WO2016175086A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2016175086A1
WO2016175086A1 PCT/JP2016/062369 JP2016062369W WO2016175086A1 WO 2016175086 A1 WO2016175086 A1 WO 2016175086A1 JP 2016062369 W JP2016062369 W JP 2016062369W WO 2016175086 A1 WO2016175086 A1 WO 2016175086A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
insulating layer
concentration impurity
impurity region
semiconductor layer
Prior art date
Application number
PCT/JP2016/062369
Other languages
English (en)
French (fr)
Inventor
広西 相地
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2017515494A priority Critical patent/JP6503459B2/ja
Priority to US15/569,283 priority patent/US10468533B2/en
Priority to CN201680024473.2A priority patent/CN107533981B/zh
Publication of WO2016175086A1 publication Critical patent/WO2016175086A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • H01L29/78627Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile with a significant overlap between the lightly doped drain and the gate electrode, e.g. GOLDD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1251Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs comprising TFTs having a different architecture, e.g. top- and bottom gate TFTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof.
  • An active matrix substrate used for a liquid crystal display device or the like includes a switching element such as a thin film transistor (hereinafter, “TFT”) for each pixel.
  • TFT thin film transistor
  • the crystalline silicon TFT can operate faster than the amorphous silicon TFT. Therefore, when a crystalline silicon film is used, not only a TFT provided for each pixel as a switching element (referred to as a “pixel TFT”) but also a drive circuit and various functions formed around the display area (frame area). TFTs constituting peripheral circuits such as circuits (referred to as “driving circuit TFTs”) can also be formed on the same substrate.
  • the pixel TFT is required to have an extremely small off-leakage current. If the off-leakage current is large, flicker, crosstalk, etc. may occur and display quality may be reduced. Therefore, a TFT having an LDD structure (hereinafter abbreviated as “LDD structure TFT”) is used as the pixel TFT.
  • LDD structure TFT LDD structure
  • the “LDD structure TFT” has a low concentration impurity region (Lightly Doped Drain, hereinafter abbreviated as “LDD region”) in at least one of the channel region of the TFT and the source region / drain region.
  • LDD region Lightly Doped Drain
  • an LDD region having a higher resistance than the source / drain region is present between the edge of the gate electrode and the low-resistance source / drain region, so that the LDD region is not provided (“single drain structure”).
  • off-leakage current can be greatly reduced as compared with TFT.
  • an LDD structure TFT may be adopted as a drive circuit TFT.
  • the driving circuit TFT is required to have a large current driving capability, that is, a large on-current.
  • the LDD structure TFT has a resistance in the LDD region, so that the current driving capability is lower than that of the single drain structure TFT. Resulting in.
  • LDD length the length of the LDD region in the channel length direction (LDD length)
  • LDD length channel length
  • higher reliability is required for a TFT for a drive circuit that operates at high speed.
  • GOLD structure TFT Gate Overlapped LDD
  • GOLD structure TFT When a voltage is applied to the gate electrode, electrons serving as carriers are accumulated in the LDD region where the gate electrode overlaps. Resistance can be reduced. For this reason, it is possible to suppress a decrease in the current driving capability of the TFT. Further, by forming the electric field relaxation region under the gate, higher reliability than that of the LDD structure TFT can be secured.
  • LDD structure a structure in which the entire LDD region is not overlapped by the gate electrode
  • GOLD structure a structure in which at least a part of the LDD region is overlapped by the gate electrode
  • Patent Document 1 discloses a method of manufacturing a GOLD structure TFT by using a halftone mask without increasing the number of photomasks.
  • resist patterns having partially different thicknesses are formed by a photolithography process using a halftone mask, and a semiconductor film is etched using the resist patterns as etching masks.
  • impurity doping for forming the LDD region is performed. Accordingly, the semiconductor film can be etched and the LDD region can be formed in one photolithography process, and the number of photomasks can be reduced by one.
  • One embodiment of the present invention has been made in view of the above circumstances, and a main object thereof is to provide a high-definition and high-definition semiconductor device including a TFT having an LDD region. is there.
  • the semiconductor device is a semiconductor device including at least one thin film transistor on a substrate, and the at least one thin film transistor includes a channel region and a high-concentration impurity region including an impurity of a first conductivity type.
  • a low-concentration impurity region that is located between the channel region and the high-concentration impurity region and includes the first conductivity type impurity at a lower concentration than the high-concentration impurity region and higher than the channel region
  • a contact hole reaching the semiconductor layer is provided in the interlayer insulating layer and the gate insulating layer, and at least one of the source electrode and the drain electrode is formed on the interlayer insulating layer and in the contact hole,
  • the side surface of the gate insulating layer and the interlayer insulating layer is in contact with the high concentration impurity region in the contact hole, and the side surface of the contact hole is aligned with the side wall of the contact hole.
  • the edge of the high concentration impurity region
  • the high-concentration impurity region is located inside the low-concentration impurity region when viewed from the normal direction of the substrate.
  • the at least one thin film transistor includes a first thin film transistor, and in the first thin film transistor, a part of the low concentration impurity region is covered with the gate electrode via the gate insulating layer.
  • the at least one thin film transistor includes a second thin film transistor, and in the second thin film transistor, an end portion of the low concentration impurity region on the channel region side is aligned with an end portion of the gate electrode.
  • the low concentration impurity region in the first thin film transistor, includes a first low concentration impurity region that does not overlap the gate electrode through the gate insulating layer, and a second low concentration impurity region that overlaps the gate electrode.
  • the first low-concentration impurity region contains the first conductivity type impurity at a higher concentration than the second low-concentration impurity region.
  • the at least one thin film transistor further includes a second thin film transistor, and in the second thin film transistor, an end of the lightly doped impurity region on the channel region side is aligned with an end of the gate electrode.
  • the low-concentration impurity region includes a third low-concentration impurity region in contact with the high-concentration impurity region and a fourth low-concentration region located closer to the channel region than the third low-concentration impurity region.
  • the third low-concentration impurity region includes the first conductivity type impurity at a higher concentration than the fourth low-concentration impurity region.
  • the first low concentration impurity region of the first thin film transistor and the third low concentration impurity region of the second thin film transistor include the same impurity element, and the first and third low concentration impurity regions are included.
  • the concentration profiles of the first conductivity type impurities in the thickness direction are substantially equal.
  • the thin film transistor further includes another thin film transistor having a conductivity type different from that of the at least one thin film transistor, and the other thin film transistor is positioned between a channel region, a contact region, and the channel region and the contact region.
  • the other gate electrode provided on the gate electrode, the other gate electrode and the interlayer insulating layer extending on the gate insulating layer, and the other semiconductor layer are in contact with each other.
  • Other source electrodes and other drain electrodes, and the interlayer insulating layer and the gate insulating layer are provided with other contact holes reaching the other semiconductor layers, and the other source electrodes and At least one of the other drain electrodes is formed on the interlayer insulating layer and in the other contact hole, in contact with the contact region in the other contact hole, and on the side wall of the other contact hole, the gate insulation
  • the side surfaces of the layer and the interlayer insulating layer are aligned, and the edge of the other contact hole and the edge of the contact region are aligned on the upper surface of the other semiconductor layer.
  • a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device including at least one thin film transistor on a substrate, and (a) a channel region on the substrate is higher than the channel region.
  • a first activation annealing is performed on the low-concentration impurity region before the step (d), and the high-concentration impurity region is performed after the step (d). Second activation annealing is performed.
  • the second activation annealing is performed at a temperature lower than that of the first activation annealing.
  • the step (a) includes a first ion implantation step of implanting the first conductivity type impurity into a part of the semiconductor layer, and the step (d) includes the first ion implantation step.
  • the impurity of the first conductivity type is implanted at a dose or lower acceleration voltage than in the ion implantation process.
  • step (a) in the step (a), at least a part of the low-concentration impurity region overlaps the gate electrode through the gate insulating layer.
  • a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device including at least a first thin film transistor and a second thin film transistor on a substrate, and (a) the first thin film transistor is activated on the substrate.
  • a first gate electrode is formed on a part of the region into which the impurity is implanted and a part to be the channel region, and a part of the second semiconductor layer in which the impurity is not implanted in the first implantation step.
  • First gate on top Forming a pole; and (d) a second implantation step of implanting a first conductivity type impurity into the first and second semiconductor layers using the first and second gate electrodes as a mask.
  • a region of the first semiconductor layer into which impurities are implanted in both the first and second implantation steps is a first low-concentration impurity region, an impurity is implanted in the first implantation step, and The region where the impurity is not implanted in the second implantation step because it is covered with the second gate electrode becomes the second low-concentration impurity region, and the first and second implantation steps of the second semiconductor layer are performed.
  • a region into which impurities are implanted is a third low-concentration impurity region, an impurity is implanted in the second implantation step, and a region in which no impurity is implanted in the first implantation step is a fourth low-concentration impurity region.
  • Second ion implanter (E) forming an interlayer insulating layer on the gate insulating layer, the first gate electrode, and the second gate electrode, and (f) forming a mask on the interlayer insulating layer, using the mask Etching the gate insulating layer and the interlayer insulating layer simultaneously to form a first contact hole exposing a part of the first low-concentration impurity region in the gate insulating layer and the interlayer insulating layer; Forming a second contact hole exposing a part of the concentration impurity region; and (g) forming a part of the first and third low concentration impurity regions through the first and second contact holes.
  • first activation annealing is performed on the first, second, third, and fourth low-concentration impurity regions before the step (g). Thereafter, second activation annealing is performed on the first and second high-concentration impurity regions.
  • the second activation annealing is performed at a temperature lower than that of the first activation annealing.
  • the impurity of the first conductivity type is implanted with a dose amount or a lower acceleration voltage lower than those in the first and second ion implantation steps.
  • the semiconductor device further comprises a third thin film transistor having a conductivity type different from that of the first and second thin film transistors
  • the step (a) includes a step of forming a third semiconductor layer on the substrate, The layer extends also on the third semiconductor layer
  • the step (c) includes a step of forming a third gate electrode on the third semiconductor layer
  • the step (c) a step of forming a third high-concentration impurity region in the third semiconductor layer by injecting a second conductivity type impurity into the third semiconductor layer using the third gate electrode as a mask before e);
  • the interlayer insulating layer is also extended on the third gate electrode
  • the step (f) includes adding the third high-concentration impurity to the gate insulating layer and the interlayer insulating layer.
  • step (g) Expose part of the area Forming a third contact hole, wherein the step (g) implants a first conductivity type impurity into the part of the third high-concentration impurity region through the third contact hole.
  • the first implantation step of the step (b) is performed using first, second, and third masks disposed on the first, second, and third semiconductor layers, respectively.
  • the third mask is a multi-tone mask, and after the first implantation step and before the step (c), the first and second masks are removed and a part of the third mask is removed.
  • a semiconductor device having a high-definition and excellent productivity including a TFT having an LDD region.
  • the number of photomasks used can be reduced.
  • FIGS. 4A and 4B are schematic plan views illustrating semiconductor layers 3A and 3B in the LDD structure TFT 100 and the GOLD structure TFT 200, respectively.
  • FIGS. 4A to 4D are schematic cross-sectional process diagrams illustrating an example of a method for manufacturing the LDD structure TFT 100.
  • FIGS. FIGS. 4A to 4D are schematic cross-sectional process diagrams illustrating an example of a method for manufacturing a TFT 200 having a GOLD structure.
  • FIGS. 9A to 9E are schematic process cross-sectional views illustrating a method for manufacturing the semiconductor device of the second embodiment.
  • (A) is the process flow which manufactures the GOLD structure TFT2000 of a reference example
  • (b) is the process flow which manufactures the GOLD structure TFT200,201.
  • FIGS. 8A to 8F are schematic process cross-sectional views illustrating a method for manufacturing the semiconductor device of the third embodiment.
  • (A) is sectional drawing which illustrates LDD structure TFT1000 and GOLD structure TFT2000 of a reference example
  • (b) and (c) are the top views of semiconductor layers 3D and 3E of LDD structure TFT1000 and GOLD structure TFT2000, respectively. It is.
  • the “semiconductor device” widely includes a substrate on which a functional circuit is formed, an active matrix substrate, and a display device such as a liquid crystal display device or an organic EL display device.
  • the semiconductor device of this embodiment includes a substrate and a plurality of TFTs formed on the substrate.
  • the plurality of TFTs include at least one TFT having an LDD region.
  • the TFT having the LDD region may be an LDD structure TFT or a GOLD structure TFT.
  • both a GOLD structure TFT and an LDD structure TFT formed using a common semiconductor film may be included.
  • FIG. 1A and 1B are schematic cross-sectional views illustrating a TFT having an LDD region in the semiconductor device of this embodiment.
  • FIG. 1A is an LDD structure TFT 100
  • FIG. A GOLD structure TFT 200 is illustrated.
  • 2A and 2B are schematic plan views illustrating semiconductor layers in the LDD structure TFT 100 and the GOLD structure TFT 200, respectively.
  • similar constituent elements are given the same reference numerals or reference numerals using the same numerals.
  • a part of the constituent elements of the LDD structure TFT 100 is denoted by a reference numeral with “A” after the number
  • a part of the constituent elements of the GOLD structure TFT 200 is denoted by a reference numeral with “B” after the number. Used.
  • the LDD structure TFT 100 includes a semiconductor layer 3A formed on the substrate 1, a gate insulating layer 5 covering the semiconductor layer 3A, and a gate electrode 7A formed on the gate insulating layer 5.
  • An interlayer insulating layer 11 that covers the gate electrode 7A and the semiconductor layer 3A, and a source electrode 8A and a drain electrode 9A that are electrically connected to the semiconductor layer 3A.
  • the semiconductor layer 3A has a channel region 31A, a source region 33sA, a drain region 33dA, and an LDD region 32A.
  • the channel region 31A is located between the source region 33sA and the drain region 33dA.
  • the LDD region 32A is sandwiched between the channel region 31A and at least one of the source region 33sA and the drain region 33dA.
  • the source region 33sA and the drain region 33dA are first conductivity type regions (eg, n + -type regions) including a first conductivity type impurity (eg, n-type impurity).
  • the LDD region 32A is a first conductivity type region (for example, an n ⁇ -type region) containing a first conductivity type impurity (for example, an n-type impurity) at a concentration higher than the channel region 31A and lower than the source region 33sA and the drain region 33dA. ).
  • the source region 33sA and the drain region 33dA are collectively referred to as “high concentration impurity region” or “n + type region”, and the LDD region 32A is referred to as “low concentration impurity region” or “n ⁇ type region”. There is.
  • the gate electrode 7A is disposed so as to overlap at least the channel region 31A of the semiconductor layer 3A with the gate insulating layer 5 interposed therebetween.
  • the gate electrode 7A overlaps the channel region 31A and does not overlap the source region 33sA, the drain region 33dA, and the LDD region 32A.
  • the end portion of the gate electrode 7A is aligned with the end portion of the LDD region 32A on the channel region 31A side.
  • the gate insulating layer 5 and the interlayer insulating layer 11 are provided with a source contact hole 13A reaching the source region 33sA of the semiconductor layer 3A and a drain contact hole 14A reaching the drain region 33dA of the semiconductor layer 3A.
