WO2016158328A1 - 研摩材および研摩スラリー - Google Patents

研摩材および研摩スラリー Download PDF

Info

Publication number
WO2016158328A1
WO2016158328A1 PCT/JP2016/057856 JP2016057856W WO2016158328A1 WO 2016158328 A1 WO2016158328 A1 WO 2016158328A1 JP 2016057856 W JP2016057856 W JP 2016057856W WO 2016158328 A1 WO2016158328 A1 WO 2016158328A1
Authority
WO
WIPO (PCT)
Prior art keywords
abrasive
polishing
polishing slurry
polymer additive
water
Prior art date
Application number
PCT/JP2016/057856
Other languages
English (en)
French (fr)
Inventor
雅之 松山
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2017509497A priority Critical patent/JP6744295B2/ja
Publication of WO2016158328A1 publication Critical patent/WO2016158328A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the disclosed embodiments relate to abrasives and polishing slurries.
  • polishing slurry described above has room for further improvement in terms of realizing good polishing performance at a relatively high polishing speed.
  • One aspect of the embodiment has been made in view of the above, and an object thereof is to provide a polishing material and a polishing slurry excellent in polishing speed and polishing performance.
  • the abrasive according to one aspect of the embodiment includes a polymer additive and abrasive grains for polishing the substrate.
  • the abrasive grains include manganese oxide.
  • Drawing 1 is an explanatory view explaining the outline of the abrasives and polishing slurry concerning an embodiment.
  • FIG. 2 is an explanatory view illustrating an example of substrate polishing to which the polishing slurry according to the embodiment is applied.
  • FIG. 1 is an explanatory diagram for explaining the outline of the polishing material and the polishing slurry according to the embodiment
  • FIG. 2 is an explanatory diagram for explaining an example of the base material polishing to which the polishing slurry according to the embodiment is applied.
  • the abrasive 3 includes abrasive grains 1 and a polymer additive 2.
  • a polishing slurry 5 in which abrasive grains 1 are dispersed in a solution 4 of the polymer additive 2 (hereinafter referred to as “polymer additive solution”) 4 is produced.
  • polymer additive solution a polishing slurry 5 in which abrasive grains 1 are dispersed in a solution 4 of the polymer additive 2 (hereinafter referred to as “polymer additive solution”) 4 is produced.
  • polymer additive solution the polymer additive solution 4
  • polishing of the substrate to which the polishing slurry 5 is applied will be described.
  • the polishing slurry 5 is supplied onto a polishing pad 6 attached to a polishing machine (not shown), and the surface of the substrate 7 to be polished is placed so that the surface to be polished is in contact with the polishing slurry 5. Put it on.
  • the polishing pad 6 is rotated at a predetermined rotation speed while supplying the polishing slurry 5 while pressing the substrate 7 against the polishing pad 6 with a predetermined pressing force, the rotation speed of the polishing pad 6 and the polishing slurry are increased.
  • the substrate 7 is polished at a polishing speed according to the composition 5.
  • the polishing slurry 5 according to the embodiment can be applied to polishing using silicon carbide as a base material 7, but is not limited thereto.
  • the base 7 may be a high hardness material such as gallium nitride or diamond.
  • the abrasive 3 and the polishing slurry 5 which concern on embodiment are further demonstrated.
  • the abrasive grains 1 contained in the abrasive 3 and the polishing slurry 5 according to the embodiment contain manganese oxide.
  • the manganese oxide include manganese monoxide (MnO), manganese dioxide (MnO 2 ), trimanganese tetroxide (Mn 3 O 4 ), and dimanganese trioxide (Mn 2 O 3 ).
  • MnO manganese monoxide
  • MnO 2 manganese dioxide
  • Mn 3 O 4 trimanganese tetroxide
  • Dimanganese trioxide Mn 2 O 3
  • manganese oxide it is not limited to these.
  • manganese dioxide is more preferable because of its particularly strong oxidizing power.
  • the abrasive grains 1 may contain manganese oxide and may not contain components other than manganese oxide.
  • a two-layer structure including a core material and a coating layer (shell) covering a part or the whole of the outer peripheral surface of the core material is provided, and so-called core-shell particles including manganese oxide in one of the two-layer structures. It may be used as the abrasive grain 1.
  • the average particle diameter of the abrasive grains 1 is preferably 0.08 ⁇ m or more and 3.0 ⁇ m or less, and more preferably 0.3 ⁇ m or more and 1.0 ⁇ m or less.
  • the average particle size of the abrasive grains 1 is less than 0.08 ⁇ m, a sufficient polishing speed may not be obtained.
  • the average particle diameter of the abrasive grains 1 exceeds 3.0 ⁇ m, sufficient polishing performance cannot be obtained, that is, the surface roughness Ra of the polished base material 7 may be increased.
  • the “average particle diameter of the abrasive grains 1” refers to a 50% diameter (d50) in a volume-based integrated fraction of laser diffraction / scattering particle diameter distribution measurement.
  • the abrasive 3 or the abrasive slurry 5 is introduced into the chamber of the sample circulator until it is determined to have an appropriate concentration.
  • the average particle diameter of the abrasive grain 1 is determined by performing measurement after irradiating an ultrasonic wave with an output of 30 W with a sample circulator for 3 minutes using a 0.1 wt% aqueous solution of sodium hexametaphosphate as a dispersion medium. can get.
  • the polymer additive 2 As the polymer additive 2, a water-soluble component that can suppress aggregation of the abrasive grains 1 in an aqueous solution is applied. For this reason, as described above, the polishing slurry 5 has a state where the abrasive grains 1 are dispersed in the polymer additive solution 4. The polishing slurry 5 in which the polymer additive 2 is appropriately blended suppresses the aggregation of the abrasive grains 1 without reducing the fluidity of the polymer additive solution 4. For this reason, it is considered that the polishing rate of the base material 7 can be improved by applying the polishing slurry 5.
  • polymer additive 2 one or two or more water-soluble organic polymers can be applied.
  • polycarboxylic acid and polycarboxylic acid salt, polyacrylic acid and polyacrylic acid salt, naphthalene sulfonic acid formalin condensate salt, polyvinyl alcohol, polyethylene glycol, polyvinyl pyrrolidone, etc. are applied as polymer additive 2.
  • salts that can be used for the polymer additive 2 include sodium salts, potassium salts, and ammonium salts.
  • the weight average molecular weight (Mw) of the polymer additive 2 is preferably 400 or more and 45000, and more preferably 1200 or more and 15000 or less. By setting the weight average molecular weight of the polymer additive 2 in the above-described range, the polishing speed of the substrate 7 is further improved.
  • the abrasive 3 can further contain an oxidizing agent.
  • an oxidizing agent Specifically, a component that generates permanganate ions when dissolved in water is preferable as the oxidizing agent, and examples thereof include potassium permanganate and sodium permanganate.
