WO2016199283A1 - 電子写真用感光体、その製造方法および電子写真装置 - Google Patents

電子写真用感光体、その製造方法および電子写真装置 Download PDF

Info

Publication number
WO2016199283A1
WO2016199283A1 PCT/JP2015/066943 JP2015066943W WO2016199283A1 WO 2016199283 A1 WO2016199283 A1 WO 2016199283A1 JP 2015066943 W JP2015066943 W JP 2015066943W WO 2016199283 A1 WO2016199283 A1 WO 2016199283A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
group
carbon atoms
electrophotographic photoreceptor
compound
Prior art date
Application number
PCT/JP2015/066943
Other languages
English (en)
French (fr)
Inventor
豊強 朱
鈴木 信二郎
俊貴 竹内
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to KR1020177015153A priority Critical patent/KR20180018473A/ko
Priority to PCT/JP2015/066943 priority patent/WO2016199283A1/ja
Priority to CN201580066554.4A priority patent/CN107430358B/zh
Priority to JP2017523060A priority patent/JP6311839B2/ja
Priority to TW105114572A priority patent/TW201708304A/zh
Publication of WO2016199283A1 publication Critical patent/WO2016199283A1/ja
Priority to US15/611,934 priority patent/US10133198B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0609Acyclic or carbocyclic compounds containing oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/75Details relating to xerographic drum, band or plate, e.g. replacing, testing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0436Photoconductive layers characterised by having two or more layers or characterised by their composite structure combining organic and inorganic layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/047Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0503Inert supplements
    • G03G5/051Organic non-macromolecular compounds
    • G03G5/0517Organic non-macromolecular compounds comprising one or more cyclic groups consisting of carbon-atoms only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0525Coating methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0564Polycarbonates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/087Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and being incorporated in an organic bonding material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14747Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14756Polycarbonates