  • These contact holes 13A and 14A are formed by etching the gate insulating layer 5 and the interlayer insulating layer 11 simultaneously. Therefore, the side surface of the gate insulating layer 5 and the side surface of the interlayer insulating layer 11 are aligned on the side walls of the source contact hole 13A and the drain contact hole 14A.
  • the source electrode 8A is provided on the interlayer insulating layer 11 and in the source contact hole 13A, and is in contact with the source region 33sA in the source contact hole 13A.
  • the drain electrode 9A is provided on the interlayer insulating layer 11 and in the drain contact hole 14A, and is in contact with the drain region 33dA in the drain contact hole 14A.
  • the source region 33sA and the drain region 33dA are formed by injecting a first conductivity type impurity into the semiconductor layer 3A through the contact holes 13A and 14A.
  • the implantation process through the contact hole is referred to as a “contact doping process”.
  • the edge of the source contact hole 13A and the source region 33sA of the semiconductor layer 3A are aligned.
  • the edge of the drain contact hole 14A is aligned with the drain region 33dA of the semiconductor layer 3A.
  • the term “matching” here may be formed by implantation through the contact hole as described above.
  • the first conductivity type impurity implanted into the semiconductor layer 3A is surrounded by activation annealing. Including the case of diffusion.
  • the surface (contact surface) in contact with the semiconductor layer 3A in the source electrode 8A and the source region 33sA are aligned, and the surface in contact with the semiconductor layer 3A in the drain electrode 9A and the drain region 33dA are aligned. become.
  • a GOLD structure TFT 200 shown in FIG. 1B includes a semiconductor layer 3B formed on the substrate 1, a gate insulating layer 5 covering the semiconductor layer 3B, and a gate electrode 7B formed on the gate insulating layer 5. And an interlayer insulating layer 11 covering the gate electrode 7B and the semiconductor layer 3B, and a source electrode 8B and a drain electrode 9B electrically connected to the semiconductor layer 3B.
  • the semiconductor layer 3B has a channel region 31B, a source region 33sB, a drain region 33dB, and an LDD region 32B.
  • the LDD region 32B is located between the channel region 31B and at least one of the source region 33sB and the drain region 33dB.
  • the LDD region 32B contains the first conductivity type impurity at a concentration higher than that of the channel region 31B and lower than that of the source region 33sB and drain region 33dB (hereinafter referred to as “high concentration impurity region”).
  • the GOLD structure TFT 200 is different from the LDD structure TFT 100 in that the gate electrode 7B is disposed so as to overlap not only the channel region 31B of the semiconductor layer 3B but also a part of the LDD region 32B with the gate insulating layer 5 interposed therebetween. Is different.
  • the LDD region 32B is a portion that does not overlap the gate electrode 7B, that is, a portion located between the source region 33sB and the drain region 33dB and the gate electrode 7B when viewed from the normal direction of the substrate 1 (“LDD portion”). 32 (1) and a portion overlapping with the gate electrode 7B (hereinafter, “GOLD portion”) 32 (2).
  • the GOLD portion 32 (2) may be referred to as a GOLD region or an NM region.
  • the LDD portion 32 (1) and the GOLD portion 32 (2) may contain the impurity element at the same concentration or different concentrations. As will be described later, the LDD portion 32 (1) may contain the first conductivity type impurity at a higher concentration than the GOLD portion 32 (2).
  • the source region 33sB and the drain region 33dB are formed by injecting a first conductivity type impurity into the semiconductor layer 3B through the source contact hole 13B and the drain contact hole 14B, respectively. (Contact doping process). Therefore, on the upper surface of the semiconductor layer 3B, the edges of the contact holes 13B and 14B are aligned with the edges of the source region 33sB and the drain region 33dB of the semiconductor layer 3B, respectively.
  • the semiconductor device of this embodiment may include both the LDD structure TFT 100 and the GOLD structure TFT 200.
  • a plurality of LDD structure TFTs 100 as pixel TFTs and a plurality of GOLD structure TFTs 200 as drive circuit TFTs may be provided on the same substrate 1.
  • the semiconductor layers 3A and 3B can be formed from the same semiconductor film, and the gate electrodes 7A and 7B can be formed from the same conductive film.
  • the gate insulating layer 5 and the interlayer insulating layer 11 may be common to the TFTs 100 and 200.
  • the source regions 33sA and 33sB and the drain regions 33dA and 33dB of the TFTs 100 and 200 may be formed by a common contact doping process. Thereby, the number of photomasks used in the semiconductor device manufacturing process can be reduced.
  • At least one high concentration impurity region of the TFT having the LDD region is formed by a contact doping process, and an electrode (source or drain) is in contact with the high concentration impurity region in the contact hole. Electrode) may be disposed. Therefore, only one of the source and drain regions may be formed by the contact doping process.
  • the “LDD region” refers to a region having an impurity concentration of, for example, 1 ⁇ 10 18 atoms / cm 3 or more and lower than the impurity concentration of the source / drain regions. Therefore, the semiconductor layer does not include a region containing impurities at an extremely low concentration (less than 1 ⁇ 10 18 atoms / cm 3 ). For example, a part of the impurity implanted into the LDD region may diffuse to the channel region under the gate electrode. However, since the impurity concentration of the portion where the impurity is diffused is considered to be extremely low, such a portion is It is not included in the “LDD region”.
  • FIG. 3A to 3D are schematic cross-sectional process diagrams showing an example of a method for manufacturing the LDD structure TFT 100.
  • FIG. 3A to 3D are schematic cross-sectional process diagrams showing an example of a method for manufacturing the LDD structure TFT 100.
  • a semiconductor layer (for example, a polysilicon layer) 3A, a gate insulating layer 5 and a gate electrode 7A are formed in this order on a substrate 1 by a known method.
  • impurity ions of the first conductivity type (here, n-type) are implanted into the semiconductor layer 3A at a low concentration, and then implanted into the semiconductor layer 3A at a low concentration.
  • Region 30A is formed.
  • a region where impurity ions are not implanted becomes a channel region 31A.
  • activation annealing is performed at the first temperature to activate the impurity ions implanted into the low concentration implantation region 30A and restore the crystallinity of the low concentration implantation region 30A.
  • a resist mask 41 having an opening is formed on the interlayer insulating layer 11.
  • source contact holes 13 ⁇ / b> A and drain contact holes 14 ⁇ / b> A are formed in the gate insulating layer 5 and the interlayer insulating layer 11.
  • the first conductivity type impurity ions are implanted at a high concentration into a part of the low concentration implantation region 30A via the source contact hole 13A and the drain contact hole 14A.
  • the source region 33sA and the drain region 33dA are formed in the semiconductor layer 3A.
  • the resist mask 41 is peeled off. Note that the resist mask 41 may be removed before the implantation of impurity ions.
  • activation annealing is performed at the second temperature to activate the impurity ions implanted into the source region 33sA and the drain region 33dA.
  • the second temperature is set to a temperature lower than the first temperature, for example. In this way, the LDD structure TFT 100 is obtained.
  • 4A to 4D are schematic cross-sectional process diagrams showing an example of a method for manufacturing a TFT 200 having a GOLD structure.
  • a semiconductor layer 3B and a gate insulating layer 5 are formed on a substrate 1 by a known method.
  • a resist mask 42 is formed on the gate insulating layer 5, and using this, impurity ions of the first conductivity type (here, n-type) are implanted into the semiconductor layer 3B at a low concentration, and the semiconductor layer 3B is doped at a low concentration.
  • An implantation region 30B is formed. A region where impurity ions are not implanted becomes a channel region 31B.
  • a gate electrode 7B is formed on the gate insulating layer 5 so as to overlap a part of the low concentration implantation region 30B and the channel region 31B. Thereafter, activation annealing is performed at the first temperature to activate the impurity ions implanted into the low concentration implantation region 30B. Note that activation annealing may be performed before the formation of the gate electrode 7B.
  • the interlayer insulating layer 11 is formed by the same method as described above with reference to FIG. 3C, and the gate insulating layer 5 and the interlayer insulating layer 11 are patterned. To obtain the source contact hole 13B and the drain contact hole 14B.
  • high concentration impurity ions of the first conductivity type are formed in a part of the low concentration implantation region 30B by the same method as described above with reference to FIG.
  • the source region 33sB and the drain region 33dB are obtained.
  • a region where the impurity ions are not implanted at a high concentration in the low concentration implantation region 30B becomes an LDD region 32B.
  • activation annealing is performed at a second temperature lower than the first temperature, and the GOLD structure TFT 200 is obtained.
  • the gate electrode 7A is used as a mask to form the low concentration implantation region (N ⁇ region) that becomes the LDD region 32A, and the insulating layer in which the contact holes 13A and 14A are formed.
  • a high concentration implantation region (N + region) to be a source region or a drain region is formed.
  • a high concentration implantation region (N + region) is formed using the insulating layer in which the contact holes 13B and 14B are formed as a mask. For this reason, it is possible to reduce the number of photomasks used by one as compared with the prior art.
  • activation annealing is performed on the low concentration implantation region before contact doping, and activation annealing is performed on the high concentration implantation region after contact doping.
  • the activation annealing may be performed only once after contact doping. However, activation annealing is preferably performed before contact doping as in the above method. The reason for this is as follows.
  • annealing is performed in a region into which impurity ions are implanted in order to recover crystal damage caused during the ion implantation and activate the implanted ions.
  • activation annealing is performed at a high temperature after contact doping, hydrogen terminated at the interface between the gate insulating layer and the semiconductor layer may be detached from the contact hole, which may deteriorate TFT characteristics.
  • activation annealing is performed at the first temperature, and the low concentration regions are formed.
  • the crystals in the implantation regions 30A and 30B are once recovered.
  • the first temperature may be, for example, 500 ° C. or more and 700 ° C. or less.
  • activation annealing of the high concentration implantation region (N + region) is performed at the second temperature.
  • the second temperature can be set lower than the first temperature.
  • the second temperature may be 200 ° C. or higher and lower than 300 ° C.
  • Acceleration energy at the time of contact doping may be lower than acceleration energy at the time of forming the low concentration implantation regions 30A and 30B, and may be, for example, 5 keV or more and 30 keV or less. Thereby, in activation annealing after contact doping, the detachment of terminal hydrogen can be more effectively suppressed.
  • the conductivity type of the TFTs 100 and 200 is not limited to n-type, and may be p-type.
  • a p-type impurity such as boron is used as the first conductivity type impurity implanted into the semiconductor layers 3A and 3B.
  • Japanese Unexamined Patent Application Publication No. 2007-141992 describes a method of forming source / drain regions by implanting impurity ions into a semiconductor layer through a contact hole provided in a gate insulating layer.
  • the interlayer insulating layer is formed and patterned. According to this method, it is necessary to pattern the gate insulating layer and the interlayer insulating layer separately, and the number of photomasks cannot be reduced.
  • the gate insulating layer may not be used as a doping mask.
  • the gate insulating layer 5 and the interlayer insulating layer 11 which are gate insulating layers are etched together, so that the number of photomasks can be reduced. Further, since the gate insulating layer 5 and the interlayer insulating layer 11 are used as an etching mask, the present invention can be applied regardless of the thickness of the gate insulating layer 5. As described above, it is more advantageous to perform activation annealing in two steps before and after contact doping.
  • the semiconductor device of this embodiment includes an LDD structure TFT and a GOLD structure TFT on the same substrate. These TFTs are formed in a common process using the same semiconductor film.
  • the LDD structure TFT can be formed in the display area as a pixel TFT, and the GOLD structure TFT can be formed in the frame area as a drive circuit TFT.
  • FIG. 5A is a cross-sectional view illustrating the LDD structure TFT 101 and the GOLD structure TFT 201 in the semiconductor device of this embodiment.
  • FIGS. 5B and 5C are views of the LDD structure TFT 101 and the GOLD structure TFT 201, respectively. It is a top view which illustrates semiconductor layers 3A and 3B.
  • the LDD region 32A is positioned between a third LDD region (also referred to as a “high concentration LDD region”) 36 that is in contact with the source region 33sA and the drain region 33dA, and between the third LDD region 36 and the channel region 31A.
  • a fourth LDD region (also referred to as a “low concentration LDD region”) 37 is included in the LDD region 32A.
  • the third LDD region 36 includes a first conductivity type impurity at a higher concentration than the fourth LDD region 37.
  • the fourth LDD region 37 is in contact with the channel region 31A.
  • the source region 33 sA and the drain region 33 dA are respectively disposed inside the third LDD region 36.
  • Other configurations are the same as those of the LDD structure TFT 100 shown in FIG.
  • the LDD region 32B includes a first LDD region (also referred to as a “high concentration LDD region”) 34 in contact with the source region 33sB and the drain region 33dB, and a space between the first LDD region 34 and the channel region 31B. And a second LDD region (also referred to as a “low concentration LDD region”) 35 located therein.
  • the second LDD region 35 is overlapped by the gate electrode 7B.
  • the source region 33 sB and the drain region 33 dB are each disposed inside the first LDD region 34.
  • Other configurations are the same as those of the GOLD structure TFT 200 shown in FIG.
  • 6A to 6E are schematic process cross-sectional views showing a method for manufacturing the semiconductor device of this embodiment. For simplicity, a method of forming one LDD structure TFT 101 and one GOLD structure TFT 201 is shown here, but a plurality of TFTs are typically formed.
  • the island-shaped semiconductor layer 3A is formed in the region where the LDD structure TFT of the substrate 1 is to be formed, and the island-shaped semiconductor layer 3B is formed in the region where the GOLD structure TFT is to be formed. To do. Subsequently, a gate insulating layer 5 covering these semiconductor layers 3A and 3B is formed.
  • the substrate 1 may be a substrate having an insulating surface, and may be a quartz substrate or a glass substrate, or a Si substrate or a metal substrate whose surface is covered with an insulating layer.
  • the semiconductor layers 3A and 3B are formed using a crystalline silicon film. Specifically, first, a known semiconductor film (here, an amorphous silicon film) is deposited using a known method such as a plasma CVD method or a sputtering method. The thickness of the amorphous semiconductor film is 20 nm to 70 nm, preferably 40 nm to 60 nm. Thereafter, the amorphous semiconductor film is crystallized to form a crystalline semiconductor film (here, a polysilicon film) and patterned to obtain semiconductor layers 3A and 3B. Crystallization of the amorphous semiconductor film can be performed by laser crystallization. Alternatively, crystallization may be performed by adding a catalytic element to the amorphous semiconductor film and then performing an annealing treatment.
  • a known semiconductor film here, an amorphous silicon film
  • the thickness of the amorphous semiconductor film is 20 nm to 70 nm, preferably 40 nm to 60 nm.
  • the gate insulating layer 5 is formed using, for example, a CVD method.
  • a silicon oxide (SiO 2 ) layer having a thickness of, for example, 50 nm to 200 nm is formed.
  • a resist mask 45 covering a part of the semiconductor layer 3A and a resist mask 47 covering a part to be a channel region of the semiconductor layer 3B are formed by known photolithography.
  • the resist mask 45 is disposed so as to expose a region where the high concentration impurity region is formed in the semiconductor layer 3A and to cover a region where the channel region and the LDD region are formed.
  • n-type impurity ions are implanted into the semiconductor layers 3A and 3B at a low concentration to obtain low-concentration implanted regions 50A and 50B (first ion implantation step).
  • phosphorus ions are implanted as impurity ions.
  • the acceleration voltage at the time of implantation is 60 kV, for example, and the dose is 1 ⁇ 10 13 / cm 2 .
  • a region of the semiconductor layer 3B where no impurity ions are implanted becomes a channel region 31B.
  • gate electrodes 7A and 7B are formed on the semiconductor layers 3A and 3B, respectively, as shown in FIG. 6B.
  • the gate electrode 7A is disposed on the portion that becomes the channel region in the low concentration implantation region 50A.
  • the gate electrode 7B is arranged so as to cover a part of the low concentration implantation region 50B of the semiconductor layer 3B and the channel region 31B.
  • the gate electrodes 7A and 7B can be formed by, for example, forming a tungsten (W) film (thickness: 400 nm, for example) on the gate insulating layer 5 by sputtering, and then etching the W film.
  • the material of the gate electrodes 7A and 7B is not particularly limited. For example, a laminated film made of a TaN film and a W film may be used.
  • n-type impurity ions are implanted into the semiconductor layers 3A and 3B at a low concentration using the gate electrodes 7A and 7B as a mask (second ion implantation step).
  • phosphorus ions are implanted as impurity ions.
