JP2021175746A (ja) 2021-11-04
US20190032032A1 (en) 2019-01-31
CN107847551B (zh) 2022-02-08
CN107847551A (zh) 2018-03-27
EP3318265A4 (en) 2019-03-27
KR102638286B1 (ko) 2024-02-20
US11015179B2 (en) 2021-05-25
JP7218403B2 (ja) 2023-02-06

Similar Documents

Publication Publication Date Title
WO2017003267A1 (ko) 항바이러스 활성 효능을 가지는 펩티드 및 이를 포함하는 조성물
WO2013169077A1 (ko) 악액질 예방 또는 치료용 조성물
WO2017078440A1 (ko) 신경세포 손실 예방 및 재생 효능을 가지는 펩티드 및 이를 포함하는 조성물
WO2017034347A1 (en) Improved cell-permeable (icp)-socs3 recombinant protein and uses thereof
WO2015093854A1 (ko) 전립선 암 치료용 조성물
WO2011142514A1 (ko) Pias3을 유효성분으로 포함하는 암 또는 면역질환의 예방 또는 치료용 조성물
WO2021060791A1 (ko) 항-바이러스 활성이 향상된 나노천공자
WO2018110980A1 (ko) B형 간염 예방 또는 치료용 의약 조성물
WO2015126129A2 (ko) C형 간염 바이러스의 게놈 복제의 선택적 저해 활성을 갖는 레스베라트롤 다량체 및 이의 용도
WO2015002512A1 (ko) 뎅기 바이러스 특이적 siRNA, 그러한 siRNA를 포함하는 이중나선 올리고 RNA 구조체 및 이를 포함하는 뎅기 바이러스 증식 억제용 조성물
WO2016199964A1 (ko) 분리된 비멘틴 유래 펩타이드에 특이적으로 결합하는 항체 또는 상기 펩타이드의 결합 단편
WO2018101745A1 (en) Antiviral composition against hepatitis b virus, including interleukin-32 as active ingredient
WO2019240503A1 (ko) B형 간염 예방 또는 치료용 조성물
WO2019212312A1 (ko) 키메라 지카바이러스 백신
WO2022119380A1 (ko) 신규한 ace2 변이체 및 그의 이용
WO2022015115A1 (ko) 3중 작용성 지속형 결합체 또는 3중 작용제를 포함하는 조합물의 치료학적 용도
WO2020214003A1 (ko) B형 간염 바이러스의 증식을 억제하는 조성물 및 이의 방법
WO2019132610A1 (ko) Baf57 재조합 융합 단백질 및 이의 용도
WO2018038539A2 (ko) Eprs 단백질 또는 이의 단편을 포함하는 항rna-바이러스용 조성물
WO2022245136A1 (ko) 뉴클레오린-결합 펩타이드를 포함하는 항바이러스 조성물
WO2016200220A1 (ko) 분리된 비멘틴 유래 펩타이드에 특이적으로 결합하는 항체 또는 상기 펩타이드의 결합 단편
WO2023085882A1 (ko) 코로나바이러스 감염성 질환의 치료 또는 예방을 위한 인터루킨-7 융합단백질의 투여 요법
WO2022080991A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체의 호흡기 감염 질환의 후유증의 치료 용도
WO2022005252A1 (ko) 신규한 프로탁 키메라 화합물, 이를 포함하는 표적 단백질 분해를 통한 질환의 예방, 개선 또는 치료용 약학적 조성물.
WO2022050521A1 (ko) Ace2 결합력이 감소된 코로나바이러스 유래 수용체 결합 도메인 변이체 및 이를 포함하는 백신 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16818300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177036109

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017567630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016818300

Country of ref document: EP