Definitions

  • the present invention relates to an electrophotographic photosensitive member (hereinafter also simply referred to as “photosensitive member”) used in an electrophotographic printer, copying machine, facsimile, and the like, a method for producing the same, and an electrophotographic apparatus.
  • the present invention relates to an electrophotographic photoreceptor having improved stain resistance and the like, a manufacturing method thereof, and an electrophotographic apparatus.
  • an electrophotographic photoreceptor is required to have a function of holding surface charges in a dark place, a function of receiving light to generate charges, and a function of receiving light to transport charges.
  • the Carlson method is applied to image formation by electrophotography using these electrophotographic photoreceptors.
  • the image is formed by charging the photoconductor in the dark, forming an electrostatic image such as text or a picture on the charged photoconductor surface, and developing the formed electrostatic image with toner. And the developed toner image is transferred and fixed onto a support such as paper. After the toner image has been transferred, the photoreceptor is subjected to reuse after removing residual toner or removing static electricity.
  • Examples of the material for the electrophotographic photoreceptor described above include those in which an inorganic photoconductive material such as selenium, selenium alloy, zinc oxide or cadmium sulfide is dispersed in a resin binder, poly-N-vinylcarbazole, 9, 10 -Anthracene diol polyester, pyrazoline, hydrazone, stilbene, butadiene, benzidine, phthalocyanine or bisazo compound or other organic photoconductive materials dispersed in a resin binder, or those obtained by vacuum deposition or sublimation are used.
  • an inorganic photoconductive material such as selenium, selenium alloy, zinc oxide or cadmium sulfide is dispersed in a resin binder, poly-N-vinylcarbazole, 9, 10 -Anthracene diol polyester, pyrazoline, hydrazone, stilbene, butadiene, benzidine, phthalocyanine or bisazo compound or other organic photoconductive
  • the photosensitive member is always in contact with the charging roller or transfer roller, so that the components of the roller components ooze out and the surface of the photosensitive member is contaminated, resulting in black streaks in the halftone image. There is.
  • the deterioration of the image characteristics in a low temperature and low humidity environment can be mentioned.
  • the sensitivity characteristics of the photoconductor are apparently reduced, so that image quality deterioration such as reduction in image density and gradation in halftone images becomes obvious. Will be.
  • the image memory accompanying the deterioration of sensitivity characteristics may become prominent. This is because an image recorded as a latent image at the first rotation of the drum is subjected to potential fluctuations after the second rotation of the drum during printing, and in particular, an unnecessary part when a halftone image is printed. This is a deterioration of the image such as being printed on.
  • a negative memory in which the density of a printed image is reversed is noticeable.
  • image characteristics are deteriorated in a high temperature and high humidity environment.
  • the charge transfer speed in the photosensitive layer is generally higher than that at room temperature and normal humidity, which causes excessive increases in print density and white solid images. Such defects as small black spots (fogging) are observed.
  • An excessive increase in the print density leads to an increase in toner consumption, and the dot diameter increases and causes a fine gradation to be crushed.
  • the image memory in contrast to the low-temperature and low-humidity environment, a positive memory in which the density of the printed image is reflected as it is is often noticeable.
  • Patent Documents 6, 7, and 8 can solve the problem of deterioration of characteristics due to the above temperature and humidity conditions, but are not necessarily sufficient for the contamination resistance of the surface of the photoreceptor. .
  • Patent Document 9 proposes a technique in which the outermost surface layer of the photosensitive layer contains a predetermined phthalate compound and a predetermined three-dimensional cross-linked polymer. No mention is made of the effect of humidity. Furthermore, Patent Document 10 discloses a phthalic acid compound useful as a pest repellent, and Patent Document 11 discloses a thermal recording paper containing a predetermined aromatic compound having four ester groups in the thermal coloring layer. However, there is no mention of use on a photoreceptor.
  • an object of the present invention is to provide an electrophotographic photosensitive member, a method for producing the same, and an electrophotographic apparatus that satisfy a sufficient contamination resistance and various characteristics as a photosensitive member and are less affected by the temperature and humidity environment. is there.
  • the present inventors have added a compound having a specific structure to the outermost surface layer of the photoreceptor, so that it does not depend on the characteristics of the charge transport material used.
  • the present inventors have found that the components that exude from the constituent members of the charging roller and the transfer roller are prevented from entering the surface of the photoreceptor, and the contamination resistance is improved.
  • the present inventors have been able to improve the stability of electrical characteristics without affecting the type of organic substance used and the temperature and humidity of the usage environment, and the electrophotographic photosensitive member that does not cause image defects such as memory. It was found that can be realized.
  • polycarbonate, polyarylate resin, etc. are mainly used as the resin used for the outermost surface layer of the photoreceptor.
  • various functional materials are dissolved in a solvent, and this is coated on the conductive substrate by dip coating or spray coating to form a coating film.
  • the resin binder forms a film so as to enclose the functional material, but at the molecular level, voids of a size that cannot be ignored are generated in the film. If this gap is large, it is expected that electrical characteristics will be deteriorated.
  • the electrophotographic photoreceptor of the present invention is an electrophotographic photoreceptor having at least a photosensitive layer on a conductive substrate.
  • the outermost surface layer contains a compound having a structure represented by the following general formula (I).
  • R 1 and R 2 each independently represents an alkyl group having 1 to 12 carbon atoms or a cycloalkyl group having 5 to 12 carbon atoms
  • R 3 represents a hydrogen atom, a halogen atom or a substituted group.
  • the photosensitive layer is preferably the outermost layer.
  • the photosensitive layer comprises a charge generation layer and a charge transport layer, the charge transport layer may be the outermost surface layer, and the photosensitive layer is a positively charged single layer type.
  • the photosensitive layer may be composed of a charge transport layer and a charge generation layer, and the charge generation layer may be the outermost surface layer.
  • a surface protective layer may be provided on the photosensitive layer, and the surface protective layer may be the outermost surface layer.
  • the compound having the structure represented by the general formula (I) those having a structure represented by the following formula (I-1) are preferable. Furthermore, in the photoreceptor of the present invention, the addition amount of the compound having the structure represented by the general formula (I) is preferably 30 with respect to 100 parts by mass of the resin binder contained in the layer containing the compound. Not more than part by mass.
  • the method for producing an electrophotographic photoreceptor of the present invention is a method for producing an electrophotographic photoreceptor including a step of forming an outermost surface layer by applying a coating solution on a conductive substrate.
  • the coating solution contains a compound having a structure represented by the general formula (I).
  • the electrophotographic apparatus of the present invention is characterized in that the electrophotographic photoreceptor of the present invention is mounted.
  • the above-mentioned predetermined compound is contained in the layer forming the surface of the photoreceptor such as the photosensitive layer or the surface protective layer, so that the contamination resistance is improved regardless of the characteristics of the charge transporting material used. It is possible to realize a photoconductor that can be improved and has less fluctuation in electrical and image characteristics due to environmental fluctuation. Further, in the present invention, it is possible to realize a photoconductor with less variation in electrical and image characteristics due to environmental variation by using the predetermined compound in the intermediate layer. Therefore, according to the present invention, the electrophotographic photoreceptor is improved in stability of electric characteristics and free from image troubles such as memory without being influenced by the kind of organic substance used and the temperature or humidity of the use environment. Can be realized.
  • FIG. 1 is a schematic configuration diagram illustrating a configuration example of an electrophotographic apparatus of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an electrophotographic photosensitive member according to an example of the present invention.
  • FIG. 1 (a) shows an example of a negatively charged function-separated laminated type electrophotographic photosensitive member, and FIG. An example of a charged single layer type electrophotographic photoreceptor is shown, and (c) shows an example of a positively charged function-separated laminated type electrophotographic photoreceptor.
  • a photosensitive layer comprising an undercoat layer 2, a charge generation layer 4 having a charge generation function, and a charge transport layer 5 having a charge transport function on a conductive substrate 1.
  • Layer 3 is sequentially laminated.
  • an undercoat layer 2 and a single photosensitive layer 3 having both a charge generation function and a charge transport function are sequentially laminated on the conductive substrate 1.
  • a photosensitive layer 3 comprising an undercoat layer 2, a charge transport layer 5 having a charge transport function and a charge generation layer 4 having a charge generation function on a conductive substrate 1. are sequentially stacked.
  • the undercoat layer 2 may be provided as necessary, and a surface protective layer 6 may be further provided on the photosensitive layer 3.
  • the “photosensitive layer” is a concept including both a laminated type photosensitive layer in which a charge generation layer and a charge transport layer are laminated, and a single layer type photosensitive layer.
  • any of the photosensitive layer and the surface protective layer constituting the outermost surface layer of the photoreceptor contains a compound having the structure represented by the general formula (I). That is, when a photosensitive member having a structure in which the outermost surface layer is a photosensitive layer, the desired effect of the present invention can be obtained by incorporating such a compound in the photosensitive layer.
  • the photosensitive layer is a negatively charged laminate type photoreceptor composed of a charge generation layer and a charge transport layer, and the outermost surface layer is a charge transport layer, the compound for the charge transport layer is contained. The desired effect of the present invention can be obtained.
  • the desired effect of the present invention can be obtained by including the compound for the single layer type photosensitive layer. Can do. Furthermore, in the case where the photosensitive layer is a positively charged laminated type photoreceptor composed of a charge transport layer and a charge generation layer, and the outermost surface layer is a charge generation layer, by adding a compound related to the charge generation layer, The desired effect of the present invention can be obtained. On the other hand, when the photosensitive layer is provided with a surface protective layer and the surface protective layer is the outermost surface layer, the desired effect of the present invention can be obtained by adding a compound for the surface protective layer. Can be obtained.
  • the addition amount of the compound in the outermost surface layer should be 30 parts by mass or less with respect to 100 parts by mass of the resin binder contained in the layer containing the compound.
  • the range of 1 to 30 parts by mass is more preferable, and the range of 3 to 25 parts by mass is particularly preferable. Since the precipitation will generate
  • the amount used when the compound is contained in a layer other than the photosensitive layer is the same as described above.
  • the conductive substrate 1 serves as a support for each layer constituting the photosensitive member as well as serving as one electrode of the photosensitive member, and may be any shape such as a cylindrical shape, a plate shape, or a film shape. May be a metal such as aluminum, stainless steel, nickel or the like, or a surface of glass, resin or the like subjected to a conductive treatment.
  • the undercoat layer 2 is composed of a resin-based layer or a metal oxide film such as alumite, for controlling the charge injection property from the conductive substrate to the photosensitive layer, or covering defects on the substrate surface, It is provided as necessary for the purpose of improving the adhesion between the photosensitive layer and the base.
  • the resin material used for the undercoat layer include insulating polymers such as casein, polyvinyl alcohol, polyamide, melamine, and cellulose, and conductive polymers such as polythiophene, polypyrrole, and polyaniline. These resins are used alone or They can be used in combination as appropriate. These resins can also contain metal oxides such as titanium dioxide and zinc oxide.
  • the charge generation layer 4 is formed by a method such as applying a coating solution in which particles of a charge generation material are dispersed in a resin binder, and receives light to generate charges. Further, at the same time as the charge generation efficiency is high, the injection property of the generated charges into the charge transport layer 5 is important, the electric field dependency is small, and it is desirable that the injection is good even at a low electric field.
  • charge generation materials include phthalocyanines such as X-type metal-free phthalocyanine, ⁇ -type metal-free phthalocyanine, ⁇ -type titanyl phthalocyanine, ⁇ -type titanyl phthalocyanine, Y-type titanyl phthalocyanine, ⁇ -type titanyl phthalocyanine, amorphous-type titanyl phthalocyanine, and ⁇ -type copper phthalocyanine.
  • phthalocyanines such as X-type metal-free phthalocyanine, ⁇ -type metal-free phthalocyanine, ⁇ -type titanyl phthalocyanine, ⁇ -type titanyl phthalocyanine, Y-type titanyl phthalocyanine, ⁇ -type titanyl phthalocyanine, amorphous-type titanyl phthalocyanine, and ⁇ -type copper phthalocyanine.
  • polycarbonate resin polyester resin, polyamide resin, polyurethane resin, vinyl chloride resin, vinyl acetate resin, phenoxy resin, polyvinyl acetal resin, polyvinyl butyral resin, polystyrene resin, polysulfone resin, diallyl phthalate Resins, polymers and copolymers of methacrylic ester resins, and the like can be used in appropriate combinations.
  • the film thickness is determined by the light absorption coefficient of the charge generation material, and is generally 1 ⁇ m or less, and preferably 0.5 ⁇ m or less.
  • the charge generation layer can also be used with a charge generation material as a main component and a charge transport material or the like added thereto.
  • the amount of the charge generation material used in the charge generation layer 4 is preferably 30 to 90 parts by mass, and more preferably 40 to 80 parts by mass with respect to 100 parts by mass of the resin binder.
  • the content of the resin binder is preferably 10 to 90% by mass, and more preferably 20 to 80% by mass with respect to the solid content of the charge generation layer 4.
  • the charge transport layer 5 is mainly composed of a charge transport material and a resin binder.
  • resin binder of the charge transport layer 5 various polycarbonate resins such as bisphenol A type, bisphenol Z type, bisphenol A type-biphenyl copolymer, bisphenol Z type-biphenyl copolymer, polyarylate resin, polyphenylene resin, polyester resin , Polyvinyl acetal resin, polyvinyl butyral resin, polyvinyl alcohol resin, vinyl chloride resin, vinyl acetate resin, polyethylene resin, polypropylene resin, acrylic resin, polyurethane resin, epoxy resin, melamine resin, silicone resin, polyamide resin, polystyrene resin, polyacetal resin , Polysulfone resin, methacrylic acid ester polymer, and copolymers thereof can be used alone or in appropriate combination. Moreover, you may mix and use the same kind of resin from which molecular weight differs.
  • charge transport material used for the charge transport layer 5 various hydrazone compounds, styryl compounds, diamine compounds, butadiene compounds, indole compounds and the like can be used alone or in appropriate combination.
  • Examples of such a charge transport material include, but are not limited to, those shown in the following (II-1) to (II-16).
  • the amount of the charge transport material used in the charge transport layer 5 is preferably 50 to 90 parts by weight, more preferably 60 to 80 parts by weight with respect to 100 parts by weight of the resin binder.
  • the content of the resin binder is preferably 10 to 90% by mass, more preferably 20 to 80% by mass with respect to the solid content of the charge transport layer 5.
  • the thickness of the charge transport layer 5 is preferably in the range of 3 to 50 ⁇ m and more preferably in the range of 15 to 40 ⁇ m in order to maintain a practically effective surface potential.
  • the photosensitive layer 3 in the case of a single layer type is mainly composed of a charge generation material, a hole transport material, an electron transport material (acceptor compound) and a resin binder.
  • a phthalocyanine pigment for example, a phthalocyanine pigment, an azo pigment, an anthrone pigment, a perylene pigment, a perinone pigment, a polycyclic quinone pigment, a squarylium pigment, a thiapyrylium pigment, a quinacridone pigment, or the like can be used. It can.
  • charge generation materials can be used alone or in combination of two or more.
  • the azo pigment disazo pigment, trisazo pigment, and perylene pigment as N, N′-bis (3,5-dimethylphenyl) -3, 4: 9
  • the 10-perylene-bis (carboximide) and phthalocyanine pigments are preferably metal-free phthalocyanine, copper phthalocyanine, and titanyl phthalocyanine.
  • titanyl phthalocyanine having a maximum Bragg angle 2 ⁇ of 9.6 ° in the CuK ⁇ : X-ray diffraction spectrum described in US Pat. No. 5,736,282 and US Pat. No. 5,874,570 is used, sensitivity, durability and image quality are improved. The effect is remarkably improved in terms of points.
  • the content of the charge generating material is preferably 0.1 to 20% by mass, and more preferably 0.5 to 10% by mass with respect to the solid content of the single-layer type photosensitive layer 3.
  • the hole transport material for example, hydrazone compound, pyrazoline compound, pyrazolone compound, oxadiazole compound, oxazole compound, arylamine compound, benzidine compound, stilbene compound, styryl compound, poly-N-vinylcarbazole, polysilane, etc. are used. can do. Moreover, these hole transport materials can be used alone or in combination of two or more.
  • a material suitable for combination with a charge generation material is preferable.
  • the content of the hole transport material is preferably 3 to 80% by mass, and more preferably 5 to 60% by mass with respect to the solid content of the single-layer type photosensitive layer 3.
  • Electron transport materials include succinic anhydride, maleic anhydride, dibromosuccinic anhydride, phthalic anhydride, 3-nitrophthalic anhydride, 4-nitrophthalic anhydride, pyromellitic anhydride, pyromellitic acid , Trimellitic acid, trimellitic anhydride, phthalimide, 4-nitrophthalimide, tetracyanoethylene, tetracyanoquinodimethane, chloranil, bromanyl, o-nitrobenzoic acid, malononitrile, trinitrofluorenone, trinitrothioxanthone, dinitrobenzene, Dinitroanthracene, dinitroacridine, nitroanthraquinone, dinitroanthraquinone, thiopyran compounds, quinone compounds, benzoquinone compounds, diphenoquinone compounds, naphthoquinone compounds, anthraquinone compounds, stilbes Quinone compounds, mention may be made
  • various polycarbonate resins such as bisphenol A type, bisphenol Z type, bisphenol A type-biphenyl copolymer, bisphenol Z type-biphenyl copolymer, polyphenylene resin, polyester resin, polyvinyl Acetal resin, polyvinyl butyral resin, polyvinyl alcohol resin, vinyl chloride resin, vinyl acetate resin, polyethylene resin, polypropylene resin, acrylic resin, polyurethane resin, epoxy resin, melamine resin, silicone resin, polyamide resin, polystyrene resin, polyacetal resin, poly An arylate resin, a polysulfone resin, a polymer of methacrylic acid ester and a copolymer thereof can be used. Furthermore, the same kind of resins having different molecular weights may be mixed and used.
  • the content of the resin binder is preferably 10 to 90% by mass, more preferably 20 to 80% by mass with respect to the solid content of the single-layer type photosensitive layer 3.
  • the film thickness of the single-layer type photosensitive layer 3 is preferably in the range of 3 to 100 ⁇ m and more preferably in the range of 5 to 40 ⁇ m in order to maintain a practically effective surface potential.
  • the charge transport layer 5 is mainly composed of a charge transport material and a resin binder.
  • the charge transporting material and the resin binder the same materials as those mentioned for the charge transporting layer 5 in the negatively charged laminated photoreceptor can be used, and there is no particular limitation. Further, the content of each material and the film thickness of the charge transport layer 5 can be the same as those of the negatively charged laminated photoreceptor.
  • the charge generation layer 4 provided on the charge transport layer 5 is mainly composed of a charge generation material, a hole transport material, an electron transport material (acceptor compound), and a resin binder.
  • a charge generation material As the charge generation material, the hole transport material, the electron transport material, and the resin binder, the same materials as those mentioned for the single layer type photosensitive layer 3 in the single layer type photoreceptor can be used, and there is no particular limitation.
  • the content of each material and the film thickness of the charge generation layer 4 can be the same as those of the single-layer type photosensitive layer 3 in the single-layer type photoreceptor.
  • the undercoat layer 2, the photosensitive layer 3, the charge generation layer 4 and the charge transport layer 5 have improved sensitivity, decreased residual potential, improved environmental resistance and stability against harmful light, Various additives can be used as needed for the purpose of improving high durability including friction.
  • Additives include compounds having the structure represented by the general formula (I), succinic anhydride, maleic anhydride, dibromosuccinic anhydride, pyromellitic anhydride, pyromellitic acid, trimellitic acid, trimellitic anhydride Compounds such as acid, phthalimide, 4-nitrophthalimide, tetracyanoethylene, tetracyanoquinodimethane, chloranil, bromanyl, o-nitrobenzoic acid, and trinitrofluorenone can be used.