  • the acceleration voltage at the time of implantation is, for example, 50 kV, and the dose is 1 ⁇ 10 13 / cm 2 .
  • the portion of the semiconductor layer 3A that is covered with the gate electrode 7A and is not implanted with impurities becomes the channel region 31A.
  • the portion 36 into which impurity ions are implanted in both the first and second ion implantation steps becomes a third LDD region.
  • the portion 37 in which impurity ions are not implanted in the first ion implantation step and impurity ions are implanted in the second ion implantation step becomes the fourth LDD region.
  • the third LDD region 36 includes the first conductivity type impurity at a higher concentration than the fourth LDD region 37.
  • annealing temperature is not specifically limited, For example, 500 degreeC or more and 700 degrees C or less may be sufficient.
  • an interlayer insulating layer 11 is formed so as to cover the semiconductor layers 3A and 3B, the gate electrodes 7A and 7B, and the gate insulating layer 5.
  • the interlayer insulating layer 11 may be, for example, a SiO 2 film having a thickness of 300 nm or more and 900 nm or less, or may be a laminated film made of, for example, a SiN film and a SiO 2 film.
  • heat treatment hydrogenation annealing
  • annealing for hydrogenating the semiconductor layers 3A and 3B, for example, annealing at 350 to 550 ° C. in a nitrogen atmosphere or a hydrogen mixed atmosphere at 1 atm may be performed.
  • a resist mask 49 having an opening is formed on the interlayer insulating layer 11, and the interlayer insulating layer 11 is patterned using the resist mask 49.
  • the source contact hole 13A and the drain contact hole 14A reaching the part of the third LDD region 36 of the semiconductor layer 3A and the source contact hole 13B reaching the part of the first LDD region 34 of the semiconductor layer 3B are formed in the interlayer insulating layer 11.
  • the drain contact hole 14B is formed.
  • impurity ions are implanted into the semiconductor layers 3A and 3B through these contact holes 13A, 14A, 13B, and 14B (contact doping process).
  • source and drain regions 33sA and 33dA are formed in the third LDD region 36 of the semiconductor layer 3A.
  • source and drain regions 33sB and 33dB are formed in the first LDD region 34 of the semiconductor layer 3B.
  • the resist mask 49 is removed. Note that contact doping may be performed after the resist mask 49 is removed.
  • the ion implantation conditions in the contact doping process will be described.
  • phosphorus ions are implanted as impurity ions.
  • the acceleration voltage at the time of implantation is preferably set lower than the acceleration voltage in the first and second ion implantation steps, and is set to, for example, less than 20 kV.
  • the dose amount in this step is set to a value lower than the dose amount at the time of forming the conventional high concentration implantation region. obtain. Further, it may be set to be lower than the dose amount in the first and second ion implantation steps.
  • the dose is set to 10 13 / cm 2 or more and 10 14 / cm 2 or less.
  • second activation annealing is performed to recover the crystallinity of the source and drain regions 33sA, 33dA, 33sB, and 33dB and activate the implanted ions.
  • a source electrode and a drain electrode are formed in the contact holes 13A, 13B, 14A, and 14B, respectively. In this way, the LDD structure TFT 101 and the GOLD structure TFT 201 are manufactured.
  • the second activation annealing may be performed at a temperature lower than that of the first activation annealing, and may be set to, for example, less than 300 ° C.
  • the high concentration implantation region of the TFTs 101 and 201 is formed using contact doping, it is not necessary to form a doping mask for forming the high concentration implantation region by a photo process. Therefore, the number of photomasks used can be reduced as compared with the conventional case.
  • the impurity concentration and implantation profile of the fourth LDD region 37 of the LDD structure TFT 101 are determined by the implantation conditions of the second ion implantation step.
  • the impurity concentration and implantation profile of the second LDD region 35 of the GOLD structure TFT 201 are determined by the implantation conditions of the first ion implantation step.
  • the first and third LDD regions 34 and 36 are regions into which impurity ions have been implanted in both the first and second ion implantation steps. For this reason, the impurity concentration and the implantation profile of the first and third LDD regions 34 and 36 are substantially the same. Further, the impurity concentration and implantation profile of the source and drain regions 33sA, 33dA, 33sB, and 33dB, which are high concentration impurity regions, are substantially the same.
  • the LDD structure TFT 101 and the GOLD structure TFT 201 having two LDD regions having different impurity concentrations will be described, but instead, the LDD structure TFT 100 and the GOLD structure 200 shown in FIG. 1 may be manufactured.
  • the semiconductor device of the reference example has an LDD structure TFT 1000 and a GOLD structure TFT 2000 on the same substrate.
  • FIG. 10A is a cross-sectional view illustrating an LDD structure TFT 1000 and a GOLD structure TFT 2000.
  • FIGS. 10B and 10C are top views of the semiconductor layers 3D and 3E of the LDD structure TFT 1000 and the GOLD structure TFT 2000, respectively.
  • FIG. 10 for the sake of simplicity, the same components as those in FIGS. 1 to 5 are denoted by the same reference numerals.
  • FIG. 7A is a process flow of the semiconductor device of the reference example provided with the LDD structure TFT 1000 and the GOLD structure TFT 2000
  • FIG. 7B is a semiconductor flow of this embodiment including the LDD structure TFT 101 and the GOLD structure TFT 201. It is the process flow of an apparatus. 7A and 7B are the same as the process flow in the case of manufacturing only the GOLD structure TFT 2000 and the GOLD structure TFT 201, respectively.
  • a high concentration implantation region (source region 33sA, 33sB and drain region 33dA, 33dB) of each TFT 1000, 2000 and an LDD region 32A of the LDD structure TFT 1000, a high concentration implantation region is formed.
  • a mask (N + photo) for forming is used. After the high concentration implantation region is formed, contact holes 13A, 13B, 14A, and 14B exposing part of these are provided, and source and drain electrodes 8A, 8B, 9A, and 9B are formed therein.
  • the edges of the source regions 33 sA and 33 sB and the drain regions 33 dA and 33 dB are not aligned with the edges of the contact holes 13 A, 13 B, 14 A, and 14 B on the upper surface of the semiconductor layer.
  • the source regions 33sA and 33sB and the drain regions 33dA and 33dB are formed by contact doping, so that an N + region forming mask is unnecessary. Therefore, the number of photomasks can be reduced as compared with the semiconductor device of the reference example.
  • the LDD structure TFT and the GOLD structure TFT can be formed on the same substrate without increasing the number of photomasks used.
  • the photo process which is essential in the process flow of the reference example, can be reduced by one time, that is, one photomask can be reduced. If the number of photomasks can be reduced, the formation of resist patterns by photolithography (including resist coating, pre-baking, exposure, development, post-baking, etc.), resist pattern peeling, cleaning, and drying steps can be omitted. The number and manufacturing costs can be greatly reduced.
  • the semiconductor device of this embodiment includes a first conductivity type TFT having an LDD structure, a first conductivity type TFT having a GOLD structure, and a second conductivity type TFT on the same substrate.
  • doping (channel doping) for adjusting the threshold voltage is performed on the channel regions of the LDD structure and the GOLD structure TFT.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the first conductivity type may be p-type and the second conductivity type may be n-type.
  • the LDD structure TFT can be formed as a pixel TFT in the display area, and the GOLD structure TFT and the p-type TFT can be formed as a drive circuit TFT in the frame area.
  • the p-type TFT has a single drain structure, for example.
  • the semiconductor device of this embodiment includes an n-type LDD structure TFT 102, an n-type GOLD structure TFT 202, and a p-type TFT 302 on the same substrate.
  • the structures of the LDD structure TFT 102 and the GOLD structure TFT 202 are the same as those of the LDD structure TFT 101 and the GOLD structure TFT 201 described above with reference to FIG. Further, the arrangement of the LDD region and the high concentration impurity region, the impurity concentration, the implantation profile, and the like of these TFTs 102 and 202 are the same as those in the above-described embodiment, and thus description thereof is omitted here.
  • FIG. 8A is a cross-sectional view of the p-type TFT 302, and FIG. 8B is a plan view of the semiconductor layer 3C of the p-type TFT 302.
  • the p-type TFT 302 has a single drain structure, for example.
  • the p-type TFT 302 includes a semiconductor layer 3C formed on the substrate 1, a gate insulating layer 5 covering the semiconductor layer 3C, a gate electrode 7C formed on the gate insulating layer 5, the gate electrode 7C and the semiconductor layer 3C.
  • the interlayer insulating layer 11 is covered, and the source electrode 8C and the drain electrode 9C are provided.
  • the semiconductor layer 3C has a channel region 31C, a source region 38s, a drain region 38d, a source contact region 39s, and a drain contact region 39d.
  • the source region 38s is sandwiched between the source contact region 39s and the channel region 31C.
  • the drain region 38d is sandwiched between the drain contact region 39d and the channel region 31C.
  • each of the source region 38s, the drain region 38d, the source contact region 39s, and the drain contact region 39d has a second conductivity type region (for example, p-type) containing a second conductivity type impurity (for example, p-type impurity) at a high concentration. + Type region).
  • the source electrode 8C is in contact with the source contact region 39s of the semiconductor layer 3C in the source contact hole formed in the gate insulating layer 5 and the interlayer insulating layer 11.
  • the drain electrode 9C is in contact with the drain contact region 39d of the semiconductor layer 3C within the drain contact hole formed in the gate insulating layer 5 and the interlayer insulating layer 11.
  • the edge of the source contact hole and the edge of the source contact region 39s are aligned.
  • the edge of the drain contact hole is aligned with the edge of the drain contact region 39d.
  • the source contact region 39s and the drain contact region 39d are formed by contact doping.
  • the impurity concentration of the second conductivity type in the source contact region 39s and the drain contact region 39d is the same as the impurity concentration of the second conductivity type (for example, p-type) in the source region 38s and the drain region 38d.
  • the impurity concentration of the first conductivity type (for example, n-type) of the source contact region 39s and the drain contact region 39d is implanted by contact doping more than the impurity concentration of the first conductivity type of the source region 38s and the drain region 38d. It ’s expensive.
  • FIGS. 9A to 9F are schematic process cross-sectional views showing a method for manufacturing the semiconductor device of this embodiment. For simplicity, a method of forming one LDD structure TFT 102, one GOLD structure TFT 202, and one p-type TFT 302 is shown here, but a plurality of TFTs are typically formed.
  • an island-shaped semiconductor layer 3A is formed in a region of the substrate 1 where an LDD structure TFT is to be formed, and an island-shaped semiconductor layer 3B is formed in a region where a GOLD structure TFT is to be formed.
  • An island-shaped semiconductor layer 3C is formed in a region where a type TFT is to be formed.
  • a gate insulating layer 5 covering these semiconductor layers 3A, 3B, 3C is formed.
  • the resist mask 45 is disposed so as to expose a region where the high concentration impurity region is formed in the semiconductor layer 3A and to cover a region where the channel region and the LDD region are formed.
  • a multi-tone mask such as a halftone mask is used as the resist mask 48.
  • n-type impurity ions are implanted into the semiconductor layers 3A, 3B, and 3C at a low concentration using the resist masks 45, 47, and 48 to obtain low-concentration implanted regions 50A, 50B, and 50C.
  • Ion implantation step phosphorus ions are implanted as impurity ions.
  • the acceleration voltage at the time of implantation is 60 kV, for example, and the dose is 1 ⁇ 10 13 / cm 2 .
  • the resist masks 45 and 47 are removed, and an ashing process (half ashing) is performed on the resist mask 48 to reduce the height of the resist mask 48.
  • a p-type impurity is implanted into the semiconductor layers 3A, 3B, and 3C using the resist mask 48 having a reduced height as a mask.
  • the p-type impurity is implanted into a portion to be a channel region in the semiconductor layers 3A and 3B (channel doping).
  • boron ions are implanted at an acceleration voltage of 30 kV and a dose of 1 ⁇ 10 12 / cm 2 .
  • gate electrodes 7A, 7B, and 7C are formed on the semiconductor layers 3A, 3B, and 3C, respectively.
  • the gate electrode 7C is disposed on the portion that becomes the channel region in the low concentration implantation region 50C of the semiconductor layer 3C.
  • the formation method of the gate electrodes 7A, 7B, and 7C and the arrangement of the gate electrodes 7A and 7B may be the same as those described above with reference to FIG.
  • n-type impurity ions are implanted into the semiconductor layers 3A, 3B, and 3C at a low concentration using the gate electrodes 7A, 7B, and 7C as a mask (second ion implantation step).
  • the implantation conditions may be the same as the conditions for the second ion implantation step shown in FIG.
  • the third and fourth LDD regions 36 and 37 are formed in the semiconductor layer 3A, and the first and second LDD regions 34 and 35 are formed in the semiconductor layer 3B.
  • a resist mask 44 that covers the LDD structure formation region and the GOLD structure formation region and exposes the p-type TFT formation region is provided, and is covered with the gate electrode 7C of the semiconductor layer 3C.
  • a p-type impurity ion is implanted at a high concentration through the gate insulating layer 5 into a portion not present.
  • the source region 38s and the drain region 38d are formed in the semiconductor layer 3C.
  • the implantation conditions are not particularly limited. For example, boron ions are implanted at an acceleration voltage of 50 kV to 90 kV and a dose amount of 5 ⁇ 10 14 / cm 2 to 5 ⁇ 10 15 / cm 2 .
  • activation annealing (first activation annealing) is performed. Thereby, the ions implanted into the semiconductor layers 3A, 3B, and 3C are activated by the first ion implantation step, channel doping, and p-type impurity doping, and the crystallinity of the semiconductor layers 3A, 3B, and 3C is recovered. .
  • annealing temperature is not specifically limited, For example, 500 degreeC or more and 700 degrees C or less may be sufficient.
  • an interlayer insulating layer 11 is formed so as to cover the semiconductor layers 3A, 3B, 3C, the gate electrodes 7A, 7B, 7C, and the gate insulating layer 5. Thereafter, hydrogenation may be performed as necessary.
  • the method of forming the interlayer insulating layer 11 and the hydrogenation annealing may be the same as the method described above with reference to FIG.
  • a resist mask 49 having an opening is formed on the interlayer insulating layer 11, and the interlayer insulating layer 11 is patterned using the resist mask 49.
  • the source contact hole 13A and the drain contact hole 14A reaching the part of the third LDD region 36 of the semiconductor layer 3A and the source contact hole 13B reaching the part of the first LDD region 34 of the semiconductor layer 3B are formed in the interlayer insulating layer 11.
  • impurity ions are implanted into the semiconductor layers 3A, 3B, and 3C through these contact holes 13A, 13B, 13C, 14A, 14B, and 14C (contact doping step).
  • the ion implantation conditions may be the same as the contact doping process conditions shown in FIG. Thereby, source regions 33sA and 33sB and drain regions 33dA and 33dB are formed in the semiconductor layers 3A and 3B.
  • n-type impurity ions are also implanted into the semiconductor layer 3C to be a p-type TFT, and a source contact region 39s and a drain contact region 39d are obtained. Thereafter, the resist mask 49 is removed.
  • n-type impurities are implanted at a low dose into the source and drain regions 38s and 38d into which p-type impurities have been implanted at a high concentration in the step shown in FIG. 9D. For this reason, the region into which the n-type impurity is implanted (source contact region 39s and drain contact region 39d) will not be n-type. Note that contact doping may be performed after the resist mask 49 is removed.
  • second activation annealing is performed to recover the crystallinity of the source / drain regions of the semiconductor layers 3A and 3B and the contact regions 39s and 39d of the semiconductor layer 3C, and the implanted ions are activated.
  • a source electrode and a drain electrode are formed on each TFT.
  • a semiconductor device including the TFTs 102, 202, and 302 is manufactured.
  • the temperature of the second activation annealing may be performed at a temperature lower than that of the first activation annealing described above, and may be set to, for example, less than 300 ° C.
  • the high concentration implantation regions of the TFTs 102 and 202 are formed using contact doping. Further, channel doping is performed using a halftone mask. Therefore, it is not necessary to form a doping mask for forming a high concentration implantation region and a channel doping mask by a photo process. Accordingly, the number of photomasks used can be reduced by two compared to the conventional case.
  • Japanese Patent Application Laid-Open No. 2001-85695 and the like disclose a method for reducing the number of photomasks using a halftone mask.
  • a halftone mask is applied for doping, and there is no need to control the line width. Therefore, the number of photomasks can be reduced without degrading the precision controllability.
  • the method of the present embodiment is not limited to the above method. It is not necessary to use a halftone mask for channel doping. Alternatively, channel doping may not be performed.
  • the present invention can be widely applied to various semiconductor devices having an oxide semiconductor TFT and an oxide semiconductor TFT.
  • circuit boards such as active matrix substrates, liquid crystal display devices, organic electroluminescence (EL) display devices and inorganic electroluminescence display devices, display devices such as MEMS display devices, imaging devices such as image sensor devices, image input devices,
  • the present invention is also applied to various electronic devices such as fingerprint readers and semiconductor memories.

