WO2019212312A1 - 키메라 지카바이러스 백신 - Google Patents
키메라 지카바이러스 백신 Download PDFInfo
- Publication number
- WO2019212312A1 WO2019212312A1 PCT/KR2019/005374 KR2019005374W WO2019212312A1 WO 2019212312 A1 WO2019212312 A1 WO 2019212312A1 KR 2019005374 W KR2019005374 W KR 2019005374W WO 2019212312 A1 WO2019212312 A1 WO 2019212312A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zika virus
- chimeric
- virus
- seq
- protein
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/03—Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/24011—Flaviviridae
- C12N2770/24111—Flavivirus, e.g. yellow fever virus, dengue, JEV
- C12N2770/24134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to a vaccine, and more particularly to a vaccine capable of preventing Zika virus infection.
- Zika Zika is a disease transmitted to humans by Egyptian forest mosquitoes and is caused by the Zika virus belonging to the flavivirus. Since it was first discovered in rhesus monkeys in Kenya in 1947, human infection cases have been reported in Africa and Kenya in 1952. Human infections occurred mainly in Asia and Africa between 1960 and 1980, and the area of infection gradually expanded, and is now occurring in countries around the Americas and the Pacific. Zika's massive outbreak occurred on Yap Island in Micronesia in 2007, and then again on a large scale in 2013 in French Polynesia. It then began to spread in New Caledonia in 2014 and was pandemic in most countries of the Americas, including the United States and Brazil, between 2015 and 2016.
- Symptoms include headache, muscle / joint pain, skin rash, conjunctivitis, headache, etc. within a few days, and it is difficult to distinguish between diseases such as dengue fever and the symptoms.
- Most of Zika virus infections are asymptomatic or mild and can only be confirmed by molecular diagnosis. Some of the infected patients have severe disease and mortality rates are low. In particular, it is known that infection during pregnancy affects fetal neurodevelopment and increases the likelihood of giving birth defects (approximately 8%) with microcephaly disease. Also suspected to be an autoimmune disease in infected people It is reported to cause syndrome and neuropathy.
- Zika virus belongs to Flaviviridae and includes dengue virus, yellow fever virus, West Nile virus, Japanese encephalitis virus and tick-borne encephalitis virus. Among them, yellow fever virus has been developed and used as a vaccine for a long time. Around 1930, attenuated live vaccine was first developed and commercialized.
- Live virus vaccines are generally known to have the highest vaccine efficacy than other vaccine types. In addition to the ability to induce antibodies, cellular immune induction is excellent, and the number of administration is usually 1 to 2 times less than other vaccine types.
- the inoculation is often limited to patients with weak immunity, pregnant women, the elderly, and infants. Therefore, it is very important to secure safety in order to prepare live virus as a preventive vaccine.
- Attenuation and ensuring safety are of paramount importance because of the potential for severe neurological disorders such as syndrome, microcephaly, neuropathy and congenital malformations.
- the present invention seeks to provide an attenuated Zikavirus immunogenic composition.
- the present invention is to provide an immunogenic composition capable of preventing or treating diseases, diseases, etc. caused by Zika virus infection.
- the present invention is to provide a Zika virus immunity excellent method using the immunogenic composition.
- the present invention aims to provide a safe and excellent Zika virus vaccine using the attenuated yellow fever virus line and the chimeric gene of Zika virus.
- the present invention seeks to provide an attenuated Zikavirus immunogenic composition and a vaccine for preventing Zikavirus infection comprising the same.
- the present invention seeks to provide new viral strains for the purpose of preventing, ameliorating and / or treating Zikavirus infections.
- the present invention is to provide a method for producing chimeric Zika virus using reverse transcription gene technology.
- Attenuated live chimeric Zika virus Attenuated live chimeric Zika virus.
- genome refers to the total sequence of a gene of an individual, and refers to a collection of all genetic information of an organism.
- genome of a virus is used to encompass all the genetic information sequences throughout the virus.
- a "gene” may be understood as a portion encoding a protein and may be DNA or RNA.
- introduction means that a new one is added from the original one, and the introduction may cause mutation of the gene, and deletion, substitution, or insertion may occur.
- a new gene has been introduced may mean that a part of the entire gene sequence possessed by the original individual may be substituted or inserted into a gene derived from the new individual. Due to this introduction, it may be longer, shorter, or maintained in length than the genome sequence of the original individual (eg, backbone).
- In one embodiment of the invention may provide a chimeric nucleic acid molecule for Zika virus immunity.
- the chimeric nucleic acid molecule may be provided in a form included in an immunogenic composition capable of inducing an immune response to Zikavirus infection or inducing an immune response.
- chimeric nucleic acid molecules described herein can be used separately from the chimeric zika virus.
- the chimeric nucleic acid molecule includes a major antigen gene of Zika virus, but some genes may be understood as genes of yellow fever virus.
- the main antigen gene can be understood as a gene encoding the structural protein of Zika virus.
- the chimeric Zika virus is a part or all of the gene encoding the structural protein in the genome of the yellow fever virus may have the possibility of proliferation by itself.
- the chimeric nucleic acid molecule may preferably have any one of SEQ ID NOs: 19 to 24.
- the chimeric nucleic acid molecule may be a TM-coding gene of the pre-membrane (prM) protein derived from the yellow fever virus 17D vaccine strain.
- the chimeric nucleic acid molecule is i) a gene encoded to express the pre-membrane (prM) protein of Zika virus, starting from 5 'to 3', ii) the pre-membrane (prM) protein of yellow fever virus 17D vaccine strain.
- the signal peptide located 5 'upstream of the i) pre-membrane (prM) protein gene of the chimeric nucleic acid molecule may be a gene of yellow fever virus 17D vaccine strain, but is not limited thereto. May be a derived signal peptide.
- the chimeric nucleic acid molecule may preferably have a nucleotide sequence of any one of SEQ ID NOs: 25 to 28.
- a chimeric Zika virus nucleic acid comprising a base sequence encoding the structural protein of the Zika virus, and comprising a base sequence encoding a non-structural protein of the attenuated yellow fever virus.
- the chimeric zika virus is a structural protein of Zika virus based on the 5'-non-coding sequence, the capsid protein coding sequence, the non-structural protein coding sequence, and the 3'-non-coding sequence of YF 17D.
- the coding sequence of the -M and E proteins can provide a chimeric virus nucleotide sequence in order.
- the attenuated yellow fever virus may be a yellow fever virus 17D vaccine strain.
- the base sequence encoding the structural protein of the Zika virus may be a nucleic acid encoding any one or more of pre-membrane (prM), and envelope (E).
- the sequence encoding the pr-M and E proteins of the receptor yellow fever virus 17D vaccine strain is replaced with the corresponding sequence of the Zika virus, such that the nucleic acid in which the genetic backbone of the YF virus is modified or the chimeric Zika virus into which the nucleic acid has been introduced is an immunogen. It can be used as.
- the chimeric zika virus of the present invention may have an amino acid sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, or 15.
- the chimeric zika virus of the present invention may have an amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, or 16.
- At least 92%, at least 94%, at least 96%, at least 98%, at least 99%, or at least 100% of the sequence sequences that can be used to prepare chimeric zikaviruses described herein are immunogens. It can be used for the production of chimeric Zika virus, which is used directly or as an immunogen.
- chimeric zikaviruses are non-structural with one long open reading frame (ie, the structural protein capsid (C), precursor-membrane (pr-M, precursor-Membrane) and envelope (E) proteins). Translation and the post-translational series of post-translational proteolytic cleavage.
- the chimeric Zika virus of the present invention may be replaced with pr-M and E proteins of YF17D with pr-M and E proteins of Zika virus.
- the preparation of chimeric zika viruses of one embodiment of the present invention may include forming a novel junction between the capsid and pre-membrane proteins of the two different flaviviruses, the envelope protein and the nonstructural region (NS1). have.
- the chimeric viral base sequence of the present invention is provided in a manner similar to the general flavivirus base sequence structure, and may further substitute a structural protein or change a part of the protein sequence as appropriate for protein expression and virion production.
- Additional protein sequence substitutions and mutations can be applied using various combinations, deletions, insertions, etc. of the sequences of capsid proteins, signal peptides, TM regions of prM, TM regions of E proteins.
- the signal peptide is located upstream of the gene for precursor-membrane (pr-M) protein expression and is recognized by a peptidase to recognize the precursor-membrane. It can be understood to mean a site that can be cleaved with (pr-M) protein.
- Such protein sequence variation may affect the level of virus proliferation, the level of attenuation of the vaccine strain.
- In one embodiment of the present invention can provide a chimeric Zika virus for inducing an immune response to Zika virus.
- the chimeric Zika virus is a foreign gene introduced into the genome of the attenuated yellow fever virus, i) pre-membrane (prM) protein and its transmembrane protein region of the attenuated yellow fever virus, and ii) envelope (E) protein And its transmembrane protein region is derived from the i) pre-membrane (prM) protein and its transmembrane protein region of wild-type Zika virus, and ii) the envelope (E) protein and its transmembrane protein region.
- said chimeric Zika virus is a transmembrane protein region is maintained of the 17D YF virus.
- pre-membrane (prM), and envelope (E) proteins may be provided as derived from wild type Zikavirus.
- the chimeric Zika virus may be substituted with the capsid protein of the attenuated yellow fever virus (C) protein of Zika virus.
- the chimeric Zika virus may be substituted for a portion of the envelope (E) protein of the structural protein, a portion of the E protein may be the amino acid No. 792 of the chimeric Zika virus is substituted from S to G.
- sequence of the 102-121 amino acid position of the chimeric Zika virus may be substituted with GADTSVGIVGLLLTTAMA in SHDVLTVQFLILGMLLMTGG.
- the sequence at amino acid position 104-121 of the chimeric zika virus may be substituted for GADTSVGIVGLLLTTAMA in DVLTVQFLILGMLLMTGG.
- the chimeric Zika virus may be provided between the signal peptide of the chimeric Zika virus and the pr-M amino acid sequence (121-122).
- the inserted amino acid may preferably be A.
- the amino acid A when the amino acid A was inserted into the site, it could be safe at the time of immunization, and less side effects can be observed.
- the chimeric Zika virus of the TGG (119-121) amino acid of the signal peptide of the chimeric Zika virus can be provided.
- TGG (119-121) amino acids of the signal peptide of the chimeric Zika virus may be substituted with AMA.
- the inventors of the present invention confirmed that when the amino acid is substituted as described above, fewer side effects that may occur when inoculating live vaccines prepared using wild-type Zika virus were observed, and a safe immune-induced response can be expected in the body.
- the present invention may provide a Zika virus immunogenic composition capable of preventing, treating or ameliorating Zika virus infection.
- the immunogenic composition can be understood as a vaccine.
- the present invention can provide a composition having both safety and immunogenicity. That is, the present invention may provide a composition having high safety while introducing an chimeric Zika virus according to an embodiment of the present invention into the body, while having an immuno-inducing action against Zika virus infection.
- a chimeric Zika virus immunogenic composition comprising the chimeric Zika virus and immunologically acceptable excipients.
- the immunologically acceptable excipients can be used without limitation as long as the excipients used to prepare vaccines in the art.
- the present invention may be provided a method of inducing an immune response by administering to the subject the immunogenic composition comprising a pharmaceutically effective amount.
- the term “pharmaceutically effective amount” means an amount sufficient to achieve a prophylactic effect against Zikavirus infection.
- a Zika virus vaccine comprising the chimeric Zika virus and a pharmaceutically acceptable excipient, which is administered to an animal to induce immunity to Zika virus in the animal body.
- the vaccine composition according to the present invention may further comprise a pharmaceutically acceptable carrier or excipient.
- Pharmaceutically acceptable carriers or excipients according to the invention are commonly used in pharmaceutical formulations and vaccines to improve the stability, sterilization and deliverability of the active agent and generate any secondary reactions in humans, eg allergic reactions. Any solvent, dispersion medium, or the like that is not intended. Excipients are selected based on the selected pharmaceutical form, method of administration and route. Suitable excipients and conditions associated with pharmaceutical formulations are well known to those skilled in the art.
- Examples of pharmaceutically acceptable excipients may include water, PBS buffer solution and 0.3% glycine solution.
- Vaccine compositions for use in the methods of the invention include pharmaceutically acceptable auxiliaries required to bring them closer to physiological conditions, such as pH adjusters and buffers, wetting agents, etc., for example sodium acetate, sodium lactate, sodium Chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, human serum albumin, essential amino acids, non-essential amino acids, L-arginine hydrochlorate, saccharose, D-trehalose dehydrate, sorbitol, tris ( Hydroxymethyl) aminomethane and / or urea.
- the vaccine composition may optionally include pharmaceutically acceptable additives including, for example, diluents, binders, stabilizers, and preservatives.
- Stabilizers can be used without limitation so long as they are generally used in vaccine compositions.
- the vaccine of the present invention may be prepared in unit dose form by being formulated with a pharmaceutically acceptable carrier and / or excipient according to a method which can be easily carried out by those skilled in the art. It can be prepared by incorporation into a multi-dose container.
- the formulations may be in the form of solutions, suspensions or emulsions in oils or aqueous media or in the form of extracts, powders, granules, tablets or capsules, and may further include dispersants or stabilizers, but are not limited to such formulations.
- Pharmaceutically acceptable carriers included in the vaccine of the present invention are conventionally used in the preparation, lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate , Microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, and the like. no.
- the pharmaceutical composition of the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like.
- the animal can be used without limitation, for example can be a mammal, preferably human.
- Zika virus immunogenic composition for use in the treatment or prevention of diseases associated with Zika virus infection.
- Diseases associated with the Zika virus infection Including severe neurological disorders such as syndrome, microcephaly, neuropathy and congenital malformations, as well as symptoms associated with Zika fever from Zika virus infections such as fever, rash, joint pain, eye redness, myalgia, headache, eye pain and vomiting It is possible to do so and is not limited to the above diseases.
- In one embodiment of the present invention may be provided a method of inducing an immune response to Zika virus by administering the immunogenic composition to a subject.
- the vaccine compositions of the present invention are formulated to suit the intended route of administration.
- suitable routes of administration may include, for example, intramuscular, transdermal, subcutaneous, mucosal or intradermal administration.
- the route of administration may be administered by intramuscular route.
- In one embodiment of the present invention can provide a use of the Zika virus immunogenic composition for the treatment or prevention of diseases associated with Zika virus infection.
- the use of the Zika virus immunogenic composition for inducing an immune response to Zika virus infection patients can be provided.
- the volume of the vaccine composition of the present invention to be administered may depend on the method of administration.
- the volume is generally 0.1 to 1.0 ml, preferably about 0.5 ml.
- the invention also provides a kit comprising the vaccine composition of the invention and instructions for use of said vaccine composition in a method of protecting a human subject against Zikavirus.
- Chimeric Zikavirus vaccines or immunogenic compositions of the present invention can be used for the prevention or treatment, preferably the prevention of various diseases caused by Zicavirus infection.
- In one embodiment of the present invention provides a method for producing an immunogenic composition comprising a chimeric Zika virus.
- the preparation method comprises the steps of i) preparing the attenuated yellow fever virus 17D vaccine strain,
- pCC1BAC TM may be preferably used as the vector used in the cloning to the vector.
- the vector is a vector capable of copy number control. Usually, the vector can have one copy and is easy to amplify the copy in a short time.
- An embodiment of the present invention may form a pCC1 (pCC1BAC TM) -chimeric Zikavirus vector using the pCC1 vector.
- the 17D-Zika chimeric genome cloned in the vector of the present invention has a large size, it divides into several fragments and proceeds with DNA synthesis in vitro to clone the gene.
- 17D-Zika chimeric genome of the present invention is synthesized by arbitrarily divided into the size of, for example, 1) 3kbp, 2) 3kbp, 3) 3kbp, 4) 3kbp and the connection of 1) and 2) (A), 3) (B) and 4), and (A) and (B) can produce approximately 11 kbp in total length, but DNA fragments are not necessarily limited to these sizes.
