WO2016199868A1 - タッチパネル用水性樹脂組成物、転写フィルム及び硬化膜積層体、並びに樹脂パターンの製造方法及びタッチパネル表示装置 - Google Patents

タッチパネル用水性樹脂組成物、転写フィルム及び硬化膜積層体、並びに樹脂パターンの製造方法及びタッチパネル表示装置 Download PDF

Info

Publication number
WO2016199868A1
WO2016199868A1 PCT/JP2016/067266 JP2016067266W WO2016199868A1 WO 2016199868 A1 WO2016199868 A1 WO 2016199868A1 JP 2016067266 W JP2016067266 W JP 2016067266W WO 2016199868 A1 WO2016199868 A1 WO 2016199868A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
resin composition
photosensitive layer
mass
Prior art date
Application number
PCT/JP2016/067266
Other languages
English (en)
French (fr)
Inventor
智史 渋井
誠 中出
下田 浩一朗
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2017523700A priority Critical patent/JP6669742B2/ja
Priority to CN201680033005.1A priority patent/CN107615224A/zh
Priority to KR1020177031896A priority patent/KR102019581B1/ko
Publication of WO2016199868A1 publication Critical patent/WO2016199868A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/72Cured, e.g. vulcanised, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to an aqueous photosensitive resin composition and the like, and more specifically, a planarizing film of an electronic component such as a liquid crystal display device, an organic EL display device, a touch panel display device, an integrated circuit element, and a solid-state imaging device;
  • the present invention relates to an aqueous photosensitive resin composition suitable for forming a film and an interlayer insulating film, and a method for producing a resin pattern using the same.
  • Touch panels are used not only for large electronic devices such as personal computers and televisions, but also for small electronic devices such as car navigation systems, mobile phones, and electronic dictionaries, and display devices such as OA / FA devices.
  • An electrode made of a material is provided.
  • ITO Indium-Tin-Oxide
  • indium oxide Indium oxide
  • tin oxide As the transparent conductive electrode material, ITO (Indium-Tin-Oxide), indium oxide, and tin oxide are known, and these materials have high visible light transmittance, so that electrode materials for substrates for liquid crystal display elements, etc. It is mainly used as.
  • Existing touch panel methods include resistive film method, optical method, pressure method, capacitance method, electromagnetic wave induction method, image recognition method, vibration detection method, ultrasonic method, etc.
  • capacitive touch panels have been most advanced.
  • the capacitive touch panel detects the coordinates by capturing the change in charge at the contact position of the fingertip.
  • the projected capacitive touch panel can detect multiple points on the fingertip, and thus has a good operability to give complicated instructions. Therefore, it can be used for small displays such as mobile phones and portable music players.
  • a plurality of X electrodes and a plurality of Y electrodes orthogonal to the plurality of X electrodes have a two-layer structure in order to express two-dimensional coordinates by the X axis and the Y axis.
  • ITO is used as the electrode material.
  • a capacitive touch panel is disclosed in Patent Documents 1 and 2 and the like, and an insulating film or a protective film is provided in the laminated structure in order to prevent erroneous recognition of a position where an observer's finger or the like is in contact. Yes.
  • Performance required for insulating film or protective film includes adhesion to substrates, bases, other layers such as glass, inorganic material, metal material and transparent electrode such as ITO or organic material; high temperature in touch panel manufacturing process There is a need for heat resistance to the firing process; and high transmittance when forming a laminated substrate. Furthermore, when an insulating film or protective film coating is applied to the surface of another layer such as an ITO transparent electrode pattern, the ITO pattern is visible because the refractive index difference between the other layer and the insulating film or protective film increases. It becomes easy and there exists a problem that the visibility of a liquid crystal screen falls.
  • a high refractive index layer in a capacitive touch panel, a liquid crystal display device, an organic EL display device or the like, reflection of light is often suppressed and transmittance or visibility is improved.
  • a layer containing inorganic oxide fine particles Patent Document 3
  • a hard coat layer having a high refractive index Patent Document 4
  • a protective film Patent Document 4
  • Patent Documents 5 and 6 In order to improve the productivity of the pattern, high refractive materials having photosensitivity are disclosed in Patent Documents 5 and 6, but the alkoxyalkyl group or hydroxymethyl group of the melamine compound used as the thermosetting compound is From the viewpoint of long-term storage stability, it is insufficient. Moreover, an organic solvent is used for the high refractive materials described in Patent Documents 5 and 6, which is not preferable from the viewpoint of environmental harmony.
  • the problem to be solved by the present invention is an aqueous photosensitive resin composition having good adhesion to a substrate, a base, etc., excellent transparency and storage stability, and a high refractive index;
  • An aqueous photosensitive resin composition suitable for production is an aqueous photosensitive resin composition suitable for production; a transfer film produced using the aqueous photosensitive resin composition, a photosensitive resin laminate and a photocured product; a method for producing a resin pattern using the aqueous photosensitive resin composition; It is providing the touch panel display device which improved the visibility which has a resin pattern or a photocured material.
  • the present invention is as follows.
  • the surface tension at 23 ° C. when prepared as an aqueous solution having a refractive index of 1.60 or more, containing a water-soluble crosslinking agent having at least two polymerizable functional groups, and having a solid content of 5% by mass is 40 mN.
  • An aqueous resin composition for a touch panel which is / m or less.
  • the aqueous resin composition for a touch panel according to [1], wherein the water-soluble crosslinking agent having at least two polymerizable functional groups has a weight average molecular weight in the range of 1,000 to 12,000.
  • a transfer film comprising a two-layer film on a temporary support, The two-layer film is: A binder polymer that is laminated on the temporary support and contains 3% by mass to 25% by mass of a structural unit derived from (meth) acrylic acid, a photopolymerizable compound having at least two ethylenically unsaturated groups, light
  • a first photosensitive layer comprising a photosensitive resin composition containing a polymerization initiator; and the touch panel laminated on the first photosensitive layer and according to any one of [1] to [3]
  • a second photosensitive layer comprising an aqueous photosensitive resin composition for use; Formed by, The transfer film.
  • D-1 A transfer film for a touch panel, comprising a nitrogen-containing crosslinking agent having a weight average molecular weight in the range of 2,000 to 10,000 and having at least two polymerizable functional groups in the molecule.
  • a touch panel display device having the cured film laminate for a touch panel according to [7].
  • An aqueous photosensitive resin composition comprising:
  • the water-soluble resin (A) is at least one compound selected from the group consisting of polyvinylpyrrolidone, poly (methyl vinyl ether), polyvinyl alcohol and derivatives thereof, polyoxyalkylene oxide, polyacrylic acid derivatives, polyacrylamide, and cellulose.
  • the aqueous photosensitive resin composition [10] The aqueous photosensitive resin composition according to [9], further comprising (F) an organosilicon compound. [11] The aqueous photosensitive resin composition according to [10], wherein the (F) organosilicon compound has at least one polymerizable functional group.
  • a transfer film comprising a two-layer film on a temporary support,
  • the two-layer film is: A binder polymer that is laminated on the temporary support and contains 3% by mass to 25% by mass of a structural unit derived from (meth) acrylic acid, a photopolymerizable compound having at least two ethylenically unsaturated groups, light
  • a first photosensitive layer comprising a photosensitive resin composition containing a polymerization initiator; and the water according to any one of [9] to [11], which is laminated on the first photosensitive layer.
  • a second photosensitive layer comprising a photosensitive photosensitive resin composition; Formed by, The transfer film.
  • the water-soluble resin (A) is at least one compound selected from the group consisting of polyvinylpyrrolidone, poly (methyl vinyl ether), polyvinyl alcohol and derivatives thereof, polyoxyalkylene oxide, polyacrylic acid derivatives, polyacrylamide, and celluloses.
  • the (D) water-soluble cross-linking agent is a urethane (meth) acrylate polyfunctional vinyl monomer, and is in a proportion of 40% by mass to 70% by mass with respect to 100% by mass of the aqueous photosensitive resin composition ( B) including inorganic oxide particles, The aqueous photosensitive resin composition.
  • a transfer film comprising a two-layer film on a temporary support,
  • the two-layer film is: A binder polymer that is laminated on the temporary support and contains 3% by mass to 25% by mass of a structural unit derived from (meth) acrylic acid, a photopolymerizable compound having at least two ethylenically unsaturated groups, light
  • a first photosensitive layer comprising a photosensitive resin composition containing a polymerization initiator; and the water according to any one of [13] to [16], which is laminated on the first photosensitive layer.
  • a second photosensitive layer comprising a photosensitive photosensitive resin composition; Formed by, The transfer film.
  • the aqueous photosensitive resin composition for a touch panel according to any one of claims 1 to 3 is applied to the first photosensitive layer by applying a photosensitive resin composition to a temporary support to form a first photosensitive layer.
  • a photosensitive resin composition to a temporary support to form a first photosensitive layer.
  • a second photosensitive layer By forming a second photosensitive layer, a two-layer film comprising the first photosensitive layer and the second photosensitive layer is formed on the temporary support, and the solvent is removed from the two-layer film.
  • Transfer film production process to obtain a transfer film; (B) an exposure step in which the transfer film is transferred to a substrate and exposed in a pattern with actinic rays; (C) a development step of developing the transfer film by removing an unexposed portion of the transfer film with an aqueous developer; and (d) a heat treatment step of heat-treating the substrate with the developed transfer film. ; In this order.
  • the cured film laminated body for touchscreens which has the resin pattern manufactured by the method as described in [20].
  • [22] [21] A touch panel display device having the cured film laminate for a touch panel according to [21].
  • an aqueous photosensitive resin composition having good adhesion to a substrate, a base, etc., excellent thermal transferability, coating properties, interface forming properties, permeability and storage stability, and a high refractive index.
  • An object, a coating film, a transfer film, a resin pattern, a photocured product, and a touch panel display device with improved visibility having the photocured product can be provided.
  • FIG. 1 is a schematic cross-sectional view of a transfer film in which a first photosensitive layer and a second photosensitive layer are laminated on a PET temporary support.
  • FIG. 2 is a schematic cross-sectional view of a laminate in which the transfer film shown in FIG. 1 is laminated on both sides of the ITO film.
  • 3A is a cross-sectional STEM observation image of the cured film laminate for a touch panel obtained in Example 104
  • FIG. 3B is a partially enlarged view of FIG.
  • FIG. 4 shows the STEM-EDX result of the organic layer at position (1) shown in FIG.
  • FIG. 5 shows a STEM-EDX result of the second hardened layer at the position (2) shown in FIG. 3 (b).
  • FIG. 4 shows the STEM-EDX result of the organic layer at position (1) shown in FIG.
  • FIG. 5 shows a STEM-EDX result of the second hardened layer at the position (2) shown in FIG. 3 (b).
  • FIG. 6 shows a STEM-EDX result of the first hardened layer at the position (3) shown in FIG. 3 (b).
  • FIG. 7 shows the relationship between the cross-sectional SEM observation image of the cured film laminate for touch panels in the film thickness measurement of Example 104 and each layer constituting the cured film laminate.
  • FIG. 8 is a cross-sectional SEM observation image of the cured film laminate for a touch panel obtained in Comparative Example 27, and shows an enlarged observation image of the pinhole portion.
  • the aqueous photosensitive resin composition according to an embodiment of the present invention is a resin composition that is dissolved or uniformly dispersed in a solvent containing water as a main component at 40 ° C. at 2% by mass or more.
  • the solvent containing water as a main component is a mixed solvent of water and an organic solvent that dissolves in water, and the mixing ratio of the water / organic solvent is 100/0 to 50/50.
  • the aqueous photosensitive resin composition according to the present embodiment is characterized in that the refractive index is 1.60 or more, and the surface tension of a 5 mass% aqueous solution at 23 ° C. is 40 mN / m or less.
  • Each component constituting the aqueous photosensitive resin composition according to this embodiment will be specifically described below.
  • the water-soluble resin according to the present embodiment is a resin that dissolves 2% by mass or more in 23 ° C. water (a resin that dissolves 2 g or more per 100 g of water) or a resin that is uniformly dispersed.
  • the solubility of the resin in water is also included in the definition of the water-soluble resin according to this embodiment even when the resin is dissolved in hot water and then cooled to 23 ° C. to maintain the dissolved state.
  • the dissolution in the present embodiment is defined as a state in which the resin is dissolved in water without visually confirming cloudiness, precipitation, or phase separation when the resin is dissolved in water.
  • the resin uniformly dispersed in water means that water is added so that the solid content concentration is 2% by mass, and after standing for 24 hours in an environment of 23 ° C., precipitation, sedimentation, or phase separation is visually observed. It is a resin that is not confirmed.
  • Examples of the resin that dissolves 2% by mass or more with respect to water at 23 ° C. include polyvinyl pyrrolidone, poly (methyl vinyl ether), polyvinyl alcohol, and polyvinyl alcohol derivatives (for example, a polyalkylene oxide group, an acrylic group, etc.
  • Examples of the resin that is uniformly dispersed in water include an acrylic resin emulsion, an acrylic silicon resin emulsion, a urethane resin emulsion, a fluororesin emulsion, an epoxy resin emulsion, a polyester resin emulsion, an alkyd resin emulsion, and a melamine resin emulsion.
  • the water-soluble resin is preferably a resin that dissolves 2% by mass or more in water at 23 ° C.
  • polyvinylpyrrolidone, poly (methyl vinyl ether), polyalkylene oxide, polyacrylic acid derivatives (polyacrylic acid, polyacrylic) Acid esters and copolymers thereof are preferred from the viewpoints of coating properties and dispersibility of inorganic oxide particles.
  • Polyvinyl pyrrolidone and polyacrylic acid derivatives (polyacrylic acid, polyacrylic acid esters, and copolymers thereof) It is particularly preferred when combined).
  • the advantage of using a water-soluble resin is that it uses an organic solvent, so that the amount of organic solvent used can be reduced, which is environmentally preferable. Moreover, since water-soluble resin is hydrophilic, the effect as a dispersing agent for disperse
  • the resin By dissolving the resin in the aqueous dispersion of inorganic oxide particles, the inorganic oxide particles and the resin can be easily uniformly mixed in water to obtain a mixed solution. By using this mixed solution, a film in which inorganic oxide particles are uniformly dispersed in the resin can be produced.
  • the water-soluble resin preferably suppresses aggregation of the (B) inorganic oxide particles contained in the aqueous photosensitive resin composition.
  • (B) The light transmittance of the aqueous solution is lowered due to the aggregation of the inorganic oxide particles.
  • the size of the secondary aggregate of inorganic oxide particles is 100 nm or more, the light transmittance in the visible light region (400 nm to 700 nm) is greatly reduced.
  • the water-soluble resin has a weight average molecular weight of 1,000 to 500,000.
  • Use of a water-soluble resin having a weight average molecular weight of 1,000 to 500,000 is preferable from the viewpoint of dispersibility in water without cracking of the coating film.
  • a low molecular weight water-soluble resin having a weight average molecular weight of 1,000 to 10,000 is preferable from the viewpoint of high solubility when alkali-developed.
  • a high molecular weight water-soluble resin having a weight average molecular weight of 40,000 to 500,000 is preferred from the viewpoint of maintaining the dispersibility of the inorganic oxide particles. Therefore, it is more preferable to use a low molecular weight water-soluble resin and a high molecular weight water-soluble resin in combination.
  • a weight average molecular weight is measured by the method as described in an Example.
  • the content of the water-soluble resin is preferably in the range of 3% by mass to 30% by mass and more preferably in the range of 5% by mass to 25% by mass with respect to 100% by mass of the total solid content of the aqueous photosensitive resin composition. 7 mass% to 20 mass% is particularly preferable. If the content of the water-soluble resin is in the range of 3% by mass to 30% by mass, the dispersion of the inorganic oxide particles is good, and a good film with high transparency can be obtained.
  • the refractive index required for the present invention Can also be prepared.
  • the inorganic oxide particles include oxides such as titanium, zirconium, zinc, niobium, and tungsten, which are used from the viewpoint of improving the refractive index of the aqueous photosensitive resin composition. These may be used alone or in combination of two or more. Among oxides, it is preferable to use titanium dioxide and / or zirconium oxide (IV) because inorganic oxide particles having a refractive index of 2.0 or more and a small filler particle size can be obtained. However, since titanium oxide may have surface activity (organic substance decomposability), zirconium oxide (IV) is particularly preferable.
  • the average dispersed primary particle size of the inorganic oxide fine particles is preferably 1 nm to 30 nm, and more preferably 5 nm to 10 nm. If the average dispersed primary particle size of the inorganic oxide fine particles is less than 1 nm, the crystallinity becomes poor and the refractive index is lowered. If it exceeds 30 nm, light scattering (Rayleigh scattering) by the inorganic oxide fine particles is remarkable. Therefore, the permeability of the coating film in the visible light region is reduced. Furthermore, when the secondary aggregate is formed, the inorganic oxide fine particles having an average dispersed primary particle size exceeding 30 nm have a remarkable decrease in permeability. Zirconium oxide (IV) can suppress aggregation by modifying its surface.
  • unmodified zirconium oxide (IV) oxide tends to have a lower refractive index than unmodified zirconium (IV) oxide
  • the unmodified zirconium (IV) oxide include SZR-W and SZR-CW available from Sakai Industrial Chemical Co., Ltd.
  • the titanium dioxide rutile type titanium dioxide is preferable from the viewpoint of suppressing the above-described organic matter decomposability, and examples thereof include SRD-W available from Sakai Chemical Industry Co., Ltd.
  • the inorganic oxide fine particles are nano-sized particles, even when the inorganic oxide fine particles are dispersed in a resin to form a composition, light scattering is small and transparency can be maintained. The same can be said for the coating film.
  • the content of the inorganic oxide fine particles is preferably 30% by mass or more and more preferably in the range of 35% by mass to 70% by mass with respect to 100% by mass of the total solid content of the aqueous photosensitive resin composition. Preferably, 45% by mass to 65% by mass is more preferable, and 50% by mass to 60% by mass is particularly preferable. If the content of the inorganic oxide fine particles is 35% by mass or more, a good film with high transparency can be obtained, and the refractive index necessary for the present invention can be prepared.
  • (C) Photopolymerization initiator It is preferable that the photopolymerization initiator according to the present embodiment does not interfere with the dispersion of the (B) inorganic oxide particles contained in the aqueous photosensitive resin composition.
  • the photopolymerization initiator include 2,2-diethoxyacetophenone, 2,4-diethoxyacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1-hydroxy Cyclohexyl phenyl ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1
  • Acetophenone photopolymerization initiators such as propiophenone (Irgacure 2959 (trade name) manufactured by BASF Corporation); benzoin photopolymerization such as benzoin, benzoin methyl ether, benzoin ethy
  • an acetophenone photopolymerization initiator or an oxime ester photopolymerization initiator is preferable from the viewpoints of transparency of the protective film to be formed and adhesion to the substrate after pattern formation.
  • the content of the photopolymerization initiator is preferably in the range of 0.1% by mass to 15% by mass with respect to 100% by mass of the total solid content of the aqueous photosensitive resin composition, and is preferably 1% by mass to 10% by mass. More preferably, it is more preferably 2% by mass to 5% by mass.
  • the content of the photopolymerization initiator is in the range of 0.1% by mass to 15% by mass, good patterning becomes possible after the composition is formed into a film and transferred to a substrate.
  • the water-soluble crosslinking agent according to this embodiment is a crosslinking agent that dissolves 1% by mass or more in water at 23 ° C. (a crosslinking agent that dissolves 1 g or more in 100 g of water) or is uniformly dispersed. It is a cross-linking agent. The higher the solubility of the water-soluble crosslinking agent in water, the better. More specifically, a water-soluble crosslinking agent showing a water solubility of 3% by mass or more is preferable.
  • the water-soluble crosslinking agent preferably has at least two polymerizable functional groups from the viewpoint of crosslinkability.
  • water-soluble crosslinking agent examples include a photopolymerizable compound having an ethylenically unsaturated group, a polymerizable compound having an alkoxymethyl group or a methylol group, and a blocked isocyanate compound.
  • Examples of the photopolymerizable compound having an ethylenically unsaturated group include a monofunctional vinyl monomer, a bifunctional vinyl monomer, and a polyfunctional vinyl monomer having at least three polymerizable ethylenically unsaturated groups.
  • Examples of the monofunctional vinyl monomer include (meth) acrylic acid, acrylic acid ester, acrylamide, alkylene oxide-modified (meth) acrylic acid ester, and water-soluble monomers or water-soluble oligomers copolymerizable therewith.
  • the water-soluble monomer and the water-soluble oligomer are compounds having water solubility equivalent to that of the water-soluble crosslinking agent.
  • bifunctional vinyl monomer examples include polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyalkylene glycol-modified trimethylolpropane di (meth) acrylate, bisphenol A-modified polyalkyleneoxy di (meth) acrylate, Bisphenol A diglycidyl ether di (meth) acrylate, ester compound of glycerin derivative and acrylic acid, polyvalent carboxylic acid (acid anhydride such as phthalic anhydride), substance having hydroxyl group and ethylenically unsaturated group (for example, ⁇ - Urethane (meth) acrylate or diol, which is a reaction product of an ester compound with hydroxyethyl (meth) acrylate), a diisocyanate compound, a diol, and a substance having a hydroxyl group and an ethylenically unsaturated group
  • polyalkylene glycols e.g.
  • polyfunctional vinyl monomer examples include trimethylolpropane tri (meth) acrylate modified with an alkyleneoxy group, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, and pentaerythritol tri (meth) acrylate.
  • Pentaerythritol tetra (meth) acrylate dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate or a compound obtained by reacting a polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid (for example, tri Compound obtained by adding ⁇ , ⁇ -unsaturated carboxylic acid to glycidyl group-containing compound such as methylolpropane triglycidyl ether triacrylate), urethane (meth) acrylate compound, N- Tris (3-acrylamido propoxymethyl) methyl] acrylamide.
  • an ⁇ , ⁇ -unsaturated carboxylic acid for example, tri Compound obtained by adding ⁇ , ⁇ -unsaturated carboxylic acid to glycidyl group-containing compound such as methylolpropane triglycidyl ether triacrylate
  • the vinyl monomer is preferably an acrylate compound or an acrylamide compound.
  • the polyfunctional vinyl monomer include pentaerythritol tetraacrylate, N- [tris (3-acrylamidepropoxymethyl) methyl] acrylamide, and urethane (meth) acrylate.
  • Bifunctional urethane (meth) acrylates include Art Resin TX-1N, Art Resin TX-17N, Art Resin TX-36N (Negami Kogyo Co., Ltd.), UA-W2A, UA-W2, UA-7000 (new) Commercial products such as Nakamura Chemical Co., Ltd.) can be used.
  • the polyfunctional urethane (meth) acrylate commercially available products such as UA-7100 and UA-7200 (manufactured by Shin-Nakamura Chemical Co., Ltd.) can be used.
  • Examples of the polymerizable compound having an alkoxymethyl group or a methylol group include melamine resins, oligomers and monomers thereof in which the N-position is substituted with a methylol group or an alkoxymethyl group.
  • Examples of these include alkoxymethylated melamine resins, alkoxymethylated benzoguanamine resins, alkoxymethylated glycoluril resins, alkoxymethylated urea resins, and monomers thereof.
  • alkoxymethylated melamine resin, alkoxymethylated benzoguanamine resin, alkoxymethylated glycoluril resin, alkoxymethylated urea resin, and these monomers are the corresponding known methylolated melamine resin, methylolated benzoguanamine resin.
  • Methylolated glycoluril resin, methylolated urea resin, and methylol groups of those monomers are converted to alkoxymethyl groups.
  • alkoxymethyl group examples include a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group and the like.
  • polymerizable compound having these functional groups include commercially available Cymel 300, 301, 303, 370, 325, 327, 701, 266, 267, 238, 1141, 272, 202, 1156, 1158, 1123, 1170 and 1174, UFR65 and 300 (Mitsui Cytec Co., Ltd.), Nicarak MX- 270, -280 and -290, Nicarak MS-11, Nicarak MW-30, -100, -300, -390 and -750 (manufactured by Sanwa Chemical Co., Ltd.) can be preferably used. These compounds can be used alone or in combination.
  • Examples of the blocked isocyanate group-containing compound include 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), and 4,4′-diphenylmethane diisocyanate (MDI).
  • Xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), methylcyclohexyl diisocyanate (H6TDI), 4,4′-dicyclohexylmethane diisocyanate (H12MDI), 1,3-bis (isocyanatomethyl) cyclohexane (H6XDI), tetramethyl Xylylene diisocyanate (TMXDI), 2,2,4-trimethylhexamethylene diisocyanate (TMHDI), hexamethylene diisocyanate (HDI), norbornene diisocyanate ( BDI), 2,4,6-triisopropylphenyl diisocyanate (TIDI), 1,12-diisocyanate dodecane (DDI), 2,4, -bis- (8-isocyanate octyl) -1,3-dioctylcyclobutane (OCDI) N-pent
  • the blocked isocyanate group-containing compound may be one in which these isocyanate groups are masked with a blocking agent (phenol, ⁇ -caprolactam, etc.).
  • a blocking agent phenol, ⁇ -caprolactam, etc.
  • the blocked isocyanate group-containing compound described above is generally commercially available as a cross-linking agent.
  • Bihydur 3100, Bihydur 2336, Bihydur LS2150 / 1, Bihydur BL116, Bihydur BL5140, Bihydur BL5235 manufactured by Sumika Bayer Urethane Co., Ltd.
  • At least one water-soluble crosslinking agent preferably has a weight average molecular weight of 1,000 to 12,000 from the viewpoint of adhesion to a substrate.
  • the weight average molecular weight of the water-soluble crosslinking agent is 1,000 or more
  • the aqueous resin composition can be provided with appropriate toughness that can withstand adhesion evaluation, and the weight average molecular weight is 12,000 or less.
  • appropriate fluidity can be imparted when the aqueous resin composition is formed on the substrate by coating or thermal transfer.
  • a more preferred range of weight average molecular weight is 2,000 to 10,000.
  • the weight average molecular weight shall be measured according to the methods and conditions described in the examples.
  • a water-soluble crosslinking agent having a weight average molecular weight in the range of 1,000 to 12,000 and a water-soluble crosslinking agent having a weight average molecular weight of less than 1,000 or exceeding 12,000 are used in combination. May be.
  • the water-soluble crosslinking agent further preferably contains a nitrogen atom such as a urethane skeleton, an amide skeleton, an isocyanate skeleton, a melamine skeleton, or a urea skeleton. Since the water-soluble crosslinking agent contains these nitrogen atoms in the molecule, the water-soluble crosslinking agent can strongly interact with the underlying conductor, so that the adhesion is improved.
  • the content of the water-soluble crosslinking agent is preferably within a range of 5% by mass to 50% by mass with respect to 100% by mass of the total solid content of the aqueous photosensitive resin composition, and more preferably 10% by mass to 40% by mass. Preferably, 15% by mass to 35% by mass is particularly preferable.
  • the content of the water-soluble crosslinking agent is 5% by mass or more, after the composition is formed into a film and transferred to the substrate, good patterning is possible, and the thermal transfer property and adhesion to the substrate are also improved. If the content of the water-soluble crosslinking agent is 50% by mass or less, the refractive index of the aqueous photosensitive resin composition can be adjusted to 1.60 or more, and the visibility of the touch panel can be further improved. .
  • the surfactant according to the present embodiment is used from the viewpoint of improving the coating property of the aqueous photosensitive resin composition on the substrate, coating unevenness, or film thickness uniformity.
  • surfactant carboxybetaine type, sulfobetaine type or imidazolium type amphoteric surfactants; anionic surfactants such as alkyl ether phosphates; KP series (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name), DBE Organic siloxane surfactants such as series (manufactured by Gelest Co., Ltd .: trade name), granol (manufactured by Kyoeisha Chemical Co., Ltd .: trade name) or Florard (manufactured by Sumitomo 3M Co., Ltd .: trade name), MegaFac (manufactured by Dainippon Ink & Chemicals, Inc.
  • anionic surfactants such as alkyl ether phosphates
  • KP series manufactured by Shin-Etsu Chemical Co., Ltd .: trade name
  • DBE Organic siloxane surfactants such as series (manufactured by Gelest Co.,
  • fluorosurfactants such as Lumiflon (product name: Asahi Glass Co., Ltd.), and polyoxyethylene oleyl ether, polyoxyethylene lauryl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene alkyl ether phosphate ester, Polyoxyethylene sorbitan monostearate, poly Nonionic typified by polyoxyalkylene alkyl nonionic surfactants such as ethylene glycol monolaurate (nonionic) surfactant.
  • the amphoteric surfactant is preferably a sulfobetaine type from the viewpoint of coating unevenness, and specific examples of the sulfobetaine type amphoteric surfactant include LSB-R and LSB (manufactured by Kawaken Fine Chemicals: trade name) or AMPHITOL 20HD ( Kao: trade name) and the like.
  • the nonionic surfactant is preferably dissolved in water.
  • preferable water-soluble nonionic surfactants include organosiloxane surfactants such as DBE814 and DBE821 (manufactured by Gelest: trade name), KP104 (manufactured by Shin-Etsu Chemical: trade name), and LE605 (manufactured by Kyoeisha: merchandise). Name) and other polyoxyalkylene alkyl surfactants such as Neugen LF-80X (Daiichi Kogyo Seiyaku Co., Ltd .: trade name) and Adecanol B-733 (ADEKA Co., Ltd .: trade name). Can be mentioned.
  • organosiloxane surfactants such as DBE814 and DBE821 (manufactured by Gelest: trade name), KP104 (manufactured by Shin-Etsu Chemical: trade name), and LE605 (manufactured by Kyoeisha: merchandise). Name
  • other polyoxyalkylene alkyl surfactants such as Neu
  • a coating film is applied on a hydrophobic film such as a polyethylene terephthalate (PET) film or a multilayer transfer film when a surfactant is added to the aqueous photosensitive resin composition.
  • the contact angle with the film is lowered, and the coatability is improved.
  • the surfactant used preferably has a surface tension of 40 mN / m or less, and more preferably less than 35 mN / m, from the viewpoint of coatability.
  • the content of the surfactant is preferably in the range of 1% by mass to 15% by mass and more preferably 2% by mass to 10% by mass with respect to 100% by mass of the total solid content of the aqueous photosensitive resin composition. 3% by mass to 7% by mass is particularly preferable.
  • the content of the surfactant is in the range of 1% by mass to 15% by mass, the coating property to the hydrophobic substrate is good, and a film having good permeability can be obtained.
  • Organosilicon compound (F) Organosilicon compound
  • the organosilicon compound according to this embodiment is used from the viewpoint of further improving the good adhesion of the aqueous photosensitive resin composition to a substrate (glass, ITO, etc.).
  • the organosilicon compound is a compound containing a mono- or higher functional alkoxyl group and a silanol group, or a compound containing an oligomer in which silanol is partially condensed.
  • adhesion to glass or ITO It becomes an adhesion aid for increasing the viscosity.
  • the organosilicon compound preferably has 5 to 20 carbon atoms, and more preferably 5 to 13 carbons from the viewpoint of dispersibility in water when a surfactant is used. If an organosilicon compound having low solubility in water is used, a part of the water may be substituted with alcohol.
  • the organosilicon compound When alcohol is used, alcohol having a low carbon number, for example, methanol, ethanol, 1-propanol, 2-propanol, or a mixed solution thereof is preferable from the viewpoint of reducing environmental burden.
  • the organosilicon compound preferably contains at least one polymerizable functional group, The polymerizable functional group is particularly preferably a radical polymerizable group or a cationic polymerizable group.
  • Specific organic silicon compounds include, but are not limited to, (3-methacryloxypropyl) triethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name KBE503), (3-methacryloxypropyl) methyldiethoxy Silane (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name KBE502), (3-methacryloxypropyl) trimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name KBM503), (3-methacryloxypropyl) methyldimethoxysilane (Shin-Etsu Chemical) Industrial Co., Ltd .: Trade name KBM502), (3-acryloxypropyl) trimethoxysilane (Shin-Etsu Chemical Co., Ltd .: trade name KBM5103), (3-glycidoxypropyl) triethoxysilane (Shin-Etsu
  • organosilicon compound examples include, but are not limited to, (3-ureidopropyl) trialkoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBE585), (3-triethoxysilylpropyl) -t- Butyl carbamate, N- (3-diethoxymethoxysilylpropyl) urea, N- (3-ethoxydimethoxysilylpropyl) urea, N- (3-tripropoxysilylpropyl) urea, N- (3-diethoxypropoxysilylpropyl) ) Urea, N- (3-ethoxydipropoxysilylpropyl) urea, N- (3-dimethoxypropoxysilylpropyl) urea, N- (3-methoxydipropoxysilylpropyl) urea, N- (3-trimethoxysilylethyl) ) Urea, N- (3- (3
  • organosilicon compounds listed above may be used alone or in combination. When these alkoxysilanes are used in an aqueous solution, hydrolysis / condensation occurs, and an oligomer of silane is generated, but with respect to 100% by mass of (B) inorganic oxide particles used in this embodiment, ( F) If the organosilicon compound is less than 25% by mass, it acts as a good adhesion aid.
  • organosilicon compounds from the viewpoint of dispersibility of inorganic oxide particles, (3-methacryloxypropyl) triethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name KBE503), (3-methacryloxypropyl) methyldiethoxy Silane (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name KBE502), (3-methacryloxypropyl) trimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name KBM503), (3-methacryloxypropyl) methyldimethoxysilane (Shin-Etsu Chemical) Industrial Co., Ltd .: Trade name KBM502), (3-acryloxypropyl) trimethoxysilane (Shin-Etsu Chemical Co., Ltd .: trade name KBM5103), (3-glycidoxypropyl) triethoxysilane