Abstract

半導体装置は、チャネル領域(31A、31)、高濃度不純物領域およびチャネル領域と高濃度不純物領域との間に位置する低濃度不純物領域(32A、32B)を有する半導体層(3A、3B)と、ゲート絶縁層(5)の上に設けられたゲート電極(7A、7B)と、ゲート電極上に形成された層間絶縁層(11)と、ソース電極(8A、8B)およびドレイン電極(9A、9B)とを有する少なくとも1つの薄膜トランジスタ(100、200)を備え、層間絶縁層およびゲート絶縁層には、半導体層に達するコンタクトホールが設けられており、ソース電極(8A、8B)およびドレイン電極(9A、9B)の少なくとも一方は、コンタクトホール内で高濃度不純物領域と接し、コンタクトホールの側壁において、ゲート絶縁層および層間絶縁層の側面は整合しており、半導体層の上面において、コンタクトホールの縁部と、高濃度不純物領域の縁部とは整合している。

Description

半導体装置及びその製造方法
 本発明は、半導体装置及びその製造方法に関する。
 液晶表示装置等に用いられるアクティブマトリクス基板は、画素毎に薄膜トランジスタ(Thin Film Transistor;以下、「TFT」)などのスイッチング素子を備えている。一般に、結晶質シリコン膜の電界効果移動度は非晶質シリコン膜の電界効果移動度よりも高いため、結晶質シリコンTFTは、非晶質シリコンTFTよりも高速に動作することが可能である。従って、結晶質シリコン膜を用いると、スイッチング素子として画素毎に設けられるTFT(「画素用TFT」と呼ぶ。)のみでなく、表示領域周辺(額縁領域)に形成される駆動回路や種々の機能回路などの周辺回路を構成するTFT(「駆動回路用TFT」と呼ぶ。)をも同一基板上に形成することが可能になる。
 画素用TFTには、オフリーク電流が極めて小さいことが要求される。オフリーク電流が大きいと、フリッカー、クロストーク等が生じて表示品位を低下させる可能性がある。このため、画素用TFTとして、LDD構造を有するTFT(以下、「LDD構造TFT」と略する。)が用いられている。
 「LDD構造TFT」は、TFTのチャネル領域とソース領域・ドレイン領域との間の少なくとも一方に低濃度不純物領域(Lightly Doped Drain、以下「LDD領域」と略すことがある)を有している。この構造では、ゲート電極のエッジと低抵抗なソース・ドレイン領域との間に、ソース・ドレイン領域よりも高抵抗なLDD領域を存在させるので、LDD領域を有していない(「シングルドレイン構造」)TFTと比べてオフリーク電流を大幅に低減できる。
 アクティブマトリクス基板では、製造工程の簡略化のため、画素用TFTだけでなく、駆動回路用TFTにLDD構造TFTを採用する場合がある。しかしながら、駆動回路用TFTとしてLDD構造TFTを用いると、次のような問題がある。駆動回路用TFTには、電流駆動力が大きい、すなわちオン電流が大きいことが要求されるが、LDD構造TFTでは、LDD領域が抵抗となるので、シングルドレイン構造のTFTよりも電流駆動力が低下してしまう。また、LDD領域のチャネル長方向の長さ(LDD長)を最適化するために、回路の設計が煩雑になったり、額縁領域のサイズが増大する可能性がある。さらに、高速動作を行う駆動回路用TFTには、より高い信頼性が要求される。
 そこで、駆動回路用TFTとして、LDD領域がゲート電極によってオーバーラップされた構造を有するTFTを用いることが提案されている。このような構造は、「GOLD(Gate Overlapped LDD)構造」と称されている。GOLD構造を有するTFT(以下、「GOLD構造TFT」と略する。)では、ゲート電極に電圧を印加すると、ゲート電極がオーバーラップしたLDD領域にキャリアとなる電子が蓄積されるので、LDD領域の抵抗を小さくできる。このため、TFTの電流駆動力の低下を抑えることができる。また、ゲートの下に電界緩和領域を形成する事により、LDD構造TFTよりも高い信頼性を確保できる。
 なお、本明細書では、LDD領域全体がゲート電極でオーバーラップされていない構造を「LDD構造」、LDD領域の少なくとも一部がゲート電極でオーバーラップされている構造を「GOLD構造」と称している。
 しかしながら、LDD構造TFTに加えて、駆動回路用TFTとしてGOLD構造TFTを同一基板上に形成すると、製造プロセスで使用するフォトマスクの枚数が増加するという問題がある。フォトマスクは、フォトリソグラフィにより、エッチング工程やイオン注入工程でマスクとなるレジストパターンを形成するために使用される。従って、フォトマスクの枚数が1枚増えることは、エッチングやイオン注入などの工程の他に、フォトリソグラフィによるレジストパターンの形成、レジストパターンの剥離、洗浄および乾燥工程が増加することを意味する。従って、フォトマスクの枚数が増加すると、製造コストが増大し、リードタイムも長くなり、生産性を大幅に低下させてしまう。また、歩留まりが低下するおそれがある。
 これに対し、フォトマスクを1枚でも減らすための種々のプロセスが提案されている。
 例えば特許文献1は、ハーフトーンマスクを使用することにより、フォトマスクの枚数を増やすことなく、GOLD構造TFTを製造する方法を開示している。特許文献1では、ハーフトーンマスクを使用したフォトリソグラフィ工程により、部分的に厚さが異なるレジストパターンを形成して、これをエッチングマスクとして半導体膜のエッチングを行う。次いで、レジストパターンの凹部を除去した後、LDD領域形成のための不純物ドープを行う。従って、1回のフォトリソグラフィ工程で、半導体膜のエッチングおよびLDD領域の形成を行うことが可能であり、フォトマスクの枚数を1枚削減できる。
特開2002-134756号公報
 特許文献1の方法によると、ハーフトーンマスクの解像度が低いために、十分な精度でレジストパターンの線幅を制御することが難しい。このため、高精細なTFTの製造に適用できない場合がある。このように、従来の方法では、良好な線幅制御性を確保しつつ、フォトマスクの枚数を削減して生産性を向上させることは困難であった。
 本発明の一実施形態は、上記事情に鑑みてなされたものであり、その主な目的は、LDD領域を有するTFTを備えた、生産性に優れ、かつ高精細な半導体装置を提供することにある。
 本発明による一実施形態の半導体装置は、基板上に少なくとも1つの薄膜トランジスタを備えた半導体装置であって、前記少なくとも1つの薄膜トランジスタは、チャネル領域と、第1導電型の不純物を含む高濃度不純物領域と、前記チャネル領域と前記高濃度不純物領域との間に位置し、前記高濃度不純物領域よりも低く、かつ、前記チャネル領域よりも高い濃度で前記第1導電型の不純物を含む低濃度不純物領域とを有する半導体層と、前記半導体層の上に形成されたゲート絶縁層と、前記ゲート絶縁層の上に設けられ、少なくとも前記チャネル領域と重なるように配置されたゲート電極と、前記ゲート電極および前記ゲート絶縁層上に形成された層間絶縁層と、前記半導体層に接続されたソース電極およびドレイン電極とを備え、前記層間絶縁層および前記ゲート絶縁層には、前記半導体層に達するコンタクトホールが設けられており、前記ソース電極およびドレイン電極の少なくとも一方は、前記層間絶縁層上および前記コンタクトホール内に形成され、前記コンタクトホール内で前記高濃度不純物領域と接し、前記コンタクトホールの側壁において、前記ゲート絶縁層および前記層間絶縁層の側面は整合しており、前記半導体層の上面において、前記コンタクトホールの縁部と、前記高濃度不純物領域の縁部とは整合している。
 ある実施形態において、前記基板の法線方向から見たとき、前記高濃度不純物領域は、前記低濃度不純物領域の内部に位置している。
 ある実施形態において、前記少なくとも1つの薄膜トランジスタは、第1薄膜トランジスタを含み、前記第1薄膜トランジスタでは、前記低濃度不純物領域の一部は、前記ゲート絶縁層を介して前記ゲート電極で覆われている。
 ある実施形態において、前記少なくとも1つの薄膜トランジスタは、第2薄膜トランジスタを含み、前記第2薄膜トランジスタでは、前記低濃度不純物領域の前記チャネル領域側の端部は、前記ゲート電極の端部と整合している。
 ある実施形態において、前記第1薄膜トランジスタにおいて、前記低濃度不純物領域は、前記ゲート絶縁層を介して前記ゲート電極と重ならない第1低濃度不純物領域と、前記ゲート電極と重なる第2低濃度不純物領域とを含み、前記第1低濃度不純物領域は、前記第2低濃度不純物領域よりも高い濃度で前記第1導電型の不純物を含む。
 ある実施形態において、前記少なくとも1つの薄膜トランジスタは、第2薄膜トランジスタをさらに含み、前記第2薄膜トランジスタでは、前記低濃度不純物領域の前記チャネル領域側の端部は、前記ゲート電極の端部と整合しており、前記第2薄膜トランジスタにおいて、前記低濃度不純物領域は、前記高濃度不純物領域と接する第3低濃度不純物領域と、前記第3低濃度不純物領域よりも前記チャネル領域側に位置する第4低濃度不純物領域とを含み、前記第3低濃度不純物領域は、前記第4低濃度不純物領域よりも高い濃度で前記第1導電型の不純物を含む。
 ある実施形態において、前記第1薄膜トランジスタの前記第1低濃度不純物領域と、前記第2薄膜トランジスタの前記第3低濃度不純物領域とは同一の不純物元素を含み、前記第1および第3低濃度不純物領域の厚さ方向における前記第1導電型の不純物の濃度プロファイルは略等しい。
 ある実施形態において、前記少なくとも1つの薄膜トランジスタとは異なる導電型を有する他の薄膜トランジスタをさらに含み、前記他の薄膜トランジスタは、チャネル領域と、コンタクト領域と、前記チャネル領域と前記コンタクト領域との間に位置し、第2導電型の不純物を含む他の高濃度不純物領域とを有する半導体層であって、前記コンタクト領域は、前記他の高濃度不純物と同じ濃度で前記第2導電型の不純物を含み、かつ、前記他の高濃度不純物よりも高い濃度で前記第1導電型の不純物を含む、他の半導体層と、前記他の半導体層上に延設された前記ゲート絶縁層と、前記ゲート絶縁層の上に設けられた他のゲート電極と前記他のゲート電極および前記ゲート絶縁層上に延設された前記層間絶縁層と、前記他の半導体層に接続された他のソース電極および他のドレイン電極とを備え、前記層間絶縁層および前記ゲート絶縁層には、前記他の半導体層に達する他のコンタクトホールが設けられており、前記他のソース電極および他のドレイン電極の少なくとも一方は、前記層間絶縁層上および前記他のコンタクトホール内に形成され、前記他のコンタクトホール内で前記コンタクト領域と接し、前記他のコンタクトホールの側壁において、前記ゲート絶縁層および前記層間絶縁層の側面は整合しており、前記他の半導体層の上面において、前記他のコンタクトホールの縁部と、前記コンタクト領域の縁部とは整合している。
 本発明の一実施形態の半導体装置に製造方法は、少なくとも1つ薄膜トランジスタを基板上に備えた半導体装置の製造方法であって、(a)基板上に、チャネル領域と、前記チャネル領域よりも高い濃度で第1導電型の不純物を含む低濃度不純物領域とを含む島状の半導体層、前記半導体層を覆うゲート絶縁層、および前記ゲート絶縁層上に配置されたゲート電極を形成する工程と、(b)前記ゲート絶縁層および前記ゲート電極上に層間絶縁層を形成する工程と、(c)前記層間絶縁層上にマスクを形成し、前記マスクを用いて前記ゲート絶縁層および前記層間絶縁層を同時にエッチングすることによって、前記ゲート絶縁層および前記層間絶縁層に、前記低濃度不純物領域の一部を露出するコンタクトホールを形成する工程と、(d)前記コンタクトホールを介して、前記半導体層における前記低濃度不純物領域の前記一部に第1導電型の不純物を注入することによって、高濃度不純物領域を形成する工程と、(e)前記層間絶縁層上および前記コンタクトホール内に、前記高濃度不純物領域と接するように電極を形成する工程とを包含する。
 ある実施形態において、前記工程(d)よりも前に、前記低濃度不純物領域に対して、第1の活性化アニールを行い、前記工程(d)よりも後に、前記高濃度不純物領域に対して、第2の活性化アニールを行う。
 ある実施形態において、前記第2の活性化アニールは、前記第1の活性化アニールよりも低い温度で行う。
 ある実施形態において、前記工程(a)は、前記半導体層の一部に、前記第1導電型の不純物を注入する第1のイオン注入工程を含み、前記工程(d)では、前記第1のイオン注入工程よりも低いドーズ量または低い加速電圧で、前記第1導電型の不純物の注入を行う。
 ある実施形態において、前記工程(a)において、前記低濃度不純物領域の少なくとも一部は、前記ゲート絶縁層を介して前記ゲート電極と重なっている。
 本発明の他の実施形態の半導体装置の製造方法は、少なくとも第1薄膜トランジスタおよび第2薄膜トランジスタを基板上に備えた半導体装置の製造方法であって、(a)基板上に、第1薄膜トランジスタの活性層となる第1半導体層と、第2薄膜トランジスタの活性層となる第2半導体層とを形成し、前記第1および第2半導体層を覆うゲート絶縁層を形成する工程と、(b)前記第1半導体層の一部および前記第2半導体層の一部に、第1導電型の不純物を注入する第1の注入工程と、(c)前記第1半導体層のうち前記第1の注入工程で不純物が注入された領域の一部およびチャネル領域となる部分の上に第1ゲート電極を形成し、前記第2半導体層のうち前記第1の注入工程で不純物が注入されなかった領域の一部上に第1ゲート電極を形成する工程と、(d)前記第1および第2ゲート電極をマスクとして、前記第1および第2半導体層に第1導電型の不純物を注入する第2の注入工程であって、これにより、前記第1半導体層のうち前記第1および第2の注入工程の両方で不純物が注入された領域が第1低濃度不純物領域、前記第1の注入工程で不純物が注入され、かつ、前記第2ゲート電極で覆われていたために前記第2の注入工程で不純物が注入されなかった領域が第2低濃度不純物領域となり、前記第2半導体層のうち前記第1および第2の注入工程の両方で不純物が注入された領域が第3低濃度不純物領域、前記第2の注入工程で不純物が注入され、前記第1の注入工程で不純物が注入されなかった領域が第4低濃度不純物領域となる、第2のイオン注入工程と、(e)前記ゲート絶縁層、前記第1ゲート電極および第2ゲート電極上に層間絶縁層を形成する工程と、(f)前記層間絶縁層上にマスクを形成し、前記マスクを用いて前記ゲート絶縁層および前記層間絶縁層を同時にエッチングすることによって、前記ゲート絶縁層および前記層間絶縁層に、前記第1低濃度不純物領域の一部を露出する第1コンタクトホールと、前記第3低濃度不純物領域の一部を露出する第2コンタクトホールとを形成する工程と、(g)前記第1および第2コンタクトホールを介して、前記第1および第3低濃度不純物領域の前記一部に第1導電型の不純物を注入することによって、前記第1半導体層に第1高濃度不純物領域を形成し、前記第2半導体層に第2高濃度不純物領域を形成する工程と、(h)前記層間絶縁層上および前記第1コンタクトホール内に、前記第1高濃度不純物領域と接する第1の電極を形成し、前記層間絶縁層上および前記第2コンタクトホール内に、前記第2高濃度不純物領域と接する第2の電極を形成する工程とを包含する。
 ある実施形態において、前記工程(g)よりも前に、前第1、第2、第3および第4低濃度不純物領域に対して、第1の活性化アニールを行い、前記工程(g)よりも後に、前記第1および第2高濃度不純物領域に対して、第2の活性化アニールを行う。
 ある実施形態において、前記第2の活性化アニールは、前記第1の活性化アニールよりも低い温度で行う。
 ある実施形態において、前記工程(g)では、前記第1および第2のイオン注入工程よりも低いドーズ量または低い加速電圧で、前記第1導電型の不純物の注入を行う。
 ある実施形態において、前記第1および第2薄膜トランジスタとは導電型の異なる第3薄膜トランジスタをさらに備え、前記工程(a)は、前記基板上に第3半導体層を形成する工程を含み、前記ゲート絶縁層は前記第3半導体層上にも延設され、前記工程(c)は、前記第3半導体層上に第3ゲート電極を形成する工程を含み、前記工程(c)の後、前記工程(e)の前に、前記第3ゲート電極をマスクとして第2導電型の不純物を前記第3半導体層に注入することによって、前記第3半導体層に第3高濃度不純物領域を形成する工程をさらに含み、前記工程(e)において前記層間絶縁層は、前記第3ゲート電極上にも延設され、前記工程(f)は、前記ゲート絶縁層および前記層間絶縁層に、前記第3高濃度不純物領域の一部を露出する第3コンタクトホールを形成する工程を含み、前記工程(g)は、前記第3コンタクトホールを介して、前記第3高濃度不純物領域の前記一部に第1導電型の不純物を注入することによって、前記第3半導体層にコンタクト領域を形成する工程を含み、前記工程(h)は、前記層間絶縁層上および前記第3コンタクトホール内に、前記コンタクト領域と接する第3の電極を形成する工程を含む。
 ある実施形態において、前記工程(b)の前記第1の注入工程は、前記第1、第2および第3半導体層上にそれぞれ配置された第1、第2および第3マスクを用いて行い、前記第3マスクは多階調マスクであり、前記第1の注入工程の後、前記工程(c)の前に、前記第1および第2マスクを除去するとともに、前記第3マスクの一部を除去する工程と、前記第3マスクの一部を用いて、前記第1および第2半導体層のチャネル領域となる部分を含む領域に不純物を注入する工程とをさらに包含する。
 本発明による一実施形態によると、LDD領域を有するTFTを備えた、生産性に優れ、かつ高精細な半導体装置を提供できる。
 また、LDD領域を有するTFTを備えた半導体装置の製造方法において、フォトマスクの使用枚数を削減できる。
(a)および(b)は、それぞれ、第1の本実施形態の半導体装置におけるLDD構造TFT100およびGOLD構造TFT200を例示する模式的な断面図である。 (a)および(b)は、それぞれ、LDD構造TFT100およびGOLD構造TFT200における半導体層3A、3Bを例示する模式的な平面図である。 (a)~(d)は、LDD構造TFT100を製造する方法の一例を示す模式的な断面工程図である。 (a)~(d)は、GOLD構造を有するTFT200を製造する方法の一例を示す模式的な断面工程図である。 (a)は、第2の実施形態の半導体装置におけるLDD構造TFT101およびGOLD構造TFT201を例示する断面図であり、(b)および(c)は、それぞれ、LDD構造TFT101およびGOLD構造TFT201の半導体層3A、3Bを例示する平面図である。 (a)~(e)は、第2の実施形態の半導体装置を製造する方法を示す模式的な工程断面図である。 (a)は、参考例のGOLD構造TFT2000を製造するプロセスフローであり、(b)は、GOLD構造TFT200、201を製造するプロセスフローである。 (a)は、第3の実施形態におけるp型TFT302の断面図であり、(b)はp型TFT302の半導体層3Cの平面図である。 (a)~(f)は、第3の実施形態の半導体装置を製造する方法を示す模式的な工程断面図である。 (a)は、参考例のLDD構造TFT1000およびGOLD構造TFT2000を例示する断面図であり、(b)および(c)は、それぞれ、LDD構造TFT1000およびGOLD構造TFT2000の半導体層3D、3Eの上面図である。
(第1の実施形態)
 以下、図面を参照しながら、本発明による半導体装置の実施形態を説明する。本明細書では、「半導体装置」は、機能回路が形成された基板やアクティブマトリクス基板、および、液晶表示装置や有機EL表示装置などの表示装置を広く含むものとする。
 本実施形態の半導体装置は、基板と、基板上に形成された複数のTFTとを備えている。複数のTFTは、LDD領域を有するTFTを少なくとも1つ含んでいる。LDD領域を有するTFTは、LDD構造TFTであってもよいし、GOLD構造TFTであってもよい。あるいは、共通の半導体膜を用いて形成されたGOLD構造TFTおよびLDD構造TFTの両方を含んでいてもよい。
 図1(a)および(b)は、本実施形態の半導体装置におけるLDD領域を有するTFTを例示する模式的な断面図であり、図1(a)はLDD構造TFT100、図1(b)はGOLD構造TFT200を例示している。また、図2(a)および(b)は、それぞれ、LDD構造TFT100およびGOLD構造TFT200における半導体層を例示する模式的な平面図である。図1および図2では、同様の構成要素には同じ参照符号を付しているか、同じ数字を用いた参照符号を付している。LDD構造TFT100の構成要素の一部には、数字の後に「A」を付した参照符号を用い、GOLD構造TFT200の構成要素の一部には、数字の後に「B」を付した参照符号を用いている。