  • the content of the polymer additive 2 with respect to 100% by weight of the abrasive grains 1 is preferably 0.01% by weight to 10% by weight, more preferably 0.1% by weight to 3. It is prepared so that it may become 0 mass% or less.
  • the polishing speed of the substrate 7 is further improved.
  • content of the polymer additive 2 with respect to the abrasive grain 1 in the polishing slurry 5 which mixed the abrasive 3 with water is calculated as follows.
  • the content of the abrasive grains 1 in the polishing slurry 5 is determined by a dry weight method in which a certain amount of the polishing slurry 5 is dried at 80 ° C. Further, the type of the polymer additive 2 is specified by infrared spectrophotometry. Further, sulfuric acid and hydrogen peroxide solution are added to a fixed amount of polishing slurry 5 and heated to dissolve manganese oxide and other abrasive grains 1, and then the total organic carbon content (TOC) is measured. Next, the content of the polymer additive 2 in the polishing slurry 5 is determined from the total amount of organic carbon obtained and the type of the specified polymer additive 2. Then, the content of the polymer additive 2 with respect to the abrasive grain 1 can be calculated from the content of the abrasive grain 1 and the content of the polymer additive 2 in the obtained abrasive slurry 5.
  • TOC total organic carbon content
  • the pH of the polishing slurry 5 is preferably 3 or more and 9 or less.
  • the pH of the polishing slurry 5 is preferably 3 or more and 9 or less.
  • an aqueous solution of an inorganic acid or an inorganic base such as sulfuric acid, hydrochloric acid, nitric acid, sodium hydroxide, potassium hydroxide, or ammonia can be appropriately used.
  • the polishing slurry 5 is prepared so that the content of the abrasive grains 1 is preferably 0.1% by mass or more and 35% by mass or less, more preferably 1.0% by mass or more and 10% by mass or less.
  • the polishing speed of the base material 7 is further improved.
  • the polishing material 3 and the polishing slurry 5 according to the embodiment are excellent in polishing performance and can produce the base material 7 at an excellent polishing speed.
  • the polishing slurry 3 is prepared by mixing the abrasive 3 and water.
  • the method for preparing the polishing slurry 5 is not limited.
  • the abrasive grains 1 may be dispersed by dispersing the abrasive grains 1 in a polymer additive solution 4 in which the polymer additive 2 is previously dissolved in water.
  • the polishing slurry 5 a part of the water mixed with the polishing material 3 may be replaced with a water-soluble organic low-molecular compound such as alcohol as long as the essence of the present invention is not impaired. Further, the polishing slurry 5 may appropriately contain additives such as a dispersant, a pH stabilizer that imparts a buffering action, and a chemical that prevents the generation of algae, molds, bacteria, and the like.
  • the polishing method using the single-side polishing machine in which the lower surface side of the substrate 7 is the polishing surface has been described.
  • the direction of the polishing surface is not limited.
  • the upper surface side of the base material 7 may be disposed as a surface to be polished, or a double-side polishing machine that simultaneously polishes the upper and lower surfaces of the base material 7 may be used.
  • Example 2 A polishing slurry 5 was obtained in the same manner as in Example 1 except that the weight average molecular weight Mw of the polymer additive solution 4 was changed to 8000.
  • Example 3 A polishing slurry 5 was obtained in the same manner as in Example 1 except that the weight average molecular weight Mw of the polymer additive solution 4 was changed to 15000.
  • Example 4 A polishing slurry 5 was obtained in the same manner as in Example 1 except that the weight average molecular weight Mw of the polymer additive solution 4 was changed to 250,000.
  • Example 5 A polishing slurry 5 was obtained in the same manner as in Example 2 except that the blending ratio of the polymer additive solution 4 and water (deionized water) was changed.
  • Example 10 (Example 10) 0.001 mol ⁇ dm ⁇ 3 aqueous sodium hydroxide solution was added to polishing slurry 5 (before pH adjustment) prepared in Example 2 to adjust the pH to 9.0, whereby polishing slurry 5 was obtained.
  • Example 11 To the polishing slurry 5 produced in Example 2, 0.0005 mol ⁇ dm ⁇ 3 sulfuric acid aqueous solution was further added to change the pH to obtain the polishing slurry 5.
  • Example 18 A polishing slurry 5 was obtained in the same manner as in Example 2 except that the mixing ratios of the abrasive grains 1 and water (deionized water) were changed.
  • Example 21 A polishing slurry 5 was obtained in the same manner as in Example 2 except that the blending ratios of the oxidizing agent (potassium permanganate) and water (deionized water) were changed.
  • the oxidizing agent potassium permanganate
  • water deionized water
  • Example 23 A polishing slurry 5 was obtained in the same manner as in Example 2 except that the average particle diameter (d50) of the abrasive grains 1 was changed to 0.08 ⁇ m.
  • Example 24 A polishing slurry 5 was obtained in the same manner as in Example 2 except that the average particle diameter (d50) of the abrasive grains 1 was changed to 3.0 ⁇ m.
  • Example 25 A polishing slurry 5 was obtained in the same manner as in Example 2 except that the abrasive grain 1 was changed to Mn 2 O 3 (average particle diameter (d50): 1.7 ⁇ m).
  • Example 26 A polishing slurry 5 was obtained in the same manner as in Example 2 except that the abrasive grain 1 was changed to Mn 3 O 4 (average particle diameter (d50): 1.0 ⁇ m).
  • Example 2 A polishing slurry 5 was obtained in the same manner as in Example 1 except that sodium oxalate (molecular weight 134) was used instead of the polymer additive 2.
  • Example 3 A polishing slurry 5 was obtained in the same manner as in Example 1 except that trisodium citrate (molecular weight 258) was used instead of the polymer additive 2.
  • polishing speed The substrate 7 was polished using the polishing slurry 5 obtained in Example 1 to Comparative Example 3 described above.
  • a single-side polishing machine BC-15 manufactured by MT Corporation was used as a polishing apparatus.
  • SUBA # 600 manufactured by Nitta Haas Co. was used as the polishing pad 6 attached to the bottom plate of the polishing apparatus, and the rotation speed of the bottom plate was set to 60 rpm and the outer peripheral speed was set to 7163 cm / min.
  • the carrier rotation speed was set to 60 rpm and the outer peripheral speed was set to 961 cm / min.
  • the supply amount of polishing slurry 5 per minute was set to 0.2 dm ⁇ 3 and chemical mechanical polishing (CMP) was performed by applying a load of 3 psi (about 2.07 ⁇ 10 4 Pa).
  • the polishing time was 3 hours, and the polishing rate (nm / min) was calculated based on the difference in mass of the substrate 7 before and after polishing and the density of silicon carbide (3.10 g ⁇ cm ⁇ 3 ). The results are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