- the size of the genome can be prepared by a conventional method for cutting full length DNA and a conventional method for connecting DNA fragments to full length DNA in the art, and the method of DNA synthesis and cutting is not particularly limited.
- the 17D-Zika chimeric genome cloned into the vector comprises at least one nucleotide sequence selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, and 16.
- the pCC1-chimeric Zikavirus vector of the present invention is a restriction enzyme AscI coding sequence (5 ⁇ -GGCGCGCC) at the 5 'end sequentially; T7 promoter sequence (TAATACGACTCACTATA); transcription start codon (GG); Nucleic acids of any one chimeric zika virus selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, and 16;
- the restriction enzyme SmaI-NotI coding sequence (3'-GGGCCCCGCCGGCG) may be included at the 3 'end.
- In one embodiment of the present invention may provide a method for producing chimeric Zika virus having immunogenicity against Zika virus infection.
- the preparation method includes (c) adding a T7 promoter sequence (TAATACGACTCACTATA) and a transcription start codon (GG) at the 5 'end of the chimeric Zikavirus gene produced in step (b), and ascI ( 5′-GGCGCGCC) and SmaI-NotI (3′-GGGCCCCGCCGGCG) may be added to prepare for cloning into the vector.
- TAATACGACTCACTATA a transcription start codon
- GG transcription start codon
- the present invention has a prophylactic effect against Zika virus infection.
- the present invention provides an attenuated chimeric zika virus vaccine.
- Chimeric Zikavirus vaccines of the present invention can achieve attenuation without the need for a long time and a number of processes, particularly with respect to the attenuating problem that is particularly problematic in the case of live Zikavirus vaccines.
- the present invention It is possible to provide a highly safe Zikavirus vaccine that can prevent severe neurological diseases such as syndrome, microcephaly, neuropathy and congenital malformations.
- the chimeric Zika virus of the present invention When used as a vaccine, there are few side effects that may occur in the body, and thus it is excellent to provide a live Zika virus vaccine which has been difficult to use due to the side effects.
- Vaccine of the present invention can prevent the reversion of the disease and induce a mesophase safe compared to the live vaccine prepared using wild-type Zika virus.
- the present invention may be effective in the defense of disease through the induction of effective cellular immunity.
- the present invention can induce the response of cytotoxic lymphocytes (CTL) can effectively prevent Zika virus infection.
- CTL cytotoxic lymphocytes
- the productivity of the chimeric Zika virus in the culture process can be increased, and antigenicity can be increased during in vivo inoculation.
- the present invention can help stabilize structural proteins of chimeric Zika virus by using TM regions of prM and E proteins of YFV. In addition, it is possible to increase the productivity and thermal stability of the chimeric Zika virus.
- FIG. 1 is a diagram illustrating a chimera virus production process.
- FIG. 2 is the gene structure of the chimeric Zika virus substituted with the yellow fever 17D vaccine strain and Zika virus major antigen gene used as a platform for chimeric virus production.
- Chimeric Zikavirus A corresponds to construct 1 of FIG. 3 and is the basic template of chimeric Zikavirus.
- Chimeric Zicavirus B is a form in which the TM region of prM and the TM region of E protein of chimeric Zicavirus A are replaced with 17D instead of Zica virus.
- Chimeric Zikavirus C is a form in which the capsid protein of 17D in Chimeric Zicavirus A is substituted with the capsid protein of Zica virus.
- Figure 3 is an example of sequence variation of the signal peptide, prM, E protein that can be applied when the prM and E protein insertion of Zika virus in the 17D backbone. Six variants were designed from Construct 1 to 6.
- Figure 4 shows the chimeric Zika virus produced through cell insertion of the gene using the immunochemical detection method (A), Western blot (B), PCR amplification method (C), respectively, E protein expression of Zika virus and whether the 17D gene is accompanied Is the result of checking.
- 5 is a result of verifying the attenuated trait of chimeric Zika virus in Vero cells compared to wild-type virus. Plaque forming (A), cytopathic effect (B) and cultured virus amount (C) were measured.
- Figure 6 is a result of verifying the attenuated trait of chimeric Zika virus in MRC-5 cells compared to wild-type virus. Plaque forming (A), cytopathic effect (B) and cultured virus amount (C) were measured.
- ABC59-7 is a result of infecting wild type Zika virus and chimeric Zica virus by concentration in fertilized eggs and measuring mortality according to time after infection (DPI: Day Post Infection).
- ABC59-1, ABC59-2, and ABC59-3 show the results of 2 ⁇ 10 2 pfu, 2 ⁇ 10 3 pfu, and 5 ⁇ 10 3 pfu injections of wild type Zikavirus PRVABC59, respectively.
- cZIKV-1, cZIKV-2 and cZIKV-3 show the results of 2 ⁇ 10 2 pfu, 2 ⁇ 10 3 pfu, and 5 ⁇ 10 3 pfu injections of chimeric Zikavirus, respectively.
- A) is the result of measuring the body weight (BW) of the group after infection by virus concentration and B) is the result of measuring the amount of virus in blood after infection by q-PCR.
- Immune 2-cZIKV (chimeric zika virus) 10 4 pfu / 200 ul
- Figure 10 shows the change in weight of Type I IFN KO mice after infection with chimeric Zikavirus A in attenuation tests in Type I IFN KO mice.
- Figure 13 shows the extent of virus proliferation in Type I IFN KO mice. Attenuation of chimeric Zikavirus A can be confirmed.
- Figure 14 is the result of confirming the immune effect in Type I IFN KO mice of chimeric Zika virus A.
- Figure 15 shows the weight change over time in Type I IFN KO mice inoculated with chimeric zikavirus A.
- G1- Mock G2- 10 2 pfu / mouse, G3- 10 3 pfu / mouse, G4- 10 4 pfu / mouse, G5- 10 5 pfu / mouse
- Figure 16 shows virus proliferation and survival for infection of wild-type PRVABC59 in Type I IFN KO mice inoculated with chimeric Zikavirus A.
- FIG. 17 shows the results of Vero cell culture of chimeric zikaviruses A and B.
- Figure 18 shows the results of the thermostability test of chimeric Zika virus A and B.
- Figure 19 shows the weight change, virus proliferation, survival rate of Type I IFN KO mice infected with chimeric Zikavirus A and B and wild type virus PRVABC59.
- FIG. 20 shows survival, total and neutralizing antibody titers for wild type PRVABC59 infection in Type I IFN knock out mice immunized with chimeric Zikavirus A and B.
- FIG. 20 shows survival, total and neutralizing antibody titers for wild type PRVABC59 infection in Type I IFN knock out mice immunized with chimeric Zikavirus A and B.
- ATCC VR-1843 wild-type Zika virus was prepared.
- the sequence can be readily obtained via Genbank No: KU365778.1 (Virus strain; BeH819015).
- Yellow fever vaccine strain 17D virus was prepared. It is readily available via GenBank No: X03700.1.
- Zika virus was used to analyze the gene of Genbank No: KU365778.1 (Virus strain; BeH819015) published in NCBI, 470 ⁇ 964 nt site is pr-M gene, 965 ⁇ 2476 nt site is E protein gene It was. Based on the identified gene structure, the 17D gene was prototyped and replaced with the homologous gene of Zika virus instead of the 17D prM and E protein genes, thereby designing a 10907 bp chimeric Zika virus gene.
- the T7 promoter sequence (TAATACGACTCACTATA) and the transcription start codon (GG) were inserted in sequence at the 5 'end of the virus, and the restriction enzymes AscI (5 ⁇ -GGCGCGCC) and SmaI-NotI (3'-GGGCCCCGCCGGCG) were inserted at both ends. Each added.
- the designed sequence was a total of 10948 bp, and because of its large size, the gene was cloned by DNA synthesis in vitro by dividing into several fragments.
- the genes thus obtained were processed to connect the respective fragments to make a single gene, and the 10948 bp full length was finally cloned into the pCC1 vector (BAC cloning kit, Epicentre) to produce the pCC1-Chimeric ZIKV vector.
- the 17D virus and the Zika virus genes can be arranged in various combinations, or the original nucleotide sequence can be replaced with another nucleotide sequence to provide all or part amino acid sequence variations.
- a 17D-Zika chimeric full length genome (10907 bp) was designed in which the gene sequence encoding the corresponding 123-794 aa sequence of Zika virus was inserted instead of the 122-778 aa portion of the 17D protein sequence (Fig. Chimeric zika virus A).
- the prM and E proteins have transmembrane regions (TM, amino acid sequences that penetrate the lipid bilayer structure) at the C-terminal end. This part interacts with the capsid protein to form a viral globular structure that affects assembly and budding smoothly. Therefore, based on the chimeric Zika virus A of FIG. 2, the 17M E-protein TM was replaced with the pr-M TM sequence of 17D (NPFFAVTALTIAYLVGSNMTQRVVIALLVLAVGPAYS) instead of 253-289 aa, which is a prM TM.
- Chimeric Zikavirus B is designed by substitution with the sequence (LNWITKVIMGAVLIWVGINTRNMTMSMSMILVGVIMMFLSLGVGA). It has an amino acid sequence of SEQ ID NO: 13 and a nucleotide sequence of SEQ ID NO: 14.
- one of the structural genes carries a viral genome in the spherical space and interacts with the envelope (envelope) of the virus and plays a very important role in the formation of the viral structure. Therefore, instead of the 17D capsid gene used as a backbone in flavivirus chimera gene construction, the homologous Zikavirus capsid gene can be introduced together with the prM and E genes. Therefore, based on the chimeric Zika virus A of FIG.
- the 1 to 101 aa sequence portion is replaced with the capsid protein sequence of Zica virus (MKNPKKKSGGFRIVNMLKRGVARVSPFGGLKRLPAGLLLGHGPIRMVLAILAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKEKKRR).
- a flavivirus is translated from RNA into a protein that is cleaved by viral protease and host cellular protease and broken down into several proteins with separate functions.
- the amino acid sequence site from which each functional protein is cleaved can have a significant effect on the growth of the virus. Therefore, protease action may be affected in the hinge region where heterologous sequences are linked.
- sequence variation can be carried out so that the capsid and prM linkage sequences and pr-M linkage sequences facilitate cleavage of the protease.
- Construct 1 is the structure of chimeric Zika virus A of FIG. All variants can be constructed on a construct 1 basis. It has an amino acid sequence of SEQ ID NO: 1 and a nucleotide sequence of SEQ ID NO: 2.
- Construct 2 is a form in which amino acid 792 of the chimeric zika virus is substituted from S to G. It has an amino acid sequence of SEQ ID NO: 3 and a nucleotide sequence of SEQ ID NO: 4.
- Construct 3 is a form in which SHDVLTVQFLILGMLLMTGG, which is an amino acid sequence corresponding to a signal peptide (102-121 aa), is replaced with GADTSVGIVGLLLTTAMA.
- SHDVLTVQFLILGMLLMTGG which is an amino acid sequence corresponding to a signal peptide (102-121 aa)
- GADTSVGIVGLLLTTAMA The amino acid sequence of SEQ ID NO: 5 and the nucleotide sequence of SEQ ID NO: 6.
- Construct 4 is a form in which the DVLTVQFLILGMLLMTGG, the amino acid sequence corresponding to the signal peptide (104-121 aa), is replaced with GADTSVGIVGLLLTTAMA.
- Construct 5 is a form in which one amino acid A is inserted between the signal peptide of the construct 1 and the pr-M amino acid sequence (121-122 aa). It has an amino acid sequence of SEQ ID NO: 9 and a nucleotide sequence of SEQ ID NO: 10.
- Construct 6 is a form in which TGG (119-121 aa) of a signal peptide is substituted with three amino acids AMA. It has an amino acid sequence of SEQ ID NO: 11 and a nucleotide sequence of SEQ ID NO: 12.
- pCC1-Chimeric ZIKV vector is transformed into EPI300 competent cell (Epicentre) and mass produced.
- pCC1BAC TM is a vector capable of copy number control. It usually has one copy and can be amplified to 10-20 copies in a short time by the addition of an induction solution. Therefore, after inoculating Chloramphenicol-containing LB medium, 5 ml of culture medium was inoculated again in 50 ml of fresh LB medium for 24 hours, and induction solution (Epicentre) was added to recover bacteria with increased copy number of vector. From the harvested bacteria, plasmid purification is performed using midi prep kit (Qiagen).
- chimeric Zika virus DNA is amplified by PCR using pCC1-Chimeria ZIKV vector as a template.
- the polymerase used can synthesize a base of 10 kb or more, and it is easy to use a product having high efficiency and accuracy (for example, PrimeSTAR GXL DNA polymerse, Clontech).
- In vitro transcription using T7 RNA polymerase is carried out using the produced chimeric Zika virus DNA (HiScribe T7 kit, NEB). Remove all DNA used as template by adding DNase I, precipitate RNA at -20 °C for 20 minutes using LiCl, wash twice with 70% ethanol and dry and dissolve RNA in RNase free purified water. RNA is very easy to degrade, so DEPC is processed or RNase free conditions and reagents are used throughout the process.
- Table 1 below shows primer information for amplifying chimeric Zika virus DNA through PCR using pCC1-Chimeria ZIKV vector as a template.
- Table 3 below shows the in vitro transcription reaction composition.
- Vero cells are incubated in DMEM medium containing 10% FBS.
- DMEM medium containing 10% FBS.
- For transfection prepare cells in a 12 well plate at a cell concentration of 0.2 x 10 6 cell / well. Next day, the synthesized RNA is transfected using lipofectamine 3000. Each RNA and reagent ratio was 1: 1 and reacted for 10 minutes, and the cells were transfected. RNA used in the experiment was a concentration of 0.5ug / well. After transfection, the cells were cultured for 15-20 days to observe cell degeneration.
- RNA carrying the chimeric Zika virus gene was transfected into Vero cells, and virus culture was harvested 20 days thereafter.
- virus culture was harvested 20 days thereafter.
- immunochemical detection, PCR, western blot, and gene sequencing using the recovered culture, it was confirmed that the produced virus was a virion having both the 17D vaccine strain and the gene and protein of the Zika virus antigen gene prM, E.
- the chimeric Zika virus produced was assessed to be able to proliferate, to express the Zica virus antigen and to be accompanied by a virion with a gene sequence consistent with the inserted gene sequence.
- cell denaturation confirmation, detection of E protein, 5 ⁇ UTR, 3 ⁇ UTR, NS gene sequence amplification method were used.
- chimeric zika virus cultures eg 0.01-1 ml of culture
- Some of the chimeric zika virus cultures were inoculated into Vero cells and monitored for degeneration.
- Zika virus is known to cause cell degeneration in Vero cells.
- a portion of the chimeric Zika virus culture (for example 0.01 ⁇ 0.1ml of the culture) is inoculated in Vero cells of 8 well chamber slide and incubated for 2 days. Infected cells were fixed at -20 ° C with 100% cold methanol and then reacted with anti-Flavivirus E antibody (D1-4G2-4-15, Merck) for 2 hours. After washing with PBS three times, the anti-mouse IgG-Alexa488 antibody (Thermo Fisher) was reacted for 1 hour. Washed five times with PBS, stained with DAPI and detected by fluorescence microscopy. As shown in A) of FIG. 4, E protein is expressed in cells infected with chimeric Zika and wild-type virus by specific antibodies. However, no signal was detected if the viral infection was not a cell.
- cells are harvested on day 2 after infection with the chimeric zika virus. After cell lysis, some (eg 0.02ml) were electrophoresed using 10% acrylamide SDS gel and transferred to PVDF membrane to perform western blot. Anti-Zika Env mAb (GT871, GeneTex) was reacted for 2 hours and then anti-mouse-HRP antibody was reacted for 1 hour to detect Zikavirus E protein. ECL substrate solution is added and photosensitive to the film. As shown in B) of FIG. 4, no signal was detected in Vero cell control (lane 2), whereas E protein was detected in cells infected with the chimeric virus (lane 1) and wild type virus (land 3). The molecular weight of the E protein is expected to be approximately 55KDa and detected at similar sizes.