 図1(a)に示すように、LDD構造TFT100は、基板1上に形成された半導体層3Aと、半導体層3Aを覆うゲート絶縁層5と、ゲート絶縁層5上に形成されたゲート電極7Aと、ゲート電極7Aおよび半導体層3Aを覆う層間絶縁層11と、半導体層3Aに電気的に接続されたソース電極8Aおよびドレイン電極9Aとを有している。
 半導体層3Aは、チャネル領域31A、ソース領域33sA、ドレイン領域33dA、およびLDD領域32Aとを有している。チャネル領域31Aは、ソース領域33sAとドレイン領域33dAとの間に位置している。LDD領域32Aは、チャネル領域31Aとソース領域33sAおよびドレイン領域33dAの少なくとも一方とに挟まれている。この例では、ソース領域33sA及びドレイン領域33dAは、第1導電型不純物(例えばn型不純物)を含む第1導電型領域(例えばn+型領域)である。LDD領域32Aは、チャネル領域31Aよりも高く、かつ、ソース領域33sA及びドレイン領域33dAよりも低い濃度で第1導電型不純物(例えばn型不純物)を含む第1導電型領域(例えばn-型領域)である。本明細書では、ソース領域33sA及びドレイン領域33dAを「高濃度不純物領域」または「n+型領域」と総称し、LDD領域32Aを「低濃度不純物領域」または「n-型領域」と呼ぶことがある。
 ゲート電極7Aは、ゲート絶縁層5を介して、半導体層3Aの少なくともチャネル領域31Aと重なるように配置されている。この例では、基板1の法線方向から見たとき、ゲート電極7Aは、チャネル領域31Aと重なり、ソース領域33sA、ドレイン領域33dAおよびLDD領域32Aとは重なっていない。また、基板1の法線方向から見たとき、ゲート電極7Aの端部と、LDD領域32Aのチャネル領域31A側の端部とが整合している。
 ゲート絶縁層5および層間絶縁層11には、半導体層3Aのソース領域33sAに達するソースコンタクトホール13A、および、半導体層3Aのドレイン領域33dAに達するドレインコンタクトホール14Aが設けられている。これらのコンタクトホール13A、14Aは、ゲート絶縁層5および層間絶縁層11を同時にエッチングすることによって形成されている。このため、ソースコンタクトホール13Aおよびドレインコンタクトホール14Aの側壁において、ゲート絶縁層5の側面と層間絶縁層11の側面とは整合している。
 ソース電極8Aは、層間絶縁層11上およびソースコンタクトホール13A内に設けられ、ソースコンタクトホール13A内でソース領域33sAと接している。ドレイン電極9Aは、層間絶縁層11上およびドレインコンタクトホール14A内に設けられ、ドレインコンタクトホール14A内でドレイン領域33dAと接している。
 本実施形態では、ソース領域33sAおよびドレイン領域33dAは、コンタクトホール13A、14Aを介して半導体層3Aに第1導電型不純物を注入することによって形成されている。本明細書では、コンタクトホールを介した注入工程を、「コンタクトドーピング工程」と称する。このため、半導体層3Aの上面において、ソースコンタクトホール13Aの縁部と、半導体層3Aのソース領域33sAとは整合している。同様に、ドレインコンタクトホール14Aの縁部と、半導体層3Aのドレイン領域33dAとは整合している。ここでいう「整合している」とは、上記のようなコンタクトホールを介した注入で形成されていればよく、例えば半導体層3Aに注入された第1導電型不純物が活性化アニールによって周囲に拡散した場合をも含む。このような構成により、ソース電極8Aのうち半導体層3Aと接する面(コンタクト面)とソース領域33sAとが整合し、ドレイン電極9Aのうち半導体層3Aと接する面とドレイン領域33dAとが整合することになる。
 一方、図1(b)に示すGOLD構造TFT200は、基板1上に形成された半導体層3Bと、半導体層3Bを覆うゲート絶縁層5と、ゲート絶縁層5上に形成されたゲート電極7Bと、ゲート電極7Bおよび半導体層3Bを覆う層間絶縁層11と、半導体層3Bに電気的に接続されたソース電極8Bおよびドレイン電極9Bとを有している。半導体層3Bは、チャネル領域31B、ソース領域33sB、ドレイン領域33dB、およびLDD領域32Bを有している。LDD領域32Bは、チャネル領域31Bと、ソース領域33sBおよびドレイン領域33dBの少なくとも一方との間に位置している。LDD領域32Bは、チャネル領域31Bよりも高く、かつ、ソース領域33sB及びドレイン領域33dB(以下、「高濃度不純物領域」)よりも低い濃度で第1導電型不純物を含む。
 GOLD構造TFT200は、ゲート電極7Bが、ゲート絶縁層5を介して、半導体層3Bのチャネル領域31Bだけでなく、LDD領域32Bの一部とも重なるように配置されている点で、LDD構造TFT100と異なっている。LDD領域32Bは、ゲート電極7Bと重なっていない部分、すなわち基板1の法線方向から見たとき、ソース領域33sBおよびドレイン領域33dBとゲート電極7Bとの間に位置する部分(「LDD部分」)32(1)と、ゲート電極7Bと重なる部分(以下、「GOLD部分」)32(2)とを含む。GOLD部分32(2)は、GOLD領域またはNM領域と呼ばれることもある。LDD部分32(1)およびGOLD部分32(2)は、不純物元素を同じ濃度で含んでいてもよいし、異なる濃度で含んでいてもよい。後述するように、LDD部分32(1)は、GOLD部分32(2)よりも高い濃度で第1導電型不純物を含んでいてもよい。
 その他の構造は、図1(a)に示すLDD構造TFT100と同様であるため、説明を省略する。
 GOLD構造TFT200でも、LDD構造TFT100と同様に、ソース領域33sBおよびドレイン領域33dBは、それぞれ、ソースコンタクトホール13Bおよびドレインコンタクトホール14Bを介して半導体層3Bに第1導電型不純物を注入することによって形成されている(コンタクトドーピング工程)。このため、半導体層3Bの上面において、コンタクトホール13B、14Bの縁部は、それぞれ、半導体層3Bのソース領域33sBおよびドレイン領域33dBの縁部と整合している。
 本実施形態の半導体装置は、LDD構造TFT100およびGOLD構造TFT200の両方を備えていてもよい。例えば、画素用TFTとして複数のLDD構造TFT100、駆動回路用TFTとして複数のGOLD構造TFT200を同一基板1上に有していてもよい。このような場合、半導体層3A、3Bは同じ半導体膜から形成され、ゲート電極7A、7Bは同じ導電膜から形成され得る。ゲート絶縁層5および層間絶縁層11は、各TFT100、200に共通であってもよい。また、TFT100、200のソース領域33sA、33sBおよびドレイン領域33dA、33dBを共通のコンタクトドーピング工程で形成してもよい。これにより、半導体装置の製造プロセスで使用するフォトマスクの枚数を削減できる。
 なお、本実施形態の半導体装置では、LDD領域を有するTFTの少なくとも1つの高濃度不純物領域が、コンタクトドーピング工程によって形成され、その高濃度不純物領域とコンタクトホール内で接するように電極(ソースまたはドレイン電極)が配置されていればよい。従って、ソースおよびドレイン領域のいずれか一方のみがコンタクトドーピング工程で形成されていてもよい。
 本明細書において、「LDD領域」は、その不純物濃度が例えば1×1018atoms/cm3以上であり、かつ、ソース・ドレイン領域の不純物濃度よりも低い領域を指す。従って、半導体層のうち極めて低濃度(1×1018atoms/cm3未満)で不純物を含む領域を含まない。例えばLDD領域に注入された不純物の一部がゲート電極の下にあるチャネル領域まで拡散する場合もあるが、不純物が拡散した部分の不純物濃度は極めて低いと考えられるため、そのような部分は「LDD領域」には含まれない。
 次いで、本実施形態におけるLDD構造TFT100、GOLD構造TFT200の製造方法の一例を順に説明する。
 図3(a)~(d)は、LDD構造TFT100を製造する方法の一例を示す模式的な断面工程図である。
 まず、図3(a)に示すように、基板1上に、公知の方法で、半導体層(例えばポリシリコン層)3A、ゲート絶縁層5およびゲート電極7Aをこの順で形成する。
 次いで、図3(b)に示すように、ゲート電極7Aをマスクとして、半導体層3Aに第1導電型(ここではn型)の不純物イオンを低濃度で注入し、半導体層3Aに低濃度注入領域30Aを形成する。不純物イオンが注入されなかった領域はチャネル領域31Aとなる。この後、第1の温度で活性化アニールを行い、低濃度注入領域30Aに注入された不純物イオンを活性化させるとともに、低濃度注入領域30Aの結晶性を回復させる。
 続いて、図3(c)に示すように、半導体層3Aを覆うように層間絶縁層11を形成した後、層間絶縁層11上に、開口部を有するレジストマスク41を形成する。次いで、レジストマスク41を用いて、ゲート絶縁層5および層間絶縁層11にソースコンタクトホール13A、ドレインコンタクトホール14Aを形成する。
 続いて、図3(d)に示すように、ソースコンタクトホール13Aおよびドレインコンタクトホール14Aを介して、低濃度注入領域30Aの一部に第1導電型の不純物イオンを高濃度で注入する。これにより、半導体層3Aにソース領域33sAおよびドレイン領域33dAが形成される。低濃度注入領域30Aのうち高濃度で不純物イオンが注入されなかった領域がLDD領域32Aとなる。この後、レジストマスク41を剥離する。なお、レジストマスク41の剥離は、不純物イオンの注入の前に行ってもよい。
 次いで、第2の温度で活性化アニールを行い、ソース領域33sAおよびドレイン領域33dAに注入された不純物イオンを活性化させる。第2の温度は、例えば第1の温度よりも低い温度に設定される。このようにして、LDD構造TFT100を得る。
 図4(a)~(d)は、GOLD構造を有するTFT200を製造する方法の一例を示す模式的な断面工程図である。
 まず、図4(a)に示すように、基板1上に、公知の方法で、半導体層3Bおよびゲート絶縁層5を形成する。次いで、ゲート絶縁層5上にレジストマスク42を形成し、これを用いて、半導体層3Bに第1導電型(ここではn型)の不純物イオンを低濃度で注入し、半導体層3Bに低濃度注入領域30Bを形成する。不純物イオンが注入されなかった領域はチャネル領域31Bとなる。
 レジストマスク42を剥離した後、図4(b)に示すように、ゲート絶縁層5上に、低濃度注入領域30Bの一部およびチャネル領域31Bと重なるようにゲート電極7Bを形成する。この後、第1の温度で活性化アニールを行い、低濃度注入領域30Bに注入された不純物イオンを活性化させる。なお、活性化アニールを、ゲート電極7Bの形成前に行ってもよい。
 続いて、図4(c)に示すように、図3(c)を参照しながら前述した方法と同様の方法で、層間絶縁層11を形成し、ゲート絶縁層5および層間絶縁層11のパターニングを行ってソースコンタクトホール13Bおよびドレインコンタクトホール14Bを得る。
 続いて、図4(d)に示すように、図3(d)を参照しながら前述した方法と同様の方法で、低濃度注入領域30Bの一部に第1導電型の不純物イオンを高濃度で注入し、ソース領域33sBおよびドレイン領域33dBを得る。低濃度注入領域30Bのうち高濃度で不純物イオンが注入されなかった領域がLDD領域32Bとなる。次いで、第1の温度よりも低い第2の温度で活性化アニールを行い、GOLD構造TFT200を得る。
 本実施形態によると、LDD構造TFT100を製造する際に、ゲート電極7AをマスクとしてLDD領域32Aとなる低濃度注入領域(N-領域)を形成し、コンタクトホール13A、14Aが形成された絶縁層をマスクとしてソース領域またはドレイン領域となる高濃度注入領域(N+領域)を形成する。また、GOLD構造TFT200を製造する場合でも、コンタクトホール13B、14Bが形成された絶縁層をマスクとして高濃度注入領域(N+領域)を形成する。このため、フォトマスクの使用枚数を従来よりも1枚削減することが可能である。
 上記方法では、コンタクトドーピングを行う前に低濃度注入領域に対する活性化アニールを行い、コンタクトドーピング後に高濃度注入領域に対する活性化アニールを行っている。なお、活性化アニールは、コンタクトドーピング後に1回だけ行っても構わない。ただし、上記方法のように、コンタクトドーピングを行う前にも活性化アニールを行うことが好ましい。この理由は次のとおりである。
 一般に、不純物イオンが注入された領域には、イオン注入時に生じた結晶の損傷を回復し、注入されたイオンを活性化するためにアニール(活性化アニール)が行われる。しかしながら、コンタクトドーピング後に、高温で活性化アニールを行うと、コンタクトホールからゲート絶縁層と半導体層との界面において終端している水素が離脱し、TFT特性を悪化させる可能性がある。これに対し、上記方法では、LDD領域32A、32Bとなる低濃度注入領域(N-領域)を形成した後、コンタクトドーピング工程を行う前に、第1の温度で活性化アニールを行い、低濃度注入領域30A、30Bの結晶を一旦回復させている。第1の温度は、例えば500℃以上700℃以下であってもよい。次いで、コンタクトドーピング後、第2の温度で高濃度注入領域(N+領域)の活性化アニールを行う。第2の温度は、第1の温度よりも低く設定され得る。第2の温度は例えば200℃以上300℃未満であってもよい。このように、コンタクトドーピング前後に活性化アニールを行うことにより、TFT特性を確保しつつ、低濃度不純物領域および高濃度不純物領域の結晶性の回復をより確実に行うことができる。
 コンタクトドーピングを行う際の加速エネルギーは、低濃度注入領域30A、30Bを形成する際の加速エネルギーよりも低くてもよく、例えば5keV以上30keV以下であってもよい。これにより、コンタクトドーピング後の活性化アニールにおいて、終端水素の離脱をより効果的に抑制できる。
 なお、TFT100、200の導電型はn型に限定されず、p型であってもよい。この場合には、半導体層3A、3Bに注入される第1導電型不純物として、ボロンなどのp型不純物を用いる。
 なお、特開2007-141992号公報には、ゲート絶縁層に設けたコンタクトホールを介して半導体層に不純物イオンを注入することによって、ソース・ドレイン領域を形成する方法が記載されている。この方法では、ソース・ドレイン領域の形成後、層間絶縁層の形成およびパターニングが行われる。この方法によると、ゲート絶縁層および層間絶縁層を別個にパターニングする必要があり、フォトマスクの枚数を低減できない。また、ゲート絶縁層が薄い場合には、ゲート絶縁層をドーピングマスクとして利用できない場合もある。これに対し、本実施形態では、ゲート絶縁層であるゲート絶縁層5および層間絶縁層11を一括してエッチングするので、フォトマスクの枚数を低減できる。また、エッチングマスクとして、ゲート絶縁層5および層間絶縁層11を用いるので、ゲート絶縁層5の厚さにかかわらず適用できる。前述したように、コンタクトドーピングの前後に、活性化アニールを2回に分けて行うと、さらに有利である。
 (第2の実施形態)
 以下、図面を参照しながら、本発明による第2の実施形態の半導体装置を説明する。
 本実施形態の半導体装置は、同一基板上に、LDD構造TFTおよびGOLD構造TFTを備えている。これらのTFTは、同一の半導体膜を用いて、共通の工程で形成される。LDD構造TFTは画素用TFTとして表示領域に形成され、GOLD構造TFTは駆動回路用TFTとして額縁領域に形成され得る。
 図5(a)は、本実施形態の半導体装置におけるLDD構造TFT101およびGOLD構造TFT201を例示する断面図であり、図5(b)および(c)は、それぞれ、LDD構造TFT101およびGOLD構造TFT201の半導体層3A、3Bを例示する平面図である。
 LDD構造TFT101では、LDD領域32Aは、ソース領域33sAおよびドレイン領域33dAにそれぞれ接する第3LDD領域(「高濃度LDD領域」ともいう。)36と、第3LDD領域36とチャネル領域31Aとの間に位置する第4LDD領域(「低濃度LDD領域」ともいう。)37とを含む。第3LDD領域36は、第4LDD領域37よりも高い濃度で、第1導電型の不純物を含む。この例では、第4LDD領域37は、チャネル領域31Aと接している。図示する例では、基板1の法線方向から見たとき、ソース領域33sAおよびドレイン領域33dAは、それぞれ、第3LDD領域36の内部に配置されている。その他の構成は、図1に示すLDD構造TFT100と同様であるので、説明を省略する。
 また、GOLD構造TFT201では、LDD領域32Bは、ソース領域33sBおよびドレイン領域33dBにそれぞれ接する第1LDD領域(「高濃度LDD領域」ともいう)34と、第1LDD領域34とチャネル領域31Bとの間に位置する第2LDD領域(「低濃度LDD領域」ともいう。)35とを含む。第2LDD領域35は、ゲート電極7Bによってオーバーラップされている。基板1の法線方向から見たとき、ソース領域33sBおよびドレイン領域33dBは、それぞれ、第1LDD領域34の内部に配置されている。その他の構成は、図1に示すGOLD構造TFT200と同様であるので、説明を省略する。
 次いで、本実施形態の半導体装置の製造方法の一例を説明する。
 図6(a)~(e)は、本実施形態の半導体装置を製造する方法を示す模式的な工程断面図である。簡単のため、ここでは、LDD構造TFT101およびGOLD構造TFT201を1個ずつ形成する方法を示しているが、典型的には、各TFTは複数個形成される。
 まず、図6(a)に示すように、基板1のLDD構造TFTを形成しようとする領域に島状の半導体層3A、GOLD構造TFTを形成しようとする領域に島状の半導体層3Bを形成する。続いて、これらの半導体層3A、3Bを覆うゲート絶縁層5を形成する。
 基板1は絶縁性の表面を有する基板であればよく、石英基板、ガラス基板の他、表面が絶縁層で覆われたSi基板や金属基板を用いてもよい。
 半導体層3A、3Bは、結晶質シリコン膜を用いて形成される。具体的には、まず、プラズマCVD法やスパッタ法などの公知の方法を用いて、非晶質構造を有する半導体膜(ここでは、非晶質シリコン膜)を堆積する。非晶質半導体膜の厚さは20nm以上70nm以下、好ましくは40nm以上60nm以下である。この後、非晶質半導体膜を結晶化させて結晶質半導体膜(ここではポリシリコン膜)を形成し、これをパターニングすることによって、半導体層3A、3Bを得る。非晶質半導体膜の結晶化は、レーザー結晶化によって行うことができる。あるいは、非晶質半導体膜に触媒元素を添加した後、アニール処理を行うことにより、結晶化させてもよい。
 ゲート絶縁層5は、例えばCVD法を用いて形成される。ここでは、厚さが例えば50nm以上200nm以下の酸化ケイ素(SiO2)層を形成する。
 次いで、公知のフォトリソグラフィにより、半導体層3Aの一部を覆うレジストマスク45と、半導体層3Bのチャネル領域となる部分を覆うレジストマスク47とを形成する。レジストマスク45は、半導体層3Aのうち高濃度不純物領域が形成される領域を露出し、かつ、チャネル領域およびLDD領域が形成される領域を覆うように配置される。
 この後、レジストマスク45、47を用いて、半導体層3A、3Bに、n型の不純物イオンを低濃度で注入し、低濃度注入領域50A、50Bを得る(第1のイオン注入工程)。ここでは、不純物イオンとしてリンイオンを注入する。注入の際の加速電圧は例えば60kV、ドーズ量は1×1013/cm2とする。半導体層3Bのうち不純物イオンが注入されなかった領域はチャネル領域31Bとなる。
 続いて、レジストマスク45、47を除去し、図6(b)に示すように、半導体層3A、3B上にそれぞれゲート電極7A、7Bを形成する。ゲート電極7Aは、低濃度注入領域50Aのうちチャネル領域となる部分上に配置される。ゲート電極7Bは、半導体層3Bの低濃度注入領域50Bの一部およびチャネル領域31Bを覆うように配置される。
 ゲート電極7A、7Bは、例えば、スパッタ法により、ゲート絶縁層5上にタングステン(W)膜(厚さ:例えば400nm)を形成した後、W膜をエッチングすることによって行うことができる。ゲート電極7A、7Bの材料は特に限定されない。例えばTaN膜およびW膜からなる積層膜であってもよい。
 次に、図6(c)に示すように、ゲート電極7A、7Bをマスクとして、半導体層3A、3Bに、n型の不純物イオンを低濃度で注入する(第2のイオン注入工程)。ここでは、不純物イオンとしてリンイオンを注入する。注入の際の加速電圧は例えば50kV、ドーズ量は1×1013/cm2とする。これにより、半導体層3Aのうちゲート電極7Aで覆われ、不純物が注入されなかった部分はチャネル領域31Aとなる。また、第1および第2のイオン注入工程の両方で不純物イオンが注入された部分36は、第3LDD領域となる。第1のイオン注入工程で不純物イオンが注入されず、第2のイオン注入工程で不純物イオンが注入された部分37は、第4LDD領域となる。第3LDD領域36は、第4LDD領域37よりも高い濃度で第1導電型不純物を含む。