実施形態に係る研摩材は、高分子添加剤と、基材を研摩するための砥粒とを含む。砥粒はマンガン酸化物を含む。

Description

研摩材および研摩スラリー
 開示の実施形態は、研摩材および研摩スラリーに関する。
 従来、水または水溶液に酸化マンガンなどを含む砥粒を分散させた研摩スラリーを適用し、基材の表面を研摩する手法が知られている(例えば特許文献1~3参照)。
特開2012-696号公報 特開2013-82048号公報 国際公開第2013/054883号
 しかしながら、上記した研摩スラリーにあっては、比較的高い研摩速度で良好な研摩性能を実現する点でさらなる改善の余地がある。
 実施形態の一態様は、上記に鑑みてなされたものであって、研摩速度および研摩性能の優れた研摩材および研摩スラリーを提供することを目的とする。
 実施形態の一態様に係る研摩材は、高分子添加剤と、基材を研摩するための砥粒とを含む。前記砥粒はマンガン酸化物を含む。
 実施形態の一態様によれば、研摩速度および研摩性能の優れた研摩材および研摩スラリーを提供することができる。
図1は、実施形態に係る研摩材および研摩スラリーの概要を説明する説明図である。 図2は、実施形態に係る研摩スラリーを適用した基材研摩の一例を説明する説明図である。
 以下、添付図面を参照して、本願の開示する研摩材および研摩スラリーの実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。
 図1は、実施形態に係る研摩材および研摩スラリーの概要を説明する説明図、図2は、実施形態に係る研摩スラリーを適用した基材研摩の一例を説明する説明図である。
 図1に示すように、実施形態に係る研摩材3は、砥粒1と、高分子添加剤2とを含む。この研摩材3を所定の割合で水と混合させることにより、高分子添加剤2の溶液(以下、「高分子添加剤溶液」という)4に砥粒1が分散された研摩スラリー5が作製される。なお、研摩材3および研摩スラリー5を構成する各成分の詳細については後述する。
 次に、研摩スラリー5を適用した基材の研摩について説明する。図2に示すように、図示しない研摩機に取り付けた研摩パッド6の上に研摩スラリー5を供給し、研摩対象となる基材7を、研摩スラリー5に接触するように被研摩面を下にして載せる。次いで、基材7を研摩パッド6に対して所定の押圧力で押し当てながら、研摩スラリー5を補給しつつ研摩パッド6を所定の回転速度で回転させると、研摩パッド6の回転速度および研摩スラリー5の組成に応じた研摩速度で基材7が研摩される。
 実施形態に係る研摩スラリー5は、炭化ケイ素を基材7とする研摩に適用することができるが、これに限定されない。たとえば、窒化ガリウムやダイヤモンドなどの高硬度材料を基材7とする場合であってもよい。以下では、実施形態に係る研摩材3および研摩スラリー5についてさらに説明する。
 実施形態に係る研摩材3および研摩スラリー5に含まれる砥粒1は、マンガン酸化物を含む。かかるマンガン酸化物としては、たとえば一酸化マンガン(MnO)、二酸化マンガン(MnO)、四酸化三マンガン(Mn)、三酸化二マンガン(Mn)などを挙げることができるが、これらに限定されない。また、かかるマンガン酸化物は、2種類以上組み合わせて使用してもよい。このようなマンガン酸化物のうち、二酸化マンガンは、特に酸化力が強いため、より好ましい。なお、上記したように砥粒1はマンガン酸化物を含めばよく、マンガン酸化物以外の成分を含まなくてもよいことは言うまでもない。
 また、芯材およびこの芯材の外周表面の一部または全体を被覆する被覆層(シェル)を含む二層構造を備え、この二層構造のうち、一方にマンガン酸化物を含むいわゆるコアシェル粒子を砥粒1として用いてもよい。
 また、砥粒1の平均粒径は、好ましくは0.08μm以上3.0μm以下であり、より好ましくは0.3μm以上1.0μm以下である。砥粒1の平均粒径が0.08μm未満だと、十分な研摩速度が得られない場合がある。また、砥粒1の平均粒径が3.0μmを超えると、十分な研摩性能が得られない、すなわち、研摩した基材7の表面粗さRaが大きくなる場合がある。ここで、「砥粒1の平均粒径」とは、レーザ回折・散乱法粒子径分布測定の体積基準の積算分率における50%径(d50)をいう。具体的には、測定装置として日機装株式会社製マイクロトラック3300EXIIを適用し、試料循環器のチャンバーに、適正濃度であると判定されるまで研摩材3または研摩材スラリー5を投入する。また、分散媒には、0.1重量%のヘキサメタリン酸ナトリウム水溶液を用い、試料循環器にて出力30Wの超音波を3分間照射した後に測定を行うことにより、砥粒1の平均粒径が得られる。
 次に、高分子添加剤2について説明する。高分子添加剤2は、水溶液中での砥粒1の凝集を抑制することができる水溶性の成分が適用される。このため、上記したように、研摩スラリー5では、高分子添加剤溶液4中に砥粒1が分散された状態を有している。高分子添加剤2が適度に配合された研摩スラリー5は、高分子添加剤溶液4の流動性を低下させることなく、砥粒1の凝集を抑制する。このため、かかる研摩スラリー5を適用することにより、基材7の研摩速度を向上させることができると考えられる。