  • the content of the organosilicon compound is preferably in the range of 1% by mass to 15% by mass and more preferably 3% by mass to 12% by mass with respect to 100% by mass of the total solid content of the aqueous photosensitive resin composition. 5% by mass to 10% by mass is particularly preferable.
  • the content of the organosilicon compound is in the range of 1% by mass to 15% by mass, the effect of improving the adhesion to the substrate is confirmed, and a good film is obtained.
  • the aqueous photosensitive resin composition according to the present embodiment includes, as necessary, a plasticizer, a filler, an antifoaming agent, a flame retardant, a stabilizer, an antioxidant, a fragrance, a polymerization inhibitor, and the like.
  • (A) to (E) can be contained in an amount of about 0.01 to about 20 parts by mass per 100 parts by mass in total. These can be used alone or in combination of two or more.
  • the aqueous photosensitive resin composition according to this embodiment can be used for forming a photosensitive layer on a substrate having electrodes in touch panel applications and the like.
  • a photosensitive resin composition is uniformly dissolved or dispersed in a solvent to prepare a coating solution, which is applied onto a substrate to form a coating film, and then the solvent is removed by drying to form a photosensitive layer. can do.
  • (S) Solvent As the solvent of the coating solution used when applying the aqueous photosensitive resin composition, water and a mixture of water and a water-soluble organic solvent can be used.
  • water-soluble organic solvent for example, alcohols, polyols, cellosolve, carbitol, ketones and the like can be used. These organic solvents may be used as a mixture of two or more.
  • Examples of alcohols include methanol, ethanol, butanol, propanol, and pentanol.
  • polyols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, polypropylene glycol, propanediol, butanediol, pentanediol, hexanediol, glycerol, hexanetriol, butanetriol, petriol, and glycerin.
  • Examples of cellosolve include methoxyethanol, ethoxyethanol, propoxyethanol, butoxyethanol and the like.
  • carbitol examples include methoxyethoxyethanol, ethoxyethoxyethanol, propoxyethoxyethanol, butoxyethoxyethanol and the like.
  • ketones include acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, diacetone alcohol, and the like.
  • organic solvents can be added in an amount of 0 to 99% by mass based on the whole solvent, but from the viewpoint of interface formation of the two-layer transfer film, it is preferably 0 to 50% by mass, and 0 to 30%. More preferably, it is 0% by mass, and most preferably 0% by mass (that is, 100% of water).
  • pure water from which a sodium ion component, a potassium ion component or a calcium ion component is removed using an ion exchange resin can be used.
  • a method of forming a photosensitive layer on a substrate having a touch panel electrode a method of directly applying a coating liquid containing the aqueous photosensitive resin composition according to the present embodiment to a substrate, water on a temporary support in advance.
  • coating a photosensitive photosensitive resin composition, producing a transfer film, and making it transfer on a base material at a subsequent process etc. can be considered, the method used as a transfer film is preferable.
  • the film forming method of the transfer film includes a step of applying and drying a coating solution on a temporary support such as a PET film.
  • the coating liquid can be obtained by uniformly dissolving or dispersing each component constituting the aqueous photosensitive resin composition according to this embodiment described above in a solvent.
  • Application methods include, for example, doctor blade coating method, Meyer bar coating method, roll coating method, screen coating method, spinner coating method, inkjet coating method, spray coating method, dip coating method, gravure coating method, curtain coating method, die coating Examples thereof include a coating method.
  • the drying conditions of the coating solution are not particularly limited, but the drying temperature is preferably 50 ° C. to 130 ° C., and the drying time is preferably 30 seconds to 30 minutes.
  • aqueous photosensitive resin composition according to the present embodiment is formed into a film, not only can a single layer composed of the aqueous photosensitive resin composition be handled as a transfer film from the viewpoint of improving the visibility of the touch panel.
  • a protective film (first photosensitive layer) is added in addition to the photosensitive layer made of the aqueous photosensitive resin composition. Further, it can be handled as a two-layer transfer film.
  • ⁇ Two-layer transfer film comprising a first photosensitive layer and a second photosensitive layer>
  • a two-layer film composed of a first photosensitive layer and a second photosensitive layer and a method for producing the same will be described.
  • a two-layer transfer film formed of a first photosensitive layer and a second photosensitive layer on a temporary support is also provided.
  • a method for producing a two-layer transfer film is described below:
  • a first photosensitive layer is formed on a temporary support such as a PET film, and the photosensitive layer is dried in the same manner as the drying conditions described above.
  • the first photosensitive layer after drying applied on the temporary support by the same coating method using the aqueous photosensitive resin composition (second photosensitive layer) according to the present embodiment as a coating solution.
  • a second photosensitive layer is formed thereon and dried in the same manner, whereby a two-layer transfer film composed of the first photosensitive layer and the second photosensitive layer can be obtained.
  • the solubility in water is extremely low.
  • the solvent of the aqueous photosensitive resin composition forming the second photosensitive layer contains water as a main component, it can be applied without dissolving the first photosensitive layer after drying. Therefore, a clear interface can be formed between the first photosensitive layer and the second photosensitive layer in the two-layer transfer film.
  • the two-layer transfer film After producing the two-layer transfer film, it is preferable to provide a protective film on the side of the two-layer film that is not in contact with the temporary support from the viewpoint of protecting the surface.
  • the first photosensitive layer comprises a binder polymer containing 3 to 25% by mass of a structural unit derived from (meth) acrylic acid, and at least two ethylenic non-polymerizable layers when a resin pattern is formed in alkali development. It can be formed from the photosensitive resin composition containing the photopolymerizable compound which has a saturated group, and a photoinitiator.
  • the binder polymer containing 3% by mass to 25% by mass of the structural unit derived from (meth) acrylic acid contains 3% by mass to 25% by mass of the structural unit derived from (meth) acrylic acid, and further includes an alkyl (meth) acrylate. At least selected from the group consisting of structural units derived from esters, structural units derived from (meth) acrylic acid aromatic esters, structural units derived from hydroxyalkyl (meth) acrylates, and structural units derived from maleic anhydride derivatives. A copolymer containing one structural unit is preferred.
  • copolymers from the viewpoint of rust prevention of the electrode produced on the substrate, a structural unit derived from (meth) acrylic acid and a structural unit derived from (meth) acrylic acid aromatic ester
  • the copolymer to contain is more preferable.
  • the copolymer as the binder polymer may contain, in addition to the constituent units already described, other monomers that can be copolymerized with those constituent units as constituent units.
  • Other monomers include, for example, (meth) acrylic acid tetrahydrofurfuryl ester, (meth) acrylic acid dimethylaminoethyl ester, (meth) acrylic acid diethylaminoethyl ester, (meth) acrylic acid glycidyl ester, (meth) acrylic acid Benzyl ester, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, (meth) acrylamide, (meth) acrylonitrile, diacetone (meth) acrylamide, styrene And vinyl toluene.
  • the content of the structural unit derived from (meth) acrylic acid in the binder polymer is 3% by mass to 25% by mass based on the mass of the binder polymer, and is 20% by mass or less from the viewpoint of further excellent rust prevention. It is preferable that it is 18 mass% or less, and it is especially preferable that it is 15 mass% or less. This content is preferably 5% by mass or more, more preferably 8% by mass or more, and particularly preferably 10% by mass or more from the viewpoint of excellent alkali developability.
  • the molecular weight of the binder polymer is not limited, it is usually preferred that the weight average molecular weight of the binder polymer is 10,000 to 200,000 from the viewpoints of coatability, coating film strength, and developability. Is more preferably from 50,000 to 150,000, and particularly preferably from 50,000 to 100,000.
  • the weight average molecular weight of a binder polymer is measured by the same method as the measuring method of the weight average molecular weight of (A) water-soluble resin.
  • Examples of the photopolymerizable compound having at least two ethylenically unsaturated groups include polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyalkylene glycol-modified trimethylolpropane di (meth) acrylate, and bisphenol A.
  • An ⁇ , ⁇ -unsaturated carboxylic acid eg, an acrylate
  • a polyhydric alcohol such as erythritol penta (meth) acrylate or dipentaerythritol hexa (meth) acrylate.
  • the photosensitive resin composition is a (meth) acrylate compound having a skeleton derived from pentaerythritol as a photopolymerizable compound, a skeleton derived from dipentaerythritol.
  • It preferably contains at least one selected from a (meth) acrylate compound having a skeleton, a (meth) acrylate compound having a skeleton derived from trimethylolpropane, and a (meth) acrylate compound having a glycerin-derived skeleton, and dipentaerythritol It is more preferable to include at least one selected from a (meth) acrylate compound having a skeleton derived from and a (meth) acrylate compound having a skeleton derived from trimethylolpropane.
  • (meth) acrylate having a skeleton derived from dipentaerythritol means an esterified product of dipentaerythritol and (meth) acrylic acid, and the esterified product is a compound modified with an alkyleneoxy group.
  • the above esterified product preferably has 6 ester bonds in one molecule, but a compound having 1 to 5 ester bonds may be mixed.
  • the (meth) acrylate compound having a skeleton derived from trimethylolpropane means an esterified product of trimethylolpropane and (meth) acrylic acid, and the esterified product includes a compound modified with an alkyleneoxy group.
  • the in the above esterified product the number of ester bonds in one molecule is preferably 3, but a compound having 1 to 2 ester bonds may be mixed.
  • alkylene oxide-modified trimethylolpropane (meth) acrylate is used from the viewpoint of rust prevention sufficient for protecting substrates, electrodes and the like.
  • alkylene oxide modified tetramethylolmethane (meth) acrylate compound alkylene oxide modified pentaerythritol (meth) acrylate compound, alkylene oxide modified dipentaerythritol (meth) acrylate compound, alkylene oxide modified glycerin (meth) acrylate compound, and alkylene oxide
  • Preferred is at least one compound selected from modified trimethylolpropane triglycidyl ether (meth) acrylate, and alkylene oxide modified dipentaerythritol.
  • At least one compound selected from Lumpur (meth) acrylate compound and alkylene oxide-modified trimethylolpropane (meth) acrylate compounds are more preferable.
  • alkylene oxide-modified tetramethylolmethane (meth) acrylate compound for example, EO-modified pentaerythritol tetraacrylate can be used.
  • EO-modified pentaerythritol tetraacrylate is available as RP-1040 (manufactured by Nippon Kayaku Co., Ltd.).
  • the above-mentioned photopolymerizable compounds can be used alone or in combination of two or more.
  • the content of the photopolymerizable compound having at least two ethylenically unsaturated groups in the photosensitive resin composition is 20 with respect to 100 parts by mass of the binder polymer containing 3 to 25% by mass of a structural unit derived from (meth) acrylic acid. It is preferably within the range of from 100 parts by weight to 100 parts by weight, more preferably from 30 parts by weight to 90 parts by weight, and particularly preferably from 40 parts by weight to 80 parts by weight.
  • the content of the photopolymerizable compound is less than 20 parts by mass, a problem occurs when patterning is performed by irradiating actinic rays.
  • the amount is more than 100 parts by mass, there is a concern that the adhesion of the film is lowered due to the influence of the unreacted monomer.
  • photopolymerization initiator examples include benzophenone, N, N, N ′, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), N, N, N ′, N′-tetraethyl-4,4 '-Diaminobenzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- [4- (methylthio) Aromatic ketones such as phenyl] -2-morpholino-propanone-1; benzoin ether compounds such as benzoin methyl ether, benzoin ethyl ether and benzoin phenyl ether; benzoin compounds such as benzoin, methyl benzoin and ethyl benzoin; 1,2-octane Dione, 1- [4- (phenylthio)-, 2- (M
  • an oxime ester compound and / or a phosphine oxide compound are preferable from the viewpoint of the transparency of the protective film to be formed and the pattern forming ability when the film thickness is adjusted to 15 ⁇ m or less.
  • the present inventors have found that when patterning a thin photosensitive layer having high transparency, the resolution tends to decrease. The present inventors consider that this is because when the thickness of the photosensitive layer is reduced, the photosensitive layer is easily affected by light scattering from the substrate and halation occurs. In contrast, when the photosensitive resin composition contains an oxime ester compound and / or a phosphine oxide compound as a photopolymerization initiator, a pattern can be formed with sufficient resolution.
  • Such an effect is because the oxime moiety contained in the oxime ester compound or the phosphine oxide moiety contained in the phosphine oxide compound has an appropriate threshold value that does not decompose with a slight amount of leakage light while having a relatively high photolysis efficiency. In addition, it may be obtained as a result that the influence of leakage light is suppressed.
  • oxime ester compounds examples include 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) is particularly preferred.
  • 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)] is commercially available as IRGACURE OXE 01 (trade name, manufactured by BASF Corporation).
  • Etanone 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) is IRGACURE OXE 02 (trade name, manufactured by BASF Corporation) ) Commercially available. These are used alone or in combination of two or more.
  • Examples of the phosphine oxide compound include various compounds having a carbonyl group at the ⁇ -position adjacent to the P atom.
  • 2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide is commercially available, for example, as LUCIRIN TPO (trade name, manufactured by BASF Corporation).
  • the content of the photopolymerization initiator in the photosensitive resin composition is preferably 0.1 parts by mass to 15 parts by mass with respect to 100 parts by mass of the photopolymerizable compound having at least two ethylenically unsaturated groups.
  • the amount is more preferably 1 to 10 parts by mass, and further preferably 2 to 5 parts by mass.
  • the content of the photopolymerization initiator is less than 0.1 parts by mass, the photosensitivity is not sufficient, and there is a problem in patterning by irradiating actinic rays after film-forming the composition and transferring it to the substrate .
  • the content of the photopolymerization initiator is more than 20 parts by mass, the light absorption on the surface of the composition increases, the internal photocuring becomes insufficient, and the permeability of the protective film is reduced. Arise.
  • Solvents for dissolving the components constituting the first photosensitive layer include ketone solvents such as ethyl methyl ketone; aromatic hydrocarbon solvents such as toluene from the viewpoint of solubility of each component, ease of film formation, and the like.
  • Alcohol solvents such as ethanol; glycol ether solvents; glycol alkyl ether solvents; ester solvents such as glycol alkyl ether acetate solvents and propylene glycol monomethyl ether acetate; diethylene glycol solvents; chloroform; These solvents may be used alone or as a mixed solvent composed of two or more solvents.
  • a ketone solvent an alcohol solvent, and / or an ester solvent.
  • the photosensitive resin composition for forming the first photosensitive layer includes a leveling agent, a plasticizer, a filler, an antifoaming agent, a flame retardant, a stabilizer, as necessary.
  • Antioxidants, rust inhibitors, fragrances, polymerization inhibitors and the like can be added. These can be used alone or in combination of two or more.
  • the thickness of the first photosensitive layer is preferably 1 ⁇ m or more and 15 ⁇ m or less, and preferably 2 ⁇ m or more and 10 ⁇ m or less, as the thickness after drying, from the viewpoint of rust prevention sufficient for protecting the substrate, electrodes, and the like. Is more preferably 3 ⁇ m or more and 8 ⁇ m or less.
  • the refractive index of the first photosensitive layer is preferably in the range of 1.48 to 1.56 from the viewpoint of improving the visibility of the touch panel.
  • the second photosensitive layer is a photosensitive layer made of the aqueous photosensitive resin composition according to this embodiment.
  • the thickness of the second photosensitive layer is preferably 30 nm or more and 200 nm or less, more preferably 70 nm or more and 120 nm or less, and more preferably 80 nm or more and 100 nm or less. It is particularly preferred that The refractive index of the second photosensitive layer is preferably in the range of 1.60 to 1.75 from the viewpoint of improving the visibility of the touch panel.
  • the minimum value of the visible light transmittance at 400 to 700 nm of the two-layer transfer film comprising the first photosensitive layer and the second photosensitive layer coated on the temporary support is preferably 90% or more, and 93% More preferably, it is more preferably 95% or more.
  • the visible light transmittance of the two-layer transfer film is determined as follows: On a transparent temporary support such as a PET film, a binder polymer containing 3 to 25% by mass of a structural unit derived from (meth) acrylic acid, a photopolymerizable compound having at least two ethylenically unsaturated groups, and photopolymerization
  • the first photosensitive layer is formed by applying a coating solution containing a photosensitive resin composition containing an initiator so that the thickness after drying is 15 ⁇ m or less and drying the coating solution.
  • a coating solution containing the aqueous photosensitive resin composition according to the present embodiment is applied to the first photosensitive layer so that the thickness after drying is 1 ⁇ m or less, and this is dried, thereby drying the first photosensitive layer.
  • 2 photosensitive layers are formed.
  • the two-layer transfer film thus obtained is thermocompression-bonded on a glass substrate using a laminator so that the photosensitive layer is in contact with the glass substrate to obtain a measurement sample in which the photosensitive layer and the temporary support are laminated on the glass substrate.
  • the obtained protective film (cured product of the photosensitive layer) is measured using an ultraviolet-visible spectrophotometer. The transmittance at 400 nm to 700 nm is measured.
  • the transparent electrode in the sensing area of the touch panel for example, when the metal layer (such as a layer in which a copper layer is formed on the ITO electrode) in the frame area of the touch panel (touch sensor) is protected.
  • the protective film can be seen from the edge of the screen, if the minimum value of the transmittance of the protective film in the general visible light wavelength region of 400 nm to 700 nm is 90% or more, image display in the sensing region It is possible to sufficiently suppress deterioration in quality, hue, or luminance.
  • b * in the CIELAB color system is preferably ⁇ 0.2 to 1.0, and preferably 0.0 to 0.7. More preferred is 0.1 to 0.5.
  • b * is ⁇ 0.2 to 1.0 from the viewpoint of preventing the image display quality or the hue of the sensing area from being deteriorated. Is preferred.
  • CM-5 Konica Minolta spectrophotometer
  • a second photosensitive layer having a thickness of 1 ⁇ m or less is formed thereon, and further irradiated with ultraviolet rays to photocure the two-layer film comprising the first photosensitive layer and the second photosensitive layer, and then the measurement conditions Is measured by setting a D65 light source and a viewing angle of 2 °.
  • the haze value of the two-layer film measured according to the measurement method described in JIS K 7136 is preferably 2% or less, more preferably 1% or less. It is particularly preferable that it is 0.5% or less.
  • a polymer film can be used as the protective film.
  • the polymer film include polyethylene, polypropylene, polyethylene-vinyl acetate copolymer, and a film made of a laminated film of polyethylene-vinyl acetate copolymer and polyethylene.
  • the protective film when the film is produced by a method of hot-melting, kneading, extruding and stretching the material, or casting, a defect that can occur when undissolved materials and deteriorated materials of the material are incorporated into the film ( Hereinafter referred to as “fisheye”).
  • the diameter of the fish eye varies depending on the material, but is about 10 ⁇ m to 1 mm, and the height from the film surface is about 1 to 50 ⁇ m.
  • the fish eye diameter can be measured by, for example, an optical microscope, a contact surface roughness meter, or a scanning electron microscope.
  • the diameter of the fish eye means the maximum diameter.
  • the diameter of fish eyes in the protective film is preferably as small as possible, and the number of fish eyes is preferably as small as possible.
  • the number of fish eyes having a diameter of 50 ⁇ m or more is more preferably 300 / m 2 or less, further preferably 100 / m 2 or less, and particularly preferably 50 / m 2 or less.
  • the polymer film is preferably formed of polypropylene from the viewpoint of fish eyes.
  • the center line average roughness Ra is preferably 0.005 ⁇ m to 0.05 ⁇ m, and more preferably 0.01 ⁇ m to 0.03 ⁇ m.
  • the surface roughness can be measured using a contact-type surface roughness meter.
  • the film thickness of the protective film is preferably 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 70 ⁇ m, and particularly preferably 15 ⁇ m to 50 ⁇ m from the viewpoint of storing in a roll shape.
  • the film thickness is less than 5 ⁇ m, the production of the protective film tends to be difficult, and when the film thickness exceeds 100 ⁇ m, the price of the protective film tends to increase.
  • the cured film laminated body for touchscreens which concerns on this embodiment is demonstrated.
  • the above-mentioned two-layer transfer film is thermocompression-bonded on a substrate having a touch panel electrode, and a protective film comprising a second photosensitive layer and a first photosensitive layer is provided in order from the electrode (conductor) on the substrate.
  • the protective film preferably satisfies the conditions of the film thickness, visible light transmittance, and b * in the CIELAB color system described above for the two-layer film.
  • the manufacturing method of the cured film laminated body for touch panels which concerns on this embodiment is the following processes: A first step of providing a protective film comprising the first photosensitive layer and the second photosensitive layer on a touch panel substrate having a touch panel electrode; A second step of curing a predetermined portion of the protective film by irradiation with actinic rays; After irradiation with actinic light, the part other than the predetermined part of the protective film (the part of the protective film that is not irradiated with active light) is removed, and the predetermined part of the protective film is cured so as to cover part or all of the electrode.
  • the manufacturing method of the cured film laminated body for touchscreens is not limited, A 1st process, a 2nd process, a 3rd process, and a 4th process can be included in this order.
  • the base material for the touch panel examples include substrates such as a glass plate, a plastic plate, and a ceramic plate that are generally used for a touch panel or a touch sensor.
  • a touch panel electrode to be a target for forming a protective film is provided on this substrate.
  • the electrode examples include electrodes such as ITO, Cu, Al, Ag, and Mo, and thin film transistors (TFTs).
  • An insulating layer may be provided between the substrate and the electrode.
  • the touch panel substrate having the touch panel electrode can be obtained, for example, by the following procedure.
  • a metal film is formed on a touch panel substrate such as a PET film by sputtering in the order of ITO and Cu, and then a photosensitive film for etching is pasted on the metal film to form a desired resist pattern, and unnecessary Cu Is removed with an etching solution such as an iron chloride aqueous solution, and the resist pattern is further removed and removed.
  • the protective film provided on the two-layer transfer film composed of the first photosensitive layer and the second photosensitive layer applied on the temporary support was removed. Then, while heating the two-layer transfer film, the two-layer film is transferred onto the surface of the touch panel electrode provided on the base material by pressure bonding and laminated, thereby forming the touch panel on the touch panel base material and the touch panel electrode. A structure in which the second photosensitive layer, the first photosensitive layer, and the temporary support are laminated in this order is formed.
  • Crimping means includes a crimping roll.
  • the pressure-bonding roll may include a heating means so that it can be heat-bonded.
  • the heating temperature in the case of thermocompression bonding is sufficient to ensure the adhesion between the two-layer film and the touch panel substrate and the adhesion between the two-layer film and the electrode for the touch panel. It is preferably 10 ° C. to 180 ° C., more preferably 30 ° C. to 150 ° C. so that it is difficult to be thermally decomposed, and it is easy to handle the two-layer transfer film and the dimensional stability of the base material for the touch panel as the base It is more preferable that the temperature is 50 ° C. to 100 ° C. from the viewpoint of maintaining the property.
  • the pressure during the thermocompression bonding is 50 N / m to 1 ⁇ 10 5 as a linear pressure.
  • N / m is preferable, 2.5 ⁇ 10 2 N / m to 5 ⁇ 10 4 N / m is more preferable, and 5 ⁇ 10 2 N / m to 4 ⁇ 10 4 N / m. More preferably.
  • a coating solution containing the aqueous photosensitive resin composition and solvent described above is prepared, It can also apply
  • actinic rays are patterned on a predetermined portion of the protective film composed of the first photosensitive layer and the second photosensitive layer through a photomask having an arbitrary pattern. Irradiate in a shape.
  • the temporary support on the two-layer film comprising the first photosensitive layer and the second photosensitive layer is transparent, the active light can be irradiated as it is.
  • the temporary support is opaque, it is preferable to irradiate actinic rays after removing the temporary support. From the viewpoint of protecting the surface of the two-layer film, it is preferable to use a transparent polymer film such as PET as a temporary support, and to irradiate actinic rays through the polymer film while remaining.
  • a known actinic light source can be used, and examples thereof include a carbon arc lamp, an ultra-high pressure mercury lamp, a high-pressure mercury lamp, and a xenon lamp. .
  • the dose of active ray is usually 10mJ / cm 2 ⁇ 1,000mJ / cm 2, the time of irradiation, it may be accompanied by heating.
  • the irradiation amount of actinic rays is less than 10 mJ / cm 2 , the photocuring tends to be insufficient, and when the irradiation amount of actinic rays exceeds 1,000 mJ / cm 2 , the two-layer film tends to discolor. is there.
  • the two-layer film laminated on the base material after irradiation with actinic rays is developed with a developer, and the portion not irradiated with actinic rays (that is, A portion other than the predetermined portion of the two-layer film is removed, and a protective film made of a cured product of the predetermined portion of the two-layer film is formed so as to cover a part or all of the electrode.
  • the formed protective film can have a predetermined pattern by a photomask having an arbitrary pattern.
  • the temporary support is laminated on the two-layer film after irradiation with active light, development is performed after removing the temporary support with a developer after removing the temporary support.
  • development is performed by a known method such as spraying, showering, rocking dipping, brushing, scraping, etc. using a known developing solution such as an alkaline aqueous solution, aqueous developer, organic solvent, etc.
  • a known developing solution such as an alkaline aqueous solution, aqueous developer, organic solvent, etc.
  • the method include a method of removing the alkali.
  • an alkaline aqueous solution is preferably used from the viewpoint of environmental consideration and safety.
  • an aqueous solution of sodium carbonate is preferable.
  • a dilute solution of sodium carbonate (0.5% by mass to 5% by mass aqueous solution) at 20 ° C. to 50 ° C. is preferably used.
  • Development temperature and time can be adjusted according to the developability of the photosensitive resin composition of the present embodiment.
  • a surfactant In the alkaline aqueous solution, a surfactant, an antifoaming agent, a small amount of an organic solvent for promoting development, and the like can be mixed.
  • the base of the alkaline aqueous solution remaining in the two-layer film after photocuring is converted into an acid by known methods such as spraying, rocking immersion, brushing, and scraping using an organic acid, an inorganic acid, or an aqueous acid solution thereof. It can be treated (neutralized). Furthermore, after the acid treatment (neutralization treatment), a step of washing the two-layer film after photocuring with water can be performed.
  • the cured product may be further cured by irradiation with actinic rays (for example, an irradiation dose of 2 ⁇ 10 3 J / m 2 to 2 ⁇ 10 4 J / m 2 ).
  • actinic rays for example, an irradiation dose of 2 ⁇ 10 3 J / m 2 to 2 ⁇ 10 4 J / m 2 .
  • a touch panel substrate with a protective film made of a cured product of a predetermined portion of a two-layer film composed of a first photosensitive layer and a second photosensitive layer after development is prepared.
  • Heat treatment is performed to further cure the photocured product.
  • the heating temperature for the heat treatment is such that the touch panel base material, the touch panel electrode formed on the base material, and the protective film composed of the first and second photosensitive layers protecting them are not deteriorated by heat.
  • it is preferably 40 ° C. to 180 ° C., more preferably 50 ° C. to 160 ° C., and still more preferably 60 ° C. to 150 ° C.
  • the cured film laminate for a touch panel includes an electrode (conductor), a second cured layer, and a first cured layer in this order on a substrate. These hardened layers can also be disposed on both sides of the substrate.
  • the refractive index of the first cured layer is in the range of 1.48 to 1.56, similar to the preferred range of the refractive index of the first photosensitive layer described above. It is preferable.
  • the refractive index of the second hardened layer is in the range of 1.60 to 1.75, similar to the preferred range of the refractive index of the second photosensitive layer described above, from the viewpoint of improving the visibility of the touch panel. It is preferable.
  • the second photosensitive layer And (B) inorganic oxide particles having a refractive index of 2.0 or more, such as zirconium oxide and titanium oxide, contained in the second hardened layer are harmful, thermal transferability and adhesion to the conductor on the substrate Tend to get worse.
  • the inventors have (D) an inorganic oxide in an amount capable of maintaining a high refractive index by optimizing the blending amount, chemical structure, and weight average molecular weight of the water-soluble crosslinking agent.
  • a cured film laminate for a touch panel was found that was excellent in the thermal transferability of the transfer film and the adhesion to the conductor on the substrate while containing particles.
  • STEM-EDX high-resolution observation
  • STEM scanning transmission electron microscope
  • EDX energy dispersive X-ray spectrometer
  • the average number of pinholes present per area of 5 ⁇ m in width of the second hardened layer is 1 or less. found.
  • This ultrathin organic layer is derived from the organic components contained in the second photosensitive layer.
  • (D) the water-soluble crosslinking agent is related to the presence of the ultrathin organic layer.
  • the organic layer is presumed to have a positive influence on the thermal transferability of the two-layer transfer film and the adhesion to the conductor on the substrate.
  • the refractive index of the ultrathin organic layer is considered to be less than 1.60, it is considered that the visibility of the touch panel is adversely affected. As a result, it was found that it can be used practically without problems.
  • the thickness of the ultrathin organic layer is preferably in the range of 5 to 30 nm.
  • This thickness is a suitable range for producing a touch panel cured film laminate using a two-layer transfer film, and was produced by applying the second photosensitive layer and the first photosensitive layer directly on the conductor of the substrate. In the touch panel cured film laminate, no ultrathin organic layer is confirmed even when the adhesiveness to the conductor is sufficiently obtained.
  • the aqueous photosensitive resin composition according to this embodiment and a transfer film using the same are preferably used to form a protective film for a touch panel substrate and a cured film laminate for a touch panel. .
  • the photosensitive resin composition is applied to a temporary support to form a first photosensitive layer, and the aqueous photosensitive resin composition according to this embodiment is applied to the first photosensitive layer to form a second photosensitive layer.
  • the resin pattern can be manufactured by a method including the above in this order.
  • Steps (a), (b), (c), and (d) are respectively performed in the same manner as the first step, the second step, the third step, and the fourth step in the method for manufacturing a cured film laminate for a touch panel.
  • the first photosensitive layer and the second photosensitive layer become a first cured layer and a second cured layer, respectively, through these steps.
  • aqueous photosensitive resin composition Preparation and evaluation of aqueous photosensitive resin composition ⁇ Preparation of aqueous photosensitive resin composition> The materials shown in Tables 1, 2 and 6 below are weighed into 250 ml plastic bottles, charged with ion-exchanged water so that the solid content is 5% by mass, and dissolved and mixed for 2 hours using a stirrer.
  • the aqueous photosensitive resin composition coating solutions (V-1) for forming the second photosensitive layer were prepared (Examples 1 to 34 and 72 to 81, Comparative Examples 1 to 6 and 13), respectively. ⁇ 15).
  • Examples 1-27 and 29-34 were colorless and transparent aqueous solutions, while Example 28 was a pale yellow aqueous solution.
  • the polymer of the methacrylic acid / benzyl methacrylate copolymer (copolymerization ratio: 20/80, Mw: 43,000) used in Comparative Example 2 is insoluble in ion-exchanged water, and a uniform aqueous photosensitive resin composition is used. Cann't get.
  • trimethylolpropane trimethacrylate used in Comparative Example 5 was insoluble in ion-exchanged water, and a uniform aqueous photosensitive resin composition could not be obtained.
  • the coating solution (V-1) was spin-coated on a 6-inch silicon wafer with a Mikasa coater (1H-360S manufactured by Mikasa) (program operation of 2 seconds at 300 rpm + 5 seconds at 500 rpm + 10 seconds at 1000 rpm): coating thickness after drying 100 nm And prebaked on a hot plate at 100 ° C. for 90 seconds to obtain a coating film.
  • the obtained coating film was visually observed and applicability was evaluated according to the following rating.
  • A The total area of the uncoated part is less than 1% with respect to the total area of the silicon wafer.
  • B The total area of the uncoated part is not less than 1% and less than 5% with respect to the total area of the silicon wafer.
  • C With respect to the total area of the silicon wafer , The total area of uncoated areas is 5% or more.
  • Example 25 The coating properties of Examples 1 to 24, Examples 26 to 28, and Comparative Examples 1, 3, and 4 in which the surface tension of a 5% by mass aqueous solution at 23 ° C. was 40 mN / m or less were good.