  • deterioration inhibitors such as antioxidants and light stabilizers can be added.
  • Compounds used for this purpose include chromanol derivatives such as tocopherol and ether compounds, ester compounds, polyarylalkane compounds, hydroquinone derivatives, diether compounds, benzophenone derivatives, benzotriazole derivatives, thioether compounds, phenylenediamine derivatives, phosphonic acids Examples include, but are not limited to, esters, phosphites, phenol compounds, hindered phenol compounds, linear amine compounds, cyclic amine compounds, hindered amine compounds, and the like.
  • silicone oil, fluorine oil, etc. are used for the purpose of improving the leveling property of the formed film and imparting further lubricity. These leveling agents can also be included. Furthermore, metal oxides such as silicon oxide (silica), titanium oxide, zinc oxide, calcium oxide, aluminum oxide (alumina), zirconium oxide, etc.
  • Metal sulfides such as barium sulfate and calcium sulfate, metal nitride fine particles such as silicon nitride and aluminum nitride, or fluorine resin particles such as tetrafluoroethylene resin, and particles such as fluorine-based comb-type graft polymerization resin You may contain. Furthermore, if necessary, other known additives can be contained as long as the electrophotographic characteristics are not significantly impaired.
  • a surface protective layer 6 can be provided on the surface of the photosensitive layer as necessary for the purpose of further improving environmental resistance and mechanical strength.
  • the surface protective layer 6 is preferably made of a material having excellent durability against mechanical stress and environmental resistance, and has a capability of transmitting light sensitive to the charge generation layer with as low loss as possible.
  • the surface protective layer 6 is made of a layer mainly composed of a resin binder or an inorganic thin film such as amorphous carbon.
  • resin binders silicon oxide (silica), titanium oxide, zinc oxide, calcium oxide, aluminum oxide (alumina), oxidation are used for the purpose of improving conductivity, reducing friction coefficient, and imparting lubricity.
  • Metal oxides such as zirconium, metal sulfides such as barium sulfate and calcium sulfate, fine particles of metal nitrides such as silicon nitride and aluminum nitride, fluorine-based resins such as tetrafluoroethylene resin, fluorine-based comb-type graft polymerization resins Or the like.
  • the surface protective layer 6 may contain a compound having a structure represented by the general formula (I) according to the present invention.
  • a charge transport material or an electron acceptor used in the photosensitive layer is included, or for the purpose of improving the leveling property of the formed film or imparting lubricity, silicone oil or fluorine Leveling agents such as oils can also be included.
  • the film thickness of the surface protective layer 6 itself depends on the composition of the surface protective layer, but can be arbitrarily set within a range where there is no adverse effect such as an increase in residual potential when repeatedly used. it can.
  • a coating liquid is applied on a conductive substrate to form an outermost surface layer.
  • a compound having the structure represented by the general formula (I) is added.
  • the inclusion point is important, and this makes it possible to improve the contamination resistance regardless of the characteristics of the charge transport material used, etc., and to realize a photoconductor with less fluctuation in electrical and image characteristics due to environmental fluctuations. It becomes.
  • the coating solution for forming the outermost surface layer is a photosensitive layer, particularly a charge transporting layer forming coating solution in the case of a charge transporting layer, and a charge generating layer forming agent in the case of a charge generating layer.
  • the coating solution is a coating solution for forming a single-layer type photosensitive layer in the case of a single-layer type photosensitive layer, and is a coating solution for forming a surface protective layer when the outermost surface layer is a surface protective layer.
  • a coating solution can be applied to various coating methods such as a dip coating method or a spray coating method, and is not limited to any coating method.
  • the electrophotographic photosensitive member of the present invention is a device on which the photosensitive member of the present invention is mounted, and the desired effect can be obtained by applying it to various machine processes. Specifically, a charging process such as a contact charging method using a charging member such as a roller or a brush, a non-contact charging method using a corotron, scorotron, etc., and a non-magnetic one component, a magnetic one component, a two component, etc. A sufficient effect can be obtained even in development processes such as contact development and non-contact development using the above development system (developer).
  • developer developer
  • the present invention uses a rubber roller using a rubber such as silicone rubber, urethane rubber, chloroprene rubber, epichlorohydrin rubber, acrylonitrile-butadiene rubber (NBR), ethylene-propylene-diene rubber (EPDM) as the charging roller or transfer roller. It is preferable because it can exhibit good contamination resistance.
  • a rubber such as silicone rubber, urethane rubber, chloroprene rubber, epichlorohydrin rubber, acrylonitrile-butadiene rubber (NBR), ethylene-propylene-diene rubber (EPDM)
  • FIG. 2 shows a schematic configuration diagram of an electrophotographic apparatus according to the present invention.
  • the illustrated electrophotographic apparatus 60 includes the electrophotographic photoreceptor 7 of the present invention including the conductive substrate 1, the undercoat layer 2 coated on the outer peripheral surface thereof, and the photosensitive layer 300.
  • the electrophotographic apparatus of the present invention includes at least a photosensitive layer on a conductive substrate, and an outermost surface layer containing the predetermined compound, and the electrophotographic photoreceptor of the present invention and at least a charging roller. .
  • the illustrated electrophotographic apparatus 60 includes a roller charging member 21, a high-voltage power supply 22 that supplies an applied voltage to the roller charging member 21, an image exposure member 23, A developing device 24 having a developing roller 241, a paper feeding member 25 having a paper feeding roller 251 and a paper feeding guide 252, a transfer charger (direct charging type) 26, and a cleaning device 27 having a cleaning blade 271. , And a neutralizing member 28, which can be a color printer.
  • Example 1 On the outer periphery of an aluminum cylinder having an outer diameter of 30 mm as a conductive substrate, as an undercoat layer, 5 parts by mass of alcohol-soluble nylon (trade name “Amilan CM8000”, manufactured by Toray Industries, Inc.) and aminosilane-treated titanium oxide fine particles 5 A coating solution prepared by dissolving and dispersing parts by mass in 90 parts by mass of methanol was dip coated and dried at a temperature of 100 ° C. for 30 minutes to form an undercoat layer having a thickness of about 2 ⁇ m.
  • alcohol-soluble nylon trade name “Amilan CM8000”, manufactured by Toray Industries, Inc.
  • a coating solution prepared by dissolving and dispersing parts by mass in 90 parts by mass of methanol was dip coated and dried at a temperature of 100 ° C. for 30 minutes to form an undercoat layer having a thickness of about 2 ⁇ m.
  • Y-type titanyl phthalocyanine described in JP-A No. 64-17066 or US Pat. No. 4,898,799 as a charge generation material
  • polyvinyl butyral as a resin binder 1.5 parts by mass of a product name “ESREC B BX-1” (manufactured by Sekisui Chemical Co., Ltd.) was prepared by dispersing for 1 hour in a sand mill disperser in 60 parts by mass of an equivalent mixture of dichloromethane and dichloroethane.
  • the coating solution was dip coated and dried at a temperature of 80 ° C. for 30 minutes to form a charge generation layer having a thickness of about 0.3 ⁇ m.
  • the produced photoreceptor was brought into contact with a charging roller (rubber roller) and a transfer roller (rubber roller) mounted on a printer LJ4250 manufactured by HP, and left for 30 days at a temperature of 60 ° C. and a humidity of 90%.
  • Examples 2 to 72 An electrophotographic photoreceptor is prepared in the same manner as in Example 1, except that the compound represented by the formula (I-1) is changed to the compounds represented by the formulas (I-2) to (I-72). Produced. The produced photoreceptor was left for 30 days in the same manner as in Example 1.
  • Example 73 An electrophotographic photoreceptor was produced in the same manner as in Example 1 except that the amount of the compound represented by the formula (I-1) was 1.0 parts by mass. The produced photoreceptor was left for 30 days in the same manner as in Example 1.
  • Example 74 An electrophotographic photoreceptor was produced in the same manner as in Example 1 except that the amount of the compound represented by the formula (I-1) was changed to 3.0 parts by mass. The produced photoreceptor was left for 30 days in the same manner as in Example 1.
  • Example 75 An electrophotographic photoreceptor was produced in the same manner as in Example 1 except that the amount of the compound represented by the formula (I-1) was changed to 6.0 parts by mass. The produced photoreceptor was left for 30 days in the same manner as in Example 1.
  • Example 76 Except for the compound represented by the formula (I-1) and the silicone oil from the coating liquid for charge transport layer used in Example 1, the charge transport layer was formed in a film thickness of 20 ⁇ m in the same manner as in Example 1. A charge transport layer was formed. Thereafter, further 80 parts by mass of the compound represented by the structural formula (II-1) as a charge transport material and 120 parts by mass of a polycarbonate resin (PCZ-500, manufactured by Mitsubishi Gas Chemical Co., Ltd.) as a resin binder are further formed thereon.
  • PCZ-500 polycarbonate resin
  • Example 77 3.0 parts by mass of the compound represented by the formula (I-1) is added to the undercoat layer, and the addition amount of the compound represented by the formula (I-1) in the charge transport layer is 3.0 parts by mass.
  • An electrophotographic photoreceptor was produced in the same manner as in Example 1 except that. The produced photoreceptor was left for 30 days in the same manner as in Example 1.
  • Example 78 3.0 parts by mass of the compound represented by the formula (I-1) was added to the charge generation layer, and the addition amount of the compound represented by the formula (I-1) in the charge transport layer was 3.0 parts by mass.
  • An electrophotographic photoreceptor was produced in the same manner as Example 1 except for the above. The produced photoreceptor was left for 30 days in the same manner as in Example 1.
  • Example 79 The compound represented by the formula (I-1) is added in an amount of 3.0 parts by mass to the undercoat layer, 1.0 part by mass is added to the charge generation layer, and the formula (I-1) in the charge transport layer is further added.
  • An electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that the amount of the compound represented by the formula (1) was changed to 3.0 parts by mass. The produced photoreceptor was left for 30 days in the same manner as in Example 1.
  • Example 80 In the same manner as in Example 1, except that the charge generating material used in Example 1 was changed to ⁇ -type titanyl phthalocyanine described in JP-A-61-217050 or US Pat. No. 4,728,592 specification. A photoconductor was prepared. The produced photoreceptor was left for 30 days in the same manner as in Example 1.
  • Example 81 An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the charge generation material used in Example 1 was changed to X-type metal-free phthalocyanine (Dainippon Ink & Chemicals, Fastogen Blue 8120B). The produced photoreceptor was left for 30 days in the same manner as in Example 1.
  • X-type metal-free phthalocyanine Dainippon Ink & Chemicals, Fastogen Blue 8120B
  • Comparative Example 1 An electrophotographic photoreceptor was produced in the same manner as in Example 1 except that the compound represented by the formula (I-1) was not added to the charge transport layer. The produced photoreceptor was left for 30 days in the same manner as in Example 1.
  • Comparative Example 2 In the same manner as in Example 1, except that the compound represented by the formula (I-1) was not added to the charge transport layer and the amount of the resin binder used in the charge transport layer was increased to 110 parts by mass. The body was made. The produced photoreceptor was left for 30 days in the same manner as in Example 1.
  • Comparative Example 3 In the same manner as in Example 1, except that 10 parts by mass of dioctyl phthalate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the charge transport layer instead of adding the compound represented by the formula (I-1). An electrophotographic photoreceptor was prepared. The produced photoreceptor was left for 30 days in the same manner as in Example 1.
  • Comparative Example 4 An electrophotographic photoreceptor was produced in the same manner as in Example 80 except that the compound represented by the formula (I-1) was not used. The produced photoreceptor was left for 30 days in the same manner as in Example 1.
  • Comparative Example 5 An electrophotographic photoreceptor was produced in the same manner as in Example 81 except that the compound represented by the formula (I-1) was not used. The produced photoreceptor was left for 30 days in the same manner as in Example 1.
  • Y-TiOPc represents Y-type titanyl phthalocyanine
  • ⁇ -TiOPc represents ⁇ -type titanyl phthalocyanine
  • X—H 2 Pc represents X-type metal-free titanyl phthalocyanine.
  • Comparative Example 2 in which the amount of the resin binder used in the charge transport layer was increased instead of adding the compound according to the present invention, the sensitivity was slightly slow, and black streaks were generated in the image evaluation of the left photoreceptor. became. From this, it became clear that the effect of using the compound according to the present invention cannot be achieved simply by increasing the amount of the resin binder for the charge transport layer.
  • the photoconductors produced in Examples 1 to 81 and Comparative Examples 1 to 5 were modified so that the surface potential of the photoconductor could be measured, and a two-component development type digital copier (manufactured by Canon Inc., image runner color 2880) and evaluated the potential stability before and after printing 100,000 sheets of a copying machine, and the amount of film scraping due to friction between the image memory and the photosensitive layer of paper or blade. The results are shown in the table below.
  • the image evaluation was performed by reading the presence or absence of a memory phenomenon in which the checkered flag appears in the halftone portion in the print evaluation of the image sample having the checker flag pattern in the first half portion and the halftone portion in the second half portion.
  • the result shows ⁇ if the memory was not observed, ⁇ if the memory was slightly observed, ⁇ if the memory was clearly observed, and the original image and shade appear as well.
  • (Positive) was determined for the image
  • (Negative) was determined for the image in which the density was reversed from that of the original image, that is, when the image was inverted.
  • Example 82 On the outer periphery of an aluminum cylinder having an outer diameter of ⁇ 24 mm as a conductive substrate, 5 parts by mass of alcohol-soluble nylon (trade name “Amilan CM8000”, manufactured by Toray Industries, Inc.) and 5 parts by mass of aminosilane-treated titanium oxide fine particles, A coating solution prepared by dissolving and dispersing in 90 parts by mass of methanol was dip-coated and dried at a temperature of 100 ° C. for 30 minutes to form an undercoat layer having a thickness of about 2 ⁇ m.
  • alcohol-soluble nylon trade name “Amilan CM8000”, manufactured by Toray Industries, Inc.
  • aminosilane-treated titanium oxide fine particles A coating solution prepared by dissolving and dispersing in 90 parts by mass of methanol was dip-coated and dried at a temperature of 100 ° C. for 30 minutes to form an undercoat layer having a thickness of about 2 ⁇ m.
  • a coating solution was prepared by performing a dispersion treatment with a sand grind mill. Using this coating solution, a coating film is formed on the undercoat layer and dried at a temperature of 100 ° C. for 60 minutes to form a single-layer type photosensitive layer having a film thickness of about 25 ⁇ m.
  • a photographic photoreceptor was obtained. The produced photoreceptor was brought into contact with a charging roller (rubber roller) and a transfer roller (rubber roller) mounted on a Brother printer HL-2040, and left for 30 days at a temperature of 60 ° C. and a humidity of 90%.
  • Examples 83-86 The compound represented by the formula (I-1) used in Example 82 was converted into the compound represented by the structural formula (I-5), (I-25), (I-33), (I-49). An electrophotographic photoreceptor was produced in the same manner as in Example 82, except that each was changed. The produced photoreceptor was left for 30 days in the same manner as in Example 82.
  • Comparative Example 6 An electrophotographic photoreceptor was produced in the same manner as in Example 82 except that the compound represented by the formula (I-1) was not used. The produced photoreceptor was left for 30 days in the same manner as in Example 82.
  • Comparative Example 7 An electrophotographic photoreceptor is prepared in the same manner as in Example 82 except that the compound represented by the formula (I-1) used in Example 82 is changed to dioctyl phthalate (manufactured by Wako Pure Chemical Industries, Ltd.). Produced. The produced photoreceptor was left for 30 days in the same manner as in Example 82.
  • the photosensitive member is irradiated with 1.0 ⁇ W / cm 2 of exposure light dispersed at 780 nm using a filter for 5 seconds from the time when the surface potential becomes +600 V, and thereby the surface potential is irradiated.
  • E1 / 2 ⁇ Jcm ⁇ 2
  • sensitivity E50 ⁇ Jcm ⁇ 2
  • the photoconductors prepared in Examples 82 to 86 and Comparative Examples 6 and 7 were placed in an ozone exposure apparatus that can leave the photoconductor in an ozone atmosphere, exposed to ozone at 100 ppm for 2 hours, and then held at the potential. The rate was measured again, the degree of change in retention rate Vk5 before and after ozone exposure was determined, and the ozone exposure retention change rate ( ⁇ Vk5) was expressed as a percentage.
  • the retention rate before ozone exposure and Vk5 1 when the retention rate after ozone exposure and Vk5 2, ozone exposure holding rate of change is calculated by the following equation (2).
  • ⁇ Vk5 Vk5 2 (after ozone exposure) / Vk5 1 (before ozone exposure) (2)
  • X—H 2 Pc represents X-type metal-free phthalocyanine.
  • the photoconductors produced in Examples 82 to 86 and Comparative Examples 6 and 7 were mounted on a Brother printer HL-2040 that was modified so that the surface potential of the photoconductor could be measured, and 10,000 printers were used.
  • the potential stability before and after printing, the amount of film scraping due to friction between the image memory and the photosensitive layer with paper and blades were also evaluated. The results are shown in the table below.
  • the image evaluation was performed by reading the presence or absence of a memory phenomenon in which the checkered flag appears in the halftone portion in the print evaluation of the image sample having the checker flag pattern in the first half portion and the halftone portion in the second half portion.
  • the result shows ⁇ if the memory was not observed, ⁇ if the memory was slightly observed, ⁇ if the memory was clearly observed, and the original image and shade appear as well.
  • (Positive) was determined for the image
  • (Negative) was determined for the image in which the density was reversed from that of the original image, that is, when the image was inverted.
  • Example 87 50 parts by mass of the compound represented by the formula (II-15) as a charge transport material and 50 parts by mass of a polycarbonate resin (trade name “Panlite TS-2050”, manufactured by Teijin Chemicals Ltd.) as a resin binder, A coating solution was prepared by dissolving in 800 parts by mass of dichloromethane. This coating solution was dip-coated on the outer periphery of an aluminum cylinder having an outer diameter of 24 mm as a conductive substrate and dried at a temperature of 120 ° C. for 60 minutes to form a charge transport layer having a thickness of 15 ⁇ m.
  • a polycarbonate resin trade name “Panlite TS-2050”, manufactured by Teijin Chemicals Ltd.
  • a positively charged laminated type photoreceptor was produced.
  • the produced photoreceptor was brought into contact with a charging roller (rubber roller) and a transfer roller (rubber roller) mounted on a Brother printer HL-2040, and left for 30 days at a temperature of 60 ° C. and a humidity of 90%.
  • Example 88 50 parts by mass of the compound represented by the formula (II-15) as a charge transport material, and 50 parts by mass of a polycarbonate resin (trade name “Panlite TS-2050”, manufactured by Teijin Chemicals Ltd.) as a resin binder;
  • a coating solution was prepared by dissolving 1.5 parts by mass of the compound represented by the formula (I-1) in 800 parts by mass of dichloromethane. This coating solution was dip-coated on the outer periphery of an aluminum cylinder having an outer diameter of 24 mm as a conductive substrate and dried at a temperature of 120 ° C. for 60 minutes to form a charge transport layer having a thickness of 15 ⁇ m.
  • Comparative Example 8 An electrophotographic photoreceptor was produced in the same manner as in Example 87 except that the compound represented by the formula (I-1) was not used. The produced photoreceptor was left for 30 days in the same manner as in Example 87.
  • Comparative Example 9 An electrophotographic photoreceptor was prepared in the same manner as in Example 88 except that the compound represented by the formula (I-1) used in Example 88 was changed to dioctyl phthalate (manufactured by Wako Pure Chemical Industries, Ltd.). Produced. The produced photoreceptor was left for 30 days in the same manner as in Example 88.
  • XH 2 Pc represents X-type metal-free phthalocyanine.
  • the image evaluation was performed in the same manner as in Example 82 and the like.
  • Example 82 the potential characteristics of the photoconductor for each use environment from low temperature and low humidity to high temperature and high humidity using the digital copying machine were examined, and image evaluation was also performed at the same time. The results are shown in the table below.
  • the electrophotographic photoreceptor of the present invention exhibits a sufficient effect regardless of various charging processes and development processes, and various processes such as a negative charging process and a positive charging process for the photoreceptor. Is.
  • the electrophotographic photoreceptor by using a specific compound as an additive, the electrical characteristics at the initial stage, when repeatedly used, and when the usage environment conditions change are stable.
  • an electrophotographic photoreceptor free from image defects such as image memory can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