 この後、活性化アニール(第1の活性化アニール)を行う。アニール温度は、特に限定しないが、例えば500℃以上700℃以下であってもよい。
 続いて、図6(d)に示すように、半導体層3A、3B、ゲート電極7A、7Bおよびゲート絶縁層5を覆うように、層間絶縁層11を形成する。層間絶縁層11は、例えば、厚さが300nm以上900nm以下のSiO2膜であってもよい、あるいは、例えばSiN膜およびSiO2膜からなる積層膜であってもよい。この後、必要に応じて、半導体層3A、3Bを水素化するための熱処理(水素化アニール)、例えば1気圧の窒素雰囲気あるいは水素混合雰囲気中で350~550℃のアニールを行ってもよい。
 次いで、図6(e)に示すように、層間絶縁層11上に、開口部を有するレジストマスク49を形成し、レジストマスク49を用いて、層間絶縁層11のパターニングを行う。これにより、層間絶縁層11に、半導体層3Aの第3LDD領域36の一部に達するソースコンタクトホール13A、ドレインコンタクトホール14Aと、半導体層3Bの第1LDD領域34の一部に達するソースコンタクトホール13B、ドレインコンタクトホール14Bとを形成する。
 次いで、これらのコンタクトホール13A、14A、13B、14Bを介して、半導体層3A、3Bに不純物イオンを注入する(コンタクトドーピング工程)。これにより、半導体層3Aの第3LDD領域36にソースおよびドレイン領域33sA、33dAを形成する。また、半導体層3Bの第1LDD領域34にソースおよびドレイン領域33sB、33dBを形成する。この後、レジストマスク49を除去する。なお、レジストマスク49を除去した後で、コンタクトドーピングを行っても構わない。
 コンタクトドーピング工程におけるイオン注入条件を説明する。ここでは、不純物イオンとしてリンイオンを注入する。注入の際の加速電圧は、第1および第2のイオン注入工程の加速電圧よりも低く設定されることが好ましく、例えば20kV未満に設定される。また、既に2回のイオン注入を行った後の領域に対してイオン注入を行うため、本工程におけるドーズ量は、従来の高濃度注入領域を形成する際のドーズ量よりも低い値に設定され得る。また、第1および第2のイオン注入工程におけるドーズ量よりも低くなるように設定されてもよい。好ましくは、ドーズ量は1013/cm2以上1014/cm2以下に設定される。このように、コンタクトドーピング工程では、第1および第2のイオン注入工程よりも低いエネルギーでイオン注入を行うことが可能になるので、注入時の結晶の損傷を小さくできる。従って、注入後に行う活性化アニールの温度を低く設定しても、結晶性を十分に回復できる。
 この後、第2の活性化アニールを行い、ソースおよびドレイン領域33sA、33dA、33sB、33dBの結晶性を回復し、注入されたイオンを活性化させる。この後、図示しないが、コンタクトホール13A、13B、14A、14Bにそれぞれソース電極およびドレイン電極を形成する。このようにして、LDD構造TFT101およびGOLD構造TFT201が製造される。
 第2の活性化アニールは、上記の第1の活性化アニールよりも低い温度で行ってもよく、例えば300℃未満に設定されてもよい。これにより、コンタクトホール13A、14A、13B、14Bからの水素の離脱を低減できるので、TFT特性の低下を抑制できる。
 上記方法では、コンタクトドーピングを利用して、TFT101、201の高濃度注入領域を形成するので、高濃度注入領域を形成するためのドーピングマスクをフォトプロセスで形成する必要がない。従って、フォトマスクの使用枚数を従来よりも低減できる。
 本実施形態では、LDD構造TFT101の第4LDD領域37の不純物濃度および注入プロファイルは、第2のイオン注入工程の注入条件によって決まる。GOLD構造TFT201の第2LDD領域35の不純物濃度および注入プロファイルは、第1のイオン注入工程の注入条件によって決まる。第1および第3LDD領域34、36は、第1および第2のイオン注入工程の両方で不純物イオンが注入された領域である。このため、第1および第3LDD領域34、36の不純物濃度および注入プロファイルは実質的に同じになる。また、高濃度不純物領域であるソースおよびドレイン領域33sA、33dA、33sB、33dBの不純物濃度および注入プロファイルは実質的に同じになる。
 従って、第1~第4LDD領域34、35、36、37の不純物濃度を、それぞれ、c1、c2、c3、c4とし、高濃度不純物領域の不純物濃度をc5とすると、下式(1)~(3)に示す関係が成り立つ。
       c2<c1<c5   (1)
       c4<c3<c5   (2)
       c1=c3      (3)
 上記では、不純物濃度の異なる2つのLDD領域を有するLDD構造TFT101およびGOLD構造TFT201を製造する方法を説明するが、代わりに、図1に示すLDD構造TFT100、GOLD構造200を製造してもよい。
 ここで、比較のため、コンタクトドーピングを行わずに製造された参考例の半導体装置を説明する。参考例の半導体装置は、同一基板上に、LDD構造TFT1000およびGOLD構造TFT2000を有している。
 図10(a)は、LDD構造TFT1000およびGOLD構造TFT2000を例示する断面図である。図10(b)および(c)は、それぞれ、LDD構造TFT1000およびGOLD構造TFT2000の半導体層3D、3Eの上面図である。図10では、簡単のため、図1~図5と同様の構成要素には同じ参照符号を付している。
 図7(a)は、LDD構造TFT1000およびGOLD構造TFT2000を備えた参考例の半導体装置のプロセスフローであり、図7(b)は、LDD構造TFT101およびGOLD構造TFT201を備えた本実施形態の半導体装置のプロセスフローである。なお、図7(a)および(b)は、それぞれ、GOLD構造TFT2000、およびGOLD構造TFT201のみを製造する場合のプロセスフローと同様である。
 参考例の半導体装置では、各TFT1000、2000の高濃度注入領域(ソース領域33sA、33sBおよびドレイン領域33dA、33dB)と、LDD構造TFT1000のLDD領域32Aとを作り分けるために、高濃度注入領域を形成するためのマスク(N+フォト)を用いている。高濃度注入領域を形成した後、これらの一部を露出するコンタクトホール13A、13B、14A、14Bを設けて、その内部にソースおよびドレイン電極8A、8B、9A、9Bを形成する。従って、基板1の法線方向から見たとき、半導体層上面において、ソース領域33sA、33sBおよびドレイン領域33dA、33dBの縁部と、コンタクトホール13A、13B、14A、14Bの縁部とは整合しない。これに対し、本実施形態では、コンタクトドーピングによってソース領域33sA、33sBおよびドレイン領域33dA、33dBを形成するので、N+領域形成用マスクは不要である。従って、参考例の半導体装置よりもフォトマスクの枚数を削減できる。このように、本実施形態によると、フォトマスクの使用枚数を増加させることなく、LDD構造TFTとGOLD構造TFTとを同一基板上に形成できるので有利である。
 図7から分かるように、本実施形態によると、参考例のプロセスフローで必須であったフォト工程を1回分削減できる、すなわちフォトマスクを1枚削減できることが分かる。フォトマスクを1枚減らすことができれば、フォトリソグラフィによるレジストパターンの形成(レジスト塗布、プレベーク、露光、現像、ポストベークなどを含む)、レジストパターンの剥離、洗浄および乾燥工程を省略できるので、製造工程数および製造コストを大幅に低減できる。
 (第3の実施形態)
 以下、図面を参照しながら、本発明による第3の実施形態の半導体装置を説明する。本実施形態の半導体装置は、同一基板上に、LDD構造を有する第1導電型のTFT、GOLD構造を有する第1導電型のTFT、および第2導電型のTFTを備えている。また、本実施形態では、LDD構造およびGOLD構造TFTのチャネル領域に閾値電圧を調整するためのドーピング(チャネルドーピング)が施されている。
 以下では、第1導電型はn型、第2導電型はp型であるとして説明するが、第1導電型はp型、第2導電型はn型であってもよい。LDD構造TFTは画素用TFTとして表示領域に形成され、GOLD構造TFTおよびp型TFTは駆動回路用TFTとして額縁領域に形成され得る。p型TFTは、例えばシングルドレイン構造を有する。
 本実施形態の半導体装置は、同一基板上に、n型のLDD構造TFT102、n型のGOLD構造TFT202およびp型TFT302を備えている。
 LDD構造TFT102およびGOLD構造TFT202の構造は、チャネル領域31A、31Bに不純物が注入されている点以外は、それぞれ、図5を参照しながら前述したLDD構造TFT101およびGOLD構造TFT201と同様である。また、これらのTFT102、202のLDD領域および高濃度不純物領域の配置、不純物濃度、注入プロファイルなども前述の実施形態と同様であるので、ここでは説明を省略する。
 図8(a)は、p型TFT302の断面図であり、図8(b)はp型TFT302の半導体層3Cの平面図である。p型TFT302は、例えばシングルドレイン構造を有している。p型TFT302は、基板1上に形成された半導体層3Cと、半導体層3Cを覆うゲート絶縁層5と、ゲート絶縁層5上に形成されたゲート電極7Cと、ゲート電極7Cおよび半導体層3Cを覆う層間絶縁層11と、ソース電極8Cおよびドレイン電極9Cとを有している。
 半導体層3Cは、チャネル領域31C、ソース領域38s、ドレイン領域38d、ソースコンタクト領域39sおよびドレインコンタクト領域39dを有している。ソース領域38sは、ソースコンタクト領域39sとチャネル領域31Cとに挟まれている。同様に、ドレイン領域38dは、ドレインコンタクト領域39dとチャネル領域31Cとに挟まれている。この例では、ソース領域38s、ドレイン領域38d、ソースコンタクト領域39sおよびドレインコンタクト領域39dは、いずれも、高濃度で第2導電型不純物(例えばp型不純物)を含む第2導電型領域(例えばp+型領域)である。
 ソース電極8Cは、ゲート絶縁層5および層間絶縁層11に形成されたソースコンタクトホール内で、半導体層3Cのソースコンタクト領域39sと接している。ドレイン電極9Cは、ゲート絶縁層5および層間絶縁層11に形成されたドレインコンタクトホール内で、半導体層3Cのドレインコンタクト領域39dと接している。半導体層3Cの上面において、ソースコンタクトホールの縁部と、ソースコンタクト領域39sの縁部とは整合している。同様に、ドレインコンタクトホールの縁部と、ドレインコンタクト領域39dの縁部とは整合している。
 この例では、ソースコンタクト領域39sおよびドレインコンタクト領域39dは、コンタクトドーピングによって形成されている。ソースコンタクト領域39sおよびドレインコンタクト領域39dの第2導電型の不純物濃度は、ソース領域38sおよびドレイン領域38dの第2導電型(例えばp型)の不純物濃度と同じである。また、ソースコンタクト領域39sおよびドレインコンタクト領域39dの第1導電型(例えばn型)の不純物濃度は、ソース領域38sおよびドレイン領域38dの第1導電型の不純物濃度よりも、コンタクトドーピングで注入された分だけ高い。
 次いで、本実施形態の半導体装置の製造方法の一例を説明する。
 図9(a)~(f)は、本実施形態の半導体装置を製造する方法を示す模式的な工程断面図である。簡単のため、ここでは、LDD構造TFT102、GOLD構造TFT202およびp型TFT302を1個ずつ形成する方法を示しているが、典型的には、各TFTは複数個形成される。
 まず、図9(a)に示すように、基板1のLDD構造TFTを形成しようとする領域に島状の半導体層3A、GOLD構造TFTを形成しようとする領域に島状の半導体層3B、p型TFTを形成しようとする領域に島状の半導体層3Cを形成する。続いて、これらの半導体層3A、3B、3Cを覆うゲート絶縁層5を形成する。これらの形成方法は、図6(a)を参照しながら前述した方法と同様の方法である。
 次いで、公知のフォトリソグラフィにより、半導体層3Aの一部を覆うレジストマスク45と、半導体層3Bのチャネル領域となる部分を覆うレジストマスク47と、半導体層3Cのチャネル領域となる部分を覆うレジストマスク48とを形成する。レジストマスク45は、半導体層3Aのうち高濃度不純物領域が形成される領域を露出し、かつ、チャネル領域およびLDD領域が形成される領域を覆うように配置される。ここでは、レジストマスク48として、ハーフトーンマスクなどの多階調マスクを用いる。
 この後、レジストマスク45、47、48を用いて、半導体層3A、3B、3Cに、n型の不純物イオンを低濃度で注入し、低濃度注入領域50A、50B、50Cを得る(第1のイオン注入工程)。ここでは、不純物イオンとしてリンイオンを注入する。注入の際の加速電圧は例えば60kV、ドーズ量は1×1013/cm2とする。
 続いて、図9(b)に示すように、レジストマスク45、47を除去するとともに、レジストマスク48に対してアッシング処理(ハーフアッシング)を行い、レジストマスク48の高さを低減する。この後、高さが低減されたレジストマスク48をマスクとして、半導体層3A、3B、3Cにp型不純物を注入する。p型不純物は、半導体層3A、3Bにおけるチャネル領域となる部分に注入される(チャネルドーピング)。ここでは、例えば、加速電圧:30kV、ドーズ量:1×1012/cm2でボロンイオンを注入する。
 次いで、図9(c)に示すように、半導体層3A、3B、3C上にそれぞれゲート電極7A、7B、7Cを形成する。ゲート電極7Cは、半導体層3Cの低濃度注入領域50Cのうちチャネル領域となる部分上に配置される。ゲート電極7A、7B、7Cの形成方法、およびゲート電極7A、7Bの配置は、図6(b)を参照しながら前述した工程と同様であってもよい。
 次に、ゲート電極7A、7B、7Cをマスクとして、半導体層3A、3B、3Cに、n型の不純物イオンを低濃度で注入する(第2のイオン注入工程)。注入条件は、図6(c)に示す第2のイオン注入工程の条件と同様であってもよい。れにより、図6(c)を参照しながら前述したように、半導体層3Aに第3および第4LDD領域36、37が形成され、半導体層3Bに第1および第2LDD領域34、35が形成される。
 続いて、図9(d)に示すように、LDD構造形成領域およびGOLD構造形成領域を覆い、p型TFT形成領域を露出するレジストマスク44を設け、半導体層3Cのゲート電極7Cで覆われていない部分に、ゲート絶縁層5越しにp型の不純物イオンを高濃度で注入する。これにより、半導体層3Cに、ソース領域38sおよびドレイン領域38dを形成する。注入条件は特に限定しないが、例えば、加速電圧:50kV以上90kV以下、ドーズ量:5×1014/cm2以上5×1015/cm2以下でボロンイオンを注入する。
 レジストマスク44を除去した後、活性化アニール(第1の活性化アニール)を行う。これにより、第1のイオン注入工程、チャネルドーピングおよびp型不純物ドーピングによって半導体層3A、3B、3Cに注入されたイオンが活性化され、かつ、半導体層3A、3B、3Cの結晶性を回復させる。アニール温度は、特に限定しないが、例えば500℃以上700℃以下であってもよい。
 続いて、図9(e)に示すように、半導体層3A、3B、3C、ゲート電極7A、7B、7Cおよびゲート絶縁層5を覆うように、層間絶縁層11を形成する。この後、必要に応じて、水素化を行ってもよい。層間絶縁層11の形成および水素化アニールの方法は、図3(d)を参照しながら前述した方法と同様であってもよい。
 次いで、図9(f)に示すように、層間絶縁層11上に、開口部を有するレジストマスク49を形成し、レジストマスク49を用いて、層間絶縁層11のパターニングを行う。これにより、層間絶縁層11に、半導体層3Aの第3LDD領域36の一部に達するソースコンタクトホール13A、ドレインコンタクトホール14Aと、半導体層3Bの第1LDD領域34の一部に達するソースコンタクトホール13B、ドレインコンタクトホール14Bと、半導体層3Cのソース領域38sおよびドレイン領域38dにそれぞれ達するソースコンタクトホール13Cおよびドレインコンタクトホール14Cを形成する。
 次いで、これらのコンタクトホール13A、13B、13C、14A、14B、14Cを介して、半導体層3A、3B、3Cに不純物イオンを注入する(コンタクトドーピング工程)。イオン注入条件は、図3(e)に示すコンタクトドーピング工程の条件と同じであってもよい。これにより、半導体層3A、3Bにソース領域33sA、33sB、ドレイン領域33dA、33dBを形成する。このとき、p型TFTとなる半導体層3Cにもn型不純物イオンが注入され、ソースコンタクト領域39s、ドレインコンタクト領域39dが得られる。この後、レジストマスク49を除去する。なお、本コンタクトドーピング工程では、図9(d)に示す工程において高濃度でp型不純物が注入されたソースおよびドレイン領域38s、38dに、低ドーズでn型不純物を注入する。このため、n型不純物が注入された領域(ソースコンタクト領域39s、ドレインコンタクト領域39d)がn型化することはない。なお、レジストマスク49を除去した後で、コンタクトドーピングを行っても構わない。
 この後、第2の活性化アニールを行い、半導体層3A、3Bのソース・ドレイン領域および半導体層3Cのコンタクト領域39s、39dの結晶性を回復し、注入されたイオンを活性化させる。次いで、図示しないが各TFTにソース電極およびドレイン電極を形成する。このようにして、TFT102、202、302を備えた半導体装置が製造される。第2の活性化アニールの温度は、上記の第1の活性化アニールよりも低い温度で行ってもよく、例えば300℃未満に設定されてもよい。
 上記方法では、コンタクトドーピングを利用して、TFT102、202の高濃度注入領域を形成する。また、ハーフトーンマスクを利用してチャネルドーピングを行う。このため高濃度注入領域を形成するためのドーピングマスク、およびチャネルドーピング用のマスクをフォトプロセスで形成する必要がない。従って、フォトマスクの使用枚数を従来よりも2枚低減できる。
 特許文献1、特開2001-85695号公報などでは、ハーフトーンマスクを用いてフォトマスク枚数を削減する方法が開示されている。しかしながら、これらの方法では、エッチングによってレジストパターンの線幅を制御する必要がある。これに対し、上記方法では、ドーピングの打ち分けのためにハーフトーンマスクを適用しており、線幅の制御を行う必要がない。従って、精幅制御性を低下させることなく、フォトマスク枚数を削減できる。
 なお、本実施形態の方法は上記方法に限定されない。チャネルドーピングのためのハーフトーンマスクを使用しなくてもよい。あるいは、チャネルドーピングを行わなくてもよい。
 本発明は、酸化物半導体TFTおよび酸化物半導体TFTを有する種々の半導体装置に広く適用され得る。例えばアクティブマトリクス基板等の回路基板、液晶表示装置、有機エレクトロルミネセンス(EL)表示装置および無機エレクトロルミネセンス表示装置、MEMS表示装置等の表示装置、イメージセンサー装置等の撮像装置、画像入力装置、指紋読み取り装置、半導体メモリ等の種々の電子装置にも適用される。
 1    基板
 3A、3B,3C   半導体層
 5    ゲート絶縁層
 7A、7B、7C    ゲート電極
 8A、8B、8C   ソース電極
 9A、9B、9C   ドレイン電極
 11   層間絶縁層
 13A、13B、13C  ソースコンタクトホール
 14A、14B、14C  ドレインコンタクトホール
 30A、30B   低濃度注入領域
 31A、31B、31C  チャネル領域
 32A、32B  LDD領域(低濃度不純物領域)
 33sA、33sB、38s  ソース領域(高濃度不純物領域)
 33dA、33dB、38d  ドレイン領域(高濃度不純物領域)
 34   第1LDD領域(高濃度LDD領域)
 35   第2LDD領域(低濃度LDD領域、NM領域)
 36   第3LDD領域(高濃度LDD領域)
 37   第4LDD領域(低濃度LDD領域)
 39s  ソースコンタクト領域
 39d  ドレインコンタクト領域
 41、42、44、45、47、49  レジストマスク
 50A、50B、50C  低濃度注入領域
 200、201、202  GOLD構造TFT
 100、101、102  LDD構造TFT

