WO2013035539A1 - 研磨剤および研磨方法 - Google Patents

研磨剤および研磨方法 Download PDF

Info

Publication number
WO2013035539A1
WO2013035539A1 PCT/JP2012/071266 JP2012071266W WO2013035539A1 WO 2013035539 A1 WO2013035539 A1 WO 2013035539A1 JP 2012071266 W JP2012071266 W JP 2012071266W WO 2013035539 A1 WO2013035539 A1 WO 2013035539A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
single crystal
mass
abrasive
crystal substrate
Prior art date
Application number
PCT/JP2012/071266
Other languages
English (en)
French (fr)
Inventor
伊織 吉田
竹宮 聡
浩之 朝長
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201280043222.0A priority Critical patent/CN103782370A/zh
Priority to DE112012003686.7T priority patent/DE112012003686T5/de
Priority to KR1020147008711A priority patent/KR20140062107A/ko
Publication of WO2013035539A1 publication Critical patent/WO2013035539A1/ja
Priority to US14/197,844 priority patent/US20140187043A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Definitions

  • the present invention relates to an abrasive and a polishing method for chemically and mechanically polishing a non-oxide single crystal substrate. More specifically, the present invention relates to an abrasive suitable for polishing a silicon carbide single crystal substrate or the like, and a polishing method using the same.
  • Silicon carbide (SiC) semiconductors have a higher breakdown electric field, electron saturation drift velocity, and thermal conductivity than silicon semiconductors, so silicon carbide semiconductors can be operated at higher temperatures and higher speeds than conventional silicon devices.
  • Research and development to realize power devices has been conducted.
  • the development of a highly efficient switching element used as a power source for driving a motor of an electric motorcycle, an electric vehicle, a hybrid car or the like has attracted attention.
  • a silicon carbide single crystal substrate having a smooth surface for epitaxial growth of a high-quality silicon carbide semiconductor layer is required.
  • Such a light-emitting element is manufactured using a gallium nitride (GaN) semiconductor, and a silicon carbide single crystal substrate is used as a substrate for forming a high-quality gallium nitride semiconductor layer.
  • GaN gallium nitride
  • a silicon carbide single crystal substrate for such applications is required to have high processing accuracy with respect to the flatness of the substrate and the smoothness of the substrate surface.
  • the silicon carbide single crystal has extremely high hardness and excellent corrosion resistance, the workability in producing a substrate is poor, and it is difficult to obtain a silicon carbide single crystal substrate having high smoothness.
  • a smooth surface of a semiconductor single crystal substrate is formed by polishing.
  • the surface is mechanically polished using abrasive grains such as diamond harder than silicon carbide as an abrasive to form a flat surface, but a silicon carbide single crystal substrate polished with diamond abrasive grains A minute scratch corresponding to the grain size of the diamond abrasive grains is introduced on the surface of the.
  • a work-affected layer having mechanical strain is generated on the surface, the smoothness of the surface of the silicon carbide single crystal substrate is not sufficient as it is.
  • CMP chemical mechanical polishing
  • a polishing composition having a pH of 4 to 9 containing colloidal silica is known as an abrasive for polishing the surface of a silicon carbide single crystal substrate smoothly by CMP (see, for example, Patent Document 1).
  • a polishing composition containing silica abrasive grains, an oxidizing agent (oxygen donor) such as hydrogen peroxide, and a vanadate has also been proposed (see, for example, Patent Document 2).
  • the polishing composition of Patent Document 1 has a problem that the polishing rate for the silicon carbide single crystal substrate is low and the time required for polishing becomes very long.
  • the polishing composition of Patent Document 2 when used, there is a problem that the polishing rate is not sufficient and the polishing takes time.
  • a non-oxide single crystal substrate having a high hardness and high chemical stability such as a silicon carbide single crystal substrate, is polished at a high polishing rate and smoothed.
  • An object of the present invention is to provide an abrasive for obtaining a smooth surface and a polishing method.
  • the abrasive of the present invention is an abrasive for chemically and mechanically polishing a non-oxide single crystal substrate, and includes an oxidizing agent having a transition metal-containing oxidation-reduction potential of 0.5 V or more, and average secondary particles. It contains silica particles having a diameter of 0.2 ⁇ m or less and a dispersion medium, the content of the oxidizing agent is 0.25% by mass or more and 5% by mass or less, and the content of the silica particles is 0.01% by mass. % Or more and less than 20% by mass.
  • the oxidizing agent is preferably permanganate ions.
  • the pH of the abrasive of the present invention is preferably 11 or less, and more preferably 5 or less.
  • the non-oxide single crystal substrate is preferably a silicon carbide (SiC) single crystal substrate or a gallium nitride (GaN) single crystal substrate.
  • the polishing method of the present invention is a method in which a polishing agent is supplied to a polishing pad, the surface to be polished of a non-oxide single crystal substrate which is an object to be polished is brought into contact with the polishing pad, and polishing is performed by relative movement between the two.
  • polishing agent of the said this invention is used as said abrasive
  • the polished surface of a non-oxide single crystal substrate having high hardness and high chemical stability such as a silicon carbide single crystal substrate or a gallium nitride single crystal substrate.
  • a non-oxide single crystal substrate having high hardness and high chemical stability such as a silicon carbide single crystal substrate or a gallium nitride single crystal substrate.
  • the “surface to be polished” is a surface to be polished of an object to be polished, such as a surface.
  • the abrasive of the present invention is an abrasive for chemically and mechanically polishing a non-oxide single crystal substrate, and is an oxidizer containing a transition metal and having an oxidation-reduction potential of 0.5 V or more, and abrasive grains. It contains silica particles having an average secondary particle diameter of 0.2 ⁇ m or less and a dispersion medium, and has a slurry shape. And the ratio of content of a silica particle is 0.01 to less than 20 mass% with respect to the whole abrasive
  • the abrasive of the present invention contains an oxidizing agent containing a transition metal having an oxidation-reduction potential of 0.5 V or more in a proportion of 0.25 mass% or more and 5 mass% or less, and has an average secondary particle size of 0.2 ⁇ m. Since the following silica particles are contained in a relatively low ratio (concentration) of 0.01% by mass or more and less than 20% by mass, the polishing object having high hardness and high chemical stability such as a SiC single crystal substrate.
  • the surface to be polished can be polished at a high polishing rate, and a flat and smooth surface can be obtained.
  • polishing agent of this invention shall be 11 or less.
  • a pH adjuster can be added.
  • the pH of the abrasive is 11 or less, the oxidizing agent acts effectively, so that the polishing properties are good and the dispersion stability of the silica particles as abrasive grains is also excellent.
  • the oxidizing agent contained in the polishing agent of the present invention is to form an oxide layer on the surface to be polished of an object to be described later (for example, a SiC single crystal substrate or a GaN single crystal substrate).
  • an oxide layer By removing this oxide layer from the surface to be polished by mechanical force, polishing of the object to be polished is promoted. That is, compound semiconductors such as SiC and GaN are non-oxides and are difficult to polish, but an oxide layer can be formed on the surface by an oxidizing agent in the polishing agent. Since the formed oxide layer has a lower hardness than the object to be polished and is easily polished, it can be effectively removed by silica particles as abrasive grains. As a result, a high polishing rate can be obtained.
  • the oxidizing agent contained in the polishing agent of the present invention contains a transition metal having a redox potential of 0.5 V or more.
  • the oxidizing agent having a transition metal-containing redox potential of 0.5 V or more include permanganate ion, vanadate ion, dichromate ion, cerium ammonium nitrate, iron (III) nitrate nonahydrate, silver nitrate, Examples thereof include phosphotungstic acid, silicotungstic acid, phosphomolybdic acid, phosphotungstomolybdic acid, and phosphovanadomolybdic acid.
  • Permanganate ions are particularly preferred. As a source of permanganate ions, permanganate such as potassium permanganate and sodium permanganate is preferable.
  • permanganate ions are particularly preferable as an oxidizing agent in polishing a SiC single crystal substrate.