十分な耐汚染性および感光体としての諸特性を満足するとともに、温度湿度環境による影響の小さい電子写真用感光体、その製造方法および電子写真装置を提供する。 導電性基体上に少なくとも感光層を有する電子写真用感光体である。最表面層が、下記一般式(I)で示される構造を有する化合物を含有する。 (式(I)中、R、Rは、それぞれ独立して炭素数1~12のアルキル基または炭素数5~12のシクロアルキル基を示し、Rは、水素原子、ハロゲン原子、置換若しくは無置換の炭素数1~6のアルキル基、置換若しくは無置換の炭素数1~6のアルコキシル基、炭素数6~20のアリール基または複素環基を示し、X、Zは、単結合または置換されてもよい炭素数1~6のアルキレン基を示し、Yは、OCO基またはCOO基を示す)

Description

電子写真用感光体、その製造方法および電子写真装置
 本発明は、電子写真方式のプリンター、複写機、ファクシミリなどに用いられる電子写真用感光体(以下、単に「感光体」とも称する)、その製造方法および電子写真装置に関し、特には、添加剤の改良により優れた耐汚染性等を有する電子写真用感光体、その製造方法および電子写真装置に関する。
 一般に、電子写真用感光体には、暗所で表面電荷を保持する機能や、光を受容して電荷を発生する機能、同じく光を受容して電荷を輸送する機能が要求される。かかる感光体としては、一つの層でこれらの機能を併せ持つ単層の感光層を有する、いわゆる単層型感光体と、主として電荷発生に寄与する層と暗所での表面電荷の保持および光受容時の電荷輸送に寄与する層とに機能分離した層を積層した感光層を有する、いわゆる積層型感光体とがある。
 これらの電子写真用感光体を用いた電子写真法による画像形成には、例えば、カールソン法が適用される。この方式での画像形成は、暗所での感光体への帯電、帯電された感光体表面上への原稿の文字や絵などの静電画像の形成、形成された静電画像のトナーによる現像、および、現像されたトナー像の紙などの支持体への転写定着により行われる。トナー像転写後の感光体は、残留トナーの除去や除電などを行った後に、再使用に供される。
 上述の電子写真用感光体の材料としては、セレン、セレン合金、酸化亜鉛あるいは硫化カドミウムなどの無機光導電性材料を樹脂バインダ中に分散させたものや、ポリ-N-ビニルカルバゾール、9,10-アントラセンジオールポリエステル、ピラゾリン、ヒドラゾン、スチルベン、ブタジエン、ベンジジン、フタロシアニンまたはビスアゾ化合物などの有機光導電性材料を樹脂バインダ中に分散させたもの、あるいは、これらを真空蒸着または昇華させたものなどが利用されている。
 近年、オフィス内のネットワーク化による印刷枚数の増加や、電子写真による軽印刷機の急発展等に伴い、電子写真方式の印字装置には、ますます高耐久性や高感度、さらには高速応答性が求められるようになってきている。また、装置内で発生するオゾンやNOxなどの気体に由来する影響や、使用環境(室温、湿度)の変動による画像特性の変動等が小さいことも、強く要求されている。
 しかし、現在のところ、従来の感光体では、求められる要求特性を必ずしも充分に満足しているとはいえず、以下に述べるような問題点が挙げられる。
 例えば、耐汚染性については、感光体は常に帯電ローラや転写ローラと接触することから、ローラ構成部材の成分がしみ出して感光体の表面が汚染され、ハーフトーン画像において黒スジが発生する問題がある。
 耐汚染性に関しては、特許文献1に示されるように帯電ローラの抵抗層にエチレン・ブチレン共重合体を含む樹脂を用いる方法、特許文献2に示されるように、転写ローラに、ゴム主成分としてエピクロルヒドリン系ゴムを有し、充填剤を含有するゴム組成物を用いる方法が提案されている。しかし、これらの方法では、耐汚染性に対して十分応えることができなかった。
 使用環境における感光体の特性変動については、まず、低温低湿環境での画像特性の悪化が挙げられる。すなわち、低温低湿環境下では、一般的に、見かけ上、感光体の持つ感度特性等が低下することにより、画像濃度の低下や、ハーフトーン画像における階調の悪化といった画像品質の悪化が顕在化することとなる。また、感度特性の悪化に伴う画像メモリが顕著になることもある。これは印字の際、ドラム1回転目に潜像として記録された画像がドラム2回転目以降にも電位の変動を受けた形となり、特に、ハーフトーン画像を印字した場合に、不必要な部分に印字されてしまうといった画像の悪化である。特に、低温低湿環境下においては、印字画像の濃淡が逆転するネガメモリが顕著に見られる例が多い。
 次に、高温高湿環境での画像特性悪化が挙げられる。すなわち、高温高湿環境下では、一般的に、感光層中の電荷の移動速度が常温常湿の場合に比べ大きくなり、これが原因となって、印字濃度の過度の増加や、白ベタ画像での微小黒点(カブリ)等の不具合が観察される。印字濃度の過度の増加はトナー消費量の増加につながり、また、1ドット径が大きくなって微細な階調がつぶれる原因となる。また、画像メモリーについても、低温低湿環境下とは逆に、印字画像の濃淡がそのまま反映されたポジメモリが顕著に見られる場合が多い。
 こうした温湿度による特性悪化は、感光層の表面層中の樹脂バインダや電荷発生材料の吸湿や放湿が原因となることが多い。これに対し、特許文献3や特許文献4に示されているように特定の化合物を電荷発生層に添加したり、特許文献5に示されているように特定のポリカーボネート系高分子電荷輸送物質を表面層に用いるなど、これまでに種々の材料検討がなされてきた。しかし、これら感光体に対する温湿度の影響を抑える等といった諸特性を、充分に満足し得る材料は今まで見出されていなかった。
 また、特許文献6、7、8に開示された技術は、上記温度湿度条件による特性悪化の問題を解消し得るものであるが、感光体表面の耐汚染性については必ずしも十分なものではなかった。
 さらに、特許文献9では、感光層の最表面層に、所定のフタル酸エステル化合物と、所定の3次元架橋ポリマーとを含有させる技術が提案されているが、感光体表面の耐汚染性や温湿度の影響については、言及されていない。さらにまた、特許文献10には害虫忌避剤として有用なフタル酸化合物が、特許文献11には、感熱発色層中に4個のエステル基を有する所定の芳香族化合物を含有する感熱記録紙が開示されているが、感光体への使用に関する言及はされていない。
特開平11-160958号 特開2008-164757号 特開平6-118678号 特開平7-168381号 特開2001-13708号 特開2007-279446号 特許第5429654号 特許第5534030号 特開2013-41101号公報 特開昭60-222445号公報 特開昭61-27284号公報
 上記のように、感光体の改良に関しては、従来より種々の技術が提案されている。しかしながら、これらの特許文献に記載された技術は、十分な耐汚染性および感光体としての諸特性を満足しつつ、温度湿度環境による感光体への悪影響を十分に抑制することができるものではなく、更なる改良が求められていた。
 そこで、本発明の目的は、十分な耐汚染性および感光体としての諸特性を満足するとともに、温度湿度環境による影響の小さい電子写真用感光体、その製造方法および電子写真装置を提供することにある。
 本発明者らは、上述の問題を解決するために鋭意検討した結果、感光体の最表面層に特定の構造を有する化合物を添加することにより、使用される電荷輸送物質等の特性によらず、帯電ローラや転写ローラの構成部材からしみ出す成分の感光体表面への侵入が抑えられ、耐汚染性が改善されることを見出した。これにより、本発明者らは、使用する有機物質の種類や使用環境の温度および湿度の変動に左右されず、電気特性の安定性が向上し、メモリー等の画像障害が発生しない電子写真感光体が実現できることを見出した。
 感光体の最表面層に用いられる樹脂としては、現在のところ、主にポリカーボネートやポリアリレート樹脂等が用いられている。感光層を形成する際には、種々の機能材料を溶剤に溶解させ、これを浸漬塗工やスプレー塗工等により導電性基体上に塗工して、塗膜を形成する。この際、樹脂バインダは機能材料を包み込む形で膜を形成することとなるが、分子レベルでは膜中に無視できないほどの大きさの空隙が生じることとなる。この空隙が大きいと、電気特性の悪化を招くことが予想される。
 したがって、樹脂バインダにより形成される空隙を適切な大きさの分子により充填することで、より強固な膜を形成することが可能となり、結果として環境変動による電気および画像特性の悪化を生じない感光体が得られるものと考えられる。本発明者らは、以上の検討の結果、本発明に至ったものである。
 すなわち、本発明の電子写真用感光体は、導電性基体上に少なくとも感光層を有する電子写真用感光体において、
 最表面層が、下記一般式(I)で示される構造を有する化合物を含有することを特徴とするものである。
Figure JPOXMLDOC01-appb-I000004
(式(I)中、R、Rは、それぞれ独立して炭素数1~12のアルキル基または炭素数5~12のシクロアルキル基を示し、Rは、水素原子、ハロゲン原子、置換若しくは無置換の炭素数1~6のアルキル基、置換若しくは無置換の炭素数1~6のアルコキシル基、炭素数6~20のアリール基または複素環基を示し、X、Zは、単結合または置換されてもよい炭素数1~6のアルキレン基を示し、Yは、OCO基またはCOO基を示す)
 本発明の感光体においては、前記感光層が前記最表面層であることが好ましい。この場合、前記感光層が電荷発生層と電荷輸送層とからなり、該電荷輸送層が前記最表面層であるものとすることができ、また、前記感光層が正帯電単層型であるものとすることもでき、さらに、前記感光層が電荷輸送層と電荷発生層とからなり、該電荷発生層が前記最表面層であるものとすることもできる。また、本発明の感光体においては、前記感光層上に表面保護層を備え、該表面保護層が前記最表面層であるものとすることもできる。
 さらに、本発明の感光体において、前記一般式(I)で示される構造を有する化合物としては、下記式(I-1)で示される構造を有するものが好適である。さらにまた、本発明の感光体において、前記一般式(I)で示される構造を有する化合物の添加量は、好適には、該化合物を含有する層に含まれる樹脂バインダ100質量部に対し、30質量部以下とする。
Figure JPOXMLDOC01-appb-I000005
 また、本発明の電子写真用感光体の製造方法は、導電性基体上に塗布液を塗布して最表面層を形成する工程を包含する電子写真用感光体の製造方法において、
 前記塗布液に、上記一般式(I)で示される構造を有する化合物を含有させることを特徴とするものである。
 さらに、本発明の電子写真装置は、上記本発明の電子写真用感光体を搭載したことを特徴とするものである。
 本発明によれば、上記所定の化合物を、感光層や表面保護層等の感光体の表面をなす層に含有させたことで、使用する電荷輸送材料等の特性によらず、耐汚染性を向上できるとともに、環境変動による電気および画像特性の変動の少ない感光体を実現することが可能となった。また、本発明においては、上記所定の化合物を中間の層にも用いることで、環境変動による電気および画像特性の変動がより少ない感光体を実現することが可能である。したがって本発明によれば、使用する有機物質の種類や使用環境の温度ないし湿度の変動に左右されずに、電気特性の安定性が向上し、メモリー等の画像障害が発生しない電子写真用感光体を実現することができるものである。
(a)は、本発明に係る負帯電機能分離積層型電子写真用感光体の一例を示す模式的断面図であり、(b)は、本発明に係る正帯電単層型電子写真用感光体の一例を示す模式的断面図であり、(c)は、本発明に係る正帯電機能分離積層型電子写真用感光体の一例を示す模式的断面図である。 本発明の電子写真装置の一構成例を示す概略構成図である。
 以下、本発明に係る電子写真用感光体の具体的な実施の形態について、図面を用いて詳細に説明する。本発明は、以下の説明により何ら限定されるものではない。
 上述のように、電子写真用感光体は、機能分離型積層型感光体としての、負帯電積層型感光体および正帯電積層型感光体と、主として正帯電型である単層型感光体とに大別される。図1は、本発明の一例の電子写真用感光体を示す模式的断面図であり、(a)は負帯電型の機能分離積層型電子写真用感光体の一例を示し、(b)は正帯電単層型電子写真用感光体の一例を示し、(c)は正帯電型の機能分離積層型電子写真用感光体の一例を示す。
 図示するように、負帯電積層型感光体においては、導電性基体1の上に、下引き層2と、電荷発生機能を備える電荷発生層4および電荷輸送機能を備える電荷輸送層5からなる感光層3とが、順次積層されている。また、正帯電単層型感光体においては、導電性基体1の上に、下引き層2と、電荷発生機能および電荷輸送機能の両機能を併せ持つ単一の感光層3とが、順次積層されている。さらに、正帯電積層型感光体においては、導電性基体1の上に、下引き層2と、電荷輸送機能を備える電荷輸送層5および電荷発生機能を備える電荷発生層4からなる感光層3とが、順次積層されている。なお、いずれのタイプの感光体においても、下引き層2は必要に応じ設ければよく、感光層3の上に、さらに表面保護層6を設けてもよい。また、本発明において「感光層」とは、電荷発生層および電荷輸送層を積層した積層型感光層と、単層型感光層との両方を含む概念である。
 本発明においては、感光体の最表面層を構成する感光層や表面保護層等のいずれかに、前記一般式(I)で示される構造を有する化合物を含有させる点が重要である。すなわち、最表面層が感光層である構成の感光体とする場合には、感光層中にかかる化合物を含有させることで、本発明の所期の効果を得ることができる。この場合、感光層が電荷発生層と電荷輸送層とからなる負帯電積層型感光体であって、最表面層が電荷輸送層である場合には、電荷輸送層にかかる化合物を含有させることで、本発明の所期の効果を得ることができる。また、感光層が正帯電単層型である正帯電単層型感光体である場合には、単層型の感光層にかかる化合物を含有させることで、本発明の所期の効果を得ることができる。さらに、感光層が電荷輸送層と電荷発生層とからなる正帯電積層型感光体であって、最表面層が電荷発生層である場合には、電荷発生層にかかる化合物を含有させることで、本発明の所期の効果を得ることができる。一方、感光層上に表面保護層を備え、表面保護層が最表面層である構成の感光体とする場合には、表面保護層にかかる化合物を含有させることで、本発明の所期の効果を得ることができる。