 このような高分子添加剤2として、1または2以上の水溶性有機高分子を適用することができる。具体的には、たとえばポリカルボン酸およびポリカルボン酸塩、ポリアクリル酸およびポリアクリル酸塩、ナフタレンスルホン酸ホルマリン縮合物の塩、ポリビニルアルコール、ポリエチレングリコールならびにポリビニルピロリドンなどを高分子添加剤2として適用することができるが、これらに限定されない。なお、高分子添加剤2に使用可能な塩としては、ナトリウム塩、カリウム塩、アンモニウム塩などを例示することができる。
 また、高分子添加剤2の重量平均分子量(Mw)は、好ましくは400以上45000であり、より好ましくは1200以上15000以下である。高分子添加剤2の重量平均分子量を上記した範囲とすることにより、基材7の研摩速度がさらに向上する。
 また、研摩材3は、さらに酸化剤を含むことができる。具体的には、水に溶解させると過マンガン酸イオンを生成する成分が酸化剤として好ましく、たとえば、過マンガン酸カリウム、過マンガン酸ナトリウムなどが挙げられる。このような酸化剤を含む研摩材3を含む研摩スラリー5を基材7の研摩に適用することにより、基材7の表面が酸化されることで改質されるため、基材7の研摩速度が向上すると考えられる。
 また、研摩材3は、100質量%の砥粒1に対する高分子添加剤2の含有量が好ましくは0.01質量%以上10質量%以下であり、より好ましくは0.1質量%以上3.0質量%以下となるように調製される。研摩材3中の砥粒1に対する高分子添加剤2の含有量を上記した範囲とすることにより、基材7の研摩速度がさらに向上する。なお、研摩材3を水と混合した研摩スラリー5中の砥粒1に対する高分子添加剤2の含有量は、以下のようにして算出される。まず、研摩スラリー5中の砥粒1の含有量を、研摩スラリー5の一定量を80℃にて乾燥させる乾燥重量法により求める。また、高分子添加剤2の種類を、赤外分光光度法により特定する。さらに、一定量の研摩スラリー5に硫酸および過酸化水素水を添加、加熱して、酸化マンガンその他の砥粒1を溶解後、全有機炭素量(TOC)を測定する。次いで、得られた全有機炭素量および特定された高分子添加剤2の種類から、研摩スラリー5中の高分子添加剤2の含有量を求める。そして、求めた研摩材スラリー5中の砥粒1の含有量および高分子添加剤2の含有量から、砥粒1に対する高分子添加剤2の含有量を算出することができる。
 また、研摩スラリー5のpHは、好ましくは3以上9以下である。研摩スラリー5のpHを上記した範囲とすることにより、基材7の研摩速度がさらに向上する。なお、研摩スラリー5のpH調整には、たとえば、硫酸、塩酸、硝酸、水酸化ナトリウム、水酸化カリウム、アンモニアなどの無機酸または無機塩基の水溶液を適宜使用することができる。
 また、研摩スラリー5は、砥粒1の含有量が好ましくは0.1質量%以上35質量%以下であり、より好ましくは1.0質量%以上10質量%以下となるように調製される。研摩スラリー5中の砥粒1の含有量を上記した範囲とすることにより、基材7の研摩速度がさらに向上する。
 このように、実施形態に係る研摩材3および研摩スラリー5は、研摩性能に優れており、かつ優れた研摩速度で基材7を作製することができる。
 なお、上記した実施形態では、研摩材3と水とを混合して研摩スラリー5を調製するとして説明したが、研摩スラリー5の調製方法に制限はない。たとえば、予め高分子添加剤2を水に溶解させた高分子添加剤溶液4に砥粒1を分散させて研摩スラリー5としてもよい。
 また、研摩スラリー5は、本発明の本質を損ねない範囲で、研摩材3と混合させる水の一部をアルコール等の水溶性有機低分子化合物で代替してもよい。また、研摩スラリー5には、分散剤、緩衝作用を付与するpH安定化剤、藻類、カビ、細菌等の発生を防止する薬剤などの添加剤を適宜含ませることができる。
 また、上記した実施形態では、基材7の下面側を被研摩面とする片面研摩機を用いた研摩方法について説明したが、被研摩面の向きに制限はない。たとえば、基材7の上面側を被研摩面として配置してもよく、また、基材7の上下面を同時に研摩する両面研摩機を用いてもよい。
(実施例1)
 砥粒1(MnO、平均粒径(d50):0.4μm)、高分子添加剤2(ポリアクリル酸ナトリウム、重量平均分子量Mw=1200)、酸化剤(過マンガン酸カリウム)および水(純水)を質量比で2.0:0.005:2.8:95.195となるように秤量し、これらを混合させた。次いで、0.005mol・dm-3の硫酸水溶液を添加してpHを7.0に調整し、研摩スラリー5を得た。なお、高分子添加剤2は高分子添加剤溶液4として予め調製されているものを使用した。
(実施例2)
 高分子添加剤溶液4の重量平均分子量Mwを8000に変更したことを除き、実施例1と同様にして研摩スラリー5を得た。
(実施例3)