  • Permanganate ions have strong oxidizing power for oxidizing SiC single crystals. If the oxidizing power of the oxidizing agent is too weak, the reaction with the polished surface of the SiC single crystal substrate becomes insufficient, and as a result, a sufficiently smooth surface cannot be obtained.
  • An oxidation-reduction potential is used as an index of the oxidizing power with which an oxidizing agent oxidizes a substance.
  • the redox potential of permanganate ions is 1.70 V, and potassium perchlorate (KClO 4 ) (redox potential 1.20 V) or sodium hypochlorite (NaClO) (redox potential) generally used as an oxidizing agent. Compared with 1.63 V), the redox potential is high.
  • K Permanganate ions have a high reaction rate. Since permanganate ions have a higher rate of oxidation reaction than hydrogen peroxide (oxidation-reduction potential: 1.76 V), which is known as an oxidizing agent with strong oxidizing power, the oxidizing power is exerted quickly. it can.
  • (3) Permanganate ions have a low environmental impact. (4) The permanganate is completely dissolved in the dispersion medium (water) described later. Therefore, the dissolution residue does not adversely affect the smoothness of the substrate.
  • the content (concentration) of permanganate ions in the abrasive is preferably 0.25% by mass or more and 5% by mass or less. If it is less than 0.25% by mass, the effect as an oxidizing agent cannot be expected, and it may take a very long time to form a smooth surface by polishing, or scratches may occur on the surface to be polished.
  • the content of permanganate ions contained in the abrasive is more preferably 0.5% by mass or more and 5% by mass or less, and particularly preferably 1% by mass or more and 5% by mass or less.
  • silica particles In the abrasive
  • the average secondary particle diameter of the silica particles is more preferably 0.15 ⁇ m or less.
  • examples of the silica particles having such an average secondary particle diameter include colloidal silica and fumed silica (also referred to as fumed silica).
  • the polishing of the SiC single crystal substrate when an abrasive containing the silica particles at a ratio of 0.01% by mass or more and less than 20% by mass is used together with the above-described oxidizing agent, the silica particles are contained at a higher concentration. Compared to the case where an abrasive is used, the polishing rate is high and the surface roughness is small, and a smooth surface can be obtained.
  • the average particle size of the preferred particle size of the silica particles is determined. It shall represent with a diameter (average aggregate particle diameter).
  • An average secondary particle diameter is an average value of the diameter of the silica secondary particle in an abrasive
  • polishing agent for example, is measured using the particle size distribution meter using dynamic light scattering.
  • the average primary particle diameter (average primary particle diameter) of the silica particles is preferably in the range of 5 to 150 nm from the viewpoint of polishing characteristics and dispersion stability.
  • the average primary particle diameter is obtained, for example, as the equivalent spherical equivalent particle diameter from the specific surface area of the particles.
  • the specific surface area of the particles is measured by a nitrogen adsorption method known as the BET method.
  • the content (concentration) of silica particles in the abrasive of the present invention is set to 0.01% by mass or more and less than 20% by mass in order to obtain a sufficient polishing rate.
  • the content ratio of the silica particles is less than 0.01% by mass, it is difficult to obtain a sufficient polishing rate.
  • it is 20% by mass or more, the polishing rate is remarkably lowered, which is not preferable.
  • a more preferable content ratio is 0.05 to 15% by mass, and a further preferable content ratio is 0.1 to 10% by mass.
  • the pH of the abrasive according to the present invention is preferably 11 or less, more preferably 5 or less, and particularly preferably 3 or less from the viewpoint of polishing characteristics and dispersion stability of silica particles as abrasive grains.
  • the pH is 11 or more, not only a sufficient polishing rate cannot be obtained, but also the smoothness of the surface to be polished may be deteriorated.
  • the pH of the abrasive can be adjusted by adding or blending an acid or basic compound that is a pH adjuster.
  • acids include inorganic acids such as nitric acid, sulfuric acid, phosphoric acid and hydrochloric acid, saturated carboxylic acids such as formic acid, acetic acid, propionic acid and butyric acid, hydroxy acids such as lactic acid, malic acid and citric acid, phthalic acid and salicylic acid.
  • Organic acids such as aromatic carboxylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid and other dicarboxylic acids, amino acids, and heterocyclic carboxylic acids can be used.
  • Basic compounds include inorganic alkalis such as ammonia, lithium hydroxide, potassium hydroxide, and sodium hydroxide, quaternary ammonium compounds such as tetramethylammonium, and organic amines such as monoethanolamine, ethylethanolamine, diethanolamine, and propylenediamine. Can be used.
  • Use of potassium hydroxide and sodium hydroxide is preferable, and potassium hydroxide is particularly preferable.
  • the content ratio (concentration) of these acids or basic compounds is an amount that adjusts the pH of the abrasive to a predetermined range (pH 11 or less, more preferably 5 or less).
  • water contains as a dispersion medium.
  • Water is a medium for stably dispersing silica particles and dispersing / dissolving an oxidizing agent and optional components to be added as necessary.
  • blending component mixing of an impurity, pH, etc., a pure water, an ultrapure water, and ion-exchange water (deionized water) are preferable.
  • the abrasive of the present invention is prepared and used so that the above-mentioned components are contained in the predetermined ratio, the silica particles are uniformly dispersed, and the other components are uniformly dissolved.
  • a stirring and mixing method usually used in the production of abrasives for example, a stirring and mixing method using an ultrasonic disperser, a homogenizer or the like can be employed.
  • the abrasive according to the present invention does not necessarily have to be supplied to the polishing site as a mixture of all of the pre-configured polishing components.
  • polishing component may be mixed and it may become a composition of an abrasive
  • the abrasive of the present invention includes an aggregation preventing or dispersing agent (hereinafter referred to as a dispersing agent), a lubricant, a chelating agent, a reducing agent, a viscosity-imparting agent, or a viscosity modifier, as long as it is not contrary to the spirit of the present invention.
  • a dispersing agent an aggregation preventing or dispersing agent
  • a lubricant hereinafter referred to as a dispersing agent
  • a chelating agent e.g., a reducing agent
  • a viscosity-imparting agent e.g., a viscosity modifier
  • a rust preventive agent or the like can be appropriately contained as necessary.
  • these additives have the function of an oxidizing agent, an acid, or a basic compound, they are handled as an oxidizing agent, an acid, or a basic compound.
  • the dispersant is added in order to stably disperse silica particles as abrasive grains in a dispersion medium such as pure water. Further, the lubricant appropriately adjusts the polishing stress generated between the object to be polished and enables stable polishing.
  • a dispersant an anionic, cationic, nonionic or amphoteric surfactant or a water-soluble polymer having a surfactant action can be used.
  • anionic, cationic, nonionic, amphoteric surfactants, polysaccharides, water-soluble polymers and the like can be used.
  • the surfactant has an aliphatic hydrocarbon group or an aromatic hydrocarbon group as a hydrophobic group, and in the hydrophobic group, a bonding group such as an ester, an ether or an amide, an acyl group, an alkoxyl group, etc.
  • a bonding group such as an ester, an ether or an amide, an acyl group, an alkoxyl group, etc.
  • One having one or more linking groups introduced therein and having a carboxylic acid, sulfonic acid, sulfate ester, phosphoric acid, phosphate ester or amino acid as a hydrophilic group can be used.
  • alginic acid pectin, carboxymethylcellulose, curdlan, pullulan, xanthan gum, carrageenan, gellan gum, locust bean gum, gum arabic, tamarind, psyllium and the like can be used.
  • polyacrylic acid polyvinyl alcohol, polyvinyl pyrrolidone, polymethacrylic acid, polyacrylamide, polyaspartic acid, polyglutamic acid, polyethyleneimine, polyallylamine, polystyrene sulfonic acid and the like can be used.
  • the content is preferably in the range of 0.001 to 5% by mass with respect to the total mass of the abrasive.
  • An object to be polished using the abrasive of the present invention is a non-oxide single crystal substrate.
  • non-oxide single crystal substrates include compound semiconductor substrates such as SiC single crystal substrates and GaN single crystal substrates.
  • the abrasive of the present invention for polishing a single crystal substrate having a modified Mohs hardness of 10 or more, such as the SiC single crystal substrate or the GaN single crystal substrate, the effect of high-speed polishing can be further obtained. .