  • Example 25 the amount of (E) surfactant added was small, and the surface tension of a 5% aqueous solution at 23 ° C. was 40 mN / m, but the coating property was slightly inferior.
  • Comparative Example 6 since (E) surfactant was not added, the surface tension at 23 ° C. of the 5 mass% aqueous solution exceeded 40 mN / m, resulting in poor coatability. Comparative Examples 2 and 5 could not be evaluated because a uniform coating solution could not be obtained.
  • the coating solution (V-1) is spin-coated on a 6-inch silicon wafer with a Mikasa coater (Mikasa 1H-360S) and pre-baked on a hot plate at 100 ° C. for 90 seconds so that the film thickness becomes 100 nm ⁇ 5 nm.
  • a coating film is exposed at 450 mJ / cm 2 using an exposure machine having an ultra-high pressure mercury lamp (OMW Seisakusho HMW-801), and then annealed at 150 ° C. for 30 minutes using a hot air convection dryer.
  • OMW Seisakusho HMW-801 ultra-high pressure mercury lamp
  • the refractive index was 1.60 or more in any sample, but in Comparative Example 3, the refractive index was less than 1.60. From the viewpoint of visibility described later, it was suggested that the refractive index is 1.60 or more and a preferable result is obtained (see Table 4). On the other hand, in Comparative Example 1, since the film obtained by spin-coating on a silicon wafer with a spin coater and drying was not transparent but clouded white, the refractive index could not be measured.
  • the coating solution (V-1) is spin-coated on an ITO film (manufactured by Nitto Denko) with a transparent conductive film formed on both sides with a Mikasa coater (1H-360S manufactured by Mikasa), and prebaked at 100 ° C. for 90 seconds on a hot plate.
  • the film thickness was adjusted to 100 nm ⁇ 5 nm.
  • the obtained coating film was exposed at 450 mJ / cm 2 using an exposure machine having an ultrahigh pressure mercury lamp (HMW-801 manufactured by Oak Seisakusho), and then annealed at 150 ° C. for 30 minutes using a hot air convection dryer.
  • a sample for adhesion evaluation was obtained.
  • Example 1 to 25 and Example 28 in any sample, peeling on the ITO substrate was less than 5%, and good adhesion was obtained.
  • Example 26 since the content of the surfactant was large, the adhesion on the ITO substrate was slightly lowered, but the peeling was 5 to 15%, and a relatively good adhesion was obtained.
  • Example 27 since the content of the inorganic oxide particles is large, the adhesion on the ITO substrate is slightly lowered in the same manner as in Example 26, but the peeling is 5 to 15% and relatively good adhesion is obtained. was gotten.
  • Examples 29 to 34 evaluation was performed by changing the type of (D) the water-soluble crosslinking agent.
  • Comparative Example 1 and Comparative Example 4 peeling of 35% or more was observed.
  • the coating film has white turbidity that is considered to be derived from the aggregate of the inorganic oxide particles as the component (B), and it is considered that such an aggregate has inhibited adhesion.
  • the water-soluble crosslinking agent since (D) the water-soluble crosslinking agent was not added, the adhesion was low.
  • coating was impossible because the coating solution was repelled on the ITO substrate.
  • the coating solution (V-1) is spin-coated on an ITO film (manufactured by Nitto Denko) with a transparent conductive film formed on both sides with a Mikasa coater (1H-360S manufactured by Mikasa), and prebaked at 100 ° C. for 120 seconds on a hot plate. And it adjusted so that a film thickness might be set to 1.5 micrometers, and the coating film was obtained.
  • the coating film was exposed at 100 mJ / cm 2 using an exposure machine (HMW-801, manufactured by Oak Manufacturing Co., Ltd.) having an ultra-high pressure mercury lamp using a line pattern mask in which the width of the exposed area and the unexposed area was 1: 1. did.
  • Example 1 a pattern with a resolution of less than 60 ⁇ m was obtained in any sample.
  • Example 23 since the content of the crosslinking agent was small, the resolution was slightly lowered, but it was less than 70 ⁇ m, and a relatively good resolution was obtained.
  • Comparative Examples 1 and 4 it was impossible to form a pattern.
  • the coating film is white and cloudy, which is considered to have adversely affected the photosensitivity of the aqueous resin composition.
  • Comparative Example 4 there is no (D) water-soluble crosslinking agent component that cures in the exposure process. This is probably because the pattern has been removed by the developer.
  • binder polymer solution solid content of 50 having a structural unit derived from (meth) acrylic acid of 20% by mass, a weight average molecular weight of about 43,000 and an acid value of 130 mgKOH / g. Mass%).
  • the acid value was measured as follows. First, the binder polymer solution was heated at 130 ° C. for 1 hour to remove volatile components to obtain a solid content. Then, after precisely weighing 1.0 g of the polymer whose acid value is to be measured, the precisely weighed polymer was put into an Erlenmeyer flask, 30 g of acetone was added to the polymer, and this was uniformly dissolved. Next, an appropriate amount of an indicator, phenolphthalein, was added to the solution, and titration was performed using a 0.1N aqueous KOH solution. And the acid value was calculated
  • first photosensitive resin composition for photosensitive layer The following materials including the binder polymer solution synthesized above are weighed into a 250 ml plastic bottle, charged with ethyl methyl ketone so that the solid concentration is 45% by mass, and dissolved and mixed for 2 hours using a stirrer. To obtain a photosensitive resin composition. Thereafter, the photosensitive resin composition was passed through a 3 ⁇ m filter to prepare a coating solution (W-1) for forming the first photosensitive layer.
  • the coating solution (W-1) is spin-coated on a 6-inch silicon wafer with a Mikasa coater (Mikasa 1H-360S) and pre-baked on a hot plate at 100 ° C. for 180 seconds to adjust the film thickness to 10 ⁇ m. To obtain a coating film.
  • the coating film is exposed at 450 mJ / cm 2 using an exposure machine having an ultra-high pressure mercury lamp (OMW Seisakusho HMW-801), and then annealed at 150 ° C. for 30 minutes using a hot air convection dryer. A sample for refractive index evaluation was obtained.
  • ⁇ Preparation of transfer film comprising first photosensitive layer> A polyethylene terephthalate film (manufactured by Mitsubishi Chemical Polyester Film Co., Ltd.) having a thickness of 16 ⁇ m was used as a temporary support.
  • the coating solution (W-1) for forming the first photosensitive layer obtained above is uniformly coated on a temporary support using a bar coater, and is heated for 3 minutes with a hot air convection dryer at 100 ° C. The solvent was removed by drying, and finally a protective film (polypropylene film having a thickness of 12 ⁇ m) was pressure-bonded to form a photosensitive resin composition layer (X-1) comprising a first photosensitive layer having a thickness of 10 ⁇ m.
  • the PET temporary support was peeled off, and annealed at 150 ° C. for 30 minutes using a hot air convection dryer to produce a laminate having the first photosensitive layer provided on the glass substrate.
  • the haze of the laminate was measured according to the standard of JIS K7136 using a haze meter (Nippon Electric Decoration Turbidimeter NDH2000 manufactured by Nippon Denshoku Kogyo Co., Ltd.). The haze value was 0.4%.
  • the transmittance of the laminate was measured.
  • the total transmittance at 400 nm to 700 nm was measured using a UV spectrometer (U-3010 manufactured by Hitachi High-Tech Science Co., Ltd.) according to the standard of JIS K7361-1.
  • the transmittance at 400 nm to 700 nm was 94.8%.
  • the photosensitive resin laminated body which consists of a 1st photosensitive layer and a 2nd photosensitive layer was produced.
  • a polyethylene terephthalate film manufactured by Mitsubishi Chemical Polyester Film Co., Ltd.
  • the coating solution (W-1) for forming the first photosensitive layer obtained above is uniformly coated on a temporary support using a bar coater, and is heated for 3 minutes with a hot air convection dryer at 100 ° C.
  • the solvent was removed by drying to form a photosensitive resin composition layer (X-1) composed of a first photosensitive layer having a thickness of 10 ⁇ m.
  • the coating solution for forming the second photosensitive layer obtained above (V-1: Examples 1-34, Comparative Examples 1-6 (Comparison in which a uniform coating solution could not be obtained during preparation) Except for Example 2 and Comparative Example 5)) was applied uniformly on the photosensitive resin composition layer (X-1) using a bar coater and dried for 4 minutes with a 100 ° C. hot air convection dryer. The solvent is removed to form a second photosensitive layer (photosensitive resin composition layer) having a thickness of 100 nm, and finally a protective film (12 ⁇ m thick polypropylene film) is pressure-bonded, and the first photosensitive layer and the second photosensitive layer are bonded.
  • a transfer film (Y-1) consisting of the photosensitive layer was prepared.
  • FIG. Y-1 has a laminated structure in which a PET temporary support (3), a first photosensitive layer (1), a second photosensitive layer (2), and a protective film (not shown) are laminated in this order.
  • the photosensitive resin laminated body using the coating liquid of Example 25, since the content of the surfactant is small and the surface tension at 23 ° C. of the 5 mass% aqueous solution is high, the photosensitive resin is used. Only a slight repellency of the coating solution was observed on the composition layer (X-1). In the coating solution of Comparative Example 6, large repellency was confirmed on the photosensitive resin composition layer (X-1), and a good transfer film could not be obtained.
  • the coating solution (V-1) for forming the second photosensitive layer uses water as a solvent, the second photosensitive layer is formed on the first photosensitive layer without dissolving or eroding the first photosensitive layer. It is possible to form. Therefore, a clear interface can be formed between the first photosensitive layer and the second photosensitive layer.
  • This clear interface formation is very important from the viewpoint of improving the visibility of ITO. Bar coater, doctor blade coating method, Mayer bar coating method, roll coating method, screen coating method, spinner coating method, inkjet coating method, dip coating method, gravure coating method, curtain coating method, die coating method, etc.
  • the SP value of the solvent used in the coating solution (V-1) and the coating solution (W-1) needs to be greatly different in order to form the above-described clear interface.
  • the coating liquid (V-1) To use the water, the coating liquid (W-1) to have with ethyl methyl ketone (SP value ethyl methyl ketone: 9.5 SP value Water: 23 .4).
  • SP value ethyl methyl ketone 9.5 SP value Water: 23 .4
  • the solvent of the coating solution (V-1) is changed from water to an alcohol such as methanol having a low SP value (SP value methanol : 14.5) (V-3)
  • the photosensitive resin composition layer (X Since -1) is partially dissolved, the visibility is not improved.
  • the laminating conditions were laminating speed: 1.0 m / min, laminating roll temperature: 100 ° C., laminating pressure: 0.4 MPa.
  • exposure was performed at 450 mJ / cm 2 using an exposure machine having an ultra-high pressure mercury lamp (HMW-801, manufactured by Oak Seisakusho).
  • HMW-801 ultra-high pressure mercury lamp
  • the PET temporary support is peeled off, and annealing is performed at 150 ° C. for 30 minutes using a hot air convection dryer, and a first photosensitive layer and a second photosensitive layer are provided on both sides of the ITO.
  • Laminates (Z-1 to Z-4) having only one photosensitive layer were produced.
  • the laminate (Z-1) was produced using the transfer film (Y-1), and the laminate (Z-2) was produced using the transfer film (Y-2).
  • the laminate (Z-3) is produced using the transfer film (Y-3), and the laminate (Z-4) is produced using the transfer film (X-1).
  • a schematic cross-sectional view of Z-1 to Z-3 is shown in FIG. Z-1 to Z-3 are a PET temporary support (not shown), a first photosensitive layer (1), a second photosensitive layer (2), a film (4) having ITO formed on both sides,
  • the second photosensitive layer (2), the first photosensitive layer (1), and a PET temporary support (not shown) have a laminated structure laminated in this order.
  • the diffuse reflectance was measured, and the total reflectance (Y value) of the D65 light source / 2 ° field of view was calculated (Example 37 to Example 71, Comparative Examples 7 to 12). The measurement was performed at 3 points for each level, and the evaluation of resolution was evaluated according to the following scores. The evaluation results are shown in Table 4 below.
  • the reflectance of the ITO film itself measured under the same conditions was 3.3%.
  • C Reflectance 2.0% to less than 2.5%
  • D Reflectance 2.5% or more
  • Example 71 the total reflectance was less than 1.5% in all samples.
  • the refractive index is 1.60, which is relatively close to the refractive index of 1.55 of the transfer film (X-1).
  • the reduction effect is slightly low, the improvement effect can be sufficiently confirmed.
  • Example 71 since water, which is a solvent for preparing the coating liquid (V-1), was substituted by 50% by mass with alcohol, the transfer film (X-1) was compared with the case where only water was used. It is considered that there is a slight difference in the interfacial formability, and the effect of reducing the reflectance is somewhat lowered, but the improvement effect can be sufficiently confirmed.
  • Comparative Example 7 alcohol was used instead of water as the solvent for preparing the coating liquid (V-1) (V-3), so that the interface formation with the transfer film (X-1) was good. In addition, the effect of reducing the reflectance was not confirmed. In Comparative Example 8, since only the transfer film (X-1) was laminated and there was no refractive index adjusting layer, the effect of reducing the reflectance was not confirmed. In Comparative Example 10, since the refractive index of the second photosensitive layer is 1.57, there is almost no difference from the refractive index of the first photosensitive layer of the transfer film (X-1) 1.55. The effect of reducing the reflectance was not confirmed. In Comparative Example 9, the transfer film (Y-1) was turbid, and the reflectance could not be measured.
  • the transfer films (Y-1 to Y-3) prepared above are thermocompression-bonded onto a glass substrate having a thickness of 1 mm using a laminator AL-70 (trade name, manufactured by Asahi Kasei), and secondly transferred onto the glass substrate.
  • a laminate was prepared by laminating the photosensitive layer, the first photosensitive layer and the PET temporary support in this order.
  • the laminating conditions were laminating speed: 1.0 m / min, laminating roll temperature: 100 ° C., laminating pressure: 0.4 MPa. Then, it exposed at 450 mJ / cm ⁇ 2 > using the exposure machine (HMW-801 by Oak Seisakusho) which has an ultrahigh pressure mercury lamp.
  • the PET temporary support is peeled off, and annealing is performed at 150 ° C. for 30 minutes using a hot air convection dryer to produce a laminate in which a first photosensitive layer and a second photosensitive layer are provided on a glass substrate. did.
  • the haze of the laminate was measured according to JIS K7136 using a haze meter Nippon Denso Turbidimeter NDH2000 (manufactured by Nippon Denka Kogyo Co., Ltd.) (Examples 37 to 71, Comparative Examples 7 to 12). .
  • the evaluation results are shown in Table 4 below.
  • haze was 0.5% or less in all samples, but in Comparative Example 7, haze was 1.1%. In the visibility of the touch panel, the haze value is preferably less than 0.5%.
  • Example 37 to 63 and 65 to 71 the transmittance of each sample at 400 nm to 700 nm was 92% or more.
  • the transmittance is 91%, which is slightly lower than the other examples due to the coloring derived from the initiator, but when used in a touch panel, the transmittance is 90% or more. Is fully usable.
  • the transmittance is less than 90%, which is not suitable for use of the touch panel.
  • ⁇ Preparation of photosensitive resin composition coating solution (W-2) for first photosensitive layer The following materials including the binder polymer solution synthesized above are weighed into a 250 ml plastic bottle, charged with ethyl methyl ketone so that the solid concentration is 45% by mass, and dissolved and mixed for 2 hours using a stirrer. To obtain a photosensitive resin composition. Thereafter, the photosensitive resin composition was passed through a 3 ⁇ m filter to prepare a coating solution (W-2) for forming the first photosensitive layer.
  • a polyethylene terephthalate film manufactured by Mitsubishi Chemical Polyester Film Co., Ltd. having a thickness of 16 ⁇ m was used as a temporary support.
  • the coating solution (W-1 or W-2) for forming the first photosensitive layer obtained above is uniformly coated on a temporary support using a bar coater and dried at 100 ° C. with hot air convection. Then, the solvent was removed by drying for 3 minutes, and a photosensitive resin composition layer (X-1 or X-2) comprising a first photosensitive layer having a thickness of 5, 10, or 15 ⁇ m was formed.
  • a coating solution for forming the second photosensitive layer (V-1: Examples 72 to 81 in Table 6 and Comparative Examples 13 to 15) was added to the photosensitive resin composition layer (X-1 or X-). 2) Apply uniformly on top using a bar coater, dry with a hot air convection dryer at 100 ° C. for 4 minutes to remove the solvent, and a second photosensitive layer (photosensitive resin composition) having a thickness of 60 to 120 nm Material layer), and finally a protective film (12 ⁇ m thick polypropylene film) was pressure-bonded to produce a transfer film (Y-1) comprising a first photosensitive layer and a second photosensitive layer.
  • a two-layer transfer film (Y--) was prepared using a coating solution (V-3) in which ion-exchanged water, which is the solvent of the coating solution (V-1) of Comparative Example 13, was completely replaced with methanol. 3) was produced (Table 7).
  • the solid content concentration of this aqueous solution was measured by the above-mentioned method, and the aqueous solution was prepared so that it might become 5.0 +/- 0.1 mass%.
  • the surface tension of the aqueous solution prepared to 5% by mass was measured by the method described above. The surface tension measurement results are shown in Table 7. For Examples 82 to 97 and Comparative Examples 17 to 19, a 5% by weight aqueous solution in which the 5% by weight coating solution (V-1) used in the preparation of the two-layer film and the second photosensitive layer of the two-layer transfer film were dissolved. The result of the surface tension at 23 ° C. was almost the same value.
  • Comparative Example 17 and Comparative Example 20 have the same composition of the second photosensitive layer, although the coating solutions used in the production of the two-layer transfer film are different (Comparative Example 17: V-1 and Comparative Example 20: V-3 are used). Although the components were used, the surface tension at 23 ° C. of the 5 mass% aqueous solution in which the second photosensitive layer of the two-layer transfer film was dissolved was the same value.
  • a transfer film (Y-1, Y-3) comprising the first photosensitive layer and the second photosensitive layer is thermocompression bonded onto a 6-inch silicon wafer using a laminator AL-70 (trade name, manufactured by Asahi Kasei). Then, laminates (Z-1, Z-3) were produced in which the second photosensitive layer, the first photosensitive layer, and the PET temporary support were laminated in this order on the silicon wafer.
  • the laminating conditions were laminating speed: 1.0 m / min, laminating roll temperature: 120 ° C., laminating pressure: 0.4 MPa.
  • Examples 83 to 94, Examples 96 and 97, and Comparative Examples 18 and 19 in which the surface tension at 23 ° C. of a 5% by mass aqueous solution in which the second photosensitive layer of the two-layer transfer film is dissolved are 40 mN / m or less.
  • the applicability was good (the applicability evaluation result was A).
  • the coating liquid (V-1) of Example 72 used in Examples 82 and 95 had a small amount of (E) surfactant added, and a surface tension of 40 mN / m at 23 ° C. in a 5% by mass aqueous solution. However, the coating property was slightly inferior.
  • the laminating conditions were fixed at a laminating speed of 1.0 m / min and a laminating pressure of 0.4 MPa, and the laminating roll temperature was varied between 80 ° C. and 120 ° C.
  • Table 7 shows the results of thermal transferability evaluation. As for Examples 82 to 97 and Comparative Examples 17, 19, and 20, the results were AC.
  • the component (D) is composed only of (D7) having a weight average molecular weight of 570.
  • Example 88 performed using the composition of the second photosensitive layer in Example 75, the evaluation result was C.
  • Examples 74, 76 to 81 constituted by (D1), (D2), (D10), (D11), and (D12) having a weight average molecular weight in the range of 1000 to 12000 as the component (D).
  • the evaluation result was A.
  • the evaluation result was D about the comparative example 18 which uses the photosensitive resin composition of the comparative example 14 which does not contain (D) component.
  • the component (D) contained in the second photosensitive layer is an important component for imparting the thermal transferability of the transfer film, and in particular, the weight average molecular weight of the second photosensitive layer is in the range of 1000 to 12,000. It was suggested that thermal transfer at low temperature is possible if a photosensitive resin composition containing the above is used.
  • thermocompression bonding method A transfer film (Y-1, Y-3) composed of the first photosensitive layer and the second photosensitive layer shown in Table 7 is placed on an ITO film (manufactured by Nitto Denko Corporation) having a transparent conductive film formed on both sides.
  • ITO film manufactured by Nitto Denko Corporation
  • thermocompression bonding was performed to prepare a laminate in which the second photosensitive layer, the first photosensitive layer, and the PET were laminated in this order on the ITO film.
  • the laminating conditions were as follows: laminating speed: 1.0 m / min, laminating pressure: 0.4 MPa, and laminating roll temperature was 120 ° C. Thereafter, exposure was performed at 450 mJ / cm 2 using an exposure machine having an ultra-high pressure mercury lamp (HMW-801 manufactured by Oak Manufacturing Co., Ltd.), and then PET as a temporary support was peeled off. Thereafter, annealing was performed at 150 ° C. for 30 minutes using a hot air convection dryer to obtain a sample of a cured film laminate (Z-1, Z-3) for adhesion evaluation.
  • laminating speed 1.0 m / min
  • laminating pressure 0.4 MPa
  • laminating roll temperature was 120 ° C.
  • exposure was performed at 450 mJ / cm 2 using an exposure machine having an ultra-high pressure mercury lamp (HMW-801 manufactured by Oak Manufacturing Co., Ltd.), and then PET as a temporary support was peeled off. Thereafter, annealing was performed
  • Example 72 containing (D1), (D2), (D5), (D10), (D11), and (D12) having a weight average molecular weight in the range of 1000 to 12000 as component (D)
  • Examples 81 to 87 and 89 to 97 using the photosensitive resin compositions of 74 to 76 and 81 to 81 good results were obtained in which the peeled portion was less than 5%.
  • Examples 74 and 78 to 81 contain a water-soluble nitrogen-containing crosslinking agent such as urethane acrylate (D1) and blocked isocyanate (D12).
  • Example 87 using these compositions as the second photosensitive layer. 89-94 and 97, almost no peeling was observed.
  • Comparative Example 18 using the photosensitive resin composition of Comparative Example 14 containing no component (D) peeling occurred by 65% or more in the entire area (the result was D).
  • the component (D) contained in the second photosensitive layer is an important component for imparting the substrate adhesion of the transfer film, and among them, the weight average molecular weight of the second photosensitive layer is 1000 to 12000. It was suggested that if the photosensitive resin composition containing a nitrogen-containing water-soluble crosslinking agent is used, the adhesion becomes very good.
  • the reflectance was measured by the method described above. The reflectance was measured at three points.
  • Comparative Example 18 the first and second photosensitive layers were partially peeled when the PET was peeled off in the process of preparing the cured film laminate, but the evaluation was performed using a portion that was not peeled off.
  • Examples 82 to 85 the same photosensitive resin composition (Example 73) was used, and evaluation was performed by changing the film thickness of the second photosensitive layer. As a result, it was found that the thickness of the second photosensitive layer between 80 and 100 nm is effective for reducing the reflectance.
  • the coating solution (V-1) was used at the time of forming the second photosensitive layer, and the second photosensitive composed of the components of Examples 72 to 81 and Comparative Example 14 was used.
  • the refractive index of the layer is in the range of 1.60 to 1.64. In such a combination, the reflectance was less than 2.0% and good results were obtained. In particular, in Examples 82, 84, 85, 91 to 93, 95 to 97, and Comparative Example 18, the reflectance was less than 1.5%, so the refractive index of the second photosensitive layer was 1.61 to 1. It can be said that it is more preferable to be within the range of .64.
  • the photosensitive resin composition of the present application uses a solvent containing water as a main component, a clear interface can be formed at the time of preparing a two-layer transfer film, and a 5 mass% aqueous solution at 23 ° C. Since the surface tension is low, the applicability is also good, and it is considered that the touch panel visibility improving effect can be stably imparted.
  • the second photosensitive layer contains (D-1) a nitrogen-containing crosslinking agent having a weight average molecular weight in the range of 2,000 to 10,000 and having at least two polymerizable functional groups in the molecule.
  • D-1 a nitrogen-containing crosslinking agent having a weight average molecular weight in the range of 2,000 to 10,000 and having at least two polymerizable functional groups in the molecule.
  • a two-layer transfer film comprising a first photosensitive layer and a second photosensitive layer was produced by the method described below.
  • the photosensitive resin compositions of Examples 98 to 100 and Comparative Examples 21 to 23 shown in Table 8 for forming the second photosensitive layer were diluted with methyl ethyl ketone to give a coating solution having a solid content concentration of 5 mass% ( V-4) was prepared (Table 8).
  • a 30 ⁇ m-thick polypropylene film manufactured by Oji F-Tex Co., Ltd.
  • the coating solution (V-4) was uniformly applied on the protective film with a bar coater, and a hot air convection dryer at 100 ° C.
  • a second photosensitive layer having a thickness of 100 nm.
  • a polyethylene terephthalate film (Mitsubishi Chemical Polyester Film Co., Ltd.) having a thickness of 16 ⁇ m was used as a temporary support, and a coating solution (W-1) for forming the first photosensitive layer was applied on the temporary support.
  • the coating is uniformly applied using a bar coater, dried for 3 minutes in a 100 ° C. hot air convection dryer to remove the solvent, and the photosensitive resin composition layer (X-1) comprising the first photosensitive layer having a thickness of 10 ⁇ m is used. ) Was formed.
  • the obtained protective film having the second photosensitive layer and the temporary support having the first photosensitive layer were combined with the first photosensitive layer using a laminator AL-70 (trade name, manufactured by Asahi Kasei).
  • a two-layer transfer film (Y-4) was prepared by bonding at 25 ° C. so that the second photosensitive layer was in contact (Table 9, Examples 101 to 103, Comparative Examples 24 to 26).
  • ⁇ Evaluation of refractive index> Using the protective film having the second photosensitive layer used in the production of the two-layer transfer film, a silicon wafer was thermocompression-bonded on a 6-inch silicon wafer using a laminator AL-70 (trade name, manufactured by Asahi Kasei). A laminate was produced in which a second photosensitive layer and a protective film were laminated in this order.
  • the laminating conditions were laminating speed: 1.0 m / min, laminating roll temperature: 120 ° C., laminating pressure: 0.4 MPa. Then, it exposed at 450 mJ / cm ⁇ 2 > using the exposure machine (HMW-801 by Oak Seisakusho) which has an ultrahigh pressure mercury lamp.
  • the protective film was peeled off, and annealing was performed at 150 ° C. for 30 minutes using a hot air convection dryer to obtain a sample for refractive index evaluation in which a second photosensitive layer was provided on a silicon wafer.
  • the refractive index was measured by the method described above. In all of Examples 101 to 103 and Comparative Examples 24 to 26, the refractive index of the second photosensitive layer was 1.63 (Table 9).
  • thermal transferability evaluation results were AB.
  • thermal transferability evaluation result was A.
  • Example 101 having a photosensitive resin composition (Example 100) containing a blocked isocyanate having a weight average molecular weight of 2800 in the second photosensitive layer, the thermal transferability was B.
  • Comparative Example 26 having the photosensitive resin composition of Comparative Example 23 which does not contain a nitrogen-containing skeleton in the second photosensitive layer, the thermal transferability was slightly inferior (the result was C). ).
  • the adhesion was evaluated by the method described above.
  • the photosensitive resin compositions of Examples 98 and 99 and Comparative Examples 21 and 22 all contain urethane acrylate, but these photosensitive resin compositions are included in the second photosensitive layer.
  • the thermal transferability evaluation results were AC.
  • the photosensitive resin composition of Example 99 contained urethane acrylate having a weight average molecular weight of 5700, but Example 102 containing this composition in the second photosensitive layer had very good adhesion ( The result is A).
  • the photosensitive resin composition of Example 98 contains urethane acrylate having a weight average molecular weight of 2100
  • the adhesion was also good with respect to Example 101 containing this composition in the second photosensitive layer.
  • the photosensitive resin composition of Comparative Example 24 contains urethane acrylate having a weight average molecular weight of 1800
  • the photosensitive resin composition of Comparative Example 25 contains urethane acrylate having a weight average molecular weight of 12100.
  • the results were inferior to those of Examples 99 and 100 (result C).
  • Example 100 contains the block isocyanate of the weight average molecular weight 2800
  • Example 103 which contains this composition in a 2nd photosensitive layer
  • adhesiveness was favorable ( The result is B).
  • adhesion was not obtained with respect to Comparative Example 26 having the photosensitive resin composition of Comparative Example 23 which does not contain a nitrogen-containing skeleton in the second photosensitive layer.
  • the thermal transferability and adhesion are extremely excellent. It has been found that a two-layer transfer film can be provided. It is thought that it can interact strongly with the underlying conductor by including a nitrogen atom such as urethane in the molecular skeleton.
  • the nitrogen-containing crosslinking agent has a weight molecular weight of 10,000 or less. This is considered to be because when the weight average molecular weight is 2000 or more, the resin composition can be provided with appropriate toughness that can withstand adhesion evaluation.
  • the two-layer transfer film ( Y-4) is produced.
  • the components of the first photosensitive layer and the second photosensitive layer are mixed with each other in the subsequent thermal process (for example, thermocompression bonding process to ITO film, thermal curing process at 150 ° C.), the interface is blurred. Inferred.
  • Example 104 As a result of observing the cross section of the cured film laminate by the above-described method, as for Example 104, three layers of a very thin organic layer on the conductor, a second cured layer filled with metal fine particles, and a first cured layer were formed. It turned out to be a structure.
  • the value of (ZrL ⁇ + TiK ⁇ ) / CK ⁇ was calculated from the results of peak intensities derived from CK ⁇ , ZrL ⁇ , and TiK ⁇ detected by EDX measurement of each part of the three layers.
  • the three-layer structure according to this embodiment is defined as follows.
  • Ultrathin organic layer (ZrL ⁇ + TiK ⁇ ) / CK ⁇ ⁇ 0.5 Second cured layer: (ZrL ⁇ + TiK ⁇ ) /CK ⁇ 0.5 First cured layer: (ZrL ⁇ + TiK ⁇ ) / CK ⁇ ⁇ 0.5
  • FIGS. Regarding Examples 105 and 106 and Comparative Example 27 it was also found that an ultrathin organic layer was present. Since these samples were prepared from a second photosensitive layer and a two-layer transfer film composed of the first photosensitive layer, the ultrathin organic layer was considered to have an uneven distribution of organic components derived from the second photosensitive layer. It is done. On the other hand, regarding Comparative Example 28, the presence of an ultrathin organic layer could not be confirmed.
  • a cross-sectional sample was prepared by BIB processing, and SEM observation was performed, and the average film thickness within the same visual field was determined for each of the ultrathin organic layer and the second cured layer.
  • the observation magnification was lowered
  • SEM observation was performed for the two SEM cross-section samples described above for each level, and the average film thickness of the two results was obtained. The results are shown in Table 10. Furthermore, the relationship between the cross-sectional SEM observation image of the cured film laminated body for touch panels in the film thickness measurement of Example 104 and each layer which comprises a cured film laminated body is shown in FIG.
  • Examples 104 to 106 and Comparative Example 27 an ultrathin organic layer having an average film thickness of 8 nm to 23 nm was observed.
  • Comparative Example 28 an ultrathin organic layer could not be observed. From these results, it is considered that the average film thickness of the ultrathin organic layer has a correlation with the content of the component (D) contained in the composition of the second photosensitive layer.
  • the second photosensitive layer constituting the cured film laminate of Example 105 contains 50% by mass of component (D), but the ultrathin organic layer is the thickest (26 nm). It was.
  • Comparative Example 28 did not contain the component (D) in the second photosensitive layer, but the thickness of the ultrathin organic layer was 0.
  • the ultrathin organic layer is derived from a water-soluble crosslinking agent.
  • the thermal transferability evaluation and the adhesion evaluation were poor. Therefore, it is suggested that the presence of the ultrathin organic layer is an important factor that positively affects the thermal transferability and adhesion of the transfer film. It was done.
  • the pinhole is a portion having a void having a diameter of 50 nm or more that is not filled with metal fine particles in the second hardened layer, and the remaining thickness of the second hardened layer is 0 to 10 nm. It is defined as an existing location.
  • Observation magnification For portions where it was not possible to judge whether or not the definition of pinholes at x20k, it was possible to use observation at high magnification as necessary. SEM observation was performed for the two SEM cross-sectional samples described above for each level, and the average value of the number of pinholes of the two results was obtained. The results are shown in Table 10. Furthermore, about the cross-sectional SEM observation image of the cured film laminated body for touchscreens obtained by the comparative example 27, the enlarged observation image of a pinhole part is shown in FIG.
  • the average number of pinholes per observation width of 5 ⁇ m was 1 or less.
  • the average number of pinholes per observation width of 5 ⁇ m was 11.
  • the second photosensitive layer (composition of Comparative Example 13) composing the cured film laminate of Comparative Example 27 has a surface tension of 44 mN / m at 23 ° C. in a 5% by mass aqueous solution. This is thought to be due to poor coatability.
  • Comparative Example 30 a three-layer transfer film was used, and the average film thickness of the ultrathin organic layer was 63 nm in cross-sectional observation with SEM. Moreover, although the thermal transfer property and the adhesiveness were also favorable, this is considered to be an influence by the organic layer formed intentionally. On the other hand, Comparative Example 30 resulted in poor reflectivity.
  • the two-layer transfer film according to the present invention is characterized by good thermal transfer and adhesion to the conductor of the substrate.
  • a cured film for touch panel is used. It was found that there was an ultrathin organic layer between the conductor of the laminate and the second hardened layer, and this ultrathin organic layer was found to correlate with the above features.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Laminated Bodies (AREA)