 高分子添加剤溶液4の重量平均分子量Mwを15000に変更したことを除き、実施例1と同様にして研摩スラリー5を得た。
(実施例4)
 高分子添加剤溶液4の重量平均分子量Mwを250000に変更したことを除き、実施例1と同様にして研摩スラリー5を得た。
(実施例5~9)
 高分子添加剤溶液4および水(脱イオン水)の配合率をそれぞれ変更したことを除き、実施例2と同様にして研摩スラリー5を得た。
(実施例10)
 実施例2で作製した研摩スラリー5(pH調整前)に0.001mol・dm-3の水酸化ナトリウム水溶液を添加してpHを9.0に調整し、研摩スラリー5を得た。
(実施例11~13)
 実施例2で作製した研摩スラリー5に0.0005mol・dm-3の硫酸水溶液をさらに添加してpHをそれぞれ変更し、研摩スラリー5を得た。
(実施例14)
 高分子添加剤2をポリカルボン酸アンモニウム(重量平均分子量Mw=10000)に変更したことを除き、実施例1と同様にして研摩スラリー5を得た。
(実施例15)
 高分子添加剤2をポリエチレングリコール(重量平均分子量Mw=400)に変更したことを除き、実施例1と同様にして研摩スラリー5を得た。
(実施例16)
 高分子添加剤2をポリビニルピロリドン(重量平均分子量Mw=45000)に変更したことを除き、実施例1と同様にして研摩スラリー5を得た。
(実施例17)
 高分子添加剤2をナフタレンスルホン酸ナトリウムホルマリン縮合物(重量平均分子量Mw=5000)に変更したことを除き、実施例1と同様にして研摩スラリー5を得た。
(実施例18~20)
 砥粒1および水(脱イオン水)の配合率をそれぞれ変更したことを除き、実施例2と同様にして研摩スラリー5を得た。
(実施例21、22)
 酸化剤(過マンガン酸カリウム)および水(脱イオン水)の配合率をそれぞれ変更したことを除き、実施例2と同様にして研摩スラリー5を得た。
(実施例23)
 砥粒1の平均粒径(d50)を0.08μmに変更したことを除き、実施例2と同様にして研摩スラリー5を得た。
(実施例24)
 砥粒1の平均粒径(d50)を3.0μmに変更したことを除き、実施例2と同様にして研摩スラリー5を得た。
(実施例25)
 砥粒1をMn(平均粒径(d50):1.7μm)に変更したことを除き、実施例2と同様にして研摩スラリー5を得た。
(実施例26)
 砥粒1をMn(平均粒径(d50):1.0μm)に変更したことを除き、実施例2と同様にして研摩スラリー5を得た。
(比較例1)
 高分子添加剤2を使用しないことを除き、実施例1と同様にして研摩スラリー5を得た。
(比較例2)
 高分子添加剤2を使用する代わりにシュウ酸ナトリウム(分子量134)を使用したことを除き、実施例1と同様にして研摩スラリー5を得た。
(比較例3)
 高分子添加剤2を使用する代わりにクエン酸三ナトリウム(分子量258)を使用したことを除き、実施例1と同様にして研摩スラリー5を得た。
 (評価1:研摩速度)
 上記した実施例1~比較例3で得られた研摩スラリー5を用いて基材7の研摩を行った。基材7として、直径3インチ(7.62cm)、オフ角が4°の4H-SiC基板を用い、ラッピングされた基板のSi面に対して研摩を行った。また、研摩装置としては、エム・エー・ティー社製片面研摩機BC-15を用いた。研摩装置の底盤に取り付ける研摩パッド6としてニッタ・ハース社製SUBA#600を使用し、底盤の回転数を60rpm、外周部速度を7163cm/minに設定した。また、キャリア回転数を60rpm、外周部速度を961cm/minに設定した。研摩スラリー5の1分間当たりの供給量を0.2dm-3とし、3psi(約2.07×10Pa)の荷重を加えて化学機械研摩(chemical mechanical polishing、CMP)を行った。研摩時間は3時間とし、研摩速度(nm/min)は、研摩前後における基材7の質量の差および炭化ケイ素の密度(3.10g・cm-3)に基づいて算出した。結果を表1に示す。
 (評価2:研摩性能)
 上記した評価1のCMP実施後、JIS B0601:2013の「算術平均粗さRa」に基づいて基材7の表面粗さRaを測定し、研摩性能の指標とした。具体的には、ZYGO社製の白色光干渉計(NewView7300)を用いて基材7の表面を5点測定し、得られた値の平均値をRaとして算出した。測定条件は、対物レンズ:50倍、測定範囲:0.14mm×0.11mm、平均化回数:16、ハイパスフィルタ下限:27.5μm、フィルタタイプ:ガウススプラインとした。結果を表1に示す。
 (評価3:研摩スラリー5の耐劣化性)
 実施例2、6、16および17ならびに比較例1~3において上記した評価1の研摩を24時間連続して行った後の研摩スラリーを使用して、評価1、2と同様に研摩速度および表面粗さRaを測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
 1 砥粒
 2 高分子添加剤
 3 研摩材
 4 高分子添加剤溶液
 5 研摩スラリー
 6 研摩パッド
 7 基材