  • polishing method As a method of polishing a non-oxide single crystal substrate which is a polishing object using the polishing agent of the present invention, the surface to be polished of the polishing object and the polishing pad are brought into contact while supplying the polishing agent to the polishing pad. And a method of polishing by relative movement between the two is preferable.
  • FIG. 1 shows an example of a polishing apparatus that can be used in the embodiment of the present invention, but the polishing apparatus used in the embodiment of the present invention is not limited to such a structure.
  • a polishing surface plate 1 is provided in a state of being rotatably supported around a vertical axis C 1, and this polishing surface plate 1 is supported by a surface plate driving motor 2. , And is driven to rotate in the direction indicated by the arrow in the figure.
  • a known polishing pad 3 is attached to the upper surface of the polishing surface plate 1.
  • a substrate holding member (carrier) 5 for holding a polishing object 4 such as a SiC single crystal substrate on the lower surface by suction or using a holding frame is provided at a position eccentric from the axis C1 on the polishing surface plate 1. It is supported so as to be rotatable about the axis C2 and movable in the direction of the axis C2.
  • the substrate holding member 5 is configured to be rotated in a direction indicated by an arrow by a work drive motor (not shown) or by a rotational moment received from the polishing surface plate 1.
  • a polishing object 4 is held on the lower surface of the substrate holding member 5, that is, the surface facing the polishing pad 3.
  • the polishing object 4 is pressed against the polishing pad 3 with a predetermined load.
  • a dripping nozzle 6 and the like are provided in the vicinity of the substrate holding member 5, and the polishing agent (hereinafter also referred to as a polishing liquid) 7 of the present invention sent from a tank (not shown) is placed on the polishing surface plate 1. It comes to be supplied.
  • a polishing liquid 7 of the present invention sent from a tank (not shown) is placed on the polishing surface plate 1. It comes to be supplied.
  • the workpiece drive motor is driven to rotate around each axis.
  • the polishing agent 7 is supplied from the dropping nozzle 6 or the like to the surface of the polishing pad 3, and the polishing object 4 held by the substrate holding member 5 is pressed against the polishing pad 3.
  • the surface to be polished of the polishing object 4 that is, the surface facing the polishing pad 3 is chemically and mechanically polished.
  • the substrate holding member 5 may perform a linear motion as well as a rotational motion. Further, the polishing surface plate 1 and the polishing pad 3 do not have to rotate, and may move in one direction, for example, by a belt type.
  • the polishing pad 3 a non-woven fabric, a porous resin such as foamed polyurethane, or a non-porous resin can be used.
  • the polishing pad 3 preferably does not contain abrasive grains. Further, in order to promote the supply of the polishing liquid 7 to the polishing pad 3 or to collect a certain amount of the polishing liquid 7 on the polishing pad 3, the surface of the polishing pad 3 has a lattice shape, a concentric circle shape, a spiral shape or the like. Groove processing may be performed. Further, if necessary, polishing may be performed while bringing the pad conditioner into contact with the surface of the polishing pad 3 and conditioning the surface of the polishing pad 3.
  • the polishing conditions by the polishing apparatus 10 are not particularly limited, but by applying a load to the substrate holding member 5 and pressing it against the polishing pad 3, it is possible to increase the polishing pressure and improve the polishing rate.
  • the polishing pressure is preferably about 5 to 80 kPa, and more preferably about 10 to 50 kPa from the viewpoint of uniformity of polishing rate in the surface to be polished, flatness, and prevention of polishing defects such as scratches.
  • the number of rotations of the polishing surface plate 1 and the substrate holding member 5 is preferably about 50 to 500 rpm, but is not limited thereto.
  • the supply amount of the polishing liquid 7 is appropriately adjusted and selected depending on the constituent material of the surface to be polished, the composition of the polishing liquid, the above polishing conditions, and the like.
  • Examples 1 to 21 are examples of the present invention, and examples 22 to 29 are comparative examples.
  • abrasive (1-1) The abrasive of Example 1 was prepared as shown below. Pure water was added to the potassium permanganate powder as an oxidizing agent and stirred for 10 minutes. Next, the colloidal silica dispersion is added and stirred for 3 minutes, and nitric acid as a pH adjuster is gradually added to adjust the predetermined potassium permanganate concentration and abrasive concentration shown in Table 1 and the pH shown in Table 2. Thus, an abrasive was obtained. In each of Examples 2 to 21, the abrasives listed in Tables 1 and 2 were prepared in the same manner as in Example 1. The oxidizing agent concentration in Table 1 is not the concentration of permanganate ions but the concentration of potassium permanganate.
  • Example 22 The abrasives of Examples 22-29 were prepared as shown below.
  • pure water was added to the colloidal silica dispersion and stirred for 10 minutes, then ammonium vanadate as a metal salt was added with stirring, and finally hydrogen peroxide was added for 30 minutes.
  • the mixture was stirred to obtain an abrasive adjusted to the prescribed component concentrations shown in Tables 1 and 2.
  • Examples 23 to 25 and 29 were prepared in the same manner as in Example 1, and abrasives adjusted to the respective component concentrations shown in Tables 1 and 2 were obtained.
  • pure water was added to the colloidal silica dispersion and stirred for 10 minutes. Then, nitric acid as a pH adjuster was gradually added to the liquid, and the predetermined values shown in Tables 1 and 2 were obtained.
  • concentration was obtained.
  • the secondary particle size of the silica particles blended in Examples 1 to 29 was measured with Microtrac UPA (manufactured by Nikkiso Co., Ltd.).
  • polishing was performed under the following conditions.
  • polishing machine a small polishing machine manufactured by MAT was used.
  • As a polishing pad SUBA800-XY-groove (manufactured by Nitta Haas) was used, and conditioning was performed for 5 minutes using a diamond disk and a brush before polishing. Further, the polishing was performed for 30 minutes with the supply rate of the abrasive being 25 cm 3 / min, the rotation speed of the polishing platen being 68 rpm, the rotation speed of the substrate holding member being 68 rpm, and the polishing pressure being 5 psi (34.5 kPa).
  • (3-2) To-be-polished material As a to-be-polished material, a 4H—SiC substrate having a diameter of 3 inches subjected to a preliminary polishing treatment using diamond abrasive grains was used. Using a SiC single crystal substrate (hereinafter referred to as a 4 degree off substrate) with an off angle of 4 ° ⁇ 0.5 ° with respect to the C axis of the main surface (0001), the Si surface side is polished, and polishing characteristics (Polishing rate) was evaluated.
  • a SiC single crystal substrate hereinafter referred to as a 4 degree off substrate
  • polishing characteristics Polishing rate
  • polishing rate was evaluated by the amount of change in thickness (nm / hr) per unit time of the SiC single crystal substrate. Specifically, the mass of an unpolished substrate with a known thickness and the mass of the substrate after polishing for each time were measured, and the mass change was determined from the difference. And the change per time of the thickness of the board
  • the polishing agent of Example 22 contains hydrogen peroxide instead of potassium permanganate as an oxidant, so the polishing rate of the SiC single crystal substrate is lower than that of Examples 1 to 21. .
  • the content rate (concentration) of colloidal silica as abrasive grains is 20% by mass or more, which is outside the scope of the present invention. Therefore, the polishing rate is higher than that of Examples 1 to 21. It is significantly lower.
  • the content ratio (concentration) of the potassium permanganate that is the oxidizing agent is 0.2 mass%, which is out of the range of the present invention. Is significantly lower.
  • the abrasives of Examples 26 to 28 do not contain potassium permanganate as an oxidizing agent, the polishing rate for the SiC single crystal substrate is remarkably low at 0 (zero) or close to 0 (zero). Yes.
  • non-oxide single crystal substrates particularly compound semiconductor substrates having high hardness and high chemical stability, such as SiC single crystal substrates and GaN single crystal substrates, can be polished at high speed. It is possible to obtain a polished surface having no scratches and excellent flatness and smoothness. Therefore, it can contribute to the improvement of productivity of those substrates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 炭化ケイ素単結晶基板等の非酸化物単結晶基板を、高い研磨速度で研磨し、平滑な表面を得る。酸化還元電位が0.5V以上の、遷移金属を含む酸化剤と、平均2次粒子径が0.2μm以下のシリカ粒子と、分散媒とを含有し、前記酸化剤の含有割合が0.25質量%以上5質量%以下であり、かつ前記シリカ粒子の含有割合が0.01質量%以上20質量%未満である研磨剤を提供する。