Abstract

 タッチパネル用水性樹脂組成物が、1.60以上の屈折率を有し、かつ少なくとも2つの重合性官能基を有する水溶性架橋剤を含有し、そしてタッチパネル用水性樹脂組成物を23℃で5質量%水溶液として形成したときに、表面張力が40mN/m以下である。

Description

タッチパネル用水性樹脂組成物、転写フィルム及び硬化膜積層体、並びに樹脂パターンの製造方法及びタッチパネル表示装置
 本発明は、水性感光樹脂組成物等に関し、より詳しくは、液晶表示装置、有機EL表示装置、タッチパネル表示装置、集積回路素子、固体撮像素子等の電子部品の平坦化膜;転写フィルム、保護膜及び層間絶縁膜の形成に好適な水性感光樹脂組成物及びそれを用いた樹脂パターンの製造方法に関する。
 近年、電子機器の高性能化、多様化及び小型軽量化が進むに伴い、液晶等の表示素子の全面に透明タッチパネル(タッチセンサー)を装着した機器が増えてきた。透明タッチパネルを通して表示素子に表示された文字、記号、絵柄等の視認及び選択を行い、透明タッチパネルの操作によって機器の各機能の切り替えを行うことも増えている。タッチパネルは、パソコン、テレビ等の大型電子機器だけでなく、カーナビゲーション、携帯電話、電子辞書等の小型電子機器及びOA・FA機器等の表示機器にも使用されており、タッチパネルには透明導電電極材から成る電極が設けられている。透明導電電極材としては、ITO(Indium-Tin-Oxide)、酸化インジウム及び酸化スズが知られており、これらの材料は、高い可視光透過率を有することから液晶表示素子用基板等の電極材として主に使用されている。
 既存のタッチパネルの方式としては、抵抗膜方式、光学方式、圧力方式、静電容量方式、電磁波誘導方式、画像認識方式、振動検出方式、超音波方式等が挙げられ、各種の方式が実用化されているが、近年、静電容量方式タッチパネルの利用が最も進んでいた。静電容量方式タッチパネルでは、導電体である指先がタッチ入力面に接触すると、指先と導電膜との間が静電容量結合し、コンデンサを形成する。このため、静電容量方式タッチパネルは、指先の接触位置における電荷の変化を捉えることによって、その座標を検出する。特に、投影型静電容量方式のタッチパネルは、指先の多点検出が可能なため、複雑な指示を行うことができるという良好な操作性を備えるので、携帯電話、携帯型音楽プレーヤ等の小型表示装置を有する機器における表示面上の入力装置として利用が進んでいる。一般に、投影型静電容量方式のタッチパネルでは、X軸とY軸による2次元座標を表現するために、複数のX電極と、複数のX電極に直交する複数のY電極とが、2層構造を形成しており、かつ電極材としてはITOが用いられる。
 静電容量方式タッチパネルは、特許文献1,2などに開示されており、観察者の指等が接触した位置の誤認識を防ぐために、その積層構造の中に絶縁膜又は保護膜が設けられている。
 絶縁膜又は保護膜に要求される性能として、基材、下地、その他の層、例えば、ガラス、無機材料、金属材料及びITO等の透明電極又は有機材料への密着性;タッチパネル製造工程での高温焼成工程への耐熱性;及び積層基板を形成した際の高い透過率が求められている。さらに、ITO透明電極パターン等の他の層の表面に絶縁膜又は保護膜用塗料を塗布した際、他の層と絶縁膜又は保護膜との間の屈折率差が大きくなるためITOパターンが見え易くなってしまい、液晶画面の視認性が低下するという不都合が存在する。
 このため、近年、静電容量式タッチパネル、液晶表示装置、有機EL表示装置等に高屈折率層を設けることにより、光の反射を抑制し、かつ透過率又は視認性を向上させることが多くなってきた。高屈折率層としては、無機酸化物微粒子を含む層(特許文献3)及び高屈折率を有するハードコート層、保護膜(特許文献4)等が開示されているが、ハードコート層、保護膜等のパターンを形成する際には、レジスト材料を用いる必要があり、工程数が多いため、生産性が悪い。
 パターンの生産性を改善するため、感光性を有した高屈折材料が特許文献5,6に開示されているが、熱硬化性化合物として使用されているメラミン化合物のアルコキシアルキル基又はヒドロキシメチル基は、長期保存安定性の観点から不十分である。また、特許文献5,6に記述されている高屈折材料には有機溶剤が使用されており、環境調和の観点からも好ましくない。
特開2009-015489号公報 特開2010-044453号公報 特許第5169269号公報 特開2007-084815号公報 特開2014-071306号公報 国際公開第2013/054868号
 そこで、本発明が解決しようとする課題は、基材、下地等との密着性が良好であり、透明性及び保存安定性に優れ、かつ高屈折率である水性感光樹脂組成物;タッチパネルの製造に適した水性感光樹脂組成物;水性感光樹脂組成物を用いて作製した転写フィルム、感光性樹脂積層体及び光硬化物;水性感光樹脂組成物を用いる樹脂パターンの製造方法;並びに樹脂パターン又は光硬化物を有する視認性を改善したタッチパネル表示装置を提供することである。
 本発明者は、従来技術の問題に鑑みて、鋭意検討し実験を重ねた結果、特定の水溶性樹脂、無機酸化物微粒子水分散液、光重合開始剤、特定の水溶性架橋剤、界面活性剤等を用いることで、上記の課題を解決する水溶性樹脂組成物、及びそれを含む感光性樹脂組成物が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
[1]
 屈折率が1.60以上であり、少なくとも2つの重合性官能基を有する水溶性架橋剤を含有し、かつ5質量%の固形分を有する水溶液として調製されたときの23℃における表面張力が40mN/m以下である、タッチパネル用水性樹脂組成物。
[2]
 前記少なくとも2つの重合性官能基を有する水溶性架橋剤の重量平均分子量が、1,000~12,000の範囲内である、[1]に記載のタッチパネル用水性樹脂組成物。
[3]
 前記少なくとも2つの重合性官能基を有する水溶性架橋剤は、ウレタン骨格を有する、[1]又は[2]に記載のタッチパネル用水性樹脂組成物。
[4]
 仮支持体上に2層フィルムを備える転写フィルムであって、
 前記2層フィルムは:
  前記仮支持体に積層されており、かつ(メタ)アクリル酸由来の構成単位を3質量%~25質量%含むバインダーポリマーと、少なくとも2つのエチレン性不飽和基を有する光重合性化合物と、光重合開始剤とを含有する感光性樹脂組成物から成る第1の感光層;及び
  前記第1の感光層に積層されており、かつ[1]~[3]のいずれか1項に記載のタッチパネル用水性感光樹脂組成物から成る第2の感光層;
で形成されている、
 前記転写フィルム。
[5]
 仮支持体上に、
 ・屈折率が1.48~1.56の範囲内であり、かつ膜厚が1μm~15μmの範囲内である第1の感光層;及び
 ・屈折率が1.60~1.75の範囲内であり、かつ膜厚が30nm~200nmの範囲内である第2の感光層;
をこの順に有し、かつ
 前記第2の感光層に、
 (D-1)重量平均分子量が2,000~10,000の範囲内であり、かつ分子内に少なくとも2つの重合性官能基を有する含窒素架橋剤
を含む、タッチパネル用転写フィルム。
[6]
 前記含窒素架橋剤は、ウレタン骨格を有する、[5]に記載のタッチパネル用転写フィルム。
[7]
 加速電圧30kVでの断面のSTEM-EDX測定において、導体上に、
 ・(ZrLα+TiKα)/CKαの強度比が0.5未満である有機層;
 ・(ZrLα+TiKα)/CKαの強度比が0.5以上である第2の硬化層;及び
 ・(ZrLα+TiKα)/CKαの強度比が0.5未満である第1の硬化層;
をこの順に有し、断面のSEM観察において前記有機層の平均膜厚が5nm~50nmであり、前記第2の硬化層の平均膜厚が30nm~200nmであり、前記第1の硬化層の平均膜厚が1μm~15μmであり、かつ、第2の硬化層の幅5μmの領域あたりに存在するピンホールの平均数が1個以下である、タッチパネル用硬化膜積層体。
[8]
 [7]に記載のタッチパネル用硬化膜積層体を有するタッチパネル表示装置。
[9]
 (A)水溶性樹脂;
 (B)2.0以上の屈折率を有する無機酸化物粒子;
 (C)光重合開始剤;
 (D)少なくとも2つの重合性官能基を有する水溶性架橋剤;及び
 (E)界面活性剤;
を含む水性感光樹脂組成物であって、
 前記(A)水溶性樹脂は、ポリビニルピロリドン、ポリ(メチルビニルエーテル)、ポリビニアルコール及びその誘導体、ポリオキシアルキレンオキサイド、ポリアクリル酸誘導体、ポリアクリルアミド、並びにセルロースから成る群より選ばれる少なくとも1つの化合物であり、かつ
 前記水性感光樹脂組成物100質量%に対して、40質量%以上の前記(B)無機酸化物粒子を含む、
 前記水性感光樹脂組成物。
[10]
 更に、(F)有機ケイ素化合物を含む、[9]に記載の水性感光樹脂組成物。
[11]
 前記(F)有機ケイ素化合物が、少なくとも1つの重合性官能基を有する、[10]に記載の水性感光樹脂組成物。
[12]
 仮支持体上に2層フィルムを備える転写フィルムであって、
 前記2層フィルムは:
  前記仮支持体に積層されており、かつ(メタ)アクリル酸由来の構成単位を3質量%~25質量%含むバインダーポリマーと、少なくとも2つのエチレン性不飽和基を有する光重合性化合物と、光重合開始剤とを含有する感光性樹脂組成物から成る第1の感光層;及び
  前記第1の感光層に積層されており、かつ[9]~[11]のいずれか1項に記載の水性感光樹脂組成物から成る第2の感光層;
で形成されている、
 前記転写フィルム。
[13]
 (A)水溶性樹脂;
 (B)2.0以上の屈折率を有する無機酸化物粒子;
 (C)光重合開始剤;及び
 (D)少なくとも2つの重合性官能基を有する水溶性架橋剤;
を含む水性感光樹脂組成物であって、
 前記(A)水溶性樹脂は、ポリビニルピロリドン、ポリ(メチルビニルエーテル)、ポリビニルアルコール及びその誘導体、ポリオキシアルキレンオキサイド、ポリアクリル酸誘導体、ポリアクリルアミド、並びにセルロース類から成る群より選ばれる少なくとも1つの化合物であり、
 前記(D)水溶性架橋剤は、ウレタン(メタ)アクリレート多官能ビニルモノマーであり、かつ
 前記水性感光樹脂組成物100質量%に対して、40質量%以上70質量%以下の割合で前記(B)無機酸化物粒子を含む、
 前記水性感光樹脂組成物。
[14]
 更に、(E)界面活性剤を含む、[13]に記載の水性感光樹脂組成物。
[15]
 更に、(F)有機ケイ素化合物を含む、[14]に記載の水性感光樹脂組成物。
[16]
 前記(F)有機ケイ素化合物が、少なくとも1つの重合性官能基を有する、[15]に記載の水性感光樹脂組成物。
[17]
 仮支持体上に2層フィルムを備える転写フィルムであって、
 前記2層フィルムは:
  前記仮支持体に積層されており、かつ(メタ)アクリル酸由来の構成単位を3質量%~25質量%含むバインダーポリマーと、少なくとも2つのエチレン性不飽和基を有する光重合性化合物と、光重合開始剤とを含有する感光性樹脂組成物から成る第1の感光層;及び
  前記第1の感光層に積層されており、かつ[13]~[16]のいずれか1項に記載の水性感光樹脂組成物から成る第2の感光層;
で形成されている、
 前記転写フィルム。
[18]
 前記2層フィルムの400nm~700nmにおける可視光透過率が、93%以上である、[12]に記載の転写フィルム。
[19]
 前記2層フィルムのヘイズ値が、0.5%以下である、[12]又は[18]に記載の転写フィルム。
[20]
 以下の工程(a)~(d):
 (a)(メタ)アクリル酸由来の構成単位を3質量%~25質量%含むバインダーポリマーと、少なくとも2つのエチレン性不飽和基を有する光重合性化合物と、光重合開始剤とを含有する感光性樹脂組成物を仮支持体に塗布して第1の感光層を形成し、請求項1~3のいずれか1項に記載のタッチパネル用水性感光樹脂組成物を前記第1の感光層に塗布して第2の感光層を形成することによって、前記第1の感光層及び前記第2の感光層から成る2層フィルムを前記仮支持体上に形成して、前記2層フィルムから溶剤を除去して転写フィルムを得る転写フィルム作製工程;
 (b)前記転写フィルムを基材に転写して、活性光線によりパターン状に露光する露光工程;
 (c)前記転写フィルムの未露光部を水性現像液により除去して、前記転写フィルムを現像する現像工程;及び
 (d)現像された前記転写フィルムが付いている前記基材を熱処理する熱処理工程;
をこの順に含む、樹脂パターンの製造方法。
[21]
 [20]に記載の方法により製造された樹脂パターンを有するタッチパネル用硬化膜積層体。
[22]
 [21]に記載のタッチパネル用硬化膜積層体を有するタッチパネル表示装置。
 本発明によれば、基材、下地等との密着性が良好であり、熱転写性、塗布性、界面形成性、透過性及び保存安定性に優れ、かつ高屈折率である水性感光樹脂組成物、塗膜、転写フィルム、樹脂パターン及び光硬化物、並びに光硬化物を有する視認性を改善したタッチパネル表示装置を提供することができる。
図1は、PET仮支持体上に第1の感光層と第2の感光層が積層されている転写フィルムの模式的な断面図である。 図2は、図1に示される転写フィルムがITOフィルムの両面に積層されている積層体の模式的な断面図である。 図3(a)は、実施例104で得られたタッチパネル用硬化膜積層体の断面STEM観察画像であり、かつ図3(b)は、図3(a)の部分拡大図である。 図4は、図3(b)に示される位置(1)での有機層のSTEM-EDX結果を示す。 図5は、図3(b)に示される位置(2)での第2の硬化層のSTEM-EDX結果を示す。 図6は、図3(b)に示される位置(3)での第1の硬化層のSTEM-EDX結果を示す。 図7は、実施例104の膜厚測定におけるタッチパネル用硬化膜積層体の断面SEM観察画像と硬化膜積層体を構成する各層との関係を示す。 図8は、比較例27で得られたタッチパネル用硬化膜積層体の断面SEM観察画像であり、かつピンホール部の拡大観察画像を示す。
<水性感光樹脂組成物>
 本発明の実施形態に係る水性感光樹脂組成物とは、水を主成分とする溶媒に40℃において2質量%以上溶解、又は均一に分散する樹脂組成物である。水を主成分とする溶媒とは、水と水に溶解する有機溶媒の混合溶媒であり、その混合比率は水/有機溶媒の質量比率が100/0~50/50である。さらに、本実施形態に係る水性感光樹脂組成物は屈折率が1.60以上であり、5質量%の水溶液の23℃における表面張力が40mN/m以下であることを特徴とする。本実施形態に係る水性感光樹脂組成物を構成する各成分について、以下具体的に説明する。
(A)水溶性樹脂
 本実施形態に係る水溶性樹脂は、23℃の水に対し2質量%以上溶解する樹脂(水100gに対して2g以上溶解する樹脂)又は均一に分散する樹脂である。水に対し2質量%以上溶解する樹脂の水溶解性は高い程好ましく、より詳細には、5質量%以上の水溶解性を示す水溶性樹脂が好ましい。樹脂の水への溶解性については、熱水に溶解させた後、23℃に冷却し、溶解状態が維持されている場合も本実施形態に係る水溶性樹脂の定義に含まれる。本実施形態における溶解は、樹脂を水へ溶解させた際に、目視で白濁、析出又は相分離が確認されることなく、樹脂が水へ溶解している状態として定義される。また、水中に均一に分散する樹脂とは、固形分濃度2質量%になるように水を添加し、23℃の環境下で24時間静置した後、目視で析出、沈降、又は相分離が確認されることのない樹脂である。これらの水溶性樹脂は単独または併用して用いることができる。
 23℃の水に対し2質量%以上溶解する樹脂としては、ポリビニルピロリドン、ポリ(メチルビニルエーテル)、ポリビニルアルコール及びポリビニルアルコール誘導体(例えば、ポリビニルアルコールの水酸基の一部にポリアルキレンオキサイド基、アクリル基などの親水性基、及びシリコーン基、炭化水素基などの疎水性基を付加した重合体など)、ポリアルキレンオキサイド(例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、アルコックスCPシリーズ(明成化学工業(株)社、商品名)など)、ポリアクリルアミド、ポリアクリル酸誘導体(例えば、ポリアクリル酸、ポリアクリル酸エステル、及びこれらの共重合体など)、セルロース類(例えば、ヒドロキシメチルセルロース、カルボキシメチルセルロースなど)などが挙げられる。これらの樹脂は単体で使用する場合より、2つ以上組み合わせて使用した方が塗膜形成性の観点から好ましい。
 水に均一に分散する樹脂としては、アクリル樹脂エマルジョン、アクリルシリコン樹脂エマルジョン、ウレタン樹脂エマルジョン、フッ素樹脂エマルジョン、エポキシ樹脂エマルジョン、ポリエステル樹脂エマルジョン、アルキド樹脂エマルジョン、メラミン樹脂エマルジョンなどが挙げられる。
 水溶性樹脂としては、23℃の水に対し2質量%以上溶解する樹脂が好ましく、これらの中でも、ポリビニルピロリドン、ポリ(メチルビニルエーテル)、ポリアルキレンオキシド、ポリアクリル酸誘導体(ポリアクリル酸、ポリアクリル酸エステル、及びこれらの共重合体)は塗膜性形成と無機酸化物粒子の分散性の観点から好ましく、ポリビニルピロリドンとポリアクリル酸誘導体(ポリアクリル酸、ポリアクリル酸エステル、及びこれらの共重合体)を併用した場合は特に好ましい。
 水溶性樹脂を用いる利点は、水を主成分とした溶媒を使用するため、有機溶媒の使用量を減らすことができ、環境上好ましいことである。また、水溶性樹脂は親水性であるため、表面処理を施さない無機酸化物粒子を分散させるための分散剤としての効果も期待できる。無機酸化物粒子の水分散液に樹脂を溶解させることで、容易に水中で無機酸化物粒子と樹脂とを均一に混合させて、混合溶液を得ることができる。この混合溶液を用いることで、樹脂中に無機酸化物粒子を均一に分散させたフィルムを製造することができる。
 フィルムの光透過性の観点から、水溶性樹脂は、水性感光樹脂組成物に含まれる(B)無機酸化物粒子の凝集を抑制することが好ましい。(B)無機酸化物粒子の凝集が起こることにより水溶液の光透過性が低下する。一般に、無機酸化物粒子の2次凝集体のサイズが100nm以上となった場合に、可視光領域(400nm~700nm)における光透過性が大きく低下する。
 水溶性樹脂の重量平均分子量が、1,000~500,000であることが好ましい。重量平均分子量が1,000~500,000の水溶性樹脂を用いると、塗布膜のひび割れが無く、水への分散性の観点から好ましい。重量平均分子量が1,000~10,000の低分子量水溶性樹脂は、アルカリ現像する際に、高溶解性の観点から好ましい。重量平均分子量が40,000~500,000の高分子量水溶性樹脂は、無機酸化物粒子の分散性を維持する観点から好ましい。従って、低分子量水溶性樹脂と高分子量水溶性樹脂を併用することがより好ましい。なお、重量平均分子量は、実施例に記載の方法により測定される。
 水溶性樹脂の含有量は、水性感光樹脂組成物の全固形分100質量%に対し、3質量%~30質量%の範囲内であることが好ましく、5質量%~25質量%がより好ましく、7質量%~20質量%が特に好ましい。水溶性樹脂の含有量が3質量%~30質量%の範囲内であれば、無機酸化物粒子の分散が良好であり、透過性の高い良好なフィルムが得られ、本発明に必要な屈折率の調製も可能となる。
(B)無機酸化物粒子
 本実施形態に係る無機酸化物粒子の屈折率が2.0以上であると、水性感光樹脂組成物における無機酸化物粒子の含有量を低くしても、ITOの視認性を改善するために、ITO基材及び樹脂積層体の屈折率を調整することが十分に可能である。
 無機酸化物粒子としては、例えば、チタン、ジルコニウム、亜鉛、ニオブ、タングステン等の酸化物が挙げられ、水性感光樹脂組成物の屈折率を向上させるという観点から使用されている。これらは単独で用いてもよく、2種以上を混合して用いてもよい。酸化物の中でも、二酸化チタン及び/又は酸化ジルコニウム(IV)を用いると、屈折率が2.0以上であり、かつフィラー粒径が小さい無機酸化物粒子が得られるので好ましい。しかし、酸化チタンは表面活性(有機物分解性)を有する場合があるため、酸化ジルコニウム(IV)が特に好ましい。
 無機酸化物微粒子の平均分散1次粒径は1nm~30nmであることが好ましく、5nm~10nmであることがより好ましい。無機酸化物微粒子の平均分散1次粒径が1nm未満であると、結晶性が乏しくなるため屈折率が低下し、30nmを超えると、無機酸化物微粒子による光の散乱(レーリー散乱)が顕著になるため、可視光領域における塗布膜の透過性が低下する。さらに、2次凝集体を形成した際、平均分散1次粒径が30nmを超える無機酸化物微粒子は、透過性の低下が顕著となる。酸化ジルコニウム(IV)は、その表面を修飾することによって凝集を抑制することが可能である。しかしながら、表面修飾された酸化ジルコニウム(IV)は、未修飾の酸化ジルコニウム(IV)と比較し、屈折率が低くなる傾向があるため、未修飾の酸化ジルコニウム(IV)を使用した場合と同等の屈折率を得るためには、より多く組成物に添加する必要がある。未修飾の酸化ジルコニウム(IV)としては、例えば、堺工業化学株式会社から入手可能なSZR-W、SZR-CWなどが挙げられる。一方、二酸化チタンとしては、先述の有機物分解性を抑制する観点から、ルチル型二酸化チタンが好ましく、例えば堺化学工業株式会社から入手可能なSRD-Wなどが挙げられる。
 このように、無機酸化物微粒子は、ナノサイズの粒子であるから、この無機酸化物微粒子を樹脂中に分散させて組成物とした場合においても、光散乱が小さく、透明性を維持することが可能であり、塗布膜においても同様のことが言える。
 無機酸化物微粒子の含有量は、水性感光樹脂組成物の全固形分100質量%に対し、30質量%以上であることが好ましく、35質量%~70質量%の範囲内であることがより好ましく、45質量%~65質量%がさらに好ましく、50質量%~60質量%が特に好ましい。無機酸化物微粒子の含有量が35質量%以上であれば、透過性の高い良好なフィルムが得られ、本発明に必要な屈折率の調製も可能となる。
(C)光重合開始剤
 本実施形態に係る光重合開始剤は、水性感光樹脂組成物に含まれる(B)無機酸化物粒子の分散を妨げないことが好ましい。光重合開始剤としては、例えば、2,2-ジエトキシアセトフェノン、2,4-ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロピオフェノン(Irgacure2959(BASF(株)社製、商品名))等のアセトフェノン系光重合開始剤;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルケタール等のベンゾイン系光重合開始剤;ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド等のベンゾフェノン系光重合開始剤;1,2-オクタジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)、PBG305(常州強力電子材料(株)社製、商品名)等のオキシムエステル系光重合開始剤;1-Irgacure754(BASF(株)社製、商品名)等の光重合開始剤混合物が挙げられる。光重合開始剤は、単独で、又は2種以上混合して用いることもできる。
 これらの中でも、形成される保護膜の透明性、パターン形成後の基材への密着性の観点から、アセトフェノン系光重合開始剤又はオキシムエステル系光重合開始剤が好ましい。
 光重合開始剤の含有量は、水性感光樹脂組成物の全固形分100質量%に対し、0.1質量%~15質量%の範囲内であることが好ましく、1質量%~10質量%であることがより好ましく、2質量%~5質量%であることが特に好ましい。光重合開始剤の含有量が0.1質量%~15質量%の範囲内であれば、組成物をフィルム化して基材に転写した後に、良好なパターニングが可能となる。
(D)水溶性架橋剤
 本実施形態に係る水溶性架橋剤は、23℃の水に対し1質量%以上溶解する架橋剤(水100gに対して1g以上溶解する架橋剤)、又は均一に分散する架橋剤である。水溶性架橋剤の水に対する溶解性が高いほど好ましく、より詳細には、3質量%以上の水溶解性を示す水溶性架橋剤が好ましい。水溶性架橋剤は、架橋性の観点から、少なくとも2つの重合性官能基を有することが好ましい。
 水溶性架橋剤としては、例えば、エチレン性不飽和基を有する光重合性化合物、アルコキシメチル基又はメチロール基を有する重合性化合物、ブロックイソシアネート化合物等が挙げられる。
 エチレン性不飽和基を有する光重合性化合物としては、例えば、1官能ビニルモノマー、2官能ビニルモノマー、及び少なくとも3つの重合可能なエチレン性不飽和基を有する多官能ビニルモノマーが挙げられる。
 1官能ビニルモノマーとしては、例えば、(メタ)アクリル酸、アクリル酸エステル、アクリルアミド、アルキレンオキサイド変性(メタ)アクリル酸エステル、並びにそれらと共重合可能な水溶性モノマー又は水溶性オリゴマーが挙げられる。水溶性モノマー及び水溶性オリゴマーは、水溶性架橋剤と同等の水に対する溶解性を持つ化合物である。
 2官能ビニルモノマーとしては、例えば、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリアルキレングリコール変性トリメチロールプロパンジ(メタ)アクリレート、ビスフェノールA変性ポリアルキレンオキシジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、グリセリン誘導体とアクリル酸とのエステル化合物、多価カルボン酸(無水フタル等の酸無水物)と水酸基及びエチレン性不飽和基を有する物質(例えば、β-ヒドロキシエチル(メタ)アクリレート)とのエステル化合物、ジイソシアネート化合物とジオールと水酸基及びエチレン性不飽和基を有する物質との反応物であるウレタン(メタ)アクリレート、又はジオールの代わりにポリアルキレングリコール(例えば、ポリエチレングリコール、ポリプロピレングリコール等)を用いた場合の反応物であるウレタンアクリレートオリゴマー、ジアクリルアミド等が挙げられる。
 多官能ビニルモノマーとしては、例えば、アルキレンオキシ基で変性されたトリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート又は多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物(例えば、トリメチロールプロパントリグリシジルエーテルトリアクリレート等のグリシジル基含有化合物にα,β-不飽和カルボン酸を付加して得られる化合物)、ウレタン(メタ)アクリレート化合物、N-[トリス(3-アクリルアミドプロポキシメチル)メチル]アクリルアミド等が挙げられる。
 これらの中でも、パターニング性の観点からは2官能以上のビニルモノマーを用いることが好ましく、水への溶解性の観点からはビニルモノマーはアクリレート化合物、又はアクリルアミド化合物が好ましい。
 水への溶解性の観点で特に好ましい2官能ビニルモノマーとしては下記式(1):
Figure JPOXMLDOC01-appb-C000001
 {式中、EOは、エチレンオキサイド基を表し、かつm及びnは、m+n=17の関係を満たす数である}
で表されるビスフェノールA変性ポリアルキレンオキシジアクリレート、下記式(2):
Figure JPOXMLDOC01-appb-C000002
で表されるポリアルキレンオキシジアクリレート、N,N’-メチレンビスアクリルアミド、ウレタン(メタ)アクリレート等が挙げられる。多官能ビニルモノマーとしては、ペンタエリスリトールテトラアクリレート、N-[トリス(3-アクリルアミドプロポキシメチル)メチル]アクリルアミド、ウレタン(メタ)アクリレート等が挙げられる。
 2官能ウレタン(メタ)アクリレートとしては、アートレジンTX-1N、アートレジンTX-17N、アートレジンTX-36N(根上工業(株)社製)、UA-W2A、UA-W2、UA-7000(新中村化学工業(株)社製)などの市販品を使用する事ができる。
 多官能ウレタン(メタ)アクリレートとしては、UA-7100、UA-7200(新中村化学工業(株)社製)などの市販品を使用する事ができる。
 アルコキシメチル基又はメチロール基を有する重合性化合物としては、N位がメチロール基又はアルコキシメチル基で置換されたメラミン樹脂、オリゴマー及びその単量体が挙げられる。これらの例として、アルコキシメチル化メラミン樹脂、アルコキシメチル化ベンゾグアナミン樹脂、アルコキシメチル化グリコールウリル樹脂、アルコキシメチル化尿素樹脂、及びこれらの単量体を挙げることができる。これらの中でも、アルコキシメチル化メラミン樹脂、アルコキシメチル化ベンゾグアナミン樹脂、アルコキシメチル化グリコールウリル樹脂、アルコキシメチル化尿素樹脂、及びこれらの単量体は、対応する既知のメチロール化メラミン樹脂、メチロール化ベンゾグアナミン樹脂、メチロール化グリコールウリル樹脂及びメチロール化尿素樹脂並びにそれらの単量体のメチロール基をアルコキシメチル基に変換することにより得られる。
 アルコキシメチル基としては、例えば、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基等を挙げることができるが、これらの官能基を有する重合性化合物としては、市販されているサイメル300、301、303、370、325、327、701、266、267、238、1141、272、202、1156、1158、1123、1170及び1174、並びにUFR65及び300(三井サイテック(株)製)、ニカラックMX-270、-280及び-290、ニカラックMS―11、並びにニカラックMW-30、-100、-300、-390及び-750(三和ケミカル社製)等を好ましく使用することができる。これらの化合物は単独で又は混合して使用することができる。
 ブロックイソシアネート基含有化合物としては、例えば、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、メチルシクロヘキシルジイソシアネート(H6TDI)、4,4’-ジシクロヘキシルメタンジイソシアネート(H12MDI)、1,3-ビス(イソシアナトメチル)シクロヘキサン(H6XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、2,2,4-トリメチルヘキサメチレンジイソシアネート(TMHDI)、ヘキサメチレンジイソシアネート(HDI)、ノルボルネンジイソシアネート(NBDI)、2,4,6-トリイソプロピルフェニルジイソシアネート(TIDI)、1,12-ジイソシアネートドデカン(DDI)、2,4,-ビス-(8-イソシアネートオクチル)-1,3-ジオクチルシクロブタン(OCDI)、n-ペンタン-1,4-ジイソシアネート及びこれらのイソシアヌレート変性体、アダクト変性体、ビュレット変性体、アロファネート変性体、これらの重合体で1個以上のイソシアネート基を有するものをポリアルキレンオキシド基、カルボキシル基等で変性し、水溶性及び/又は水分散性にしたものである。さらに、ブロックイソシアネート基含有化合物は、これらのイソシアネート基をブロック剤(フェノール・εカプロラクタム等)でマスクしたものでもよい。中でも、耐候性の観点から、無黄変又は難黄変のイソシアネートを用いることが好ましい。
 上記で説明されたブロックイソシアネート基含有化合物は、一般に架橋剤として市販されており、例えば、住化バイエルウレタン(株)製バイヒジュール3100、バイヒジュール2336、バイヒジュールLS2150/l、バイヒジュールBL116、バイヒジュールBL5140、バイヒジュールBL5235、バイヒジュールTPLS2186、バイヒドロールTPLS2153、三井化学ポリウレタン(株)製タケネートWD-220、タケネートWD-240、タケネートWD-720、タケネートWD-725、タケネートWD-726、タケネートWD-730、タケネートWB-700、タケネートWB-720、タケネートWB-730、タケネートWB-920、日本ポリウレタン工業(株)製アクアネート100、アクアネート110、アクアネート200、アクアネート210、アクアネート120、旭化成ケミカルズ(株)製デュラネートWB40-100、デュラネートWB40-80D、デュラネートWT20-100、デュラネートWT30-100、デュラネートWM44-L70Gなどが挙げられる。
 水溶性架橋剤の少なくとも1種は、基材への密着性の観点から、重量平均分子量が1,000~12,000であることが好ましい。水溶性架橋剤の重量平均分子量が1,000以上であることで、水性樹脂組成物に密着性評価に耐え得る適度な靱性を付与することができ、重量平均分子量が12,000以下であることで、基材上に塗布又は熱転写により水性樹脂組成物を形成する際に適度な流動性を付与することができると推察される。より好ましい重量平均分子量の範囲は2,000~10,000である。重量平均分子量は、実施例に記載される方法及び条件に従って測定されるものとする。なお、重量平均分子量が1,000~12,000の範囲内である水溶性架橋剤と、重量平均分子量が1,000未満であるか、又は12,000を超える水溶性架橋剤とを併用してもよい。また、水溶性架橋剤には、ウレタン骨格、アミド骨格、イソシアネート骨格、メラミン骨格、尿素骨格などの窒素原子を含むことが更に好ましい。水溶性架橋剤は、分子内にこれらの窒素原子を含むことで下地の導体と強く相互作用する事ができるために密着性が向上する。
 水溶性架橋剤の含有量は、水性感光樹脂組成物の全固形分100質量%に対し、5質量%~50質量%の範囲内であることが好ましく、10質量%~40質量%がより好ましく、15質量%~35質量%が特に好ましい。水溶性架橋剤の含有量が5質量%以上であれば、組成物をフィルム化して基材に転写した後に、良好なパターニングが可能となり、基材への熱転写性及び密着性も良好となる。水溶性架橋剤の含有量が50質量%以下であれば、水性感光樹脂組成物の屈折率を1.60以上に調整することが可能になり、タッチパネルの視認性をより向上させることが出来る。
(E)界面活性剤
 本実施形態に係る界面活性剤は、水性感光樹脂組成物の基材への塗工性、塗布ムラ又は膜厚均一性を改善する観点から使用される。