- viral RNA is purified using a portion of the chimeric Zika virus culture (eg 0.2 ml) (PureLink viral RNA / DNA kit, Thermo Fisher). Using the isolated RNA as a template, RT-PCR / PCR one-step kit is used to check whether a specific sequence is specifically amplified. As shown in C) of FIG. 4, the 5DUTR, 3UTUT, and NS genes of 17D were amplified to the expected sizes, respectively. Subsequently, the entire chimeric Zika virus genome was sequenced and found to have a gene 100% identical to that of the first designed synthetic gene (Construct 1).
- a portion of the chimeric Zika virus culture eg 0.2 ml
- PureLink viral RNA / DNA kit Thermo Fisher
- Attenuated trait was confirmed by infecting Vero and MRC-5 cells with wild-type Zika virus and chimeric Zica virus, respectively, and measuring cell degeneration and proliferated virus titer. It was.
- a plaque forming assay is performed using Vero cells and MRC-5 cells, followed by crystal violet staining.
- the wild-type virus PRVABC59 forms a clear and large plaque
- the chimeric Zica virus forms a faint plaque in Vero cells and no plaque in MRC-5 cells.
- Wild-type Zika virus is PRVABC59 virus isolated from the sera of patients from Puerto Rico in 2015 (VR-1843, ATCC).
- CPE cytopathic effect
- 5 and 6 show attenuation of attenuated cells using human primary lung cells as normal cells and Vero cells having good virus propagation due to no type I interferon signal as one cancer cell.
- Vero cells and primary human lung cells, chimeric Zika virus was attenuated more than wild-type virus in terms of plaque formation, cell degeneration, and virus proliferation.
- fertilized eggs were incubated in an incubator (37 ° C., 60% humidity), the shell of the air sac was opened on day 4, and viruses were injected into the amniotic cavity by concentration using a Hamilton syringe.
- the titers of each of the wild type Zikaviruses PRVABC59 and chimeric Zicaviruses injected were 2 ⁇ 10 2 pfu, 2 ⁇ 10 3 pfu, and 5 ⁇ 10 3 pfu.
- the opened shell was sealed with parafilm to prevent drying, hatching again in an incubator, and mortality was measured.
- both the wild-type PRVABC59 virus and the chimeric Zika virus showed a tendency to increase the mortality, and the wild type PRVABC59 virus had a higher mortality rate than the chimeric Zika virus.
- the virus is injected into the veins of 8 week old BALB / c female mice at concentrations of 10 2 , 10 3 , 10 4 , 10 5 pfu / 200 ul. Serum was isolated for 1-6 days after injection and analyzed for proliferation using Zika q-PCR kit (Zika virus polyprotein gene genesig advanced kit, Genesig).
- Zika q-PCR kit Zaika virus polyprotein gene genesig advanced kit, Genesig.
- wild-type Zika virus is infected in BALB / c mice, it is known to be able to proliferate at a concentration of 10 6 to 10 7 copy / ml in serum between 2 and 5 days after infection, but the chimeric Zika virus is infected by concentration in FIG. 8 results. As a result, there was no difference in weight change among the groups, and virus proliferation was not detected in all groups.
- the technique of inoculating a virus into fertilized eggs is one of the main methods used to culture the virus as in influenza or to evaluate the risk and cytotoxicity of the virus.
- the results of FIG. 7 show that the chimeric Zika virus was attenuated by showing a low mortality rate compared to the wild type.
- Zika virus shows little disease in normal immune-competent mice.
- BALB / c mice are known to be susceptible to Zika virus and show viremia in blood upon intravenous injection (Rafael A. Larocca et al, Vaccine protection against Zika virus from Brazil, 2016).
- FIG. 8B chimeric Zika virus did not proliferate at all in BALB / c mice, indicating that it was attenuated.
- chimeric Zika virus produced in the present invention is safe in mammals and induces an effective immune response
- various concentrations of Chimeric Zica virus are injected into the muscles of BALB / c mice and serum is recovered. Check the formation. The change in weight due to viral immunity was also measured.
- Type IFN knock out mice are mice lacking innate immunity due to a lack of interferon (IFN) alpha and beta, which inhibit viral proliferation. Therefore, it is highly susceptible to Zika virus, making it suitable for use as an animal model. In general, immuno-competent animals are insensitive to innate immune responses.
- IFN interferon
- Type I IFN KO mice were infected with chimeric Zika virus or wild type Zika virus solution by IP (Intraperitoneal Administration) at concentrations (10 2 to 10 6 pfu / mouse). Serum was separated by date after infection, and changes in body weight and mortality were measured.
- IP Intraperitoneal Administration
- FIG. 10 shows the weight change of mice infected with construct A virus
- FIG. 11 shows the weight change of mice infected with wild-type Zika virus.
- Figure 12 is a result of comparing the survival rate of mice infected with the construct A virus and wild-type virus, showing a higher mortality rate when wild type virus infection. This means that the chimeric zika virus is attenuated and can safely propagate in organisms.
- Figure 13 confirms the virus proliferation results, it was confirmed that the cZIKV attenuated due to the relatively low virus growth compared to WT.
- Type I IFN KO mouse chimeric Dermalogica baeksinju (virus solution) concentrations (10 2 ⁇ 10 5 pfu / mouse) 2 times (2 weeks intervals) with the IM in the immunization was.
- chimeric Zika virus construct A produced in the present invention is safe in mammals and induces an effective immune response
- various concentrations of chimeric Zica virus are injected into the muscle and serum is recovered to form antigen-specific antibodies. Check it. The change in weight due to viral immunity was also measured.
- the cells were immunized under the same conditions at two total intervals of two weeks, and serum was separated two weeks after the last immunization. Serum was stored at ⁇ 20 ° C., and then analyzed for IgG antibodies specific to E protein using RecombiVirus TM Zika Virus Envelop antibody ELISA kit (Alpha diagnostic).
- E protein antibody titer was increased in a concentration-dependent manner, showed a high level of neutralizing antibody titer.
- Chimeric Zikaviruses A and B are infected with Vero cells at 0.005 MOI and the cytopathic effect (CPE) is observed for 8 days. And 0.3 ml each of the culture solution was collected at the same time every day after infection and stored frozen at -70 °C. Plaque forming assay of 0, 1, 2, 3, 4, 6, 8th day samples was carried out, crystal violet staining was performed, and plaque was counted.
- the results are shown in FIG.
- the titer of B was about 3 to 10 times higher than that of chimeric Zika virus A.
- the highest titer of the 8-day cultures was Zika virus A (4day) and Zika virus B (6day). This may be due to the increased structural stability of Zikavirus B virus, which maintains its infectivity over time.
- the chimer titer was 4E5 and 3E6 for chimeric Zika virus A, which showed better growth of chimeric Zika virus B.
- thermostability testing changes in infectious virus titer were measured while the same concentration of virus was stored at different temperatures of 4, 37 and 60 ° C. for 72 hours. Some samples were taken at 1, 6, 14, 24, 48 and 72h after the start of the experiment and used for analysis. Infectious virus titer was measured by plaque assay using Vero cells. Relative infectious viral titers were calculated with a titer of 100 before the temperature treatment (0hr).
- Type I IFN knock-out mice Four-week-old Type I IFN knock-out mice were IP-infected with chimeric Zika virus vaccines A, B, and PRVABC59 at different concentrations, and were compared with changes in body weight, virus proliferation, and lethality.
- Body weight change showed the greatest decrease of ABC59 by 30-60% compared to the initial weight, and the chimeric Zika virus A and B showed a decrease of about 10% for 5 days after injection and then recovered.
- Viremia was the highest in ABC59, and chimeric Zikaviruses A and B showed similar patterns and levels.
- Type I IFN knock-out mice Four-week-old Type I IFN knock-out mice were immunized twice with IM every two weeks at two concentrations of chimeric Zika virus vaccine, and challenged with wild-type Zika virus PRVABC59 two weeks after the last immunization.
- the present invention provides an attenuated chimeric zika virus vaccine.
- the present invention It is possible to provide a highly safe Zikavirus vaccine that can prevent severe neurological diseases such as syndrome, microcephaly, neuropathy and congenital malformations.
- the chimeric Zika virus of the present invention When used as a vaccine, there are few side effects that may occur in the body, and thus it is excellent to provide a live Zika virus vaccine which has been difficult to use due to the side effects.
- Vaccine of the present invention can prevent the reversion of the disease and induce a mesophase safe compared to the live vaccine prepared using wild-type Zika virus.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Virology (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Communicable Diseases (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
본 발명의 일 구현예는 지카바이러스 감염에 대한 면역반응을 유도하며, 황열병 바이러스 17D 백신주 핵산 분자의 i) pre-membrane(prM) 단백질을 암호화하는 유전자의 업스트림에 존재하는 시그날 펩타이드(signal peptide)를 암호화하는 유전자; ii) pre-membrane(prM) 및 이의 막통과 단백질을 암호화하는 유전자; 및 iii) 엔벨로프(E) 및 이의 막통과 단백질을 암호화하는 유전자 부위에 상기 황열병 바이러스 17D 백신주 유전자 대신에 삽입되는, 지카바이러스의 i) pre-membrane(prM) 단백질을 암호화하는 유전자의 업스트림에 존재하는 시그날 펩타이드(signal peptide)를 암호화하는 유전자; ii) pre-membrane(prM) 및 이의 막통과 단백질을 암호화하는 유전자; 및 iii) 엔벨로프(E) 및 이의 막통과 단백질을 암호화하는 유전자로 이루어지고, 상기 지카바이러스의 i), ii), 및 iii) 유전자를 이루는 핵산의 일부 또는 전부가 치환, 결실, 또는 삽입된, 핵산 분자를 제공한다.
Description
본 출원은 2018년 5월 4일에 출원된 한국출원 제10-2018-0052156호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다. 본 발명은 백신에 관한 것으로, 더욱 구체적으로 지카바이러스 감염을 예방할 수 있는 백신에 관한 것이다.
지카 감염병은 이집트 숲모기에 의해서 사람에게 전염되는 질병으로 플라비바이러스(flavivirus)에 속하는 지카바이러스(Zika virus)에 의해서 발병한다. 1947년 우간다의 rhesus monkey에서 처음 발견된 이후, 1952년 탄자니아와 우간다에서 인체감염 사례가 보고되었다. 1960년에서 1980년 사이에 주로 아시아와 아프리카에서 인체 감염이 발생하였고, 점차 감염지역이 확장되어 현재는 아메리카와 태평양 인근 지역의 국가에서도 발병하고 있다. 지카의 대규모 발병은 2007년 미크로네시아의 Yap 섬에서 있었으며, 이어서 2013년도 프랑스령 폴리네시아 등지에서 다시 대규모로 발병하였다. 이후 2014년 뉴칼레도니아에서 확산되기 시작하여 2015년~2016년 사이에 미국 및 브라질을 포함한 아메리카 대륙의 대부분의 국가에서 대유행 하였다.
증상으로는 수일 내에 두통, 근육/관절통, 피부발진, 결막염, 두통 등의 증상이 나타나는데, 뎅기열, 독감 등의 질병과 그 증상이 유사하여 구분이 쉽지 않다. 지카바이러스에 감염된 경우의 대부분은 무증상 혹은 약한 증상만이 나타나서 분자적 진단법으로만 확진이 가능하다. 감염 환자 중 일부가 중증질환으로 전이하며 대체로 사망률은 낮은 편이다. 특히, 임신 기간 중 감염되게 되면 태아의 신경발달에 영향을 미쳐 소두증(microcephaly)의 질환을 가지는 기형아(대략 8%)를 출산할 가능성이 매우 높아지는 것으로 알려져 있다. 또한 감염자에서 자가면역 질환으로 추측되는
syndrome이나, 신경 이상증 등을 유발하는 것으로 보고되고 있다.
질병의 매개는 모기가 인체에서 흡혈과정에 일어나는 것으로 알려져 있으며, 인간에서 인간으로의 감염은 일반적으로 발생하지 않지만, 수혈, 성관계 등의 채액 및 혈액의 침투를 통해 감염이 일어날 수 있는 것으로 알려져 있다. 현재, 치료제와 백신은 없는 상황이며, 질병을 예방하기 위해서는 모기에 물리지 않는 것이 최선책이라 할 수 있다.
지카바이러스는 Flaviviridae에 속하는 바이러스로 dengue virus, yellow fever virus, West Nile virus, Japanese encephalitis virus, tick-borne encephalitis virus가 여기에 속한다. 이들 중 yellow fever virus는 오래 전부터 백신으로 계발되어 사용 중인데, 1930년경 약독화 생백신이 처음 개발되어 상용화 되었다.
Live virus 백신은 일반적으로 다른 백신 타입보다 백신 효력이 가장 우수한 것으로 알려져 있다. 항체 유도능력뿐만 아니라 세포성 면역 유도능 역시 우수하며, 투여 회수도 보통 1~2회로 다른 백신 타입보다 적은 편이다. 하지만, 병원성의 reversion에 대한 우려가 있기 때문에 면역력이 약한 환자, 임산부, 노약자, 영유아 등에는 접종이 제한되는 경우가 많다. 따라서, live virus를 예방용 백신으로 제조하기 위해서는 안전성의 확보가 매우 중요하다. 특히, 지카 생백신의 경우 질병의 reversion이 일어날 경우
syndrome, 소두증(microcephaly), 신경이상, 선천성 기형 같은 중증 신경 질환을 일으킬 가능성이 있기 때문에 약독화 및 안전성 확보가 무엇보다도 중요하다.
본 발명은 약독화된 지카바이러스 면역원성 조성물을 제공하고자 한다.
본 발명은 지카바이러스 감염에 의해 유발되는 질병, 질환 등을 예방 또는 치료할 수 있는 면역원성 조성물을 제공하고자 한다.
또한, 본 발명은 상기 면역원성 조성물을 이용하여 안전성이 뛰어난 지카바이러스 면역유도 방법을 제공하고자 한다.
본 발명은 약독화된 황열병 바이러스주와 지카바이러스의 키메릭 유전자를 이용한, 안전하고 우수한 지카바이러스 백신을 제공하고자 한다.
본 발명은 약독화된 지카바이러스 면역원성 조성물 및 이를 포함하는 지카바이러스 감염을 예방하는 백신을 제공하고자 한다.
본 발명은 지카바이러스 감염증을 예방, 개선 및/또는 치료 용도의 새로운 바이러스주를 제공하고자 한다.
본 발명은 역전사 유전자 기술을 이용한 키메라 지카바이러스 생산 방법을 제공하고자 한다.
또한 본 발명은 지카바이러스 감염에 대해 면역반응을 유도할 수 있는 키메라 지카바이러스 생산을 위한, 더 나아가 그 자체로 면역원성을 갖는 지카바이러스 면역반응 유도를 위한 키메라 핵산 작제물(construct)을 제공하고자 한다.
약독화된 생 키메라 지카바이러스를 의미할 수 있다.
본원에서 사용된 “유전체(genome)”는 한 개체의 유전자(gene)의 총 염기서열이며, 한 생물체가 지닌 모든 유전정보의 집합체를 의미한다. 예를 들어 바이러스의 유전체는 바이러스 전체의 모든 유전정보서열을 아우르는 의미로 사용된다.
본원에서 사용된 “유전자(gene)”는 단백질을 암호화하는 부분으로 이해될 수 있으며, DNA 또는 RNA 일 수 있다.
본원에서 사용된 “도입”의 의미는 본래 가진 것에서 새로운 것이 추가되는 것을 의미하는 것으로, 도입으로 인해 유전자의 변이가 유발될 수 있고, 결실, 치환, 또는 삽입 등이 일어날 수 있다.