Description

研磨剤および研磨方法
 本発明は、非酸化物単結晶基板を化学的機械的に研磨するための研磨剤および研磨方法に関する。より詳しくは、炭化ケイ素単結晶基板等の研磨に適した研磨剤、およびそれを用いた研磨方法に関する。
 炭化ケイ素(SiC)半導体は、シリコン半導体よりも絶縁破壊電界、電子の飽和ドリフト速度および熱伝導率が大きいため、炭化ケイ素半導体を用いて、従来のシリコンデバイスよりも高温、高速で動作が可能なパワーデバイスを実現する研究・開発がなされている。なかでも、電動二輪車、電気自動車やハイブリッドカー等のモータを駆動するための電源に使用する高効率なスイッチング素子の開発が注目されている。このようなパワーデバイスを実現するためには、高品質な炭化ケイ素半導体層をエピタキシャル成長させるための表面平滑な炭化ケイ素単結晶基板が必要である。
 また、高密度で情報を記録するための光源として、青色レーザダイオードが注目されており、さらに、蛍光灯や電球に替わる光源としての白色ダイオードへのニーズが高まっている。このような発光素子は窒化ガリウム(GaN)半導体を用いて作製され、高品質の窒化ガリウム半導体層を形成するための基板として、炭化ケイ素単結晶基板が使用される。
 こうした用途のための炭化ケイ素単結晶基板には、基板の平坦度、基板表面の平滑性等に関して、高い加工精度が要求される。しかし、炭化ケイ素単結晶は硬度が極めて高く、かつ耐腐食性に優れるため、基板を作製する場合の加工性が悪く、平滑性の高い炭化ケイ素単結晶基板を得ることは難しい。
 一般に、半導体単結晶基板の平滑な面は研磨によって形成される。炭化ケイ素単結晶を研磨する場合、炭化ケイ素よりも硬いダイヤモンド等の砥粒を研磨材として表面を機械的に研磨し、平坦な面を形成するが、ダイヤモンド砥粒で研磨した炭化ケイ素単結晶基板の表面には、ダイヤモンド砥粒の粒径に応じた微小なスクラッチが導入される。また、機械的な歪みを有する加工変質層が表面に生じるため、そのままでは炭化ケイ素単結晶基板の表面の平滑性が十分ではない。
 半導体単結晶基板の製造では、機械研磨後の半導体基板の表面を平滑にする方法として、化学的機械的研磨(Chemical Mechanical Polishing:以下、CMPということがある。)技術が用いられる。CMPは、酸化等の化学反応を利用して被加工物を酸化物等に変え、生成した酸化物を、被加工物よりも硬度の低い砥粒を用いて除去することにより、表面を研磨する方法である。この方法は、被加工物の表面に歪みを生じさせることなく、極めて平滑な面を形成できるという利点を有する。
 従来から、炭化ケイ素単結晶基板の表面をCMPにより平滑に研磨するための研磨剤として、コロイダルシリカを含有するpH4~9の研磨用組成物が知られている(例えば、特許文献1参照)。また、シリカ砥粒と過酸化水素のような酸化剤(酸素供与剤)とバナジン酸塩とを含む研磨用組成物も提案されている(例えば、特許文献2参照)。
 しかしながら、特許文献1の研磨用組成物では、炭化ケイ素単結晶基板に対する研磨速度が低く、研磨に要する時間が非常に長くなるというという問題があった。また、特許文献2の研磨用組成物を使用した場合も、研磨速度が十分でなく、研磨に時間がかかるという問題があった。
特開2005-117027号公報 特開2008-179655号公報
 本発明は、このような問題を解決するためになされたもので、炭化ケイ素単結晶基板等の硬度が高く化学的安定性が高い非酸化物単結晶基板を、高い研磨速度で研磨し、平滑な表面を得るための研磨剤、および研磨方法の提供を目的とする。
 本発明の研磨剤は、非酸化物単結晶基板を化学的機械的に研磨するための研磨剤であって、遷移金属を含む酸化還元電位が0.5V以上の酸化剤と、平均2次粒子径が0.2μm以下のシリカ粒子と、分散媒とを含有し、前記酸化剤の含有割合が0.25質量%以上5質量%以下であり、かつ前記シリカ粒子の含有割合が0.01質量%以上20質量%未満であることを特徴とする。
 本発明の研磨剤において、前記酸化剤は、過マンガン酸イオンであることが好ましい。また、本発明の研磨剤のpHは11以下であることが好ましく、5以下であることがさらに好ましい。そして、前記非酸化物単結晶基板は、炭化ケイ素(SiC)単結晶基板または窒化ガリウム(GaN)単結晶基板であることが好ましい。
 本発明の研磨方法は、研磨剤を研磨パッドに供給し、研磨対象物である非酸化物単結晶基板の被研磨面と前記研磨パッドとを接触させて、両者間の相対運動により研磨する方法であって、前記研磨剤として前記本発明の研磨剤を使用することを特徴とする。
 本発明の研磨剤およびこれを用いた研磨方法によれば、炭化ケイ素単結晶基板や窒化ガリウム単結晶基板のような、硬度が高く化学的安定性が高い非酸化物単結晶基板の被研磨面を、高い研磨速度で研磨でき、平坦かつ平滑な被研磨面を得ることができる。なお、本発明において、「被研磨面」とは研磨対象物の研磨される面であり、例えば表面を意味する。
本発明の研磨方法の実施形態に使用可能な研磨装置の一例を示す図である。
 以下、本発明の実施の形態について説明する。
[研磨剤]
 本発明の研磨剤は、非酸化物単結晶基板を化学的機械的に研磨するための研磨剤であって、遷移金属を含む酸化還元電位が0.5V以上の酸化剤と、砥粒である平均2次粒子径が0.2μm以下のシリカ粒子と、分散媒とを含有し、スラリーの形状を有する。そして、シリカ粒子の含有量の割合は、研磨剤全体に対して0.01質量%以上20質量%未満となっている。また、酸化剤の含有割合は、研磨剤全体に対して0.25質量%以上5質量%以下となっている。なお、以下の記載において、研磨剤を研磨液と記載することがある。
 本発明の研磨剤は、酸化還元電位が0.5V以上の遷移金属を含む酸化剤を、0.25質量%以上5質量%以下の割合で含有し、かつ平均2次粒子径が0.2μm以下のシリカ粒子を0.01質量%以上20質量%未満の比較的低い割合(濃度)で含有しているので、SiC単結晶基板のような硬度が高く化学的安定性が高い研磨対象物の被研磨面を、高い研磨速度で研磨でき、平坦かつ平滑な表面が得られる。
 なお、本発明の研磨剤はpHを11以下とすることが好ましい。pHを11以下に調整するために、pH調整剤を添加できる。研磨剤のpHを11以下とした場合には、酸化剤が効果的に作用するため、研磨特性が良好であり、かつ砥粒であるシリカ粒子の分散安定性にも優れている。以下、本発明の研磨剤の各成分およびpHについて詳述する。
(酸化剤)
 本発明の研磨剤に含有される酸化剤は、後述する研磨対象物(例えば、SiC単結晶基板やGaN単結晶基板)の被研磨面に酸化層を形成するものである。この酸化層を機械的な力で被研磨面から除去することにより、研磨対象物の研磨が促進される。すなわち、SiCやGaN等の化合物半導体は非酸化物であり、難研磨材料であるが、研磨剤中の酸化剤により表面に酸化層を形成できる。形成された酸化層は、研磨対象物に比べて硬度が低く研磨されやすいので、砥粒であるシリカ粒子により効果的に除去できる。その結果、高い研磨速度が得られる。
 本発明の研磨剤に含有される酸化剤は、酸化還元電位が0.5V以上の遷移金属を含むものである。遷移金属を含む酸化還元電位が0.5V以上の酸化剤としては、例えば、過マンガン酸イオン、バナジン酸イオン、二クロム酸イオン、硝酸セリウムアンモニウム、硝酸鉄(III)九水和物、硝酸銀、リンタングステン酸、ケイタングステン酸、リンモリブデン酸、リンタングストモリブデン酸、リンバナドモリブデン酸等を挙げることができ、特に過マンガン酸イオンが好ましい。過マンガン酸イオンの供給源としては、過マンガン酸カリウムや過マンガン酸ナトリウム等の過マンガン酸塩が好ましい。
 SiC単結晶基板の研磨における酸化剤として、過マンガン酸イオンが特に好ましい理由を以下に示す。
(1)過マンガン酸イオンは、SiC単結晶を酸化する酸化力が強い。
 酸化剤の酸化力が弱すぎると、SiC単結晶基板の被研磨面との反応が不十分となり、その結果十分に平滑な表面が得られない。酸化剤が物質を酸化する酸化力の指標として、酸化還元電位が用いられる。過マンガン酸イオンの酸化還元電位は1.70Vであり、酸化剤として一般に用いられる過塩素酸カリウム(KClO)(酸化還元電位1.20V)や次亜塩素酸ナトリウム(NaClO)(酸化還元電位1.63V)に比べて、酸化還元電位が高い。
(2)過マンガン酸イオンは反応速度が大きい。