 界面活性剤としては、カルボキシベタイン型、スルホベタイン型又はイミダゾリウム型の両性界面活性剤;アルキルエーテルリン酸エステル等のアニオン性界面活性剤;KPシリーズ(信越化学工業社製:商品名)、DBEシリーズ(Gelest社製:商品名)、グラノール(共栄社化学社製:商品名)等の有機シロキサン界面活性剤又はフロラード(住友3M社製:商品名)、メガファック(大日本インキ化学工業社製:商品名)、ルミフロン(旭硝子社製:商品名)等のフッ素系界面活性剤、及びポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンアルキルエーテルリン酸エステル、ポリオキシエチレンソルビタンモノステアレート、ポリエチレングリコールモノラウレート等のポリオキシアルキレンアルキル系界面活性剤に代表されるノニオン(非イオン)界面活性剤が挙げられる。
 両性界面活性剤はスルホベタイン型であることが塗布ムラの観点から好ましく、スルホベタイン型両性界面活性剤の具体例としては、LSB-R及びLSB(川研ファインケミカル製:商品名)又はアンヒトール20HD(花王製:商品名)等が挙げられる。ノニオン系界面活性剤は水に溶解することが好ましい。好ましい水溶性ノニオン系界面活性剤の具体例としては、DBE814及びDBE821(Gelest社製:商品名)、KP104(信越化学社製:商品名)等の有機シロキサン界面活性剤、LE605(共栄社製:商品名)等のフッ素系界面活性剤、及びノイゲンLF-80X(第一工業製薬社製:商品名)、アデカノールB-733(ADEKA社製:商品名)等のポリオキシアルキレンアルキル系界面活性剤が挙げられる。
 水性感光樹脂組成物への界面活性剤の添加により、ポリエチレンテレフタレート(PET)フィルム、多層転写フィルム作製時には下地となる樹脂組成物フィルム等の疎水性フィルム上に塗布膜を塗工する際に、フィルムとの接触角が低下し、塗工性が改善する。使用する界面活性剤は、塗工性の観点から表面張力が40mN/m以下であることが好ましく、35mN/m未満であることが更に好ましい。
 界面活性剤の含有量は、水性感光樹脂組成物の全固形分100質量%に対し、1質量%~15質量%の範囲内であることが好ましく、2質量%~10質量%がより好ましく、3質量%~7質量%が特に好ましい。界面活性剤の含有量が1質量%~15質量%の範囲内であれば、疎水性基材への塗工性が良好であり、透過性の良好なフィルムが得られる。
(F)有機ケイ素化合物
 本実施形態に係る有機ケイ素化合物は、水性感光樹脂組成物の基板(ガラス、ITO等)への良好な密着性をさらに向上させる観点から使用される。
 有機ケイ素化合物は、1官能以上のアルコキシル基、及びシラノール基を含有した化合物、又はシラノールが部分的に縮合したオリゴマーを含む化合物であり、水性感光樹脂組成物において、ガラス又はITOとの接着性を高めるための接着助剤となる。有機ケイ素化合物は、界面活性剤を用いた際の水への分散性の観点から、炭素数が5~20であることが好ましく、5~13であることがより好ましい。水への溶解性が低い有機ケイ素化合物を使用するのであれば、水の一部をアルコールへ置換してもよい。アルコールを使用する場合は、炭素数の低いアルコール、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール等、又はこれらの混合溶液が、環境負荷を低減する観点から好ましい。塗布膜形成後に溶媒を乾燥させる工程及び現像後のアニール工程で、有機ケイ素化合物が塗布膜中に残存するために、有機ケイ素化合物は、少なくとも1つの重合性官能基を含んでいることが好ましく、その重合性官能基はラジカル性重合基又はカチオン性重合基であることが特に好ましい。
 具体的な有機ケイ素化合物としては、限定されるものではないが、(3-メタクリロキシプロピル)トリエトキシシラン(信越化学工業株式会社製:商品名 KBE503)、(3-メタクリロキシプロピル)メチルジエトキシシラン(信越化学工業株式会社製:商品名 KBE502)、(3-メタクリロキシプロピル)トリメトキシシラン(信越化学工業株式会社製:商品名 KBM503)、(3-メタクリロキシプロピル)メチルジメトキシシラン(信越化学工業株式会社製:商品名 KBM502)、(3-アクリロキシプロピル)トリメトキシシラン(信越化学工業株式会社製:商品名 KBM5103)、(3-グリシドキシプロピル)トリエトキシシラン(信越化学工業株式会社製:商品名 KBE403)、(3-グリシドキシプロピル)メチルジエトキシシラン(信越化学工業株式会社製:商品名 KBE402)、(3-グリシドキシプロピル)トリメトキシシラン(信越化学工業株式会社製:商品名 KBM403)、(3-グリシドキシプロピル)メチルジメトキシシラン(信越化学工業株式会社製:商品名 KBM402)、ビニルトリエトキシシラン(信越化学工業株式会社製:商品名 KBE1003)、ビニルトリメトキシシラン(信越化学工業株式会社製:商品名 KBM1003)、(3-メルカプトプロピル)トリメトキシシラン(信越化学工業株式会社製:商品名 KBM803)、(3-メルカプトプロピル)メチルジメトキシシラン(信越化学工業株式会社製:商品名 KBM802)、3-メルカプトプロピルトリエトキシシラン(アズマックス株式会社製:商品名 SIM6475.0)等が挙げられる。
 具体的な有機ケイ素化合物としては、限定されるものではないが、(3-ウレイドプロピル)トリアルコキシシラン(信越化学工業株式会社製:商品名 KBE585)、(3-トリエトキシシリルプロピル)-t-ブチルカルバメート、N-(3-ジエトキシメトキシシリルプロピル)ウレア、N-(3-エトキシジメトキシシリルプロピル)ウレア、N-(3-トリプロポキシシリルプロピル)ウレア、N-(3-ジエトキシプロポキシシリルプロピル)ウレア、N-(3-エトキシジプロポキシシリルプロピル)ウレア、N-(3-ジメトキシプロポキシシリルプロピル)ウレア、N-(3-メトキシジプロポキシシリルプロピル)ウレア、N-(3-トリメトキシシリルエチル)ウレア、N-(3-エトキシジメトキシシリルエチル)ウレア、N-(3-トリプロポキシシリルエチル)ウレア、N-(3-トリプロポキシシリルエチル)ウレア、N-(3-エトキシジプロポキシシリルエチル)ウレア、N-(3-ジメトキシプロポキシシリルエチル)ウレア、N-(3-メトキシジプロポキシシリルエチル)ウレア、N-(3-トリメトキシシリルブチル)ウレア、N-(3-トリエトキシシリルブチル)ウレア、N-(3-トリプロポキシシリルブチル)ウレア、テトラメトキシシラン、テトラエトキシシラン等が挙げられる。
 上記で列挙された有機ケイ素化合物は、単独でも複数組み合わせて用いてもよい。水溶液中で、これらのアルコキシシランを用いると、加水分解・縮合が起こり、シランのオリゴマーが生成されるが、本実施形態に使用される(B)無機酸化物粒子100質量%に対して、(F)有機ケイ素化合物が25質量%未満であれば、良好な密着助剤として作用する。
 有機ケイ素化合物の中でも、無機酸化物粒子の分散性の観点から、(3-メタクリロキシプロピル)トリエトキシシラン(信越化学工業株式会社製:商品名 KBE503)、(3-メタクリロキシプロピル)メチルジエトキシシラン(信越化学工業株式会社製:商品名 KBE502)、(3-メタクリロキシプロピル)トリメトキシシラン(信越化学工業株式会社製:商品名 KBM503)、(3-メタクリロキシプロピル)メチルジメトキシシラン(信越化学工業株式会社製:商品名 KBM502)、(3-アクリロキシプロピル)トリメトキシシラン(信越化学工業株式会社製:商品名 KBM5103)、(3-グリシドキシプロピル)トリエトキシシラン(信越化学工業株式会社製:商品名 KBE403)、(3-グリシドキシプロピル)メチルジエトキシシラン(信越化学工業株式会社製:商品名 KBE402)、(3-グリシドキシプロピル)トリメトキシシラン(信越化学工業株式会社製:商品名 KBM403)、及び(3-グリシドキシプロピル)メチルジメトキシシラン(信越化学工業株式会社製:商品名 KBM402)が好ましい。
 有機ケイ素化合物の含有量は、水性感光樹脂組成物の全固形分100質量%に対し、1質量%~15質量%の範囲内であることが好ましく、3質量%~12質量%がより好ましく、5質量%~10質量%が特に好ましい。有機ケイ素化合物の含有量が1質量%~15質量%の範囲内であれば、基材への密着性を改善する効果が確認され、良好なフィルムが得られる。
その他の含有物
 本実施形態に係る水性感光樹脂組成物には、必要に応じて、可塑剤、充填剤、消泡剤、難燃剤、安定剤、酸化防止剤、香料、重合禁止剤等を、(A)~(E)成分の合計量100質量部に対し、各々約0.01質量部~約20質量部含有させることができる。これらは、単独で又は2種類以上を組み合わせて使用できる。
<感光層>
 本実施形態に係る水性感光樹脂組成物は、タッチパネル用途等において、電極を有する基材上に感光層を形成するために使用されることができる。例えば、感光性樹脂組成物を溶媒に均一に溶解又は分散させて塗布液を調製し、基材上に塗布することで塗膜を形成し、乾燥により溶媒を除去することによって、感光層を形成することができる。
(S)溶媒
 水性感光樹脂組成物を塗布する際に用いられる塗布液の溶媒としては、水の他、水と水溶性有機溶媒の混合物を用いることができる。水溶性有機溶媒としては、例えば、アルコール類、ポリオール類、セロソルブ、カルビトール、ケトン類等を用いることができる。これらの有機溶媒は、2種以上混合して使用してもよい。
 アルコール類としては、例えばメタノール、エタノール、ブタノール、プロパノール、ペンタノールが挙げられる。
 ポリオール類としては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、グリセロール、ヘキサントリオール、ブタントリオール、ペトリオール、グリセリン等が挙げられる。
 セロソルブとしては、例えばメトキシエタノール、エトキシエタノール、プロポキシエタノール、ブトキシエタノール等が挙げられる。
 カルビトールとしては、例えばメトキシエトキシエタノール、エトキシエトキシエタノール、プロポキシエトキシエタノール、ブトキシエトキシエタノール等が挙げられる。
 ケトン類としては、例えばアセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、ジアセトンアルコール等が挙げられる。
 これらの有機溶媒は、溶媒全体に対して、0~99質量%添加することができるが、2層転写フィルムの界面形成性の観点から、0~50質量%であることが好ましく、0~30質量%であることがより好ましく、0質量%(すなわち水が100%)であることが最も好ましい。
 水としては、イオン交換樹脂を使用して、ナトリウムイオン成分、カリウムイオン成分又はカルシウムイオン成分を除去した純水を用いることができる。
 タッチパネル用電極を有する基材上に感光層を形成する方法としては、本実施形態に係る水性感光樹脂組成物を含む塗布液を基材に直接塗布する方法、あらかじめ仮支持体の上に水性感光樹脂組成物を塗布して転写フィルムを作製し、その後の工程で基材上に転写させる方法などが考えられるが、転写フィルムとして用いる方法が好ましい。転写フィルム中の感光層を、熱ロールラミネーターなどを用いてタッチパネル用電極を有する基材上に積層することにより、ロールツーロール(roll-to-roll)プロセスの容易な実施、溶媒乾燥工程の短縮等のように、製造工程の短縮及びコスト低減に貢献することができる。
 前記転写フィルムの製膜方法は、PETフィルム等の仮支持体上に塗布液を塗布、乾燥する工程を含む。塗布液は、上述した本実施形態に係る水性感光樹脂組成物を構成する各成分を溶媒に均一に溶解又は分散することにより得られることができる。
 塗布方法としては、例えば、ドクターブレードコーティング法、マイヤーバーコーティング法、ロールコーティング法、スクリーンコーティング法、スピナーコーティング法、インクジェットコーティング法、スプレーコーティング法、ディップコーティング法、グラビアコーティング法、カーテンコーティング法、ダイコーティング法等が挙げられる。
 塗布液の乾燥条件に特に制限はないが、乾燥温度は、50℃~130℃であることが好ましく、乾燥時間は、30秒~30分であることが好ましい。
 本実施形態に係る水性感光樹脂組成物をフィルム化する際には、タッチパネルの視認性を改善するという観点で、水性感光樹脂組成物から成る単層を転写フィルムとして取り扱うことができるだけでなく、タッチパネルの視認性を改善するとともにタッチパネルの基板上に設けられた配線を錆等から保護するために、水性感光樹脂組成物から成る感光層に加えて保護膜(第1の感光層)をさらに含む2層転写フィルムとして取り扱うこともできる。
<第1の感光層と第2の感光層から成る2層転写フィルム>
 本実施形態に係る第1の感光層と第2の感光層から成る2層フィルム及びその製造方法について説明する。本実施形態では、仮支持体上に、第1の感光層と第2の感光層で形成される2層転写フィルムも提供される。
 2層転写フィルムの製造方法の一例を以下に説明する:
 感光層について上記で説明した塗工方法と同様に、PETフィルム等の仮支持体上に第1の感光層を形成し、感光層について上記で説明した乾燥条件と同様に乾燥を行う。
 さらに、本実施形態に係る水性感光樹脂組成物(第2の感光層)を塗布液として用いて、同様の塗工方法により、仮支持体上に塗布された乾燥後の第1の感光層上に第2の感光層を形成し、同様に乾燥を行うことで、第1の感光層と第2の感光層から成る2層転写フィルムを得ることができる。第1の感光層の構成成分としてはタッチパネル基材の配線に防錆効果を付与する観点で疎水性の化合物を配合することが好ましいため、水への溶解性が極めて低い。一方、第2の感光層を形成する水性感光樹脂組成物の溶媒は水を主成分にしているため、乾燥後の第1の感光層を溶解することなく塗布が可能である。したがって、2層転写フィルムにおける第1の感光層と第2の感光層の間には明確な界面を形成することができる。
 2層転写フィルムを作製後は、表面を保護する観点から、2層フィルムの仮支持体と接していない面側に保護フィルムを設けることが好ましい。
第1の感光層
 第1の感光層は、アルカリ現像において樹脂パターンを形成する場合においては、(メタ)アクリル酸由来の構成単位を3~25質量%含むバインダーポリマーと、少なくとも2つのエチレン性不飽和基を有する光重合性化合物と、光重合開始剤とを含む感光樹脂組成物から形成されることができる。
 (メタ)アクリル酸由来の構成単位を3質量%~25質量%含むバインダーポリマーは、(メタ)アクリル酸に由来する構成単位を3質量%~25質量%含み、さらに、(メタ)アクリル酸アルキルエステルに由来する構成単位、(メタ)アクリル酸芳香族エステルに由来する構成単位、ヒドロキシアルキル(メタ)アクリレートに由来する構成単位、及び無水マレイン酸誘導体に由来する構成単位から成る群から選ばれる少なくとも1つの構成単位を含む共重合体であることが好ましい。これらの共重合体の中でも、基材上に作製された電極の防錆性の観点から、(メタ)アクリル酸に由来する構成単位と(メタ)アクリル酸芳香族エステルに由来する構成単位とを含有する共重合体がより好ましい。
 バインダーポリマーとしての共重合体は、既に説明した構成単位に加えて、それらの構成単位と共重合可能な他のモノマーを構成単位として含有していてもよい。他のモノマーとしては、例えば、(メタ)アクリル酸テトラヒドロフルフリルエステル、(メタ)アクリル酸ジメチルアミノエチルエステル、(メタ)アクリル酸ジエチルアミノエチルエステル、(メタ)アクリル酸グリシジルエステル、(メタ)アクリル酸ベンジルエステル、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、(メタ)アクリルアミド、(メタ)アクリロニトリル、ジアセトン(メタ)アクリルアミド、スチレン、及びビニルトルエンが挙げられる。
 バインダーポリマー中の(メタ)アクリル酸由来の構成単位の含有量は、バインダーポリマーの質量を基準として、3質量%~25質量%であり、防錆性にさらに優れるという観点では、20質量%以下であることが好ましく、18質量%以下であることがより好ましく、15質量%以下であることが特に好ましい。この含有量は、アルカリ現像性に優れるという観点では、5質量%以上であることが好ましく、8質量%以上であることがより好ましく、10質量%以上であることが特に好ましい。
 バインダーポリマーの分子量は限定されるものではないが、塗布性、塗膜強度及び現像性の観点から、通常、バインダーポリマーの重量平均分子量が、10,000~200,000であることが好ましく、30,000~150,000であることがより好ましく、50,000~100,000であることが特に好ましい。なお、バインダーポリマーの重量平均分子量は、(A)水溶性樹脂の重量平均分子量の測定方法と同じ方法により測定される。
 少なくとも2つのエチレン性不飽和基を有する光重合性化合物としては、例えば、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリアルキレングリコール変性トリメチロールプロパンジ(メタ)アクリレート、ビスフェノールA変性ポリアルキレンオキシジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多価アルコールにα,β-不飽和カルボン酸(例えば、アクリル酸、メタアクリル酸等)を反応させて得られる化合物、トリメチロールプロパントリグリシジルエーテルトリ(メタ)アクリレート等のグリシジル基含有化合物にα,β-不飽和カルボン酸を付加して得られる化合物などが挙げられる。
 基材、電極等の保護に充分な防錆性等の観点から、感光性樹脂組成物は、光重合性化合物として、ペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物、ジペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物、トリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物、及びグリセリン由来の骨格を有する(メタ)アクリレート化合物から選択される少なくとも1種を含むことが好ましく、ジペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物及びトリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物から選択される少なくとも1種を含むことがより好ましい。
 ここで、ジペンタエリスリトール由来の骨格を有する(メタ)アクリレートとは、ジペンタエリスリトールと、(メタ)アクリル酸とのエステル化物を意味し、当該エステル化物には、アルキレンオキシ基で変性された化合物も包含される。上記のエステル化物は、一分子中におけるエステル結合の数が6であることが好ましいが、エステル結合の数が1~5の化合物が混合していてもよい。
 トリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物とは、トリメチロールプロパンと、(メタ)アクリル酸とのエステル化物を意味し、エステル化物には、アルキレンオキシ基で変性された化合物も包含される。上記のエステル化物は、一分子中におけるエステル結合の数が3であることが好ましいが、エステル結合の数が1~2の化合物が混合していてもよい。
 上記で説明された少なくとも3つのエチレン性不飽和基を有する光重合性化合物の中でも、基材、電極等の保護に充分な防錆性等の観点から、アルキレンオキサイド変性トリメチロールプロパン(メタ)アクリレート化合物、アルキレンオキサイド変性テトラメチロールメタン(メタ)アクリレート化合物、アルキレンオキサイド変性ペンタエリスリトール(メタ)アクリレート化合物、アルキレンオキサイド変性ジペンタエリスリトール(メタ)アクリレート化合物、アルキレンオキサイド変性グリセリン(メタ)アクリレート化合物、及びアルキレンオキサイド変性トリメチロールプロパントリグリシジルエーテル(メタ)アクリレートから選択される少なくとも1種の化合物が好ましく、アルキレンオキサイド変性ジペンタエリスリトール(メタ)アクリレート化合物及びアルキレンオキサイド変性トリメチロールプロパン(メタ)アクリレート化合物から選択される少なくとも1種の化合物がより好ましい。
 アルキレンオキサイド変性テトラメチロールメタン(メタ)アクリレート化合物としては、例えば、EO変性ペンタエリスリトールテトラアクリレートを用いることができる。EO変性ペンタエリスリトールテトラアクリレートは、RP-1040(日本化薬(株)製)として入手可能である。
 上記の光重合性化合物は、単独で又は2種以上組み合わせて用いることができる。
 少なくとも2つのエチレン性不飽和基を有する光重合性化合物の感光樹脂組成物中の含有量は、(メタ)アクリル酸由来の構成単位を3~25質量%含むバインダーポリマー100質量部に対し、20質量部~100質量部の範囲内であることが好ましく、30質量部~90質量部がより好ましく、40質量部~80質量部が特に好ましい。光重合性化合物の含有量が20質量部より少ないと活性光線を照射し、パターニングする際に問題が生じる。一方、100質量部より多いと未反応モノマーの影響で膜の密着性が低下する懸念がある。
 光重合開始剤としては、例えば、ベンゾフェノン、N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N,N’,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパノン-1等の芳香族ケトン;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル化合物;ベンジルジメチルケタール等のベンジル誘導体;9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;N-フェニルグリシン等のN-フェニルグリシン誘導体;クマリン化合物;オキサゾール化合物;及び2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド等のホスフィンオキサイド化合物が挙げられる。
 これらの中でも、形成される保護膜の透明性、及び膜厚を15μm以下に調整したときのパターン形成能の観点から、オキシムエステル化合物及び/又はホスフィンオキサイド化合物が好ましい。
 タッチパネルの視認性及び美観を考慮すると、保護膜の透明性は高いほど好ましい。一方で、透明性が高い薄膜の感光層をパターニングする場合、解像性が低下する傾向にあることを本発明者らは見出している。この原因については、感光層の厚みが小さくなると、基材からの光散乱の影響を受け易く、ハレーションが発生するためであると本発明者らは考えている。これに対し、感光樹脂組成物が、光重合開始剤として、オキシムエステル化合物及び/又はホスフィンオキサイド化合物を含有することによって、充分な解像度でパターン形成が可能となる。このような効果は、オキシムエステル化合物に含まれるオキシム部位又はホスフィンオキサイド化合物に含まれるホスフィンオキサイド部位が、比較的高い光分解効率を有しつつも僅かな漏れ光では分解しない適度な閾値を有するために、漏れ光による影響が抑制された結果として得られることが考えられる。
 オキシムエステル化合物としては、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)が特に好ましい。1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]は、IRGACURE OXE 01(BASF(株)製、商品名)として商業的に入手可能である。エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)は、IRGACURE OXE 02(BASF(株)製、商品名)として商業的に入手可能である。これらは単独で、又は2種類以上を組み合わせて使用される。
 ホスフィンオキサイド化合物としては、P原子に隣接するα位にカルボニル基を有する種々の化合物が挙げられるが、形成される保護膜の透明性、及び膜厚を12μm以下に調整したときのパターン形成能の観点から、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイドが好ましい。2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイドは、例えば、LUCIRIN TPO(BASF(株)社製、商品名)として商業的に入手可能である。
 光重合開始剤の感光樹脂組成物中の含有量は、少なくとも2つのエチレン性不飽和基を有する光重合性化合物100質量部に対し、0.1質量部~15質量部であることが好ましく、1質量部~10質量部であることがより好ましく、2質量部~5質量部であることが更に好ましい。光重合開始剤の含有量が0.1質量部より少ないと、光感度が十分でなく、組成物をフィルム化し、基材に転写した後に、活性光線を照射し、パターニングする際に問題が生じる。光重合開始剤の含有量が20質量部より多いと、組成物表面での光吸収が増大して内部の光硬化が不十分となること、保護膜の透過性が低下すること等の不具合が生じる。
 第1の感光層を構成する成分を溶解させる溶媒としては、各成分の溶解性、塗膜形成のし易さ等の観点から、エチルメチルケトン等のケトン溶媒;トルエン等の芳香族炭化水素溶媒;エタノール等のアルコール溶媒;グリコールエーテル溶媒;グリコールアルキルエーテル溶媒;グリコールアルキルエーテルアセテート溶媒、プロピレングリコールモノメチルエーテルアセテート等のエステル溶媒;ジエチレングリコール溶媒;クロロホルム;塩化メチレン等を用いることができる。これらの溶媒は、1種を単独で用いてもよいし、2種以上の溶媒から成る混合溶媒として用いてもよい。
 上記溶媒の中でも、ケトン溶媒、アルコール溶媒、及び/又はエステル溶媒を用いることが好ましい。
 第1の感光層を形成するための感光樹脂組成物には、上記で説明した成分の他に、必要に応じて、レベリング剤、可塑剤、充填剤、消泡剤、難燃剤、安定剤、酸化防止剤、防錆剤、香料、重合禁止剤等を添加することができる。これらは、単独で又は2種類以上を組み合わせて使用できる。
 第1の感光層の厚みは、基材、電極等の保護に充分な防錆性等の観点から、乾燥後の厚みとして、1μm以上15μm以下であることが好ましく、2μm以上10μm以下であることがより好ましく、3μm以上8μm以下であることが特に好ましい。
 第1の感光層の屈折率は、タッチパネルの視認性を向上させる観点から1.48~1.56の範囲内であることが好ましい。
第2の感光層
 第2の感光層は、本実施形態に係る水性感光樹脂組成物から成る感光層である。第2の感光層の厚みは、タッチパネルの視認性を向上させる観点から、乾燥後の厚みとして、30nm以上200nm以下であることが好ましく、70nm以上120nm以下であることがより好ましく、80nm以上100nm以下であることが特に好ましい。
 第2の感光層の屈折率は、タッチパネルの視認性を向上させる観点から、1.60~1.75の範囲内であることが好ましい。
 仮支持体上に塗工された第1の感光層と第2の感光層から成る2層転写フィルムの400nm~700nmにおける可視光線透過率の最小値が90%以上であることが好ましく、93%以上であることがより好ましく、95%以上であることが更に好ましい。
 2層転写フィルムの可視光透過率は以下のようにして求められる:
 PETフィルム等の透明な仮支持体上に、(メタ)アクリル酸由来の構成単位を3~25質量%含むバインダーポリマーと、少なくとも2つのエチレン性不飽和基を有する光重合性化合物と、光重合開始剤とを含有する感光性樹脂組成物を含有する塗布液を、乾燥後の厚みが15μm以下となるように塗布し、これを乾燥することにより、第1の感光層を形成する。
 次に、第1の感光層に、本実施形態に係る水性感光樹脂組成物を含有する塗布液を、乾燥後の厚みが1μm以下となるように塗布し、これを乾燥することにより、第2の感光層を形成する。こうして得られた2層転写フィルムを、ガラス基板上に、感光層が接するようにラミネーターを用いて熱圧着して、ガラス基板上に、感光層及び仮支持体が積層された測定用試料を得る。
 次に、得られた測定用試料に紫外線を照射して感光層を光硬化させた後に、得られた保護膜(感光層の硬化物)について、紫外可視分光光度計を用いて、測定波長域400nm~700nmにおける透過率を測定する。
 タッチパネル(タッチセンサー)のセンシング領域の透明電極を保護する場合に、例えば、タッチパネル(タッチセンサー)の額縁領域の金属層(ITO電極上に銅層を形成した層等)を保護したときにセンシング領域の端部から保護膜が見える場合等に、一般的な可視光波長域である400nm~700nmの波長域における保護膜の透過率の最小値が90%以上であれば、センシング領域での画像表示品質、色合い、又は輝度が低下することを充分抑制することができる。
 2層フィルムは、タッチパネルの視認性を更に向上させる観点から、CIELAB表色系でのbが-0.2~1.0であることが好ましく、0.0~0.7であることがより好ましく、0.1~0.5であることが更に好ましい。可視光透過率の最小値が90%以上である場合と同様に、センシング領域の画像表示品質又は色合いの低下を防止する観点からも、bが、-0.2~1.0であることが好ましい。なお、CIELAB表色系でのbは、例えばコニカミノルタ製分光測色計「CM-5」を使用し、厚さ0.7mmのガラス基板に厚みが15μm以下の第1の感光層を形成し、その上に厚みが1μm以下の第2の感光層を形成し、さらに紫外線を照射して、第1の感光層及び第2の感光層から成る2層フィルムを光硬化した後、測定条件をD65光源及び視野角2°に設定して測定することにより求められる。
 タッチパネルの視認性を更に向上させる観点から、JIS K 7136に記載の測定方法に従って測定された2層フィルムのヘイズ値が、2%以下であることが好ましく、1%以下であることがさらに好ましく、0.5%以下であることが特に好ましい。
保護フィルム
 保護フィルムとしては、重合体フィルムを用いることができる。重合体フィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリエチレン-酢酸ビニル共重合体、及びポリエチレン-酢酸ビニル共重合体とポリエチレンとの積層フィルム等から成るフィルムが挙げられる。
 保護フィルム中には、材料を熱溶融し混練し、押出して延伸する方法又はキャスティング法によりフィルムを製造する際に、材料の未溶解物及び劣化物がフィルム中に取り込まれた場合にできる欠点(以下、フィッシュアイと呼ぶ)が存在する。
 フィッシュアイの直径は、材料によっても異なるが、約10μm~1mmであり、フィルム表面からの高さは、約1~50μmである。ここでフィッシュアイの直径の測定方法は、例えば光学顕微鏡、接触型表面粗さ計、又は走査型電子顕微鏡で測定可能である。なお、フィッシュアイの直径は最大径を意味する。
 保護フィルム中におけるフィッシュアイの直径は小さいほど好ましく、フィッシュアイの個数は少ないほど好ましい。直径50μm以上のフィッシュアイの数が、300個/m以下であることがより好ましく、100個/m以下であることがさらに好ましく、50個/m以下であることが特に好ましい。重合体フィルムは、フィッシュアイの観点から、ポリプロピレンで形成されることが好ましい。
 保護フィルムの表面粗さについては、中心線平均粗さRaが、0.005μm~0.05μmであることが好ましく、0.01μm~0.03μmであることが更に好ましい。表面粗さは、接触型表面粗さ計を用いて測定可能である。
 保護フィルムの膜厚は、5μm~100μmであることが好ましく、ロール状に巻いて保管する観点から、10μm~70μmであることがより好ましく、15μm~50μmであることが特に好ましい。膜厚が5μm未満である場合、保護フィルムの製造が困難となる傾向があり、膜厚が100μmを超える場合、保護フィルムの価格が高くなる傾向がある。
<タッチパネル用硬化膜積層体>
 本実施形態に係るタッチパネル用硬化膜積層体について説明する。先述の2層転写フィルムを、タッチパネル用電極を有する基材上に熱圧着して、基材上の電極(導体)から順に第2の感光層、及び第1の感光層から成る保護膜を設ける。この用途の場合においても、保護膜は、2層フィルムについて上記で説明した膜厚、可視光線透過率及びCIELAB表色系でのbの条件を満たすことが好ましい。
 本実施形態に係るタッチパネル用硬化膜積層体の製造方法は、以下の工程:
  タッチパネル用電極を有するタッチパネル用基材上に、上記の第1の感光層及び第2の感光層から成る保護膜を設ける第1工程;
  保護膜の所定部分を活性光線の照射により硬化させる第2工程;
  活性光線の照射後に、保護膜の所定部分以外の部分(保護膜の活性光線が照射されていない部分)を除去し、電極の一部又は全部を被覆するように、保護膜の所定部分の硬化物から成るパターンニングされた保護膜を形成する第3工程;及び
  パターンニングされた保護膜を設けたタッチパネル用基材を熱処理する第4工程;
を含む。タッチパネル用硬化膜積層体の製造方法は、限定されるものではないが、第1工程、第2工程、第3工程及び第4工程をこの順に含むことができる。
 タッチパネル用基材としては、一般にタッチパネル又はタッチセンサー用として用いられる、ガラス板、プラスチック板、セラミック板等の基板が挙げられる。この基板上には、保護膜を形成する対象となるタッチパネル用電極が設けられる。電極としては、ITO、Cu、Al、Ag、Mo等の電極、薄膜トランジスタ(TFT)等が挙げられる。基板と電極との間に絶縁層が設けられていてもよい。
 タッチパネル用電極を有するタッチパネル用基材は、例えば、以下の手順で得ることができる。PETフィルム等のタッチパネル用基材上に、ITO、Cuの順にスパッタ法により金属膜を形成した後、金属膜上にエッチング用感光性フィルムを貼り付け、所望のレジストパターンを形成し、不要なCuを塩化鉄水溶液等のエッチング液で除去し、さらにレジストパターンを剥離・除去する。