 上記いずれのタイプの感光体とする場合においても、最表面層における上記化合物の添加量は、上記化合物を含有する層中に含まれる樹脂バインダ100質量部に対し、30質量部以下とすることが好ましく、1~30質量部の範囲がより好ましく、3~25質量部とすることが特に好ましい。上記化合物の使用量が30質量部を超えると、析出が発生するため好ましくない。感光層以外の層に上記化合物を含有させる場合の使用量についても、上記と同様である。
 以下に、本発明に係る一般式(I)で示される構造を有する化合物の具体例を示す。但し、本発明において使用される化合物は、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 導電性基体1は、感光体の一電極としての役目と同時に感光体を構成する各層の支持体ともなるものであり、円筒状や板状、フィルム状などのいずれの形状でもよく、材質的には、アルミニウム、ステンレス鋼、ニッケルなどの金属類、あるいはガラス、樹脂などの表面に導電処理を施したものでもよい。
 下引き層2は、樹脂を主成分とする層やアルマイトなどの金属酸化皮膜からなり、導電性基体から感光層への電荷の注入性を制御するため、または、基体表面の欠陥の被覆や、感光層と下地との接着性の向上などの目的で必要に応じて設けられる。下引き層に用いられる樹脂材料としては、カゼイン、ポリビニルアルコール、ポリアミド、メラミン、セルロースなどの絶縁性高分子、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性高分子が挙げられ、これらの樹脂は単独、あるいは適宜組み合わせて混合して用いることができる。また、これらの樹脂に、二酸化チタンや酸化亜鉛などの金属酸化物を含有させることもできる。
(負帯電積層型感光体)
 負帯電積層型感光体において、電荷発生層4は、電荷発生材料の粒子を樹脂バインダ中に分散させた塗布液を塗布するなどの方法により形成され、光を受容して電荷を発生する。また、その電荷発生効率が高いことと同時に、発生した電荷の電荷輸送層5への注入性が重要であり、電場依存性が少なく、低電場でも注入の良いことが望ましい。
 電荷発生材料としては、X型無金属フタロシアニン、τ型無金属フタロシアニン、α型チタニルフタロシアニン、β型チタニルフタロシアニン、Y型チタニルフタロシアニン、γ型チタニルフタロシアニン、アモルファス型チタニルフタロシアニン、ε型銅フタロシアニンなどのフタロシアニン化合物、各種アゾ顔料、アントアントロン顔料、チアピリリウム顔料、ペリレン顔料、ペリノン顔料、スクアリリウム顔料、キナクリドン顔料等を単独、または適宜組み合わせて用いることができ、画像形成に使用される露光光源の光波長領域に応じて好適な物質を選ぶことができる。
 電荷発生層4の樹脂バインダとしては、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリスチレン樹脂、ポリスルホン樹脂、ジアリルフタレ-ト樹脂、メタクリル酸エステル樹脂の重合体および共重合体などを適宜組合せて使用することが可能である。
 電荷発生層4は電荷発生機能を有すればよいので、その膜厚は電荷発生物質の光吸収係数により決まり、一般的には1μm以下であり、好適には0.5μm以下である。電荷発生層は、電荷発生材料を主体として、これに電荷輸送材料などを添加して使用することも可能である。
 電荷発生層4における電荷発生材料の使用量は、樹脂バインダ100質量部に対し、好適には30~90質量部、より好適には40~80質量部である。また、樹脂バインダの含有量は、電荷発生層4の固形分に対して、好適には10~90質量%、より好適には20~80質量%である。
 電荷輸送層5は、主として電荷輸送材料と樹脂バインダとにより構成される。電荷輸送層5の樹脂バインダとしては、ビスフェノールA型、ビスフェノールZ型、ビスフェノールA型‐ビフェニル共重合体、ビスフェノールZ型‐ビフェニル共重合体などの各種ポリカーボネート樹脂、ポリアリレート樹脂、ポリフェニレン樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、メラミン樹脂、シリコーン樹脂、ポリアミド樹脂、ポリスチレン樹脂、ポリアセタール樹脂、ポリスルホン樹脂、メタクリル酸エステルの重合体およびこれらの共重合体などを、それぞれ単独、あるいは適宜組み合わせで混合して用いることができる。また、分子量の異なる同種の樹脂を混合して用いてもよい。
 電荷輸送層5に用いる電荷輸送材料としては、各種ヒドラゾン化合物、スチリル化合物、ジアミン化合物、ブタジエン化合物、インドール化合物等を単独、あるいは適宜組合せで混合して用いることができる。かかる電荷輸送材料としては、例えば、以下の(II-1)~(II-16)に示すものを例示することができるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000026
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000030
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000032
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000034
Figure JPOXMLDOC01-appb-I000035
Figure JPOXMLDOC01-appb-I000036
Figure JPOXMLDOC01-appb-I000037
Figure JPOXMLDOC01-appb-I000038
Figure JPOXMLDOC01-appb-I000039
Figure JPOXMLDOC01-appb-I000040
 電荷輸送層5における電荷輸送材料の使用量は、樹脂バインダ100質量部に対し、好適には50~90質量部、より好適には60~80質量部である。また、樹脂バインダの含有量は、電荷輸送層5の固形分に対して、好適には10~90質量%、より好適には20~80質量%である。
 なお、電荷輸送層5の膜厚は、実用上有効な表面電位を維持するためには3~50μmの範囲が好ましく、15~40μmの範囲がより好ましい。
(単層型感光体)
 本発明において、単層型の場合の感光層3は、主として電荷発生材料、正孔輸送材料、電子輸送材料(アクセプター性化合物)および樹脂バインダからなる。
 単層型感光体の電荷発生材料としては、例えば、フタロシアニン系顔料、アゾ顔料、アントアントロン顔料、ペリレン顔料、ペリノン顔料、多環キノン顔料、スクアリリウム顔料、チアピリリウム顔料、キナクリドン顔料等を使用することができる。また、これら電荷発生材料は、単独または、2種以上を組み合わせて使用することが可能である。特に、本発明の電子写真用感光体においては、アゾ顔料としては、ジスアゾ顔料、トリスアゾ顔料、ペリレン顔料としては、N,N’-ビス(3,5-ジメチルフェニル)-3,4:9,10-ペリレン-ビス(カルボキシイミド)、フタロシアニン系顔料としては、無金属フタロシアニン、銅フタロシアニン、チタニルフタロシアニンが好ましい。さらには、X型無金属フタロシアニン、τ型無金属フタロシアニン、ε型銅フタロシアニン、α型チタニルフタロシアニン、β型チタニルフタロシアニン、Y型チタニルフタロシアニン、アモルファスチタニルフタロシアニン、特開平8-209023号公報、米国特許第5736282号明細書および米国特許第5874570号明細書に記載のCuKα:X線回析スペクトルにてブラッグ角2θが9.6°を最大ピークとするチタニルフタロシアニンを用いると、感度、耐久性および画質の点で著しく改善された効果を示す。電荷発生材料の含有量は、単層型感光層3の固形分に対して、好適には、0.1~20質量%、より好適には、0.5~10質量%である。
 正孔輸送材料としては、例えば、ヒドラゾン化合物、ピラゾリン化合物、ピラゾロン化合物、オキサジアゾール化合物、オキサゾール化合物、アリールアミン化合物、ベンジジン化合物、スチルベン化合物、スチリル化合物、ポリ-N-ビニルカルバゾール、ポリシラン等を使用することができる。また、これら正孔輸送材料は、単独で、または2種以上を組み合わせて使用することが可能である。本発明において用いられる正孔輸送材料としては、光照射時に発生する正孔の輸送能力が優れていることに加え、電荷発生材料との組み合せにおいて好適なものが好ましい。正孔輸送材料の含有量は、単層型感光層3の固形分に対して、好適には、3~80質量%、より好適には、5~60質量%である。
 電子輸送材料(アクセプター性化合物)としては、無水琥珀酸、無水マレイン酸、ジブロモ無水琥珀酸、無水フタル酸、3-ニトロ無水フタル酸、4-ニトロ無水フタル酸、無水ピロメリット酸、ピロメリット酸、トリメリット酸、無水トリメリット酸、フタルイミド、4-ニトロフタルイミド、テトラシアノエチレン、テトラシアノキノジメタン、クロラニル、ブロマニル、o-ニトロ安息香酸、マロノニトリル、トリニトロフルオレノン、トリニトロチオキサントン、ジニトロベンゼン、ジニトロアントラセン、ジニトロアクリジン、ニトロアントラキノン、ジニトロアントラキノン、チオピラン系化合物、キノン系化合物、ベンゾキノン化合物、ジフェノキノン系化合物、ナフトキノン系化合物、アントラキノン系化合物、スチルベンキノン系化合物、アゾキノン系化合物等を挙げることができる。また、これら電子輸送材料は、単独で、または2種以上組み合わせて使用することが可能である。電子輸送材料の含有量は、単層型感光層3の固形分に対して、好適には、1~50質量%、より好適には、5~40質量%である。
 単層型感光層3の樹脂バインダとしては、ビスフェノールA型、ビスフェノールZ型、ビスフェノールA型-ビフェニル共重合体、ビスフェノールZ型-ビフェニル共重合体などの各種ポリカーボネート樹脂、ポリフェニレン樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、メラミン樹脂、シリコーン樹脂、ポリアミド樹脂、ポリスチレン樹脂、ポリアセタール樹脂、ポリアリレート樹脂、ポリスルホン樹脂、メタクリル酸エステルの重合体およびこれらの共重合体などを用いることができる。さらに、分子量の異なる同種の樹脂を混合して用いてもよい。
 また、樹脂バインダの含有量としては、単層型感光層3の固形分に対して、好適には10~90質量%、より好適には20~80質量%である。
 単層型感光層3の膜厚は、実用的に有効な表面電位を維持するためには3~100μmの範囲が好ましく、5~40μmの範囲がより好ましい。
(正帯電積層型感光体)
 正帯電積層型感光体において、電荷輸送層5は、主として電荷輸送材料と樹脂バインダとにより構成される。かかる電荷輸送材料および樹脂バインダとしては、負帯電積層型感光体における電荷輸送層5について挙げたものと同じ材料を用いることができ、特に制限はない。また、各材料の含有量や電荷輸送層5の膜厚についても、負帯電積層型感光体と同様とすることができる。
 電荷輸送層5上に設けられる電荷発生層4は、主として電荷発生材料、正孔輸送材料、電子輸送材料(アクセプター性化合物)および樹脂バインダからなる。電荷発生材料、正孔輸送材料、電子輸送材料および樹脂バインダとしては、単層型感光体における単層型感光層3について挙げたものと同じ材料を用いることができ、特に制限はない。また、各材料の含有量や電荷発生層4の膜厚についても、単層型感光体における単層型感光層3と同様とすることができる。
 本発明において、上記下引き層2、感光層3、電荷発生層4および電荷輸送層5には、感度の向上、残留電位の減少、あるいは耐環境性や有害な光に対する安定性の向上、耐摩擦性を含めた高耐久性の向上などを目的として、各種添加剤を必要に応じて用いることができる。添加剤としては、前記一般式(I)で示される構造を有する化合物の他、無水コハク酸、無水マレイン酸、ジブロム無水コハク酸、無水ピロメリット酸、ピロメリット酸、トリメリット酸、無水トリメリット酸、フタルイミド、4-ニトロフタルイミド、テトラシアノエチレン、テトラシアノキノジメタン、クロラニル、ブロマニル、o-ニトロ安息香酸、トリニトロフルオレノン等の化合物を使用することができる。また、酸化防止剤や光安定剤などの劣化防止剤を添加することもできる。このような目的に用いられる化合物としては、トコフェロールなどのクロマノール誘導体およびエーテル化合物、エステル化合物、ポリアリールアルカン化合物、ハイドロキノン誘導体、ジエーテル化合物、ベンゾフェノン誘導体、ベンゾトリアゾール誘導体、チオエーテル化合物、フェニレンジアミン誘導体、ホスホン酸エステル、亜リン酸エステル、フェノール化合物、ヒンダードフェノール化合物、直鎖アミン化合物、環状アミン化合物、ヒンダードアミン化合物などが挙げられるが、これらに限定されるものではない。
 また、下引き層2、感光層3、電荷発生層4および電荷輸送層5中には、形成した膜のレベリング性の向上や、さらなる潤滑性の付与を目的として、シリコーンオイルやフッ素系オイルなどのレベリング剤を含有させることもできる。さらに、膜硬度の調整や、摩擦係数の低減、潤滑性の付与等を目的として、酸化ケイ素(シリカ)、酸化チタン、酸化亜鉛、酸化カルシウム、酸化アルミニウム(アルミナ)、酸化ジルコニウム等の金属酸化物、硫酸バリウム、硫酸カルシウム等の金属硫化物、窒化ケイ素、窒化アルミニウム等の金属窒化物の微粒子、または、4フッ化エチレン樹脂等のフッ素系樹脂粒子、フッ素系クシ型グラフト重合樹脂等の粒子を含有してもよい。さらにまた、必要に応じて、電子写真特性を著しく損なわない範囲で、その他公知の添加剤を含有させることもできる。
 さらに、本発明においては、感光層表面に、耐環境性や機械的強度をより向上させる目的で、必要に応じて表面保護層6を設けることができる。表面保護層6は、機械的ストレスに対する耐久性および耐環境性に優れた材料で構成され、電荷発生層が感応する光をできるだけ低損失で透過させる性能を有していることが望ましい。
 表面保護層6は、樹脂バインダを主成分とする層や、アモルファスカーボンなどの無機薄膜からなる。また、樹脂バインダ中には、導電性の向上や、摩擦係数の低減、潤滑性の付与などを目的として、酸化ケイ素(シリカ)、酸化チタン、酸化亜鉛、酸化カルシウム、酸化アルミニウム(アルミナ)、酸化ジルコニウム等の金属酸化物、硫酸バリウム、硫酸カルシウムなどの金属硫化物、窒化ケイ素、窒化アルミニウム等の金属窒化物の微粒子、または4フッ化エチレン樹脂等のフッ素系樹脂、フッ素系クシ型グラフト重合樹脂等の粒子を含有させてもよい。