 過マンガン酸イオンは、酸化力の強い酸化剤として知られている過酸化水素(酸化還元電位1.76V)に比べて、酸化反応の反応速度が大きいので、酸化力の強さを速やかに発揮できる。
(3)過マンガン酸イオンは、環境負荷が小さい。
(4)過マンガン酸塩は、後述する分散媒(水)に完全に溶解する。したがって、溶解残渣が基板の平滑性に悪影響を与えることがない。
 研磨速度向上の効果を得るために、研磨剤中の過マンガン酸イオンの含有割合(濃度)は、0.25質量%以上5質量%以下が好ましい。0.25質量%未満では、酸化剤としての効果が期待できず、研磨により平滑な面を形成するのに非常に長時間を要したり、あるいは被研磨面にスクラッチが発生するおそれがある。過マンガン酸イオンの含有割合が5質量%を超えると、研磨液の温度によっては、過マンガン酸塩が完全に溶解しきれずに析出し、固体の過マンガン酸塩が被研磨面と接触することによりスクラッチが発生するおそれがある。研磨剤に含まれる過マンガン酸イオンの含有割合は、0.5質量%以上5質量%以下がさらに好ましく、1質量%以上5質量%以下が特に好ましい。
(シリカ粒子)
 本発明の研磨剤においては、研磨砥粒として、平均2次粒子径が0.2μm以下のシリカ粒子が0.01質量%以上20質量%未満の割合(濃度)で含有される。シリカ粒子の平均2次粒子径は、0.15μm以下がより好ましい。このような平均2次粒子径を有するシリカ粒子としては、コロイダルシリカ、ヒュームドシリカ(煙霧質シリカともいう。)、等を挙げることができる。
 SiC単結晶基板の研磨において、前記した酸化剤とともに、前記シリカ粒子を0.01質量%以上20質量%未満の割合で含有する研磨剤を使用した場合には、シリカ粒子をより高濃度で含む研磨剤を使用した場合と比べて、研磨速度が高くかつ表面粗さが小さくて平滑な表面が得られる。
 また、砥粒として、前記平均2次粒子径の範囲を超えるシリカ粒子を使用した場合には、SiC単結晶基板の被研磨面に与えるダメージが大きくなり、平滑で高品質な表面が得られない。
 なお、砥粒として含有されるシリカ粒子は、通常は研磨剤中で1次粒子が凝集した凝集粒子(2次粒子)として存在しているので、シリカ粒子の好ましい粒子径を、平均2次粒子径(平均凝集粒径)で表すものとする。平均2次粒子径は、研磨剤中のシリカ2次粒子の直径の平均値であり、例えば動的光散乱を用いた粒度分布計を用いて測定される。シリカ粒子の1次粒子径の平均値(平均1次粒子径)は、研磨特性と分散安定性の点から、5~150nmの範囲にあることが好ましい。ここで、平均1次粒子径は、例えば、粒子の比表面積から等価球換算の粒子径として求められる。その粒子の比表面積は、BET法として知られている窒素吸着法により測定される。
 本発明の研磨剤中のシリカ粒子の含有割合(濃度)は、十分な研磨速度を得るために、0.01質量%以上20質量%未満とする。シリカ粒子の含有割合が0.01質量%未満では、十分な研磨速度を得ることが難しい。20質量%以上の場合も研磨速度が著しく低下して好ましくない。より好ましい含有割合は0.05~15質量%であり、さらに好ましい含有割合は0.1~10質量%である。
(pHおよびpH調整剤)
 本発明に係る研磨剤のpHは、研磨特性および砥粒であるシリカ粒子の分散安定性の点から、11以下が好ましく、5以下がより好ましく、3以下が特に好ましい。pHが11以上では、十分な研磨速度が得られないばかりでなく、被研磨面の平滑性が悪化するおそれがある。
 研磨剤のpHは、pH調整剤である酸または塩基性化合物の添加・配合により調整できる。酸としては、硝酸、硫酸、リン酸、塩酸のような無機酸、ギ酸、酢酸、プロピオン酸、酪酸等の飽和カルボン酸、乳酸、リンゴ酸、クエン酸等のヒドロキシ酸、フタル酸、サリチル酸等の芳香族カルボン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸等のジカルボン酸、アミノ酸、複素環系のカルボン酸のような有機酸を使用できる。硝酸およびリン酸の使用が好ましく、中でも硝酸の使用が特に好ましい。塩基性化合物としては、アンモニア、水酸化リチウム、水酸化カリウム、水酸化ナトリウム等の無機アルカリ、テトラメチルアンモニウム等の4級アンモニウム化合物、モノエタノールアミン、エチルエタノールアミン、ジエタノールアミン、プロピレンジアミン等の有機アミンを使用できる。水酸化カリウム、水酸化ナトリウムの使用が好ましく、水酸化カリウムが特に好ましい。
 これらの酸または塩基性化合物の含有割合(濃度)は、研磨剤のpHを所定の範囲(pH11以下、より好ましくは5以下)に調整する量とする。
(分散媒)
 本発明の研磨剤においては、分散媒として水が含有される。水は、シリカ粒子を安定に分散させるとともに、酸化剤および必要に応じて添加される後述する任意成分を分散・溶解するための媒体である。水については、特に制限はないが、配合成分に対する影響、不純物の混入、pH等への影響の観点から、純水、超純水、イオン交換水(脱イオン水)が好ましい。
(研磨剤の調製および任意成分)
 本発明の研磨剤は、前記した成分が前記所定の割合で含有され、シリカ粒子については均一に分散し、それ以外の成分については均一に溶解した混合状態になるように調製され使用される。混合には、研磨剤の製造に通常用いられる撹拌混合方法、例えば、超音波分散機、ホモジナイザー等による撹拌混合方法を採ることができる。本発明に係る研磨剤は、必ずしも予め構成する研磨成分をすべて混合したものとして研磨の場に供給する必要はない。研磨の場に供給する際に、研磨成分が混合されて研磨剤の組成になってもよい。
 本発明の研磨剤には、本発明の趣旨に反しない限り、凝集防止または分散剤(以下、分散剤と示す。)、潤滑剤、キレート化剤、還元剤、粘性付与剤または粘度調節剤、防錆剤等を、必要に応じて適宜含有させることができる。ただし、これらの添加剤が、酸化剤、酸または塩基性化合物の機能を有する場合は、酸化剤、酸または塩基性化合物として扱うものとする。
 分散剤とは、砥粒であるシリカ粒子を純水等の分散媒中に安定的に分散させるために添加するものである。また、潤滑剤は、研磨対象物との間に生じる研磨応力を適度に調整し、安定した研磨を可能とするものである。分散剤としては、アニオン性、カチオン性、ノニオン性、両性の界面活性剤や界面活性作用のある水溶性ポリマーを使用することができる。また、潤滑剤としては、アニオン性、カチオン性、ノニオン性、両性の界面活性剤、多糖類、水溶性高分子等を使用できる。
 ここで、界面活性剤としては、疎水基として脂肪族炭化水素基、芳香族炭化水素基を有し、またそれら疎水基内にエステル、エーテル、アミド等の結合基、アシル基、アルコキシル基等の連結基を1つ以上導入したもので、親水基として、カルボン酸、スルホン酸、硫酸エステル、リン酸、リン酸エステル、アミノ酸を有するものを使用できる。
 多糖類としては、アルギン酸、ペクチン、カルボキシメチルセルロース、カードラン、プルラン、キサンタンガム、カラギナン、ジェランガム、ローカストビーンガム、アラビアガム、タマリンド、サイリウム等を使用できる。
 水溶性高分子としては、ポリアクリル酸、ポリビニルアルコール、ポリビニルピロリドン、ポリメタクリル酸、ポリアクリルアミド、ポリアスパラギン酸、ポリグルタミン酸、ポリエチレンイミン、ポリアリルアミン、ポリスチレンスルホン酸等を使用できる。分散剤および潤滑剤を使用する場合、その含有割合は、それぞれ研磨剤の全質量に対して0.001~5質量%の範囲とすることが好ましい。
[研磨対象物]
 本発明の研磨剤を使用して研磨する研磨対象物は、非酸化物単結晶基板である。非酸化物単結晶基板としては、SiC単結晶基板やGaN単結晶基板のような化合物半導体基板が挙げられる。特に、前記SiC単結晶基板やGaN単結晶基板のような、修正モース硬度が10以上の単結晶基板の研磨に本発明の研磨剤を用いることで、高速研磨の効果をよりいっそう得ることができる。
[研磨方法]
 本発明の研磨剤を用いて、研磨対象物である非酸化物単結晶基板を研磨する方法としては、研磨剤を研磨パッドに供給しながら、研磨対象物の被研磨面と研磨パッドとを接触させ、両者間の相対運動により研磨を行う方法が好ましい。
 上記研磨方法において、研磨装置としては従来公知の研磨装置を使用できる。
 図1に、本発明の実施形態に使用可能な研磨装置の一例を示すが、本発明の実施形態に使用される研磨装置はこのような構造のものに限定されない。