 タッチパネル用硬化膜積層体の製造方法における第1工程では、仮支持体上に塗布された第1の感光層と第2の感光層から成る2層転写フィルム上に設けてある保護フィルムを除去した後、2層転写フィルムを加熱しながら、基材上に設けてあるタッチパネル用電極表面に2層フィルムを圧着することにより転写し、積層し、それにより、タッチパネル用基材及びタッチパネル用電極上に第2の感光層、第1の感光層、仮支持体の順に積層された構造体が形成される。
 圧着手段としては、圧着ロール等が挙げられる。圧着ロールは、加熱圧着できるように加熱手段を備えていてもよい。
 加熱圧着する場合の加熱温度は、2層フィルムとタッチパネル用基材との密着性、及び2層フィルムとタッチパネル用電極との密着性を充分確保しながら、2層フィルムの構成成分が熱硬化又は熱分解され難くなるように、10℃~180℃であることが好ましく、30℃~150℃であることがより好ましく、2層転写フィルムの取扱い易さ及び下地であるタッチパネル用基材の寸法安定性保持の観点で50℃~100℃であることが更に好ましい。
 加熱圧着時の圧着圧力は、2層フィルムとタッチパネル用基材との密着性を充分確保しながら、タッチパネル用基材の変形を抑制する観点から、線圧として、50N/m~1×10N/mであることが好ましく、2.5×10N/m~5×10N/mであることがより好ましく、5×10N/m~4×10N/mであることが更に好ましい。
 本実施形態では、第1の感光層と第2の感光層から成る2層転写フィルムを用いる代わりに、上記で説明された水性感光樹脂組成物及び溶媒を含有する塗布液を調製して、タッチパネル用基材上の電極が設けられている表面に直接塗布し、乾燥して感光層を形成することもできる。
 タッチパネル用硬化膜積層体の製造方法における第2工程では、第1の感光層と第2の感光層から成る保護膜の所定部分に、任意のパターンを有するフォトマスクを介して、活性光線をパターン状に照射する。
 活性光線を照射する際、第1の感光層と第2の感光層から成る2層フィルム上の仮支持体が透明である場合には、そのまま活性光線を照射することができる。仮支持体が不透明である場合には、仮支持体を除去してから活性光線を照射することが好ましい。2層フィルムの表面保護という観点からは、仮支持体としてはPETなどの透明な重合体フィルムを用い、この重合体フィルムを残存させたまま、それを通して活性光線を照射することが好ましい。
 活性光線の照射に用いられる光源としては、既知の活性光源を使用でき、例えば、カーボンアーク灯、超高圧水銀灯、高圧水銀灯及びキセノンランプが挙げられ、紫外線を有効に放射するのであれば特に制限されない。
 第2工程では、活性光線の照射量は、通常、10mJ/cm~1,000mJ/cmであり、照射の際に、加熱を伴うこともできる。活性光線の照射量が10mJ/cm未満であるとき、光硬化が不充分となる傾向があり、活性光線の照射量が1,000mJ/cmを超えると、2層フィルムが変色する傾向がある。
 タッチパネル用硬化膜積層体の製造方法における第3工程では、基材上に積層された、活性光線の照射後の2層フィルムを現像液で現像して、活性光線が照射されていない部分(すなわち、2層フィルムの所定部分以外の部分)を除去し、電極の一部又は全部を被覆するように2層フィルムの所定部分の硬化物から成る保護膜を形成する。形成される保護膜は任意のパターンを有するフォトマスクにより、所定のパターンを有することができる。
 なお、活性光線の照射後、2層フィルムに仮支持体が積層されている場合には、それを除去してから、活性光線が照射されていない部分を現像液により除去する現像が行われる。
 現像方法としては、アルカリ水溶液、水性現像液、有機溶媒等の既知の現像液を用いて、スプレー、シャワー、揺動浸漬、ブラッシング、スクラッピング等の既知の方法により現像を行い、不要な部分を除去する方法等が挙げられ、中でも、環境への配慮及び安全性の観点から、アルカリ水溶液を用いることが好ましい。
 アルカリ水溶液としては、炭酸ナトリウムの水溶液が好ましい。例えば、20℃~50℃の炭酸ナトリウムの希薄溶液(0.5質量%~5質量%水溶液)が好適に用いられる。
 現像温度及び時間は、本実施形態の感光性樹脂組成物の現像性に応じて、調整されることができる。
 アルカリ水溶液中には、界面活性剤、消泡剤、現像を促進させるための少量の有機溶媒等を混入させることができる。
 現像後、光硬化後の2層フィルムに残存したアルカリ水溶液の塩基を、有機酸、無機酸又はこれらの酸水溶液を用いて、スプレー、揺動浸漬、ブラッシング、スクラッピング等の既知の方法により酸処理(中和処理)することができる。
 さらに、酸処理(中和処理)の後、光硬化後の2層フィルムを水洗する工程を行うこともできる。
 現像後、必要に応じて、活性光線の照射(例えば、2×10J/m~2×10J/mの照射量)により、硬化物を更に硬化させてもよい。
 タッチパネル用硬化膜積層体の製造方法における第4工程では、現像後の第1の感光層と第2の感光層から成る2層フィルムの所定部分の硬化物から成る保護膜付きタッチパネル用基材を熱処理し、光硬化物を更に硬化する。
 熱処理の加熱温度は、タッチパネル用基材、その基材上に形成されたタッチパネル用電極、及びそれらを保護している第1の感光層と第2の感光層から成る保護膜が熱により劣化しないように、40℃~180℃であることが好ましく、50℃~160℃であることがより好ましく、60℃~150℃であることが更に好ましい。
 以上に示した第1工程~第4工程を経て、第1の感光層は第1の硬化層となり、そして第2の感光層は第2の硬化層となる。本実施形態に係るタッチパネル用硬化膜積層体は、基材上に電極(導体)、第2の硬化層、及び第1の硬化層を順に具備している。これらの硬化層は基材の両面にそれぞれ配置する事もできる。
 第1の硬化層の屈折率は、タッチパネルの視認性を向上させる観点から、先述の第1の感光層の屈折率の好適な範囲と同様に、1.48~1.56の範囲内であることが好ましい。
 第2の硬化層の屈折率は、タッチパネルの視認性を向上させる観点から、先述の第2の感光層の屈折率の好適な範囲と同様に、1.60~1.75の範囲内であることが好ましい。
 第1の感光層及び第2の感光層を含む2層転写フィルムを用いて、熱圧着により基材の電極上に積層し、タッチパネル用硬化膜積層体を作製する場合において、第2の感光層及び第2の硬化層に含まれている酸化ジルコニウム、酸化チタンなどの(B)2.0以上の屈折率を有する無機酸化物粒子が弊害となり、熱転写性及び基材上の導体との密着性が悪化する傾向がある。発明者らは弊害を解決すべく鋭意検討した結果、(D)水溶性架橋剤の配合量、化学構造、及び重量平均分子量を最適化することで、高屈折率を保持できる量の無機酸化物粒子を含みながらも転写フィルムの熱転写性及び基材上の導体との密着性に優れたタッチパネル用硬化膜積層体を見出すことができた。
 このタッチパネル用硬化膜積層体の断面観察を行った結果、導体と第2の硬化層の間に極薄有機層が存在する事が判明した。さらに、この断面について、走査透過型電子顕微鏡(STEM)とエネルギー分散型X線分光分析器(EDX)を組み合わせた高分解能観察(以下、「STEM-EDX」という)を、加速電圧30kVの条件下において実施した結果、本実施形態に係るタッチパネル用硬化膜積層体においては、
 導体上に、
 ・(ZrLα+TiKα)/CKαの強度比が0.5未満である極薄有機層;
 ・(ZrLα+TiKα)/CKαの強度比が0.5以上である第2の硬化層;及び
 ・(ZrLα+TiKα)/CKαの強度比が0.5未満である第1の硬化層;
をこの順に有しており、また、断面のSEM(走査型電子顕微鏡)観察において、第2の硬化層の幅5μmの領域あたりに存在するピンホールの平均数が、1個以下である事が判明した。
 この極薄有機層は、第2の感光層に含まれている有機成分に由来している。また、(D)水溶性架橋剤の配合量と極薄有機層の膜厚には相関があることから、(D)水溶性架橋剤が極薄有機層の存在と関連しており、極薄有機層は2層転写フィルムの熱転写性及び基材上の導体との密着性に好影響を与えていると推察される。一方で、極薄有機層は屈折率が1.60未満と考えられるため、タッチパネルの視認性に悪影響を与えると考えられるが、発明者らは、この極薄有機層の厚みが30nm未満であれば、実用上問題なく使用できることを突き止めた。即ち、極薄有機層の厚みは5~30nmの範囲内であることが好ましい。この厚みは、2層転写フィルムを用いてタッチパネル硬化膜積層体を作製する場合の好適範囲であり、基材の導体上に直接第2の感光層及び第1の感光層を塗布して作製したタッチパネル硬化膜積層体は、導体との密着性が十分に得られている場合においても、極薄有機層は確認されない。
 上述のように、本実施形態に係る水性感光樹脂組成物及びそれを用いた転写フィルムは、タッチパネル用基材の保護膜、及びタッチパネル用硬化膜積層体を形成するために好しく使用される。
<樹脂パターン製造方法、硬化膜及び表示装置>
 以下の工程(a)~(d):
 (a)(メタ)アクリル酸由来の構成単位を3質量%~25質量%含むバインダーポリマーと、少なくとも2つのエチレン性不飽和基を有する光重合性化合物と、光重合開始剤とを含有する感光性樹脂組成物を仮支持体に塗布して第1の感光層を形成し、本実施形態に係る水性感光樹脂組成物を第1の感光層に塗布して第2の感光層を形成することによって、第1の感光層及び第2の感光層から成る2層フィルムを仮支持体上に形成して、2層フィルムから溶剤を除去して転写フィルムを得る転写フィルム作製工程;
 (b)溶剤が除去された転写フィルムを基材に転写して、活性光線によりパターン状に露光する露光工程;
 (c)転写フィルムの未露光部を水性現像液により除去して、転写フィルムを現像する現像工程;及び
 (d)現像された転写フィルムが付いている基材を熱処理する熱処理工程;
をこの順に含む方法により樹脂パターンを製造することができる。
 工程(a)、(b)(c)及び(d)は、それぞれタッチパネル用硬化膜積層体の製造方法における第1工程、第2工程、第3工程及び第4工程と同じ態様で行なわれることができる。第1の感光層及び第2の感光層は、これらの工程を経て、それぞれ第1の硬化層及び第2の硬化層となる。
 工程(a)、(b)(c)及び(d)をこの順に含む方法により製造された樹脂パターンを用いて、樹脂パターンを有する硬化膜、及び硬化膜を備えるタッチパネル表示装置を提供することができる。
 以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
 なお、実施例中で使用した(D)水溶性架橋剤、(D-1)分子内に少なくとも2つの重合性官能基を有する含窒素架橋剤については、表5に示す。
1.水性感光樹脂組成物の調製及び評価
<水性感光樹脂組成物の調製>
 下記表1、2及び6に示す材料をそれぞれ250mlのプラスチックボトルに量り取り、固形分濃度が5質量%となるようにイオン交換水を投入し、攪拌機を用いて2時間に亘って溶解・混合を行って、第2の感光層を形成するための水性感光樹脂組成物の塗布液(V-1)をそれぞれ調製した(実施例1~34及び72~81、比較例1~6及び13~15)。イオン交換水にほとんど溶解しない有機ケイ素化合物(KBM-503、KBM-803)を用いた場合(実施例10及び14)においては、イオン交換水の一部をエタノールに置換して、組成物を調整した(表1及び2参照)。
 実施例1~27、実施例29~34は無色透明な水溶液であったが、実施例28は薄黄色の水溶液であった。また、比較例2に使用したメタクリル酸/ベンジルメタクリレート共重合体(共重合比率:20/80 Mw:43,000)のポリマーはイオン交換水に不溶であり、均一な水性感光樹脂組成物を得ることはできなかった。同様に、比較例5に使用したトリメチロールプロパントリメタクリレートはイオン交換水に不溶であり、均一な水性感光樹脂組成物を得ることはできなかった。
<固形分濃度の測定>
計量皿:アルミホイールシャーレ 品番2001(東京硝子器械社製)
    容量12mL、下径39mmφ
オーブン:強制熱風循環・換気方式オーブンSPH-202((株)エスペック社製)
温度条件:ステップ1:40℃保持  10分
     ステップ2:40→80℃昇温 8分
     ステップ3:80℃保持  60分
 あらかじめ重量を測定した計量皿上に塗布液(V-1)1gを秤量し、重量を測定した(各水準につき3個分のサンプルを準備)。その後、上記のオーブン内で、上記温度条件下にて塗布液の溶媒を乾燥した後、計量皿を取り出し、取り出してから30秒後に重量を測定し、熱履歴前後での重量変化から固形分濃度(n=3の平均値)を算出したところ、固形分濃度は、いずれも5±0.1質量%の範囲内であった。
<5質量%水溶液の表面張力の測定>
 固形分濃度5質量%に調製した水性感光樹脂組成物の塗布液(V-1)を23℃の恒温環境下にて24時間保管した。この塗布液(V-1)について、LSE-B100(株式会社ニック製)を用いて表面張力を測定した(ペンダントドロップ式)。表面張力の値は、23℃の環境下で液滴を作製してから2分後の値を、少なくとも3回測定し、表面張力の平均値を求めた。結果を表1及び表2に示す。
<(D)水溶性架橋剤成分、含窒素架橋剤の重量平均分子量測定>
装置 :ゲルパーミエーションクロマトグラフィー(日本分光(株)社製)
ポンプ:Gulliver、PU-1580型
カラム:昭和電工(株)製Shodex(登録商標)(KF-802.5/KF-802/KF-802/KF-801)4本直列
カラム温度:40℃
測定流量:1.0mL/min
移動層溶媒:テトラヒドロフラン
検量線:ポリスチレン標準サンプルを用いて規定された検量線
 水溶性又は非水溶性架橋剤成分の重量平均分子量測定結果を表5に示す。
<保存安定性の評価>
 塗布液(V-1)を40℃に加熱したオーブンに3日間放置した後に、塗布液(V-1)の濁り、析出物発生の有無の確認を行った(実施例1~34、比較例1~6(調合時に均一な塗布液を得ることができなかった比較例2及び比較例5は除く))。以下の評点に従って保存安定性を評価した。評価結果を下記表3に示す。
A:濁り(相分離も含む)、析出物ともになし
B:濁り(相分離も含む)あり
C:析出物あり
D:濁り(相分離も含む)、析出物ともにあり
 実施例1~34においては、いずれのサンプルにおいても濁り、析出物の発生は確認されなかったが、比較例1においては濁りが確認され、水溶液の保存安定性が悪いことが示唆された。
<塗布性の評価>
 塗布液(V-1)をミカサコーター(ミカサ社製 1H-360S)で6インチ・シリコンウェハーにスピン塗布(300rpmで2秒+500rpmで5秒+1000rpmで10秒のプログラム運転:乾燥後塗膜厚100nmを目的とする)し、ホットプレート上100℃で90秒間プリベークして、塗膜を得た。得られた塗膜を目視で観察し、以下の評点に従って塗布性を評価した。
A: シリコンウェハー全面積に対し、未塗布箇所の総面積が1%未満
B: シリコンウェハー全面積に対し、未塗布箇所の総面積が1%以上、5%未満
C: シリコンウェハー全面積に対し、未塗布箇所の総面積が5%以上
D: 塗布液に溶け残り成分があり評価不能
 5質量%水溶液の23℃における表面張力が40mN/m以下である実施例1~24、実施例26~28、比較例1,3,4については塗工性が良好であった。実施例25は(E)界面活性剤の添加量が少なく、5%水溶液の23℃における表面張力40mN/mであったが、若干塗工性が劣る結果となった。比較例6は(E)界面活性剤を添加していないため、5質量%水溶液の23℃における表面張力が40mN/mを超えているため塗工性が悪い結果となった。比較例2、5については、均一な塗工液を得られなかったため、評価ができなかった。
<屈折率評価用サンプルの作製>
 塗布液(V-1)をミカサコーター(ミカサ社製 1H-360S)で6インチ・シリコンウェハーにスピン塗布し、ホットプレート上100℃で90秒間プリベークして、膜厚が100nm±5nmとなるように調整して、塗膜を得た。塗膜を、超高圧水銀灯を有する露光機(オーク製作所製 HMW-801)を用いて、450mJ/cmで露光し、その後、熱風対流式乾燥機を用いて150℃で30分間のアニーリングを行い、屈折率評価用のサンプルを得た。
<屈折率測定>
 上記で得られたサンプルを、高速分光エリプソメーター(J.A.Woolam JAPAN社製 M-2000)を用いて、屈折率パラメーターA,B,Cを得て、下記式を用いて550nmの波長における屈折率を求めた(実施例1~34、比較例1~6(調合時に均一な塗布液を得ることができなかった比較例2及び比較例5は除く))。
 屈折率 = A+B/λ+(C/λ)
{式中、λは、波長を表す}
 なお、塗布液(V-1)の5質量%水溶液の23℃における表面張力が40mN/mを超える系(比較例6)については、屈折率の測定時のみ、塗布液の溶媒であるイオン交換水全100質量%のうち50質量%分をメタノールに置換し、溶液の表面張力を下げた塗布液(V-2)を用いて屈折率測定用サンプルを作製し、屈折率を測定した。
 評価結果を下記表1~表3に示す。
 実施例1~34においては、いずれのサンプルにおいても屈折率が1.60以上となったが、比較例3においては屈折率が1.60未満となった。後述する視認性の観点から、屈折率は1.60以上で好ましい結果が得られることが示唆された(表4参照)。一方、比較例1においてはスピンコーターでシリコンウェハーにスピン塗布し、乾燥して得られたフィルムが透明ではなく、白く濁っていたため、屈折率の測定が不可能であった。
<密着性評価用サンプルの作製(基材直接塗布法)>
 塗布液(V-1)をミカサコーター(ミカサ社製 1H-360S)で両面に透明導電膜が形成されたITOフィルム(日東電工社製)にスピン塗布し、ホットプレート上100℃で90秒間プリベークして、膜厚が100nm±5nmとなるように調整した。得られた塗膜を、超高圧水銀灯を有する露光機(オーク製作所製 HMW-801)を用いて、450mJ/cmで露光し、その後、熱風対流式乾燥機を用いて150℃で30分アニーリングを行い、密着性評価用のサンプルを得た。
<密着性評価>
 上記で得られたサンプルを、JIS規格 K5400を参考に、100マスのクロスカット試験を実施した。試験面にカッターナイフを用いて、1×1mm四方の碁盤目の切り傷を入れ、碁盤目部分にメンディングテープ#810(スリーエム(株)製)を強く圧着させ、テープの端をほぼ0°の角度でゆっくりと引き剥がした後、碁盤目の状態を観察し、以下の評点に従ってクロスカット密着性を評価した(実施例1~34、比較例1~6(調合時に均一な塗布液を得ることができなかった比較例2及び比較例5は除く)。評価結果を下記表3に示す。
A:全面積中、ほぼ剥がれなし
B:全面積中、5%未満で剥がれがある
C:全面積中、5~15%の剥がれがある
D:全面積中、15~35%の剥がれがある
E:全面積中、35~65%の剥がれがある
F:全面積中、65%以上の剥がれがある
 実施例1~25、及び実施例28においてはいずれのサンプルにおいてもITO基板上の剥がれが5%未満と良好な密着性が得られた。実施例26においては、界面活性剤の含有量が多いため、ややITO基板上の密着性が低下するものの、剥がれが5~15%であり、比較的良好な密着性が得られた。実施例27においては、無機酸化物粒子の含有量が多いため、実施例26と同様にややITO基板上の密着性が低下するものの、剥がれが5~15%であり、比較的良好な密着性が得られた。実施例29~34では(D)水溶性架橋剤の種類を変えて評価を行った。その結果、(D)水溶性架橋剤の重量平均分子量が1,000~12,000のものを用いると良好な密着性が得られることが判った(実施例29~32、34)。また、(D)水溶性架橋剤にはウレタン骨格を含むものの方が更に密着性が向上する事が示唆された。
 一方、比較例1、及び比較例4においては35%以上の剥がれが観察された。比較例1においては塗膜中に(B)成分である無機酸化物粒子の凝集体由来と考えられる白い濁りがあり、このような凝集体が密着性を阻害したと考えられる。比較例4においては、(D)水溶性架橋剤を添加していないため、密着性が低い結果となった。また、比較例6においては塗布液がITO基材上ではじかれたので、コーティングが不可能であった。
<解像性評価用サンプルの作製、及び解像性評価>
 塗布液(V-1)をミカサコーター(ミカサ社製 1H-360S)で両面に透明導電膜が形成されたITOフィルム(日東電工社製)にスピン塗布し、ホットプレート上100℃で120秒間プリベークして、膜厚が1.5μmとなるように調整して、塗膜を得た。塗膜を、露光部と未露光部の幅が1:1の比率のラインパターンマスクを用い、超高圧水銀灯を有する露光機(オーク製作所製 HMW-801)を用いて、100mJ/cmで露光した。その後、30℃で1.0質量%の炭酸ナトリウム水溶液を所定時間スプレーし、イオン交換水でリンスし、塗膜の未露光部分を溶解除去した。この際、未露光部分が完全に溶解するのに要する最も少ない時間を最小現像時間とし、実際の現像時間は最小現像時間の2倍で現像を行った。以下の評点に従って解像性評価の評価をした。評価結果を下記表3に示す。
A:解像度50μm未満
B:解像度60μm未満
C:解像度70μm未満
D:解像度80μm以上
E:パターニング不可
 実施例1~22、及び実施例24~34においてはいずれのサンプルにおいても解像度60μm未満のパターンが得られた。実施例23においては、架橋剤の含有量が少ないため、解像度がやや低下するものの、70μm未満であり、比較的良好な解像性が得られた。
 一方、比較例1、及び比較例4においてはパターニングの形成が不可能であった。比較例1は塗膜が白く濁っており、水性樹脂組成物の感光性に悪影響を与えたためと考えられ、比較例4は露光工程で硬化する(D)水溶性架橋剤の成分が存在しないため、現像液でパターンが除去されてしまったためと考えられる。
2.第1の感光層と第2の感光層から成る転写フィルムの作製及び評価
 次に第1の感光層と第2の感光層から成る転写フィルムを作製するため、まず第1の感光層用の感光樹脂組成物を調製した。
<バインダーポリマー溶液の作製(第1の感光層用)>
 撹拌機、還流冷却器、不活性ガス導入口及び温度計を備えたフラスコに、エチルメチルケトンを100質量%仕込み、窒素ガス雰囲気下で60℃に昇温し、メタクリル酸20質量%、メタクリル酸ベンジル80質量%、アゾ系重合開始剤(和光純薬社製、V-601)を2時間かけて均一に滴下した。滴下後、60℃で24時間撹拌を続け、(メタ)アクリル酸由来の構成単位が20質量%、重量平均分子量が約43,000、酸価が130mgKOH/gのバインダーポリマーの溶液(固形分50質量%)を得た。
[バインダーポリマー及び(A)水溶性樹脂成分の重量平均分子量測定]
装置 :ゲルパーミエーションクロマトグラフィー(日本分光(株)社製)
ポンプ:Gulliver、PU-1580型
カラム:昭和電工(株)製Shodex(登録商標)(KF-807、KF-806M、KF-806M、KF-802.5)4本直列
移動層溶媒:テトラヒドロフラン
検量線:ポリスチレン標準サンプルを用いて規定された検量線
[酸価の測定方法]
 酸価は、次のようにして測定した。まず、バインダーポリマーの溶液を、130℃で1時間加熱し、揮発分を除去して、固形分を得た。そして、酸価を測定すべきポリマー1.0gを精秤した後、精秤したポリマーを三角フラスコに入れ、ポリマーにアセトンを30g添加し、これを均一に溶解した。次いで、指示薬であるフェノールフタレインをその溶液に適量添加して、0.1NのKOH水溶液を用いて滴定を行った。そして、バインダーポリマーのアセトン溶液を中和するのに必要なKOHのmg数を算出することにより、酸価を求めた。
<第1の感光層用感光樹脂組成物の調製>
 上記で合成したバインダーポリマー溶液を含む、以下に示す材料を250mlのプラスチックボトルに量り取り、固形分濃度が45質量%となるようにエチルメチルケトンを投入し、攪拌機を用いて2時間溶解・混合を行って感光樹脂組成物を得た。その後、感光樹脂組成物を3μmのフィルターに通し、第1の感光層を形成するための塗布液(W-1)を調製した。
・バインダーポリマー:56.3質量%
 上記で合成したメタクリル酸/ベンジルメタクリレート共重合体(共重合比率:20/80)
 重量平均分子量:43,000
 酸価:130mgKOH/g
・光重合開始剤:0.7質量%
 PBG305(商品名、常州強力電子新材料社製)
・光重合性化合物:合計43質量%
 TMPT(商品名、トリメチロールプロパントリメタクリレート、新中村化学工業社製)23質量%
 BPE-200(商品名、新中村化学工業社製)20質量%
<屈折率評価用サンプルの作製>
 塗布液(W-1)をミカサコーター(ミカサ社製 1H-360S)で6インチ・シリコンウェハーにスピン塗布し、ホットプレート上100℃で180秒間プリベークして、膜厚が10μmとなるように調整して塗膜を得た。塗膜を、超高圧水銀灯を有する露光機(オーク製作所製 HMW-801)を用いて、450mJ/cmで露光し、その後、熱風対流式乾燥機を用いて150℃で30分間のアニーリングを行い、屈折率評価用のサンプルを得た。
<屈折率測定>
 上記で得られたサンプルを、高速分光エリプソメーター(J.A.Woolam JAPAN社製 M-2000)を用いて、屈折率パラメーターA,B,Cを得て、下記式を用いて550nmの波長における屈折率を求めた。
 屈折率 = A+B/λ+(C/λ)
{式中、λは、波長を表す}
得られた屈折率は1.55であった。
<第1の感光層から成る転写フィルムの作製>
 仮支持体として厚さ16μmのポリエチレンテレフタレートフィルム(三菱化学ポリエステルフィルム株式会社製)を使用した。上記で得られた第1の感光層を形成するための塗布液(W-1)を、仮支持体上にバーコーターを用いて均一に塗布し、100℃の熱風対流式乾燥機で3分間乾燥して溶媒を除去し、最後に保護フィルム(厚さ12μmのポリプロピレンフィルム)を圧着し、厚さ10μmの第1の感光層から成る感光性樹脂組成物層(X-1)を形成した。
<第1の感光層から成る積層体の評価 ~ヘイズ測定~>
 転写フィルム(X-1)から保護フィルムを剥離し、厚さ1mmのガラス基板上にラミネーターAL-70(旭化成製、商品名)を用いて熱圧着して、ガラス基板上に第1の感光層、PET仮支持体の順に積層された積層体を作製した。ラミネート条件は、ラミネート速度:1.0m/分、ラミネートロール温度:100℃、ラミネート圧力:0.4MPaであった。その後、超高圧水銀灯を有する露光機(オーク製作所製 HMW-801)を用いて、450mJ/cmで露光した。その後、PET仮支持体を剥離し、熱風対流式乾燥機を用いて150℃で30分間のアニーリングを行い、ガラス基板上に第1の感光層を設けた積層体を作製した。次いで、前記積層体のヘイズをJIS K7136の規格に準じ、ヘイズメーター(日本電飾工業社製 日本電飾濁度計NDH2000)を用いて測定した。ヘイズの値は0.4%であった。
<第1の感光層から成る積層体の評価 ~透過率測定~>
 ヘイズ値の測定に用いた前記積層体を用いて、前記積層体の透過率測定を行った。透過率測定は、400nm~700nmにおける全透過率をJIS K7361-1の規格に準じ、UV分光器(日立ハイテクサイエンス社製 U-3010)を用いて測定した。400nm~700nmにおける透過率は94.8%であった。
<第1の感光層と第2の感光層から成る転写フィルムの作製>
 次に第1の感光層と第2の感光層から成る感光性樹脂積層体を作製した。仮支持体として厚さ16μmのポリエチレンテレフタレートフィルム(三菱化学ポリエステルフィルム株式会社製)を使用した。上記で得られた第1の感光層を形成するための塗布液(W-1)を、仮支持体上にバーコーターを用いて均一に塗布し、100℃の熱風対流式乾燥機で3分間乾燥して溶媒を除去し、厚さ10μmの第1の感光層から成る感光性樹脂組成物層(X-1)を形成した。
 次いで、上記で得られた第2の感光層を形成するための塗布液(V-1:実施例1~34、比較例1~6(調合時に均一な塗布液を得ることができなかった比較例2及び比較例5は除く))を、上記感光性樹脂組成物層(X-1)上にバーコーターを使用して均一に塗布し、100℃の熱風対流式乾燥機で4分間乾燥して溶媒を除去し、厚さ100nmの第2の感光層(感光性樹脂組成物層)を形成し、最後に保護フィルム(厚さ12μmポリプロピレンフィルム)を圧着し、第1の感光層と第2の感光層から成る転写フィルム(Y-1)を作製した。Y-1の模式的な断面図を図1に示す。Y-1は、PET仮支持体(3)、第1の感光層(1)、第2の感光層(2)、及び保護フィルム(図示せず)がこの順に積層された積層構造を有する。
 なお、実施例25の塗布液を使用して感光性樹脂積層体を作製する際に、界面活性剤の含有量が少なく、5質量%水溶液の23℃における表面張力が高いために、感光性樹脂組成物層(X-1)上で塗布液のごくわずかなはじきが観察された。比較例6の塗布液においては、感光性樹脂組成物層(X-1)上で大きなはじきが確認され、良好な転写フィルムを得ることができなかった。
 また、塗布液(V-1:実施例1)を調製する際の溶媒であるイオン交換水を50%メタノールに置換して調製した塗布液(V-2:実施例35)、及び塗布液(V-1:実施例1)を調製する際の溶媒として、イオン交換水の代わりにメタノールを用いて調製した塗布液(V-3:実施例36)を用いて、同様に転写フィルム(Y-2、及びY-3)を作製した。
 第2の感光層を形成するための塗布液(V-1)は水を溶媒としているため、第1の感光層を溶解・侵食することなく第2の感光層を第1の感光層上に形成することが可能である。従って、第1の感光層と第2の感光層の間には明確な界面形成が可能となる。この明確な界面形成が、ITOの視認性を改善する観点で非常に重要である。
 上記のようなバーコーター、及びドクターブレードコーティング法、マイヤーバーコーティング法、ロールコーティング法、スクリーンコーティング法、スピナーコーティング法、インクジェットコーティング法、ディップコーティング法、グラビアコーティング法、カーテンコーティング法、ダイコーティング法などで塗布を行う際に、上記の明確な界面形成には、塗布液(V-1)及び塗布液(W-1)に使用する溶媒のSP値が大きく異なる必要がある。
 本実施形態では、塗布液(V-1)には水を使用し、塗布液(W-1)にはエチルメチルケトンを用いている(SP値エチルメチルケトン:9.5 SP値:23.4)。塗布液(V-1)の溶媒を水からSP値の低いメタノール等のアルコール(SP値メタノール:14.5)に変更すると(V-3)、転写フィルムとしての感光性樹脂組成物層(X-1)は部分的に溶解するため、視認性が改善しない。
 上記SP値は、情報機構より出版されている書籍「溶解性パラメーター適用事例集」の221ページに記載の表から抜粋した。
<第1の感光層と第2の感光層から成る積層体の作製>
 保護フィルムを剥離した前記転写フィルム(Y-1~Y-3、及びX-1)を、ラミネーターAL-70(旭化成製、商品名)を用いて、両面に透明導電膜が形成されたITOフィルム(日東電工社製)上に熱圧着し、両面に透明導電膜が形成されたITOフィルムの両面上に、第2の感光層、第1の感光層、PET仮支持体の順に積層された積層体を作製した。ラミネート条件は、ラミネート速度:1.0m/分、ラミネートロール温度:100℃、ラミネート圧力:0.4MPaであった。
 次に、超高圧水銀灯を有する露光機(オーク製作所製 HMW-801)を用いて、450mJ/cmで露光した。その後、PET仮支持体を剥離し、熱風対流式乾燥機を用いて150℃で30分間のアニーリングを行い、ITO両面上に、第1の感光層と第2の感光層を設けるか、又は第1の感光層のみを設けた積層体(Z-1~Z-4)を作製した。積層体(Z-1)は転写フィルム(Y-1)を用いて作製されたものであり、積層体(Z-2)は転写フィルム(Y-2)を用いて作製されたものであり、積層体(Z-3)は転写フィルム(Y-3)を用いて作製されたものであり、積層体(Z-4)は転写フィルム(X-1)を用いて作製されたものである。Z-1~Z-3の模式的な断面図を図2に示す。Z-1~Z-3は、PET仮支持体(図示せず)、第1の感光層(1)、第2の感光層(2)、両面にITOが製膜されたフィルム(4)、第2の感光層(2)、第1の感光層(1)、及びPET仮支持体(図示せず)がこの順に積層された積層構造を有する。
<積層体(Z-1~Z-4)の視認性評価 ~反射率評価~>
 上記で作成した積層体(Z-1~Z-4)の片面に透明接着テープ(スリーエム社製、商品名、OCAテープ8171CL)を介して、黒色のアクリル板を貼り合せ、サンプルの最裏面からの反射又は裏面側からの光の入射がほとんどない状態で、日立ハイテク社製の分光光度計「U-4100」(商品名)の積分球測定モードを用いて、分光反射率(鏡面反射率+拡散反射率)を測定し、D65光源/2°視野の全反射率(Y値)を計算により求めた(実施例37~実施例71、比較例7~12)。測定は各水準につき3ポイントずつ行い、以下の評点に従って解像性評価の評価をした。評価結果を下記表4に示す。ITOフィルムそのものを同様の条件で測定した反射率は3.3%であった。
A:反射率1.5%未満
B:反射率1.5%以上~2.0%未満
C:反射率2.0%以上~2.5%未満
D:反射率2.5%以上
 実施例58、60及び71を除いて、いずれのサンプルにおいても全反射率が1.5%未満であった。実施例58及び60においては屈折率が1.60であり、転写フィルム(X-1)の屈折率1.55に対して、値が比較的近いため、その他の実施例と比較し、反射率の低減効果がやや低いが、その改善効果は十分に確認できる。また実施例71においては、塗布液(V-1)を調製する際の溶媒である水をアルコールに50質量%置換したため、水のみを使用した場合と比較し、転写フィルム(X-1)との界面形成性にわずかな差異が生じ、反射率の低減効果がやや低くなったと考えられるが、その改善効果は十分に確認できる。