예를 들어, 본원에서 “유전체에 새로운 유전자가 도입되었다”는 의미는 본래 개체가 가지고 있는 전체 유전자 염기 서열 중 일부가 새로운 개체로부터 유래된 유전자로 치환되거나 삽입될 수 있다는 것을 의미할 수 있다. 이러한 도입으로 인해 본래 개체(예를 들어 backbone)가 갖는 유전체 염기서열보다 길어질 수도 있고, 짧아질 수도 있고, 길이가 유지될 수도 있다.
본원에서 바이러스의 단백질이 치환되었다는 것은, 해당 단백질을 암호화하는 유전자가 치환되었다는 것으로 통상의 기술자는 충분히 이해할 수 있다. 예를 들어, 'A 단백질을 치환하였다'고 기술하는 것은 A 단백질을 암호화하는 코돈들 중 어느 하나로 유전자가 치환되었다는 것을 의미하는 것으로 이해될 수 있다.
[지카바이러스 감염에 대한 면역을 유발하는 키메라 핵산 분자]
본 발명의 일 실시예에서 지카바이러스 면역을 위한 키메라 핵산 분자를 제공할 수 있다.
상기 키메라 핵산 분자는 지카바이러스 감염에 대한 면역반응을 유도하거나, 면역반응을 유도할 수 있는 면역원성 조성물에 포함된 형태로 제공될 수 있다.
본 명세서에 기술된 키메라 핵산 분자는 키메라 지카바이러스와 구분하여 사용될 수 있다.
상기 키메라 핵산 분자는 지카바이러스의 주요 항원 유전자를 포함하되, 일부의 유전자가 황열병 바이러스의 유전자로 이해될 수 있다. 상기 주요 항원 유전자는 지카바이러스의 구조단백질을 암호화하는 유전자로 이해될 수 있다.
상기 키메라 지카바이러스는 황열병 바이러스의 유전체에서 구조 단백질을 암호화하는 유전자의 일부 또는 전부가 치환된 것으로 그 자체로 증식가능성을 가질 수 있다.
본 발명의 일 실시예에서 상기 키메라 핵산 분자는, 바람직하게 서열번호 19 내지 24 중 어느 하나의 염기서열을 가질 수 있다.
본 발명의 일 실시예에서, 상기 키메라 핵산 분자는 pre-membrane(prM) 단백질의 TM 암호화 유전자가 황열병 바이러스 17D 백신주로부터 유래될 수 있다.
상기 키메라 핵산 분자는 5'에서 시작하여 3'으로 볼 때, i) 지카바이러스의 pre-membrane(prM) 단백질을 발현하도록 암호화된 유전자, ii) 황열병 바이러스 17D 백신주의 pre-membrane(prM) 단백질의 TM 영역이 발현하도록 암호화된 유전자, iii) 지카바이러스의 엔벨로프(E) 단백질 유전자, iv) 황열병 바이러스 17D 백신주의 엔벨로프(E) 단백질의 TM 암호화 유전자로 연결된 형태를 가질 수 있다.
본 발명의 일 실시예에서, 상기 키메라 핵산 분자의 i) pre-membrane(prM) 단백질 유전자의 5'업스트림쪽에 위치하는 시그날 펩타이드는 황열병 바이러스 17D 백신주의 유전자일 수 있으나, 이에 제한되지 않고 지카바이러스로부터 유래한 시그날 펩타이드일 수 있다.
상기 키메라 핵산 분자는 바람직하게 서열번호 25 내지 28 중 어느 하나의 염기서열을 가질 수 있다.
[지카바이러스 염기서열]
본 발명의 일 실시예에서 지카바이러스의 구조 단백질을 암호화(encoding)하는 염기서열을 포함하고, 약독화된 황열병 바이러스의 비구조 단백질을 암호화하는 염기서열을 포함하는 키메라 지카바이러스 핵산을 제공한다.
본 발명의 일 실시예에서 상기 키메라 지카바이러스는 YF 17D의 5'-비암호화 서열, 캡시드 단백질 암호화 서열, 비구조 단백질 암호화 서열, 3'-비암호화 서열을 기반으로하여 지카바이러스의 구조 단백질인 pr-M과 E 단백질의 암호화 서열이 순서에 맞게 배열된 키메라 바이러스 염기 서열을 제공할 수 있다.
본 발명의 일 실시예에서 상기 약독화된 황열병 바이러스는 황열병 바이러스 17D 백신주일 수 있다.
본 발명의 일 실시예에서 상기 지카바이러스의 구조 단백질을 암호화(encoding)하는 염기서열은 pre-membrane(prM), 및 엔벨로프(E) 중 어느 하나 이상을 암호화하는 핵산일 수 있다.
바람직하게, 상기 수용체 황열병 바이러스 17D 백신주의 pr-M 및 E 단백질을 코딩하는 서열이 지카바이러스의 대응 서열로 교체됨으로써, YF 바이러스의 유전자 백본이 변형된 핵산 또는 상기 핵산이 도입된 키메라 지카바이러스가 면역원으로 이용될 수 있다.
바람직하게 본 발명의 키메릭 지카바이러스는 서열번호 1, 3, 5, 7, 9, 11, 13, 또는 15의 아미노산 서열을 가질 수 있다.
바람직하게 본 발명의 키메릭 지카바이러스는 서열번호 2, 4, 6, 8, 10, 12, 14, 또는 16의 아미노산 서열을 가질 수 있다.
본 명세서에 기술된 키메릭 지카바이러스 제조에 이용될 수 있는 염기서열의 92% 이상, 94% 이상, 96% 이상, 98% 이상, 99% 이상 또는 100%의 서열 동일성을 가진 염기서열이 면역원으로 직접 이용되거나 또는 면역원으로 이용되는 키메라 지카바이러스 제조에 이용될 수 있다.
[키메라 지카바이러스]
본 발명의 일 실시예에서 키메라 지카바이러스는 하나의 긴 개방 리딩 프레임(즉, 구조단백질인 캡시드(C), 프리커서-멤브레인(pr-M, precursor-Membrane) 및 엔벨로프(E) 단백질과 비구조 단백질들을 암호화하는)의 번역과 번역후의 일련의 복잡한 단백질 분해성 절단(post-translational proteolytic cleavage)에 의해 제조될 수 있다.
본 발명의 일 실시예에서 본 발명의 키메라 지카바이러스는 YF17D의 pr-M 및 E 단백질들이 지카바이러스의 pr-M 및 E 단백질들로 대체될 수 있다.
본 발명의 일 실시예의 키메라 지카바이러스들의 제조과정은 두 가지 상이한 플라비바이러스들의 캡시드 및 프리-멤브레인 단백질들과 엔벨로프 단백질 및 비구조 영역(NS1) 사이의 신규한 접합을 형성시키는 과정을 포함할 수 있다.
본 발명의 상기 키메라 바이러스 염기 서열은 일반적인 플라비바이러스 염기 서열 구조와 유사한 방식으로 제공되며 단백질 발현 및 비리온 생산에 적절하게 구조단백질을 추가로 치환하거나 단백질 서열의 일부를 변경 할 수 있다.
추가적인 단백질 서열 치환 및 변이는 캡시드 단백질, signal peptide, prM의 TM region, E 단백질의 TM region의 서열을 다양하게 조합, 결손, 삽입 등의 방법을 이용하여 적용될 수 있다.
본 명세서에서 특별한 언급이 없다면, 상기 시그날 펩타이드(signal peptide)는 precursor-membrane(pr-M) 단백질 발현을 위한 유전자의 업스트림(upstream)에 위치하며, 펩티다아제(peptidase)에 의해 인식되어 상기 precursor-membrane(pr-M) 단백질과 함께 절단될 수 있는 부위를 의미하는 것으로 이해될 수 있다.
상기의 단백질 서열 변이는 바이러스의 증식 수준, 백신주의 약독화 수준에 영향을 미칠 수 있다.
본 발명의 일 실시예에서 지카바이러스에 대한 면역 반응 유도를 위한 키메라 지카바이러스를 제공할 수 있다.
상기 키메라 지카바이러스는 약독화된 황열병 바이러스의 유전체에 외래 유전자가 도입된 것으로, 약독화된 황열병 바이러스의 i) pre-membrane(prM) 단백질 및 이의 막통과 단백질 영역, 및 ii) 엔벨로프(E) 단백질 및 이의 막통과 단백질 영역이 야생형 지카바이러스의 i) pre-membrane(prM) 단백질 및 이의 막통과 단백질 영역, 및 ii) 엔벨로프(E) 단백질 및 이의 막통과 단백질 영역으로부터 유래한 것으로 치환된 것일 수 있다.
본 발명의 일 실시예에서 상기 키메라 지카바이러스는 막통과 단백질 영역은 17D YF바이러스의 것으로 유지되고. pre-membrane(prM), 및 엔벨로프(E) 단백질이 야생형 지카바이러스로부터 유래한 것으로 제공될 수 있다.
본 발명의 일 실시예에서 상기 키메라 지카바이러스는 약독화된 황열병 바이러스의 캡시드(C) 단백질이 지카바이러스의 캡시드 단백질로 치환될 수 있다.
상기 키메라 지카바이러스는 구조 단백질 중 엔벨로프(E) 단백질의 일부가 치환될 수 있으며, 상기 E 단백질의 일부는 키메라 지카바이러스의 792번 아미노산이 S에서 G로 치환된 것일 수 있다.
본 발명의 일 실시예에서 상기 키메라 지카바이러스의 102-121 아미노산 위치의 서열이 SHDVLTVQFLILGMLLMTGG에서 GADTSVGIVGLLLTTAMA로 치환될 수 있다.
상기 키메라 지카바이러스의 104-121 아미노산 위치의 서열이 DVLTVQFLILGMLLMTGG에서 GADTSVGIVGLLLTTAMA로 치환될 수 있다.
상기 키메라 지카바이러스의 signal peptide와 pr-M 아미노산 서열 사이에(121-122) 아미노산의 삽입이 유발된 키메라 지카바이러스를 제공할 수 있다.
상기 삽입된 아미노산은 바람직하게 A 일 수 있다. 특히 A 아미노산이 상기 부위에 삽입되었을 때 면역 접종 시에 안전성을 가질 수 있었으며, 부작용이 적게 관찰될 수 있다.
상기 키메라 지카바이러스의 signal peptide의 TGG(119-121) 아미노산이 치환된 키메라 지카바이러스를 제공할 수 있다.
상기 키메라 지카바이러스의 signal peptide의 TGG(119-121) 아미노산이 AMA로 치환될 수 있다.
본 발명의 발명자들은 상기와 같이 아미노산이 치환되었을 때, 야생형 지카바이러스를 사용하여 제조한 생백신을 접종할 경우 나타날 수 있는 부작용들이 적게 관찰되었고 체내에서 안전한 면역유도반응을 기대할 수 있음을 확인하였다.
[면역원성 조성물]
본 발명의 일 실시예에서 지카바이러스 감염을 예방하거나 치료 또는 개선할 수 있는 지카바이러스 면역원성 조성물을 제공할 수 있다. 상기 면역원성 조성물은 백신으로 이해될 수 있다.
본 발명은 안전성과 면역원성을 모두 가진 조성물을 제공할 수 있다. 즉, 본 발명은 본 발명의 일 실시예에 따른 키메라 지카바이러스를 체내에 도입하여 지카바이러스 감염에 대비한 면역유도 작용을 하면서도 안전성이 높은 조성물을 제공할 수 있다.
본 발명의 일 실시예에서 상기 키메라 지카바이러스 및 면역학적으로 허용 가능한 부형제를 포함하는 키메라 지카바이러스 면역원성 조성물을 제공할 수 있다. 상기 면역학적으로 허용 가능한 부형제는 업계에서 백신을 제조하기 위해 사용되는 부형제라면 제한 없이 사용될 수 있다.
본 발명의 일 실시예에서 약제학적 유효량을 포함하는 상기 면역원성 조성물을 개체에 투여하여 면역반응을 유도하는 방법을 제공할 수 있다.
본 명세서에서 용어 “약제학적 유효량”은 지카바이러스 감염에 대한 예방 효과를 달성하는 데 충분한 양을 의미한다.
본 발명의 일 실시예에서 동물에 유효량 투여되어 동물 체내에서 지카바이러스에 대한 면역을 유도하는, 상기 키메라 지카바이러스 및 약학적으로 허용 가능한 부형제를 포함하는 지카바이러스 백신을 제공할 수 있다.
본 발명에 따른 백신 조성물은 약학적으로 허용되는 담체 또는 부형제를 추가로 포함할 수 있다. 본 발명에 따른 약학적으로 허용되는 담체 또는 부형제는 활성제의 안정성, 멸균성 및 전달성을 향상시키기 위해 약학 제형 및 백신에서 일반적으로 사용되고, 인간에서 임의의 이차 반응, 예를 들어, 알레르기 반응을 발생시키지 않는 임의의 용매 또는 분산 매질 등을 의미한다. 부형제는 선택된 약학적 형태, 투여 방법 및 경로를 기초로 하여 선택된다. 적절한 부형제, 및 약학적 제형과 관련된 조건은 업계의 통상의 기술자에게 익히 알려져 있다.
약학적으로 허용되는 부형제의 예는 물, PBS 버퍼 용액 및 0.3% 글리신 용액을 포함할 수 있다.
본 발명의 방법에서 사용하기 위한 백신 조성물은 생리학적 조건에 가깝게 만드는데 필요한 약학적으로 허용되는 보조 물질, 예를 들어, pH 조절제 및 완충제, 습윤제 등, 예를 들어, 소듐 아세테이트, 소듐 락테이트, 소듐 클로라이드, 포타슘 클로라이드, 칼슘 클로라이드, 소르비탄 모노라우레이트, 트리에탄올아민 올레에이트, 인간 혈청 알부민, 필수 아미노산, 비필수 아미노산, L-아르기닌 하이드로클로레이트, 사카로스, D-트레할로스 데하이드레이트, 소르비톨, 트리스 (하이드록시메틸) 아미노메탄 및/또는 우레아를 임의로 함유할 수 있다. 또한, 백신 조성물은, 예를 들어, 희석제, 결합제, 안정화제, 및 보존제를 포함하는 약학적으로 허용되는 첨가제를 임의로 포함할 수 있다.
안정화제는 백신 조성물에 일반적으로 사용되는 안정화제라면 제한 없이 사용될 수 있다.
본 발명의 백신은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 됨으로써 단위 용량 형태로 제조되거나 또는 다용량 용기내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있으나, 이러한 제형에 제한되지 않는다.
본 발명의 백신에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.
상기 동물은 제한 없이 사용될 수 있으며, 예를 들어 포유류일 수 있으며, 바람직하게 인간일 수 있다.
본 발명의 일 실시예에서 지카바이러스 감염과 연관된 질환의 치료 또는 예방에 사용하기 위한 지카바이러스 면역원성 조성물을 제공할 수 있다. 상기 지카바이러스 감염과 연관된 질환은
syndrome, 소두증(microcephaly), 신경이상, 선천성 기형 같은 중증 신경 질환뿐만 아니라, 발열, 발진, 관절통, 눈 충혈, 근육통, 두통, 안구통, 구토 등과 같은 지카바이러스 감염으로 인한 지카열과 연관된 증상들을 모두 포함할 수 있으며, 상기 질환에 한정되어 해석되지 않는다.
본 발명의 일 실시예에서 상기 면역원성 조성물을 개체에 투여하여 지카바이러스에 대한 면역반응을 유도하는 방법을 제공할 수 있다.
당업자에 의해 인지되는 바와 같이, 본 발명의 백신 조성물은 의도된 투여 경로에 적합하게 제형화된다. 적합한 투여 경로의 예는, 예를 들어, 근육내, 경피, 피하, 점막 또는 피내 투여를 포함할 수 있다. 바람직하게는, 투여 경로는 근육내 경로로 투여될 수 있다.
본 발명의 일 실시예에서 상기 지카바이러스 감염과 연관된 질병의 치료 또는 예방을 위한 상기 지카바이러스 면역원성 조성물의 용도를 제공할 수 있다.