 図1に示す研磨装置10においては、研磨定盤1がその垂直な軸心C1の回りに回転可能に支持された状態で設けられており、この研磨定盤1は、定盤駆動モータ2により、図に矢印で示す方向に回転駆動されるようになっている。この研磨定盤1の上面には、公知の研磨パッド3が貼り着けられている。
 一方、研磨定盤1上の軸心C1から偏心した位置には、下面においてSiC単結晶基板等の研磨対象物4を吸着または保持枠等を用いて保持する基板保持部材(キャリヤ)5が、その軸心C2の回りに回転可能でかつ軸心C2方向に移動可能に支持されている。この基板保持部材5は、図示しないワーク駆動モータにより、あるいは上記研磨定盤1から受ける回転モーメントにより、矢印で示す方向に回転されるように構成されている。基板保持部材5の下面、すなわち上記研磨パッド3と対向する面には、研磨対象物4が保持されている。研磨対象物4は、所定の荷重で研磨パッド3に押圧されている。
 また、基板保持部材5の近傍には、滴下ノズル6等が設けられており、図示しないタンクから送出された本発明の研磨剤(以下、研磨液とも示す。)7が研磨定盤1上に供給されるようになっている。
 このような研磨装置10による研磨に際しては、研磨定盤1およびそれに貼り着けられた研磨パッド3と、基板保持部材5およびその下面に保持された研磨対象物4とが、定盤駆動モータ2およびワーク駆動モータによりそれぞれの軸心の回りに回転駆動される。そして、その状態で、滴下ノズル6等から研磨剤7が研磨パッド3の表面に供給され、基板保持部材5に保持された研磨対象物4がその研磨パッド3に押し付けられる。それにより、研磨対象物4の被研磨面、すなわち研磨パッド3に対向する面が化学的機械的に研磨される。
 基板保持部材5は、回転運動だけでなく直線運動をしてもよい。また、研磨定盤1および研磨パッド3も回転運動を行うものでなくてもよく、例えばベルト式で一方向に移動するものであってもよい。
 研磨パッド3としては、不織布、発泡ポリウレタンのような多孔質樹脂、非多孔質樹脂等からなるものを使用できる。研磨パッド3としては、砥粒を含有しないものが好ましい。また、研磨パッド3への研磨液7の供給を促進し、あるいは研磨パッド3に研磨液7が一定量溜まるようにするために、研磨パッド3の表面に格子状、同心円状、らせん状などの溝加工が施されていてもよい。さらに、必要により、パッドコンディショナーを研磨パッド3の表面に接触させて、研磨パッド3表面のコンディショニングを行いながら研磨してもよい。
 このような研磨装置10による研磨条件には特に制限はないが、基板保持部材5に荷重をかけて研磨パッド3に押し付けることで、より研磨圧力を高め、研磨速度を向上させることが可能である。研磨圧力は5~80kPa程度が好ましく、被研磨面内における研磨速度の均一性、平坦性、スクラッチ等の研磨欠陥防止の観点から、10~50kPa程度がより好ましい。研磨定盤1および基板保持部材5の回転数は、50~500rpm程度が好ましいがこれに限定されない。また、研磨液7の供給量については、被研磨面の構成材料や研磨液の組成、上記研磨条件等により適宜調整され選択される。
 以下、本発明を実施例および比較例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。例1~21は本発明の実施例であり、例22~29は比較例である。
(1)研磨剤の調製
(1-1)
 例1の研磨剤を、以下に示すようにして調製した。酸化剤である過マンガン酸カリウム粉末に純水を加え10分間撹拌した。次いで、コロイダルシリカ分散液を加え3分間撹拌し、さらにpH調整剤である硝酸を徐々に添加して、表1に示す所定の過マンガン酸カリウム濃度、砥粒濃度および表2に示すpHに調整し、研磨剤を得た。例2~21の各実施例においても、例1と同様の方法により表1および表2に記載の各研磨剤を調製した。なお、表1における酸化剤濃度は、過マンガン酸イオンの濃度ではなく、過マンガン酸カリウムの濃度である。
(1-2)
 例22~29の研磨剤を、以下に示すようにして調製した。例22においては、コロイダルシリカ分散液に、純水を加え10分間撹拌し、次いで、この液に、金属塩としてバナジン酸アンモニウムを撹拌しながら加え、最後に過酸化水素水を添加して30分間撹拌し、表1および表2に示す所定の各成分濃度に調整された研磨剤を得た。例23~25および例29に関しては、例1と同様の方法で調製し、表1および表2に記載の各成分濃度に調整された研磨剤を得た。例26~29に関しては、コロイダルシリカ分散液に、純水を加え10分間撹拌し、次いで、この液に、pH調整剤である硝酸を徐々に添加して、表1および表2に示す所定の各成分濃度に調整された研磨剤を得た。
 なお、例1~29で配合されるシリカ粒子の2次粒子径については、マイクロトラックUPA(日機装社製)により測定した。
(2)pHの測定
 例1~29で得られた研磨剤のpHを、横河電機社製のpH81-11を使用し25℃で測定した。測定結果を表2に示す。
(3)研磨特性
 例1~29で得られた研磨剤を使用し、以下に示す条件で研磨を行った。
(3-1)研磨条件
 研磨機としては、MAT社製の小型研磨装置を使用した。研磨パッドとしては、SUBA800-XY-groove(ニッタハース社製)を使用し、研磨前にダイヤディスクとブラシを用いて、5分間コンディショニングを行った。また、研磨剤の供給速度を25cm/分、研磨定盤の回転数を68rpm、基板保持部材の回転数を68rpm、研磨圧を5psi(34.5kPa)として、30分間研磨を行った。
(3-2)被研磨物
 被研磨物として、ダイヤモンド砥粒を用いて予備研磨処理を行った3インチ径の4H-SiC基板を使用した。主面(0001)のC軸に対するオフ角が4°±0.5°以内のSiC単結晶基板(以下、4度オフ基板と示す。)を使用して、Si面側を研磨し、研磨特性(研磨速度)を評価した。
(3-3)研磨速度の測定
 研磨速度は、前記SiC単結晶基板の単位時間当たりの厚さの変化量(nm/hr)で評価した。具体的には、厚さが既知の未研磨基板の質量と各時間研磨した後の基板の質量とを測定し、その差から質量変化を求めた。そして、この質量変化から求めた基板の厚さの時間当たりの変化を、下記の式を用いて算出した。研磨速度の算出結果を表2に示す。
(研磨速度(V)の計算式)
 Δm=m0-m1
 V=Δm/m0 × T0 × 60/t
(式中、Δm(g)は研磨前後の質量変化、m0(g)は未研磨基板の初期質量、m1(g)は研磨後基板の質量、Vは研磨速度(nm/hr)、T0は未研磨基板の厚さ(nm)、tは研磨時間(min)を表す。)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、例1~21の研磨剤を使用した場合は、オフ角が4°±0.5°以内のSiC単結晶基板に対して高い研磨速度が得られており、高速研磨が可能である。また、研磨対象物であるSiC単結晶基板の被研磨面に研磨に起因するキズが発生することがなく、平坦性および平滑性に優れた表面が得られる。
 これに対して、例22の研磨剤では、酸化剤として過マンガン酸カリウムではなく過酸化水素が含有されているので、SiC単結晶基板の研磨速度が例1~21に比べて低くなっている。また、例23~25の研磨剤では、砥粒であるコロイダルシリカの含有割合(濃度)が20質量%以上で本発明の範囲外になっているので、例1~21に比べて研磨速度が大幅に低くなっている。また、例29の研磨剤では、酸化剤である過マンガン酸カリウムの含有割合(濃度)が0.2質量%と本発明の範囲外になっているので、例1~21に比べて研磨速度が大幅に低くなっている。さらに、例26~28の研磨剤では、酸化剤である過マンガン酸カリウムが含有されていないので、SiC単結晶基板に対する研磨速度が、0(ゼロ)か0(ゼロ)近くと著しく低くなっている。
 本発明の研磨剤によれば、非酸化物単結晶基板、特にSiC単結晶基板やGaN単結晶基板のような、硬度が高く化学的安定性の高い化合物半導体基板を、高速で研磨することができ、かつキズがなく平坦性および平滑性に優れた研磨面を得ることが可能となる。したがって、それらの基板の生産性の向上に寄与できる。
 1…研磨定盤、2…定盤駆動モータ、3…研磨パッド、4…研磨対象物、5…基板保持部材、6…滴下ノズル、7…研磨剤、10…研磨装置。