 一方、比較例7においては塗布液(V-1)を調製する際の溶媒である水の代わりにアルコールを使用した(V-3)ため、転写フィルム(X-1)との界面形成が良好でなく、反射率の低減効果が確認されなかった。比較例8においては転写フィルム(X-1)のみが積層されており、屈折率調整層がないため、反射率の低減効果が確認されなかった。また、比較例10においては第2の感光層の屈折率が1.57であり、転写フィルム(X-1)の第1の感光層の屈折率1.55に対して、ほとんど差異がないため、反射率の低減効果が確認されなかった。比較例9においては転写フィルム(Y-1)に濁りがあり、反射率の測定が不可能であった。
 全反射率が1.5%未満であれば、ITOの視認性は明確な改善効果が確認できる。比較例12においては、転写フィルム(X-1)上に塗布した塗布液(V-1)の表面張力が高く、塗工ムラが発生したため、測定数3点での測定結果にばらつきが生じた(評点B~D)。
<積層体の評価 ~ヘイズ測定~>
 上記で作製した転写フィルム(Y-1~Y-3)を、厚さ1mmのガラス基板上にラミネーターAL-70(旭化成製、商品名)を用いて熱圧着して、ガラス基板上に第2の感光層、第1の感光層、PET仮支持体の順に積層された積層体を作製した。ラミネート条件は、ラミネート速度:1.0m/分、ラミネートロール温度:100℃、ラミネート圧力:0.4MPaであった。その後、超高圧水銀灯を有する露光機(オーク製作所製 HMW-801)を用いて、450mJ/cmで露光した。その後、PET仮支持体を剥離し、熱風対流式乾燥機を用いて150℃で30分間のアニーリングを行い、ガラス基板上に第1の感光層と第2の感光層を設けた積層体を作製した。次いで、前記積層体のヘイズをJIS K7136の規格に準じ、ヘイズメーター日本電飾濁度計NDH2000(日本電飾工業社製)を用いて測定した(実施例37~71、比較例7~12)。評価結果を下記表4に示す。
 実施例37~63及び65~71においては、いずれのサンプルにおいてもヘイズが0.5%以下であったが、比較例7においてはヘイズが1.1%であった。タッチパネルの視認性において、ヘイズの値は0.5%未満が好ましい。
<積層体の評価 ~透過率測定~>
 ヘイズ値の測定に用いた前記積層体を用いて、前記積層体の透過率測定を行った。透過率測定は、400nm~700nmにおける全透過率をJIS K7361-1の規格に準じ、UV分光器(日立ハイテクサイエンス社製 U-3010)を用いて測定した(実施例37~71、比較例7~12)。以下の評点に従って解像性評価の評価をした。評価結果を下記表4に示す。
A:透過率94%以上
B:透過率92%以上
C:透過率90%以上
D:透過率90%未満
 実施例37~63及び65~71においては、いずれのサンプルも400nm~700nmにおける透過率が92%以上であった。実施例64においては、開始剤由来の着色により、透過率は91%とその他の実施例と比較して、やや低下しているが、タッチパネルに使用する場合において、透過率は90%以上あれば、十分に使用可能である。一方、比較例7においては、透過率90%未満となり、タッチパネルの使用には不向きである。
 以上の結果から、実施例では水溶性感光性樹脂組成物の保存安定性、及び基材又は下地との密着性が良好であり、かつ感光性を有する点と、該組成物を2層化フィルムとしてITO基材に積層した際のITO視認性の改善が両立しているが、比較例では上記項目のいずれかが未達成であることが示された。
3.熱圧着性及び密着性が良好な転写フィルムの作製
 次に熱圧着性、及び基材への密着性に優れた転写フィルムを作製するため、前述の第1の感光層用の感光樹脂組成物塗布液(W-1)と後述する感光性樹脂組成物塗布液(W-2)を用いた。
<バインダーポリマー溶液の作製(第1の感光層用)>
 撹拌機、還流冷却器、不活性ガス導入口及び温度計を備えたフラスコに、エチルメチルケトンを100質量%仕込み、窒素ガス雰囲気下で60℃に昇温し、メタクリル酸20質量%、アクリル酸エチル80質量%、アゾ系重合開始剤(和光純薬社製、V-601)を2時間かけて均一に滴下した。滴下後、60℃で24時間撹拌を続け、(メタ)アクリル酸由来の構成単位が20質量%、重量平均分子量が40,000、酸価が130mgKOH/gのバインダーポリマーの溶液(固形分50質量%)を得た。重量平均分子量、酸価は前述の方法で求めた。
<第1の感光層用感光樹脂組成物塗布液(W-2)の調製>
 上記で合成したバインダーポリマー溶液を含む、以下に示す材料を250mlのプラスチックボトルに量り取り、固形分濃度が45質量%となるようにエチルメチルケトンを投入し、攪拌機を用いて2時間溶解・混合を行って感光樹脂組成物を得た。その後、感光樹脂組成物を3μmのフィルターに通し、第1の感光層を形成するための塗布液(W-2)を調製した。
・バインダーポリマー:56.3質量%
 上記で合成したメタクリル酸/アクリル酸エチル共重合体(共重合比率:20/80)
 重量平均分子量:40,000
 酸価:130mgKOH/g
・光重合開始剤:0.7質量%
 PBG305(商品名、常州強力電子新材料社製)
・光重合性化合物:合計43質量%
 TMPT(商品名、トリメチロールプロパントリメタクリレート、新中村化学工業社製)23質量%
 BPE-200(商品名、新中村化学工業社製)20質量%
塗布液(W-2)を用いて得られた硬化膜の屈折率を前述の方法で測定したところ、得られた屈折率は1.51であった。
<第1、第2の感光層から成る2層転写フィルムの作製>
 仮支持体として厚さ16μmのポリエチレンテレフタレートフィルム(三菱化学ポリエステルフィルム株式会社製)を使用した。上記で得られた第1の感光層を形成するための塗布液(W-1又はW-2)を、仮支持体上にバーコーターを用いて均一に塗布し、100℃の熱風対流式乾燥機で3分間乾燥して溶媒を除去し、厚さ5、10、15μmの第1の感光層から成る感光性樹脂組成物層(X-1又はX-2)を形成した。
 次いで、第2の感光層を形成するための塗布液(V-1:表6の実施例72~81、比較例13~15)を、上記感光性樹脂組成物層(X-1又はX-2)上にバーコーターを使用して均一に塗布し、100℃の熱風対流式乾燥機で4分間乾燥して溶媒を除去し、厚さ60~120nmの第2の感光層(感光性樹脂組成物層)を形成し、最後に保護フィルム(厚さ12μmポリプロピレンフィルム)を圧着し、第1の感光層と第2の感光層から成る転写フィルム(Y-1)を作製した。また、比較例16においては、比較例13の塗布液(V-1)の溶媒であるイオン交換水を全てメタノールに置換した塗布液(V-3)を用いて2層の転写フィルム(Y-3)を作製した(表7)。
<5質量%水溶液の表面張力測定サンプルの作製>
 得られた2層転写フィルム(実施例82~97、比較例17~20)を5mm□に切り、50mLのプラスチック容器に入れ、イオン交換水を投入し、40℃で30分間攪拌した。この後、転写フィルムの溶け残りをろ取して、第2の感光層の水溶液を得た。溶解前後の第2の感光層の膜厚を測定したところ、実施例82~97、比較例17~20のいずれも膜厚が75%以上減膜(水に溶解)していることが確認された。この水溶液の固形分濃度は前述の方法で測定し、5.0±0.1質量%になるように水溶液を調製した。この5質量%に調製した水溶液のの表面張力測定は先述の方法で行った。表面張力測定結果を表7に示す。実施例82~97、比較例17~19に関しては、2層フィルム作製時に用いた5質量%の塗布液(V-1)と2層転写フィルムの第2の感光層を溶解した5質量%水溶液の23℃における表面張力の結果はほぼ同じ値であった。また、比較例17と比較例20は2層転写フィルム作製時の塗布液が異なる(比較例17:V-1、比較例20:V-3を使用)ものの同一の第2の感光層の組成成分を使用しているが、2層転写フィルムの第2の感光層を溶解した5質量%水溶液の23℃における表面張力は同じ値となった。
<屈折率評価用サンプルの作製>
 第1の感光層と第2の感光層から成る転写フィルム(Y-1、Y-3)を6インチ・シリコンウェハー上にラミネーターAL-70(旭化成製、商品名)を用いて熱圧着して、シリコンウェハー上に第2の感光層、第1の感光層、PET仮支持体の順に積層された積層体(Z-1、Z-3)を作製した。ラミネート条件は、ラミネート速度:1.0m/分、ラミネートロール温度:120℃、ラミネート圧力:0.4MPaであった。その後、超高圧水銀灯を有する露光機(オーク製作所製 HMW-801)を用いて、450mJ/cmで露光した。その後、PET仮支持体を剥離し、熱風対流式乾燥機を用いて150℃で30分間のアニーリングを行い、シリコンウェハー上に第1の感光層と第2の感光層を設けた屈折率評価用のサンプルを得た。屈折率測定は前述の方法で測定した。
 なお、塗布液(V-1)の5質量%水溶液の23℃における表面張力が40mN/mを超える系(比較例17)については、屈折率の測定時のみ、塗布液の溶媒であるイオン交換水全100質量%のうち50質量%分をメタノールに置換し、溶液の表面張力を下げた塗布液(V-2)を用いて屈折率測定用サンプルを作製し、屈折率を測定した。
 屈折率測定結果を表7に示す。
<第2の感光層塗布性評価>
 得られた転写フィルムを目視で観察し、以下の評点に従って塗布性を評価した。
A: 第2の感光層の未塗工部が5cm角あたり1個未満
B: 第2の感光層の未塗工部が5cm角あたり1個以上3個未満
C: 第2の感光層の未塗工部が5cm角あたり3個以上
 2層転写フィルムの第2の感光層を溶解した5質量%水溶液の23℃における表面張力が40mN/m以下である実施例83~94、実施例96及び97、比較例18及び19については塗布性が良好であった(塗布性の評価結果はA)。実施例82、95で使用している実施例72の塗布液(V-1)は、(E)界面活性剤の添加量が少なく、5質量%水溶液の23℃における表面張力40mN/mであったが、若干塗工性が劣る結果となった。比較例20で用いている第2の感光層(比較例16)を溶解した5質量%水溶液の23℃における表面張力は40mN/mを超えている。しかし、2層転写フィルム作製時にはイオン交換水を全てメタノールに置換した塗布液(V-3)を用いているので塗布性は良好であった。
<熱転写性評価>
 第1の感光層と第2の感光層から成る転写フィルム(Y-1、Y-3)を、両面に透明導電膜が形成されたITOフィルム(日東電工社製)上にラミネーターAL-70(旭化成製、商品名)を用いて熱圧着して、ITOフィルム上に第2の感光層、第1の感光層、PETの順に積層された積層体を作製した。この際、ラミネート条件は、ラミネート速度:1.0m/分、ラミネート圧力:0.4MPaで固定し、ラミネートロール温度は80~120℃の間を20℃刻みで変動させた。その後、超高圧水銀灯を有する露光機(オーク製作所製 HMW-801)を用いて、80mJ/cmで露光し、その後、PET仮支持体を剥離し、第1の感光層及び第2の感光層の剥がれ有無を目視で観察した。熱転写性は以下の評点に従って評価した。A~Cであれば実用上の問題はないが、感光性組成物の感光性能、現像性能の保持、及びITOフィルムの寸法安定性の観点で、A、Bが好ましい。
A: 80℃のラミネート条件にてPET剥離時に感光層の剥がれなし。
B: 100℃のラミネート条件にてPET剥離時に感光層の剥がれなし。
C: 120℃のラミネート条件にてPET剥離時に感光層の剥がれなし。
D: 120℃のラミネート条件においてもPET剥離時に感光層の剥がれあり。
 熱転写性評価の結果を表7に示す。実施例82~97、比較例17、19、20に関してはいずれも結果がA~Cとなった。実施例75の第2の感光層の組成では、(D)成分は重量平均分子量が570の(D7)のみで構成されている。この実施例75の第2の感光層の組成を用いて実施した実施例88は、評価結果がCとなった。また、(D)成分として重量平均分子量が1000~12000の範囲内にある(D1)、(D2)、(D10)、(D11)、(D12)で構成されている実施例74、76~81の第2の感光層を用いている実施例87、89~94、97については評価結果がAであった。一方、(D)成分を含有しない比較例14の感光性樹脂組成物を用いている比較例18については評価結果がDであった。これらの結果から、第2の感光層に含有する(D)成分は転写フィルムの熱転写性を付与するために重要な成分であり、中でも第2の感光層に重量平均分子量が1000~12000の範囲内のものを含む感光性樹脂組成物を用いれば低温での熱転写が可能であることが示唆された。
<密着性評価サンプルの作製(基材熱圧着法)>
 表7に記した第1の感光層と第2の感光層から成る転写フィルム(Y-1、Y-3)を、両面に透明導電膜が形成されたITOフィルム(日東電工社製)上にラミネーターAL-70(旭化成製、商品名)を用いて熱圧着して、ITOフィルム上に第2の感光層、第1の感光層、PETの順に積層された積層体を作製した。この際ラミネート条件は、ラミネート速度:1.0m/分、ラミネート圧力:0.4MPaで固定し、ラミネートロール温度は120℃とした。その後、超高圧水銀灯を有する露光機(オーク製作所製 HMW-801)を用いて、450mJ/cmで露光した後、仮支持体であるPETを剥離した。その後、熱風対流式乾燥機を用いて150℃で30分間のアニーリングを行い、密着性評価用の硬化膜積層体(Z-1、Z-3)のサンプルを得た。
<密着性評価>
 密着性評価は前述の方法で行った。比較例18に関してはPET剥離時に第1、第2の感光層に部分的な剥がれが生じたが、剥がれていない部位を用いて評価を行った。
 密着性評価の結果を表7に示す。実施例82~97、比較例17、19、20に関しては剥がれた部位の面積が15%未満(A~C)と総じて良好な結果となった。実施例75の感光性組成物の(D)成分は重量平均分子量が500の(D7)のみで構成されている。この実施例75の感光性樹脂組成物を用いて実施した実施例88は評価結果がCとなった。また、(D)成分として重量平均分子量が1000~12000の範囲内にある(D1)、(D2)、(D5)、(D10)、(D11)、(D12)を含有している実施例72~74、76~81の感光性樹脂組成物を用いている実施例81~87、89~97については、剥がれの部位が5%未満の良好な結果となった。また、実施例74、78~81にはウレタンアクリレート(D1)やブロックイソシアネート(D12)といった水溶性含窒素架橋剤を含んでいるが、第2の感光層としてこれらの組成を用いた実施例87、89~94、97については、ほぼ剥がれが観察されなかった。一方、(D)成分を含有しない比較例14の感光性樹脂組成物を用いている比較例18については全面積中65%以上剥がれが発生した(結果はD)。これらの結果から、第2の感光層に含有する(D)成分は転写フィルムの基材密着性を付与するために重要な成分であり、中でも第2の感光層に重量平均分子量が1000~12000の範囲内及び/又は含窒素水溶性架橋剤を含む感光性樹脂組成物、を用いれば密着性が非常に良好になることが示唆された。
<反射率>
 前記密着性評価サンプルの作製方法と同様に熱圧着法で作製したITOフィルム上に第2の感光層、第1の感光層をこの順に有する硬化膜積層体(Z-1、Z-3)を用いて先述の方法で反射率の測定を行った。反射率は3点で測定した。比較例18に関しては硬化膜積層体作製過程のPET剥離時に第1、第2の感光層に部分的な剥がれが生じたが、剥がれていない部位を用いて評価を行った。
 実施例82~85では同一の感光性樹脂組成物(実施例73)を用い、第2の感光層膜厚を変えて評価を行った。その結果、第2の感光層膜厚が80~100nmの間が反射率を低減するために有効であることが判った。
 実施例82~実施例97、比較例18は第2の感光層形成時に塗布液(V-1)を用いており、実施例72~81、比較例14の成分で構成された第2の感光層の屈折率は1.60~1.64の範囲内である。このような組み合わせにおいて、反射率は2.0%未満と良好な結果が得られた。とりわけ実施例82、84、85、91~93、95~97、比較例18において、反射率は1.5%未満になったことから、第2の感光層の屈折率は1.61~1.64の範囲内であることがより好ましいと言える。
 また、第1の感光層の屈折率が1.55である実施例82、91、93と第1の感光層の屈折率が1.51である実施例95~97については、いずれも反射率は1.5%未満となり、差異は確認されなかった。
 比較例17は第2の感光層塗布性が悪く塗工欠点が多発していたため、反射率の結果はばらついており(A~C)、視認性向上効果を安定して付与できないことが判った。
 比較例19は第2の感光層の屈折率が1.60未満であり、反射率低減効果がほとんど得られない結果となった。
 比較例13の感光性樹脂組成物の塗布液(V-1)の溶媒を水からメタノールに置換した塗布液(V-3)に変えた比較例16の感光性樹脂組成物を用いた比較例20については、反射率が2.5%以上という悪い結果となった。これは2層転写フィルム作製時、塗布液の溶媒をメタノールに置換した場合、メタノールが第1の感光層を溶解し、明確な界面が形成できなかったためと推察される。
 以上の結果より、本願の感光性樹脂組成物は水を主成分とする溶媒を用いているため、2層転写フィルム作製時に明確な界面を形成する事ができ、5質量%水溶液の23℃における表面張力が低いため塗布性も良好であり、タッチパネルの視認性向上効果を安定して付与できると考えられる。
4.第2の感光層に(D-1)重量平均分子量が2,000~10,000の範囲内であり、分子内に少なくとも2つの重合性官能基を有する含窒素架橋剤を含むことを特徴とする2層転写フィルムの評価
<2層転写フィルムの作製>
 以下に示す方法で第1の感光層と第2の感光層から成る2層転写フィルムを作製した。
第2の感光層を形成するための表8に示した実施例98~100、比較例21~23の感光性樹脂組成物をメチルエチルケトンで希釈して、固形分濃度が5質量%の塗布液(V-4)を調製した(表8)。保護フィルムとして厚さ30μmのポリプロピレンフィルム(王子エフテックス株式会社製)を使用し、前記塗布液(V-4)を保護フィルム上にバーコーターで均一に塗布し、100℃の熱風対流式乾燥機で2分間乾燥して溶媒を除去し、厚さ100nmの第2の感光層を形成した。一方、仮支持体として厚さ16μmのポリエチレンテレフタレートフィルム(三菱化学ポリエステルフィルム株式会社製)を使用し、第1の感光層を形成するための塗布液(W-1)を、仮支持体上にバーコーターを用いて均一に塗布し、100℃の熱風対流式乾燥機で3分間乾燥して溶媒を除去し、厚さ10μmの第1の感光層から成る感光性樹脂組成物層(X-1)を形成した。次いで、得られた第2の感光層を有する保護フィルムと、第1の感光層を有する仮支持体とを、ラミネーターAL-70(旭化成製、商品名)を用いて、第1の感光層と第2の感光層が接するように25℃で貼り合せて2層転写フィルム(Y-4)を作製した(表9、実施例101~103、比較例24~26)。
<屈折率の評価>
 上記2層転写フィルム作製時に使用した第2の感光層を有する保護フィルムを用いて、6インチ・シリコンウェハー上にラミネーターAL-70(旭化成製、商品名)を用いて熱圧着して、シリコンウェハー上に第2の感光層、保護フィルムの順に積層された積層体を作製した。ラミネート条件は、ラミネート速度:1.0m/分、ラミネートロール温度:120℃、ラミネート圧力:0.4MPaであった。その後、超高圧水銀灯を有する露光機(オーク製作所製 HMW-801)を用いて、450mJ/cmで露光した。その後、保護フィルムを剥離し、熱風対流式乾燥機を用いて150℃で30分間のアニーリングを行い、シリコンウェハー上に第2の感光層を設けた屈折率評価用のサンプルを得た。屈折率は前述の方法で測定した。実施例101~103、比較例24~26のいずれも第2の感光層の屈折率は1.63であった(表9)。
<熱転写性評価>
 2層転写フィルム(Y-4)を用いて前述の方法で熱転写性評価を行った。実施例98、99、比較例21、22の感光性樹脂組成物中にはいずれもウレタンアクリレートを含有しているが、これらの感光性樹脂組成物を第2の感光層に有している実施例101、102、比較例24、25に関して、熱転写性評価結果はいずれもA~Bであった。特に重量平均分子量が2000~10000の範囲内のウレタンアクリレートを含有している実施例101、102については熱転写性評価結果がAであった。重量平均分子量が2800であるブロックイソシアネートを含む感光性樹脂組成物(実施例100)を第2の感光層に有している実施例101に関しても、熱転写性はBという結果が得られた。一方、含窒素の骨格を含有していない比較例23の感光性樹脂組成物を第2の感光層に有している比較例26に関しては、熱転写性が少し劣る結果となった(結果はC)。
<密着性評価サンプルの作製(基材熱圧着法)>
 2層転写フィルム(Y-4)を用いて、前述の熱圧着法で同様に密着性評価サンプルを作製した。
<密着性評価>
 前述の方法で密着性評価を行った。実施例98、99、比較例21、22の感光性樹脂組成物中にはいずれもウレタンアクリレートを含有しているが、これらの感光性樹脂組成物を第2の感光層に有している実施例101、102、比較例24、25に関して、熱転写性評価結果はA~Cであった。実施例99の感光性樹脂組成物には重量平均分子量が5700のウレタンアクリレートを含んでいるが、この組成物を第2の感光層に含む実施例102は非常に密着性が良好であった(結果はA)。また、実施例98の感光性樹脂組成物には重量平均分子量が2100のウレタンアクリレートを含んでいるが、この組成物を第2の感光層に含む実施例101に関しても密着性は良好であった(結果はB)。比較例24の感光性樹脂組成物には重量平均分子量が1800のウレタンアクリレートを含んでおり、比較例25の感光性樹脂組成物には重量平均分子量が12100のウレタンアクリレートを含んでいるが、密着性は実施例99、100に比べ劣る結果となった(結果はC)。また、実施例100の感光性樹脂組成物には重量平均分子量2800のブロックイソシアネートを含んでいるが、この組成物を第2の感光層に含む実施例103に関して、密着性は良好であった(結果はB)。一方で、含窒素の骨格を含有していない比較例23の感光性樹脂組成物を第2の感光層に有している比較例26に関しては、密着性が得られなかった。
 この結果から第2の感光層に(D)成分として含窒素の骨格を含有し、特定の重量平均分子量範囲(2000~10000)の架橋剤を適用すると、熱転写性及び密着性に非常に優れた2層転写フィルムを提供できることが判った。分子骨格にウレタンなどの窒素原子を含むことで下地の導体と強く相互作用する事ができると考えられる。また、特定の重量平均分子量範囲内であることで、含窒素架橋剤の重量分子量が10000以下であることで基材上に熱転写により第2の感光層を形成する際に適度な流動性を付与することができ、重量平均分子量が2000以上であることで樹脂組成物に密着性評価に耐えうる適度な靱性を付与することができるためと考えられる。
<反射率の評価>
 上記のように作製したITOフィルム上に第2の感光層、第1の感光層をこの順に有する硬化膜積層体(Z-5)を用いて前述の方法で反射率の測定を行った。結果を表9に示す。表9の実施例、比較例に使用した2層転写フィルムの屈折率、膜厚の構成は表7に示した実施例85、91とほぼ同一である。しかし、実施例101~103、比較例24~26のいずれも反射率は2.0%未満であり、実施例85、91よりも少し劣る結果となった。実施例101~103、比較例24~26は第1の感光層、第2の感光層のいずれも有機溶媒系の塗布液を使用しているため、先述の通り圧着法で2層転写フィルム(Y-4)を作製している。しかしながら、その後の熱工程(例えばITOフィルムへの熱圧着工程、150℃での熱キュア工程)で第1の感光層、第2の感光層の成分が互いに混じりあい、界面がぼやけてしまったためと推察される。
5.タッチパネル用硬化膜積層体の評価
 先述の実施例の評価において作製した反射率測定サンプル(ITOフィルム上に第2の感光層、第1の感光層をこの順に有する硬化膜積層体)の断面観察を行った。
<STEM-EDX観察>
(I)超薄切片作製
 試料を粗裁断後、樹脂包埋を施した。次いで、ウルトラマイクロトームにて超薄切片を作製、マイクログリッドに回収してこれを検鏡試料とした。
 装置;LEICA EM UC7
 厚み:60nmt設定
(II)STEM(走査透過型電子顕微鏡)観察
 装置:HITACHI S-5500
 加速電圧:30kV
(III)EDX(エネルギー分散型X線分光分析器)測定
 装置:HORIBA EMAX
 分析方法:点分析、測定時間60sec
 前記の方法で硬化膜積層体の断面観察を行った結果、実施例104に関しては、導体上に極薄有機層、金属微粒子が充填された第2の硬化層、第1の硬化層の3層構造になっていることが判った。この3層の各部位のEDX測定で検出されたCKα、ZrLα、TiKα由来のピーク強度の結果から、(ZrLα+TiKα)/CKαの値を算出した。本実施形態に係る3層構造は下記のように定義する。
 ・極薄有機層:(ZrLα+TiKα)/CKα<0.5
 ・第2の硬化層:(ZrLα+TiKα)/CKα≧0.5
 ・第1の硬化層:(ZrLα+TiKα)/CKα<0.5
 実施例104におけるSTEM-EDX結果を図3~6に示す。実施例105、106、比較例27に関しても同様に極薄有機層が存在する事が判った。これらのサンプルは、第2の感光層、及び第1の感光層から構成された2層転写フィルムより作製したため、極薄有機層は第2の感光層由来の有機成分が偏在化したものと考えられる。一方、比較例28に関しては極薄有機層の存在が確認できなかった。
<各層の平均膜厚測定>
(I)BIB(Broad Ion Beam)加工
 使用装置:SM-09010(日本電子)
 イオン種:Ar
 上記の装置を用いて硬化膜積層体の各水準につき、任意の2か所(それぞれは直交方向とする)のSEM(走査型電子顕微鏡)断面サンプルを作製した。
(II)SEM(走査型電子顕微鏡)観察
 使用装置:SU-8220(日立)
 加速電圧:1kV
 観察倍率:×100k
 上記の通り、BIB加工により断面サンプルを作製し、SEM観察を行い、極薄有機層、第2の硬化層それぞれに関して同一視野内の平均膜厚を求めた。なお、第1の硬化層に関しては膜厚総厚みの範囲が同一視野内に収まるよう観察倍率を下げて、同様に同一視野内での平均膜厚を求めた。SEM観察は各水準につき先述した2つのSEM断面サンプル分について行い、2つの結果の膜厚平均値を求めた。結果を表10に示す。さらに、実施例104の膜厚測定におけるタッチパネル用硬化膜積層体の断面SEM観察画像と硬化膜積層体を構成する各層との関係を図7に示す。
 実施例104~106及び比較例27において、平均膜厚が8nm~23nmの極薄有機層が観察された。一方、比較例28においては、極薄有機層が観察できなかった。これらの結果から、極薄有機層の平均膜厚は第2感光層の組成中に含まれている(D)成分の含有量と相関があると考えられる。実施例105の硬化膜積層体を構成している第2の感光層には50質量%の(D)成分が配合されているが、極薄有機層の厚みは最も厚い(26nm)結果となった。一方、比較例28は第2の感光層に(D)成分を含有していないが、極薄有機層の厚みは0であった。この事から、極薄有機層は水溶性架橋剤に由来していると推察される。また、比較例28は熱転写性評価及び密着性評価が悪い結果となっているため、極薄有機層の存在は転写フィルムの熱転写性、密着性に好影響を与える重要な因子であることが示唆された。
<ピンホール数>
SEM観察
 使用装置:SU-8220(日立)
 加速電圧:1kV
 観察倍率:×20k
 先述のSEM断面観察サンプルを用いて上記の条件で第2の硬化層に存在する5μmあたりのピンホールの数を観察した。本明細書におけるピンホールとは、第2の硬化層において金属微粒子が充填されていない直径50nm以上の空隙を有し、かつ、第2の硬化層の残膜厚が0~10nmである部位が存在する箇所と定義する。観察倍率:×20kにおいてピンホールの定義に該当するか否かの判断がつかない箇所については、必要に応じて高倍率での観察も併用した。SEM観察は各水準につき先述した2つのSEM断面サンプル分について行い、2つの結果のピンホール数の平均値を求めた。結果を表10に示す。さらに、比較例27で得られたタッチパネル用硬化膜積層体の断面SEM観察画像について、ピンホール部の拡大観察画像を図8に示す。
 実施例104~106及び比較例28については観察幅5μmあたりの平均ピンホール数が1個以下であった。一方、比較例27に関しては、観察幅5μmあたりの平均ピンホール数が11個という結果となった。比較例27の硬化膜積層体を構成する第2の感光層(比較例13の組成)は、5質量%水溶液の23℃における表面張力が44mN/mであり、2層の転写フィルム作製時の塗工性が悪かったためと考えられる。
<3層転写フィルムの作製(比較例29)>
 比較例18で使用した2層転写フィルム(Y-1)を用いて、第2の感光層上に先述のW-1の塗布液をメチルエチルケトンで1質量%まで希釈したものをバーコーターを用いて塗布し、80℃の熱風対流式乾燥機で1分間乾燥して溶媒を除去し、最後に保護フィルム(厚さ12μmポリプロピレンフィルム)を圧着し、第1の感光層、第2の感光層、及び厚さが約60nmの有機層を有する3層転写フィルム(Y-5)を作製した(比較例29)。
<3層転写フィルムの評価(比較例30)>
 比較例29で作製した3層転写フィルム(Y-5)を用いて先述の方法で熱転写性評価、密着性評価、反射率評価、断面観察による各層の膜厚、ピンホール数測定を行った。結果を表10に示す。
 比較例30に関しては、3層転写フィルムを使用しており、SEMでの断面観察において極薄有機層の平均膜厚が63nmであった。また、熱転写性、密着性も良好な結果となったが、これは意図的に形成した有機層による影響と考えられる。一方で、比較例30は反射率が悪い結果となった。
 以上の結果より、本発明に係る2層転写フィルムは熱転写性、基材の導体との密着性が良好であることを特長としているが、この2層転写フィルムを使用した場合、タッチパネル用硬化膜積層体の導体と第2の硬化層の間に極薄有機層を有する事が判り、この極薄有機層は前記特長と相関していることが判った。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
表中の略称の説明
(A1)K-90(ポリビニルピロリドン、東京化成社製:商品名 Mw360,000)
(A2)ポリ(メチルビニルエーテル)(東京化成製品)
(A3)SD10(ポリアクリル酸エステル重合体、東亜合成社製:商品名)
(A4)ポリエチレングリコール4000(東京化成製品)
(A5)SP600(ヒドロキシエチルセルロース、ダイセルファインケム社製:商品名)
(A6)ポリビニルアルコール(東京化成製品 繰り返し単位n=1750±50)
(A7)メタクリル酸/ベンジルメタクリレート共重合体(共重合比率:20/80 Mw:43,000)
(A8)HL415(ポリアクリル酸、日本触媒社製)
(A9)スーパーフレックス500M(ウレタンディスパージョン、第一工業製薬社製:商品名)
(B1)SZR-W(商品名、堺化学工業社製:酸化ジルコニウム(IV)水分散液 平均分散1次粒径D90:10.8)
(B2)SRD-W(商品名、堺化学工業社製:酸化チタン水分散液 平均分散1次粒径D50:4nm)
(B3)SZR-CW(商品名、堺化学工業社製:酸化ジルコニウム(IV)水分散液 平均分散1次粒径D50:5nm)
(B4)ナノユースOZ-S30M(商品名、日産化学工業社製:酸化ジルコニウム(IV)メタノール分散液 平均分散1次粒径 D50:30nm)
(C1)Irgacure2959(商品名、BASF社製)
(C2)2,2’,4-トリス(2-クロロフェニル)-5-(3,4-ジメトキシフェニル-4’,5’-ジフェニル‐1,1’-ビ[1H-イミダゾール]
(C3)OXE-01(商品名、BASF社製:オキシムエステル開始剤)
(D1)アートレジンX-17N(商品名、根上工業社製:2官能ウレタンアクリレート)
(D2)MCD-15E(商品名、サートマージャパン社製)
(D3)ブレンマーADE-400A(商品名、日油社製)
(D4)NKオリゴ EA-5920(商品名、プロピレングリコールジグリシジルエーテルとアクリル酸との反応物、新中村化学工業社製)
(D5)NKエステルA-BPE-20(商品名、新中村化学工業社製)
(D6)N,N‘-メチレンビスアクリルアミド(MRCユニテック社製)
(D7)N-[トリス(3-アクリルアミドプロポキシメチル)メチル]アクリルアミド(商品名、Wako社製)
(D8)MX270(商品名、三和ケミカル社製)
(D9)TMPT(商品名、トリメチロールプロパントリメタクリレート、新中村化学工業社製)
(D10)アートレジンX-1N(商品名、根上工業社製:2官能ウレタンアクリレート)
(D11)アートレジンX-36N(商品名、根上工業社製:2官能ウレタンアクリレート)
(D12)デュラネートWM44-L70G(商品名、旭化成社製:ブロックイソシアネート)
(D13)U-15HA(商品名、新中村化学工業社製:15官能ウレタンアクリレート)
(D14)U-412A(商品名、新中村化学工業社製:2官能ウレタンアクリレート)
(D15)UA-32P(商品名、新中村化学工業社製:9官能ウレタンアクリレート)
(D16)UA-340P(商品名、新中村化学工業社製:2官能ウレタンアクリレート)
(E1)DBE814(商品名、GELEST社製)
(E2)LE-605(商品名、共栄社化学社製)
(E3)ポリフローWS-314(商品名、共栄社化学社製)
(E4)ノイゲンLF-80X(商品名、第一工業製薬社製)
(F1)KBM-5103(商品名、信越化学工業社製)
(F2)KBE-403(商品名、信越化学工業社製)
(F3)KBM-503(商品名、信越化学工業社製)
(F4)KBM-803(商品名、信越化学工業社製)
 1  10μmの厚みを有する第1の感光層
 2  100nmの厚みを有する第2の感光層
 3  16μmの厚みを有するPET仮支持体
 4  両面にITOが製膜されたフィルム