 表面保護層6には、本発明に係る前記一般式(I)で示される構造を有する化合物を含有させることができる。また、電荷輸送性を付与する目的で、上記感光層に用いられる電荷輸送物質や電子受容物質を含有させたり、形成した膜のレベリング性の向上や潤滑性の付与を目的として、シリコーンオイルやフッ素系オイルなどのレベリング剤を含有させることもできる。
 なお、表面保護層6自体の膜厚は、表面保護層の配合組成にも依存するが、繰り返し連続使用したときに残留電位が増大する等の悪影響が出ない範囲で、任意に設定することができる。
(感光体の製造方法)
 本発明の感光体を製造するに際しては、導電性基体上に塗布液を塗布して最表面層を形成するにあたり、この塗布液中に、前記一般式(I)で示される構造を有する化合物を含有させる点が重要であり、これにより、使用する電荷輸送材料等の特性によらず、耐汚染性を向上できるとともに、環境変動による電気および画像特性の変動の少ない感光体を実現することが可能となる。この最表面層の形成用の塗布液とは、最表面層が感光層、特には、電荷輸送層の場合は電荷輸送層形成用塗布液であり、電荷発生層の場合は電荷発生層形成用塗布液であり、単層型感光層の場合は単層型感光層形成用塗布液であり、最表面層が表面保護層の場合は表面保護層形成用塗布液である。かかる塗布液は、浸漬塗布法または噴霧塗布法等の種々の塗布方法に適用することが可能であり、いずれかの塗布方法に限定されるものではない。
(電子写真装置)
 本発明の電子写真用感光体は、上記本発明の感光体を搭載してなるものであり、各種マシンプロセスに適用することにより所期の効果が得られるものである。具体的には、ローラや、ブラシなどの帯電部材を用いた接触帯電方式、コロトロン、スコロトロンなどを用いた非接触帯電方式等の帯電プロセス、および、非磁性一成分、磁性一成分、二成分などの現像方式(現像剤)を用いた接触現像および非接触現像方式などの現像プロセスにおいても十分な効果を得ることができる。特に、本発明は、帯電ローラや転写ローラとして、シリコーンゴム、ウレタンゴム、クロロプレンゴム、エピクロルヒドリンゴム、アクリロニトリル・ブタジエンゴム(NBR)、エチレン-プロピレン-ジエンゴム(EPDM)等のゴムを用いたゴムローラを用いた際に、良好な耐汚染性を発揮でき、好ましい。
 一例として、図2に、本発明に係る電子写真装置の概略構成図を示す。図示する電子写真装置60は、導電性基体1とその外周面上に被覆された下引き層2、感光層300とを含む、本発明の電子写真用感光体7を搭載する。特には、本発明の電子写真装置は、導電性基体上に少なくとも感光層を有し、最表面層が前記所定の化合物を含有する本発明の電子写真用感光体と、帯電ローラとを少なくとも含む。さらに、図示する電子写真装置60は、感光体7の外周縁部に配置された、ローラ帯電部材21と、このローラ帯電部材21に印加電圧を供給する高圧電源22と、像露光部材23と、現像ローラ241を備えた現像器24と、給紙ローラ251および給紙ガイド252を備えた給紙部材25と、転写帯電器(直接帯電型)26と、クリーニングブレード271を備えたクリーニング装置27と、除電部材28と、から構成され、カラープリンタとすることもできる。
<負帯電積層型感光体の製造例>
実施例1
 導電性基体としての外径φ30mmのアルミニウム円筒の外周に、下引き層として、アルコール可溶性ナイロン(商品名「アミランCM8000」,東レ(株)製 )5質量部と、アミノシラン処理された酸化チタン微粒子5質量部とを、メタノール90質量部に溶解、分散させて調製した塗布液を浸積塗工し、温度100℃で30分間乾燥して、膜厚約2μmの下引き層を形成した。
 上記下引き層上に、電荷発生材料としての特開昭64-17066号公報または米国特許第4898799号明細書に記載されたY型チタニルフタロシアニン1.5質量部と、樹脂バインダとしてのポリビニルブチラール(商品名「エスレックB BX-1」,積水化学工業(株)製)1.5質量部とを、ジクロロメタンとジクロロエタンとの等量混合物60質量部にサンドミル分散機にて1時間分散させて調製した塗布液を浸積塗工し、温度80℃で30分間乾燥して、膜厚約0.3μmの電荷発生層を形成した。
 上記電荷発生層上に、電荷輸送材料としての前記構造式 (II-1)で示される化合物100質量部と、樹脂バインダとしてのポリカーボネート樹脂(商品名「パンライトTS-2050」,帝人化成(株)製)100質量部とをジクロロメタン900質量部に溶解した後、シリコーンオイル(KP-340,信越ポリマー(株)製)を0.1質量部加えて、さらに前記式(I-1)で示される化合物を10質量部加えて調製した塗布液を塗布成膜し、温度90℃で60分間乾燥して、膜厚約25μmの電荷輸送層を形成し、電子写真用感光体を作製した。作製した感光体を、HP社製のプリンタLJ4250に搭載した帯電ローラ(ゴムローラ)および転写ローラ(ゴムローラ)に当接させ、温度60℃で湿度90%環境に30日間放置を行った。
実施例2~72
 前記式(I-1)で示される化合物を、前記式(I-2)~(I-72)で示される化合物にそれぞれ変えた以外は実施例1と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例1と同様に30日間放置を行った。
実施例73
 前記式(I-1)で示される化合物の添加量を1.0質量部とした以外は実施例1と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例1と同様に30日間放置を行った。
実施例74
 前記式(I-1)で示される化合物の添加量を3.0質量部とした以外は実施例1と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例1と同様に30日間放置を行った。
実施例75
 前記式(I-1)で示される化合物の添加量を6.0質量部とした以外は実施例1と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例1と同様に30日間放置を行った。
 実施例76
 実施例1で用いた電荷輸送層用塗布液から前記式(I-1)で示される化合物およびシリコーンオイルを除いて、電荷輸送層を膜厚20μmで形成した以外は実施例1と同様にして電荷輸送層を形成した。その後、さらにその上層に、電荷輸送材料としての前記構造式 (II-1)で示される化合物80質量部と、樹脂バインダとしてのポリカーボネート樹脂(PCZ-500,三菱ガス化学(株)製)120質量部とを、ジクロロメタン900質量部に溶解した後、シリコーンオイル(KP-340,信越ポリマー(株)製)を0.1質量部加え、さらに、前記式(I-1)で示される化合物を12質量部加えて調製した塗布液を塗布成膜し、温度90℃で60分間乾燥して、膜厚約10μmの表面保護層を形成し、電子写真用感光体を作製した。作製した感光体について、実施例1と同様に30日間放置を行った。
 実施例77
 前記式(I-1)で示される化合物を下引き層に3.0質量部加え、さらに、電荷輸送層中の前記式(I-1)で示される化合物の添加量を3.0質量部とした以外は実施例1と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例1と同様に30日間放置を行った。
実施例78
 前記式(I-1)で示される化合物を電荷発生層に3.0質量部加え、電荷輸送層中の前記式(I-1)で示される化合物の添加量を3.0質量部とした以外は実施例1と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例1と同様に30日間放置を行った。
実施例79
 前記式(I-1)で示される化合物を、下引き層に3.0質量部加えるとともに、電荷発生層に1.0質量部加え、さらに、電荷輸送層中の前記式(I-1)で示される化合物の添加量を3.0質量部とした以外は実施例1と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例1と同様に30日間放置を行った。
実施例80
 実施例1で使用した電荷発生材料を、特開昭61-217050号公報または米国特許第4728592号明細書に記載のα型チタニルフタロシアニンに変えた以外は実施例1と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例1と同様に30日間放置を行った。
実施例81
 実施例1で使用した電荷発生材料を、X型無金属フタロシアニン(大日本インキ化学工業製,Fastogen Blue 8120B)に変えた以外は実施例1と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例1と同様に30日間放置を行った。
比較例1
 前記式(I-1)で示される化合物を電荷輸送層に添加しない以外は実施例1と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例1と同様に30日間放置を行った。
比較例2
 前記式(I-1)で示される化合物を電荷輸送層に添加せず、電荷輸送層に用いる樹脂バインダの量を110質量部に増量した以外は実施例1と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例1と同様に30日間放置を行った。
比較例3
 電荷輸送層に、前記式(I-1)で示される化合物を添加しない代わりに、フタル酸ジオクチル(和光純薬工業(株)製)を10質量部添加した以外は実施例1と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例1と同様に30日間放置を行った。
比較例4
 前記式(I-1)で示される化合物を用いない以外は実施例80と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例1と同様に30日間放置を行った。
比較例5
 前記式(I-1)で示される化合物を用いない以外は実施例81と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例1と同様に30日間放置を行った。
(耐汚染性)
 上記実施例1~81および比較例1~5において作製した感光体について、温度60℃で湿度90%環境に30日間放置した後、ハーフトーン画像の画像出しを行い、以下に従い評価した。
 ○:ハーフトーン画像で黒スジ発生無し。
 ×:ハーフトーン画像で黒スジ発生有り。
(電気特性)
 上記実施例1~81および比較例1~5において作製した感光体を、帯電ローラ(ゴムローラ)および転写ローラ(ゴムローラ)を備えるHP社製のプリンタLJ4250に搭載し、下記の方法で評価した。すなわち、感光体表面を暗所にてコロナ放電により-650Vに帯電せしめた後、帯電直後の表面電位V0を測定した。続いて、コロナ放電を暗所で5秒間放置後、表面電位V5を測定し、下記式(1)に従って、帯電後5秒後における電位保持率Vk5(%)を求めた。
           Vk5=V5/V0×100             (1)
 次に、ハロゲンランプを光源とし、フィルターを用いて780nmに分光した露光光を表面電位が-600Vになった時点から感光体に5秒間照射し、表面電位が-300Vとなるまで光減衰するのに要する露光量をE1/2(μJcm-2)、-50Vとなるまで光減衰するのに要する露光量を感度E50(μJcm-2)として求めた。
 また、感光体をオゾン雰囲気下に放置できるオゾン曝露装置内に実施例および比較例にて示した感光体を設置し、100ppm、2時間オゾン曝露した後、上記電位保持率も併せて測定し、オゾン曝露前後の保持率(Vk5)の変化の度合いを百分率にてオゾン曝露保持変化率(ΔVk5)とした。このとき、オゾン曝露前の保持率をVk5とし、オゾン曝露後の保持率をVk5として、下記式(2)に従って、オゾン曝露保持変化率を求めた。
 ΔVk5=VK5(オゾン曝露後)/Vk5(オゾン曝露前)  (2)
 上記測定結果としての、実施例1~81および比較例1~5にて作製した感光体の耐汚染性および電気特性を、下記の表中に示す。
Figure JPOXMLDOC01-appb-T000041
*1)Y-TiOPcはY型チタニルフタロシアニン、α-TiOPcはα型チタニルフタロシアニン、X-HPcはX型無金属チタニルフタロシアニンをそれぞれ示す。
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
 上記表中の結果から、本発明に係る化合物を感光体を構成する各層の添加剤として使用した場合でも、初期の電気特性には大きな影響を及ぼすことがないことが明らかとなった。
 一方、本発明に係る化合物を添加する代わりに電荷輸送層に用いる樹脂バインダの量を増量した比較例2では、感度が若干遅くなり、放置した感光体の画像評価では黒スジが発生する結果となった。このことから、本発明に係る化合物を用いることによる効果は、単に電荷輸送層用の樹脂バインダを増量することではなし得ないものであることが明らかとなった。
 また、電荷発生材料としてのフタロシアニンを変更した場合でも、本発明に係る化合物を使用することによる大きな初期感度の変動はほとんど見られず、かつ、放置した感光体の画像評価では黒スジが発生しなかった。
 次に、上記実施例1~81および比較例1~5において作製した感光体を、感光体の表面電位も測定できるように改造を施した、2成分現像方式のデジタル複写機(キャノン社製,image Runner color 2880)に搭載し、複写機の10万枚印字前後の電位安定性、画像メモリーおよび感光層の紙やブレードとの摩擦による膜削れ量についても評価した。その結果を、下記の表中にそれぞれ示す。
 なお、画像評価は、前半部分にチェッカーフラッグ模様、後半部分にハーフトーンを施した画像サンプルの印字評価において、ハーフトーン部分にチェッカーフラッグが映り込むメモリー現象の有無を読み取ることにより行った。結果は、メモリーが観察されなかったものには○を、メモリーがやや観察されたものには△を、メモリーが明確に観察されたものには×を示し、元の画像と濃淡が同様に現れたものについては(ポジ)の判定、元の画像と濃淡が逆に、すなわち、反転して画像が現れたものについては(ネガ)の判定を行った。