Claims (6)

  1.  非酸化物単結晶基板を化学的機械的に研磨するための研磨剤であって、
     遷移金属を含む酸化還元電位が0.5V以上の酸化剤と、平均2次粒子径が0.2μm以下のシリカ粒子と、分散媒とを含有し、
     前記酸化剤の含有割合が0.25質量%以上5質量%以下であり、かつ前記シリカ粒子の含有割合が0.01質量%以上20質量%未満であることを特徴とする研磨剤。
  2.  前記酸化剤は、過マンガン酸イオンである請求項1に記載の研磨剤。
  3.  pHが11以下である請求項1または2に記載の研磨剤。
  4.  pHが5以下である請求項3に記載の研磨剤。
  5.  前記非酸化物単結晶基板は、炭化ケイ素(SiC)単結晶基板または窒化ガリウム(GaN)単結晶基板である請求項1~4のいずれか1項に記載の研磨剤。
  6.  研磨剤を研磨パッドに供給し、研磨対象物である非酸化物単結晶基板の被研磨面と前記研磨パッドとを接触させて、両者間の相対運動により研磨する方法であって、前記研磨剤として請求項1~5のいずれか1項に記載の研磨剤を使用する研磨方法。
PCT/JP2012/071266 2011-09-05 2012-08-23 研磨剤および研磨方法 WO2013035539A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280043222.0A CN103782370A (zh) 2011-09-05 2012-08-23 研磨剂及研磨方法
DE112012003686.7T DE112012003686T5 (de) 2011-09-05 2012-08-23 Poliermittel und Polierverfahren
KR1020147008711A KR20140062107A (ko) 2011-09-05 2012-08-23 연마제 및 연마 방법
US14/197,844 US20140187043A1 (en) 2011-09-05 2014-03-05 Polishing agent and polishing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-192887 2011-09-05
JP2011192887 2011-09-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/197,844 Continuation US20140187043A1 (en) 2011-09-05 2014-03-05 Polishing agent and polishing method

Publications (1)

Publication Number Publication Date
WO2013035539A1 true WO2013035539A1 (ja) 2013-03-14