Claims (22)

  1.  屈折率が1.60以上であり、少なくとも2つの重合性官能基を有する水溶性架橋剤を含有し、かつ5質量%の固形分を有する水溶液として調製されたときの23℃における表面張力が40mN/m以下である、タッチパネル用水性樹脂組成物。
  2.  前記少なくとも2つの重合性官能基を有する水溶性架橋剤の重量平均分子量が、1,000~12,000の範囲内である、請求項1に記載のタッチパネル用水性樹脂組成物。
  3.  前記少なくとも2つの重合性官能基を有する水溶性架橋剤は、ウレタン骨格を有する、請求項1又は2に記載のタッチパネル用水性樹脂組成物。
  4.  仮支持体上に2層フィルムを備える転写フィルムであって、
     前記2層フィルムは:
      前記仮支持体に積層されており、かつ(メタ)アクリル酸由来の構成単位を3質量%~25質量%含むバインダーポリマーと、少なくとも2つのエチレン性不飽和基を有する光重合性化合物と、光重合開始剤とを含有する感光性樹脂組成物から成る第1の感光層;及び
      前記第1の感光層に積層されており、かつ請求項1~3のいずれか1項に記載のタッチパネル用水性感光樹脂組成物から成る第2の感光層;
    で形成されている、
     前記転写フィルム。
  5.  仮支持体上に、
     ・屈折率が1.48~1.56の範囲内であり、かつ膜厚が1μm~15μmの範囲内である第1の感光層;及び
     ・屈折率が1.60~1.75の範囲内であり、かつ膜厚が30nm~200nmの範囲内である第2の感光層;
    をこの順に有し、かつ
     前記第2の感光層に、
     (D-1)重量平均分子量が2,000~10,000の範囲内であり、かつ分子内に少なくとも2つの重合性官能基を有する含窒素架橋剤
    を含む、タッチパネル用転写フィルム。
  6.  前記含窒素架橋剤は、ウレタン骨格を有する、請求項5に記載のタッチパネル用転写フィルム。
  7.  加速電圧30kVでの断面のSTEM-EDX測定において、導体上に、
     ・(ZrLα+TiKα)/CKαの強度比が0.5未満である有機層;
     ・(ZrLα+TiKα)/CKαの強度比が0.5以上である第2の硬化層;及び
     ・(ZrLα+TiKα)/CKαの強度比が0.5未満である第1の硬化層;
    をこの順に有し、断面のSEM観察において前記有機層の平均膜厚が5nm~50nmであり、前記第2の硬化層の平均膜厚が30nm~200nmであり、前記第1の硬化層の平均膜厚が1μm~15μmであり、かつ、第2の硬化層の幅5μmの領域あたりに存在するピンホールの平均数が1個以下である、タッチパネル用硬化膜積層体。
  8.  請求項7に記載のタッチパネル用硬化膜積層体を有するタッチパネル表示装置。
  9.  (A)水溶性樹脂;
     (B)2.0以上の屈折率を有する無機酸化物粒子;
     (C)光重合開始剤;
     (D)少なくとも2つの重合性官能基を有する水溶性架橋剤;及び
     (E)界面活性剤;
    を含む水性感光樹脂組成物であって、
     前記(A)水溶性樹脂は、ポリビニルピロリドン、ポリ(メチルビニルエーテル)、ポリビニアルコール及びその誘導体、ポリオキシアルキレンオキサイド、ポリアクリル酸誘導体、ポリアクリルアミド、並びにセルロースから成る群より選ばれる少なくとも1つの化合物であり、かつ
     前記水性感光樹脂組成物100質量%に対して、40質量%以上の前記(B)無機酸化物粒子を含む、
     前記水性感光樹脂組成物。
  10.  更に、(F)有機ケイ素化合物を含む、請求項9に記載の水性感光樹脂組成物。
  11.  前記(F)有機ケイ素化合物が、少なくとも1つの重合性官能基を有する、請求項10に記載の水性感光樹脂組成物。
  12.  仮支持体上に2層フィルムを備える転写フィルムであって、
     前記2層フィルムは:
      前記仮支持体に積層されており、かつ(メタ)アクリル酸由来の構成単位を3質量%~25質量%含むバインダーポリマーと、少なくとも2つのエチレン性不飽和基を有する光重合性化合物と、光重合開始剤とを含有する感光性樹脂組成物から成る第1の感光層;及び
      前記第1の感光層に積層されており、かつ請求項9~11のいずれか1項に記載の水性感光樹脂組成物から成る第2の感光層;
    で形成されている、
     前記転写フィルム。
  13.  (A)水溶性樹脂;
     (B)2.0以上の屈折率を有する無機酸化物粒子;
     (C)光重合開始剤;及び
     (D)少なくとも2つの重合性官能基を有する水溶性架橋剤;
    を含む水性感光樹脂組成物であって、
     前記(A)水溶性樹脂は、ポリビニルピロリドン、ポリ(メチルビニルエーテル)、ポリビニルアルコール及びその誘導体、ポリオキシアルキレンオキサイド、ポリアクリル酸誘導体、ポリアクリルアミド、並びにセルロース類から成る群より選ばれる少なくとも1つの化合物であり、
     前記(D)水溶性架橋剤は、ウレタン(メタ)アクリレート多官能ビニルモノマーであり、かつ
     前記水性感光樹脂組成物100質量%に対して、40質量%以上70質量%以下の割合で前記(B)無機酸化物粒子を含む、
     前記水性感光樹脂組成物。
  14.  更に、(E)界面活性剤を含む、請求項13に記載の水性感光樹脂組成物。
  15.  更に、(F)有機ケイ素化合物を含む、請求項14に記載の水性感光樹脂組成物。
  16.  前記(F)有機ケイ素化合物が、少なくとも1つの重合性官能基を有する、請求項15に記載の水性感光樹脂組成物。
  17.  仮支持体上に2層フィルムを備える転写フィルムであって、
     前記2層フィルムは:
      前記仮支持体に積層されており、かつ(メタ)アクリル酸由来の構成単位を3質量%~25質量%含むバインダーポリマーと、少なくとも2つのエチレン性不飽和基を有する光重合性化合物と、光重合開始剤とを含有する感光性樹脂組成物から成る第1の感光層;及び
      前記第1の感光層に積層されており、かつ請求項13~16のいずれか1項に記載の水性感光樹脂組成物から成る第2の感光層;
    で形成されている、
     前記転写フィルム。
  18.  前記2層フィルムの400nm~700nmにおける可視光透過率が、93%以上である、請求項12に記載の転写フィルム。
  19.  前記2層フィルムのヘイズ値が、0.5%以下である、請求項12又は18に記載の転写フィルム。
  20.  以下の工程(a)~(d):
     (a)(メタ)アクリル酸由来の構成単位を3質量%~25質量%含むバインダーポリマーと、少なくとも2つのエチレン性不飽和基を有する光重合性化合物と、光重合開始剤とを含有する感光性樹脂組成物を仮支持体に塗布して第1の感光層を形成し、請求項1~3のいずれか1項に記載のタッチパネル用水性感光樹脂組成物を前記第1の感光層に塗布して第2の感光層を形成することによって、前記第1の感光層及び前記第2の感光層から成る2層フィルムを前記仮支持体上に形成して、前記2層フィルムから溶剤を除去して転写フィルムを得る転写フィルム作製工程;
     (b)前記転写フィルムを基材に転写して、活性光線によりパターン状に露光する露光工程;
     (c)前記転写フィルムの未露光部を水性現像液により除去して、前記転写フィルムを現像する現像工程;及び
     (d)現像された前記転写フィルムが付いている前記基材を熱処理する熱処理工程;
    をこの順に含む、樹脂パターンの製造方法。
  21.  請求項20に記載の方法により製造された樹脂パターンを有するタッチパネル用硬化膜積層体。
  22.  請求項21に記載のタッチパネル用硬化膜積層体を有するタッチパネル表示装置。
PCT/JP2016/067266 2015-06-09 2016-06-09 タッチパネル用水性樹脂組成物、転写フィルム及び硬化膜積層体、並びに樹脂パターンの製造方法及びタッチパネル表示装置 WO2016199868A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017523700A JP6669742B2 (ja) 2015-06-09 2016-06-09 タッチパネル用水性樹脂組成物、転写フィルム及び硬化膜積層体、並びに樹脂パターンの製造方法及びタッチパネル表示装置
CN201680033005.1A CN107615224A (zh) 2015-06-09 2016-06-09 触摸面板用水性树脂组合物、转印薄膜和固化膜层叠体以及树脂图案的制造方法和触摸面板显示装置
KR1020177031896A KR102019581B1 (ko) 2015-06-09 2016-06-09 터치 패널용 수성 수지 조성물, 전사 필름 및 경화막 적층체, 그리고 수지 패턴의 제조 방법 및 터치 패널 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015116719 2015-06-09
JP2015-116719 2015-06-09

Publications (1)

Publication Number Publication Date
WO2016199868A1 true WO2016199868A1 (ja) 2016-12-15

Family

ID=57503510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067266 WO2016199868A1 (ja) 2015-06-09 2016-06-09 タッチパネル用水性樹脂組成物、転写フィルム及び硬化膜積層体、並びに樹脂パターンの製造方法及びタッチパネル表示装置

Country Status (5)

Country Link
JP (1) JP6669742B2 (ja)
KR (1) KR102019581B1 (ja)
CN (1) CN107615224A (ja)
TW (3) TWI659268B (ja)
WO (1) WO2016199868A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014479A (ja) * 2015-07-03 2017-01-19 住友大阪セメント株式会社 無機粒子含有組成物、塗膜、塗膜付きプラスチック基材、および表示装置
WO2018134883A1 (ja) * 2017-01-17 2018-07-26 日立化成株式会社 感光性樹脂組成物、感光性エレメント、タッチパネル電極の保護膜及びタッチパネル
WO2019022090A1 (ja) * 2017-07-28 2019-01-31 富士フイルム株式会社 パターン形成方法、積層体、及び、タッチパネル製造方法
WO2019164016A1 (ja) * 2018-02-26 2019-08-29 旭化成株式会社 転写フィルム、転写フィルムを用いた樹脂パターン製造方法、及び硬化膜パターンの製造方法
WO2019188379A1 (ja) * 2018-03-29 2019-10-03 太陽ホールディングス株式会社 感光性樹脂組成物、ドライフィルム、硬化物、プリント配線板および半導体素子
JP2019211745A (ja) * 2018-05-31 2019-12-12 旭化成株式会社 感光性樹脂積層体、感光性樹脂積層体を用いたパターン製造方法及び装置
JP2020027220A (ja) * 2018-08-16 2020-02-20 旭化成株式会社 感光性樹脂積層体、感光性樹脂積層体を用いたパターン製造方法及び装置
WO2023228839A1 (ja) * 2022-05-24 2023-11-30 株式会社Adeka 組成物、コーティング剤、硬化物及び硬化物の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333876B (zh) * 2017-01-17 2023-08-25 太阳控股株式会社 感光性膜层积体和使用其形成的固化物
CN110731001A (zh) * 2017-06-16 2020-01-24 富士胶片电子材料美国有限公司 多层结构
KR102522749B1 (ko) * 2017-11-06 2023-04-17 아사히 가세이 가부시키가이샤 감광성 수지 적층체 및 레지스트 패턴의 제조 방법
JP7070988B2 (ja) * 2018-07-30 2022-05-18 旭化成株式会社 導電性フィルム、並びに、それを用いた導電性フィルムロール、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ
KR102640257B1 (ko) * 2018-11-08 2024-02-26 엘지디스플레이 주식회사 표시패널
CN113613898A (zh) * 2019-03-26 2021-11-05 富士胶片株式会社 银导电性材料保护膜用转印膜、带图案的银导电性材料的制造方法、层叠体及触摸面板
US11275460B2 (en) * 2019-04-26 2022-03-15 Samsung Display Co., Ltd. Display device
CN113799512B (zh) * 2020-06-12 2023-03-10 乐凯华光印刷科技有限公司 柔性感光印刷版的双层结构感光弹性体及其制备方法及包含其的柔性感光印刷版

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110600A (ja) * 2006-10-05 2008-05-15 Jsr Corp 積層体
JP2014005437A (ja) * 2011-11-21 2014-01-16 Toyo Ink Sc Holdings Co Ltd 樹脂組成物、ならびにそれを用いた保護膜およびタッチパネル用絶縁膜
WO2014033932A1 (ja) * 2012-08-31 2014-03-06 株式会社ダイセル 光学シート
JP2015041529A (ja) * 2013-08-22 2015-03-02 帝人デュポンフィルム株式会社 透明電極用フィルム
WO2015046520A1 (ja) * 2013-09-30 2015-04-02 帝人株式会社 導電性積層体およびそれを用いるタッチパネル

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169269A (en) 1992-01-28 1992-12-08 Shunji Tatematsu One-strike wedging type blank nail
WO1999025553A1 (fr) * 1997-11-13 1999-05-27 Teijin Limited Film de polyester adherant facilement
JP4853181B2 (ja) 2005-08-26 2012-01-11 大日本印刷株式会社 高屈折率ハードコート層
TWI406206B (zh) * 2006-10-31 2013-08-21 Hitachi Chemical Co Ltd A method of manufacturing an image display device, an image display device, and a liquid crystal display device
WO2008108346A1 (ja) * 2007-03-02 2008-09-12 Nippon Polyurethane Industry Co., Ltd. 水性ポリウレタン系樹脂組成物及びそれを用いた塗料組成物
JP4945345B2 (ja) 2007-07-03 2012-06-06 株式会社 日立ディスプレイズ タッチパネル付き表示装置
JP4966270B2 (ja) 2008-08-08 2012-07-04 株式会社ジャパンディスプレイイースト 表示装置
JP2013020047A (ja) * 2011-07-11 2013-01-31 Fujifilm Corp 感光性組成物
WO2013054868A1 (ja) 2011-10-12 2013-04-18 東洋インキScホールディングス株式会社 樹脂組成物、塗膜、及びタッチパネル用絶縁膜
JP5887118B2 (ja) * 2011-12-05 2016-03-16 日東電工株式会社 透明導電性フィルム用粘着剤層、粘着剤層付き透明導電性フィルム、透明導電性積層体、およびタッチパネル
JP2014071306A (ja) 2012-09-28 2014-04-21 Fujifilm Corp 硬化性樹脂組成物、転写材料、硬化物及びその製造方法、樹脂パターン製造方法、硬化膜、液晶表示装置、有機el表示装置並びにタッチパネル表示装置
JP6049521B2 (ja) * 2013-03-29 2016-12-21 富士フイルム株式会社 感光性樹脂組成物、硬化膜、画像形成方法、固体撮像素子、カラーフィルタおよび紫外線吸収剤
JP2015039845A (ja) * 2013-08-22 2015-03-02 帝人デュポンフィルム株式会社 透明電極用フィルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110600A (ja) * 2006-10-05 2008-05-15 Jsr Corp 積層体
JP2014005437A (ja) * 2011-11-21 2014-01-16 Toyo Ink Sc Holdings Co Ltd 樹脂組成物、ならびにそれを用いた保護膜およびタッチパネル用絶縁膜
WO2014033932A1 (ja) * 2012-08-31 2014-03-06 株式会社ダイセル 光学シート
JP2015041529A (ja) * 2013-08-22 2015-03-02 帝人デュポンフィルム株式会社 透明電極用フィルム
WO2015046520A1 (ja) * 2013-09-30 2015-04-02 帝人株式会社 導電性積層体およびそれを用いるタッチパネル

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014479A (ja) * 2015-07-03 2017-01-19 住友大阪セメント株式会社 無機粒子含有組成物、塗膜、塗膜付きプラスチック基材、および表示装置
WO2018134883A1 (ja) * 2017-01-17 2018-07-26 日立化成株式会社 感光性樹脂組成物、感光性エレメント、タッチパネル電極の保護膜及びタッチパネル
CN110998457A (zh) * 2017-07-28 2020-04-10 富士胶片株式会社 图案形成方法、层叠体及触摸面板制造方法
WO2019022090A1 (ja) * 2017-07-28 2019-01-31 富士フイルム株式会社 パターン形成方法、積層体、及び、タッチパネル製造方法
CN110998457B (zh) * 2017-07-28 2023-12-08 富士胶片株式会社 图案形成方法、层叠体及触摸面板制造方法
US11567410B2 (en) 2017-07-28 2023-01-31 Fujifilm Corporation Pattern formation method, laminate, and method of producing touch panel
WO2019164016A1 (ja) * 2018-02-26 2019-08-29 旭化成株式会社 転写フィルム、転写フィルムを用いた樹脂パターン製造方法、及び硬化膜パターンの製造方法
JPWO2019188379A1 (ja) * 2018-03-29 2021-04-22 太陽ホールディングス株式会社 感光性樹脂組成物、ドライフィルム、硬化物、プリント配線板および半導体素子
JP7360380B2 (ja) 2018-03-29 2023-10-12 太陽ホールディングス株式会社 感光性樹脂組成物、ドライフィルム、硬化物、プリント配線板および半導体素子
WO2019188379A1 (ja) * 2018-03-29 2019-10-03 太陽ホールディングス株式会社 感光性樹脂組成物、ドライフィルム、硬化物、プリント配線板および半導体素子
JP7203548B2 (ja) 2018-05-31 2023-01-13 旭化成株式会社 感光性樹脂積層体、感光性樹脂積層体を用いたパターン製造方法及び装置
JP2019211745A (ja) * 2018-05-31 2019-12-12 旭化成株式会社 感光性樹脂積層体、感光性樹脂積層体を用いたパターン製造方法及び装置
JP2020027220A (ja) * 2018-08-16 2020-02-20 旭化成株式会社 感光性樹脂積層体、感光性樹脂積層体を用いたパターン製造方法及び装置
JP2023052178A (ja) * 2018-08-16 2023-04-11 旭化成株式会社 感光性樹脂積層体、感光性樹脂積層体を用いたパターン製造方法及び装置
JP7260264B2 (ja) 2018-08-16 2023-04-18 旭化成株式会社 感光性樹脂積層体、感光性樹脂積層体を用いたパターン製造方法及び装置
WO2023228839A1 (ja) * 2022-05-24 2023-11-30 株式会社Adeka 組成物、コーティング剤、硬化物及び硬化物の製造方法

Also Published As

Publication number Publication date
KR102019581B1 (ko) 2019-09-06
JP6669742B2 (ja) 2020-03-18
TWI653270B (zh) 2019-03-11
JPWO2016199868A1 (ja) 2018-01-25
TW201702318A (zh) 2017-01-16
CN107615224A (zh) 2018-01-19
KR20170134629A (ko) 2017-12-06
TWI604007B (zh) 2017-11-01
TWI659268B (zh) 2019-05-11
TW201905595A (zh) 2019-02-01
TW201802189A (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
JP6669742B2 (ja) タッチパネル用水性樹脂組成物、転写フィルム及び硬化膜積層体、並びに樹脂パターンの製造方法及びタッチパネル表示装置
JP6738790B2 (ja) 感光性樹脂組成物、感光性樹脂積層体、樹脂パターンの製造方法、硬化膜の製造方法及び表示装置の製造方法
JP6566982B2 (ja) 転写フィルム、電極保護膜、積層体、静電容量型入力装置および転写フィルムの製造方法
JP6615901B2 (ja) 転写フィルム、静電容量型入力装置の電極保護膜、積層体、積層体の製造方法および静電容量型入力装置
TW201608340A (zh) 觸控面板電極保護膜形成用組成物、轉印膜、積層體、觸控面板用電極的保護膜及其形成方法、靜電電容型輸入裝置及圖像顯示裝置
JP6584357B2 (ja) 転写フィルム、静電容量型入力装置の電極保護膜、積層体および静電容量型入力装置
JP6989711B2 (ja) 転写フィルム、硬化膜の製造方法、積層体の製造方法、及び、タッチパネルの製造方法
KR102521385B1 (ko) 전사 필름, 정전 용량형 입력 장치의 전극 보호막, 적층체 및 정전 용량형 입력 장치
WO2017155003A1 (ja) 転写フィルム、電極保護膜、積層体、静電容量型入力装置、静電容量型入力装置の製造方法、および転写フィルムの製造方法
JP7213981B2 (ja) 転写フィルム、積層体の製造方法およびタッチパネルの製造方法
WO2018008697A1 (ja) 感光性樹脂組成物、感光性エレメント、タッチパネル電極の保護膜、タッチパネル、及びタッチパネル電極の保護膜の製造方法
JP6888148B2 (ja) 転写フィルム、静電容量型入力装置の電極保護膜、積層体および静電容量型入力装置
JP5304970B1 (ja) タッチパネル用電極の保護膜の形成方法、感光性樹脂組成物、感光性エレメント、タッチパネルの製造方法及びタッチパネル用電極の保護膜
WO2021246366A1 (ja) 転写フィルム、積層体の製造方法
JPWO2020066131A1 (ja) 転写フィルム、積層体の製造方法、積層体、静電容量型入力装置、及び、画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523700

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177031896

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807574

Country of ref document: EP

Kind code of ref document: A1