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
 上記表中の結果から、本発明に係る化合物を各層に添加することで、添加しない場合と比べて、初期の実機電気特性には大きな差異は見られないことが明らかとなった。また、このとき、印字後の電位および画像評価において問題が見られることはなかった。
 次に、上記デジタル複写機による、低温低湿から高温高湿までの使用環境ごとの感光体の電位特性を調べ、同時に画像評価も実施した。すなわち、各温度湿度条件下で、ハロゲンランプを光源とし、フィルターを用いて780nmに分光した露光光を表面電位が-600Vになった時点から感光体に5秒間照射して、5秒間照射後の表面電位である残留電位(-V)を測定するとともに、低温低湿および高温高湿での画像評価を、前述と同様にして行った。その結果を、下記の表中に示す。
Figure JPOXMLDOC01-appb-T000049
*2)温度5℃,湿度10%
*3)温度25℃,湿度50%
*4)温度35℃,湿度85%
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
 上記表中の結果から、本発明に係る化合物を用いることで、電位や画像の環境依存性が小さくなり、特に、低温低湿でのメモリが大きく改善されることが明らかとなった。
<正帯電単層型感光体の製造例>
実施例82
 導電性基体としての外径φ24mmのアルミニウム円筒の外周に、アルコール可溶性ナイロン(商品名「アミランCM8000」,東レ(株)製 )5質量部、および、アミノシラン処理された酸化チタン微粒子5質量部を、メタノール90質量部に溶解、分散させて調製した塗布液を浸積塗工し、温度100℃で30分間乾燥して、膜厚約2μmの下引き層を形成した。
 正孔輸送輸送物質としての前記式(II-12)で示されるスチリル化合物7.0質量部と、電子輸送物質としての下記式(III-1)で示される化合物3質量部と、樹脂バインダとしてのポリカーボネート樹脂(商品名「パンライトTS-2050」,帝人化成(株)製)9.6質量部と、シリコーンオイル(商品名「KF-54」,信越ポリマー(株)製)0.04質量部と、前記式(I-1)で示される化合物1.5質量部とを、塩化メチレン100質量部に溶解させ、電荷発生物質としての米国特許第3357989号明細書に記載のX型無金属フタロシアニン0.3質量部を添加した後、サンドグラインドミルにより分散処理を行うことにより塗布液を調製した。この塗布液を用いて、上記下引き層上に塗膜を形成し、温度100℃で60分間乾燥することにより、膜厚約25μmの単層型感光層を形成し、正帯電単層型電子写真用感光体を得た。作製した感光体を、ブラザー社製のプリンターHL‐2040に搭載した帯電ローラ(ゴムローラ)および転写ローラ(ゴムローラ)に当接させ、温度60℃で湿度90%環境に30日間放置を行った。
Figure JPOXMLDOC01-appb-I000053
実施例83~86
 実施例82で使用した前記式(I-1)で示される化合物を、前記構造式(I-5),(I-25),(I-33),(I-49)で示される化合物にそれぞれ変えた以外は実施例82と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例82と同様に30日間放置を行った。
比較例6
 前記式(I-1)で示される化合物を用いない以外は実施例82と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例82と同様に30日間放置を行った。
比較例7
 実施例82で使用した前記式(I-1)で示される化合物をフタル酸ジオクチル(和光純薬工業(株)製)に変えた以外は実施例82と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例82と同様に30日間放置を行った。
(耐汚染性)
 上記実施例82~86および比較例6,7において作製した感光体について、温度60℃で湿度90%環境に30日間放置した後、ハーフトーン画像の画像出しを行い、以下に従い評価した。
 ○:ハーフトーン画像で黒スジ発生無し。
 ×:ハーフトーン画像で黒スジ発生有り。
(電気特性)
 上記実施例82~86および比較例6,7において作製した感光体を、帯電ローラ(ゴムローラ)および転写ローラ(ゴムローラ)を備えるブラザー社製のプリンターHL‐2040に搭載し、下記の方法で評価した。すなわち、まず、感光体表面を暗所にてコロナ放電により+650Vに帯電せしめた後、帯電直後の表面電位V0を測定した。続いて、この感光体を、暗所で5秒間放置した後、表面電位V5を測定し、下記式(1)に従って帯電後5秒後における電位保持率Vk5(%)を求めた。
   Vk5=V5/V0×100     (1)
 次に、ハロゲンランプを光源とし、フィルターを用いて780nmに分光した1.0μW/cmの露光光を、感光体に対し、表面電位が+600Vになった時点から5秒間照射して、表面電位が+300Vとなるまで光減衰するのに要する露光量をE1/2(μJcm-2)、+50Vとなるまで光減衰するのに要する露光量を感度E50(μJcm-2)として求めた。
 また、感光体をオゾン雰囲気下に放置できるオゾン曝露装置内に、上記実施例82~86および比較例6,7において作製した感光体を設置し、100ppmで2時間オゾン曝露した後、上記電位保持率を再度測定し、オゾン曝露前後の保持率Vk5の変化の度合いを求めて、百分率にてオゾン曝露保持変化率(ΔVk5)とした。オゾン曝露前の保持率をVk5とし、オゾン曝露後の保持率をVk5とすると、オゾン曝露保持変化率は下記式(2)により求められる。
 ΔVk5=Vk5(オゾン曝露後)/Vk5(オゾン曝露前) (2)
 上記測定結果としての、実施例82~86および比較例6,7にて作製した感光体の耐汚染性および電気特性を、下記の表中に示す。
Figure JPOXMLDOC01-appb-T000054
*5)X-HPcはX型無金属フタロシアニンを示す。
 上記表中の結果から、本発明に係る化合物を各層に添加剤として使用した場合でも、初期の電気特性には大きな影響を及ぼすことがなく、かつ、帯電ローラや転写ローラの構成部材からしみ出す成分の感光体表面への侵入が抑えられていることが明らかとなった。
 実施例82~86および比較例6,7において作製した感光体を、感光体の表面電位も測定できるように改造を施した、ブラザー社製のプリンターHL-2040に搭載し、プリンターの1万枚印字前後の電位安定性、画像メモリーおよび感光層の紙やブレードとの摩擦による膜削れ量についても評価した。その結果を、下記の表中にそれぞれ示す。
 なお、画像評価は、前半部分にチェッカーフラッグ模様、後半部分にハーフトーンを施した画像サンプルの印字評価において、ハーフトーン部分にチェッカーフラッグが映り込むメモリー現象の有無を読み取ることにより行った。結果は、メモリーが観察されなかったものには○を、メモリーがやや観察されたものには△を、メモリーが明確に観察されたものには×を示し、元の画像と濃淡が同様に現れたものについては(ポジ)の判定、元の画像と濃淡が逆に、すなわち、反転して画像が現れたものについては(ネガ)の判定を行った。
Figure JPOXMLDOC01-appb-T000055
 上記表中の結果から、本発明に係る化合物を各層に添加することで、添加しない場合と比べて、初期の実機電気特性には大きな差異は見られないことが明らかとなった。また、このとき、印字後の電位および画像評価において問題は見られなかった。
 次に、上記プリンターによる、低温低湿から高温高湿までの使用環境ごとの感光体の電位特性を調べ、同時に画像評価も実施した。すなわち、各温度湿度条件下で、ハロゲンランプを光源とし、フィルターを用いて780nmに分光した1.0μW/cmの露光光を、表面電位が+600Vになった時点から感光体に5秒間照射して、5秒間照射後の表面電位である残留電位(V)を測定するとともに、低温低湿および高温高湿での画像評価を、前述と同様にして行った。その結果を下記の表中に示す。
Figure JPOXMLDOC01-appb-T000056
 上記表中の結果から、本発明に係る化合物を用いることで、電位や画像の環境依存性が小さくなり、特に、低温低湿下でのメモリが大きく改善されることが明らかとなった。
<正帯電積層型感光体の製造>
実施例87
 電荷輸送材料としての前記式(II-15)で示される化合物50質量部と、樹脂バインダとしてのポリカーボネート樹脂(商品名「パンライトTS-2050」,帝人化成(株)製)50質量部を、ジクロロメタン800質量部に溶解して、塗布液を調製した。導電性基体としての外径24mmのアルミニウム製円筒の外周に、この塗布液を浸漬塗工し、温度120℃で60分間乾燥して、膜厚15μmの電荷輸送層を形成した。
 この電荷輸送層上に、電荷発生物質としての米国特許第3357989号明細書に記載のX型無金属フタロシアニン1.5質量部と、正孔輸送材料としての前記式(II-15)で示されるスチルベン化合物10質量部と、電子輸送材料としての前記式(III-1)で示される化合物25質量部と、樹脂バインダとしてのポリカーボネート樹脂(商品名「パンライトTS-2050」,帝人化成(株)製)60質量部と、前記式(I-1)で示される化合物1.5質量部とを、1,2-ジクロロエタン800質量部に溶解、分散させて調製した塗布液を浸漬塗工し、温度100℃で60分間乾燥して、膜厚15μmの感光層を形成し、正帯電積層型感光体を作製した。作製した感光体をブラザー社製のプリンターHL-2040に搭載した帯電ローラ(ゴムローラ)および転写ローラ(ゴムローラ)に当接させ、温度60℃で湿度90%環境に30日間放置を行った。
実施例88
 電荷輸送材料としての前記式(II-15)で示される化合物50質量部と、樹脂バインダとしてのポリカーボネート樹脂(商品名「パンライトTS-2050」,帝人化成(株)製)50質量部と、前記式(I-1)で示される化合物1.5質量部とを、ジクロロメタン800質量部に溶解して、塗布液を調製した。導電性基体としての外径24mmのアルミニウム製円筒の外周に、この塗布液を浸漬塗工し、温度120℃で60分間乾燥して、膜厚15μmの電荷輸送層を形成した。
 この電荷輸送層上に、電荷発生物質としての米国特許第3357989号明細書に記載のX型無金属フタロシアニン1.5質量部と、正孔輸送材料としての前記式(II-15)で示されるスチルベン化合物10質量部と、電子輸送材料としての前記式(III-1)で示される化合物25質量部と、樹脂バインダとしてのポリカーボネート樹脂(商品名「パンライトTS-2050」,帝人化成(株)製)60質量部と、前記式(I-1)で示される化合物1.5質量部とを、1,2-ジクロロエタン800質量部に溶解、分散させて調製した塗布液を浸漬塗工し、温度100℃で60分間乾燥して、膜厚15μmの感光層を形成し、正帯電積層型感光体を作製した。作製した感光体について、実施例87と同様に30日間放置を行った。
比較例8
 前記式(I-1)で示される化合物を用いない以外は実施例87と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例87と同様に30日間放置を行った。
比較例9
 実施例88で使用した前記式(I-1)で示される化合物をフタル酸ジオクチル(和光純薬工業(株)製)に変えた以外は実施例88と同様にして、電子写真用感光体を作製した。作製した感光体について、実施例88と同様に30日間放置を行った。
 上記実施例87~88および比較例8,9において作製した感光体を、実施例82等と同様の方法で評価した。
 上記測定結果としての、実施例87~88および比較例8,9にて作製した感光体の耐汚染性および電気特性を、下記の表中に示す。
Figure JPOXMLDOC01-appb-T000057
*6)X-HPcはX型無金属フタロシアニンを示す。
 上記表中の結果から、本発明に係る化合物を各層に添加剤として使用した場合でも、初期の電気特性には大きな影響を及ぼすことがなく、かつ、帯電ローラや転写ローラの構成部材からしみ出す成分の感光体表面への侵入が抑えられていることが明らかとなった。
 次に、実施例87~88および比較例8,9において作製した感光体を、感光体の表面電位も測定できるように改造を施した、ブラザー社製のプリンターHL-2040に搭載し、プリンターの1万枚印字前後の電位安定性、画像メモリーおよび感光層の紙やブレードとの摩擦による膜削れ量についても評価した。その結果を、下記の表中にそれぞれ示す。
 なお、画像評価は、実施例82等と同様の方法で行った。
Figure JPOXMLDOC01-appb-T000058
 上記表中の結果から、本発明に係る化合物を各層に添加することで、添加しない場合と比べて、初期の実機電気特性には大きな差異は見られなかった。また、このとき、印字後の電位および画像評価において問題は見られなかった。
 次に、実施例82等と同様に、上記デジタル複写機による、低温低湿から高温高湿までの使用環境ごとの感光体の電位特性を調べ、同時に画像評価も実施した。その結果を下記の表中に示す。
Figure JPOXMLDOC01-appb-T000059
 上記表中の結果から、本発明に係る化合物を用いることで、電位や画像の環境依存性が小さくなり、特に、低温低湿下でのメモリが大きく改善されることが明らかとなった。
 以上確認してきたとおり、本発明の電子写真用感光体は、種々の帯電プロセスや現像プロセス、感光体に対する負帯電プロセスおよび正帯電プロセスの各種プロセスの如何によらず、十分な効果が発揮されるものである。これにより、本発明によれば、電子写真用感光体において、特定の化合物を添加剤として用いることにより、初期、繰り返し使用時および使用環境条件の変化時における電気特性が安定であって、各条件においても画像メモリー等の画像障害が発生しない電子写真用感光体が実現できることが確かめられた。
1 導電性基体
2 下引き層
3 感光層
4 電荷発生層
5 電荷輸送層
6 表面保護層
7 電子写真用感光体
21 ローラ帯電部材
22 高圧電源
23 像露光部材
24 現像器
241 現像ローラ
25 給紙部材
251 給紙ローラ
252 給紙ガイド
26 転写帯電器(直接帯電型)
27 クリーニング装置
271 クリーニングブレード
28 除電部材
60 電子写真装置
300 感光層