Claims (13)

  1.  高分子添加剤と、基材を研摩するための砥粒とを含み、
     前記砥粒はマンガン酸化物を含む、研摩材。
  2.  酸化剤をさらに含む、請求項1に記載の研摩材。
  3.  前記酸化剤が、水に溶解させると過マンガン酸イオンを生成する成分を含む、請求項2に記載の研摩材。
  4.  前記高分子添加剤が水溶性有機高分子である、請求項1~3のいずれか1つに記載の研摩材。
  5.  前記水溶性有機高分子が、ポリカルボン酸およびポリカルボン酸塩、ポリアクリル酸およびポリアクリル酸塩、ナフタレンスルホン酸ホルマリン縮合物の塩、ポリビニルアルコール、ポリエチレングリコールならびにポリビニルピロリドンを含む群から選択される1または2以上を含む、請求項4に記載の研摩材。
  6.  前記砥粒の平均粒径が0.08μm以上3.0μm以下である、請求項1~5のいずれか1つに記載の研摩材。
  7.  前記基材が炭化ケイ素である、請求項1~6のいずれか1つに記載の研摩材。

  8.  前記高分子添加剤の重量平均分子量が400以上45000以下である、請求項1~7のいずれか1つに記載の研摩材。
  9.  前記砥粒100質量%に対する前記高分子添加剤の含有量が0.01質量%以上10質量%以下である、請求項1~8のいずれか1つに記載の研摩材。
  10.  前記マンガン酸化物が二酸化マンガンを含む、請求項1~9のいずれか1つに記載の研摩材。
  11.  請求項1~10のいずれか1つに記載の研摩材と、水とを含む、研摩スラリー。
  12.  pHが3以上9以下である、請求項11に記載の研摩スラリー。
  13.  前記砥粒の含有量が0.1質量%以上35質量%以下である、請求項11または12に記載の研摩スラリー。
PCT/JP2016/057856 2015-04-01 2016-03-11 研摩材および研摩スラリー WO2016158328A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017509497A JP6744295B2 (ja) 2015-04-01 2016-03-11 研摩材および研摩スラリー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-075449 2015-04-01
JP2015075449 2015-04-01