본 발명의 일 실시예에서 지카바이러스 감염 환자에 대한 면역 반응을 유도하기 위한, 상기 지카바이러스 면역원성 조성물의 용도를 제공할 수 있다.
투여되는 본 발명의 백신 조성물의 부피는 투여 방법에 좌우될 수 있다. 피하 주사의 경우, 부피는 일반적으로 0.1 내지 1.0 ㎖, 바람직하게는 약 0.5 ㎖이다.
한 구현예에 따르면, 본 발명은 또한 본 발명의 백신 조성물 및 지카바이러스에 대해 인간 대상체를 보호하는 방법에서의 상기 백신 조성물의 사용을 위한 설명서를 포함하는 키트를 제공한다.
본 발명의 키메라 지카바이러스 백신 또는 면역원성 조성물은 지카바이러스 감염에 의해 유발되는 다양한 질환의 예방 또는 치료, 바람직하게는 예방에 이용될 수 있다.
[키메라 지카바이러스 제조방법]
본 발명의 일 실시예에서 키메라 지카바이러스를 포함하는 면역원성 조성물 제조 방법을 제공한다.
상기 제조 방법은 i) 약독화된 황열병 바이러스 17D 백신주를 준비하는 단계,
ii) 상기 황열병 바이러스 17D 백신주의 구조단백질을 암호화하는 염기서열을 야생형 지카바이러스의 구조단백질을 암호화하는 염기서열로 치환하여 17D-지카 키메릭 유전체를 준비하는 단계, iii) 상기 유전체를 벡터에 클로닝하는 단계, iv) 상기 클로닝된 벡터를 컴피턴트 세포(competent cell)에 도입하여 형질전환하는 단계, 및 v) 상기 컴피턴트 세포로부터 바이러스 DNA를 회수하는 단계를 포함할 수 있다.
상기 벡터에 클로닝하는 단계에서 사용되는 벡터는 바람직하게 pCC1BAC™이 이용될 수 있다. 상기 벡터는 copy number control이 가능한 vector로, 보통은 1개의 copy를 가질 수 있고, 짧은 시간에 copy 증폭에 용이하다.
본 발명의 일 실시예는 상기 pCC1벡터를 이용하여 pCC1(pCC1BAC™)-키메릭 지카바이러스 벡터를 형성할 수 있다.
본 발명의 벡터에 클로닝되는 17D-지카 키메릭 유전체는 사이즈가 크기 때문에 여러 개의 절편으로 나누어 in vitro에서 DNA 합성을 진행하여 유전자를 cloning 한다.
본 발명의 17D-지카 키메릭 유전체는 예를 들어, 1) 3kbp, 2) 3kbp, 3) 3kbp, 4) 3kbp 의 크기로 임의로 나누어 합성을 하고 1)과 2)의 연결(A), 3)과 4)의 연결(B), 그리고 상기 (A)와 (B)의 연결을 통해 총 길이 대략 11kbp를 만들어낼 수 있지만, DNA 절편은 반드시 상기 크기에 한정되지 않는다.
상기 유전체의 크기는 업계에서 전장 DNA를 절단할 수 있는 통상적인 방법과 DNA 절편을 전장 DNA로 연결할 수 있는 통상적인 방법으로 제조할 수 있으며, 상기 DNA 합성 및 절단의 방법은 특별히 제한되지 않는다.
바람직하게 본 발명의 일 실시예에서 상기 벡터에 클로닝되는 17D-지카 키메릭 유전체는 서열번호 2, 4, 6, 8, 10, 12, 14, 및 16으로 이루어진 군에서 선택된 어느 하나 이상의 염기 서열을 가질 수 있다.
본 발명의 상기 pCC1-키메릭 지카바이러스 벡터는 순차적으로 5'말단에 제한효소 AscI 암호화 서열 (5`-GGCGCGCC); T7 promoter 서열(TAATACGACTCACTATA); transcription start codon(GG); 상기 서열번호 2, 4, 6, 8, 10, 12, 14, 및 16으로 이루어진 군에서 선택된 어느 하나의 키메릭 지카바이러스의 핵산; 3'말단에 제한효소 SmaI-NotI 암호화 서열(3'-GGGCCCCGCCGGCG)이 포함될 수 있다.
본 발명의 일 실시예에서 지카바이러스 감염에 대한 면역원성을 갖는 키메라 지카바이러스 제조방법을 제공할 수 있다.
(a) 서열번호 29를 갖는 약독화된 황열병 바이러스 백신주인 YF 17D 유전체를 준비하는 단계, 및 (b) 상기 YF 17D 유전체의 염기서열 482 내지 2452를 서열번호 서열번호 19 내지 28 중 어느 하나의 염기서열로 치환하여 키메라 지카바이러스 유전자를 제작하는 단계를 포함할 수 있다.
상기 제조방법은, (c) 상기 (b) 단계에서 제작된 키메라 지카바이러스 유전자의 5' 말단에 T7 promoter 서열(TAATACGACTCACTATA)과 transcription start codon(GG)을 추가하고, 양쪽 말단에 제한효소인 AscI(5`-GGCGCGCC)과 SmaI-NotI(3'-GGGCCCCGCCGGCG)을 각각 추가하여 벡터에 클로닝하기 위한 준비를 하는 단계를 더 포함할 수 있다.
본 발명은 지카바이러스 감염에 대한 예방 효과를 가진다.
본 발명은 약독화된 키메라 지카바이러스 백신을 제공한다.
본 발명의 키메라 지카바이러스 백신은 지카바이러스 생백신의 경우 특히 문제가 되는 약독화 문제와 관련해, 오랜 시간과 여러 과정을 거칠 필요없이 약독화를 달성할 수 있다.
본 발명의 키메라 지카바이러스를 백신으로 이용하는 경우에는 체내에서 발생될 수 있는 부작용이 적어, 그 동안 부작용으로 인해 이용하기 어려웠던 지카바이러스 생백신을 제공하는데 탁월하다.
본 발명의 백신은 야생형 지카바이러스를 사용하여 제조된 생백신에 비해 질병의 reversion을 막고 안전하게 중화면역을 유도할 수 있다.
본 발명은 효과적인 세포성 면역반응(cellular immunity)의 유도를 통해 질병의 방어에 유효할 수 있다.
본 발명은 cytotoxic lymphocyte(CTL)의 반응을 유도하여 효과적으로 지카바이러스 감염증을 예방할 수 있다.
본 발명은 YFV의 signal peptide를 사용함으로써 단백질 절단이 더 효율적으로 일어나 배양 과정에서 키메라 지카바이러스의 생산성이 높아질 수 있으며, 생체내 접종 시에 항원성이 증가할 수 있다.
본 발명은 YFV의 prM과 E 단백질의 TM region을 사용함으로써 키메라 지카바이러스의 구조 단백질 안정화를 도울 수 있다. 또한, 키메라 지카바이러스의 생산성을 높이고 열안정성을 증가시킬 수 있다.
도 1은 키메라 바이러스 생산 과정을 도식화한 그림이다.
도 2는 키메라 바이러스 생산을 위해 플랫폼으로 사용한 황열병 17D 백신주와 지카바이러스 주요 항원 유전자가 치환된 키메라 지카바이러스의 유전자 구조이다. 키메라 지카바이러스 A는 하기 도 3의 construct 1에 해당하며 키메라 지카바이러스의 기본 주형이다. 키메라 지카바이러스 B는 키메라 지카바이러스 A 중 prM의 TM region과 E 단백질의 TM region을 지카바이러스의 것이 아닌 17D의 것으로 치환한 형태이다. 키메라 지카바이러스 C는 키메라 지카바이러스 A 중 17D의 캡시드 단백질을 지카바이러스의 캡시드 단백질로 치환한 형태이다.
도 3은 17D backbone에 지카바이러스의 prM과 E 단백질 삽입 시에 적용될 수 있는 signal peptide, prM, E 단백질의 서열 변이 예시이다. Construct 1~6까지 총 6개의 변이체를 디자인 하였다.
도 4는 유전자의 세포 삽입을 통해 생산된 키메라 지카바이러스를 면역화학검출법(A), 웨스턴 블롯(B), PCR 증폭법(C)을 각각 이용하여 지카바이러스의 E 단백질 발현 및 17D 유전자의 수반여부를 검사한 결과이다.
도 5는 Vero 세포에서 키메라 지카바이러스의 약독화 형질을 야생형 바이러스와 비교하여 검증한 결과이다. Plaque forming(A), 세포변성 효과(B), 배양 바이러스 양(C) 측정이 이루어졌다.
도 6은 MRC-5 세포에서 키메라 지카바이러스의 약독화 형질을 야생형 바이러스와 비교하여 검증한 결과이다. Plaque forming(A), 세포변성 효과(B), 배양 바이러스 양(C) 측정이 이루어졌다.
도 7은 유정란에 야생형 지카바이러스와 키메라 지카바이러스를 농도별로 감염하고 감염 후의 시간에 따른(DPI: Day Post Infection) 치사율을 측정한 결과이다. ABC59-1, ABC59-2, 및 ABC59-3은 각각 야생형 지카바이러스 PRVABC59를 2x10
2 pfu, 2x10
3pfu, 및 5x10
3pfu 주사한 결과를 보여준다. cZIKV-1, cZIKV-2 및 cZIKV-3은 각각 키메라 지카바이러스를 2x10
2 pfu, 2x10
3pfu, 및 5x10
3pfu 주사한 결과를 보여준다.
도 8은 BALB/c 마우스에서 키메라 지카바이러스의 약독화를 측정한 연구이다. A)는 바이러스 농도별 감염 후 그룹의 몸무게의 변화(BW: Body Weight)를 측정한 결과이고 B)는 감염 후 혈액내의 virus 검출량을 q-PCR을 통해 측정한 결과이다.
도 9는 BALB/c 마우스에 키메라 지카바이러스를 면역한 후 면역 항체 형성을 확인한 결과이다. A)는 몸무게의 변화를 B)는 E 단백질 특이 항체가를 ELISA 방법으로 측정하였다.
Sham- VP-SFM
면역 1- cZIKV(키메라 지카바이러스) 10
3 pfu/200ul
면역 2- cZIKV(키메라 지카바이러스) 10
4 pfu/200ul
면역 3- cZIKV(키메라 지카바이러스) 10
5 pfu/200ul
면역 4- Inactivated wild type 10
5 pfu/200ul
도 10은 Type I IFN KO 마우스에서 약독화 시험에서 키메라 지카바이러스 A에 감염된 후 Type I IFN KO 마우스의 몸무게 변화를 보여준다.
도 11은 야생형 지카바이러스 감염 후 Type I IFN KO 마우스의 몸무게 변화를 보여준다.
도 12는 감염 후 마우스의 시간에 따른 생존율을 보여준다.
도 13은 Type I IFN KO 마우스에서 바이러스의 증식 정도를 보여준다. 키메라 지카바이러스 A의 약독화를 확인할 수 있다.
도 14는 키메라 지카바이러스 A의 Type I IFN KO 마우스에서 면역 효력을 확인한 결과이다. G1- Mock, G2- 10
2 pfu/mouse, G3- 10
3 pfu/mouse, G4- 10
4 pfu/mouse, G5- 10
5 pfu/mouse
도 15는 키메라 지카바이러스 A가 접종된 Type I IFN KO 마우스에서 시간에 따른 몸무게 변화를 보여준다. G1- Mock, G2- 10
2 pfu/mouse, G3- 10
3 pfu/mouse, G4- 10
4 pfu/mouse, G5- 10
5 pfu/mouse
도 16은 키메라 지카바이러스 A가 접종된 Type I IFN KO 마우스에서 야생형 PRVABC59의 감염에 대한 바이러스 증식과 생존율을 보여준다.
도 17은 키메라 지카바이러스 A 및 B의 Vero 세포 배양 결과를 보여준다.
도 18은 키메라 지카바이러스 A 및 B의 thermostability test 결과를 보여준다.
도 19는 키메라 지카바이러스 A 및 B와 야생형 바이러스 PRVABC59가 감염된 Type I IFN KO 마우스의 체중변화, 바이러스 증식, 생존율을 보여준다.
도 20은 키메라 지카바이러스 A 및 B가 면역된 Type I IFN knock out 마우스에서 야생형 PRVABC59의 감염에 대한 생존율, 총항체가 및 중화 항체가를 보여준다.
이하, 본 발명을 보다 구체적으로 설명하기 위하여 하기 실시예 등을 들어 설명한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 본 발명의 구체적 이해를 돕기 위해 예시적으로 제공되는 것이다.
Ⅰ. 키메라 지카바이러스 제작
1. 지카바이러스의 준비
ATCC VR-1843 야생형 지카바이러스를 준비하였다. Genbank No: KU365778.1(Virus strain; BeH819015)를 통해 용이하게 서열을 입수할 수 있다.
2. Yellow fever 백신주인 17D 바이러스 준비
Yellow fever 백신주인 17D 바이러스를 준비하였다. GenBank No: X03700.1를 통해 용이하게 입수할 수 있다.
3. 키메라 지카바이러스 유전자 디자인 및 합성
Yellow fever 백신주인 17D 바이러스와 지카바이러스 유전자 정보 및 서열 조사를 진행한다. 17D 백신주의 경우 NCBI에 공개된 GenBank No: X03700.1의 full genome을 분석에 이용하였다. 일반적으로 플라비바이러스에서 주요 항원으로 작용하는 단백질은 pr-M (막단백질)과 E protein (외피 단백질, 엔벨로프 단백질)로 알려져 있다. 따라서, 이들 부분의 유전자 조사를 진행하였고, 그 결과 17D의 경우 482 ~ 973 nt 부위가 pr-M 유전자이며, 974 ~ 2452 nt 부위가 E 단백질 유전자임을 확인하였다. 지카바이러스는 NCBI에 공개된 Genbank No: KU365778.1(Virus strain; BeH819015)의 유전자를 분석에 이용하였고, 470 ~ 964 nt 부위가 pr-M 유전자이며, 965 ~ 2476 nt 부위가 E 단백질 유전자임을 확인하였다. 이렇게 확인된 유전자 구조를 바탕으로 17D 유전자를 원형으로 하여 17D의 prM과 E 단백질 유전자 대신 지카바이러스의 상동 유전자로 치환하여 10907 bp의 키메라 지카바이러스 유전자를 디자인하였다. 바이러스의 유전자 5' 말단에는 T7 promoter 서열(TAATACGACTCACTATA)과 transcription start codon(GG)을 순차적으로 삽입하고 이후 양쪽 말단에 제한효소인 AscI(5`-GGCGCGCC)과 SmaI-NotI(3'-GGGCCCCGCCGGCG)을 각각 추가하였다. 이렇게 디자인 된 서열은 총 10948 bp이며, 사이즈가 크기 때문에 여러 개의 절편으로 나누어 in vitro에서 DNA 합성을 진행하여 유전자를 cloning 하였다. 이렇게 확보된 유전자는 다시 하나의 유전자로 만들기 위해 각각의 절편을 연결하는 작업을 진행하고 10948 bp 전장을 최종적으로 pCC1 vector(BAC cloning kit, Epicentre)에 cloning여 pCC1-Chimeric ZIKV vector를 생산하였다.
4. 키메라 지카바이러스 변이 유전자 디자인
실시예 1을 기본으로 17D 바이러스와 지카바이러스 유전자를 다양한 조합으로 배열하거나 본래의 염기서열을 다른 염기 서열으로 치환하여 전체 혹은 일부의 아미노산 서열 변이를 제공 가능하다.
하나의 예로, 17D의 단백질 서열 중 122~778 aa 부분 대신 이에 대응하는 지카바이러스의 123~794 aa 서열을 암호화하는 유전자 서열을 삽입한 17D-Zika chimeric full length genome(10907 bp)을 디자인하였다(도 2의 키메라 지카바이러스 A).