Claims (10)

  1.  導電性基体上に少なくとも感光層を有する電子写真用感光体において、
     最表面層が、下記一般式(I)で示される構造を有する化合物を含有することを特徴とする電子写真用感光体。
    Figure JPOXMLDOC01-appb-I000001
    (式(I)中、R、Rは、それぞれ独立して炭素数1~12のアルキル基または炭素数5~12のシクロアルキル基を示し、Rは、水素原子、ハロゲン原子、置換若しくは無置換の炭素数1~6のアルキル基、置換若しくは無置換の炭素数1~6のアルコキシル基、炭素数6~20のアリール基または複素環基を示し、X、Zは、単結合または置換されてもよい炭素数1~6のアルキレン基を示し、Yは、OCO基またはCOO基を示す)
  2.  前記感光層が前記最表面層である請求項1記載の電子写真用感光体。
  3.  前記感光層が電荷発生層と電荷輸送層とからなり、該電荷輸送層が前記最表面層である請求項2記載の電子写真用感光体。
  4.  前記感光層上に表面保護層を備え、該表面保護層が前記最表面層である請求項1記載の電子写真用感光体。
  5.  前記感光層が正帯電単層型である請求項2記載の電子写真用感光体。
  6.  前記感光層が電荷輸送層と電荷発生層とからなり、該電荷発生層が前記最表面層である請求項2記載の電子写真用感光体。
  7.  前記一般式(I)で示される構造を有する化合物が、下記式(I-1)で示される構造を有する請求項1記載の電子写真用感光体。
    Figure JPOXMLDOC01-appb-I000002
  8.  前記一般式(I)で示される構造を有する化合物の添加量が、該化合物を含有する層に含まれる樹脂バインダ100質量部に対し、30質量部以下である請求項1記載の電子写真用感光体。
  9.  導電性基体上に塗布液を塗布して最表面層を形成する工程を包含する電子写真用感光体の製造方法において、
     前記塗布液に、下記一般式(I)で示される構造を有する化合物を含有させることを特徴とする電子写真用感光体の製造方法。
    Figure JPOXMLDOC01-appb-I000003
    (式(I)中、R、Rは、それぞれ独立して炭素数1~12のアルキル基または炭素数5~12のシクロアルキル基を示し、Rは、水素原子、ハロゲン原子、置換若しくは無置換の炭素数1~6のアルキル基、置換若しくは無置換の炭素数1~6のアルコキシル基、炭素数6~20のアリール基または複素環基を示し、X、Zは、単結合または置換されてもよい炭素数1~6のアルキレン基を示し、Yは、OCO基またはCOO基を示す)
  10.  請求項1記載の電子写真用感光体を搭載したことを特徴とする電子写真装置。
PCT/JP2015/066943 2015-06-11 2015-06-11 電子写真用感光体、その製造方法および電子写真装置 WO2016199283A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177015153A KR20180018473A (ko) 2015-06-11 2015-06-11 전자 사진용 감광체, 그 제조방법 및 전자 사진 장치
PCT/JP2015/066943 WO2016199283A1 (ja) 2015-06-11 2015-06-11 電子写真用感光体、その製造方法および電子写真装置
CN201580066554.4A CN107430358B (zh) 2015-06-11 2015-06-11 电子照相用感光体、其制造方法以及电子照相装置
JP2017523060A JP6311839B2 (ja) 2015-06-11 2015-06-11 電子写真用感光体、その製造方法および電子写真装置
TW105114572A TW201708304A (zh) 2015-06-11 2016-05-11 電子照相用感光體、其製造方法及電子照相裝置
US15/611,934 US10133198B2 (en) 2015-06-11 2017-06-02 Electrophotographic photoreceptor, method for manufacturing same and electrophotographic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066943 WO2016199283A1 (ja) 2015-06-11 2015-06-11 電子写真用感光体、その製造方法および電子写真装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/611,934 Continuation US10133198B2 (en) 2015-06-11 2017-06-02 Electrophotographic photoreceptor, method for manufacturing same and electrophotographic device

Publications (1)

Publication Number Publication Date
WO2016199283A1 true WO2016199283A1 (ja) 2016-12-15

Family

ID=57503293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066943 WO2016199283A1 (ja) 2015-06-11 2015-06-11 電子写真用感光体、その製造方法および電子写真装置

Country Status (6)

Country Link
US (1) US10133198B2 (ja)
JP (1) JP6311839B2 (ja)
KR (1) KR20180018473A (ja)
CN (1) CN107430358B (ja)
TW (1) TW201708304A (ja)
WO (1) WO2016199283A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107193191A (zh) * 2017-06-21 2017-09-22 苏州恒久光电科技股份有限公司 正电性彩色有机光导体涂布方法及其制得的有机光导体
WO2019017160A1 (ja) * 2017-07-21 2019-01-24 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2021107888A (ja) * 2019-12-27 2021-07-29 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511479B2 (ja) * 1972-11-04 1976-01-17
JPS60222445A (ja) * 1984-04-19 1985-11-07 Yoshitomi Pharmaceut Ind Ltd フタル酸化合物
JPS6127284A (ja) * 1984-07-18 1986-02-06 Jujo Paper Co Ltd 感熱記録紙
JP2013004719A (ja) * 2011-06-16 2013-01-07 Hitachi Chem Co Ltd 半導体封止用接着剤、半導体装置の製造方法及び半導体装置
JP5429654B2 (ja) * 2010-03-01 2014-02-26 富士電機株式会社 電子写真用感光体およびその製造方法
JP5534030B2 (ja) * 2010-12-09 2014-06-25 富士電機株式会社 電子写真用感光体およびその製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122444A (en) 1981-01-23 1982-07-30 Canon Inc Electrophotographic receptor
JPS6318355A (ja) 1986-07-10 1988-01-26 Konica Corp 電子写真感光体
GB2201254B (en) 1986-07-10 1989-12-28 Konishiroku Photo Ind Electrophotographic photosensitive material
JP3229975B2 (ja) 1992-07-09 2001-11-19 株式会社リコー 電子写真用感光体
JPH07168381A (ja) 1992-09-24 1995-07-04 Konica Corp 電子写真感光体
JPH06118678A (ja) 1992-10-07 1994-04-28 Konica Corp 電子写真感光体
JP3939775B2 (ja) 1994-10-31 2007-07-04 株式会社リコー 電子写真感光体
JP3533297B2 (ja) * 1995-09-19 2004-05-31 帝人株式会社 ポリカーボネートの製造方法
JPH11160958A (ja) 1997-11-28 1999-06-18 Canon Chemicals Inc 帯電部材及び電子写真装置
US6030733A (en) 1998-02-03 2000-02-29 Ricoh Company, Ltd. Electrophotographic photoconductor with water vapor permeability
JPH11288113A (ja) 1998-02-03 1999-10-19 Ricoh Co Ltd 電子写真感光体
JP3773238B2 (ja) 1999-04-30 2006-05-10 株式会社リコー 電子写真感光体、その物を有するプロセスカートリッジ及び電子写真装置
JP4082875B2 (ja) 2001-03-26 2008-04-30 株式会社リコー 電子写真感光体及び画像形成装置
JP4214903B2 (ja) 2002-12-06 2009-01-28 三菱化学株式会社 電子写真感光体
CN1742236A (zh) 2002-12-06 2006-03-01 三菱化学株式会社 电照相光感受器
WO2004095143A1 (ja) 2002-12-13 2004-11-04 Mitsubishi Chemical Corporation 電子写真感光体、該電子写真感光体を用いたドラムカートリッジおよび画像形成装置
JP4400208B2 (ja) 2002-12-13 2010-01-20 三菱化学株式会社 電子写真感光体、該電子写真感光体を用いたドラムカートリッジおよび画像形成装置
JP2004226637A (ja) 2003-01-22 2004-08-12 Kyocera Mita Corp 単層型電子写真感光体およびそれを有する画像形成装置
JP4798494B2 (ja) 2006-04-07 2011-10-19 富士電機株式会社 電子写真用感光体およびその製造方法
JP2008164757A (ja) 2006-12-27 2008-07-17 Canon Chemicals Inc 導電性ゴムローラ及び転写ローラ
JP5737051B2 (ja) 2011-08-15 2015-06-17 株式会社リコー 電子写真感光体及びその製造方法、画像形成方法、画像形成装置、並びにプロセスカートリッジ
JP2015062056A (ja) * 2013-08-19 2015-04-02 三菱化学株式会社 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511479B2 (ja) * 1972-11-04 1976-01-17
JPS60222445A (ja) * 1984-04-19 1985-11-07 Yoshitomi Pharmaceut Ind Ltd フタル酸化合物
JPS6127284A (ja) * 1984-07-18 1986-02-06 Jujo Paper Co Ltd 感熱記録紙
JP5429654B2 (ja) * 2010-03-01 2014-02-26 富士電機株式会社 電子写真用感光体およびその製造方法
JP5534030B2 (ja) * 2010-12-09 2014-06-25 富士電機株式会社 電子写真用感光体およびその製造方法
JP2013004719A (ja) * 2011-06-16 2013-01-07 Hitachi Chem Co Ltd 半導体封止用接着剤、半導体装置の製造方法及び半導体装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107193191A (zh) * 2017-06-21 2017-09-22 苏州恒久光电科技股份有限公司 正电性彩色有机光导体涂布方法及其制得的有机光导体
WO2019017160A1 (ja) * 2017-07-21 2019-01-24 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置
JPWO2019017160A1 (ja) * 2017-07-21 2020-07-02 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置
US11092904B2 (en) 2017-07-21 2021-08-17 Kyocera Document Solutions Inc. Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2021107888A (ja) * 2019-12-27 2021-07-29 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP7423311B2 (ja) 2019-12-27 2024-01-29 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置

Also Published As

Publication number Publication date
US20170269487A1 (en) 2017-09-21
KR20180018473A (ko) 2018-02-21
TW201708304A (zh) 2017-03-01
JP6311839B2 (ja) 2018-04-18
CN107430358B (zh) 2020-12-11
CN107430358A (zh) 2017-12-01
JPWO2016199283A1 (ja) 2017-09-14
US10133198B2 (en) 2018-11-20

Similar Documents

Publication Publication Date Title
JP4798494B2 (ja) 電子写真用感光体およびその製造方法
JP5534030B2 (ja) 電子写真用感光体およびその製造方法
US10254665B2 (en) Electrophotographic photoreceptor, method for manufacturing the photoreceptor, and electrophotographic apparatus including the photoreceptor
JP6558499B2 (ja) 電子写真用感光体、その製造方法および電子写真装置
JP6432694B2 (ja) 電子写真用感光体、その製造方法および電子写真装置
JP2021128347A (ja) 電子写真用感光体、その製造方法および電子写真装置
US10747129B2 (en) Electrophotographic photoconductor, method of manufacturing the same, and electrophotographic apparatus
TWI414913B (zh) Photographic photoreceptor for electrophotography and method of manufacturing the same
JP6311839B2 (ja) 電子写真用感光体、その製造方法および電子写真装置
JP6620900B2 (ja) 電子写真感光体、その製造方法およびそれを用いた電子写真装置
WO2019142342A1 (ja) 電子写真用感光体、その製造方法および電子写真装置
US20040180279A1 (en) Electrophotographic photoconductor and method of manufacturing the same
JP7346974B2 (ja) 電子写真用感光体、その製造方法およびそれを搭載した電子写真装置
US20200363739A1 (en) Electrophotographic photoreceptor, process for producing the electrophotographic photoreceptor, and electrophotographic device
JP2008250079A (ja) 電子写真感光体
JP4461623B2 (ja) 電子写真用感光体
JP4228333B2 (ja) 電子写真用有機感光体
JP6493527B2 (ja) 電子写真用感光体、その製造方法および電子写真装置
JP2008250071A (ja) 電子写真感光体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523060

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177015153

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894968

Country of ref document: EP

Kind code of ref document: A1