Publications (1)

Publication Number Publication Date
WO2016158328A1 true WO2016158328A1 (ja) 2016-10-06

Family

ID=57004995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057856 WO2016158328A1 (ja) 2015-04-01 2016-03-11 研摩材および研摩スラリー

Country Status (2)

Country Link
JP (1) JP6744295B2 (ja)
WO (1) WO2016158328A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6280678B1 (ja) * 2016-12-22 2018-02-14 三井金属鉱業株式会社 研摩液及び研摩方法
WO2018116521A1 (ja) * 2016-12-22 2018-06-28 三井金属鉱業株式会社 研摩液及び研摩方法
JP2020527851A (ja) * 2017-07-10 2020-09-10 シンマット, インコーポレーテッドSinmat, Inc. 硬質研磨粒子を用いない硬質材料研磨
WO2020255921A1 (ja) 2019-06-17 2020-12-24 株式会社フジミインコーポレーテッド 研磨用組成物
JP2021503170A (ja) * 2018-10-16 2021-02-04 山▲東▼天岳先▲進▼科技股▲フン▼有限公司 高平坦性、低ダメージの大きな直径の単結晶炭化ケイ素基板及びその製造方法
WO2022049845A1 (ja) * 2020-09-04 2022-03-10 信越半導体株式会社 研磨用組成物、ウェーハの加工方法、及びシリコンウェーハ

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160138A (ja) * 1998-12-01 2000-06-13 Fujimi Inc 研磨用組成物
WO2008102672A1 (ja) * 2007-02-20 2008-08-28 Sumitomo Electric Industries, Ltd. 研磨スラリーおよびその製造方法、ならびに窒化物結晶体およびその表面研磨方法
JP2009010031A (ja) * 2007-06-26 2009-01-15 Fujifilm Corp 金属用研磨液及びそれを用いた研磨方法
JP2009218288A (ja) * 2008-03-07 2009-09-24 Fujifilm Corp 研磨液及びそれを用いた化学的機械的研磨方法
WO2011125254A1 (ja) * 2010-04-09 2011-10-13 三井金属鉱業株式会社 研摩スラリー及びその研摩方法
JP2012000696A (ja) * 2010-06-15 2012-01-05 Mitsui Mining & Smelting Co Ltd 研摩スラリー及びその研摩方法
WO2013035545A1 (ja) * 2011-09-09 2013-03-14 旭硝子株式会社 研磨砥粒およびその製造方法、研磨スラリー並びにガラス製品の製造方法
JP2013122795A (ja) * 2011-12-09 2013-06-20 Asahi Glass Co Ltd 磁気ディスクガラス研磨用スラリー、該研磨用スラリーを用いた磁気ディスクガラス基板の製造方法及び磁気ディスクガラス基板
WO2013088928A1 (ja) * 2011-12-14 2013-06-20 旭硝子株式会社 洗浄剤、および炭化ケイ素単結晶基板の製造方法
WO2013161049A1 (ja) * 2012-04-27 2013-10-31 三井金属鉱業株式会社 SiC単結晶基板
WO2013180079A1 (ja) * 2012-05-30 2013-12-05 株式会社クラレ 化学機械研磨用スラリーおよび化学機械研磨方法
JP2014118468A (ja) * 2012-12-14 2014-06-30 Asahi Glass Co Ltd 研磨砥粒およびその製造方法、研磨スラリー並びにガラス基板の製造方法
JP2015189806A (ja) * 2014-03-27 2015-11-02 株式会社フジミインコーポレーテッド 研磨用組成物、その使用方法、及び基板の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160138A (ja) * 1998-12-01 2000-06-13 Fujimi Inc 研磨用組成物
WO2008102672A1 (ja) * 2007-02-20 2008-08-28 Sumitomo Electric Industries, Ltd. 研磨スラリーおよびその製造方法、ならびに窒化物結晶体およびその表面研磨方法
JP2009010031A (ja) * 2007-06-26 2009-01-15 Fujifilm Corp 金属用研磨液及びそれを用いた研磨方法
JP2009218288A (ja) * 2008-03-07 2009-09-24 Fujifilm Corp 研磨液及びそれを用いた化学的機械的研磨方法
WO2011125254A1 (ja) * 2010-04-09 2011-10-13 三井金属鉱業株式会社 研摩スラリー及びその研摩方法
JP2012000696A (ja) * 2010-06-15 2012-01-05 Mitsui Mining & Smelting Co Ltd 研摩スラリー及びその研摩方法
WO2013035545A1 (ja) * 2011-09-09 2013-03-14 旭硝子株式会社 研磨砥粒およびその製造方法、研磨スラリー並びにガラス製品の製造方法
JP2013122795A (ja) * 2011-12-09 2013-06-20 Asahi Glass Co Ltd 磁気ディスクガラス研磨用スラリー、該研磨用スラリーを用いた磁気ディスクガラス基板の製造方法及び磁気ディスクガラス基板
WO2013088928A1 (ja) * 2011-12-14 2013-06-20 旭硝子株式会社 洗浄剤、および炭化ケイ素単結晶基板の製造方法
WO2013161049A1 (ja) * 2012-04-27 2013-10-31 三井金属鉱業株式会社 SiC単結晶基板
WO2013180079A1 (ja) * 2012-05-30 2013-12-05 株式会社クラレ 化学機械研磨用スラリーおよび化学機械研磨方法
JP2014118468A (ja) * 2012-12-14 2014-06-30 Asahi Glass Co Ltd 研磨砥粒およびその製造方法、研磨スラリー並びにガラス基板の製造方法
JP2015189806A (ja) * 2014-03-27 2015-11-02 株式会社フジミインコーポレーテッド 研磨用組成物、その使用方法、及び基板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
POLITY A-550 ANZEN DATA SHEET, 11 December 2014 (2014-12-11) *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11339309B2 (en) 2016-12-22 2022-05-24 Mitsui Mining & Smelting Co., Ltd. Polishing liquid and polishing method
WO2018116521A1 (ja) * 2016-12-22 2018-06-28 三井金属鉱業株式会社 研摩液及び研摩方法
CN110072956A (zh) * 2016-12-22 2019-07-30 三井金属矿业株式会社 研磨液以及研磨方法
JP6280678B1 (ja) * 2016-12-22 2018-02-14 三井金属鉱業株式会社 研摩液及び研摩方法
CN110072956B (zh) * 2016-12-22 2021-06-18 三井金属矿业株式会社 研磨液以及研磨方法
JP2020527851A (ja) * 2017-07-10 2020-09-10 シンマット, インコーポレーテッドSinmat, Inc. 硬質研磨粒子を用いない硬質材料研磨
US11820918B2 (en) 2017-07-10 2023-11-21 Entegris, Inc. Hard abrasive particle-free polishing of hard materials
JP7254722B2 (ja) 2017-07-10 2023-04-10 インテグリス・インコーポレーテッド 硬質研磨粒子を用いない硬質材料研磨
JP2021503170A (ja) * 2018-10-16 2021-02-04 山▲東▼天岳先▲進▼科技股▲フン▼有限公司 高平坦性、低ダメージの大きな直径の単結晶炭化ケイ素基板及びその製造方法
WO2020255921A1 (ja) 2019-06-17 2020-12-24 株式会社フジミインコーポレーテッド 研磨用組成物
KR20220024518A (ko) 2019-06-17 2022-03-03 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물
EP3985078A4 (en) * 2019-06-17 2023-08-02 Fujimi Incorporated POLISHING COMPOSITION
CN113993968A (zh) * 2019-06-17 2022-01-28 福吉米株式会社 研磨用组合物
JP2022043424A (ja) * 2020-09-04 2022-03-16 信越半導体株式会社 研磨用組成物、ウェーハの加工方法、及びシリコンウェーハ
WO2022049845A1 (ja) * 2020-09-04 2022-03-10 信越半導体株式会社 研磨用組成物、ウェーハの加工方法、及びシリコンウェーハ
JP7380492B2 (ja) 2020-09-04 2023-11-15 信越半導体株式会社 研磨用組成物及びウェーハの加工方法