하나의 예로, prM과 E 단백질은 C-terminal 말단 부분에 막통과 region(TM, 지질 이중막 구조를 관통하는 아미노산 서열)을 가진다. 이 부분은 캡시드 단백질과 상호작용하여 바이러스 구상 구조를 형성하여 assembly와 budding이 원활하게 일어날 수 있도록 영향을 미친다. 따라서 도 2의 키메라 지카바이러스 A를 기반으로하여 prM의 TM인 253~289 aa 대신 17D의 pr-M TM 서열(NPFFAVTALTIAYLVGSNMTQRVVIALLVLAVGPAYS)로 교체하고 또 E 단백질의 TM인 749~793 aa 대신 17D의 E 단백질 TM 서열(LNWITKVIMGAVLIWVGINTRNMTMSMSMILVGVIMMFLSLGVGA)로 치환하여 키메라 지카바이러스 B를 디자인 한다. 서열번호 13의 아미노산 서열 및 서열번호 14의 염기 서열을 갖는다.
하나의 예로, 구조 유전자 중의 하나인 캡시드는 구형 공간에 바이러스 게놈(RNA genome)을 수반하며 바이러스의 엔벨로프(외피막)과 상호작용하여 바이러스 구조 형성에 매우 주요한 역할을 한다. 따라서 플라비바이러스 키메라 유전자 구성에 있어서 backbone 으로 사용하는 17D의 캡시드 유전자 대신 상동의 지카바이러스 캡시드 유전자를 prM과 E 유전자와 함께 도입 가능하다. 따라서 도 2의 키메라 지카바이러스 A를 기반으로하여 1~101 aa 서열 부분을 지카바이러스의 capsid 단백질 서열(MKNPKKKSGGFRIVNMLKRGVARVSPFGGLKRLPAGLLLGHGPIRMVLAILAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKEKKRR)로 치환하여 키메라 지카바이러스 C를 디자인 한다. 서열번호 15의 아미노산 서열 및 서열번호 16의 염기 서열을 갖는다.
하나의 예로, 플라비바이러스는 RNA로부터 1개의 단백질로 번역되고 이 단백질이 바이러스성 protease와 숙주 세포성 protease에 의해 절단이 일어나서 각각의 기능을 가지는 여러개의 단백질로 분절된다. 따라서 각 기능성 단백질이 절단되는 아미노산 서열 부위는 바이러스의 생장에 중요한 영향을 미칠 수 있다. 따라서 이종의 서열이 연결된 hinge 부분에서 protease 작용이 영향을 받을 수 있다. 그래서 캡시드와 prM의 연결 서열과 pr-M 연결 서열이 protease의 절단에 용이하도록 서열 변이를 실시할 수 있다.
도 3에서처럼 다양한 형태의 변이체(construct 1~6)를 디자인 가능하다.
Construct 1은 도 1의 키메라 지카바이러스 A의 구조이다. 모든 변이체는 construct 1 기반으로 제작 가능하다. 서열번호 1의 아미노산 서열 및 서열번호 2의 염기 서열을 갖는다.
Construct 2는 키메라 지카바이러스의 792번 아미노산이 S에서 G로 치환된 형태이다. 서열번호 3의 아미노산 서열 및 서열번호 4의 염기 서열을 갖는다.
Construct 3은 signal peptide에 해당하는 아미노산 서열(102~121 aa)인 SHDVLTVQFLILGMLLMTGG를 GADTSVGIVGLLLTTAMA로 치환한 형태이다. 서열번호 5의 아미노산 서열 및 서열번호 6의 염기 서열을 갖는다.
Construct 4는 signal peptide에 해당하는 아미노산 서열(104~121 aa)인 DVLTVQFLILGMLLMTGG를 GADTSVGIVGLLLTTAMA로 치환한 형태이다. 서열번호 7의 아미노산 서열 및 서열번호 8의 염기 서열을 갖는다.
Construct 5는 Construct 1의 signal peptide와 pr-M 아미노산 서열 사이에(121~122 aa) 1개의 아미노산 A을 삽입한 형태이다. 서열번호 9의 아미노산 서열 및 서열번호 10의 염기 서열을 갖는다.
Construct 6는 signal peptide의 TGG(119~121 aa)를 3개의 아미노산 AMA로 치환한 형태이다. 서열번호 11의 아미노산 서열 및 서열번호 12의 염기 서열을 갖는다.
5. 키메라 지카바이러스 RNA 제조 및 세포 삽입을 통한 비리온 생산법
키메라 지카바이러스 유전자를 생산하기 위해 pCC1-Chimeric ZIKV vector를 EPI300 competent cell(Epicentre)에 transformation하여 대량 생산한다. pCC1BAC™은 copy number control이 가능한 vector로 보통은 1개의 copy를 가지며, induction 용액의 첨가를 통해 단시간에 10~20 copy로 증폭될 수 있다. 따라서, Chloramphenicol이 포함된 선택 LB 배지에 접종 후 24시간 배양액 5ml을 다시 새로운 LB배지 50ml에 접종하고 induction solution(Epicentre)을 첨가하여 vector의 copy 수가 증가된 박테리아를 회수하여야 한다. 수확한 박테리아로부터 midi prep kit (Qiagen)를 이용하여 plasmid 정제를 진행한다.
이후 pCC1-Chimeria ZIKV vector를 주형으로 한 PCR을 통해 키메라 지카바이러스 DNA를 증폭한다. 이때 사용하는 중합효소는 10 kb 이상의 염기를 합성할 수 있으며, 높은 효율과 정확도를 가지는 제품을 사용하는 것이 용이하다(실예로 PrimeSTAR GXL DNA polymerse, Clontech). 생산된 키메라 지카바이러스 DNA를 주형으로 T7 RNA polymerase를 이용한 in vitro transcription을 진행한다(HiScribe T7 kit, NEB). DNase I 를 첨가여 주형으로 사용한 DNA를 모두 제거하고 LiCl을 이용하여 -20℃에서 RNA를 20분간 침전시킨 후 70% 에탄올로 2회 세척 및 건조 뒤 RNase free 정제수에 RNA를 녹인다. RNA는 매우 분해가 쉬우므로 모든 과정에서 DEPC가 처리되거나 RNase free condition 및 시약을 사용한다.
하기 표 1은 pCC1-Chimeria ZIKV vector를 주형으로 한 PCR을 통해 키메라 지카바이러스 DNA를 증폭하기 위한 프라이머 정보를 나타낸다.
Forward | 5'-TAA TAC GAC TCA CTA TAG GAG TAA ATC CTG |
Reverse | 5'-AGT GGT TTT GTG TTT GTC ATC |
하기 표 2는 PCR 조성을 나타낸다.
5X primeStar Buffer | 10 ul |
dNTP (2.5 mM each) | 4 ul |
Primer (10 pmole)-F | 1 ul |
Primer (10 pmole)-R | 1 ul |
Template (5 ng/ul) | 2 ul |
Prime STAR polymerase | 0.5 ul |
TDW | 31.5 ul |
Total | 50 ul |
하기 표 3은 In vitro transcription 반응 조성을 나타낸다.
2X ARCA/NTP mix | 10 ul |
Template DNA | 8 ul |
T7 polymerase mix | 2 ul |
Total | 20 ul |
Vero cell을 10% FBS가 포함된 DMEM 배지에서 배양한다. Transfection을 위해 세포를 12 well plate에 0.2 x 10
6 cell/well의 세포 농도로 준비한다. 다음날 lipofectamine 3000을 이용하여 합성한 RNA를 transfection한다. 각각의 RNA와 reagent 비율을 1:1로 하여 10분간 반응시키고 세포에 처리하여 transfection 하였다. 실험에 사용된 RNA는 0.5ug/well의 농도로 하였다. Transfection 후 15~20일간 배양하며 세포 변성을 관찰하였다.
6. 키메라 지카바이러스의 검출 및 확인
본 실시예에서 키메라 지카바이러스 유전자를 수반하는 RNA를 Vero cell에 transfection하였고 이로부터 20일 후 바이러스 배양액을 수확하였다. 회수된 배양액을 이용하여 면역화학 검출법, PCR, 웨스턴 블롯, 유전자 서열 분석을 수행함으로서 생산된 바이러스가 17D 백신주와 지카바이러스 항원 유전자인 prM, E의 유전자 및 단백질을 동시에 가지는 비리온임을 확인하였다.
생산된 키메라 지카바이러스가 증식이 가능하며, 지카바이러스의 항원을 발현하는지 그리고 삽입한 유전자 서열과 일치하는 유전자 서열을 비리온에 수반하는지에 대해서 평가하였다. 이를 위해 세포 변성 확인, E 단백질의 검출, 5`UTR, 3`UTR, NS 유전자 서열 증폭방법 등이 사용되었다.
키메라 지카바이러스 배양액 중 일부(예컨대 배양액의 0.01~1ml)를 Vero cell에 접종하고 세포변성이 일어나는지 모니터하였다. 지카바이러스의 경우 Vero cell에서 세포 변성효과를 일으키는 것으로 알려져 있다.
하나의 예로, 키메라 지카바이러스 배양액 중 일부를(예컨대 배양액의 0.01~0.1ml)를 8 well chamber slide의 Vero cell에 접종하고 2일간 배양한다. 감염된 세포를 100% cold 메탄올로 -20℃에서 고정한 뒤 anti-Flavivirus E 항체(D1-4G2-4-15, Merck)로 2시간 반응시킨다. 3회 PBS로 세척 후 anti-mouse IgG-Alexa488 항체(Thermo Fisher)를 1시간 반응시킨다. PBS로 5회 세척하고 DAPI로 염색 후 형광 현미경을 통해 검출한다. 도 4의 A)에서처럼 특이 항체에 의해 키메라 지카와 야생형 바이러스가 감염된 세포에서는 E 단백질이 발현하고 있음을 확인할 수 있다. 그러나 바이러스 감염이 세포가 아닌 경우 아무런 신호가 검출되지 않았다.
하나의 예로, 키메라 지카바이러스를 감염시킨 후 2일차에 세포를 회수한다. 세포를 lysis 시킨 후 일부를(예컨대 0.02ml) 10% acrylamide SDS gel을 이용하여 전기영동하고 PVDF membrane에 transfer하여 western blot를 수행한다. 지카바이러스 E 단백질 검출을 위해 anti-Zika Env mAb (GT871, GeneTex)를 2시간 반응시킨 후 anti-mouse-HRP 항체를 1시간 반응시킨다. ECL substrate 용액을 첨가하고 필름에 감광시킨다. 도 4의 B) 에서처럼 Vero cell control(lane 2)에서는 아무런 신호가 검출되지 않은 반면 키메라 바이러스(lane 1) 및 야생형 바이러스(land 3)가 감염된 세포에서는 E 단백질이 검출됨을 확인하였다. E 단백질의 분자량은 대략 55KDa으로 예상되며, 유사한 사이즈에서 검출 확인되었다.
하나의 예로, 키메라 지카바이러스 배양액 중 일부를(예컨대 0.2ml)를 이용하여 바이러스 RNA를 정제한다(PureLink viral RNA/DNA kit, Thermo Fisher). 분리된 RNA를 주형으로 RT-PCR/PCR one-step kit를 이용하여 특정 서열이 특이적으로 증폭되는지 확인한다. 도 4의 C)에서처럼 17D의 유전자인 5`UTR, 3`UTR, NS 유전자가 예상된 크기로 각각 증폭됨이 확인되었다. 이후 키메라 지카바이러스 게놈 전체를 서열 분석한 결과 처음 디자인 합성한 유전자(Construct 1)와 100% 동일한 유전자를 가지는 것으로 확인되었다.
Ⅱ.
키메라
지카바이러스
A(Construct 1)
키메라
지카바이러스의
면역원성 확인
1. Construct 1 키메라 지카바이러스의 in vitro 약독화 시험
키메라 지카바이러스의 약독화 형질을 in vitro 시험법으로 증명하고자, Vero cell과 MRC-5 cell에 야생형 지카바이러스와 키메라 지카바이러스를 각각 감염시키고 세포 변성 및 증식한 바이러스 titer를 측정함으로써 약독화 형질을 확인하였다.
키메라 지카바이러스의 약독화 형질을 조사하고자, plaque 형성, 증식력, 세포변성 효과 측면에서 야생형 지카바이러스와 비교하였다. 먼저 Vero cell과 MRC-5 세포를 각각 이용하여 plaque forming assay를 진행하여, crystal violet 염색을 진행한다. 도 5의 A)와 도 6의 A)의 결과에서 야생형 바이러스인 PRVABC59는 선명하고 큰 plaque를 형성하는 반면 키메라 지카바이러스는 Vero cell에서는 희미한 plaque를 형성하고 MRC-5 세포에서는 plaque이 관찰되지 않았다. 야생형 지카바이러스는 2015년 Puerto Rico에서 발생한 환자의 혈청에서 분리한 PRVABC59 바이러스이다(VR-1843, ATCC).
또한, Vero cell과 MRC-5 cell에 각각 0.01MOI 로 바이러스를 감염한 후 세포변성 효과(CPE, cytopathic effect) 를 7일간 관찰한다. 그리고 감염 후 1일 간격으로 동일 시간에 배양액을 각 0.3ml씩 채집하여 -70℃에 냉동보관하였다. 이후 plaque assay 및 Zika q-PCR kit(zika virus polyprotein gene genesig advanced kit, Genesig)를 이용하여 바이러스 증식력을 분석하였다.
도 5의 B)와 도 6의 B)의 세포 변성의 비교 결과에서 Vero cell(4일 배양), MRC-5 cell(7일 배양) 모두에서 야생형 바이러스인 PRVABC59는 세포 변성이 크게 관측되나 키메라 지카바이러스 감염의 경우는 세포 변성화가 낮거나 거의 관측되지 않았다. 수집한 배양액 내의 바이러스 titer를 측정하여 증식력을 조사한 결과, 도 5의 C)와 도 6의 C)에서처럼 야생형 바이러스인 PRVABC59가 더 높은 수로 증식하는 것을 확인하였다.
도 5와 도 6은 하나의 암세포로서 type I 인터페론 신호가 없어 바이러스 증식이 잘 이루어지는 Vero cell과 정상세포로서 인체 primary lung 세포를 이용하여 약독화를 측정한 결과이다. 상기 Vero cell과 primary human lung 세포 2종류 모두에서 plaque 형성, 세포 변성 효과, 바이러스 증식력 측면에서 야생형 바이러스보다 키메라 지카바이러스가 약독화 되었음을 보여주고 있다.
2. 키메라 지카바이러스의 in vivo 약독화 시험
키메라 지카바이러스의 약독화 형질을 조사하고자, 바이러스를 감염시킨 후 egg의 치사율과 마우스에서 바이러스 증식력을 측정하였다.
하나의 예로, 유정란을 인큐베이터(37℃, 60% 습도)에서 부화를 시작하여 4일째에 air sac 부분의 껍질을 개방하고 해밀턴 주사기를 이용하여 바이러스를 농도별로 amniotic cavity에 주사하였다. 주사된 야생형 지카바이러스 PRVABC59와 키메라 지카바이러스 각각의 titer는 2x10
2 pfu, 2x10
3pfu, 및 5x10
3pfu 이다. 감염 후 개봉된 껍질을 파라필름으로 밀봉하여 건조되지 않게 처리하고 다시 인큐베이터에서 부화하며 치사율을 측정하였다. 도 7의 A) 결과에서 야생형 PRVABC59 바이러스와 키메라 지카바이러스 모두 농도가 높아지면 치사율이 높아지는 경향을 보였으며, 특히 야생형 PRVABC59 바이러스가 키메라 지카바이러스 보다 높은 치사율을 가졌다.
키메라 지카바이러스의 약독화 형질을 in vivo 시험법으로 증명하고자, BALB/c 마우스에 바이러스를 정맥 주사하고 몸무게의 변화 및 혈청내에서 바이러스 증식을 측정하여 키메라 지카바이러스의 약독화를 확인하였다.