Family

ID=47831989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071266 WO2013035539A1 (ja) 2011-09-05 2012-08-23 研磨剤および研磨方法

Country Status (7)

Country Link
US (1) US20140187043A1 (ja)
JP (1) JPWO2013035539A1 (ja)
KR (1) KR20140062107A (ja)
CN (1) CN103782370A (ja)
DE (1) DE112012003686T5 (ja)
TW (1) TW201313885A (ja)
WO (1) WO2013035539A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016096326A (ja) * 2014-11-07 2016-05-26 株式会社フジミインコーポレーテッド 研磨方法およびポリシング用組成物
WO2017138308A1 (ja) * 2016-02-09 2017-08-17 三井金属鉱業株式会社 研摩スラリー及び研摩材
JP2018067591A (ja) * 2016-10-18 2018-04-26 山口精研工業株式会社 窒化物半導体基板用研磨剤組成物
WO2020255921A1 (ja) * 2019-06-17 2020-12-24 株式会社フジミインコーポレーテッド 研磨用組成物
WO2023218809A1 (ja) * 2022-05-11 2023-11-16 住友電気工業株式会社 炭化珪素基板、炭化珪素エピタキシャル基板、炭化珪素基板の製造方法および炭化珪素半導体装置の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10294399B2 (en) * 2017-01-05 2019-05-21 Cabot Microelectronics Corporation Composition and method for polishing silicon carbide
US10907073B2 (en) * 2017-01-11 2021-02-02 Fujimi Incorporated Polishing composition
JP6901297B2 (ja) * 2017-03-22 2021-07-14 株式会社フジミインコーポレーテッド 研磨用組成物
CN106978088B (zh) * 2017-04-18 2018-11-20 海安县中丽化工材料有限公司 一种硅溶胶抛光液的制备方法
CN111378973A (zh) * 2018-12-28 2020-07-07 安集微电子科技(上海)股份有限公司 一种化学机械抛光液及其应用
KR102001458B1 (ko) 2019-03-08 2019-07-18 김병호 정반 보호패드가 구비된 연마장치
CN110091219A (zh) * 2019-03-13 2019-08-06 林德谊 一种银或银合金的表面抛光处理工艺
CN114686115A (zh) * 2020-12-30 2022-07-01 安集微电子科技(上海)股份有限公司 一种化学机械抛光液及其使用方法
US20220336203A1 (en) * 2021-04-15 2022-10-20 Globalwafers Co., Ltd. Fabrication method of semiconductor substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143429A (ja) * 2002-10-04 2004-05-20 Kao Corp 研磨液組成物
JP2007103457A (ja) * 2005-09-30 2007-04-19 Sumitomo Electric Ind Ltd ポリシングスラリー、iii族窒化物結晶の表面処理方法、iii族窒化物結晶基板、エピタキシャル層付iii族窒化物結晶基板、半導体デバイスおよびその製造方法
JP2008068390A (ja) * 2006-09-15 2008-03-27 Noritake Co Ltd 結晶材料の研磨加工方法
JP2009238891A (ja) * 2008-03-26 2009-10-15 Hitachi Metals Ltd SiC単結晶基板の製造方法
JP2011129752A (ja) * 2009-12-18 2011-06-30 Sumitomo Electric Ind Ltd Iii族窒化物結晶基板、エピ層付iii族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736405B2 (en) * 2003-05-12 2010-06-15 Advanced Technology Materials, Inc. Chemical mechanical polishing compositions for copper and associated materials and method of using same
US7998866B2 (en) * 2006-09-05 2011-08-16 Cabot Microelectronics Corporation Silicon carbide polishing method utilizing water-soluble oxidizers
CN102782066B (zh) * 2010-02-22 2015-04-15 巴斯夫欧洲公司 含铜、钌和钽层的基材的化学-机械平坦化

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143429A (ja) * 2002-10-04 2004-05-20 Kao Corp 研磨液組成物
JP2007103457A (ja) * 2005-09-30 2007-04-19 Sumitomo Electric Ind Ltd ポリシングスラリー、iii族窒化物結晶の表面処理方法、iii族窒化物結晶基板、エピタキシャル層付iii族窒化物結晶基板、半導体デバイスおよびその製造方法
JP2008068390A (ja) * 2006-09-15 2008-03-27 Noritake Co Ltd 結晶材料の研磨加工方法
JP2009238891A (ja) * 2008-03-26 2009-10-15 Hitachi Metals Ltd SiC単結晶基板の製造方法
JP2011129752A (ja) * 2009-12-18 2011-06-30 Sumitomo Electric Ind Ltd Iii族窒化物結晶基板、エピ層付iii族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016096326A (ja) * 2014-11-07 2016-05-26 株式会社フジミインコーポレーテッド 研磨方法およびポリシング用組成物
US10759981B2 (en) 2014-11-07 2020-09-01 Fujimi Incorporated Polishing method and polishing composition
US11015098B2 (en) 2014-11-07 2021-05-25 Fujimi Incorporated Polishing composition
WO2017138308A1 (ja) * 2016-02-09 2017-08-17 三井金属鉱業株式会社 研摩スラリー及び研摩材
JPWO2017138308A1 (ja) * 2016-02-09 2018-11-29 三井金属鉱業株式会社 研摩スラリー及び研摩材
US11015086B2 (en) 2016-02-09 2021-05-25 Mitsui Mining & Smelting Co., Ltd. Polishing slurry and polishing material
JP2018067591A (ja) * 2016-10-18 2018-04-26 山口精研工業株式会社 窒化物半導体基板用研磨剤組成物
WO2020255921A1 (ja) * 2019-06-17 2020-12-24 株式会社フジミインコーポレーテッド 研磨用組成物
WO2023218809A1 (ja) * 2022-05-11 2023-11-16 住友電気工業株式会社 炭化珪素基板、炭化珪素エピタキシャル基板、炭化珪素基板の製造方法および炭化珪素半導体装置の製造方法

Also Published As

Publication number Publication date
DE112012003686T5 (de) 2014-07-10
CN103782370A (zh) 2014-05-07
US20140187043A1 (en) 2014-07-03
TW201313885A (zh) 2013-04-01
JPWO2013035539A1 (ja) 2015-03-23
KR20140062107A (ko) 2014-05-22

Similar Documents

Publication Publication Date Title
WO2013035539A1 (ja) 研磨剤および研磨方法
JP5614498B2 (ja) 非酸化物単結晶基板の研磨方法
WO2012165376A1 (ja) 研磨剤および研磨方法
JP5935865B2 (ja) 炭化ケイ素単結晶基板の製造方法
JP2012248569A (ja) 研磨剤および研磨方法
WO2012005142A1 (ja) 研磨剤および研磨方法
WO2012036087A1 (ja) 研磨剤および研磨方法
JP6042407B2 (ja) 研磨用組成物、及び当該研磨用組成物を用いた化合物半導体基板の製造方法
TW201500533A (zh) 包含n,n,n’,n’-肆(2-羥基丙基)乙二胺或甲磺酸之化學機械拋光組成物
JP2014168067A (ja) 非酸化物単結晶基板の研磨方法
JP2011161570A (ja) 研磨剤および研磨方法
Sivanandini et al. Chemical mechanical polishing by colloidal silica slurry
CN112552824B (zh) 研磨用组合物和研磨方法
JP2015074707A (ja) 研磨組成物、該研磨組成物の製造方法及び研磨方法
JP2015120846A (ja) 研磨剤および研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532532

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120036867

Country of ref document: DE

Ref document number: 112012003686

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20147008711

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12830174

Country of ref document: EP

Kind code of ref document: A1