Also Published As

Publication number Publication date
JP6744295B2 (ja) 2020-08-19
JPWO2016158328A1 (ja) 2017-09-14

Similar Documents

Publication Publication Date Title
WO2016158328A1 (ja) 研摩材および研摩スラリー
TWI731843B (zh) 研磨用組成物
WO2013035539A1 (ja) 研磨剤および研磨方法
JP4827963B2 (ja) 炭化珪素の研磨液及びその研磨方法
WO2012147605A1 (ja) 非酸化物単結晶基板の研磨方法
KR20160009644A (ko) 적어도 하나의 iii-v 재료를 포함하는 물질 또는 층을 연마하기 위한 cmp 조성물의 용도
TWI433903B (zh) 用於鎳-磷記憶碟之拋光組合物
WO2020255921A1 (ja) 研磨用組成物
JP6679386B2 (ja) 研磨用組成物、基板の製造方法および研磨方法
JP2015017259A (ja) ニッケル−リン記憶ディスク用の研磨組成物
TW201738354A (zh) 研磨用組成物
JP6564638B2 (ja) 研磨用組成物、磁気ディスク基板製造方法および磁気ディスク基板
WO2017002705A1 (ja) 研磨用組成物
KR20200051822A (ko) 텅스텐 버프 적용을 위한 표면 처리된 연마제 입자
JP2019172853A (ja) 砥粒分散液、研磨用組成物キットおよび磁気ディスク基板の研磨方法
JP6559410B2 (ja) 研磨用組成物
TW201504412A (zh) 化學機械拋光(cmp)組成物
JP7084176B2 (ja) 研磨用組成物
JP2017182858A (ja) 研磨用組成物、基板の研磨方法および基板の製造方法
CN107109191B (zh) 研磨用组合物
TW201739893A (zh) 研磨用組成物
JP2016069553A (ja) 研磨用組成物
JP2006287051A (ja) 半導体基板研磨液組成物用添加剤
JP2017182859A (ja) 磁気ディスク基板研磨用組成物、磁気ディスク基板の製造方法および研磨方法
JP6656867B2 (ja) 磁気ディスク基板用研磨組成物、磁気ディスク基板の製造方法および磁気ディスク基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509497

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772212

Country of ref document: EP

Kind code of ref document: A1