하나의 예로, 8주령의 BALB/c 암컷 마우스의 정맥에 바이러스를 10
2, 10
3, 10
4, 10
5 pfu/200ul의 농도로 주사한다. 주사 후 1~6일 동안 혈청을 분리하여 Zika q-PCR kit(Zika virus polyprotein gene genesig advanced kit, Genesig)를 이용하여 증식 정도를 분석하였다. 야생형 지카바이러스를 BALB/c 마우스에서 감염시켰을 때 감염 후 2~5일 사이 혈청 내에서 10
6~10
7copy/ml의 농도로 증식 가능한 것으로 알려져 있지만, 도 8 결과에서 키메라 지카바이러스를 농도별로 감염한 결과 몸무게의 변화가 그룹간 차이가 없었으며 모든 그룹에서 혈청 내 바이러스 증식이 검출되지 않았다.
바이러스를 유정란에 접종하는 기법은 인플루엔자에서처럼 바이러스를 배양하거나 혹은 바이러스의 위험성 및 세포독성 등을 평가하는데 주로 이용하는 방법 중 하나이다. 문헌에서 early stage의 chicken embryo가 지카바이러스에 감수성이 있는 것으로 보고하고 있다. 도 7의 결과에서는 키메라 지카바이러스가 야생형에 비해 낮은 치사율을 보임으로써 약독화 되었음을 보여준다. 또한, 일반적인 immune-competent 마우스에서 지카바이러스는 병증이 거의 나타나지 않는다. BALB/c 마우스의 경우 다른 마우스와는 다르게 지카바이러스에 대한 감수성을 보이는 것으로 알려져 있으며, 정맥 주사 시 혈액 내 viremia를 보인다(Rafael A. Larocca et al, Vaccine protection against Zika virus from Brazil, 2016). 그러나, 도 8의 B)에서 확인할 수 있듯이 BALB/c 마우스에서 키메라 지카바이러스가 전혀 증식하지 못하였으며, 이는 약독화 되었음을 보여준다.
3.
Immuno
-competent 마우스(
BALB
/c)에서
키메라
지카바이러스의
면역 항체 형성 분석
본 발명에서 생산된 키메라 지카바이러스를 면역하였을 때 포유동물에서 안전성을 보이며 효과적인 면역반응을 유도하는지 증명하기 위하여 여러 농도의 키메라 지카바이러스를 BALB/c 마우스의 근육에 주사하고 혈청을 회수하여 항원 특이 항체가 형성을 확인한다. 이때 바이러스 면역으로 인한 몸무게 변화도 함께 측정하였다.
4주령의 BALB/c 마우스 근육에 formalin 불활화 야생형 바이러스 10
5 pfu/200ul의 농도, 키메라 지카바이러스를 10
3, 10
4, 10
5 pfu/200ul의 농도로 주사하였다. 총 2회 2주 간격으로 동일 조건에서 면역되었으며 마지막 면역 후 2주째에 혈청을 분리하였다. 혈청은 -20℃에 보관 후 RecombiVirus ™ Zika Virus Envelop antibody ELISA kit(Alpha diagnostic)를 이용하여 E 단백질에 특이적인 IgG 항체를 분석하였다. 도 9 B)에서 알 수 있는 바와 같이, 농도 의존적으로 E 단백질 항체가가 증가하였으며, 동일 농도의 불활화 야생형 바이러스 그룹에 반하여 살아있는 키메라 지카바이러스가 주사된 그룹은 높은 수준의 항체가 유도되었다. 또한, 도 9 A)에서 알 수 있는 바와 같이, 면역 후 4주간 마우스의 몸무게 변화를 관찰하였을 때 바이러스의 병증으로 인한 변화는 없는 것으로 확인되었다. 본 결과는 live 키메라 지카바이러스가 포유동물에서 원활하게 증식하여 충분한 면역을 유도함과 동시에 적절히 약독화 되어 병원성을 유도하지 않는다는 것을 의미한다.
4.
Immuno
-compromised 마우스(Type I
IFN
KO)에서
키메라
지카바이러스의
약독화 시험
Type I IFN knock out 마우스는 바이러스 증식을 억제하는 인터페론(IFN) 알파와 베타가 결손되어 선천성 면역이 일부 결여된 마우스이다. 따라서 지카바이러스에 높은 감수성을 가지고 있어 동물 모델로 사용하기에 적합하다. 일반적인 immuno-competent 동물의 경우 선천성 면역반응으로 감수성이 낮은 편이다.
Type I IFN KO 마우스에 키메라 지카바이러스 혹은 야생형 지카바이러스 용액을 농도별(10
2~10
6pfu/mouse)로 IP(Intraperitoneal Administration)로 감염하였다. 감염 후 날짜별로 혈청을 분리하고, 몸무게의 변화와 치사율을 측정하였다.
군 | 투여물질 | 투여용량 ( pfu /head) | 투여방법 |
G1 | Vehicle(VP-SFM) | - | IP (intraperitoneal injection;복강내 주사) |
G2 | 백신 1 (cZIKV) | 1 X 10 2 | |
G3 | 백신 2 (cZIKV) | 1 X 10 3 | |
G4 | 백신 3 (cZIKV) | 1 X 10 4 | |
G5 | 백신 4 (cZIKV) | 1 X 10 5 | |
G6 | 백신 5 (cZIKV) | 1 X 10 6 | |
G7 | WT 1 (ABC59) | 1 X 10 2 | |
G8 | WT 2 (ABC59) | 1 X 10 3 | |
G9 | WT 3 (ABC59) | 1 X 10 4 | |
G10 | WT 4 (ABC59) | 1 X 10 5 | |
G11 | WT 5 (ABC59) | 1 X 10 6 |
-G1=Sham=Mock VP-SFM(Media)
* G2~G11 바이러스 주사
야생형 지카바이러스가 투여되었을 경우 몸무게가 크게 감소하였으며 혈액내 바이러스 증가도 확연하였다. 또한 치사율 역시 높은 수치를 보였다. 그러나 키메라 지카바이러스가 감염된 경우에서는 야생형 바이러스의 경우보다 적은 몸무게 감소, 낮은 바이러스 증식, 높은 생존율이 관찰되었다. 이는 키메라 지카바이러스가 약독화되어 생물체에서 안전하게 증식 가능하다는 것을 보여주고 있다. 도 10은 construct A 바이러스에 감염된 마우스의 몸무게 변화를 보여주며, 도 11은 야생형 지카바이러스에 감염된 마우스의 몸무게 변화를 보여준다. 한편, 도 12는 construct A 바이러스와 야생형 바이러스에 감염된 상태의 마우스의 생존율을 비교한 결과이며, wild type virus 감염시 더 높은 사망률을 보였다. 이는, 키메라 지카바이러스가 약독화되어 생물체에서 안전하게 증식 가능하다는 것을 의미한다.
특히 도 13은 바이러스의 증식 결과를 확인한 것으로, WT에 비해 cZIKV는 상대적으로 낮은 바이러스 증식을 나타내어 약독화되었음을 확인하였다.
5.
Immuno
-compromised 마우스(Type I
IFN
KO)에서
키메라
지카바이러스의
면역 항체 형성 분석
Type I IFN KO 마우스에 키메라 지카 백신주(바이러스 용액)을 농도별(10
2~10
5pfu/mouse)로 IM를 통해 2회(2주간격) 면역하였다.
군 | 투여물질 | 투여용량 (pfu/head) | 면역횟수 | 투여방법 |
G1 | Vehicle | - | 2 | IM(intramuscular injection;근육 내 주사) |
G2 | 백신 1 | 1 X 10 2 | ||
G3 | 백신 2 | 1 X 10 3 | ||
G4 | 백신 3 | 1 X 10 4 | ||
G5 | 백신 4 | 1 X 10 5 |
본 발명에서 생산된 키메라 지카바이러스 construct A를 면역하였을 때 포유동물에서 안전성을 보이며 효과적인 면역반응을 유도하는지 증명하기 위하여 여러 농도의 키메라 지카바이러스를 근육에 주사하고 혈청을 회수하여 항원 특이 항체가 형성을 확인한다. 이때 바이러스 면역으로 인한 몸무게 변화도 함께 측정하였다. 상기 표 5의 농도로 총 2회 2주 간격으로 동일 조건에서 면역되었으며 마지막 면역 후 2주째에 혈청을 분리하였다. 혈청은 -20℃에 보관 후 RecombiVirus ™ Zika Virus Envelop antibody ELISA kit(Alpha diagnostic)를 이용하여 E 단백질에 특이적인 IgG 항체를 분석하였다. 도 14에서 알 수 있는 바와 같이, 농도 의존적으로 E 단백질 항체가가 증가하였으며, 높은 수준의 중화항체가를 보였다.
또한, 도 15에서 알 수 있는 바와 같이, 면역 기간 동안 바이러스의 병증으로 인한 몸무게 변화는 없는 것으로 확인되었다. 이후 생존율과 바이러스 증식 결과는 도 16에 나타냈다.
Ⅲ. 서열번호 13의 키메라 지카바이러스의 면역원성 확인
1.
키메라 지카바이러스 A 및 B의 바이러스 성장 비교
(1) 실험방법
키메라 지카바이러스 A 및 B를 Vero 세포에 0.005 MOI로 감염하고 세포변성 효과(CPE, cytopathic effect) 를 8일간 관찰한다. 그리고 감염 후 1일 간격으로 동일 시간에 배양액을 각 0.3ml씩 채집하여 -70℃에 냉동보관 하였다. 0, 1, 2, 3, 4, 6, 8일 차 sample의 plaque forming assay를 진행하여, crystal violet 염색을 진행하고 plaque을 계수하였다.
(2) 실험결과
도 17에 결과를 나타냈다. 키메라 지카바이러스 A에 비해 B의 titer가 전반적으로 약 3~10배 정도 높게 나왔다. 8일 배양 중 최고 titer를 보인 day는 지카바이러스 A (4day), 지카바이러스 B(6day)로 차이를 보였다. 이는 지카바이러스 B 바이러스의 구조적 안정성 증가로 시간이 지나도 감염성을 유지하기 때문인 것으로 사료된다. Plaque assay 결과, 최고 titer는 키메라 지카바이러스 A의 경우 4E5, B는 3E6 로 확인되어 키메라 지카바이러스 B의 성장이 더 우수하였다.
2.
키메라 지카바이러스 A 및 B의 thermostability 확인 및 비교
(1) 실험방법
열안정성 시험을 위해, 동일 농도의 바이러스를 각기 다른 온도인 4, 37, 60℃에서 72시간 동안 보관하면서 감염성을 가지는 바이러스 titer의 변화를 측정하였다. 실험 시작 후 1, 6, 14, 24, 48, 72h 에 일부의 샘플을 취하여 분석에 사용하였다. 감염력을 가지는 바이러스 titer는 Vero 세포를 이용한 plaque assay를 통해 측정하였다. 온도 처리 전(0hr)지점의 titer를 100으로 하여 relative infectious viral titer를 계산하였다.
(2) 실험결과
도 18에 결과를 나타냈다. 4, 37, 60 ℃ 의 여러 온도 조건에서 키메라 지카바이러스 B의 infectivity가 A 바이러스보다 더 잘 유지되는 것을 확인할 수 있었다. 이는, 바이러스의 생산성, 백신의 제조, 효과 유지, 백신의 유통 및 보관 등 여러 측면에서 장점을 가진다.
3. Type I IFN KO 마우스에서 백신주 A와 B의 약독화 확인 및 비교
(1) 실험방법
4주령 Type I IFN knock out 마우스에 키메라 지카바이러스 백신주 A, B, PRVABC59를 농도별로 IP 감염하고, 마우스의 몸무게 변화, 혈청내의 바이러스 증식, 치사율을 비교하였다.
군 | 투여물질 | 투여용량 (pfu/head) | 투여방법 |
Sham | Vehicle(VP-SFM) | - | IP |
ConA-E2 | 키메라 지카바이러스 A | 1 X 10 2 | |
ConA-E5 | 키메라 지카바이러스 A | 1 X 10 5 | |
ConB-E2 | 키메라 지카바이러스 B | 1 X 10 2 | |
ConB-E5 | 키메라 지카바이러스 B | 1 X 10 5 | |
ABC-E2 | Wild-type (ABC59) | 1 X 10 2 | |
ABC-E5 | Wild-type (ABC59) | 1 X 10 5 |
(2) 실험결과
도 19에 결과를 나타냈다. 체중변화는 ABC59가 농도 의존적으로 초기 몸무게 대비 30-60%의 가장 큰 감소폭을 보였고, 키메라 지카바이러스 A, B는 주사 후 5일동안 10%정도의 감소폭을 보이다가 다시 회복 하는 추세를 보였다.
Viremia는 ABC59에서 가장 높은 수치를 보였고, 키메라 지카바이러스 A와 B는 비슷한 양상 및 수치를 보였다.
생존율은 ABC59에서만 사망 개체가 보였고, 키메라 지카바이러스 A와 B는 100% 생존율을 나타냈다.
4. Type I IFN KO 마우스에서 백신주 A와 B의 효력 확인 및 비교
(1) 실험방법
4주령 Type I IFN knock out 마우스에 각 2가지 농도의 키메라 지카바이러스 백신주를 IM으로 2주 간격, 2회 면역하고, 마지막 면역 후 2주째에 야생형 지카바이러스인 PRVABC59를 challenge하였다.
군 | 투여물질 | 투여용량 (pfu/head) | 면역 횟수 | 투여 방법 |
Sham | Vehicle | - | 2 | IM |
ConA-E2 | Construct A | 1 X 10 2 | ||
ConA-E5 | Construct A | 1 X 10 5 | ||
ConB-E2 | Construct B | 1 X 10 2 | ||
ConB-E5 | Construct B | 1 X 10 5 |
(2) 실험결과
도 20에 결과를 나타냈다. E 단백질 특이 총항체가 test결과 키메라 지카바이러스 A와 B 모두 투여 양에 의존적으로 우수한 항체 유도를 보였고 바이러스 A와 B 사이의 항체 농도 차이는 크지 않았다.
중화항체의 경우, 투여 농도에 상관없이 높은 중화항체 농도를 보였고, A와 B 바이러스의 결과가 서로 유사한 값을 보였다.
야생형 바이러스 감염 후 생존율 측정 결과 키메라 지카바이러스 A 또는 B로 면역한 모든 개체가 PRVABC59에 대해서 100% 방어에 성공하였다.
본 발명은 약독화된 키메라 지카바이러스 백신을 제공한다.
본 발명의 키메라 지카바이러스를 백신으로 이용하는 경우에는 체내에서 발생될 수 있는 부작용이 적어, 그 동안 부작용으로 인해 이용하기 어려웠던 지카바이러스 생백신을 제공하는데 탁월하다.
본 발명의 백신은 야생형 지카바이러스를 사용하여 제조된 생백신에 비해 질병의 reversion을 막고 안전하게 중화면역을 유도할 수 있다.
Claims (30)
- 지카바이러스 감염에 대한 면역반응을 유도하며,황열병 바이러스 17D 백신주 핵산 분자의 i) pre-membrane(prM) 단백질을 암호화하는 유전자의 업스트림에 존재하는 시그날 펩타이드(signal peptide)를 암호화하는 유전자; ii) pre-membrane(prM) 및 이의 막통과 단백질을 암호화하는 유전자; 및 iii) 엔벨로프(E) 및 이의 막통과 단백질을 암호화하는 유전자 부위에 상기 황열병 바이러스 17D 백신주 유전자 대신에 삽입되는,지카바이러스의 i) pre-membrane(prM) 단백질을 암호화하는 유전자의 업스트림에 존재하는 시그날 펩타이드(signal peptide)를 암호화하는 유전자; ii) pre-membrane(prM) 및 이의 막통과 단백질을 암호화하는 유전자; 및 iii) 엔벨로프(E) 및 이의 막통과 단백질을 암호화하는 유전자로 이루어지고, 상기 지카바이러스의 i), ii), 및 iii) 유전자를 이루는 핵산의 일부 또는 전부가 치환, 결실, 또는 삽입된, 핵산 분자.