Claims (19)

  1.  基板上に少なくとも1つの薄膜トランジスタを備えた半導体装置であって、前記少なくとも1つの薄膜トランジスタは、
     チャネル領域と、第1導電型の不純物を含む高濃度不純物領域と、前記チャネル領域と前記高濃度不純物領域との間に位置し、前記高濃度不純物領域よりも低く、かつ、前記チャネル領域よりも高い濃度で前記第1導電型の不純物を含む低濃度不純物領域とを有する半導体層と、
     前記半導体層の上に形成されたゲート絶縁層と、
     前記ゲート絶縁層の上に設けられ、少なくとも前記チャネル領域と重なるように配置されたゲート電極と
     前記ゲート電極および前記ゲート絶縁層上に形成された層間絶縁層と、
     前記半導体層に接続されたソース電極およびドレイン電極と
    を備え、
     前記層間絶縁層および前記ゲート絶縁層には、前記半導体層に達するコンタクトホールが設けられており、前記ソース電極およびドレイン電極の少なくとも一方は、前記層間絶縁層上および前記コンタクトホール内に形成され、前記コンタクトホール内で前記高濃度不純物領域と接し、
     前記コンタクトホールの側壁において、前記ゲート絶縁層および前記層間絶縁層の側面は整合しており、
     前記半導体層の上面において、前記コンタクトホールの縁部と、前記高濃度不純物領域の縁部とは整合している、半導体装置。
  2.  前記基板の法線方向から見たとき、前記高濃度不純物領域は、前記低濃度不純物領域の内部に位置している、請求項1に記載の半導体装置。
  3.  前記少なくとも1つの薄膜トランジスタは、第1薄膜トランジスタを含み、
     前記第1薄膜トランジスタでは、前記低濃度不純物領域の一部は、前記ゲート絶縁層を介して前記ゲート電極で覆われている、請求項1または2に記載の半導体装置。
  4.  前記少なくとも1つの薄膜トランジスタは、第2薄膜トランジスタを含み、
     前記第2薄膜トランジスタでは、前記低濃度不純物領域の前記チャネル領域側の端部は、前記ゲート電極の端部と整合している、請求項1から3のいずれかに記載の半導体装置。
  5.  前記第1薄膜トランジスタにおいて、前記低濃度不純物領域は、前記ゲート絶縁層を介して前記ゲート電極と重ならない第1低濃度不純物領域と、前記ゲート電極と重なる第2低濃度不純物領域とを含み、前記第1低濃度不純物領域は、前記第2低濃度不純物領域よりも高い濃度で前記第1導電型の不純物を含む、請求項3に記載の半導体装置。
  6.  前記少なくとも1つの薄膜トランジスタは、第2薄膜トランジスタをさらに含み、前記第2薄膜トランジスタでは、前記低濃度不純物領域の前記チャネル領域側の端部は、前記ゲート電極の端部と整合しており、
     前記第2薄膜トランジスタにおいて、前記低濃度不純物領域は、前記高濃度不純物領域と接する第3低濃度不純物領域と、前記第3低濃度不純物領域よりも前記チャネル領域側に位置する第4低濃度不純物領域とを含み、前記第3低濃度不純物領域は、前記第4低濃度不純物領域よりも高い濃度で前記第1導電型の不純物を含む、請求項5に記載の半導体装置。
  7.  前記第1薄膜トランジスタの前記第1低濃度不純物領域と、前記第2薄膜トランジスタの前記第3低濃度不純物領域とは同一の不純物元素を含み、前記第1および第3低濃度不純物領域の厚さ方向における前記第1導電型の不純物の濃度プロファイルは略等しい、請求項6に記載の半導体装置。
  8.  前記少なくとも1つの薄膜トランジスタとは異なる導電型を有する他の薄膜トランジスタをさらに含み、
     前記他の薄膜トランジスタは、
      チャネル領域と、コンタクト領域と、前記チャネル領域と前記コンタクト領域との間に位置し、第2導電型の不純物を含む他の高濃度不純物領域とを有する半導体層であって、前記コンタクト領域は、前記他の高濃度不純物と同じ濃度で前記第2導電型の不純物を含み、かつ、前記他の高濃度不純物よりも高い濃度で前記第1導電型の不純物を含む、他の半導体層と、
      前記他の半導体層上に延設された前記ゲート絶縁層と、
      前記ゲート絶縁層の上に設けられた他のゲート電極と
      前記他のゲート電極および前記ゲート絶縁層上に延設された前記層間絶縁層と、
     前記他の半導体層に接続された他のソース電極および他のドレイン電極と
    を備え、
     前記層間絶縁層および前記ゲート絶縁層には、前記他の半導体層に達する他のコンタクトホールが設けられており、前記他のソース電極および他のドレイン電極の少なくとも一方は、前記層間絶縁層上および前記他のコンタクトホール内に形成され、前記他のコンタクトホール内で前記コンタクト領域と接し、
     前記他のコンタクトホールの側壁において、前記ゲート絶縁層および前記層間絶縁層の側面は整合しており、
     前記他の半導体層の上面において、前記他のコンタクトホールの縁部と、前記コンタクト領域の縁部とは整合している、請求項1から7のいずれかに記載の半導体装置。
  9.  少なくとも1つ薄膜トランジスタを基板上に備えた半導体装置の製造方法であって、
     (a)基板上に、チャネル領域と、前記チャネル領域よりも高い濃度で第1導電型の不純物を含む低濃度不純物領域とを含む島状の半導体層、前記半導体層を覆うゲート絶縁層、および前記ゲート絶縁層上に配置されたゲート電極を形成する工程と、
     (b)前記ゲート絶縁層および前記ゲート電極上に層間絶縁層を形成する工程と、
     (c)前記層間絶縁層上にマスクを形成し、前記マスクを用いて前記ゲート絶縁層および前記層間絶縁層を同時にエッチングすることによって、前記ゲート絶縁層および前記層間絶縁層に、前記低濃度不純物領域の一部を露出するコンタクトホールを形成する工程と、
     (d)前記コンタクトホールを介して、前記半導体層における前記低濃度不純物領域の前記一部に第1導電型の不純物を注入することによって、高濃度不純物領域を形成する工程と、
     (e)前記層間絶縁層上および前記コンタクトホール内に、前記高濃度不純物領域と接するように電極を形成する工程と
    を包含する半導体装置の製造方法。
  10.  前記工程(d)よりも前に、前記低濃度不純物領域に対して、第1の活性化アニールを行い、
     前記工程(d)よりも後に、前記高濃度不純物領域に対して、第2の活性化アニールを行う、請求項9に記載の半導体装置の製造方法。
  11.  前記第2の活性化アニールは、前記第1の活性化アニールよりも低い温度で行う、請求項10に記載の半導体装置の製造方法。
  12.  前記工程(a)は、前記半導体層の一部に、前記第1導電型の不純物を注入する第1のイオン注入工程を含み、
     前記工程(d)では、前記第1のイオン注入工程よりも低いドーズ量または低い加速電圧で、前記第1導電型の不純物の注入を行う、請求項9から11のいずれかに記載の半導体装置の製造方法。
  13.  前記工程(a)において、前記低濃度不純物領域の少なくとも一部は、前記ゲート絶縁層を介して前記ゲート電極と重なっている、請求項9から12のいずれかに記載の半導体装置の製造方法。
  14.  少なくとも第1薄膜トランジスタおよび第2薄膜トランジスタを基板上に備えた半導体装置の製造方法であって、
     (a)基板上に、第1薄膜トランジスタの活性層となる第1半導体層と、第2薄膜トランジスタの活性層となる第2半導体層とを形成し、前記第1および第2半導体層を覆うゲート絶縁層を形成する工程と、
     (b)前記第1半導体層の一部および前記第2半導体層の一部に、第1導電型の不純物を注入する第1の注入工程と、
     (c)前記第1半導体層のうち前記第1の注入工程で不純物が注入された領域の一部およびチャネル領域となる部分の上に第1ゲート電極を形成し、前記第2半導体層のうち前記第1の注入工程で不純物が注入されなかった領域の一部上に第1ゲート電極を形成する工程と、
     (d)前記第1および第2ゲート電極をマスクとして、前記第1および第2半導体層に第1導電型の不純物を注入する第2の注入工程であって、これにより、前記第1半導体層のうち前記第1および第2の注入工程の両方で不純物が注入された領域が第1低濃度不純物領域、前記第1の注入工程で不純物が注入され、かつ、前記第2ゲート電極で覆われていたために前記第2の注入工程で不純物が注入されなかった領域が第2低濃度不純物領域となり、前記第2半導体層のうち前記第1および第2の注入工程の両方で不純物が注入された領域が第3低濃度不純物領域、前記第2の注入工程で不純物が注入され、前記第1の注入工程で不純物が注入されなかった領域が第4低濃度不純物領域となる、第2のイオン注入工程と、
     (e)前記ゲート絶縁層、前記第1ゲート電極および第2ゲート電極上に層間絶縁層を形成する工程と、
     (f)前記層間絶縁層上にマスクを形成し、前記マスクを用いて前記ゲート絶縁層および前記層間絶縁層を同時にエッチングすることによって、前記ゲート絶縁層および前記層間絶縁層に、前記第1低濃度不純物領域の一部を露出する第1コンタクトホールと、前記第3低濃度不純物領域の一部を露出する第2コンタクトホールとを形成する工程と、
     (g)前記第1および第2コンタクトホールを介して、前記第1および第3低濃度不純物領域の前記一部に第1導電型の不純物を注入することによって、前記第1半導体層に第1高濃度不純物領域を形成し、前記第2半導体層に第2高濃度不純物領域を形成する工程と、
     (h)前記層間絶縁層上および前記第1コンタクトホール内に、前記第1高濃度不純物領域と接する第1の電極を形成し、前記層間絶縁層上および前記第2コンタクトホール内に、前記第2高濃度不純物領域と接する第2の電極を形成する工程と
    を包含する半導体装置の製造方法。
  15.  前記工程(g)よりも前に、前第1、第2、第3および第4低濃度不純物領域に対して、第1の活性化アニールを行い、
     前記工程(g)よりも後に、前記第1および第2高濃度不純物領域に対して、第2の活性化アニールを行う、請求項14に記載の半導体装置の製造方法。
  16.  前記第2の活性化アニールは、前記第1の活性化アニールよりも低い温度で行う、請求項14または15に記載の半導体装置の製造方法。
  17.  前記工程(g)では、前記第1および第2のイオン注入工程よりも低いドーズ量または低い加速電圧で、前記第1導電型の不純物の注入を行う、請求項14から16のいずれかに記載の半導体装置の製造方法。
  18.  前記第1および第2薄膜トランジスタとは導電型の異なる第3薄膜トランジスタをさらに備え、
     前記工程(a)は、前記基板上に第3半導体層を形成する工程を含み、前記ゲート絶縁層は前記第3半導体層上にも延設され、
     前記工程(c)は、前記第3半導体層上に第3ゲート電極を形成する工程を含み、
     前記工程(c)の後、前記工程(e)の前に、前記第3ゲート電極をマスクとして第2導電型の不純物を前記第3半導体層に注入することによって、前記第3半導体層に第3高濃度不純物領域を形成する工程をさらに含み、
     前記工程(e)において前記層間絶縁層は、前記第3ゲート電極上にも延設され、
     前記工程(f)は、前記ゲート絶縁層および前記層間絶縁層に、前記第3高濃度不純物領域の一部を露出する第3コンタクトホールを形成する工程を含み、
     前記工程(g)は、前記第3コンタクトホールを介して、前記第3高濃度不純物領域の前記一部に第1導電型の不純物を注入することによって、前記第3半導体層にコンタクト領域を形成する工程を含み、
     前記工程(h)は、前記層間絶縁層上および前記第3コンタクトホール内に、前記コンタクト領域と接する第3の電極を形成する工程を含む、請求項14から17のいずれかに記載の半導体装置の製造方法。
  19.  前記工程(b)の前記第1の注入工程は、前記第1、第2および第3半導体層上にそれぞれ配置された第1、第2および第3マスクを用いて行い、前記第3マスクは多階調マスクであり、
     前記第1の注入工程の後、前記工程(c)の前に、
      前記第1および第2マスクを除去するとともに、前記第3マスクの一部を除去する工程と、
      前記第3マスクの一部を用いて、前記第1および第2半導体層のチャネル領域となる部分を含む領域に不純物を注入する工程と
    をさらに包含する、請求項18に記載の半導体装置の製造方法。
PCT/JP2016/062369 2015-04-28 2016-04-19 半導体装置及びその製造方法 WO2016175086A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017515494A JP6503459B2 (ja) 2015-04-28 2016-04-19 半導体装置及びその製造方法
US15/569,283 US10468533B2 (en) 2015-04-28 2016-04-19 Semiconductor device and method for manufacturing same
CN201680024473.2A CN107533981B (zh) 2015-04-28 2016-04-19 半导体装置以及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015091063 2015-04-28
JP2015-091063 2015-04-28

Publications (1)

Publication Number Publication Date
WO2016175086A1 true WO2016175086A1 (ja) 2016-11-03

Family

ID=57199157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062369 WO2016175086A1 (ja) 2015-04-28 2016-04-19 半導体装置及びその製造方法

Country Status (4)

Country Link
US (1) US10468533B2 (ja)
JP (1) JP6503459B2 (ja)
CN (1) CN107533981B (ja)
WO (1) WO2016175086A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019109441A1 (zh) * 2017-12-04 2019-06-13 武汉华星光电半导体显示技术有限公司 一种多晶硅tft基板的制作方法及多晶硅tft基板
JP2019153613A (ja) * 2018-02-28 2019-09-12 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2023243073A1 (ja) * 2022-06-17 2023-12-21 シャープディスプレイテクノロジー株式会社 半導体装置、半導体装置の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428243B (zh) * 2016-01-11 2017-10-24 京东方科技集团股份有限公司 一种薄膜晶体管及制作方法、阵列基板和显示装置
CN108899301A (zh) * 2018-06-20 2018-11-27 矽力杰半导体技术(杭州)有限公司 形成导电插塞的方法
CN109148366A (zh) * 2018-09-18 2019-01-04 武汉华星光电半导体显示技术有限公司 阵列基板及其制作方法
CN109638067A (zh) * 2018-12-19 2019-04-16 武汉华星光电半导体显示技术有限公司 薄膜晶体管的制作方法以及薄膜晶体管
CN112635571A (zh) * 2019-09-24 2021-04-09 乐金显示有限公司 薄膜晶体管及其制造方法及包括该薄膜晶体管的显示设备
CN112103245B (zh) * 2020-09-22 2023-08-11 成都京东方显示科技有限公司 阵列基板的制造方法、阵列基板及显示面板
JP2022083170A (ja) * 2020-11-24 2022-06-03 株式会社ジャパンディスプレイ 表示装置及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03184372A (ja) * 1989-12-13 1991-08-12 Olympus Optical Co Ltd 半導体装置の製造方法
JPH0756189A (ja) * 1993-08-12 1995-03-03 Seiko Epson Corp 薄膜半導体装置およびその製造方法
JPH07122649A (ja) * 1993-10-26 1995-05-12 Matsushita Electric Ind Co Ltd Cmosトランジスタの製造方法
JPH07335891A (ja) * 1994-06-03 1995-12-22 Seiko Epson Corp 不純物の活性化方法ならびに薄膜トランジスタおよびその製造方法ならびに液晶表示装置
JPH09232583A (ja) * 1996-02-27 1997-09-05 Fujitsu Ltd 薄膜トランジスタ及びその製造方法、並びに薄膜トランジスタマトリクス装置
JP2002175028A (ja) * 2000-07-31 2002-06-21 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536187B2 (ja) * 1998-11-17 2010-09-01 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
EP2284605A3 (en) * 1999-02-23 2017-10-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and fabrication method thereof
JP4038309B2 (ja) 1999-09-10 2008-01-23 セイコーエプソン株式会社 半導体装置の製造方法、アクティブマトリクス基板の製造方法
US6613620B2 (en) 2000-07-31 2003-09-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP2002134756A (ja) 2000-10-26 2002-05-10 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
US6773944B2 (en) * 2001-11-07 2004-08-10 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
CN1549230A (zh) * 2003-05-07 2004-11-24 Pt普拉斯有限公司 用于lcd或oeld的具有多栅极结构的结晶硅tft板
US6963083B2 (en) * 2003-06-30 2005-11-08 Lg.Philips Lcd Co., Ltd. Liquid crystal display device having polycrystalline TFT and fabricating method thereof
JP2005333107A (ja) 2004-04-21 2005-12-02 Mitsubishi Electric Corp 半導体装置、画像表示装置および半導体装置の製造方法
KR101108369B1 (ko) * 2004-12-31 2012-01-30 엘지디스플레이 주식회사 폴리 실리콘형 액정 표시 장치용 어레이 기판 및 그 제조방법
JP2007103418A (ja) * 2005-09-30 2007-04-19 Seiko Epson Corp 半導体装置、半導体装置の製造方法、並びに電気光学装置
JP2007109868A (ja) * 2005-10-13 2007-04-26 Sanyo Electric Co Ltd 薄膜トランジスタ及び有機エレクトロルミネッセンス表示装置
JP2007141992A (ja) 2005-11-16 2007-06-07 Hitachi Displays Ltd 表示装置とその製造方法
US20100327353A1 (en) * 2008-01-29 2010-12-30 Atsushi Shoji Semiconductor device and method for manufacturing the same
JP2011187500A (ja) * 2010-03-04 2011-09-22 Sharp Corp 半導体装置およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03184372A (ja) * 1989-12-13 1991-08-12 Olympus Optical Co Ltd 半導体装置の製造方法
JPH0756189A (ja) * 1993-08-12 1995-03-03 Seiko Epson Corp 薄膜半導体装置およびその製造方法
JPH07122649A (ja) * 1993-10-26 1995-05-12 Matsushita Electric Ind Co Ltd Cmosトランジスタの製造方法
JPH07335891A (ja) * 1994-06-03 1995-12-22 Seiko Epson Corp 不純物の活性化方法ならびに薄膜トランジスタおよびその製造方法ならびに液晶表示装置
JPH09232583A (ja) * 1996-02-27 1997-09-05 Fujitsu Ltd 薄膜トランジスタ及びその製造方法、並びに薄膜トランジスタマトリクス装置
JP2002175028A (ja) * 2000-07-31 2002-06-21 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019109441A1 (zh) * 2017-12-04 2019-06-13 武汉华星光电半导体显示技术有限公司 一种多晶硅tft基板的制作方法及多晶硅tft基板
JP2019153613A (ja) * 2018-02-28 2019-09-12 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP7071841B2 (ja) 2018-02-28 2022-05-19 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2023243073A1 (ja) * 2022-06-17 2023-12-21 シャープディスプレイテクノロジー株式会社 半導体装置、半導体装置の製造方法

Also Published As

Publication number Publication date
CN107533981B (zh) 2020-12-15
JP6503459B2 (ja) 2019-04-17
CN107533981A (zh) 2018-01-02
US20180122955A1 (en) 2018-05-03
US10468533B2 (en) 2019-11-05
JPWO2016175086A1 (ja) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6503459B2 (ja) 半導体装置及びその製造方法
US7709840B2 (en) Bottom gate thin film transistor, flat panel display having the same and method of fabricating the same
JP4037117B2 (ja) 表示装置
US7387920B2 (en) Method of manufacturing thin film transistor array panel
WO2017020358A1 (zh) 低温多晶硅薄膜晶体管的制作方法及低温多晶硅薄膜晶体管
WO2018000478A1 (zh) 薄膜晶体管的制造方法及阵列基板的制造方法
US9159773B2 (en) Thin film transistor and active matrix organic light emitting diode assembly
WO2011004624A1 (ja) 薄膜トランジスタの製造方法
KR100307457B1 (ko) 박막 트랜지스터의 제조 방법
KR100776362B1 (ko) 비정질 실리콘 박막의 결정화 방법 및 이를 이용한 다결정 실리콘 박막 트랜지스터의 제조방법
KR20010056037A (ko) 박막트랜지스터 제조방법
US20050110090A1 (en) Thin film transistor, method of fabricating the same, and flat panel display using the thin film transistor
JP4467901B2 (ja) 薄膜トランジスタ装置の製造方法
JP2009206434A (ja) 表示装置およびその製造方法
JP2014033136A (ja) 表示装置およびその製造方法
KR100493378B1 (ko) 다결정 실리콘 박막트랜지스터의 제조 방법
JP4931411B2 (ja) 半導体装置
JP3949650B2 (ja) アクティブマトリクス型表示装置の作製方法
US11081507B2 (en) Semiconductor device and method for manufacturing same
JP2004056025A (ja) 薄膜トランジスタ装置およびその製造方法
JP4342191B2 (ja) 薄膜トランジスタを備えた装置及びその製造方法
JP2009147153A (ja) 薄膜トランジスタ構造、表示装置及びその製造方法
KR100510732B1 (ko) 다결정 실리콘 박막트랜지스터의 제조 방법
JP4604675B2 (ja) 表示装置
JP4855511B2 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515494

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15569283

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786363

Country of ref document: EP

Kind code of ref document: A1