- 제1항에 있어서, 상기 핵산 분자는 다음의 서열 중 어느 하나이며, 황열병 바이러스 17D 백신주 유래의 핵산과 지카바이러스 유래 핵산을 모두 포함하는 것을 특징으로 하는 핵산 분자.a) 서열번호 19인 핵산 분자;b) 서열번호 20인 핵산 분자;c) 서열번호 21인 핵산 분자;d) 서열번호 22인 핵산 분자;e) 서열번호 23인 핵산 분자; 또는f) 서열번호 24인 핵산 분자.
- 제1항에 있어서, 상기 키메라 핵산 분자는 다음의 서열 중 어느 하나인 것을 특징으로 하는 키메라 핵산 분자.a) 서열번호 25인 핵산 분자;b) 서열번호 26인 핵산 분자;c) 서열번호 27인 핵산 분자; 또는d) 서열번호 28인 핵산 분자.
- 서열번호 19 내지 서열번호 25 중 어느 하나로 이루어진 키메라 핵산 분자를 포함하는, 면역원성 조성물.
- 서열번호 29의 약독화된 황열병 바이러스의 유전자 서열에 지카바이러스 항원 유전자가 도입되어 형성된 키메라 지카바이러스.
- 제5항에 있어서, 상기 지카바이러스 항원 유전자는 i) pre-membrane(prM) 단백질 및 이의 막통과 단백질 유전자, ii) 엔벨로프(E) 단백질 및 이의 막통과 단백질 유전자, 및 iii) 캡시드(C) 단백질 유전자로 이루어진 것을 특징으로 하는 키메라 지카바이러스.
- 제5항에 있어서, 상기 키메라 지카바이러스는 지카바이러스에 대한 면역 반응 유도를 위한 키메라 지카바이러스이며,약독화된 황열병 바이러스의 i) pre-membrane(prM) 단백질 및 이의 막통과 단백질 영역, 및 ii) 엔벨로프(E) 단백질 및 이의 막통과 단백질 영역이야생형 지카바이러스의 i) pre-membrane(prM) 단백질 및 이의 막통과 단백질 영역, 및 ii) 엔벨로프(E) 단백질 및 이의 막통과 단백질 영역으로부터 유래한 것으로 치환된 것을 특징으로 하는 키메라 지카바이러스.
- 제5항에 있어서,상기 키메라 지카바이러스는 지카바이러스에 대한 면역 반응 유도를 위한 키메라 지카바이러스이며,약독화된 황열병 바이러스의 i) pre-membrane(prM) 단백질 영역은 야생형 지카바이러스의 pre-membrane(prM) 단백질 영역으로부터 유래한 아미노산서열로 치환되고, 약독화된 황열병 바이러스의 ii) 엔벨로프(E) 단백질 영역이 야생형 지카바이러스의 엔벨로프(E) 단백질 영역으로부터 유래한 아미노산서열로 치환되며,상기 i) pre-membrane(prM) 단백질 영역의 막통과 단백질 영역 및 ii) 엔벨로프(E) 단백질의 막통과 단백질 영역은 각각 약독화된 황열병 바이러스로부터 유래한 것을 특징으로 하는 키메라 지카바이러스.
- 제7항에 있어서,상기 키메라 지카바이러스는 야생형 지카바이러스의 캡시드(C) 단백질이 포함된 것을 특징으로 하는 키메라 지카바이러스.
- 제7항에 있어서,상기 키메라 지카바이러스는 서열번호 1의 아미노산 서열로 이루어진 것을 특징으로 하는, 키메라 지카바이러스.
- 제8항에 있어서,상기 키메라 지카바이러스는 서열번호 13의 아미노산 서열로 이루어진 것을 특징으로 하는, 키메라 지카바이러스.
- 제10항에 있어서, 상기 키메라 지카바이러스는 서열번호 1의 아미노산 서열에서 792번 위치가 S에서 G로 치환된 것을 특징으로 하는 키메라 지카바이러스.
- 제10항에 있어서, 상기 키메라 지카바이러스는 서열번호 1의 아미노산 서열에서 102-121번 위치가 SHDVLTVQFLILGMLLMTGG에서 GADTSVGIVGLLLTTAMA로 치환된 것을 특징으로 하는 키메라 지카바이러스.
- 제10항에 있어서, 상기 키메라 지카바이러스는 서열번호 1의 아미노산 서열에서 104-121 아미노산 위치의 서열이 DVLTVQFLILGMLLMTGG에서 GADTSVGIVGLLLTTAMA로 치환된 것을 특징으로 하는 키메라 지카바이러스.
- 제10항에 있어서, 상기 키메라 지카바이러스는 서열번호 1의 아미노산 서열에서 121번 위치의 아미노산인 G아미노산 다음에 1개 이상의 아미노산의 삽입이 유발된 것을 특징으로 하는 키메라 지카바이러스.
- 제15항에 있어서, 상기 삽입된 아미노산은 1개이며, 아미노산 A인 것을 특징으로 하는 키메라 지카바이러스.
- 제10항에 있어서, 상기 키메라 지카바이러스는 서열번호 1의 아미노산 서열에서 119-121 위치의 아미노산인 TGG에 치환이 유발된 것을 특징으로 하는 키메라 지카바이러스.
- 제17항에 있어서, 상기 키메라 지카바이러스는 서열번호 1의 아미노산 서열에서 119-121 위치의 아미노산인 TGG가 AMA로 치환된 것을 특징으로 하는 키메라 지카바이러스.
- 동물에 유효량 투여되어 동물 체내에서 지카바이러스에 대한 면역을 유도하는, 제5항 내지 제17항 중 어느 하나의 항의 키메라 지카바이러스; 및약학적으로 허용 가능한 부형제를 포함하는 지카바이러스 면역원성 조성물.
- 제19항에 있어서, 상기 약학적으로 허용 가능한 부형제는 물, PBS 버퍼 용액, 글리신 용액, D-트레할로스 데하이드레이트, 락토스, 및 소르비톨로 이루어진 군에서 선택된 어느 하나 이상인 것인 특징으로 하는 지카바이러스 면역원성 조성물.
- 제19항에 있어서, 상기 동물은 인간인 것을 특징으로 하는 지카바이러스 면역원성 조성물.
- 제19항에 있어서, 상기 지카바이러스 면역원성 조성물은 근육내 경로, 피내, 점막 또는 피하 경로를 통해 투여되는 것을 특징으로 하는 지카바이러스 면역원성 조성물.
- 키메라 지카바이러스를 포함하는 면역원성 조성물 제조 방법으로,약독화된 황열병 바이러스 17D 백신주를 준비하는 단계;상기 황열병 바이러스 17D 백신주의 구조단백질을 암호화하는 염기서열을 야생형 지카바이러스의 구조단백질을 암호화하는 염기서열로 치환하여 17D-지카 키메릭 유전체를 준비하는 단계;상기 유전체를 벡터에 클로닝하는 단계;상기 클로닝된 벡터를 컴피턴트 세포(competent cell)에 도입하여 형질전환하는 단계; 및상기 컴피턴트 세포로부터 바이러스 DNA를 회수하는 단계를 포함하는, 제조 방법.
- 제24항에 있어서, 상기 벡터에 클로닝하는 단계는 벡터로 pCC1벡터를 이용하여 pCC1-키메릭 지카바이러스 벡터가 형성되는 것을 특징으로 하는 제조 방법.
- 제24항에 있어서, 상기 17D-지카 키메릭 유전체는 서열번호 2, 4, 6, 8, 10, 12, 14, 및 16으로 이루어진 군에서 선택된 어느 하나의 염기 서열을 갖는 것을 특징으로 하는 제조 방법.
- 제24항에 있어서, 상기 pCC1-키메릭 지카바이러스 벡터는 순차적으로 5'말단에 제한효소 AscI 암호화 서열 (5'-GGCGCGCC); T7 promoter 서열(TAATACGACTCACTATA); transcription start codon(GG); 서열번호 2, 4, 6, 8, 10, 12, 14, 및 16으로 이루어진 군에서 선택된 어느 하나의 키메릭 지카바이러스의 핵산; 3'말단에 제한효소 SmaI-NotI 암호화 서열(3'-GGGCCCCGCCGGCG)이 포함된 것을 특징으로 하는 제조 방법.
- 다음의 단계를 포함하는, 지카바이러스 감염에 대한 면역원성을 갖는 키메라 지카바이러스 제조방법.(a) 서열번호 29를 갖는 약독화된 황열병 바이러스 백신주인 YF 17D 유전체를 준비하는 단계; 및(b) 상기 서열번호 29의 YF 17D 유전체의 염기서열 482 내지 2452 위치의 핵산을 서열번호 19 내지 28 중 어느 하나의 염기서열로 치환하여 키메라 지카바이러스 유전자를 제작하는 단계.
- 제28항에 있어서, 상기 제조방법은,(c) 상기 (b) 단계에서 제작된 키메라 지카바이러스 유전자의 5' 말단에 T7 promoter 서열(TAATACGACTCACTATA)과 transcription start codon(GG)을 추가하고, 양쪽 말단에 제한효소인 AscI(5`-GGCGCGCC)과 SmaI-NotI(3'-GGGCCCCGCCGGCG)을 각각 추가하여 벡터에 클로닝하기 위한 준비를 하는 단계를 더 포함하는, 제조방법.
- 제29항에 있어서, 상기 벡터는 pCC1 벡터인 것을 특징으로 하는, 제조방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20180052156 | 2018-05-04 | ||
KR10-2018-0052156 | 2018-05-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019212312A1 true WO2019212312A1 (ko) | 2019-11-07 |
Family
ID=68386095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/005374 WO2019212312A1 (ko) | 2018-05-04 | 2019-05-03 | 키메라 지카바이러스 백신 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20190127605A (ko) |
WO (1) | WO2019212312A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230153306A (ko) * | 2022-04-27 | 2023-11-06 | 에스케이바이오사이언스(주) | 유방암 세포 계대를 통한 키메라 지카바이러스 항암백신 |
KR102619184B1 (ko) * | 2022-12-27 | 2023-12-29 | 주식회사 그린백스 | 에피갈로카테킨-3-갈레이트에 의해 불활화된 지카바이러스를 유효성분으로 포함하는 백신 조성물 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000075830A (ko) * | 1997-02-28 | 2000-12-26 | 세인트 루이스 유니버시티 | 키메라 플라비바이러스 백신 |
WO2018060771A1 (en) * | 2016-09-30 | 2018-04-05 | Sanofi Pasteur | Live attenuated chimeric zika virus and its use as an immunogenic composition |
-
2019
- 2019-05-03 WO PCT/KR2019/005374 patent/WO2019212312A1/ko active Application Filing
- 2019-05-03 KR KR1020190052553A patent/KR20190127605A/ko unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000075830A (ko) * | 1997-02-28 | 2000-12-26 | 세인트 루이스 유니버시티 | 키메라 플라비바이러스 백신 |
WO2018060771A1 (en) * | 2016-09-30 | 2018-04-05 | Sanofi Pasteur | Live attenuated chimeric zika virus and its use as an immunogenic composition |
Non-Patent Citations (4)
Title |
---|
DATABASE Nucleotide 28 April 2004 (2004-04-28), "Yellow fever virus complete genome, 17D vaccine strain", XP055648545, retrieved from NCBI Database accession no. X03700.1 * |
GIEL-MOLONEY, M. ET AL.: "Chimeric yellow fever 17D-Zika virus (ChimeriVax-Zika) as a live-attenuated Zika virus vaccine", SCIENTIFIC REPORTS, vol. 8, no. 13206, 4 September 2018 (2018-09-04), pages 1 - 1 1, XP002786695 * |
MOLENKAMP, R. ET AL.: "Yellow Fever Virus Replicons as an Expression System for Hepatitis CVirus Structural Proteins", JOURNAL OF VIROLOGY, vol. 77, no. 2, January 2003 (2003-01-01), pages 1644 - 1648, XP055648539 * |
TOURET, F. ET AL.: "Live Zika virus chimeric vaccine candidate based on a yellow fever 17-D attenuated backbone", EMERG MICROBES INFECT., vol. 7, no. 161, 26 September 2018 (2018-09-26), pages 1 - 12, XP002786696 * |
Also Published As
Publication number | Publication date |
---|---|
KR20190127605A (ko) | 2019-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021221486A1 (en) | Vaccine composition for preventing or treating infection of sars-cov-2 | |
WO2019151760A1 (ko) | 신규 다가 hpv 백신 조성물 | |
WO2019212312A1 (ko) | 키메라 지카바이러스 백신 | |
WO2020091529A1 (ko) | 재조합 호흡기 세포융합 바이러스 f 단백질 및 이를 포함하는 백신 조성물 | |
WO2020005028A1 (ko) | 중증 열성 혈소판 감소 증후군(sfts) 바이러스 감염 질환 예방 또는 치료용 백신 조성물 | |
WO2017003267A1 (ko) | 항바이러스 활성 효능을 가지는 펩티드 및 이를 포함하는 조성물 | |
WO2012036391A2 (ko) | 돼지 써코바이러스2(pcv2) 유전자의 표면발현용 벡터 및 이로 형질전환된 살모넬라 백신 균주 | |
WO2019182417A1 (ko) | 황열 바이러스 유래 ns1 단백질, 이에 특이적으로 결합하는 단일클론항체 및 이의 용도 | |
WO2023101381A1 (ko) | 구제역 바이러스 유사 입자를 생산하기 위한 백신 플랫폼 | |
WO2023048532A1 (ko) | 레오바이러스 기반 신규한 백신플랫폼 및 이의 용도 | |
WO2020138761A1 (ko) | 돼지 생식기 및 호흡기 증후군 바이러스의 키메라 바이러스 및 이를 이용한 백신 | |
WO2014142515A1 (ko) | 재조합 효모 전세포를 이용한 돼지 써코바이러스(pcv2) 서브유닛 백신과 그의 제조 방법 | |
WO2020076141A1 (ko) | 재조합 rsv 생백신주 및 이의 제조 방법 | |
WO2019066437A1 (ko) | 가용성 변형 호흡기 융합세포 바이러스 (rsv) f 단백질 항원 | |
WO2021215857A1 (ko) | 삼량체를 형성하는 코로나-19 바이러스 (covid-19, coronavirus disease 2019)의 재조합 스파이크 단백질 및 식물에서의 상기 재조합 스파이크 단백질의 대량 생산 방법과 이를 기반으로하는 백신조성물 제조 방법 | |
WO2023128051A1 (ko) | 돼지생식기호흡기증후군바이러스 유래 펩타이드를 발현하는 키메라 바이러스 및 이를 포함하는 백신 조성물 | |
WO2023055154A1 (ko) | 재조합된 약독화 rsv 생백신 및 이를 제조하는 방법 | |
WO2022169344A1 (ko) | 내열성이 개선된 뉴캐슬병 바이러스 및 이를 포함하는 뉴캐슬병 바이러스 백신 | |
WO2023204559A1 (ko) | 고역가 일본뇌염 바이러스 유전형 5형 및 이의 용도 | |
WO2023229422A1 (ko) | 지카바이러스 감염성 전장 클론 또는 이의 변이체 및 이들의 용도 | |
WO2022216028A1 (ko) | 제2형 중증급성호흡기증후군 코로나바이러스 감염 질환 예방용 중화능 개량 백신 조성물 | |
WO2021154055A1 (ko) | 유럽형 돼지 생식기 호흡기 증후군 바이러스의 변이주 및 이를 포함하는 백신 조성물 | |
WO2014046410A1 (ko) | 노다바이러스의 바이러스 유사입자의 생산방법, 이를 발현하는 효모 세포주 및 이를 포함하는 백신 조성물 | |
WO2023211172A1 (ko) | 유방암 세포 계대를 통한 키메라 지카바이러스 항암백신 | |
WO2021153873A1 (ko) | 돼지유행성설사병바이러스 약독화 생백신주, 이를 포함하는 조성물, 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19796089 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19796089 Country of ref document: EP Kind code of ref document: A1 |